
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g 
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g 

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Henrik Ytrehus Ågotnes

Hydropower optimization using
model-based Reinforcement
Learning

Masteroppgave i Master of Science in Informatics
Veileder: Helge Langseth
Juni 2023





Henrik Ytrehus Ågotnes

Hydropower optimization using model-
based Reinforcement Learning

Masteroppgave i Master of Science in Informatics
Veileder: Helge Langseth
Juni 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk





Abstract

One of the most effective ways to store energy is by scheduling hydropower plants
to produce when it is most beneficial and reserve the water in other periods. In the
Nordic power market, hydropower operators try to optimize profits.

This is a challenging problem involving non-linear dynamics, uncertainty and oper-
ating constraints. Traditional methods typically use variants of linear programming
to solve the problem, but these methods can have high running times. The Nordic
power market is transitioning to become closer to real-time, which increases the
computational burden on traditional methods. In this thesis, we try to find altern-
ative methods with a different trade-off between solution quality and running time.
The running time needs to be lower, and ideally, the solution quality should not be
adversely affected.

We make the observation that our model of the environment is differentiable with
some non-continuous points, which allows us to compute the gradient of the profit
with regard to the actions. We can then do gradient ascent to optimize actions for
an episode. To deal with the non-continuous points we first use various techniques
such as Monte Carlo tree search and the cross-entropy method in an attempt to get
close to the global maximum.

We find that this method has a running time within the given time constraint and
a better solution quality than some state-of-the-art methods. However, we were
unable to compare the performance to production systems or the global optimum.
Consequently, the exact extent of the solution’s quality remains unknown.

Keywords: Model-based reinforcement learning, hydropower optimization, Monte
Carlo Tree Search (MCTS), trajectory-optimization, cross-entropy method
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Trondheim, 11th June 2023

ii



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory and Motivation 5

2.1 Hydropower and the Nordic power market . . . . . . . . . . . . . . . 5

2.1.1 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Nordic power markets . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 The hydropower scheduling problem . . . . . . . . . . . . . . 10

2.1.4 Modeling uncertainty . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Linear programming and stochastic programming . . . . . . . 14

2.2.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Cross-entropy method . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



3 Related literature 29

3.1 Overview of relevant literature . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Model-free reinforcement learning . . . . . . . . . . . . . . . . 32

3.2.3 Cross-entropy method for continuous control . . . . . . . . . . 35

3.2.4 Differentiable simulators . . . . . . . . . . . . . . . . . . . . . 37

3.2.5 Tree search and rollouts . . . . . . . . . . . . . . . . . . . . . 37

4 Architecture 39

4.1 Hydropower environment assumptions . . . . . . . . . . . . . . . . . 39

4.2 Model free reinforcement learning for hydropower optimization . . . . 41

4.2.1 State-space representation . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Reward function design . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Heuristic tree search with gradient fine-tuning . . . . . . . . . . . . . 43

4.3.1 Overview of pipeline . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Monte Carlo tree search with heuristics . . . . . . . . . . . . . 47

4.3.5 Cross-entropy method . . . . . . . . . . . . . . . . . . . . . . 49

4.3.6 Gradient optimization . . . . . . . . . . . . . . . . . . . . . . 50

5 Experiments and Results 55

5.1 Experimental Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Environment setup . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Agent-environment interface . . . . . . . . . . . . . . . . . . . 58

5.2.3 Soft Actor-Critic setup . . . . . . . . . . . . . . . . . . . . . . 59

5.2.4 Cross-entropy method parameters . . . . . . . . . . . . . . . . 60

iv



5.2.5 HG setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Comparison of average episode profits . . . . . . . . . . . . . . 63

5.3.2 Total running time . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Detailed results from the HG system . . . . . . . . . . . . . . 67

5.3.4 Visualizing some episodes . . . . . . . . . . . . . . . . . . . . 69

6 Evaluation and Conclusion 81

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Scaling to 15-minute timesteps . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

A Hardware specifications 91

v



vi



List of Figures

1.1 Power price in the first 14 days of September 2022 . . . . . . . . . . . 2

2.1 Hydropower plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Discharge vs power produced . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Power price distribution . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Action-profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Agent environment interaction . . . . . . . . . . . . . . . . . . . . . . 18

4.1 agent diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Illustration of the gradient for different prices and actions. The inflow
is set to match discharges, so the reservoir filling is the same for all
time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Environment agent interaction . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Profit distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Profit distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Profit distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Visualization of episode 0 . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Visualization of episode 1 . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Visualization of episode 1 . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Visualization of episode 19 . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 Visualization of episode 19 . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Visualization of episode 26 . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 Visualization of episode 11 . . . . . . . . . . . . . . . . . . . . . . . . 77

5.12 Visualization of episode 43 . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



5.13 Visualization of episode 48 . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Tables

3.1 Overview of which characteristics apply to each environment. In en-
vironments where a characteristic sometimes applies, but not always,
✓* is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Overview of research papers reviewed in this chapter and their cor-
responding environments and methods used. . . . . . . . . . . . . . . 30

5.1 The neural network architecture of the actor . . . . . . . . . . . . . . 59

5.2 The neural network architecture of the critic . . . . . . . . . . . . . . 59

5.3 Cross-entropy method parameters . . . . . . . . . . . . . . . . . . . . 61

5.4 The parameters for all phases of the HG agent. . . . . . . . . . . . . 62

5.5 Parameters of LightGBM classifier. . . . . . . . . . . . . . . . . . . . 62

5.6 Average profit across 50 episodes for all agents, measured in EUR. . . 64

5.7 Total running time for the cross-entropy method and the HG system
with and without the CEM-phase. . . . . . . . . . . . . . . . . . . . . 66

5.8 The % improvement for each of the phases for HG. The last two rows
show the mean and median improvement in euros, not percentages.
This version of the HG has all stages included. . . . . . . . . . . . . . 68

5.9 The % improvement for each of the phases for HG without CEM. The
last two rows show the mean and median improvement in euros, not
percentages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Average running times in seconds for the HG. The result is for the 50
episodes in the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 Average running times in seconds for HG (w/o CEM). The result is
for the 50 episodes in the test set. . . . . . . . . . . . . . . . . . . . . 69

5.12 Visualizes the performance of the classifiers from the Monte Carlo tree
search. The score is given by the objective function if that classifier
had been used to decide all actions in a trajectory divided by the
objective value of the seeding phase. . . . . . . . . . . . . . . . . . . 69

ix



A.1 System Specifications for laptop . . . . . . . . . . . . . . . . . . . . . 91

A.2 System Specifications for Azure virtual machine . . . . . . . . . . . . 91

x



Chapter 1

Introduction

We start the chapter by giving some background information about hydropower
scheduling and our motivation for this project in Section 1.1. In Section 1.2 we
define our research goal and three research questions that can help achieve the goal.
The main contributions are listed in Section 1.3 and the structure of the thesis is
laid out in Section 1.4.

1.1 Background and Motivation

Hydropower is a way to generate electrical energy from flowing water. It is the most
used energy source in Norway, with 136.7 terawatt-hours of yearly production, out
of a total of 156.1 terawatt-hours in a normal year (NVE, 2023). The hydropower
scheduling problem involves deciding when to utilize water resources for power gen-
eration, and when to save the water for future use. The goal of the problem is to
maximize profits by finding the optimal generation schedule, which specifies how
much water will be released for each time step in a planning horizon. To decide
future schedules operators rely on uncertain forecasts about future prices and how
much water will flow into the reservoir. There are also operating constraints.

Power prices are highly volatile and fluctuate hourly, offering opportunities for hy-
dropower operators to achieve a higher realized price. As shown in Figure 1.1,
power prices in the first half of September 2022 varied widely, ranging from below
€30 to over €500 per unit. This volatility can significantly impact the revenue of
the operator, potentially by more than a factor of 10. Consequently, choosing an
optimal generation schedule can lead to large increases in profit for the owner of
the hydropower plant. Because hydropower is such a large part of Norwegian power
generation, increasing the profits by a tiny factor can give large increases in profits.

Better hydropower scheduling also benefits consumers by ensuring a stable supply
and price of power. This is because a high price in a particular hour signals that
power is relatively scarce that hour, either because of high demand or a low supply of
power. A scheduler that reacts to the high price by increasing power production will
increase supply which can lead to lower prices at that hour. With intermittent power

1



Figure 1.1: Power price in September 2022 (Trønder Energi, 2022)

sources like solar and wind projected to increase to avoid carbon emissions (IEA,
2022), the supply of power will have more volatility, which creates more volatile
prices. Hydropower can provide backup power during times of low wind or solar
generation, and save water during periods of high wind or solar generation. In this
scenario, hydropower takes the role of a battery to create a more stable supply of
power. Graabak et al. (2017) and Clarke et al. (2022) identify this approach as
important to reduce reliance on fossil fuels.

Power producers currently use optimization techniques that find good solutions but
have slow running times. Trønder Energi is interested in finding methods that have
lower running time without substantially reducing the quality of the solutions. When
the power market changes from an hourly time resolution to a new price every 15
minutes, the problem size increases exponentially. Employees at Trønder Energi
worry that traditional methods might not scale to this added complexity.

1.2 Goals and Research Questions

Goal Find solutions to the short-term hydropower scheduling problem that balances
computation time and solution quality

The main purpose of this thesis is to find methods from the field of Artificial Intel-
ligence that can be used to solve the hydropower scheduling problem. The methods
should approach the decision quality of traditional methods, but in addition, have
a lower running time. In discussions with employees at Trønder Energi, they have
stated that differences between computation times below 2 minutes do not mat-
ter. Increasing solution quality at the cost of increased running time is worthwhile
when the running time is below this threshold. Consequently, we set 2 minutes as
the maximum running time for our method. The methods should be compared on

2



computation time and solution quality as measured by profit when operating over
a certain time period.

Research question 1 What techniques have been used to solve continuous control
problems with uncertainty?

To solve our goal, we will survey methods that have been used for similar problems.
The hydropower scheduling problem is part of a class of problems called optimal
control under uncertainty. The problem can be broken into subproblems such as
dealing with different types of uncertainty, dealing with constraints, incorporating
known dynamics of a process into the learning system and dealing with limited data.
Finding relevant approaches and avoiding pitfalls is an important first step in the
research process.

Research question 2 Which techniques exhibit the best fit for addressing the hy-
dropower scheduling problem?

Based on the techniques discussed in Research Question 1, we are interested in
identifying which are most suitable for the hydropower scheduling problem. To
answer this question we need to discuss properties of the hydropower problem and
find methods that have successfully addressed problems with similar characteristics.

Research question 3 Is it possible to create a data analysis pipeline that is com-
petitive with state-of-the-art methods while subject to constraints on the run-
ning time?

To address this question, we need to create or choose a promising method and
evaluate the technique. The evaluation should be compared to methods from State
of the Art to give a reasonable baseline. In our comparison, we are interested in
how much profit a method generates over a time period, and how much running
time a trained system uses to arrive at its decisions. We are interested in different
trade-offs between running time and solution quality, but in general, we prefer an
improvement of solution quality on the cost of running time.

1.3 Contributions

We make the following contributions:

1. We survey techniques for continuous control under uncertainty. These include
model-free reinforcement learning like the soft actor-critic, the cross-entropy
method, heuristic search and differentiable simulators.

2. We address the suitability of these techniques for the hydropower problem.

3



3. We design a method to optimize the hydropower scheduling problem using a
combination of heuristic search and a differentiable simulator.

4. We evaluate this approach and show that it performs better on the evaluation
than a popular model-free reinforcement learning algorithm called Soft actor-
critic, in addition to a model-based approach called the cross-entropy method.

1.4 Thesis Structure

This thesis is structured as follows:

Chapter 2 - Background: This chapter introduces relevant background inform-
ation that can be useful to understand the rest of this thesis. Firstly, we
explain the hydropower scheduling problem and introduce relevant domain
knowledge. Secondly, we discuss various artificial intelligence techniques like
supervised learning and reinforcement learning. Finally, we explain the mo-
tivation behind the project.

Chapter 3 Related literature: Surveys some more recent methods that build on
the concepts in Chapter 2. The selection criteria for methods is that they are
used on problems with similar characteristics as the hydropower problem.

Chapter 4 Architecture: Based on our problem specification and our findings
from related literature, we explain our choice of methods to answer the research
questions. We explain some assumptions we made when modeling the problem,
show how we adapted the Soft Actor-Critic to our problem, and also explain
our main contribution in this thesis, a data analysis pipeline using various
ideas from the literature on reinforcement learning.

Chapter 5 Experiments and results: We show the experimental plan to answer
Research Question 3, and also provide implementation details and our exper-
imental setup. The last section gives the results of our experiments.

Chapter 6 Evaluation and Conclusion: Finally, We summarize the main points
and answer our research questions. We also discuss limitations and potential
future work.

4



Chapter 2

Background Theory and
Motivation

This chapter introduces some background knowledge that will be required to un-
derstand the results of this thesis. Section 2.1 gives an introduction to domain
knowledge about the hydropower scheduling problem. Then Section 2.2 discusses
some relevant techniques in the field of artificial intelligence. Lastly, Section 2.3
describes the motivation behind the project.

2.1 Hydropower and the Nordic power market

This section introduces background knowledge about hydropower. Section 2.1.1
gives an overview of how hydropower plants work and how to model them. The main
result from this section is the operating constraints of the hydropower plant and the
relation between discharge and how much power is generated. Next, a description
of how the Nordic power market sets the power price is given in Section 2.1.2.
The hydropower scheduling problem is explained in Section 2.1.3. The primary
takeaway from this section is the profit equation, which is the optimization target of
the thesis. Lastly, in Section 2.1.4 we turn our attention to the role of uncertainty
in the problem. We introduce an objective function that uses uncertain data and
also explain the intuition behind multistage optimization, a more complex objective
that is not used in this thesis.

2.1.1 Hydropower

Hydropower uses a turbine to convert the mechanical energy of moving water to
electrical energy. Since gravity pulls on water, water has potential energy. The
higher the elevation of the water and the more mass of water, the more potential
energy is stored.

There are different types of hydropower plants. The most common in Norway is

5



Figure 2.1: Hydropower plant (Energy Information Administration, 2022)

storage hydropower plants, which have a dam and a reservoir that can accumulate
water. In this thesis, we model a hydropower plant called Mørre, which is of this
type. Figure 2.1 shows some of the components of a hydropower dam. A reservoir
of water can be released into the penstock to drive a turbine. A generator converts
the movement of the turbine to electrical energy, which is delivered to the power
grid.

The amount of power generated is measured in megawatt hours (MWh) and depends
on the plant and a number of other factors. For reference, Mørre power station can
produce between 6 to 14 MWh in an hour, and in 2020 produced 68 GWh during the
year. The potential energy of water can be calculated by multiplying gravitational
acceleration (g = 9.81m/s2), the height of the water above the turbine (h(xt)), and
the mass of the water. The mass of the water is given by the number of cubic meters
of water flowing through each second (dt measured in m3/s) and the water density,
ρ, around 1000kg/m3.

The height of the water varies with the reservoir filling, xt. When the reservoir
water level is high, more power can be generated per cubic meter of water. This is
called head and allows power producers with a relatively full reservoir to generate
slightly more power per unit of water. For our model of Mørre, a full reservoir gives
6.2% more power than an almost empty reservoir.

The operators of the dam decide how much water goes out of the reservoir. Released
water that spins a turbine is called discharge, dt, and will generate electricity. This is
the only mechanism for controlling the hydropower scheduling. Sometimes operators
release water without generating power which is called spillage. This is not included
in our equation for simplicity.

The amount of power generated does not depend linearly on the amount of discharge.
The friction loss coefficient, γ, depends on the squared discharge. This friction loss
makes the power generated a nonlinear function of the discharge. As discharge
increases, less power is generated per cubic meter of water.

The power generated can be approximated by Equation 2.1, where wt is the gen-

6



Figure 2.2: The figure shows the relation between the discharge decision, d, and the
power produced per unit of water, given by w/d. The result is based on parameters
specific for Mørre, and with filling at 50% of maximum. (Trønder Energi, 2022).

erated power measured in MWh. η is the turbine efficiency, which is a function of
the discharge dt. This function is based on a linear interpolation of points provided
by Trønder Energi and has a maximum efficiency at around 17m3/s. When the
turbine takes kinetic energy from the moving water, the water is slowed down. A
hypothetical turbine with a 100% efficiency would stop the movement of the water,
which is not possible. κ is a time step conversion factor to convert energy measured
in watts to power measured in MWh, which for an hourly resolution is given by
602 × 10−6. The relation between the discharge decision and the efficiency of the
power production for Mørre power station is shown in Figure 2.2. The unit of power
efficiency is MWH per m3/s. We see that Mørre is efficient with discharge around
16 to 17 m3/s, as this gives the most power generated per unit of water.

The reservoir water volume, xt, will change by the difference between inflow and
discharge as seen in Equation 2.2. qt is the inflow, which is the amount of water
flowing into the reservoir, and can come from sources such as rain, rivers and melt-
ing snow. We also need to convert inflow and discharge from m3/s to the time
resolution of the decision, so we use the time conversion factor δ. In the case of an
hourly resolution, δ = 602. The Norwegian Water Resources and Energy Directorate
constrains operation rules for hydropower plants to prevent environmental damage
(NVE, 2022). Plants consequently have a minimum and maximum reservoir water
level that should not be violated. Equation 2.4 expresses this constraint, where xt

is the filling of the reservoir. The consequences for breaking the minimum reservoir
level are worse, as this can have environmental damage. If the reservoir level exceeds
the maximum threshold, xt > xmax, then the excess water is lost as spillage. Because
both reservoir water level and the amount of discharge affect the power efficiency of
a unit of water, there is an opportunity for maximizing the power produced. Much
of the literature described in Section 3 tries to achieve this goal while ignoring prices.
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Operators are also limited in how much discharge they can release, which leads to
the constraint in Equation 2.3. For Mørre, the power operator can either choose 0
discharge, or between 10m3/s and 22m3/s.

The equations were adapted from Matheussen et al. (2019), with some modifications.

wt = κη(dt)ρg(h(xt)− γd2t )dt (2.1)

xt = min(xt−1 + δ(qt − dt), xmax) (2.2){
dmin ≤ dt ≤ dmax,

dt = 0
(2.3)

xmin ≤ xt ≤ xmax (2.4)

Where:

wt: Power produced (MWh) at time t

dt: Discharge m3/s

qt: Inflow m3/s

xt: Filling in reservoir m3

κ: Unit conversion, 602 × 10−6 for hourly resolution

η: Turbine efficiency

ρ: Water density, 1000kg/m3

γ: Friction loss coefficient

g: Gravity 9.8 m/s2

h(xt): Height of water over turbine, m

δ Conversion factor, 602 to convert from cubic meters per second (m37s) to cubic
meters per hour.

2.1.2 Nordic power markets

The power market is designed to set a price that matches the amount of power pro-
duced to the amount of power consumed. Nord Pool organizes the power exchange
and enforces rules and regulations to ensure an efficient power market.

The following procedure is used to determine the spot price. Producers in the power
market submit how much power they want to sell at different prices, and consumers
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Figure 2.3: The distribution of the power price from September 2019 to September
2022, in NO3. The price is measured in EUR/MWh (Trønder Energi, 2022)

submit how much they want to buy at different prices. The market-wide supply
and demand are found by aggregating the individual bids. The power price is where
demand equals supply, and all actors who were willing to buy above this price or
sell below this price will have their orders accepted.

When a hydropower producer decides how much power to sell, he must consider
future prices. Analysts and domain experts try to forecast power prices. The forecast
uses many uncertain factors like demand patterns, the price expectations of other
producers, weather and other things. Power companies like Trønder Energi rely on
an ensemble of possible future prices, which are called scenarios. These scenarios
can be produced in-house or bought from companies such as SKM Market Predictor
which specializes in forecasts and analysis of the power market.

