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Abstract

In the field of quantitative genetics, the animal model has been widely used to model
phenotypic traits, incorporating fixed and random effects. When modeling binary
traits, a general linear mixed model (GLMM) with a nonlinear link function is often
employed, transforming variance components onto a latent scale that differs from the
observed scale.

In this thesis, we first examine how heritability, denoted as the proportion of
variance in a trait explained by genetic factors, can be translated from an underlying
scale to the observed scale using the threshold model. We also aim to determine
whether fitting binary features to a Gaussian model can achieve results similar to a
binomial model with more complex back-transformation techniques. The aim is to
establish whether Gaussian models can be sufficient when assessing observation-scale
heritability.

Using a Bayesian statistical framework, we fit animal models as Gaussian and
binomial with a probit link function for a dataset of song sparrows and simulated
data, calculating estimated heritabilities for both datasets. We compare the posterior
density between the Gaussian and binomial models to determine if a simpler linear
model may be sufficient.

The results demonstrate that one can fit a Gaussian model on a binary trait and
re-scale it back to the underlying liability scale. The rescaling handles models with
fixed effects, but it is prone to overestimation in the presence of highly unbalanced
traits. We also demonstrate that Gaussian models obtain posterior distributions of
heritability close to a binomial model’s heritability back-transformed to the observation
scales. However, the distributions deviate more by introducing fixed effects whose
variance contributes significantly to the total variance.

Overall, the findings show that using a linear model rather than a binomial model
to assess additive genetic variance in an animal model for binary data can be viable
depending on the accuracy required. Under certain circumstances, such as a dominating
fixed effect, the Gaussian model performs worse than a binomial model and requires
including variance from fixed effects in the heritability computations. However, these
constraints would not affect performance in most practical cases, indicating that
simpler and more interpretable approaches can give valid estimates of heritability.
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Sammendrag

Innenfor kvantitativ genetikk har dyremodellen blitt mye brukt til å modellere feno-
typiske egenskaper, med både faste og tilfeldige effekter. Ved modellering av binære
egenskaper brukes ofte en generell lineær blandet modell (GLMM) med en ikke-lineær
lenkefunksjon, som transformerer varianskomponenter til en latent skala som er svært
ulik den observerte skalaen.

Denne oppgaven undersøker først hvordan arvbarheten, betegnet som andelen av to-
tal varians som er forklart av genetiske faktorer, kan transformeres fra en underliggende
skala til den observerte skalaen ved hjelp av terskelmodellen. Det er også ønskelig å
finne ut om gaussisk modellering av binære fenotyper kan oppnå resultater sammen-
lignbart med en binomisk statistisk modell med tilbaketransformasjonsteknikker. Målet
er å finne ut om gaussiske modeller kan være tilstrekkelige for å vurdere arvbarhet på
en observasjonsskala.

Ved å bruke et bayesiansk statistisk rammeverk opprettes dyremodeller som gaus-
siske og binomiske med en probit lenkefunksjon, for et datasett med sangspurver og
simulerte data, og beregner estimert arvbarhet i begge tilfellene. Den posteriore fordelin-
gen av arvbarhet for den gaussiske modellen sammenlignes med binomialmodellen for
å finne ut om en lineær modell kan være tilstrekkelig.

Resultatene viser for det første at man kan tilpasse en gaussisk modell på en
binær fenotype og skalere den tilbake til den underliggende kontinuerlige skalaen.
Reskaleringen håndterer modeller med faste effekter, men overestimerer arvbarhet
i modeller med et svært ubalansert fenotypisk gjennomsnitt. I tillegg demonstreres
det at gaussiske modeller oppnår posteriore fordelinger av arvelighet nær binomiske
modeller tilbaketransformert til observasjonsskala. Fordelingene avviker imidlertid
mer ved å introduksjon av overdispersjon eller faste effekter i kombinasjon med stor
additiv genetisk varians.

Samlet sett viser funnene at det kan være aktuelt å bruke gaussisk modell i stedet
for en binomisk modell, i sammenheng med den additive genetiske variansen i en
dyremodell, dog avhengig av nøyaktigheten som kreves. Under visse omstendigheter,
for eksempel én enkelt dominerende fast effekt, oppnår den gaussiske modellen dårligere
resultater enn en binomisk modell, og krever i tillegg å inkludere varianskomponenten
fra de faste effektene i beregningen av arvbarhet. Disse begrensningene ville derimot ikke
påvirket arvbarheten i de fleste praktiske tilfeller, noe som indikerer at enklere, lineære
og mer tolkbare modeller kan gi lovende estimater av arvbarhet innen kvantitativ
genetikk.
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Chapter 1

Introduction

Quantitative genetics is a subfield of genetics and biological research that relates
statistical methods and models to genetic and biological observations. In particu-
lar, quantitative genetics is useful for inference to understand how different genetic
components and environmental factors contribute to individual traits such as height,
probability of disease, or overall fitness. The field has applications in scientific areas
such as biodiversity research, agriculture, and medicine (Linney et al. 2003; Topp
et al. 2016; Reid et al. 2021). Rather than studying alleles at any specific locus in
the genome, quantitative genetics uses overall summaries of the individually minor
effects of alleles at many different loci (location/position of a particular gene), making
it viable for statistical analysis (Aase 2021).

In the context of quantitative genetics, the response variable in a statistical model
is often the phenotypic trait, which is an observable characteristic of an individual
within the studied population, either directly or indirectly. Examples of phenotypic
traits can be categorical, such as hair color in humans, continuous, such as height, or
binary, such as juvenile survival (i.e., an individual surviving to a defined adulthood
threshold in a natural habitat). We can differentiate between the phenotype and the
genotype, where the latter is the complete genetic composition of an individual (Baker
et al. 2008). Traditionally, the distinction between phenotype and genotype is that
the appearance (physical structure) of an individual is its phenotype (Watson 1970).
However, it is important to reiterate that a phenotypic trait is not necessarily directly
observable, but can be an aggregation of observations or otherwise implicitly inferred
from observations of an individual.

A phenotypic value of an individual is determined by the individual’s genotype and
the environment (defined as nongenetic factors), expressed as P = G+E (Conner, Hartl,
et al. 2004). In other words, we consider an additive partitioning of the phenotypic
trait into genetic components (G) and environmental components (E). By partitioning
the genetic and environmental components of a phenotypic trait, we can alongside
genetic data from, e.g., pedigrees, estimate the additive genetic variance. For a given
allele, we define additive genetic variance as the deviation between the phenotypic
mean from inheritance, and the allele’s relative effect on a phenotype (Byers 2008). In
cases with a large additive genetic variance, the rate of evolutionary selection becomes
large, allowing the population to adapt faster to new factors such as environmental
change or the emergence of new natural predators.

The heritability of a trait is another important parameter in quantitative genetics,
defined as the proportion between additive genetic variance and total phenotypic

1



Chapter 1: Introduction 2

variance (Falconer 1996). Therefore, heritability is a standardization of additive
genetic variance that allows analysis and comparison between studies and populations.
Understanding heritability is important to predict the response of populations to
selection. However, there are apparent disadvantages to using heritability. Within wild
population studies, environmental factors are not controlled, making it difficult to
distinguish between environmental and genetic factors, and thus introducing bias to
the heritability estimate. Furthermore, in human behavioral genetics, heritability can
be misleading due to the multicausal nature of human traits (Moore and Shenk 2017).
Also note that additive genetic variance is relative to total phenotypic variance and is
only concerned with the extent to which individuals differ in terms of their genetic
makeup within the studied group, and not the individuals themselves (Gazzaniga et al.
2010). An alternative metric for a trait’s ability to evolve is evolvability, where the
additive genetic variance is divided by the square of the phenotypic mean of the trait
(Hansen et al. 2011). Although such alternative metrics exist, we will limit ourselves
to estimating the heritability of a trait for the purposes of this thesis.

In general, modeling biological traits in nature can become a complex task due to the
multitude of genetic and environmental causes that can influence a trait. Historically,
researchers have used continuous Gaussian traits to model complex processes (Nelson
et al. 2013). The animal model is a mixed effects model using measures of relatedness
in the population using, e.g., pedigree data (Kruuk 2004). While Gaussian models
have been useful in many cases, for instance, with continuous response types, this
paradigm may not be able to capture the complex biological processes contributing to
a phenotype, for example in the case of binary traits.

Another approach is to use binomial regression within the framework of the animal
model. In a linear model, the variance components estimated are on the same scale as
the response, which we call the observation scale. In binomial models, this is no longer
the case due to the nonlinear relationship between the response and the fitted values,
and consequently the variance components attain a latent scale, not directly related to
the biological observation-level response. Recently, methods have been used to scale
the latent variance back on the observation scale (de Villemereuil, Schielzeth, et al.
2016). With some closed-form exceptions, the method requires a series of numerical
integrations, considerably increasing the time complexity. Therefore, our research
question is whether a linear model could instead estimate the heritability of a binary
trait. Although a linear model fitted onto a binary response will likely violate the
model assumptions, our aim is to investigate if the violations lead to significant bias
in the heritability estimate.

The goal of this thesis consists of two parts. The first part will investigate how
one can use a Gaussian model to obtain estimates without nonlinear transformations.
The second part will compare the new method to other modern techniques for back-
transformation. Overall, the goal is to explore the degree to which we can approximate
heritability by fitting a linear mixed model (LMM) instead of a generalized linear
mixed model (GLMM) for binary traits. By comparing the performance of these types
of models, we aim to shed light on whether a simpler approach may be sufficient for
modeling heritability in certain cases. Ultimately, this research could contribute to
a better understanding of the complex interplay between genetic and environmental
factors in the shaping of biological traits and provide insights into the appropriate
modeling techniques to study heritability. If using a linear model yields viable results,
we would not need to fit generalized linear mixed models requiring back-transformations,
effectively simplifying the statistical work for biological research in the context of
heritability.
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To achieve these goals, we performed statistical modeling on two datasets measuring
a binary trait. The first dataset is from simulated data and the other dataset measures
the juvenile survival of song sparrows (Melospiza melodia) living on Mandarte Island
(Smith et al. 2006). The model specifications in the song sparrow data are inspired by
previous work (Reid et al. 2021; Rekkebo 2021) on the same dataset, where logistic or
probit regression models were used to analyze binary traits. Furthermore, we use a
Bayesian statistical framework based on integrated nested Laplace approximations
(INLA) to fit the different models and evaluate the deviation between the linear and
binomial models. Since the variance and hence heritability obtain a latent scale, the
thesis also reports on the different methods to transform the latent heritability back
into an interpretable scale to be comparable to the Gaussian model.