The price can be modeled using a stochastic, heavy-tailed distribution. Figure 2.3
shows the distribution of the power price over three years. The tail of the distribution
is very long, which means that the probability of sampling values very far from the
mean is very large compared to a normal distribution. The unbiased skewness is
around 4.5, which also indicates that the distribution is highly asymmetrical. This
heavy-tailed distribution is a common feature of power prices Powell, 2014.

There are a few different power market exchanges. In the day-ahead market, actors
submit bids for each hour on the next day. Other exchanges such as intraday and
the regulating market allow bidding closer to delivery time and can have different
prices to the day-ahead market. This can affect the optimal scheduling, but for
simplicity, this thesis only considers optimizing profits for the day-ahead market.
The power market is also divided into many areas, where Norway has 5 areas, and
the area of Mørre power station is called NO3.

Changing the scheduling can affect the price. If a power producer decides to produce
more power in a specific hour, the supply of power increases and more buy bids
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for lower prices can be met. The price a firm gets could therefore decrease as a
consequence of their bidding choices. It is difficult to model how much the prices will
change, so we make the assumption that the power producer is a price-taker, meaning
that a single producer’s schedule does not affect the price. This assumption is more
reasonable when the hydropower plant has a small share of market production, which
is the case for Mørre.

In summary, the power price depends on a complex interplay between many actors
and uncertain factors.

2.1.3 The hydropower scheduling problem

A schedule is a sequence of discharge decisions, one for each time step in the planning
horizon T . The schedule, S, is given by S = (dt)

T
t=1.

The objective of the deterministic optimization problem is to find a schedule that
maximizes the profit V , given by Equation 2.5:

V (d⃗) =
T∑
t=1

(ptwt − ct) + I(xT+1, eT+1) (2.5)

ct =


106, if xt < xmin

110, else if dt−1 = 0 ∧ dt > 0

0, otherwise

(2.6)

For each time step in the planning horizon, T , the profit is given by pt, the power
price, times the quantity of power produced, wt. The relation between dt and
wt was given in Equation 2.1, and how dt affects the reservoir level was given in
Equation 2.2. An explanation of how the power price, pt is formed was given in
2.1.2. In addition, there is a cost, ct, if the generator was previously turned off or
the constraints for xt were broken. We also remove the revenue for time steps where
the lower reservoir was broken, and only the punishment −106 is given for that time
step. Values specifically for Mørre power plant are shown in Equation 2.6.

In addition, the value of the remaining water at the end of the planning horizon
is given by I, which depends on the amount of water left in the reservoir and the
expected price of this water in the future. If a rest price was not included, then a
profit-maximizing agent would always want to empty the reservoir at the end of the
planning horizon, which would not be desirable. Trønder Energi uses a medium-
term model which plans with a longer time horizon to determine the value of the
rest of the water. This model outputs cut files that contain estimates of the value
of the remaining water.

To give some intuition for the relationship between actions and profit, we will now
consider Figure 2.4. The figure shows how changing a single action affects the profit.
The red points and the blue line are all legal decisions. In this case, the price is
10% higher than the rest price, and we see that to achieve the highest profit, the
model should produce at around 17m3/s. The shape of the curve between 10 and
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Figure 2.4: The figure shows the profit for various discharge decisions. The discharge
decision is for one specific timestep, and all other decisions are constant. The price
is 10% higher than the rest price.

22 is mostly due to the power efficiency at various levels of discharge, illustrated
in Figure 2.2. Turning on production, from the first red point to the second, leads
to a reduction in profit because power production is very inefficient at 10m3/s, so
the revenue from this production is lower than the revenue lost from the rest value.
The same is true for discharge decisions close to the maximum, where the efficiency
falls again. Another small effect is that the lost water reduces head for all future
timesteps, which gives some reduced profit. In addition, the startup cost reduces
the profit by €110 in this figure because the previous action was nonzero. When
the price to rest price ratio is lower, it is often beneficial to not produce at all. In
the opposite case, when the price is much higher than the rest price, the slope of
the curve changes, and it may be optimal to use maximum discharge. Finally, if the
single action can lead to a violation of the reservoir filling constraints, then there
can be discontinuities in the curve.

The planning horizon, T , is usually around 12 days. Bidding in the day-ahead
market only requires submitting a schedule for the next 24 hours, but the optimal
decision depends on future decisions, which is why a longer planning horizon is used.
For instance, if prices are expected to be high for the next two weeks, an optimal
schedule for the first 24 hours would be more likely to save water. For a planning
horizon of 12 days and an hourly resolution, 24× 12 = 288 discharge decisions have
to be considered. A brute force search with the discharge discretized to n values
would require checking n288 combinations. When the power market changes to 15
minutes resolution, the problem becomes even more computationally heavy, with
n288×4 possible combinations.
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2.1.4 Modeling uncertainty

We get a stochastic optimization problem by introducing uncertain inflow and price
forecasts. The true pt in Equation 2.5 and the true qt in Equation 2.2 are both
unknown at the time of planning, so the planner must instead rely on uncertain
forecasts of these variables. We model the forecasts as scenarios, where a sequence
of future prices from time t = 0 to t = T occur with some probability. These
predictions are made using information available at time f . The notation p̂t,s,f
means a forecast of the price in time t. s is the scenario if we have many different
forecasts, made using information up to time f . q̂t,s,f is the equivalent for inflow.
The objective is now to maximize what we will refer to as the matrix profit computed
over the scenarios.

One possible interpretation of scenarios is that they are a discrete probability distri-
bution over all possible prices or inflows. It could either be over all possible prices,
or over the sequences of prices. In reality, this modeling choice does not accurately
represent reality, as the actual price will not be exactly equal to any of the forecast
scenarios. Instead, the actual values will likely come close to some scenarios. There
are two main reasons Trønder Energi optimizes for the discrete case. Firstly, the
forecasts arrive as discrete, possible worlds based on weather simulations and dif-
ferent assumptions. Secondly, the discrete probability case is required to solve the
problem with stochastic programming, the current model used by Trønder Energi.
In general, it makes it easier to create an objective function.

One issue with our modeling of the inflow scenarios as a discrete probability distri-
bution is that the true inflow might be lower than the lowest inflow scenario. This
can have large consequences for constraint violation, as each inflow scenario might
barely avoid breaking constraints, but the true inflow is more extreme than either of
the scenarios and leads to a constraint violation. One simple way to deal with this
would be to add soft constraints, like being a certain distance from the maximum
or minimum reservoir level, and get punished for coming closer. This requires reas-
oning about the forecast error and what risk we are willing to accept. Because we
lack domain knowledge about the inflow forecast error and also do not have enough
information to quantify the damage of emptying the reservoir, this is not further
developed in this thesis. We only use soft constraints of a value that seems to work
well on the simulation.

We denote the set of price scenarios and inflow scenarios with Pf and Qf . Assume
that each scenario has an equal probability of occurring. A complete realization of
the stochastic elements in the problem is then given by an element in the Cartesian
product of Pf and Qf , Pf×Qf . If we assume that both Qf and Pf are independent
and uniformly distributed, then each of the pairs of price and inflow scenarios occurs
with equal probability given by (|Qf ||Pf |)−1.

A natural way to estimate the matrix profit is then to use Equation 2.1, 2.2 and 2.5,
but replace the deterministic price and inflows with each pair of price and inflow
scenarios from Pf×Qf , and calculate the average profit.
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For ease of use, we here define the deterministic objective function by:

J(d⃗, p⃗, q⃗, x0, eT ), (2.7)

where the vectors d⃗, p⃗ and q⃗ are the discharge decisions, prices and inflows for
all time steps t ∈ (1, 2, ..., T ), and x0 and eT are the scalar values for the initial
reservoir filling and the rest price. This objective function outputs the profit, given
by Equation 2.5.

In the uncertain case, p⃗ and q⃗ are unknown, so we instead optimize the objective:

1

|Cf |

|Cf |∑
s̃=1

J(d⃗, p⃗s, q⃗s, x0, eT ), (2.8)

where Cf = Pf×Qf . The only change compared to the deterministic objective
is that the true price and inflow are replaced with scenarios. We then compute
this profit for each pair of possible price and inflow scenarios, and take the average
of these profits. This is our proxy metric for how good a trajectory is and can be
interpreted as the expected profit of the trajectory d⃗ if we assume all scenarios occur
with uniform probability and are independent.

However, while we optimize Equation 2.8 in this thesis, this is just a lower bound of
the optimal solution. Because we are given more information in the next 24 hours,
in the form of more accurate forecasts, combined with the ability to reschedule
discharge decisions after this time, it is possible to do better. This is a class of
problems called recourse problems with multiple stages, while Equation 2.8 can be
seen as a one-stage optimization problem. While we only use one-stage optimization
for simplicity in this thesis, we elaborate some more on multi-stage optimization in
the rest of this section.

We will now show a simple example of how multiple stages can change the optimal
schedule compared to a one-stage optimization problem. Assume that we must make
a plan for some planning horizon. Within this planning horizon, we know that we
get more information and can reschedule our production based on this information
in what we will call stage 2. In stage 1 we must decide what production to use now,
which depends on what is optimal in stage 2. Let us consider a simple problem
with a planning horizon of three steps where we only have enough reservoir water
to produce at a single time step. There is a 50% chance that the price sequence
p⃗a = (60, 0, 100) occurs, and a 50% chance that p⃗b = (60, 100, 0) happens. In the
one-stage problem, we have to commit to one action now, without getting more
information later. The optimal decision would then be to produce at the first step
where the price is 60. Producing at step 2 or 3 gives an expected price of 50, which
is lower than 60. However, this changes if we consider a two-stage optimization
problem where we get to know which scenario occurred after step 1, and we can also
update our plan according to which scenario occurred. We should then not produce
at step 1 but save the water and produce at step 3 in scenario A and step 2 in
scenario B, for an expected profit of 100. This shows how the multistage problem
changes the optimization problem, and how a one-stage optimization procedure gives
a sub-optimal production schedule. The negative side of multi-stage optimization is
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that solving it requires so much computation and memory that it is sometimes not
possible to fit all scenario-dependent solutions in memory. It also requires modeling
exactly what information is revealed in the stages. One way to solve the multistage
problem is discussed in Section 2.2.1.

2.2 Background Theory

This Section gives background knowledge on relevant methods in the field of artifi-
cial intelligence. Section 2.2.1 explains the intuition behind traditional optimization
methods used by industry. These are linear programming and stochastic program-
ming. The next parts are related to reinforcement learning, and start off by giving
an introduction to reinforcement learning in Section 2.2.2. We also mention the dif-
ference between model-based reinforcement learning and model-free reinforcement
learning. In model-based reinforcement learning, there are many ways to plan ahead,
by simulating many options. One specific way to plan on a model is Monte Carlo tree
search, which we discuss in Section 2.2.3. Another way to plan is the cross-entropy
method which we give some relevant background material on in Section 2.2.4. Su-
pervised learning, a key component in many reinforcement learning algorithms is
discussed in 2.2.5. Finally, we end by explaining Markov chains and how they can
be used to generate unlimited amounts of data in Section 2.2.6.

2.2.1 Linear programming and stochastic programming

Traditionally the hydropower industry uses methods from the field of operations
research to optimize scheduling. Linear programming can maximize a linear ob-
jective function of the form z = c1x1 + c2x2 + ... + cnxn given a number of linear
constraints. Linear programming only works on deterministic problems, since it re-
quires all data to be known. Stochastic programming is a way to solve uncertain
problems. Trønder Energi uses the software Sharm, based on stochastic program-
ming (Sintef, 2022). These methods can get very close to the optimal solution but
have a high running time when there are many price and inflow scenarios. When
the power system changes to a 15-minute resolution, the running time will increase
further.

To get an intuition for how stochastic programming works, we first need to explain
linear programming, which we will base on Matouek and Gärtner (2006). The
canonical form of linear programming is given by:

maximize
m∑
j=1

wj xj

subject to Ax⃗ ≤ b⃗
x⃗ ≥ 0

The goal is to find a vector, x⃗, that maximizes a linear objective. The maximization
is subject to linear constraints, given by the elements of the matrix A. Consider
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a matrix row Aj, ∗ = (1, 2) and vector element b⃗j = 25. This gives the constraint
x+ 2y ≤ 25. The linear constraints define a feasible region, where Figure 2.5 shows
an example with four constraints. A feasible solution is a point within the dark
area.

Consider an example where the objective is given by z = 2.25x + 1.5y. We can
visualize multiple levels of the objective line in Figure 2.6. A single line shows all
points that give the same value z. In this case, lines further to the right have higher
objective values.

The fundamental theorem of linear programming states that at least one optimal
solution occurs at a vertex point. A vertex point is an intersection between two or
more linear constraints. In Figure 2.5 we have four vertex points. Consider a point
in the interior of the feasible region. A better solution can always be obtained by
moving along xj in a that increases the objective function. On a point at the edge
of a single linear constraint, one can move along the linear constraint. If the linear
constraint is not parallel with the objective function, there will be one direction
that increases the objective function. In some cases, there are an infinite amount of
optimal solutions if the objective function is parallel with a constraint, but in that
case, the point can move along this constraint without changing the objective value
until another constraint is reached. Figure 2.7 shows the objective lines and the
constraints in the same figure. The pink line with z = 40 seems close to the optimal
value.

One possible algorithm for finding the optimal solution is then to enumerate all
possible vertex points and compute the objective value for each of them, and then
keep the optimal solution. However, the number of vertex points can be very large if
there are many constraints and dimensions. The main idea of the simplex algorithm
is to traverse these intersections. It starts at a vertex point and searches in the
directions where the objective function has the steepest ascent. There are also
many edge cases handled in specific ways and other optimization tricks that are not
described here. In the worst case, the simplex algorithm must visit all vertex points,
which is exponential in the number of constraints, given by O(2n). Intuitively, each
new constraint can intersect all other constraints and double the number of vertex
points. However, the average case has a polynomial complexity in the number of
constraints for constraint matrices sampled from most probability distributions.

Stochastic programming introduces uncertainty into the linear programming prob-
lem specification (Higle, 2005). Recourse models are a type of stochastic program-
ming where some decisions, x, has to be made at the start. Then at a later stage,
some information is revealed and parts of the decision, y can be adapted to the spe-
cific scenario. Decision y specific to scenario w̃ is given by yw̃. In our hydropower
scheduling problem, the problem is to decide the 24 first hours, while keeping in
mind that our forecasts will improve before we make the next 24-hour decision.

A two-stage recourse problem is given by Equation 2.9. The formulation is the same
as for linear programming, except that the term E(h(x, w̃)) is added to the objective.
This is a sub-problem to be solved, where new information according to scenario w̃
is given. Equation 2.10 shows the sub-problem. The parameters of the objective
function, gw̃ and the linear constraints defined by Ww̃ and rw̃ are all specific to the
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Figure 2.5: The feasible area of a linear programming problem with two variables

Figure 2.6: The objective lines, z = w1x + w2y for different values of z. A single
line show all values of x and y that give a specific value z.
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Figure 2.7: The solution to a linear program. The pink line is approximately the
highest line that intersects with the feasible area.

scenario w̃. The linear constraints also depend on the first stage decision x, given
by Tw̃x.

Note that the optimal solution to the sub-problem depends on the first-stage de-
cision x, and the choice of x depends on the solution to the sub-problem. The
problem is solved by formulating it as a linear programming or mixed-integer linear
programming problem, though the objective function and the number of constraints
are much larger than the deterministic version. This makes the running time much
higher.

maximize cx+ E(h(x, w̃))
subject to Ax ≤ b

x ≥ 0
(2.9)

Where h(x, w̃) is given by

maximize gw̃y
subject to Ww̃y ≤ rw̃ − Tw̃x

y ≥ 0
(2.10)

2.2.2 Reinforcement learning

Reinforcement learning is an area of artificial intelligence where agents learn by
interacting with the environment. Figure 2.8 shows the interaction. For each time
step, the agent is given a state (St) and a reward (Rt). Given this information, the
agent must decide which action (at) to take. The action affects the environment,
and the agent should learn to select actions that maximize the future rewards.
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Figure 2.8: Agent environment interaction

Reinforcement learning is typically formalized as a Markov decision process. The
sets of all possible states, rewards and actions are given by the 3-tuple (S,R,A).
The state and the reward are random variables that only depend on the preceding
state and action. The probability of transitioning to state s’ and receiving reward r
when in state s and selecting action a, is given by Equation 2.11. This probability
function describes the dynamics of the environment. A state, therefore, gives all
information that is relevant to the future of the environment. This is is called the
Markov property: St+1 ⊥⊥ {a0, s0, a1, s1, ..., at−1, st−1}|St. State St+1 has conditional
independence from earlier states and actions, conditioned on the previous state, St.

p(s′, r|s, a) = Pr(St = s′, Rt = r|St−1 = s, At−1 = a) (2.11)

The goal is to maximize expected future rewards. Gt is the discounted future reward,
shown in Equation 2.12, where γ (0 ≤ γ ≤ 1) is the discount rate and T is the episode
length. In the case of an environment with an infinite possible number of time steps,
T = inf, the discount rate makes the sum of future rewards finite. In the case of a
finite episode length, the discount rate can be equal to 1 or excluded.

Gt =
T∑

k=0

(γkRt+k+1) (2.12)

Policy π : s→ a

A policy is a mapping from state to action, or possibly to a probability dis-
tribution over possible actions. In the latter case, π(a|s) can be read as the
probability of selecting action a when in state s. Reinforcement learning nor-
mally iteratively improves the policy so that it selects actions that maximizeGt

in Equation 2.12. The policy can be represented as a table, a neural network,
or another other function approximator.

Value function vπ(s) = Eπ[Gt|St = s]

A value function is a mapping from a state to the expected value of a state
following a policy pi. The expected value is the total accumulated reward that
can be expected from being in a state. The future rewards depend on the
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decisions of the agent, so a value function can be on-policy, meaning the value
represents future rewards given the current policy, or off-policy when the value
is based on some other policy. Q-values are often used when referring to the
value of a state-action pair and have the same definition as the value function
but conditions on a state and an action.

Optimal policies and value functions π∗, v∗
A policy π is defined to be better than or equal to another policy π′ if vπ(s) ≥
vπ′(s),∀s ∈ S. That is the expected value for the policy is greater or equal for
all states s. This gives an ordering of policies, and the optimal policies will
have no other policies that are greater and are denoted π∗. The optimal value
function is v∗ and is the value function corresponding to the optimal policy.
For complex problems, the optimal policy is generally not possible to find, and
the goal is to find a good approximation of the optimal policy.

An important property is the Bellman equation (Sutton and Barto, 2018, p. 59):

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 +Gt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]

The equation states that the value of state s equals the value of the next expected
state added to the next reward (s′, r). Each possible (s′, r) are weighted by their
probability of occurring. The expression is also weighted by the probability of each
action occurring, as given by the policy. Many reinforcement learning algorithms use
some modification of the Bellman equation to update the value function to improve
the estimates of the value of a state.

The value iteration algorithm changes the Bellman equation into an update rule and
is guaranteed to approach the true value function.

vk+1(s)←− max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)], (2.13)

for all states s (∀s ∈ S). vk is the kth iteration of the value function. A difference to
the Bellman equation is that the action that maximizes the expected future rewards
is selected. The updates can be run iteratively and will formally not guarantee true
values until after an infinite number of iterations. The time complexity is O(|S|2|A|)
for a single iteration. When the set of states and actions is large, value-iteration
might not be feasible. In addition, the transition model must be known.

TD-learning is an example of an algorithm that does not require the transition
model to be known. It uses the update rule v(s) ←− (1 − α)v(s) + α(r + γv(s′)).
Since the transition model is not known, TD-learning updates the value estimation
based on actually observed rewards and states. Since there could be many possible
unobserved transitions from s, not just s′ and r, the estimation is slowly updated
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using a learning rate, α. Value iteration and TD-learning are examples of model-
based and model-free algorithms, respectively.