Chapter 2

Theory

The theory chapter provides an overview of the preliminary theoretical groundwork,
relevant for understanding the methodology employed. The first section of the mathe-
matical foundation covers the underlying model statements and assumptions in linear
models, extending onto GLMMs. Subsequently, we present the statistical models used
in quantitative genetics. Lastly, we introduce the statistical framework used for model
fitting, namely Bayesian statistics and INLA.

2.1 Mathematical foundation
2.1.1 Linear models
A linear model, hereafter denoted a Gaussian model, assumes that the continuous
response variable y is a linear combination of a given number of covariates, an error
term and an intercept. Linear regression can be formulated as

y = β0 +
p∑

i=1
βixi + ε (2.1)

where y is the response variable, xi are observations for covariate i out of the p number
of covariates, βi is the estimator for each covariate and ε ∼ N (0, σ2) is the error
term. That is, ε follows a standard normal distribution with mean 0 and variance σ2.
Equivalently, linear regression in matrix notation generalizes to n different responses
using the design matrix X, so that the expression becomes

y = Xβ + ε , y = [y1, . . . , yn]⊤ , β = [β1, . . . , βn]⊤ ε = [ε1, . . . , εn]⊤, (2.2)

X =


1 x11 · · · x1p

1 x21 · · · x2p

...
...

. . .
...

1 xn1 · · · xnp

 .

Linear regression relies on four major assumptions. The first assumption, exogeneity,
assumes that there is no error in the data from the design matrix, i.e. E [ε|X] = 0. The
second assumption is that the relationship between the response and the covariates
is linear, indicated by equations (2.1) and (2.2). The third assumption is that the

4
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estimated errors e = ŷ − y, also called residuals, are independent and identically
distributed (iid) as a normal distribution with mean zero and constant variance.
Finally, we assume that we do not have perfect multicollinearity in the predictors,
which means that the covariates are linearly dependent and rank(X) is not full.
Violating these assumptions can compromise the performance of the model and lead
to biased estimators.

There are several advantages to using linear regression for inference. Firstly, the
maximum likelihood estimator has the closed form

β̂ = (X⊤X)−1X⊤y . (2.3)

As such, both implementation and interpretability of the model fit are relatively
easy. There are several methods for evaluating model fit, and easy-to-use libraries in
most modern programming languages already exist. Furthermore, due to the linear
relationship between the covariates and the response variable, we can see that an
increase of one unit in xi will increase the expected response by βi, making it a
powerful and flexible tool for statistical inference.

2.1.2 Mixed models
An assumption that limits the use cases for a linear regression model is that the
variance of the residuals must be iid and constant, σ2. This assumption makes it
difficult to model intra-class variance, i.e., variance among the different observations
within a given class. We can extend (2.1) by including a random intercept effect
for cluster i, γ0,i ∼ N (0, σ2

0). We consider clusters i = 1, . . . , m, each of which is
accompanied by observations xij for j = 1, . . . , ni. Then, the model becomes, for each
yij ,

yij = β0 + β1xij + γ0,i + εij . (2.4)

This expression is a random intercept mixed linear model. Generalizing the random
intercept model yields a random slope model by introducing γ1,i ∼ N (0, σ2

1), such
that, for instance,

yij = β0 + β1xij + γ1,ixij + γ0,i + εij ,

which is equivalent to the matrix expression

y = Xβ + Uγ + ε (2.5)(
γ
ε

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
.

Note that R and G are block diagonal covariance matrices with diagonal elements
(σ2Σn1 , . . . , σ2Σnm

) and (Q, . . . ,Q), with Σni
is the covariance matrices for fixed

effects and Q for random effects, respectively. The design matrix for random effects,
U , is also a block diagonal matrix with elements U1, . . . ,Um (Fahrmeir et al. 2022).

2.1.3 Generalized linear models
When attempting the model more complex traits in nature, assuming a linear rela-
tionship between the covariates and the response variable may not be sufficient. A
motivating example of the limits to a linear model is the modeling of a binary response,
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Figure 2.1: Illustrative example of fitting a linear model (to the right) versus a
generalized (binomial) linear model (to the left) when the response is binary. The
data used is from the standard mtcars set provided by R (R Core Team 2021). The
response is the engine type (vs), either V-shaped or straight, and the covariate is
gross horsepower (hp).

where the only values yi attain are zero or one. Figure 2.1 illustrates how a linear
estimator can struggle to estimate binary outcomes.

Binomial regression is a generalized linear model (GLM). In GLMs, we assume
that the response follows a distribution of the exponential family, such as the binomial,
Poisson, exponential, or beta distribution. The expected value of the response links to
a linear predictor η through a link function. More precisely, a GLM can be written as

g(E[Y |X]) = g(µ) = η = Xβ , (2.6)

where g is the link function, η is the linear predictor, µ is the expected value of
the distribution of Y |X, and X and β are as previously defined. For the example
of binary binomial regression, we get Y |X ∼ Bern(µ), that is, Y |X is assumed to
have a Bernoulli distribution with mean µ. The common link functions for binomial
regression are the logit, probit, and cloglog (complementary log-log) links, and are
provided in Table 2.1.

Extending on the idea of an LMM, we have generalized linear mixed models
(GLMMs) whose linear predictor η can include random effects, in addition to fixed
effects. In general, a GLMM will have the form

η = Xβ + Uγ ,

µ = g−1(η) , (2.7)
Y |X ∼ D(µ,θ) ,

for a distribution D of the exponential family with expected value µ and (potentially
additional) parameters θ.

2.2 Models in quantitative genetics
We will use the animal model, which is a specific GLMM, to estimate the additive
genetic variance. For context, we first introduce the infinitesimal and threshold model.
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Link function Expression
Logit log(yi/(1− log(yi)))
Probit Φ−1(yi)
Cloglog log(− log(1− yi))

Table 2.1: Most common link functions for binomial regression. Here, Φ is the
cumulative density function of a standard normal distribution, N (0, 1).

2.2.1 The threshold model
The infinitesimal model in quantitative genetics assumes that any phenotypic trait is
influenced by an infinite number of loci, all of which have some infinitesimal effect.
In simpler terms, the trait of an offspring is Gaussian around the mean of its two
parents with a variance independent of the values of the parents (Barton et al. 2017).
The motivation behind this modeling choice dates back to Galton (1886), suggesting a
law of ancestral heredity, where the phenotype is decided as the sum of geometrically
declining contributions from parents and further up the pedigree. Each ancestor had a
probability p of passing the trait to the next generation. This idea is equivalent to
the framework we use today, which is an additive genetic trait with the heritability
concept replacing, and generalizing, the probability p (Bulmer 1998).

The infinitesimal model motivates us to use a normal distribution with a random
effect. However, Gaussian models struggle to provide accurate predictions of binary
phenotypes. To remedy this, the infinitesimal model can be extended to allow for
more complex trait modeling, namely through the threshold model. Rather than
trying to model a specific trait, we consider a latent trait, also called the liability,
with a normal distribution. In the example of modeling a binary trait, for a given
threshold M , the values attained below M are cast to the one binary category, and all
values above are set to the latter. Figure 2.2 shows an illustration of the threshold
model. The heritability computed from the liability trait can be transformed into an

Figure 2.2: Illustration of the threshold model for a binary phenotypic trait. The
blue points are realizations of the normal distribution less than the threshold value
M and thus belong to phenotype 1. Consequentially, the realizations above M are
the red points and belong to phenotype 2.

observation-scale heritability using the relation

h2
liab = p(1− p)

t2 h2
obs , (2.8)
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where p is the proportion of one of the binary phenotypes in the population, and t
is density in N (0, 1) at the pth quantile (Dempster and Lerner 1950; de Villemereuil
2018). The idea of the threshold model has been extended further into a multiple
threshold model; see, for instance, Reich et al. (1972).

An important result is that (2.8) can be used for Gaussian models fitted to a binary
trait when the binary trait is relatively well balanced (van Vleck 1972; Elston et al.
1977). This result suggests that a linear (mixed) model can be sufficient to model
binary traits if one scales the outcome by a scalar value dependent on the data. Note
that Elston et al. (1977) mention that the variation in liability among groups (in
terms of the response) should be small for the approximation to be valid. There is
also little to no literature exploring the stability of the approximation when including
fixed effects in the model.

2.2.2 The animal model
The animal model is a mixed model that incorporates genetic information as a variance-
covariance structure in a random effect. The model can use information from a complex
pedigree encoded in a matrix, to estimate the causal components of the phenotypic
variance (Kruuk 2004). Whereas alternatives often must assume that there is no
assortative mating, inbreeding, or selection, the animal model can account for all three.
In a Gaussian case, the animal model can be expressed as the linear mixed model

Y = Xβ + Zaa + Zu + ε , (2.9)
a ∼ N (0,Aσ2

A) ,

ε ∼ N (0, Iσ2
E) ,

where Y is the phenotypic trait of interest, a are called the breeding values, or the
(total) additive genetic merit, and ε are the errors. Furthermore, Xβ are the intercept
and fixed effects, and each Zjuji are the random effects other than the breeding values.

A key component of the animal model is the additive genetic relationship matrix
A. Before defining A, we define the coefficient of ancestry, Θij , to be the probability
that an allele drawn from individual i is the same as an allele from individual j. Then
we have that Θii, that is, self-relatedness, is 1

2 and if i and j have a parent-offspring
relationship, Θij = 1

4 . We can then define A so that each Aij = 2Θij . In terms of
notation, the total phenotypic variance on the observed scale will be written as σ2

P ,
which is the sum of additive genetic variance, environmental and / or residual variance.
Recall that heritability is the proportion of phenotypic variance explained by the
additive genetic variance, which now can be expressed mathematically as

h2
obs = σ2

A

σ2
P

. (2.10)

2.2.3 The animal model for non-Gaussian traits
The threshold model has been used for binary and, in general, categorical traits. One
can show that there is an equivalence between a binomial GLMM whose link function
is the probit link, and the threshold model (de Villemereuil, Schielzeth, et al. 2016).
With the extensions to GLMMs, we also have a broader framework that can accurately
model non-Gaussian traits.

Specifically, we use a GLMM such as a binomial model with a probit link for the
case of a binary trait. Although a probit-based animal model has a better predictive
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power than a Gaussian animal model, the nonlinearity of the link functions confounds
the actual biological values of interest. To illustrate the scales more clearly, we consider
a simple binomial probit animal model by

η = β0 + a , (2.11)
a ∼ N (0,Aσ2

A) , (2.12)
µ = Φ(η) , (2.13)

Y |X ∼ Bern(µ) . (2.14)

The estimated variance components σ̂2
A in the model are on the same scale as (2.11),

namely the latent scale, meaning that the variance is additive on the linear predictor’s
scale. However, it is no longer additive in relation to observed values, which follow a
Bernoulli distribution whose mean is linked through the nonlinear function Φ, that is,
the cumulative density function forN (0, 1). We also illustrate this concept in Figure 2.3,
where the posterior latent fitted values are shown with the true observations. While
the fitted values on the latent scale are far from the true observations, passing the
inverse of the link function will obtain the expected scale, which reflects the phenotypic
mean. However, as apparent in the same figure, none of these scales is the same as the
observed data, which are binary realizations of a Bernoulli distribution. In summary,
since the link function g is nonlinear, we get a non-additive genetic variance.