In general, a model-based agent needs access to a model of the environment to map
a state and an action to the next state and reward, given by f̃(st+1, Rt+1|st, at).
This transition model can either be given or learned using function approximation
such as a deep neural network. The transition model allows agents to plan ahead,
and simulate the outcome of different actions. There exist several planning methods
other than value iteration. Some common examples used in this thesis include Monte
Carlo tree search, discussed in Section 2.2.3, and the Cross-entropy method discussed
in Section 2.2.4. It is also possible to use conventional model-free algorithms to do
many simulations with the transition model, and then select the best trajectory.

The Actor-critic is a popular model-free algorithm that builds on TD-learning. It
consists of an actor, that learns a probability distribution over actions, and a critic,
which approximates the value function. To update the actor and critic, the algorithm
computes the TD-error, which measures how wrong the estimate of v(St) was. For
the true value function, the value of the current state should be equal to the next
reward and the discounted value of the next state. The difference between these
two is the TD-error which is equal to δ = Rt+1 + γv(St+1) − v(St). This TD-error
is then used to update both the actor and the critic. The critic simply updates its
value function to v(s) = v(s) + αδe(s). Intuitively, if the TD-error is negative, the
action led to a state with an unexpectedly low value, and that action is made less
likely to be selected in the future.

There are a number of properties that can make reinforcement learning problems
hard to solve. If the set of possible actions or the set of possible states is large,
then exploring all state-action pairs and making good value estimations will take a
long time. Getting the best policy from limited experiences is referred to as sample
efficiency, and is a key objective in state-of-the-art reinforcement learning. Function
approximation using deep learning can allow an agent to generalize its experiences
to unseen states and actions. Finding good representations of states and actions is
also important to get good generalizations.

Another problem is that of temporal credit assignment. If an agent receives a high
reward, there is a chain of earlier states and actions leading up to the high reward
that could be responsible. Perhaps some actions have contributed positively, while
others might have had a negative influence. Deciding which state-actions should be
credited is called the credit assignment problem. One common way to handle this
is to give each state-action a discounted reward, which means that state-actions in
the more distant past get less credit. Giving all earlier state-actions some credit will
make some bad actions seem good, and some good actions seem bad. This can be
handled by sometimes picking actions that seem worse to explore different actions.
Problems where good actions immediately get good rewards are easier to solve. If
possible, systems should be designed to immediately give rewards that reflect how
good the action was.
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2.2.3 Monte Carlo Tree Search

Monte Carlo Tree Search is a heuristic search algorithm that can be used to solve a
wide range of sequential decision problems, such as games, planning and optimiza-
tion. At a high level, the algorithm builds a tree where each node is a state and each
edge is a possible action, leading to a successor node and state. It then searches the
tree for good actions by prioritizing unexplored actions and actions associated with
high rewards.

The algorithm starts by creating an initial node corresponding to the current state.
Then the following four steps are repeatedly carried out. Firstly, a tree policy selects
the best actions repeatedly until a leaf node is reached, that is the end of the tree.
There are many ways to select actions, but most prioritize selecting actions that on
average received a high reward and actions that have been less explored. A common
tree policy is Upper confidence bounds for Trees (UCT). This policy selects the
action that maximizes the following equation:

UCT = Q(s, a) + c

√
Ni

log ni

,

where Q(s, a) is the estimated value of taking action a in state s, Ni is the number
of times the parent node corresponding to state s has been visited and ni is the
number of times the child node has been selected. The last term is the exploration
bonus which increases when the parent node has been visited many times relative to
the child node. The parameter c determines the prioritization of exploration relative
to exploitation.

After using the tree policy to reach the last node of the tree, the leaf node, it
is possible to expand the leaf node by adding edges leading to new leaf nodes.
However, at a certain distance from the root node, the algorithm will often stop
creating child nodes to save memory and computation and instead go to the third
phase, the simulation phase. No nodes or statistics about actions are kept, and a
different policy, the rollout policy, is used to reach the end of the episode so the
final reward is known. Finally, the cumulative reward is propagated through all the
visited nodes to improve node selection for future iterations. The four steps are
summarized below.

1. Selection: Start with the root of the tree and select actions with the tree policy
until a leaf node is reached.

2. Expansion: Expand a leaf node.

3. Simulation: Use the rollout policy to simulate the rest of the episode.

4. Backpropagation: Return the score to the nodes from the selection phase.

Browne et al. (2012) gives an overview of several extensions and variations of Monte
Carlo tree search. One such extension is the idea of seeding, which initializes nodes
with useful statistics, perhaps from heuristics. Another extension to Monte Carlo
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tree search is history heuristics. As the program runs, some results are saved and
used to inform either the heuristics or other things. If many trajectories broke the
lower reservoir constraint, this could be a signal to be more conservative with power.

One of the main advantages of Monte Carlo tree search is that it is highly parallel-
izable. This means that the algorithm can take advantage of multiple processors or
even distributed computing resources to explore different parts of the search space
simultaneously. By dividing the search space into smaller subproblems and assign-
ing them to different processors, the algorithm can significantly reduce its running
time, making it practical for solving large-scale problems. There are many ways to
parallelize Monte Carlo tree search. It is possible to run almost the same program
in multiple processes and occasionally exchange information. Another way is to
use the tree policy in a single process, and when a leaf node is reached, run many
rollouts in parallel, which can yield a more accurate estimation of the true value of
selecting a certain action.

2.2.4 Cross-entropy method

The cross-entropy method is an iterative optimization technique that has been suc-
cessfully applied in model-based reinforcement learning. The main idea is that we
sample potential solutions from an initial probability distribution, and then change
the sampling distribution towards more promising areas based on the sample solu-
tions. This section is based on Boer et al. (2005).

Consider the task of optimizing a function f (⃗a) with respect to the vector a⃗. In the
context of reinforcement learning, a⃗ will be a vector that represents a sequence of
actions (a0, a1, ..., at) from time step 0 to t. The cross-entropy method starts by de-
fining an initial probability distribution H(x; v0), where v0 is a vector of parameters
for the probability distribution. We can then sample n trajectories Xi ∼ H(x; v0),
and evaluate them on our objective function, Yi = f(Xi). We then rank the results
by the objective function score and select the m best trajectories as an elite set.
The elite set is used to update the sampling distribution. There are many ways to
update the probability distribution, but intuitively, the update should increase the
probability of sampling trajectories that are similar to the elite set, thus focusing the
optimization on more promising areas. One way to achieve this is to take the max-
imum likelihood of observing the elite set. We set the new probability distribution
parameter as follows:

vnew = argmax
v

L(v|X1, X2, .., Xn), (2.14)

The new probability distribution H(x; vnew) will have the parameter vnew that max-
imized the likelihood of observing the elite set. Consequently, when we sample new
trajectories in the next iteration, the samples will be closer to the high-performing
elite set of the previous iteration.

In practice, updating the sampling distribution as described in Equation 2.14 can
make the procedure converge on a local maximum too quickly, without thoroughly
exploring the search space. Especially if the dispersion of the probability distri-
bution is reduced too quickly, then large parts of the solution space will never be
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explored. To tackle this, a common approach is to update the sampling distribution
more gradually, for example using the update vnew = αvMLE +(1−α)vold. Here α is
a parameter that tunes how much we weigh the parameters suggested by maximum
likelihood estimation for the elite set relative to the parameters of the old sampling
distribution. A low value of α will prioritize exploration over exploitation. The
sampling and updating of the sampling distribution are carried out for many iter-
ations until a stopping criterion is met, for example, when a maximum number of
iterations is reached. The trajectory with the highest score on the objective function
among the sampled trajectories is selected as the output.

While this update is applicable to various probability distributions, it works espe-
cially well when the maximum likelihood estimate has an analytical solution, such
as a multivariate Gaussian distribution. The update of the distribution will then
be faster and simpler than more complex distributions where a numeric solution to
the maximum likelihood estimate is needed. Another limitation of this method is
that it is sensitive to the choice of the initial distribution. It can be beneficial to
start with the center of the distribution close to the global optimum. Like most
methods, the cross-entropy method will also struggle more when a⃗ is large in size,
as the solution space increases exponentially. In these cases, increasing the number
of iterations or samples per iteration might be needed to find an adequate solution,
though this increases the running time.

2.2.5 Supervised learning

Supervised learning is a class of algorithms that learns to map inputs to outputs
given example data. This mapping can then be used to predict outputs on new, un-
seen inputs. The training data are tuples of inputs and outputs (x1, y1), ..., (xn, yn),
where xi is the input and can be a vector of relevant values. yi is the output and
can be a continuous value for regression tasks or a discrete class label for classific-
ation. xi and yi are related by an unknown function f , and the goal is to find a
hypothesis hθ that approximates f . hθ is a function with a vector of parameters
θ. To find the optimal parameters, we define a loss function L(hθ(X), Y ). The loss
function defines a measure of the distance between the predicted output and the
true label. Our goal is then to find the parameters θ that minimize the average loss.
This function approximation can then predict the output of x in cases where y is
unknown.

We will now give a brief high-level description of some supervised learning methods
used in this thesis, starting with neural networks.

Neural networks

Artificial neural networks are a type of supervised learning that can approximate a
wide range of functions. A neural network consists of layers with artificial neurons,
each neuron receiving some input and computing an output that can be fed into
the next layer of neurons. Using many layers allows the network to represent very
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complex functions. The most basic type of layer is the fully connected layer. A
single neuron in a fully connected layer computes the weighted sum of all the inputs
and then applies a non-linear function. This is shown in Equation 2.15, where θ(l)

are the parameters for layer l, x(l) is either the input or output of layer l and b is
the bias. Neural networks can be built from many layers, each consisting of many
neurons. The neurons in later layers compute the weighted sum of the neurons in
the previous layer. It can be proven that neural networks with at least one hidden
layer are universal function approximators(Cybenko, 1989), with the caveats that
the function is continuous and that the result is an approximation that can be made
more accurate by increasing the number of hidden neurons. This means that there
exist weights that can learn almost any mapping.

a(l+1) = g(θ(l)x(l) + b(l)) (2.15)

Finding good weights requires learning, which is done by minimizing a loss function.
By forward propagating a sample input through the network, a prediction ŷ is
acquired. How close the prediction was to the true value y is measured by a loss
function. The goal is then to minimize the loss, which is typically done by a variation
of the gradient descent algorithm. It is possible to calculate the derivative of the loss
with regard to each weight in the neural network. The vectors of partial derivatives
are called gradients, and point in the direction of the steepest ascent. Intuitively, the
local minimum of the loss function can be found by going in the opposite direction
of the gradient. This gives the following update rule:

θj = θj − α
∂L

∂θj

Where θj is weight j, α is the learning rate and L is the loss. This update is done
for all weights j and will approach a local minimum for the loss function.

The key challenge is to learn a neural network that generalizes to unseen examples.
When a network learns to perform well only on data used for training, the network
has been overfitted. A number of techniques exist to improve the generalization of
neural networks, such as penalizing large weights to rely less on some features or
dropping some random features to make the network more robust. There are also
other layers than the fully connected layer. If the data has a spatial structure, then
convolutional layers can perform well. Transformers or LSTM layers are good at
capturing temporal dependencies in data.

Gaussian Naive Bayes

The Gaussian Naive Bayes can learn to map continuous features to classes given two
assumptions. Firstly, we assume that each feature follows a Gaussian distribution,
and secondly that each feature is independent.
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The likelihood of observing the feature xj given the class C is given by:

P (xj|C) =
1√
2πσ2

C

exp(−(xj − µC)
2

σ2
C

), (2.16)

where µC)
2 and σ2

C are the sample mean and sample variance for feature j within
class C. That is, for all features in samples that belong to class C, we compute the
sample mean and variance. With these parameters, we have a Gaussian distribution
that shows the probability of observing some feature xj given that it belongs to the
class C.

To use this to classify samples with unknown classes, we use Bayes rule to invert
the probability. The probability of the sample belong to class C given the features
(x0, X1, ..., xn) is given by P (C|x0, x1, ..., xn. Because all the features are assumed to
be independent, we can rewrite this to P (C)P (x0|C)P (x1|C)...P (xn|C). Note that
the normalization factor has been dropped because it is the same for each class. We
compute this metric for each class C and classify the sample to the class with the
highest probability. This method is relatively fast and simple, with the trade-off that
the assumptions are typically not correct. However, the method can give reasonable
results even when the assumptions are not true.

Linear Discriminant Analysis

Linear Discriminant Analysis is a classification method that finds the linear com-
bination of features that best separates the different features. Linear discriminant
analysis can only learn linear decision boundaries and make some often unrealistic
assumptions about the data. The advantages are that the model is fast, and be-
cause the hypothesis is simple, it often avoids overfitting. It can also get decent
performance even if the assumptions do not hold.

Linear Discriminant Analysis works by reducing the dimensions of the features in a
way that maximizes the separability between classes. To do this, we first compute
the mean feature vector for each class. We also compute something called the
within-class scatter matrix, measuring the spread of data within the class, and the
between-class scatter matrix which measures the separation between classes. The
latter is calculated by taking the deviation between the in-class mean and the mean
for all classes, and multiplying this by its transpose. We then find a projection that
maximizes the ratio between the between-class scatter and the within-class scatter.
In the projected space, the features in the same class will be close together, and the
dispersion between classes will be maximized, which allows for easier separation. To
infer classes for unseen data, we project the features with our learned projection
matrix and use a simple method like a threshold or a nearest neighbor to classify
the points.

Gradient boosting

Gradient boosting is an ensemble method that combines the predictions of many
simple models. Decision trees are often used as the simple model. The decision tree
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algorithm builds a tree by selecting the features that best splits the data, aiming to
maximize the separation between different classes. Child nodes are created for each
of the splits, and the data samples corresponding to that split are used to consider
the next split. This is done recursively until some stopping criterion is met.

Gradient boosting starts by training a decision tree or other model to predict the
label. Subsequent models then try to predict the error of the previous model. This
is repeated for a certain depth and can lead to better predictions. To infer with a
trained ensemble, all individual models make predictions that are added together
to produce the final prediction. There are numerous implementation details to deal
with continuous values, different losses, optimization and other topics we will not
go into here. A popular implementation used later in this thesis is LightGBM,
described by Ke et al. (2017).

2.2.6 Markov chains

Markov chains are a type of mathematical model that can be used to generate
sequences of events. The model is made up of a set of states and a transition model.
The transition model assigns probabilities to the possible transitions between states.
Formally, this can be expressed as P (Xt = xi|Xt−1 = xj) for all xi, xj in the set
of states. There are two important assumptions in Markov chains. The first is
called the Markov assumption which states that the next state depends only on the
current state. This simplifies calculation since conditioning on the previous state is
enough to get the new probability distribution (P (Xt|Xt−1). The second assumption
is that the transition model is stationary, meaning that the transition model does
not change for any times t.

Markov chains can be applied to both discrete and continuous state spaces. In the
case of continuous state spaces, the states can be converted to discrete ones by
grouping the data into bins.

2.3 Motivation

Optimizing hydropower scheduling can lead to large increases in profits for hydro-
power operators. The main mechanism is that power prices are highly volatile, so
producing when prices are high can give increases in revenue. Additionally, the op-
erators can optimize the total amount of power produced by using head variation
and reducing discharge friction loss, which for a given unit price will increase profits.
In addition, there are also operating constraints that must be followed.

In addition, hydropower optimization carries broader benefits to society as a whole.
Hydropower serves a key role in ensuring a stable supply of power by producing
power during periods of low load. Both the usage and production of power fluctuate,
and this can cause periods where there is not enough power production and other
periods where there is too much power production. Hydropower scheduling is a way
of storing power for use when it is most beneficial. This will be especially important
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with the growing usage of intermittent renewable energy sources, such as solar and
wind. By ensuring a stable supply of power, effective hydropower scheduling can
reduce the reliance on fossil fuels and facilitate the transition to a more sustainable
economy.

We have discussed stochastic programming, which is a traditional method to solve
the hydropower optimization problem. While this method can give nearly optimal
solutions, they need large amounts of computation and time to converge. This will
become more problematic when prices and discharge decisions will change from an
hourly resolution to a 15-minute resolution (Statnett, 2022). The number of steps in
the planning horizon will quadruple, which can create problems with computation.
Employees at Trønder Energi think that the current software might not scale to this
added complexity. Our overall goal in this thesis is therefore to find an alternative
method that gives a good trade-off between running time and the quality of the
solution.

Furthermore, the hydropower scheduling problem is theoretically interesting since
the problem shares many characteristics with other important problems. The most
similar problems involve some form of energy storage, like battery arbitrage, demand
response, and other problems described later in Section 3.1. Methods that work for
hydropower optimization might also be beneficial for these problems. In addition,
addressing the challenge of large state spaces is crucial for applying artificial intelli-
gence methods to more complex problems. The hydropower problem also deals with
uncertainty arising from many different sources, like markets, weather and human
behavior. Finding artificial intelligence methods that solve this problem can have
broader implications for the fields that study decision-making under uncertainty.

In recent years, many advancements have been made in the field of artificial intel-
ligence. Reinforcement learning, for example, addresses Markov decision problems,
which is a very general problem formulation that also includes hydropower schedul-
ing. By surveying ideas and tricks from the literature on reinforcement learning, we
can get inspiration to tackle our challenges. This is the motivation behind Research
Question 1. Applying reinforcement learning ideas to the hydropower scheduling
problem can also aid in identifying the strengths and weaknesses of the methods,
which can lead to further improvements in the field.
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Chapter 3

Related literature

In this chapter, we will discuss state-of-the-art techniques. Because the literature
on hydropower optimization is limited, we need to look at problems with similar
characteristics. We therefore discuss the structure of the hydropower problem in
Section 3.1, and introduce problems with similar properties. In Section 3.2 we look
at different methods that have been used to solve similar problems.

3.1 Overview of relevant literature

There are a few papers using methods from artificial intelligence to solve the hy-
dropower scheduling problem. One limitation of these papers is that they often use
different problem specifications or assumptions, making it difficult to evaluate the
effectiveness of the algorithms for this problem. Additionally, the authors do not
always provide a thorough evaluation of the algorithms, such as a comparison with
traditional methods or baselines. This makes it challenging to assess the feasibility
and potential benefits of using the proposed techniques.

It is therefore useful to also examine problems that have similar characteristics. The
hydropower scheduling problem is an instance of optimal control under uncertainty.
This is a well-studied problem in fields like artificial intelligence, operations research
and control engineering. Examining such research can help to gain valuable insights
and potentially adapt or extend existing approaches to better solve the hydropower
scheduling problem.

There are six important characteristics of the hydropower scheduling problem. Firstly,
the problem involves a resource that can be managed. This resource could be energy
that can be used now or saved for later, like in hydropower. Secondly, the evaluation
of the decision relies on exogenous, uncertain information such as prices and inflow,
that are not known when taking the decision. Uncertainty can have different dis-
tributions and modeling choices. Thirdly, we have access to many estimates of the
future trajectory of these uncertain exogenous variables. These estimates allow for
better decisions when included in the state. However, with 30 price scenarios and
51 inflow scenarios over 12 days, the forecast uses 23328 real numbers. This makes
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the state space very large and hard to explore fully. This property is less studied
than the previous two.

Our fourth characteristic is that the cumulative reward, the profit, is differentiable
with regard to the actions. Work using this property is discussed in Section 3.2.4.
Another characteristic is that the action space is continuous. The last characteristic
is that the dynamics of the system have non-linearities. Some dynamics are easily
modeled, such as the water level being the difference between inflow and outflow.

Environment Manageable
resource

Uncertainty Forecasts Differentiable
objective

Continuous Non-linear
dynamics

Hydropower scheduling ✓ ✓ ✓* ✓ ✓ ✓

Unit commitment problem ✗ ✓ ✓ ✗ ✗ ✓

Battery arbitrage ✓ ✓* ✓* ✗ ✓ ✓

HVAC ✓ ✓ ✗ ✗ ✓ ✓*

Inventory management ✓ ✓ ✓ ✓ ✓ ✓

RL benchmarks ✗ ✓* ✗ ✗ ✓ ✓

Table 3.1: Overview of which characteristics apply to each environment. In en-
vironments where a characteristic sometimes applies, but not always, ✓* is used.