Figure 2.3: Illustrative figure showing the fitted values obtained in a binomial probit
model. The red lines, η ∈ (−∞, ∞), are the marginal fitted values, i.e., the fitted
values on the latent scale. By using the inverse of the link function, we obtain the dark
blue estimate Φ(η) ∈ (0, 1), which can be interpreted as the expected scale. Lastly,
the green lines show the true observations y ∈ {0, 1}. The estimates (η and Φ(η))
show 20 posterior samples of these estimates, hence their blurry shape compared to
the true observations.

We have motivated the interest in applying animal models to get heritability
estimates. However, only reporting the heritability on the latent scale is not viable, as
inferring parameters on the observation scale should be the standard approach (de
Villemereuil 2018). This raises the issue of how one can get usable estimates on the
original observation scale when using nonlinear models. There are several potential
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remedies to obtain an estimate comparable to the observation scale, one of them
by introducing link variance. By sending the linear predictor through the nonlinear
inverse link function g−1(ηi), one introduces variance. Traditionally, this is captured
by adding a term to the denominator in the heritability estimate, for instance in the
probit case

h2
Φ = σ2

A∑
i σ2

i + 1 , (2.15)

where
∑

i σ2
i is the sum of the variance components from the random effects. Including

the term 1 in the denominator captures the link variance for a probit model and
attains the same scale as would be achieved using the threshold model, that is, the
liability scale. Similarly, the link variance in a binomial model with a logit link is π2/3
and the cloglog link is π2/6 (Nakagawa, Johnson, et al. 2017). Although this method
is easy to use, it does not address the issue of fixed effects influencing heritability and
does not yield heritability estimates on an observation scale.

In wild populations, we must interpret heritability as conditioned on any fixed
effects chosen in the model (Wilson 2008). To remedy this, de Villemereuil, Schielzeth,
et al. (2016) introduces a method that attempts to obtain heritability estimates on
the observation scale by averaging over fixed effects. The algorithm is based on the
same three hierarchical scales introduced by Figure 2.3, namely, the latent scale, the
expected scale and the observation scale. The primary goal will be to convert from
the latent scale to the observation scale, as presented below.

A general back-transformation algorithm

de Villemereuil, Schielzeth, et al. (2016) also suggests general formulae, both tackling
the back-transformation of variables onto the observation scale and providing a method
to average over the fixed effects. The purpose of averaging over fixed effects is to
attempt to remove the heritability’s dependence on model choices of fixed effects.

The algorithm is detailed in Algorithm 2.1. In the algorithm, g−1 is the inverse
link function for a given model, σ2

RE is the sum of variance from all random effects,
fN (x; µ, σ2) is the density function for the distributionN (µ, σ2), and V is a distribution-
specific variance function.

In the case where we have a binomial probit model, the sequence obtains a closed-
form solution, given by Algorithm 2.2, and will be significantly faster than, for instance,
a binomial logit model.

2.3 Bayesian inference and INLA
2.3.1 The Bayesian statistical modeling framework
We can consider two main frameworks for statistical modeling: a frequentist approach
and a Bayesian approach. When modeling with a frequentist approach, we assume
that the parameters in a model have one true value, whereas, in a Bayesian approach,
we interpret them as stochastic with their own distributions. The prior distribution in
the Bayesian framework represents the knowledge that we have in the model before
we observe the data itself. Using an appropriate prior can improve the accuracy of the
model. Another key component in Bayesian statistics is that the methods used provide
a probabilistic interpretation of the fitted values, which is helpful for further inference
in the model of interest. In terms of notation, we define the operator MAP[X] as
the maximum a posteriori of a random variable X with a posterior distribution and
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Algorithm 2.1 General method for observation-scale heritability h2
Ψ.

Input: Latent additive genetic variance σ2
A,l and total phenotypic variance σ2

RE,l,
either intercept µ or predict (latent marginal estimates). Optional: w, width for
integration.
if predict given but not µ then

µ̃← predict
else

µ̃← [µ, . . . , µ]⊤ ▷ Such that µ̃ = [µ̃(1), . . . , µ̃(N)]⊤
end if
z̄ ← 1

N

∑N
i=1
∫ µ̃(i)+w

√
σ2

RE,l

µ̃(i)−w
√

σ2
RE,l

g−1(x)fN (x; µ = µ̃(i), σ2 = σ2
RE,l)dx

σ2
RE,exp ←

(
1
N

∑N
i=1
∫ µ̃(i)+w

√
σ2

RE,l

µ̃(i)−w
√

σ2
RE,l

(
g−1(x)