Method Research paper Environment

Deep learning 3.2.1

Matheussen et al., 2019 Hydropower scheduling
Niu et al., 2019 Hydropower scheduling
Dariane and Moradi, 2016 Hydropower scheduling

Model-free RL, 3.2.2

Riemer-Sørensen and
Rosenlund, 2020

Hydropower scheduling

Xu et al., 2020 Hydropower scheduling
Haarnoja et al., 2018 RL benchmarks
Kuznetsov et al., 2020 RL benchmarks
Luo et al., 2022 HVAC
Li et al., 2023 NA

CEM 3.2.3
Chua et al., 2018 RL benchmarks
Pinneri et al., 2020 RL benchmarks

Differentiable simulator 3.2.4 Madeka et al., 2022 Inventory management

Heuristic search 3.2.5
Powell, 2014 Various energy-related
Mars and O’Sullivan, 2022 Unit commitment problem

Table 3.2: Overview of research papers reviewed in this chapter and their corres-
ponding environments and methods used.

Some problems that share the three first characteristics include battery arbitrage,
demand response, the unit commitment problem, HVAC and the use of reinforce-
ment learning for financial applications involving prices. Battery arbitrage involves
buying power for storage when the price is low and selling power when the price is
high. Similarly, demand-response is a class of problems where power consumers try
to use power whenever the price is low and reduce power usage whenever the price
is high. The unit commitment problem involves discrete actions, where many units
of gas generators can be either turned off or on. Turning on a unit has some startup
costs and there might be constraints.
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HVAC (Heating, ventilation and air conditioning) involves trying to keep temperat-
ure, air quality, or humidity within a comfortable range while minimizing electricity
usage or costs. These variables can be controlled by changing the intensity of heat-
ing and cooling units, though the exact effects and nature of these units vary from
building to building. The problem contains non-linearities.

However, all of these problem domains have many modeling choices where the lit-
erature diverges. This is similar to the literature on hydropower scheduling. For
instance, some do not include price forecasts in the state, and others do not include
prices at all and instead aim for targets such as reducing power usage in HVAC, or
matching supply and demand in the unit-commitment problem. This means that
parts of the literature on these problems are not relevant. But a subset of the liter-
ature on these problems shares all characteristics mentioned earlier, except the unit
commitment problem where the action space is discrete.

The inventory management problem tries to keep a sufficient supply to match the
demand for different products. Keeping a larger stock of products increases storage
costs while having less inventory than demand will result in a part of that demand
being lost. Both demand and vendor lead times, the time from ordering an additional
product until it arrives in the inventory is stochastic.

Most literature on reinforcement learning methods tests their algorithms on com-
mon benchmark problems. For continuous control, these include the half-cheetah
problem, continuous cart pole and many others. These environments are similar in
that they have continuous states and actions and have complex, non-linear dynam-
ics. They differ in the other characteristics mentioned earlier, but the work is still
worth reviewing because some of the methods do well across a large variety of tasks.

For a complete overview of which characteristics apply to each environment, see
Table 3.1. The characteristics that only sometimes are included in a problem are
indicated by ✓*. Table 3.2 gives an overview of each paper reviewed in Section
3.2 and the corresponding environment and which method was used to solve the
problem.

3.2 Methods

This section looks at what methods have been used to solve the relevant environ-
ments in Table 3.1. Attempts have been made to use supervised learning to directly
map a state to the next action, which we review in Section 3.2.1. Section 3.2.2
introduces two state-of-the-art reinforcement learning methods and looks at some
applications to relevant problems. Usage of the cross-entropy method for model-
based reinforcement learning is discussed in Section 3.2.3. We then turn to a paper
that uses the property of a differentiable simulator in Section 3.2.4. Finally, some
applications of heuristic tree search are reviewed in Section 3.2.5.
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3.2.1 Supervised learning

It is possible to map a state directly to a discharge decision, using supervised learn-
ing. Matheussen et al. (2019) tries to learn the mapping from an ensemble of possible
price and inflow scenarios to a discharge decision.They fit a neural net on training
data, mapping inflow and price to an optimal discharge. A second neural net maps
a reservoir level to the expected profit given the decisions found by gradient ascent.
When making a decision in the case of an ensemble of scenarios, the neural net
predicts the best decision for each scenario. The second neural network calculates
the expected profit for all suggested decisions across all scenarios. The decision that
maximizes this profit is selected.

To get the necessary training data, they use a Markov chain learned from historical
data to generate an arbitrary amount of price and inflow data. They then find an
optimal or at least good discharge decision for each of the price and inflow scenarios
using gradient ascent.

Niu et al. (2019) tries to find the schedule that optimizes power generated given
inflow and initial water level. The authors compare traditional methods with a
neural network, support vector machine and other machine learning methods. They
find that dynamic programming performs better than machine learning methods.
Dariane and Moradi (2016) compares reinforcement learning to an artificial neural
network in maximizing power production. The neural network is evaluated on a
simulation. Since gradients are not available from a simulation, a variant of particle
swarm optimization is used to optimize the weights. This is compared to Q-learning,
and the authors conclude that the neural network outperforms reinforcement learn-
ing.

Some papers use machine learning for hydropower tasks not directly related to
scheduling. Sauhats et al. (2016) use deep learning to forecast the future price and
inflow, and then use traditional methods such as dynamic programming to schedule.

3.2.2 Model-free reinforcement learning

There are several model-free reinforcement learning algorithms that have been shown
to perform well on a wide variety of problems.

The Soft Actor-Critic architecture is a popular model-free reinforcement learning al-
gorithm that has achieved good performance on a diverse set of problems (Haarnoja
et al., 2018). It builds on the Actor-Critic model, which we discussed in Section 2.2.2.
The Soft Actor-Critic supports continuous action by making the policy a continuous
probability distribution over the actions. It balances exploration and exploitation
by adding an entropy term to the objective function. The normal objective is to
maximize the sum of future rewards, the augmented objective is expressed in Equa-
tion 3.1. The function H is the Shannon entropy of the probability distribution of
the policy π over the actions a, given by Equation 3.2. In general, the maximum en-
tropy would be a uniform probability distribution, making each action equally likely.
The effect of the entropy regularization term is then to increase the probabilities
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of actions that would otherwise be low, and decrease the probabilities of actions
that would otherwise be much higher. This makes the policy more random and
exploratory. The trade-off between exploration and exploitation can then be tuned
by the parameter α, where higher α gives a more random policy. According to the
authors, this entropy term often leads to faster convergence than the conventional
reinforcement learning goal.

Gt =
T∑
t=0

(Rt + αH(π(st)) (3.1)

H(π(st)) = −
∫
(π(a|s)log(π(a|s))da (3.2)

Riemer-Sørensen and Rosenlund (2020) uses the Soft Actor-Critic on the hydropower
problem, though the environment specifications are quite different from the problem
in this thesis. The authors optimize profit where a time step is for a week, and there
is no forecast. They define a state to consist of week number, storage, the price for
the week, inflow for the week and number of weeks before the storage is empty. The
objective is to map this state to the discharge that maximizes profit. Since there is
no information about future prices, the model essentially uses experience from past
years to decide if the current price is good. For instance, the model might remember
that weeks around winter typically have higher electricity prices, so it makes more
sense to save water in the autumn. There is no good evaluation of the approach,
so how well the Soft Actor-Critic performs compared to traditional methods is not
known. The authors state that the model is not ready for deployment.

In most literature applying reinforcement learning to hydropower scheduling, the ob-
jective does not involve prices and instead only aims to optimize energy production
subject to constraints. Energy production can be optimized by taking into account
that efficiency varies with the amount of discharge and the amount of water in the
reservoir. In addition, the reservoirs have constraints on how much water can be
stored and discharged. These papers, therefore, solve a similar, but simpler optim-
ization problem than described in this thesis. Xu et al. (2020) uses deep Q-learning
to solve a problem with cascading hydropower plants. Cascading hydropower plants
mean that the discharge of an upper reservoir feeds into a downstream reservoir.
When the action space consists of multiple discharge decisions, one for each reser-
voir, the possible combinations of decisions increase exponentially. Two techniques
are used to overcome this problem. The first is to use an aggregation-disaggregation
model to combine multiple reservoirs into one. This reduces the state- and action
space. In addition, the action space is discretized, changing it from discrete time
and continuous action to discrete time and discrete action. They use a negative
reward for breaking constraints.

Li et al. (2023) reviews the use of transformers in reinforcement learning. The use
of transformers has seen success on sequential data, and applying it to reinforce-
ment learning might seem promising. They find several challenges, notably that
transformers typically have high latency and memory requirements, which increases
training time. There are also problems when the policy changes during play, which
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introduce non-stationarity. This non-stationarity affects transformers more than
other shallower neural networks, according to the authors. In cases where offline
reinforcement learning can be used, transformers have achieved state-of-the-art per-
formance. The advantage of transformers is that they can capture complex temporal
relations, but they have a tendency to capture patterns that are just noise, which
leads to over-fitting. In our application, the temporal relations are not very com-
plex, and simpler architectures are likely to do better. These are all arguments for
not using transformers for the hydropower scheduling problem.

A more recent state-of-the-art reinforcement learning algorithm is the Distributional
Quantile Critics (Kuznetsov et al., 2020). The work outperforms the Soft Actor-
Critic on most continuous benchmarks. The authors introduce three main ideas.
Firstly, the critic estimates the distribution of the cumulative reward using quantile
regression, instead of estimating the expected cumulative reward which is more
common for critics. Secondly, to prevent overestimation bias the critic’s highest
quantiles are truncated. How much of the distribution is truncated can be con-
trolled to balance between overestimation and underestimation. Thirdly, the value
distribution estimates are improved by using an ensemble of critics. Because this
model has faster convergence than the Soft Actor-Critic on a wide variety of prob-
lems, it might also perform better on the hydropower scheduling problem. As we
will see in the next paragraph, incorporating uncertain estimates and ensembles to
model-free reinforcement learning has given decent results on the HVAC problem.

Luo et al. (2022) looks at the HVAC problem, which involves keeping the tem-
perature of a building within an acceptable range while minimizing power usage.
This paper does not include power prices in their problem. The authors propose
a solution using model-free reinforcement learning but find a number of ways to
make use of domain knowledge. They deal with a large action and state space by
discretizing the continuous action space to a large, discrete one. The discretization
is non-uniform to ensure critical intervals are more granular. Close to actions that
were previously chosen, the agent gets many candidate actions to choose between.
Further away, the candidate action selector is coarser. Action pruning avoids the
curse of dimensionality. The hydropower scheduling problem has parts of the action
space that is unlikely to be optimal, for example releasing discharge close to the
minimum possible value is very inefficient.

They further improve performance by using an ensemble of neural networks to pre-
dict state-action values. The mean of the predictions is used as a final prediction,
but the standard deviation is also used as a measure of uncertainty. During exploit-
ation, the agent prefers high mean and low standard deviation and picks actions it
is confident will be quite good. During exploration, the actions that have a high
predicted standard deviation are more likely to be selected. The model also has
separate networks that predict if actions are likely to violate constraints. Actions
with high predicted risk are then pruned based on the probability of constraint viol-
ation. An optimal neural network policy would need to model the risk of constraint
violation implicitly, but explicitly predicting risk can lead to convergence with less
data. The experimental results show that their solution performs better than com-
mon model-free reinforcement learning algorithms. The solution was also deployed
to real buildings, which saved power compared to the older control system.
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Because the problem formulation does not include prices or forecasts, the problem
is quite different compared to the problem formulation in this thesis. However, the
usage of action pruning to deal with large action spaces, discretization and ensemble
networks is relevant.

The model-free algorithms discussed here would, after training, have more than
good enough query time. However, even though Soft Actor-Critic and Distributional
Quantile Critics are considered sample efficient, this is compared to other model-free
reinforcement learning algorithms. Compared to many physical models or methods
that incorporate domain knowledge, both methods will likely require much more
samples and computation time. Some literature reviewed later that deals with very
large state and action spaces finds that model-free algorithms do not perform great
and propose more sample-efficient methods that outperform model-free algorithms.
Because implementations of both algorithms are available, using these methods as
a benchmark could be useful.

3.2.3 Cross-entropy method for continuous control

Pinneri et al. (2020) uses the cross-entropy method, discussed in Section 2.2.4, to
tackle continuous reinforcement learning problems. The authors evaluate their meth-
ods on several common continuous control benchmarks. The environments involve
manipulating multiple joints and handling contact with surfaces to achieve some
objective. In Humanoid Standup, the goal is to move the limbs of a human-like
creature in order to get from a lying position to a standing position. Another ex-
ample is the Half Cheetah environment, where a cheetah learns to move its legs to
maximize velocity. Both environments include Gaussian noise for friction, meaning
the environment is not deterministic.

The authors assume that the model of the environment is available for planning, and
define the objective function f (⃗a). This is the accumulated reward when applying
the actions in the trajectory a⃗ to a starting state. The cross-entropy method is used
to try thousands of trajectories and select the first action of the trajectory with the
best performance. A more detailed explanation of cross-entropy was given in Sec-
tion 2.2.4, but we reiterate the basic idea here. Pinneri et al. (2020) samples action
trajectories from a multivariate Gaussian probability distribution. A multivariate
Gaussian is parameterized by a mean and a standard deviation for each action at in
the trajectory, N(µt, σ

2
t ). To optimize a function, they sample n action trajectories

X1, X2, ..., Xn from the initial distribution. Xi is here a trajectory of actions a⃗ that
can be used to simulate the environment for T time steps. Each action trajectory
Xi is then evaluated on the objective function, f(Xi), and the m best samples are
chosen as an elite set. This elite set is used to update the sampling probability
distribution to improve future sampling. To update the probability distribution,
they calculate the mean of the elite set, and set the mean of the new distribution as
the weighted average of the old distribution and the elite mean, as shown in Equa-
tion 3.3. This means the probability distribution center will slowly move towards
areas associated with high-performing samples. To update the dispersion, they use
Equation 3.4 which similarly to the mean update is a weighted average of the old
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standard deviation and the standard deviation of the elite set. α can be tuned to
get faster changes to the normal distribution, though a low α increases the risk of
getting to a local optimum. When the algorithm has finished its iteration, the first
action of the best trajectory encountered is returned.

µnew
t = αµold

t + (1− α)µelite-set (3.3)

σnew
t = ασold

t + (1− α)σelite-set (3.4)

In addition, they test a number of smaller improvements, such as keeping some of
the elite set for the next iteration, and if they are good enough, they might be se-
lected to the elite set again, and give a better update. They also find decaying the
number of samples n in later iterations can reduce running time without substan-
tially impacting solution quality. Because the dispersion decreases over time, there
is less need for huge sample sizes in the later iterations. They point out that an
important condition for this method to be effective is that the computation time of
evaluating a trajectory x on f(x) needs to be low because f needs to be run perhaps
millions of times to get good results. This is also an any-time algorithm, meaning it
can return after any iteration, but the solution may get better with more run-time.

Another application of the cross-entropy method is by Chua et al. (2018), who learns
a transition model during training and then applies the cross-entropy method to the
learned dynamics model. They compare their method with model-free algorithms
like the Soft Actor-Critic and find that their model is more sample efficient and
converges faster than the Soft Actor-Critic. They use the same continuous control
problems discussed earlier in this section. The main contribution of this work over
Pinneri et al. (2020) is not so much the planning, but the learning of the dynamics
model. They separate uncertainty inherent to the environment and uncertainty
stemming from too little experience. The latter can be corrected by sampling more
experience. They train a transition model by doing real trajectories and collecting
data {(st, at, st+1), ...}. They then train an ensemble of neural networks that predict
a probability distribution over the next states given the previous state and action,
f̃(st+1|st, at). They then plan on the model similarly to Pinneri et al. (2020), and
even with the learned model, this is much more sample efficient than models like
the Soft Actor-Critic.

Finally, we note that the cross entropy method has been used for more than planning
in reinforcement learning. Some examples include approximating solutions for the
traveling salesman and combinatorial optimization for relevant problems like the unit
commitment problem (Ernst et al., 2007). The latter is a very simplified version of
the unit commitment problem, but they state that the cross-entropy method almost
always finds the optimal solution with quite few iterations and samples per iteration.
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3.2.4 Differentiable simulators

Madeka et al. (2022) tries to model the inventory management problem. Keeping
insufficient inventory results in missed demand, while keeping an excessively large
inventory increases storage costs. They use the reward function Rt = ptmin(Dt, It)−
ctat. The revenue is given by the price times the demand Dt, or if there is not enough
inventory to cover the demand, the price times the inventory It. Both It and Dt

are random variables, where It depends on earlier actions, which involve ordering
items from vendors. Ordering items from vendors has a unit cost of ct, and takes
a random amount of time steps to arrive. The authors prove that the accumulated
reward, E[

∑
Rt], and the transition function are differentiable. Instead of directly

optimizing the goal with regard to the actions, they instead try to train a policy
using the following procedure. Consider the policy, πθ(st) = at, where θ is the
parameters of the policy, for example, weights in a neural network. They can then
use this policy and an initial sampled state to roll out an episode and compute the
gradient of the objective function with regard to the parameter θ. They then update
the policy with the gradient, θb = θb−1 + α∇θJb, where α is the learning rate and
∇θJb is the gradient of the objective function with regards to the parameters θ.
This approach outperforms model-free reinforcement learning. The authors test the
model by using a randomized control trial and find that the method outperforms
baseline methods by 12%.

However, the hydropower scheduling problem has discontinuous points, meaning
that it is not possible to take the derivative at all points. This technique would
therefore not necessarily converge to a global optimum, due to the discontinuous
points. Another way to use the differential property could therefore be to use a
non-differential method to get close to the global maximum and use the differential
property to fine-tune from this starting point.

3.2.5 Tree search and rollouts

Powell (2014) reviews a number of problems like battery arbitrage, unit commitment
problem and hydropower scheduling. The author suggests using look-ahead policies
when many uncertain forecasts are available. In the case of deterministic forecasts,
doing rollouts gives us results and we can select the trajectory with the best solution
quality that does not violate any constraints. In the case of uncertain forecasts, one
can either sample a possible outcome or try to calculate the expected outcome from
a rollout. The author claims that simulating rollouts often performs well when
forecasts are available, but without pointing to any specific experimental results.

Mars and O’Sullivan (2022) tries to solve the unit commitment problem. Given a
number of gas generators that can either be switched on or off, the agent must try to
match supply to demand, handle constraints and minimize the cost. The generators
have different costs and characteristics, which means that turning on generator x
instead of generator y does not necessarily give the same result. Switching off a
generator involves some downtime, so the generator can’t be used for a period of
time. There is also a start-up cost for turning on a generator, fuel costs and a cost
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for if demand is lower than supply. With n generators and t time steps to plan, each
state has 2n possible actions, which gives 2nt possible outcomes. The demand and
supply are unknown but uncertain forecasts are available to the model.

The author uses tree search with heuristics to reduce the branching factor to get a
good trade-off between solution quality and running time. The nodes of the search
tree are the state, and the edges are actions leading to the next states. They estimate
the weight of each edge, which is the estimated cost of taking that action. These
weights are estimated by doing many rollouts, where each rollout samples a possible
forecast. The result is the expected cost of taking the action in that particular state.
The problem can then be seen as finding the lowest cost path through the search
tree.