)2
fN (x; µ = µ̃(i), σ2 = σ2

RE,l)dx

)
− z̄2

σ2
RE,dist ← 1

N

∑N
i=1
∫ µ̃(i)+w

√
σ2

RE,l

µ̃(i)−w
√

σ2
RE,l

V(x)fN (x; µ = µ̃(i), σ2 = σ2
RE,l)dx

σ2
RE,obs ← σ2

RE,exp + σ2
RE,dist

Ψ← 1
N

∑N
i=1
∫ µ̃(i)+w

√
σ2

RE,l

µ̃(i)−w
√

σ2
RE,l

∂g−1(x)
∂x fN (x; µ = µ̃(i), σ2 = σ2

RE,l)dx

h2
Ψ ←

Ψ2σ2
A,l

σ2
RE,obs

Returns: h2
Ψ

Algorithm 2.2 Observation-scale heritability for a binomial probit model.
Input: Latent additive genetic variance σ2

A,l and total phenotypic variance σ2
RE,l,

either intercept µ or predict (latent marginal estimates).
if predict given but not µ then

µ̃← predict
else

µ̃← [µ, . . . , µ]⊤ ▷ Such that µ̃ = [µ̃(1), . . . , µ̃(N)]⊤
end if
p← 1

N

∑N
i=1 1− Φ(0; µ = µ̃(i), σ2 = σ2

RE,l + 1)
σ2

RE,obs ← p(1− p)
Ψ← 1

N

∑N
i=1 fN (0; µ = µ̃(i), σ2 = σ2

RE,l + 1)

h2
Ψ ←

Ψ2σ2
A,l

σ2
RE,obs

Returns: h2
Ψ
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represents the mode of the posterior distribution computed for X. Simulation studies
have also shown that in the case of the estimation of heritability of binary traits, the
use of Bayesian models is the most effective (de Villemereuil, Gimenez, et al. 2013),
further motivating the use of Bayesian frameworks.

Penalized complexity priors

A suitable choice of priors can significantly improve the performance of a model,
while choosing unsuitable priors can increase the bias in the model. Thus, choosing
prior distributions in a Bayesian model is not a trivial task. When there is little
prior knowledge, noninformative priors, and improper priors (such as the uniform
distribution) can be used. An improper prior is any prior distribution that integrates
to a non-finite value. However, improper priors can also lead to other issues, such as
improper posterior distributions.

For this thesis, we will be using penalized complexity (PC) priors (Simpson et al.
2017). By introducing penalized complexity priors, simpler and more interpretable
models will be prioritized, while more complex models that tend to overfit the data
will be penalized. PC priors require only two parameters, namely U and α where
0 < α < 1. Informally, the prior PC(U, α) on some parameter θ is expressed so that
the probability Pr(θ ≤ U) = 1− α.

For the case of a random effect [a1, . . . , an]⊤ = a ∼ N (0,Aσ2
A) = N (0,Aτ−1

A ),
the PC prior becomes a type-2 Gumbel distribution with respect to λ,

π(τA) = λ

2 τ−3/2 exp(−λτ
−1/2
A ), τA > 0, λ > 0 , (2.16)

and with Pr(τ−1/2
A ≤ U) = 1− α, we obtain λ = − ln(α)/U (Simpson et al. 2017). PC

priors have a parameterization so that U resembles the standard deviation, for example,
a PC prior PC(1, 0.05) for the breeding values a would resemble Pr(σA ≤ 1) = 0.95.

2.3.2 The INLA computing scheme
INLA is an abbreviation for the term integrated nested Laplace approximation and is
an alternative to fitting Bayesian models using Markov chain Monte Carlo (MCMC).
INLA is a faster alternative to obtain posterior distributions for latent Gaussian
models. In this brief review of INLA, we use the notation and definitions provided in
Martino and Paige (2022).

A latent Gaussian model is a relatively broad class of models consisting of observa-
tions y, a latent field x, and hyperparameters θ with a partition θ = (θ1,θ2)⊤. We
have that

y|x ∼
∏

i

π(yi|xi, . . . ,θ1) (2.17)

x|θ1 ∼ N (0,Q(θ2)−1), , (2.18)

where (2.17) implies that y is conditionally independent given x and θ1 and π(·)
indicates the distribution of a random variable, and Q in (2.18) is the precision
matrix for the latent field x. Furthermore, we assume that x is a Gaussian Markov
Random Field (GMRF). To obtain effective computations within the INLA framework,
the precision matrix Q should be sparse. Within the context of the animal model,
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Q = A−1, which has been shown to be sparse (Steinsland and Jensen 2010). The
linear predictor in a latent Gaussian model is

ηi = α +
∑

l

fi(ul,i) +
∑

k

βkzk,i + εi , (2.19)

which we can use to express both linear models, GLMs, GLMMs, and more complex
models like geostatistical models.

The INLA computing scheme

The first step of the INLA computing scheme is to obtain estimates for the marginal
hyperparameter distribution. That is, π(θj |y) =

∫
π(θ|y)dθ−j , which we compute

numerically. The notation θ−j means all elements of θ except j. In particular, we
can approximate the marginal hyperparameter distribution using the expanded form
(Morrison 2017)

π(θ|y) ≈ π(y|x,θ)× π(x|θ)× π(θ)
π̃G(x|θ,y)

∣∣∣∣
x=MAP[π(x|θ,y)]

, (2.20)

where π̃G is the GMRF approximation. With these, INLA selects suitable support
points (for non-scalar θ) with Newton-like numerical methods such that each θk has
weight ∆k (Morrison 2017).

With the marginal hyperpriors, we can get the distribution of the latent space by
π(xi|y) =

∫
π(xi|θ,y)× π(θ|y)dθ with additional Laplace approximations, given that

they are not Gaussian. The Laplace approximation can be done using either a full
Laplace approximation or a simplified version based on a skew-normal distribution to
a series expansion of π̃(xi|θ,y) (Martino and Paige 2022). Lastly, we can obtain the
posterior estimate π̃(xi|y) as

π̃(xi|y) =
∑

k

π̃(xi|θk,y)× π̃(θk|y)×∆k . (2.21)

The package R-INLA (Rue et al. 2009) implements the computing scheme and will be
used to fit all models in this thesis.
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Methods

3.1 Overview
In this chapter, we will present the methods and model specifications used to answer
the research question. We will also introduce the simulation and application data
used in the study. Supplementary to the chapter is the complete R code provided in
Appendix D.

The initial segment of the thesis will investigate different scales of heritability,
with particular attention given to the threshold model. In the threshold model, we
assume that the underlying scale is a Gaussian distribution. This distribution is not
available in application contexts. However, by using simulations, we can construct
this Gaussian linear predictor and produce a corresponding binary response variable
using a dichotomization of the linear predictor. Then, by computing the heritability
from a Gaussian model fitted with the dichotomized response, we can scale it onto
the liability scale with the coefficient p(1− p)/t2 from the threshold model (2.8), and
compare the model’s performance to the true underlying distribution. If the results
from the Gaussian model coincide well with the true heritability, we would strengthen
the claim that Gaussian modeling may be sufficient to accurately estimate heritability.

The second segment of the thesis aims to compare heritability from state-of-the-art
back-transformation strategies applied to a probit model, with heritability from our
Gaussian mixed model. The main focus will be to compare the posterior heritability
density in the Gaussian and probit models, where the probit model attains the same
scale as the Gaussian using back-transformations, namely the observation scale. If
the Gaussian observation-scale heritability is similar to that of the more complex
back-transformation algorithms, one may conclude that linear mixed models can be
sufficient when primarily interested in the additive genetic variance (or heritability)
on the observation scale. These comparisons will be the most important results when
discussing a Gaussian model’s performance on binary traits.

3.2 Statistical models
We define the general statistical models and heritability scales used throughout the
thesis in this section. Methods specific to the simulation or application data are
provided in the following sections.

14
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In general, the Gaussian model is on the form

y = β0 +
n∑

i=1
βixi +

m∑
j=1

γ0,jzj + a + ε , (3.1)

where y is the response, β0 is the intercept, βixi are the n fixed effects, γ0,jzj are
the random effects, a ∼ N (0,Aσ2

A) are the breeding values for a defined relatedness
matrix A, and ε ∼ N (0, Iσ2

E) is the error term. The corresponding binomial probit
model is defined as

η = β0 +
n∑

i=1
βixi +

m∑
j=1

γ0,jzj + a , (3.2)

E [y|X] = Φ(η) , (3.3)

where Φ is the cumulative density function of N (0, 1). Moreover, all random effects are
given a penalized complexity prior (PC prior) of the form PC(U, α = 0.05) (Simpson
et al. 2017). Note that PC priors are parameterized so that U denotes the standard
deviation and not the variance (Rue et al. 2009). The value of U in the PC priors, as
well as the specific fixed and random effects, are denoted in the subsequent sections
regarding the application and simulation data, respectively. Since we are using a
Bayesian statistical framework, we can get a posterior distribution of the random
effects estimates and hence a posterior of the estimated heritability. We use the INLA
framework (Rue et al. 2009) for Bayesian inference and model fitting.

3.2.1 Comparing with state-of-the-art techniques
Initially, we fit both a Gaussian and a binomial probit model to the datasets. With
the fit of the models, we can compute the heritability. For the Gaussian models, this
will simply be

h2
obs = σ̂2

A

σ̂2
P

= σ̂2
A

σ̂2
A + σ̂2

E +
∑

j
̂Var[γ0,j ]

, (3.4)

where
∑

j
̂Var [γ0,j ] is the sum of variances from all j random effects, excluding the

breeding values whose variance is σ̂2
A. The observation-scale heritability is thus directly

computable from the estimated variance components without transformation. However,
computing heritability for a probit model (3.2) would yield a latent scale estimate of
heritability, denoted as h2

lat. To obtain a comparable estimate to h2
obs, it is necessary

to use some of the techniques described in the theory chapter. Once the estimates are
computed for the different scales, we can compare their posterior distributions to infer
conclusions about how well the Gaussian model performs. The resulting heritability
scales are described in Table 3.1. In particular, we want to compare h2

obs with h2
Ψ and

h2
liab with h2

Φ.

Observation scale heritability from probit model

When estimating the heritability from a probit model on the observation scale, i.e.,
h2

Ψ, we can choose to work with the mode MAP[µ] of the intercept estimate µ, or
using the latent marginal estimates. By simply using the intercept, we do not average
over fixed effects, which could lead to significantly different results (de Villemereuil,
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Schielzeth, et al. 2016), and is denoted in the results as No averaging. In particular,
when not averaging over fixed effects, the algorithm simplifies to

p = 1− Φ(0; MAP[µ]; σ̂2
RE + 1) , (3.5)

h2
Ψ = fN (0; MAP[µ], σ̂2

RE + 1) σ̂2
A

p(1− p) , (3.6)

where p is the observation-scale estimated phenotypic mean. Using latent marginal
estimates, which is Xβ̂ marginal to random effects, we also have two options, denoted
by Frequentist or Bayesian. The frequentist approach is to use MAP[Xβ̂] for each
predictor so that each sample of h2

Ψ achieves the same predicted values. For example,
by sampling 1000 times for a dataset with 500 observations, the same 500 predictors
would be used for all 1000 samples. The other option is more in line with the Bayesian
framework, in which we draw one sample from the posterior of each Xβ̂ as many
times as the sampling number for h2

Ψ, but is also slower. Although this method is
slower, it is theoretically more sound, given that we use a sufficiently large sample
size. Using samples instead of the mode introduces more information, thus improving
the estimate of posterior heritability. Comparing how the posteriors differ with these
different approaches is relevant for understanding when they may be approximated
with a Gaussian model.