The heuristics drastically decreases the required running time to get a good solu-
tion quality. The main heuristic is to rank order the generators according to their
marginal fuel costs, and then apply the generator with the lowest marginal fuel cost
until demand is met. This is not necessarily optimal because the generators with
the lowest marginal fuel cost might be unavailable if turned off at a later point,
but relaxing this temporal complexity can still yield decent results and much better
running time. They also set a maximum branching factor, meaning no more than n
actions can be tried for each state. In addition, they set a maximum depth, H and
solve the sub-problem of minimizing cost starting from the initial state st until hori-
zon H instead of the full planning horizon. They then select the best initial action,
apply it and solve the minimization problem starting from st+1 until horizon H +1.
This is done iteratively until a plan for the full planning horizon is finished. The
method has a much lower run time compared to uniform cost search, but trivially
higher costs.
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Chapter 4

Architecture

In this chapter, we explain our architecture. Our main concern is to discuss how
we adapted the methods to our problem, what informed our design choices and the
theoretical strengths and weaknesses of different choices. Implementation details
such as hyper parameters and training time are in the next chapter (Section 5.2). In
Section 4.1, we explain the assumptions in our model of the environment. Next, how
we adapted the Soft Actor-Critic to the hydropower problem is discussed in Section
4.2. Finally, we explain the main contribution of this thesis in Section 4.3. This is
a pipeline of methods we have called Heuristic tree search with gradient fine-tuning
(HG).

4.1 Hydropower environment assumptions

This section gives an explanation of how we modeled the hydropower problem.
We list the assumptions of our model of the environment and discuss how these
assumptions could lead to a performance gap between our experiments and actual
deployment.

The implementation of the environment has several assumptions that could make
the simulated experience different from real-world experience:

1. Price-taker. Production decisions do not affect prices.

2. Prices and inflow are independent, pt ⊥⊥ qt,∀t ∈ T

3. The first-order Markov assumption holds for prices and inflow

4. Inflow and prices are stationary processes

5. The relation between the true price or inflow and their respective forecasts is
modeled correctly.

6. The relation between the rest price and future prices is modeled correctly.
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7. Forecasts for time t with a given issue date f become less accurate for a greater
difference between the issue date of the forecasts and the time t. We can then
expect the following to hold: (pt,s,f − pt)

2 < (pt+a,s,f − pt+a)
2

Assumption 1, that the choice of production does not change prices is likely approx-
imately correct. The maximum hourly production is 14 MWh for the Mørre power
station, which likely does not make a significant difference. On the other hand, de-
mand for power is known to be inelastic, meaning that small changes in quantities
can lead to large changes in prices. When optimizing larger powerplants or groups
of them, this assumption could be more problematic. However, modeling the causal
effect of production level on prices is difficult, so we do not have much choice.

The second assumption, that inflow and price are independent, might not be entirely
true. Data from late 2019 to the middle of 2022 shows a -0.13 correlation between
price and inflow to Mørre, indicating that when the inflow is large, we more often
observe low prices. One way to solve this could be to model the Markov chain so
that the next state of the price depends on both its previous state and also the state
of the inflow. However, that would require a bigger transition matrix and more data
to get good estimates of each transition probability, so this idea was scrapped.

The assumption that price and inflow are first-order Markov chains means that they
have conditional independence to earlier states given their previous state. Again,
this might be a good approximation, but not entirely true. Consider an example
where some event like melting snow will create a very large inflow for some period
of time. When this event occurs, we know that the future inflow for many time
steps will not be as great, which could be one example of the first-order Markov
assumption not being true.

The most problematic assumption is likely about the stationarity of the processes.
Price data has daily seasonality, weekly seasonality and yearly seasonality. The
autocorrelation for the price data shows that the correlation between a point and
the lag that is a multiple of 24 is generally greater than other lags, which indicates
daily seasonality. The inflow has yearly seasonality. In our historical inflow data, the
month of March has almost three times higher average inflow compared to February.
In addition, patterns have changed over time. Price volatility was much lower in
2020 than in 2021, with the former having a standard deviation of 6.9 compared to
27.2. The average price has also changed. The mean price in 2020 was 9 EUR/MWh
and the mean price in 2021 was 41 EUR/MWh. This indicates that the synthetic
data encountered in our simulation may be very different compared to the real world.

Another concern is that the relation between the forecasts and the true values is not
modeled correctly. Some examples could be that the real-world forecast errors are
much greater than in our simulation, in which case our model would perform worse.
The distribution of the forecast error also matters, for instance, if it is mostly very
close to correct but sometimes has a very large error.

The sixth assumption is false because the rest price is generated randomly and does
not actually represent the marginal water value. This can create problems for how
we evaluate agents. In production, agents plan for the period T but only commit
decisions for the next day. In an episode, the first planning session might be for the
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period t = 0 to t = T , the second for t = 24 to t = T +24, and the last for t = T−24
to t = 2T − 24. Because at time T we end the episode and give a reward for using
the rest price, the planning involving data after this point will not be optimal for
maximizing profit in the simulation. For example, if the price forecasts after T are
very high, the agent might save water, even though when optimizing for t = 0 to T
the optimal would be to produce. This effect can be so large that we chose to not
replan every day, but instead, plan at time t = 0 and submit all actions until the
episode ends, as we mention in Section 5.2.

The seventh assumption is that forecasts are more accurate when the issue date is
close to the date to be forecasted. For instance, one would expect a forecast about
the inflow tomorrow to be more accurate than a forecast about the inflow in 12 days.
We have modeled this in our synthetic data generation, however, there is not much
thought into exactly how much forecast accuracy decreases. If the forecast accuracy
is much lower after 12 days, then our choice to use one-stage optimization is more
problematic.

4.2 Model free reinforcement learning for hydro-

power optimization

This section details our main design choices to adapt the Soft Actor-Critic to our
problem. In Section 4.2.1 we explain how we represented the state for the Soft
Actor-Critic agent. The action space is explained in Section 4.2.2, and finally we
discuss how we used reward shaping to speed up learning in Section 4.2.3.

4.2.1 State-space representation

The state representation provided to the Soft Actor-Critic algorithm is designed to
be effective with a shallow neural network. To avoid issues such as exploding gradi-
ents and certain features overpowering others, all values in the state are normalized
within the range of [−3, 3], or sometimes within a tighter bound.

One challenge with our problem formulation is that including all price and inflow
forecasts would result in 23328 features. The state space would be very large and to
explore it enough to create a reasonable mapping to good actions would require a
very large training set. We deemed that the required computation and training time
to get reasonable results was not feasible. Instead, the features below try to compress
the most relevant information to just 10 features. The first two features show the
startup cost if the agent chooses to produce at this timestep. The second shows the
startup cost relative to the rest price because if prices are very high, the startup
cost does not affect the decision as much. The third and fourth feature indicates
how close the agent is to break the maximum or minimum reservoir constraints. The
reservoir filling is a number between 0 and 1, which correspond to the maximum and
minimum reservoir levels. In addition, we include a measure of the risk of overflow,
which roughly measures how much time it would take for an overflow to occur if all
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actions selected were 0. This feature is an interaction between the reservoir filling
and the inflow. Lastly, features 5 and 6 deal with prices. The fifth shows the price
quantile of the forecast of the current price, relative to all later prices. 6. is really
5 features, which are the prices relative to the rest price for the next 5 time steps.
If the current price forecast is higher than the rest price, this is a good indicator
of whether or not the agent should produce. If the price forecasts for the next few
steps are also high, then selecting a non-zero action is more tempting because one
can avoid paying the startup cost for the next actions.

1. Shows if a startup cost is needed if the agent chooses a nonzero action.

2. Startup cost for producing next timestep, relative to the rest price.

3. Reservoir filling, between 0 and 1.

4. A measure of overflow risk, which is an interaction between the reservoir filling
and the inflow.

5. The price quantile, which shows how high the current price forecast is relative
to other prices in the forecasting horizon.

6. The next 5 average price forecasts relative to the rest price.

4.2.2 Action space

The legal actions are a ∈ 0 ∪ [10, 22], but we make some adjustments because we
sample actions from a normal distribution. We want to accomplish three things.
Firstly, we want to normalize the action space to be between [−1, 1], because this
can give greater stability to the learning process. Secondly, we want to avoid illegal
actions between 0 and 10. Thirdly, we want a high probability of choosing the action
0, because otherwise, the agent will often break the lower constraint. To allow the
agent to select the action 0 more often, we map an interval to the action 0. Setting
an interval to map to zero increases the likelihood of choosing zero. As a result, our
action space is [−1, 1] where [−1,−0.8] map to 0 and (−0.8, 1] map to [10, 22]. The
latter interval is scaled linearly.

4.2.3 Reward function design

In an attempt to speed up training, we use reward shaping. The idea is that we
want the agent to quickly understand that. Consider two identical states except for
the rest price. In the case where the rest price is very low, producing large amounts
of power is much more beneficial than in the case where the rest price is much higher
than the current price. If we just gave the reward wtpt− ct the agent would not get
the feedback to understand this until the end of the episode. Consequently, we use
the following rules to give rewards to the agent:
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λRt =


wt(pt − eT )− ct No constraints broken

−106 Lower constraint broken

I(xt, eT ) +
∑

wteT t = T

The main adjustment is that we subtract the rest price, eT from the current price.
This gives the agent an indication of whether or not the benefit of producing now
outweighs the lost rest revenue. However, we do not know the exact reduction in
future rest revenue because the rest revenue is not linear as a function of the amount
of water left. To correct this and make sure the agent gets the correct accumulated
reward for an episode, we return the correct rest revenue at the end of the episode
and add the incorrect rest revenue to cancel the penalties that were given during
the episode. This is given by I(xt, eT ) +

∑
wteT . This ensures that the agent gets

both more immediate feedback and that the accumulated reward over an episode is
correct.

Lastly, we scale the reward by a constant λ. Large rewards of a million can create
inefficient usage of neural network parameters and very large gradients that lead to
large updates of the neural network parameters. This can create instability in the
learning process and inefficient usage of parameters.

4.3 Heuristic tree search with gradient fine-tuning

Heuristic tree search with gradient fine-tuning (HG) is the main method developed
in this thesis. It consists of a pipeline with four methods that progressively improve
our solution. The first three methods can handle discontinuous points and can
be seen as an exploration of the solution space using heuristics. The last phase
uses gradient ascent to fine-tune the best solutions found by the earlier phases. In
Section 4.3.1, we give an overview of the pipeline and a high-level explanation of our
approach. Next, we explain the objective function used by all phases in the pipeline
in Section 4.3.2. We then go through each phase in order, starting with seeding
(4.3.3), then Monte Carlo tree search (4.3.4), the cross-entropy method (4.3.5) and
finally gradient ascent (4.3.6).

4.3.1 Overview of pipeline

There are four phases in the pipeline, where the first 3 methods can handle discon-
tinuous points, and the last is a fine-tuning of the best trajectories found earlier using
gradient ascent. The main reason we chose this structure is that the last method
does not handle discontinuities and therefore can not reach most points from a given
starting trajectory. Gradient ascent works by simulating our environment with an
action trajectory and then computing the gradient of the objective function with
regard to the action trajectory. We can then optimize our actions by increasing the
actions where the derivative is positive and decreasing our actions where the de-
rivatives are negative. However, this update does not work in discontinuous points
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Figure 4.1: Agent pipeline

which means gradient ascent is susceptible to local maxima and not guaranteed to
converge to the global maximum. Our first three phases, therefore, use methods that
are not vulnerable to discontinuities to try to solve the problem of getting close to
the optimal maximum, so that the last phase can reach the global optimum. Figure
4.1 shows the flow of data in the agent. First, the price forecasts, inflow forecasts,
the rest price and the initial filling are entered into the system. This information
is used to compute features and evaluate suggested trajectories with our objective
function. Then each stage of the method finds the n best action trajectories, a∗ and
feeds them into the next phase as a starting point. The seeding phase in addition
feeds some statistics to the Monte Carlo tree search phase to initialize the search
tree. The last method, the gradient optimizer returns the best trajectory which is
the final trajectory.

The four methods listed below are in decreasing order of coarseness of the action
space and use the trajectories of earlier phases as a starting point.

1. Seeding

2. Monte Carlo tree search with heuristics

3. Cross entropy method

4. Gradient optimization

4.3.2 Objective function

Each step in the pipeline tries to find trajectories that score well on the objective
function. When comparing two trajectories, we prefer the one that scores the highest
on this objective function. To accomplish this, we implemented the function f (⃗a)
which computes this objective, but with some changes to increase performance.
Because this function will be called many times, its running time is critical. As a
basis for the objective function, we use Equation 2.8 as specified in Section 2.1.4.
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The function is reiterated here:

1

|Cf |

|Cf |∑
s̃=1

J(d⃗, p⃗s, q⃗s, x0, eT ),

where Cf is the set of all pairs of price and inflow scenarios, Cf = Pf×Qf .

It can be proven that in this specification, the uncertainty in price does not affect
the profit. We show this in Equation 4.1. Because the prices only interact linearly
with the decision, it does not matter if we compute the profit with the average price
or if we take the average profit over all possible price scenarios. Because summation
is commutative, we can move the summation over the price scenarios to the price,
and replace the price with the average price over the scenarios. The result will be
equivalent to computing the profit for each price scenario and taking the average of
the profit. The difference is that computing the average price is faster and allows
us to represent future prices more efficiently.

V (dt) =
1

|Qf ||Pf |

|Qf |∑
s̃=1

|Pf |∑
s̃=1

T∑
t=1

(pt,s̃wt − ct)

=
1

|Qf |

|Qf |∑
s̃=1

T∑
t=1

 1

|Pf |

|Pf |∑
s̃=1

pt,s̃

wt − ct


=

1

|Qf |

|Qf |∑
s̃=1

T∑
t=1

(p̄twt − ct) (4.1)

However, uncertainty in inflow does matter because of the non-linear relation between
inflow and profit. Firstly, a different inflow changes the power production through
the head of all future time steps, and is thus non-linear, as described in Section
2.1.1. In addition, the inflow also changes the rest value which is also a non-linear
function of the reservoir-filling. We discussed the rest-value in Section 2.1.3. The
effects of inflow uncertainty are small, except when one scenario breaks the reservoir
constraints. In this case, uncertainty in inflow has a large effect on the profit.

We can then restate our objective function as Equation 4.2, where p̄t =
1

|Pf |
∑|Pf |

s̃=1 pt,s̃.

Because each price scenario occurs with uniform probability, we simply take the
average price over the price scenarios. We then compute this profit for each inflow
scenario, and take the average of these profits. This is our metric for how good a
trajectory is, and gives the expected profit of the trajectory d⃗ across all scenarios
with uniform probability.

1

|Qf |

|Qf |∑
s̃=1

J(d⃗, p̄, q⃗s, x0, eT ) (4.2)

The only two changes compared to the deterministic objective is that the actual price

trajectory is replaced with our expected price trajectory, that is p̄ = 1
|Pf |
∑|Pf |

s̃=1 p⃗s̃.
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Here, p⃗s̃ is a vector with prices for each time step for a scenario s. Because each
price scenario occurs with uniform probability, we simply take the average price
over the price scenarios. We then compute this profit for each inflow scenario, and
take the average of these profits. This is our metric for how good a trajectory is,
and gives the expected profit of the trajectory d⃗ across all scenarios with uniform
probability.

In addition to this change, we also make some changes to speed up the code. If
we break the lower constraint for a single inflow scenario, we immediately return
the punishment without computing revenue, startup cost and other things. The
reasoning is that an optimal strategy should never break the lower constraint, so
we would rather quickly return a negative value without bothering to get the exact
estimate. There are also some changes to how overflow affects the objective value,
which can lead to some divergence between the true accumulated reward and the
objective value. The changes in the case of overflow are discussed in Section 5.2.

Our last change is that we introduce a buffer reservoir filling because it is possible
to get a true inflow that is more extreme than any of the scenarios. We do this by
defining xmin and xmax to be slightly larger and smaller respectively, resulting in a
more restrictive constraint in order to reduce the chance of breaking constraints.

4.3.3 Seeding

We mentioned the concept of seeding as an initialization of Monte Carlo tree search
in Section 2.2.3. The main idea is to initialize the tree search with useful values to
speed up the search. Because a trajectory of discharge actions can be evaluated very
fast, one option is to evaluate many trajectories generated from simple, fast rules like
producing at a pre-specified level if and only if prices exceed a certain threshold. The
evaluation of the trajectory can give useful statistics like if the reservoir constraints
were violated, and in which direction, and how much profit certain actions led to.
We can save computation by avoiding the traversal of a tree where we need to decide
at before at+1. This allows us to test more trajectories in the same running time.

The seeding phase uses fast heuristics to test many promising strategies. In less
than a second, 3×288 trajectories can be evaluated, much faster than when actually
traversing a tree. Most of these results are saved and used to initialize the search
tree.

We make an approximate rank ordering of the potential of each action. This was
inspired by the work of Mars and O’Sullivan (2022) discussed in Section 3.2.5. It is
very fast and finds reasonable, but often sub-optimal solutions. To carry out this
method, we first compute the gradient of each action with regard to the profit at the
same discharge level. We then sort the actions in descending order of the gradient,
establishing an order that approximately reflects the benefit of producing at that
time. The average price will be the main driver of the gradient, so this is mostly an
ordering of actions by price, but it also takes into account that all later actions will
get less reservoir height, which slightly reduces the power. We start by evaluating
a trajectory where all discharges are set to 0 on the objective function. We then
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progressively add 17m3/s discharge to the most promising action until all actions
are nonzero. In addition, to avoid unnecessary start-up costs, we also try to remove
all actions that are nonzero but where the previous and next action is zero, which
results in an extra startup cost. In cases where two nonzero discharges are separated
by a time step with zero production, we also try to set that middle time step to
10m3/s in order to avoid an unnecessary startup cost. In total, 3T trajectories are
evaluated, and we return the best trajectory.

The usage of gradients in this way does not cause problems with discontinuous
points, because the gradients are all computed at the same discharge level and at
a reservoir level which ensures we do not break any constraints. This heuristic is
approximately the same as using prices but also incorporates some more information,
which we discuss in Section 4.3.6.

The two main reasons for using this method are that the method is very fast and
that the heuristic works quite well. In a typical optimal solution, the time steps
with the highest price will likely have nonzero production. By heavily restricting
our possible actions and ignoring many complexities of the problem we can get some
reasonable solutions fast, even though the solution probably will not be close to a
global maximum. Most discharges are set to 17m3/s in this method because this is
what maximizes the power per unit of water. This makes our method vulnerable to
local maxima, which is a disadvantage of using this simple method.

4.3.4 Monte Carlo tree search with heuristics

Our second phase uses a modified version of Monte Carlo tree search, which we
discussed in Section 2.2.3. To Adapt Monte Carlo tree search to the problem in this
thesis, some issues must be addressed. The actions are continuous for our problem
but need to be discrete for Monte Carlo tree search. Consequently, we discretize
our actions into four actions: {0, 10, 17, 22}. 17m3/s is the most efficient discharge
level per unit of water, and 10 and 22 are the minimum and maximum possible
discharges. With 4 possible actions at each step, we get a large search space of 4288

due to a planning horizon of 288 steps. This is impractically large for a complete
search. Consequently, employing a naive UCT search is not possible, and we instead
rely on the tree policy in Equation 4.3:

πtree(ai) = max value bonus + exploration bonus + model bonus

=
vi
v∗

+ c1

√
lnNi

ni

+ c2πmodel(ai|X) (4.3)

The tree policy selects the action with the highest value in this equation. The
first term for choosing action ai is given by a max value bonus, which is the best
accumulated reward encountered after selecting that action. This value is normalized
by dividing by the best accumulated reward found during the seeding phase, and so
vi/v

∗ will be greater than 1 if this trajectory has led to a greater reward than the best
trajectory from the seeding phase. In normal UCT, an average accumulated reward
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is used instead of the maximum. This would not be useful in our approach, because
if just a single trajectory breaks the lower constraint then the large negative profit
would dominate the average value. By using the maximum, we don’t penalize risky
but high-reward trajectories. This is especially important because in many cases,
the optimal solution will be on the brink of violating constraints in our environment.
In the second term which is the exploration bonus, Ni is the number of times the
parent node has been visited, while ni is the number of times the child node has
been visited. If the ratio of visits to the parent node compared to the child node
grows, the exploration bonus increase for that child node. The constant c1 can be
increased to make the tree search more exploratory. Lastly, the model bonus is
given by predicting the probability of choosing that action with the same models
used during the rollout phase, which we will now discuss.

During the rollout phase we either use a random model to classify the action, or stop
the rollout early and use the end of the best trajectory to complete the simulation.
We use the classifiers Lightgbm, linear discriminant analysis and naive Bayesian
classification. These models were chosen because they are fast to train and infer with.
Their hypothesis space is quite simple, which means that they can get reasonable
results with limited data. The following features were designed to have a simple
relation to the optimal action, and are used as input to the models:

1. The average price to rest-price ratio for this time step

2. Average inflow for this time step

3. The gradient scaled by dividing with the maximum gradient for this time step.

4. The price quantile for this time step compared to other prices in the trajectory.

5. The distance from violating the lower constraint given 0 discharge.

6. The distance from violating the upper constraint when choosing no discharge
for all actions.

These features are mapped to the actions of the best trajectory encountered during
Monte Carlo tree search. Because the training set for the models retains data from
earlier searches, the models should learn to generalize and become better over time.

When the rollout phase has decided on its last action, we use the objective function
to compute the profit for that trajectory and propagate the result back to the nodes.
We also maintain a max heap with the four best trajectories which are candidates
for multi-start gradient. So this phase gives some extra robustness by adding many
start alternatives in addition to the extra exploration of the solution space.

An advantage of Monte Carlo tree search is that it offers us a way to try the actions
that seem best first, before progressively trying less promising paths. As the most
promising actions are tested, the exploration bonus for other actions will increase,
so some alternative trajectories are also tested. This is an anytime algorithm, so we
can decide how long we want the search to be and likely return a decent solution
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quite fast. Furthermore, by using trainable models, the method should get better
over time.

A disadvantage is that the exploration is mainly focused at the start of the trajectory,
as this is where we build the search tree. In the rollout phase, the algorithm does
not have access to statistics about node visits and so is more exploitative. This
means that the later action possibilities are less explored, which can be problematic
because the optimal choice of the actions at the beginning of the episode depends
heavily on the choices in the later parts of the trajectory.

Another disadvantage compared to traditional methods is that choosing the heur-
istics for one hydropower model might not fit other hydropower models or market
conditions. This method might therefore require laborious experimentation and
domain knowledge in order to adapt it to other power plants.

We also have a restricted action space where the optimal solution might not be
present, just like the seeding phase. Because we have later phases that further
improve the solutions from this phase, the main question is not if this method can
find the optimal solution, but whether or not the optimal solution is reachable from
the returned solutions using gradient ascent. For this to be the case, those actions
that are nonzero in the optimal solution should be nonzero in the proposed solution.
This is not guaranteed with only the four actions above. Methods like value iteration
or the Soft Actor-Critic have the property that given the standard assumptions
of reinforcement learning, the methods should eventually converge to an optimal
solution. The problem sizes are often so large that convergence is infeasible, but
with infinite computation, the methods should eventually get the optimal solution.
This is not always the case for HG with just four actions, which is a weakness of
this approach. We could increase the number of actions available to the tree search
at the cost of a much larger search space.

4.3.5 Cross-entropy method

The third phase of the model uses the cross-entropy method to optimize, using the
best trajectory from Monte Carlo tree search as a starting point. If CEM manages
to improve this trajectory, then the improved trajectory is passed to the next phase.
We discussed CEM in Section 2.2.4 and 3.2.3. We use the method as described in
3.2.3 without the suggested improvements. The only adaptation to this environment
is that we allow the agent to sample negative values and clip them to zero. The
intention is to increase the probability of sampling actions equal to zero, as the
model would otherwise often break the lower reservoir boundary.

This method can technically represent the whole action space, unlike our two pre-
ceding methods which can only use a limited subset of the action space. The aim
of including this method in the pipeline was to give HG the opportunity to fully
explore the action space in the hope of avoiding ending in local maxima.
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4.3.6 Gradient optimization

In the last phase of the HG method, we use multi-start gradient ascent starting
from the n best trajectories. Gradient ascent run in parallel in separate processes
to optimize the n trajectories. The best-performing trajectory is returned and used
as a final output of the system.

We defined our objective function earlier in Equation 4.2. We will refer to it as f(d⃗)
in this section. We want to compute the gradient of this objective function with
regard to the trajectory of discharge decisions:

∇d⃗f(d⃗),

The resulting gradient points in the direction of the steepest ascent, meaning the
direction that will lead to the greatest increase in profits. With this information, we
can optimize our trajectory by increasing the discharges with positive derivatives and
decreasing our discharges with negative derivatives. The standard update equation
is given by:

d⃗ = d⃗+ α∇d⃗f(d⃗),

where α is the learning rate.

We will now explain how the gradient can be computed. Equation 4.4 shows the
derivative of the objective function with regards to the discharge decision at step i.

∂f(d⃗)

∂di
=

1

|Qf |

 Qf∑
s

(
p̄i
∂wi,s

∂di
+

T∑
t=i+1

(
p̄t
∂wt,s

∂xt,s

∂xt,s

∂di

))
+

∂I(xT+1, eT+1)

∂xT+1

∂xT+1

∂di


(4.4)

Intuitively, the effect of increasing di works through three mechanisms. Firstly,
increasing di leads to more direct revenue through p̄iwi. Here, the power produced,
wi, increases as a function of di, but the increase is diminishing: ∂p̄iwi

∂di
> 0, ∂

2piwi

∂2di
< 0.

The relation between discharge and power output was illustrated earlier in Figure
2.2. Assuming positive prices, p̄iwi is always non-negative. Increasing the amount of
discharge gives more power and more revenue but with diminishing return because
∂2wt/∂

2dt < 0.

Secondly, using more water now means we have less water later which gives us
less rest revenue through I(xT+1, eT+1). Increasing di reduces all subsequent reser-
voir levels (xt+1, xt+2, ..., xT ) by δ = 60 × 60dt. We reiterate that the function
I is a slightly concave function of xT+1. I can be described by I(xT+1, eT+1) =
eT+1(axT+1− bx2

T+1), where a and b are constants, the latter being a very small con-
stant. This gives us the derivative eT+1(−aδ + 2bδxT+1), which is negative because
a > 2bxT+1 for all legal values of xT+1. This mechanism, therefore, leads to reduced
profit when increasing di, but by how much depends on the rest price.
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Thirdly, the change in all subsequent reservoir levels also reduces the head for all
future production. Less reservoir filling means that the height in the reservoir de-
creases and that (wt+1, wt+2, ..., wT ) all decrease, which gives less revenue for future

production. This is expressed by the term
∑T

t=i+1

(
p̄t

∂wt,s

∂xt,s

∂xt,s

∂di

)
in Equation 4.4.

This effect is typically quite small and also depends on future production and prices.

These three mechanisms summarize how the discharge affects the profit. When we
add uncertainty in inflow by including |Qf | scenarios we also need to keep track of
the reservoir levels for all |Qf | different inflows, because they give different heads,
rest revenue and perhaps constraint violations. This means that the derivative of
the objective function with regards to di goes through |Qf | different scenarios, and
we take the average over the scenarios. This explains the sum over inflow scenarios
s.

Our objective function has two types of non-continuous points where the derivative
is undefined. Firstly, there is a discontinuity for dt ∈ {0, 10, 22}. We handle this
by masking our gradient wherever our discharge is equal to 0. This means that an
action set to 0 will remain unchanged during this phase. If we step above the legal
range during an update, we clip the action trajectory to stay within legal bounds of
[dmin, dmax]. This also means that a nonzero action can not be set to zero during this
phase, which is the main reason for relying on other methods in the earlier stages
of HG. This restriction means that our method is vulnerable to local maxima.

The second case of discontinuous points is when our reservoir filling is equal to
the threshold, xt,s = xmin or xt,s = xmax. We handle this by making it illegal to
break any of the constraints. We do this by scaling our update so that the change
in reservoir level does not break the constraint. However, if our initial trajectory
already breaks any of these constraints, then our update equation is undefined, and
the model will not improve our solution. We should also keep in mind that with
|Qf | inflow scenarios, we get |Qf | different reservoir levels for each time step. If any
one of them breaks the constraint we get a discontinuity.

We chose to deal with this discontinuity by scaling the update in order to avoid
breaking the reservoir constraints. To do this, we compute the change in reser-
voir level from an update. If our current update added to the minimum reservoir
level breaks the constraint, we scale the positive gradients. We do the opposite for
negative gradients, where we check if the reservoir update added to the maximum
reservoir level will put us above the maximum threshold. This might seem conser-
vative in the case of the maximum threshold, as the punishment for breaking this
constraint is not great. The reason we are so careful about getting too close to this
constraint is that the discontinuities are very dense, as we are likely close to break-
ing the constraint in another scenario or time step. Gradient ascent would not work
well in this discontinuous landscape. This can theoretically lead to some optimal
solutions being unreachable for gradient ascent. In the case of scaling the positive
gradients, we have:

Scaling factor =
(b−min(xt,s)

∆reservoir

,

where ∆reservoir is the change in reservoir level from doing the original update,
min(xt,s) is the minimum reservoir level across all time steps and scenarios, and
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b is a buffer to make sure we have do not get too close to breaking the constraint.
Using trial and error, we found that around b = 1000m3 is a reasonable buffer size.
This scaling factor would only be applied to the positive gradients. When scaling
the negative gradients, we use this formula to compute the scaling factor:

Scaling factor =
(xmax − b−max(xt,s)

∆reservoir

,

This approach has some problems, as updating actions later than the maximum or
minimum reservoir point will not affect the reservoir point at t. This can lead to
missed potential. We still used the method described here for its simplicity. Another
method we use in order to more easily control the learning rate is to only update
the actions with the maximum and most negative derivative when we are close to
breaking a constraint. This creates slower updates.

Technically, the production curves used to map discharge to power production and
to map reservoir level to reservoir height are also created from linear interpolation
of some points. Each point is therefore discontinuous, but because these curves
are always increasing but diminishing, we set the derivative as the slope of the
previous line. This means that for around 12 values the magnitude of the derivative
will be wrong, but because it is directionally correct, this is unlikely to cause any
problems. Figure 4.2 shows an example of the derivative with regard to the profit
in the bottom diagram. This is shown for different actions and prices. We set the
inflow equal to the discharge to get an unchanged reservoir filling. This means that
the only difference for the gradient is the prices and discharge level. The first 120
steps show how the gradient changes for different actions (dt). We see that because
the production curve is not entirely continuous, the derivatives are jagged. This can
lead to a misleading derivative, however, the update will in this case be very small
and likely not have drastic effects on the convergence. The last 150 steps show
the derivatives for the same power production at different price levels. Because
∂ptwt

∂wt
= pt, this is a straight line.

In summary, the main weakness of the gradient phase is that there are many dis-
continuities which means that the global maxima might not be reachable from the
starting trajectory. This method can not set a nonzero action to zero or the op-
posite. It can only modify nonzero actions. In cases where breaking the reservoir
constraints are impossible, then gradient ascent will not work.
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Figure 4.2: Illustration of the gradient for different prices and actions. The inflow
is set to match discharges, so the reservoir filling is the same for all time steps.
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Chapter 5

Experiments and Results

In this chapter, we start by showing our experimental plan to answer our third
research question. In Section 5.2 the hyperparameters and some implementation
details are discussed. Lastly, we present the results of the experiments in 5.3.

5.1 Experimental Plan

In our third research question, we are concerned with answering if the HG method
can perform comparably to state-of-the-art methods. Our main experiment is to
evaluate how well the different agents perform on 50 episodes of unseen data. We
are interested in the average profit and also the distribution of the profits. HG is our
main data analysis pipeline, which we described in Section 4.3. For our comparison
with the State of the Art, we use a Soft Actor-Critic as described in Section 4.2, and
also a stand-alone cross-entropy method. To set the profit numbers in context, we
also use simple benchmark agents to understand if our agents have learned anything
non-trivial. Comparing the results with benchmark agents can give an indication of
whether our other agents have actually learned anything useful. We use four different
benchmark agents that rely on simple rules that are easy to understand. We also
use an optimization algorithm that has access to the true price and inflow data and
also uses the best solutions from other methods as a starting point for optimization.
The intention is to give an estimate of the optimal solution, however, the method
can get stuck in local maxima. This is therefore not a perfect comparison. What
follows is a description of each agent that will be compared.

Scipy solver This is a Scipy minimizer that uses the true price and inflow data.
Because this method often ends with sub-optimal solutions, we use multiple
starts, which include the solutions found by HG and CEM. The algorithm
tested is L-BFGS-B, which is a quasi-Newtonian method. This method is
intended to give an upper bound on the obtainable profit but is susceptible to
local maxima, which means the solutions are not guaranteed to be optimal.

Avoid constraint agent This agent always produce at 17m3/s if the reservoir
filling is greater than 40%. When the reservoir is below this level, the agent
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always saves the water. This agent gives an indication of the profit level when
only caring about the reservoir constraints and ignoring price signals.

Zero agent Zero always chooses to produce at 0 discharge. This means that the
agent gets the rest value for the remaining water, but potentially loses water
to overflow.

High price agent Always produces if the current price forecast is higher than rest
price. When producing, it always chooses 17m3/s, which is the most efficient
in terms of power per unit of water.

Random agent Chooses a random action uniformly from the action space.

The following more complex agents that we have discussed earlier in this thesis:

HG Heuristic search with Gradient Fine-tuning (HG) is the main system as de-
scribed in Section 4.3. This method includes all four phases.

HG (w/o CEM) This is the same method as above, except that the phase using
the cross-entropy method has been removed. We want to determine how much
lower the running time and solution quality are compared to the above.

CEM This agent uses only the cross-entropy method but with more iterations and
samples than the phase in HG. This agent should not be confused with HG,
as it is an agent that only uses CEM in one phase. The hyperparameters for
this method are discussed in Section 5.2.4 and an explanation of the method
is given in Section 3.2.3.

SAC This is the model-free reinforcement learning algorithm described in Section
4.2.

As part of our goal, we are interested in the tradeoff between solution quality and
running time. Consequently, we measure the average running time to complete an
episode as a basis for discussing the tradeoff between running time and solution
quality.

We also want to get an understanding of how the HG system works. We try to
describe which situations the HG system performs better or worse in, what phases
of HG contribute the most to the final solution and look at some of the inner workings
of the methods. To do this, we visualize some episodes, show the gradient at the end
of gradient ascent, and show the percentage improvement in the objective function
of each phase. This can give a better understanding of the system and allow us
to consider the limitations of the approach or suggest future changes to address
weaknesses.

The ideal experiment would be a comparison to the stochastic programming ap-
proach that is currently used by Trønder Energi. However, this proved difficult.
There are two reasons a comparison was not deemed feasible. Firstly, the program
is time-consuming to set up and would be time-consuming for employees at Trønder
Energi to explain. Secondly, the running time is long, and evaluating many episodes
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would need large amounts of computation. This is regrettable because we cannot
determine precisely what the trade-off between solution quality and computation
time is for our approach compared to traditional methods.

To at least test how close to optimal the results were, we tried to solve the version
without uncertainty with linear programming using production systems. However,
this also proved problematic. There were some slight changes in the modeling of the
environment in the production system, which meant the proposed solutions broke
constraints in our implementation of the environment. This meant that when run-
ning the proposed solutions in our system, the average profit was negative because
of lower constraint violations. Changing either our model or the production model
would be very laborious, so this step was skipped. We instead chose to compare
our result with the Scipy solver which we discussed earlier in this section. This
technique can be vulnerable to local maxima, and so is not entirely reliable.

5.2 Experimental Setup

In this section, we explain our experimental setup, which involves hyperparameters,
neural network architectures, and implementation details. In Section 5.2.1 we give
details on how we generated the environment data and the usage of noise to cre-
ate uncertain but related forecasts. The interface and communication between the
agents and the environment are explained in Section 5.2.2. Finally, we present the
hyperparameters and training procedure for the Soft Actor-Critic in Section 5.2.3,
the cross-entropy method in 5.2.4 and the HG system in 5.2.5.

5.2.1 Environment setup

Trønder Energi has used 30 price scenarios and 51 inflow scenarios in their planning
system (Trønder Energi, 2022), and we use the same in this thesis. The inflow
scenarios differ in length, which can create problems for simulation and machine
learning, so since all scenarios have at least 12 days, all inflow and price scenarios
are clipped to 12 days. In the normal case with an hourly resolution, this means a
planning horizon of 288 time steps, each time step consisting of 30 possible prices
and 51 possible inflow values. In the case of a 15-minute resolution, the horizon
length will be 1152.

To generate synthetic data, we use historical data to learn a transition matrix. We
use power price data from 2018 to September 2022, and some years of inflow data
from the Mørre power station. This data is then binned into 50 discrete states. To
learn the transition matrix P , we first count the number of transitions from state i
to j, which are included as element Pi,j. The rows are then normalized to sum to 1,
and Pi,j now represent the probability of state j occurring next, starting from state
i. We can then sample a random state, and then transition to new states with the
transition matrix, creating an arbitrarily long data series. To prevent fixed values
we also add some noise to get continuous data.
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To create the data needed for an episode, we first generate an initial inflow and
price series for the planning horizon. Based on the initial inflow and price, we add
noise and shifts to get a new series. We use this technique to get both the uncertain
scenarios for price and inflow and to generate the actual inflow and price. The actual
price and inflow are the true values and are used to compute the profit, while the
inflow and price scenarios are uncertain but available to agents for planning.

We shift the data a maximum of 4 hours, which means that the generated data
at time t is set to the initial data at time t + a, where a is a uniformly random
number between 0 and 4. After we have shifted the data, we add noise. We use a
beta noise distribution with α = 3, β = 5. Sampling from this distribution gives us
random values between 0 and 1, which we multiply by our maximum noise, equal
to 0.25×median, where the median is the median of the price or inflow series that
we want to add noise to. We then give each noise value a random sign and add this
noise to the initial value. The fact that we set the maximum noise as a fraction of
the median means that data with a small median do not get high variability. This is
typically the case for inflow which have many small values and a small median, but
some periods where the inflow can increase by an order of magnitude. The noise
added to the spike will then be quite small.

The rest price is sampled from the same distribution as the price, except that only
the middle 50% of states are considered. This is to prevent extremely low or high rest
prices, which is unrealistic. The initial filling of the reservoir is sampled uniformly
from between 20% to 80% of maximum capacity. This is to reduce the amount of
starting positions where avoiding constraints is impossible or the only viable strategy
is releasing no discharge.

5.2.2 Agent-environment interface

When agents interact with the environment, they can only use features created from
the price forecasts, inflow forecasts, initial filling, and rest price. To compute the
environment’s rewards and profit for an episode, we use the actual inflow, actual
price, rest price and initial filling. Figure 5.1 shows the communication between
the environment and the agent. In the case of model-based reinforcement learning,
the raw data of the price forecasts, inflow forecasts, initial filling and rest price
are given to the agent. The price forecasts have 30 scenarios and a time horizon
of 288 steps, and the inflow forecasts have 51 scenarios and 288 times steps. New
forecasts are generated after 24 hours to improve accuracy because forecasts get less
accurate the more distant they are. When the agent receives this information, it
can use the forecasts to simulate an environment to decide which actions to take or
compute features from the forecasts. However, while the agent could replan every
24th hours, as the forecasts will be more accurate, we do not do this for our model-
based agents. This is because when we replan, the forecasts will include data from
after the endpoint of the episode. This can influence the agent into selecting sub-
optimal actions to optimize for these prices after the end of the episode. Another
approach could be to cut off forecasts after the endpoint, which would mean that
each replanning of the agent would have a short planning horizon. Because this
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Figure 5.1: Interaction between the agent and the environment

would also be wrong compared to the production system and in addition use more
time, we instead chose to only plan once at the start of an episode.

The current model-based reinforcement learning approach does not actually use
rewards for anything, unlike the model-free reinforcement learning approach.

5.2.3 Soft Actor-Critic setup

For our model-free reinforcement learning approach, we used an implementation
from Stable Baselines3 (Raffin et al., 2021).

Layer Input Output Activation

Input 10 4 ReLU
Mu prediction 4 1 Linear
log std 4 1 Linear

Table 5.1: The neural network architecture of the actor

Layer name Input Output Activation

Input 10 4 ReLU
Action-value 4 1 Linear

Table 5.2: The neural network architecture of the critic

The neural network of the actor is summarized in table 5.1. The actor starts with an
input layer that maps the 10 features to 4 neurons. The values in these 4 neurons
are used by 2 separate layers, which are used to predict the mean and standard
deviation of the probability distribution used to sample actions. For the standard
deviation, we predict the logarithm of the standard deviation, as an advantage of
this is that after transforming it we can guarantee that the value is positive.

59



We use two critic models which sample independently from the replay buffer to create
a more robust estimate of the state-value. Similar to the actor network, the critic
network starts with a linear layer with ReLU and then takes a linear combination
of this as the action-value estimate.

In addition to the two critics described above, there is also a separate critic target
network used as a target for training the critic. It is identical in structure to the
critics and plays a crucial role in stabilizing the learning process. The weights of
the critic target network are not updated during the normal training procedure.
Instead, they are periodically updated by copying the weights from one of the critic
networks. The purpose of using a separate target network is to provide a more stable
and consistent target for the critic during training.

Initial experiments with deeper networks and less feature engineering struggled to
converge, as the model trained for a long time without learning to avoid breaking
the constraints. This is likely because the state space is so large that adequately
exploring it takes a very long time. To avoid this, we used a shallower network
architecture and more feature engineering of the state representation.

The agent was trained for approximately 1.5 million episodes over two days. The
hardware used to train the model is listed in the last table in Appendix A. During
training, we used a replay buffer that can hold 106 pairs of inputs and rewards. In
every tenth episode, the agent samples 3000 elements to train the neural networks.
We used the learning rate 10−3.

After the agent was trained, we tested the model with deterministic mode, meaning
that the policy predicted a mean and used this as the action, rather than using the
mean as a parameter for a probability distribution.

5.2.4 Cross-entropy method parameters

While the cross-entropy method is a phase in the HG system, we also tested an
agent using just the cross-entropy method to plan. It starts by trying four different
trajectories in order to get a warm start, before running the cross-entropy method
as described in Section 3.2.3.

Table 5.3 shows the parameters used. For each iteration, 3000 trajectories are
sampled. The 30 best-performing trajectories are then selected as the elite set
and used in the update of the sampling mean and sampling dispersion in the equa-
tions 3.3 and 3.4. The learning rate is 0.1 and determines how fast the sampling
parameters are updated. This is repeated for 60 episodes and the best trajectory
encountered is returned. These parameters are based on grid search.

Because of the high running time and the problems due to a random rest price,
which we discussed in 4.1, we sampled one trajectory for the whole episode of 12
days. This means that at the first step of the episode, the agent created a plan for
the next 12 days and did not re-plan before the next episode. Originally, we planned
to only submit the first 24 hours of the plan, then replan the next day. However,
some initial experiments showed that the penalty related to the wrong rest price

60



Parameter Value

Population Size 3000

Number of Iterations 60

Elite Ratio 0.01

Learning rate (α) 0.1

Table 5.3: Cross-entropy method parameters

created worse schedules than relying on less accurate initial forecasts.

We experimented with different constants to scale the exploration bonus and found
that a relatively small constant of 0.1 was good. Too much exploration and the
performance plummeted. Lastly, the model bonus is given by predicting the prob-
ability of choosing that action with the same models used during the rollout phase.
We scale the number by 0.2, which means the model bonus is in [0, 0.2]

5.2.5 HG setup

Table 5.4 shows the parameters used in the different phases. For the tree policy in
Monte Carlo tree search, which we discussed in Section 4.3.4, the exploration bonus
constant is set to 0.1. The model bonus is 0.2 which means it will take a value in
[0, 0.2]. The number of iterations is quite low due to time constraints.

For the CEM phase, we use fewer iterations and samples than in the standalone
CEM discussed in Section 5.2.4. This is to reduce running time. Because the initial
solution is expected to be quite close to optimum, we also use a higher learning rate
to make the sampling distribution change its center and dispersion more quickly.
This increases the risk of local maxima.

For the last phase, gradient ascent, we use a maximum of 1500 iterations. Based
on observations, the agent typically gets an oscillating profit or very small changes
in the profit at this point. The learning rate is set to 0.012, which is based on a
grid search. We also tried a decaying learning rate, but this did not improve the
performance of the decay values we tested.

Lastly, we start from 4 different trajectories. This is because the computer we ran
our experiments on has 4 cores. A computer with more cores should increase the
number of starts so that finding the global maximum is more likely.

To train the classifiers used in Monte Carlo tree search, we used 19248 samples of
features mapping to a single action. Earlier samples might be worse because the
Monte Carlo tree search was untrained at that point, as it was trained on actions
from the seeding phase. Table 5.5 shows the parameters of the LightGBM classifier.
The other classifiers do not rely on any parameters. The gradient booster is shallow
with few estimators to prevent over-fitting and slow inference times.
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Phase Parameter Value

MCTS

Exploration bonus 0.1
Model bonus 0.2
Iterations 100
Early stopping chance 30%

CEM

Population size 2000
Iterations 40
Elite ratio 0.01
Learning rate (α) 0.2

Gradient ascent
Iterations 1500
α 0.012
N starts 4

Table 5.4: The parameters for all phases of the HG agent.

Parameter name max depth n estimators learning rate
Value 2 300 0.5

Table 5.5: Parameters of LightGBM classifier.

Objective function implementation

The objective function was implemented using only fast, vectorized numpy opera-
tions. There are also changes to how we deal with overflow in order to speed up
the code. This has to do with specifics of the numpy implementation and a wish
to avoid loops. In the true environment, water above the reservoir threshold is dis-
carded without punishment. However, to use a fast vectorized operation we instead
add the changed water level for all time steps and then clip overflowed time steps
to the maximum value. Because the cumulative sum operation means water above
the threshold increases water at later time steps, we give a monetary punishment to
ensure that the model tries to avoid overflow. This technique makes the evaluation
function diverge from the evaluation of the environment, but the idea is that the
profit in these cases is suboptimal either way and so the agent should quickly get
negative feedback and move on to better trajectories.

5.3 Experimental Results

In this section, we will show various experimental results. The main result is the
average profit of various agents across 50 episodes, which we explore in Section 5.3.1.
This gives an overview of how well the different agents performed. We also show
the distribution of profits across the episodes. Next, in Section 5.3.2 we analyze the
total running time of the agents and discuss the trade-off between running time and
solution quality. For the last two sections, we take a more detailed look at how the
HG system performed. Section 5.3.3 shows how much each phase of the HG system
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improved the objective function, in addition to the running time of each phase.
Lastly, in Section 5.3.4 we visualize some episodes and discuss which conditions HG
performs well in, and what its weaknesses are.

5.3.1 Comparison of average episode profits

We now compare how our methods perform in terms of profit over 50 episodes, each
episode lasting for 12 days or 288 time steps. Table 5.6 shows the average profits
across 50 episodes for different agents. This is our estimation of solution quality.

The Scipy solver has an average profit of 145,127 EUR. We reiterate that this method
has access to the true price and inflow data, and uses solutions from HG and CEM
as a starting point. This means that the solutions of the Scipy solver will always be
at least as good. Among the methods that use uncertain data, HG performs best
with an average profit of 143,947 EUR, which is 1180 EUR or 0.81% less than our
Scipy solver. Our version of HG without CEM gets an almost identical profit, with a
difference of less than 2 EUR. Our third best agent is the stand-alone cross-entropy
method which got an average profit of 141,150 EUR. This is around 2% worse than
HG, equivalent to around 2800 EUR less in profit. This is a substantial difference
from HG, but compared to the other benchmark methods discussed in this section,
this is reasonable.

Surprisingly, the Soft Actor-Critic was outperformed by the constraint agent. The
former got 116,502 EUR compared to 120,571 EUR, which is a large difference.
The fact that the Soft Actor-Critic is outperformed by an agent based on a simple,
hard-coded rule means that the Soft Actor-Critic has not learned anything non-
trivial. One reason might be that the avoid-constraint agent always produces at
the most efficient discharge level. Another might have to do with the fact that Soft
Actor-Critic has an entropy term in its policy. This means that choosing a non-zero
production can be very punishing, and the fact that the agent will explore might
make every state seem more at risk of violating the lower boundary of the reservoir.
Some inspection of the policy network shows that the policy is very sensitive to a
low reservoir filling, and chooses to not use the water even at quite high reservoir
levels. This might be fixed with more training. Either way, the Soft Actor-Critic
did not perform well.

The zero-agent, which always selects zero discharge, gives an indication of the profit
one could acquire by not producing any water. This means that the only source of
revenue is the rest value, given by I(xT , eT ). This model will often lose water due to
overflow but is safe from breaking the lower constraint. Finally, the random agent
and the high-price agent use too much water and often break the lower constraint.
The result is a negative average profit. This shows that avoiding the lower constraint
violation has a large influence on the optimal choice of actions.

We will now look at the distribution of profits over episodes. Because of differences in
initial reservoir filling and prices and rest price, some episodes will have much higher
profits than other episodes, regardless of strategy. We can see the distribution of
the profits in Figure 5.2. The Scipy solver achieves a slightly higher profit than HG
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Agent Average episode profit

Scipy solver 145,125.2
HG 143,947.1
HG (w/o cem) 143,945.4
CEM 141,150.2
Avoid constraint agent 120,570.6
SAC 116,502.4
Zero agent 81,978.6
High price agent -5,167,617.3
Random agent -41,549,111.9

Table 5.6: Average profit across 50 episodes for all agents, measured in EUR.

and HG without CEM, both of which are generally outperforming CEM. However,
we see that the maximum value of CEM is higher than that of either of the HG
versions. This happened in episode 13 which has the highest profit for all our top-
performing agents. In this episode, the inflow is very large, and avoiding overflow
appears impossible in the uncertain case. The Soft Actor-Critic chose the same
strategy as both HG versions, with almost full production on each time step.

Figure 5.3 shows the relative profit of HG and HG without CEM compared to the
Scipy solver. The profit of each agent is subtracted from the profit of the Scipy
solver. The diagram shows that the solutions of the versions of HG are not always
identical, as HG with CEM performs slightly better in the median episode and the
first and third quartile than the version without CEM. While we remember that the
average episode profit only had a difference of 2 EUR, we can see from the box plot
that the median of HG is higher relative to the version without CEM. However, HG
has an additional outlier that performs much worse compared to the Scipy solver. It
should also be noted that during the training phase, HG with CEM got around 200
EUR more profit on average than the version without CEM. This indicates that the
version with CEM often is slightly better. Still, our main result is that the difference
in performance between the two methods is small. The fact that the two methods
sometimes perform differently in the same episode also shows that the methods do
not always find the global optimum. In 17 out of 50 episodes, HG outperforms HG
without CEM by more than 50 euros, and the opposite is true in 5 episodes, where
HG without CEM outperforms HG.

We see the same diagram but with CEM included in Figure 5.4. This diagram shows
that CEM gets many outlier episodes where profits lag drastically behind the two
HG versions. HG with and without CEM has a much tighter distribution, though
in some cases still gets 10,000 EUR less than the solution of the Scipy solver. If we
compare SAC to the constraint agent, we see that SAC has a greater dispersion in
profits.

We should note that while it might appear that HG and HG without CEM have
almost the same solutions, there is some variance in episode profit. One outlier
occurred where HG got a much worse solution than HG without CEM. This also
illustrates that these methods can be brittle and end up in local optima.
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Figure 5.2: Profit distribution of different agents. The random agent and the high-
price agent who broke constraints are omitted. HG(NC) refers to the version of HG
without CEM. det solv is the Scipy solver

Figure 5.3: Profit relative to the Scipy solver. -10000 means that the agent got a
profit that was 10000 EUR lower than that of the Scipy Scipy solver for a particular
episode. The random agent and the high-price agent who broke constraints are
omitted. HG NC refers to the version of HG without CEM.
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Figure 5.4: Profit relative to the Scipy solver. -10000 means that the agent got
a profit that was 10000 EUR lower than that of the Scipy solver for a particular
episode.

5.3.2 Total running time

We will now discuss the running time of the various agents. Table 5.7 shows the
total running time for our main agents. We observe that the cross-entropy method
is the slowest method at almost 2 minutes. While this can be reduced by using fewer
iterations and samples, the solution quality is still worse than HG. Consequently,
CEM might struggle to scale to a 15-minute frequency. The reason it is slower
than HG, which also makes use of the cross-entropy method is that CEM does more
iterations and more samples in each iteration, which gives us a higher running time.

HG uses 1 minute and 15 seconds, where most of the computation comes from CEM.
We see that the version of HG without CEM only uses 28 seconds. This means that
HG, especially without CEM, could likely scale to a 15-minute frequency with four
times as long a planning horizon.

The Soft Actor-Critic and all the benchmark agents have an inference time below
one second.

This benchmark was completed with a quite slow CPU with 4 cores and 2.8 GHz, as
shown in Appendix A. A lower running time might be achieved with better hardware.

Agent CEM HG HG w/o CEM SAC
Running time 1min 55s 1min 15s 28s <1s

Table 5.7: Total running time for the cross-entropy method and the HG system with
and without the CEM-phase.
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5.3.3 Detailed results from the HG system

Our attention will now turn to examining the performance of each phase in the
HG system. Table 5.8 shows the percentage improvement for each stage in the HG
system. Each improvement is relative to the best trajectory found in a previous
phase. The improvements are based on profits from the objective function and not
the profit with the true prices and inflows. Consequently, this is not an ablation
study and does not give a perfect indication of the performance of the system without
that phase included. For instance, a method that shows a certain improvement might
have made improvements that would otherwise have been found in a later phase.
In that case, excluding the method would give a 0% improvement, but will give a
positive improvement in our table. The results should therefore be interpreted as a
metric for how much each phase improves its initial solution and not its contribution
to the final profit. When interpreting the improvement results, we should also keep
in mind that the profit is generally very large for most production plans as long as
the lower constraint is not broken. This means that the percentage improvements
look quite modest, even though they can make a large difference in profits if we
consider longer time horizons and that Trønder Energi optimizes many hydropower
plants.

Monte Carlo tree search gives the least improvement, with 0.12% on average, which
is equivalent to 192 EUR. Only in 7 out of 50 episodes did Monte Carlo tree search
manage to improve the objective function. When we inspected the trajectories of the
Monte Carlo tree search we often see that they are very close but slightly worse than
the best trajectory from the seeding phase. However, in rare cases, Monte Carlo tree
search can find a substantially better trajectory. The maximum improvement was
almost 5%. In addition, the Monte Carlo tree search also provides many alternative
starting positions for gradient ascent, which is another benefit.

CEM gives the best improvement, with an average improvement of 0.8%, equivalent
to 1000 EUR. CEM manages to find a better trajectory than the input from Monte
Carlo tree search in 42 out of 50 episodes. The gradient phase also gives a noteworthy
average improvement of 794 EUR. The improvement results for HG without CEM
are shown in Table 5.9. Here we see that the gradient ascent phase gets a greater
improvement than in HG with CEM. This indicates that the improvement from
CEM sometimes did not get out of local maxima, but instead got closer to the local
peak. Without CEM, the gradient phase sometimes finds the same solution. There
is also a small difference in the Monte Carlo tree search improvement, which is due
to randomness.

Table 5.10 shows the running time for different phases of the HG system. The
running time is on average per episode. The seeding phase is very fast at under
a second and gives a decent solution quality for a small amount of computation.
Monte Carlo tree search is also quite fast, considering that some of its running time
includes unnecessary things like saving training data, models, and tracking results.
The cross-entropy method is the slowest of the methods with a 46-second running
time. Gradient ascent uses almost 25 seconds. For completeness, we also show the
equivalent Table 5.11 for HG without the cross-entropy method. Due to randomness,
the results are slightly different for Monte Carlo tree search and gradient ascent.
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Improvement mcts cem grad

mean (%) 0.12% 0.80% 0.52%
25% 0.00% 0.15% 0.00%
50% 0.00% 0.43% 0.15%
75% 0.00% 0.94% 0.46%
max (%) 4.96% 4.72% 7.68%

mean (EUR) 191.7 1000.1 794.2
median (EUR) 0.0 634.3 222.6

Table 5.8: The % improvement for each of the phases for HG. The last two rows
show the mean and median improvement in euros, not percentages. This version of
the HG has all stages included.

Improvement mcts grad

mean (%) 0.2% 1.15%
25% 0.00% 0.11%
50% 0.00% 0.54%
75% 0.00% 1.10%
max (%) 8.52% 7.89%

mean (EUR) 395.5 1589.3
median (EUR) 0.0 670.5

Table 5.9: The % improvement for each of the phases for HG without CEM. The
last two rows show the mean and median improvement in euros, not percentages.

We will now examine whether the classifiers used as part of the Monte Carlo tree
search have reasonable performance. In Table 5.12 we show the objective value of
each of the classifiers relative to the objective value of the seeding phase. That is, we
show fclassifier/fseeding. In the median case, naive Bayes gets 93.2% of the objective
value of the seeding phase. Linear discriminant analysis and Lightgbm are better
with 95.8% and 95.6%. We also see that in the maximum case, the models give a
marginal improvement over the seeding phase. However, the typical case is that the
classifiers do slightly worse than the seeding phase. Due to some cases of constraint
violations, the mean ratio is negative, because a few cases of constraint violation give

Phase Running time (s)

Total 74.9
Seeding 0.6
MCTS 3.6
CEM 45.9
Gradient Ascent 24.7

Table 5.10: Average running times in seconds for the HG. The result is for the 50
episodes in the test set.
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Method Running time (s)

Total 28.0
Seeding 0.6
MCTS 4.0
Gradient Ascent 23.3

Table 5.11: Average running times in seconds for HG (w/o CEM). The result is for
the 50 episodes in the test set.

negative objective values with large magnitude. One could argue that the classifiers
could do a better job avoiding the reservoir constraint violations by keeping track
of the reservoir filling and using it as input. The question is whether or not the
improvement would be enough to justify more running time for the same number of
iterations. The models do appear to have found a reasonable mapping in terms of the
current price relative to both future prices and the rest price. Another observation is
that the classifiers get different results, which means that our approach of randomly
choosing a model allows us to introduce some randomness that aids exploration.
Overall, these results show that the classifiers have learned some useful mappings
and likely contribute positively to the Monte Carlo tree search.

nb lda lgbm

25% 0.837 0.864 -0.007
50% 0.932 0.958 0.956
75% 0.974 0.991 0.995
max 1.008 1.003 1.012
mean -91.002 0.626 -99.018

Table 5.12: Visualizes the performance of the classifiers from the Monte Carlo tree
search. The score is given by the objective function if that classifier had been used
to decide all actions in a trajectory divided by the objective value of the seeding
phase.

5.3.4 Visualizing some episodes

We will now take a more detailed look at some episodes, and how the HG agent
deals with them. In general, the episodes can be classified into four types.

In the easiest case, breaking the reservoir filling constraint is not a concern, and the
only concern is to produce the optimal amount whenever the revenue from producing
out-weights the loss in rest value. Figure 5.5 visualizes the most important variables
from episode 0. The figure shows the time steps on the x-axis, and the upper
diagram shows the true price in blue, and the price forecasts are in red. The rest
price is visualized as a straight, orange line. The second diagram shows the discharge
decisions of the HG agent, and the orange lines indicate the legal action boundaries.
Thirdly, we have the reservoir filling, normalized so that the maximum reservoir
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is equal to 1. The bottom diagram shows the true inflow in blue and the inflow
forecasts in red.

In episode 0, we can see that the reservoir filling is far from the constraint boundaries,
which makes this episode relatively easy. We can see that HG chooses to produce
when the price is above the rest price. The discharge chosen is also greater when the
price is greater, as this can compensate for reduced power efficiency. In this episode,
HG with and without CEM arrive at the same solution, and the profit difference
compared to the Scipy solver is quite small. This indicates that our model does
reasonably well in these easy scenarios. In total, we have 29 episodes that are in
this category.

Another example is episode 1, which is visualized in Figure 5.6. The model produces
at the highest prices. At the peaks, the production is slightly larger because the high
prices compensate for the lower efficiency at higher discharge. Compared to episode
0, the difference between the price and the rest price in this episode is relatively
small so the optimal production is generally close to the most efficient level at
17m3/s. Figure 5.7 shows the gradient at the end of the optimization procedure.
The derivatives are close to zero and oscillate between positive and negative. A lower
learning rate could likely end the episode with a gradient with a lower magnitude.

The second type of episode is when many prices are higher than the rest price, or
the initial filling is low. In these cases, avoiding breaking the lower constraints is
of primary concern. The optimal strategy will use as much water as possible and
likely be at the edge of breaking the lower constraint. Among the test episodes,
there are 8 episodes in this category. One example is episode 19, which is visualized
in Figure 5.9. The actions are all quite close to 17m3/s in this episode, even at the
time steps where the prices are highest. One reason might be that the reservoir’s
lower boundary is so close to being broken, that the allowed gradient updates are
very small. This close to the reservoir boundary, only the maximum and minimum
gradients are used in the update, and we also scale the gradient as described in
Section 4.3.6. When we inspect the gradient at the end of this episode, we see that
all actions have positive derivatives. Figure 5.8 shows the gradient at the end of
episode 19. They are all positive, but increasing the discharge when the reservoir
filling is so low is impossible. Therefore, the discharges are almost unchanged by the
gradient ascent phase. Overall, the objective function only increased by 50 EUR in
this episode.

Episode 26 is very similar and is visualized in Figure 5.10. At the end of this episode,
the average nonzero derivative was 14.5. At the last steps of this episode, there is
enough reservoir filling to increase the discharge, and the derivatives for these last
time steps are positive. However, due to our naive update rule, this is not allowed,
and we likely miss some profit by not increasing the discharge at the end.

Thirdly, we have the opposite situation where avoiding an overflow of the reservoir
is of primary concern. In these episodes, most prices are quite low relative to the
rest price, and the initial filling is high. If the inflow is also high, then an optimal
strategy will often barely avoid overflow and get most of the profit from the rest
price. 8 out of 50 episodes are in this category, and one example is episode 11, which
is visualized in Figure 5.11. In this episode, HG needs to use nonzero discharge even
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when the price is much lower than the rest price. It does select 0 discharge at a
few of the lowest prices. The reservoir in the worst-case inflow scenario ended at
1000m3 from the maximum threshold, which is the buffer we used in our scaling of
the update. At the end of the episode, the average nonzero derivative is equal to
-12. Another example episode is given in Figure 5.13, where episode 48 is visualized.

In the fourth case, the inflow is so high that avoiding an overflow of water is im-
possible. In these cases, the gradient optimizer does not work due to the number
and density of discontinuities. Often, the chosen solution ends up being close to
full production in all time steps. We investigate whether or not HG performs worse
in these episodes compared to the 29 normal episodes. We find that in the normal
episodes, the Scipy solver led to an 0.13% improvement in the median case, and in
the episodes where overflow is impossible to avoid, the Scipy solver improved the
solution by 0.97% in the median case. When the Scipy solver manages to find a
much better solution, this indicates that HG is worse on overflow episodes. This is
not only true for the median case, but also for the mean and first and third quart-
ile of the improvements. This indicates that the solutions of HG are more often
suboptimal when overflow is impossible to prevent.
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Figure 5.5: Visualization of the key variables from episode 0. The x-axis shows the
time steps. The upper diagram shows the true price in blue and the price forecasts
in red. The orange line is the rest price. The second diagram shows the actions,
the lines are constraints. The third diagram shows the reservoir filling normalized
so that the minimum and maximum are 0 and 1. Lastly, we have the true inflow in
blue and the inflow forecasts in red.
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Figure 5.6: Shows the key variables from episode 1. The x-axis shows the time steps.
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Figure 5.7: Shows the gradient at the end of episode 1.

Figure 5.8: Shows the gradient at the end of episode 19.
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Figure 5.9: Visualization of episode 19, an example where the price to rest price
ratio is high, and the optimal strategy is to almost empty the reservoir. The x-axis
shows the time steps. The upper diagram shows the true price in blue and the price
forecasts in red. The orange line is the rest price. The second diagram shows the
actions, the lines are constraints. Third, we have the reservoir filling between 0 and
1. The bottom diagram shows the inflow in blue and inflow forecasts in red.
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Figure 5.10: Visualization of episode 26, an example where the optimal strategy is
to almost empty the reservoir. The x-axis shows the time steps. The upper diagram
shows the true price in blue and the price forecasts in red. The orange line is the
rest price. The second diagram shows the actions, the lines are constraints. Third
we have the reservoir filling between 0 and 1. The bottom diagram shows the inflow
in blue and inflow forecasts in red.
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Figure 5.11: Visualization of episode 11, an example where the price to rest price
ratio is relatively low, but the agent still uses water to avoid overflow. The x-axis
shows the time steps. The upper diagram shows the true price in blue and the price
forecasts in red. The orange line is the rest price. The second diagram shows the
actions, the lines are constraints. Third we have the reservoir filling between 0 and
1. The bottom diagram shows the inflow in blue and inflow forecasts in red.
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Figure 5.12: Shows the key variables from episode 43. The x-axis shows the time
steps. The upper diagram shows the true price in blue and the price forecasts in red.
The orange line is the rest price. The second diagram shows the actions, the lines
are constraints. Third, we have the reservoir filling between 0 and 1. The bottom
diagram shows the inflow in blue and inflow forecasts in red.
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Figure 5.13: Visualization of the key variables from episode 48. The x-axis shows the
time steps. The upper diagram shows the true price in blue and the price forecasts
in red. The orange line is the rest price. The second diagram shows the actions,
the lines are constraints. Third, we have the reservoir filling between 0 and 1. The
bottom diagram shows the inflow in blue and inflow forecasts in red.
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Chapter 6

Evaluation and Conclusion

In this final chapter, we interpret our results and draw some overall conclusions. In
Section 6.1 we reiterate our research questions and attempt to answer them using
background knowledge, surveyed literature, and experimental results. Subsequently,
we focus on the limitations of both our results and the HG pipeline in Section 6.2.
In Section 6.3, we briefly consider the effect on HG by transitioning to a 15-minute
time resolution in the power market. Finally, we discuss some possible directions
for future work in Section 6.4.

6.1 Evaluation

Our goal for this thesis was to find solutions to the short-term hydropower scheduling
problem that balances computation time and solution quality. To reach this goal we
reduced it to three research questions, which we defined in Section 1.2. We reiterate
the research questions here:

1. What techniques have been used to solve continuous control problems with
uncertainty?

2. Which techniques exhibit the best fit for addressing the hydropower scheduling
problem?

3. Is it possible to create a data analysis pipeline that is competitive with State
of the Art methods while subject to constraints on the running time?

To answer our first research question we surveyed some methods used to solve con-
tinuous control problems in Chapter 3. The field is large, so only a limited selection
of methods was mentioned in this thesis. Model-free reinforcement learning can ad-
dress continuous control under uncertainty with very few assumptions or knowledge
about the domain, but a disadvantage is that a large amount of interactions with the
environment is required. The Soft Actor-Critic is a common choice for continuous
control and was discussed in Section 3.2.2. The Soft Actor-Critic deals with the con-
tinuous action space by using a policy that predicts the parameters of a continuous
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probability distribution. Some other methods we discussed were supervised learning
to map a state directly to an action, and the cross-entropy method which samples
trajectories from a probability distribution and progressively updates the probab-
ility distributions towards more promising areas. Monte Carlo tree search can be
used for continuous control if the actions are discretized. We also discussed a type of
reinforcement learning that computed the derivative of the objective function with
regard to the policy parameters.

The second research question asks which of these methods exhibits the best fit for
our problem. This discussion is dispersed throughout Chapter 3, 4, 5. Model-free re-
inforcement learning is known to not be sample-efficient and requires large amounts
of training. In our experiments, the model-free reinforcement learning agents did
not perform well. Despite 3 days of training and laborious adaptation to the envir-
onment, the Soft Actor-Critic did not outperform a simple rule-based agent. With
more training or another model-free reinforcement learning agent, the agent could
potentially perform better. In our problem formulation, actions have consequences
far into the future. For instance, if we produce now, we might be unable to exploit
a much higher price in 200 steps. The delayed feedback of this information is chal-
lenging for model-free reinforcement learning. Model-free reinforcement learning is
known to struggle with delayed feedback, and when the power market changes fre-
quency to 15 minutes, we will get four times as many time steps in the planning
horizon. That will make the problem even harder. In addition, the amount of in-
formation required to optimally choose one action makes it hard to learn a good,
one-shot mapping from state to action. All things considered, the Soft Actor-Critic
does not seem like a great fit for the hydropower problem.

We also reviewed the use of supervised learning for the hydropower problem in
Section 3.2.1. The results surveyed do not use an identical problem formulation or
use a comparable planning horizon, which makes them inconclusive in answering
how they would perform on the problem in this thesis. Much of the same critique
aimed at model-free reinforcement learning is true for supervised learning. Why use
a one-shot decision when using less than a second for inference is not necessary? It
would require a large amount of training and data to learn the optimal discharge of
the large states in our problem.

For model-based reinforcement learning, we discussed and tested one method used
for planning. The cross-entropy method performed much better than the Soft Actor-
Critic, and was close to HG in performance. However, it required the most amount
of computation and might be unable to scale when applied to a planning horizon
four times longer. However, considering that the method did not use any domain
knowledge and could likely be further improved, this method fits the hydropower
industry surprisingly well.

We also discussed some applications of heuristic search and Monte Carlo tree search
in Section 3.2.5. We tested Monte Carlo tree search as part of the HG system.
In a few cases, it did find better trajectories and also gives some robustness. The
running time is also quite low at only 4 seconds. Arguably, the success of this method
was mixed. Further experimentation with extensions and hyperparameters would
likely be needed to make Monte Carlo tree search work well. Finally, in Section
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3.2.4 we discussed an example of using a differentiable simulator. We have shown
with experiments that gradient ascent is a good fit for the hydropower problem. If
gradient ascent is given a good starting point, then the method seems to find a local
maximum.

Our third research question was whether or not we can create a data analysis pipeline
that is competitive with state-of-the-art methods. We built the HG pipeline, which
outperformed two state-of-the-art methods, the Soft Actor-Critic and the cross-
entropy method in terms of solution quality. While we can change the running time
of both HG and the cross-entropy method by modifying parameters, HG in our
experiment dominates the cross-entropy method in both running time and solution
quality. This shows that HG can outperform some state-of-the-art methods, though
objections regarding hyperparameter tuning and inadequate training of the Soft
Actor-Critic could be raised. There is also no evidence that HG outperforms all
state-of-the-art methods.

If we also include traditional methods as part of State of the Art, then our an-
swer to this question would be inconclusive. We discussed linear programming and
stochastic programming in Section 2.2.1. We did not manage to get a comparison of
our method to that of the stochastic programming approach used in the production
system. However, we can make some rough estimates. Optimization of the Mørre
powerplant uses around 2-5 minutes, according to a private discussion with an em-
ployee at Trønder Energi (Trønder Energi, 2022). This means that the running time
for HG is lower. In terms of solution quality, we do not have comparable data and
can only speculate. A result that the stochastic programming got 95%-97% of the
deterministic profit for a certain testing period has been mentioned (Trønder En-
ergi, 2022). This result is not comparable to our simulation for many reasons. One
reason is the differences in price and inflow patterns and more importantly that our
forecasts might be more accurate than the real world. We know that HG sometimes
gets stuck in local maxima in our episodes. HG has also been tested and adapted
on a flawed simulation, unlike the production system which has been adapted to the
real power market. This raises the question of how much the solution quality differs
between HG and the production system. This is left as future work.

Finally, our overall goal was to find solutions to the short-term hydropower problem
that balances computation time and solution quality. In pursuit of this goal, we
designed and tested the HG system. With a running time under 2 minutes, HG
adhered to our approximate threshold on running time. While we have no perfect
evaluation of the solution quality, the system performs better than some simple
benchmark agents and two state-of-the-art methods. We also compared HG to an
imperfect solver used on the true data, and HG got on average a 0.8% lower profit.
Overall, we consider the HG system to accomplish our goal of finding a method that
balances computation time and solution quality.
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6.2 Limitations

In this section, we will discuss some limitations caused by inadequate comparisons
in our tests and some problematic modeling choices in our experiments.

The most critical limitation of the work in this thesis is that our results are not
compared to the optimal solution or traditional methods. Consequently, we do
not know how good the solution quality of our agents is. Comparisons to simple
benchmark agents and more complex methods like the Soft Actor-Critic or the
cross-entropy method indicate that HG finds decent solutions, but exactly how good
compared to the optimal solution is unknown.

There are also limitations related to our modeling choices and our environment
assumptions. This could lead to a different performance in a real word deployment
of the system. We discussed many of the assumptions of the environment in Section
4.1. We will now discuss what consequences this has for our interpretation of the
results. Assumptions 2, 3, and 4, are that prices and inflow are independent, that
the first-order Markov assumption holds and that inflow and prices are stationary
processes. We argued that these assumptions are likely wrong. The consequence of
this is that the kind of prices and inflows seen in our test might be very different from
the real world. It is possible that our agents would perform worse or better on real-
world data. For instance, in real-world scenarios, it might be more or less common
to encounter situations where overflow is impossible to avoid. If it occurs more
often, the HG system would perform worse. Another concern might be seasonality
in prices, which could create patterns in real-world data that our methods happen to
do better or worse in. In general, violations of these assumptions lead to changes in
the data distribution which can reduce the performance of all our methods. When
we want to assess the solution quality of different methods we are interested in the
data distributions typically encountered in the day-ahead market and Norwegian
hydropower plants, and therefore the experiments in this thesis can be misleading.

Another potential source of error is the relation between the forecasts and the true
prices and inflows. Because the noise magnitude was based on the trajectory-wide
median, this noise is small when the median is small. As we can see in the episode
visualizations (5.3.4), the forecasts of the inflow are often quite close to the true in-
flow. If the real-world inflow forecasts have a much larger dispersion, then HG might
perform worse. Our choice to try to avoid breaking the reservoir constraints for all
scenarios might be impossible more often if the dispersion is greater. Furthermore,
our agent will more often be close to violating the constraints for a scenario, and we
showed that HG performs worse in these cases.

We do not use multistage optimization, which we explained in Section 2.1.4 and
2.2.1. This means that a perfect optimization of the objective function in the HG
system might be a lower bound on the optimal decision. How much this impacts
solution quality is not quantified. In general, there are many modeling choices for
our environment and objective function that could skew the experimental results.

We will also highlight some limitations of the HG system. Our experiments show
that HG performs worse when the good solutions are very close to breaking the reser-
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voir constraints. Because the gradient optimization does not work when overflow is
impossible to prevent, HG performs poorly in these cases.

6.3 Scaling to 15-minute timesteps

When the power market transitions from hourly time steps to 15-minute time steps,
a 12-day planning horizon would have four times as many time steps. Consequently,
the solution space grows exponentially following the relationship x4, where x is the
solution space at an hourly resolution. The original solution space is given by aT ,
where a is the number of discretized actions and T is the planning horizon, given
by 288 in our case. Our new solution space becomes a4T = a1152.

To illustrate the implications of this exponential growth, let us consider some ex-
amples. We estimate that the HG system scales linearly and will use 4c times as long
to run, where c is the additional running time from the evaluation function needing
to evaluate longer trajectories. The running time of evaluating longer trajectories
increases by less than four times, due to many constant overheads in the objective
function. Consequently, c is a number below 4. Consider the seeding phase, where
we need to test both four times as long and four times as many trajectories. Sim-
ilarly, Monte Carlo tree search will need to choose four times as many actions for
each iteration. Consequently, the running time can be estimated to use around four
to sixteen times longer, depending on c. However, because the solution space has
grown exponentially, we explore less of the solution space. Thus, our solution quality
will likely get worse. Linear programming, on the other hand, faces an exponential
increase in both the solution space and the running time in the worst case, though
not in the average case.

6.4 Future Work

We will now suggest some directions for how this work could be continued in the
future. The most important future work would be to address the limitation of
inadequate comparisons of the HG system. A test of the HG system with real
power prices and inflow data, and a comparison to the production system would give
conclusive evidence about the solution quality. Additionally, testing the HG system
with four times as long a planning horizon could show how the system would scale
to a 15-minute frequency in the power market. These experiments could address
our concerns with the modeling of the environment and indicate whether or not the
approaches in this thesis are worth further development.

Additionally, all phases of the HG system could likely be improved. In the experi-
ments conducted during this thesis, we observed some cases where the performance
of our system was suboptimal. Experiments with real data might uncover other
blind spots in our pipeline. We observed that the seeding phase is more often sub-
optimal when we are close to breaking constraints. Sometimes adding the next
greedy action might break a constraint, but adding the action at a later point might
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be beneficial. Some rules that incorporate reservoir filling could perhaps improve the
seeding phase in these cases. Keeping track of reservoir filling might also be worth
the extra computation for Monte Carlo tree search, as this method sometimes broke
the reservoir constraints. The reservoir filling could be included as a feature for the
classifiers. The gradient ascent phase also has a similar problem. The scaling factor
on the update in gradient ascent is naive. For instance, in some cases, the reservoir
threshold might be at risk at time step t, preventing an increase in discharge before
time t. This does not necessarily mean that increasing discharge after this point
should be forbidden. A more sophisticated technique could likely improve the per-
formance of gradient ascent when close to the reservoir boundaries. In cases where
overflow is impossible to prevent, one possibility is to use a different method since
gradient ascent does not work in this case. Another potential marginal improve-
ment could be the usage of continuous production curves when applying gradient
ascent. This would make the derivative less jagged, as we saw earlier in Figure
4.2, perhaps leading to better convergence. Better hardware with more CPU cores
would allow us to use more than 4 starting points for gradient ascent, which might
increase performance additionally. There are numerous possibilities for extending
or changing the Monte Carlo tree search or the cross-entropy method. One option
might be to entirely replace or remove them, as they did not always give substantial
improvements.

One could also consider using the solution of the HG system as a starting point for
stochastic programming. The concept of a warm start in linear programming solvers
is to give a near-optimal starting point, which can substantially speed up the solver.

There are also some problems with similarities to the hydropower problem. In
general, problems involving energy storage such as battery arbitrage or pumped
hydropower share many characteristics, and adapting HG to these problems might
work.

Lastly, we would also like to mention that attempting to model the problem as a
multistage problem could be rewarding. All phases would need changes, and rep-
resenting all the scenario-dependent action trajectories would require more memory
and computation, as we mentioned in Section 2.2.1. Investigating whether the gradi-
ent optimization works well for the multistage problem and how much of a difference
this problem formulation would make for solution quality could be an interesting
research direction, though several challenges would have to be solved.
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Appendix A

Hardware specifications

The computer with specifications in Table A.1 were used in for everything except
training the model-free reinforcement learning method. To train the model-free
reinforcement learning method we used Table A.2.

Component Specification

Operating system Ubuntu 22.04
Processor Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
CPU cores 4
Threads per core 2
Graphics Card NVIDIA GeForce GTX 1050 Ti
RAM 16GiB

Table A.1: System Specifications for laptop

Component Specification

Operating system Ubuntu 18.04
Virtual CPUs 4
RAM 16GiB

Table A.2: System Specifications for Azure virtual machine
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