3.3 Simulation setup
We lay out how we produce the simulated pedigree data and binary traits below. In
short, we simulate a pedigree and binary response, from which we can fit a Gaussian
model and scale the observation-scale estimated heritability back onto the liability
scale.

3.3.1 Simulating a pedigree
To make a proper model for the animal model, we need to make a simulated relatedness
matrix A, which requires a pedigree. We can generate a simulated pedigree using the R
package GeneticsPed (Gorjanc et al. 2023). We use the ratio Ne/Nc to determine the
number of dams and sires, where Ne is the effective population size and Nc is the census
population size. Ne determines the biological rates such as genetic drift, and analyzing
the ratio enables us to examine the impact of different traits and factors’ influence
on the effective population size (Kalinowski and Waples 2002). For the purposes of
this simulation, we fix Ne/Nc to 1

2 and generate 100 individuals with 100 Ne/Nc dams
and sires, respectively, for 9 generations providing 900 data points. We also fix the
additive genetic variance σ2

A for each simulation run. This is sufficient for generating
a simulated pedigree and hence a relatedness matrix. Using the relatedness matrix,
we may generate random deviates of breeding values ai of a = [a1, . . . , an]⊤ with
a ∼ N (0,Aσ2

A). With our setup, we require a technical modification of the methods
rbv() from the R package MCMCglmm (Hadfield 2010), see Appendix C for more details.
The resulting pedigree also provides the generation number and sex for each individual,
the latter of which can be used for the simulation of fixed-effects models.

With the defined pedigree and breeding values, we let η̃ be the linear predictor,
for instance

η̃ = a + ε , (3.7)



Chapter 3: Methods 17

where ε ∼ N (0, Iσ2
E). In most cases, σ2

A defaults to the arbitrarily chosen value 0.5
and σ2

E to 1, unless otherwise stated. The linear predictor is the true, underlying
normal distribution for the simulation.

Simulating a binary response

We can use the dichotomization of η̃ to define the simulated response variable as

yi =
{

0, ηi ≤ c,

1, ηi > c ,
(3.8)

for a cutoff value c for each ηi ∈ η̃, hereby denoted as thresholding dichotomization.
When η̃ is centered around zero, this dichotomization leads to a balanced phenotypic
response (p ≈ 0.5) with c = 0. Alternatively, we can generate the responses yi as
binomial realizations. Here, the probability of success pi is based on η̃ scaled between
0 to 1, that is,

yi ∼ Bern(pi = Φ(ηi)) . (3.9)
We also define p̂ as the estimator to the marginal phenotypic mean, i.e.,

p̂ =
∑N

i=1 1[yi = 1]
N

. (3.10)

This is the same as p used for the threshold model (2.8), and we use the estimator for
such computations.

Fitting the model

When fitting the model, we primarily include no fixed effects or any random effects
other than the breeding value, and an iid random effect in the probit models. That is,
y = β0 + a + ε in the Gaussian case and η = β0 + a + γ0 and γ0 ∼ N (0, I). When it
comes to the prior choice, we will use penalized complexity priors PC(U, 0.05), where
U is rounded up to the closest order of magnitude when σ2

A ≥ 1. For example, if σA is
3 · 102, U becomes 103, meaning that we assume Pr(σA ≤ 103) = 0.95. For σ2

A < 1,
the prior defaults to PC(1, 0.05).

3.3.2 Robustness tests
To properly evaluate the robustness of our techniques, we will look into alternative
models using fixed effects and overdispersion, respectively. For the case of fixed effects,
we generate simulation data using the linear predictor

η̃ = a + βsexxsex + ε , (3.11)

where a and ε are as in (3.7), xsex are realizations of the individual’s sex from the
generated pedigree, and for a specified choice of βsex. For a sufficiently large weighting
of βsex compared to σ2

A and σ2
E and a fixed variance of xsex, we expect the variance

in the fixed effect to dominate the linear predictor. Hence, we must include the fixed
effect variances for heritability estimation for such models by adding the term β2

sexσ2
sex,

where σ2
sex is the unbiased sample variance of the observations for the sex covariate,

to the total phenotypic variance (Nakagawa and Schielzeth 2013). The underlying
heritability in the simulation becomes

h2
liab = σ2

A

σ2
A + 1 + β2

sexσ2
sex

. (3.12)
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Another consequence of including a fixed effect is that η will no longer necessarily
be centered around zero. Thus, we define the cutoff point in the threshold-based
dichotomization based on the quantiles of the simulated η̃. In particular, we will
investigate the performance of the Gaussian model with a balanced p ≈ 0.5 and an
unbalanced phenotypic mean p ≈ 0.1. In the runs where p is imposed balanced, the
cutoff is set to E [η̃], and in the unbalanced case, the cutoff is at the (1− p)th quantile.
For simplicity, all runs use thresholding dichotomization. We test the models with the
presence of fixed effects with βsex = 10 and βsex = 100. The variance explained by the
fixed effect is β2

sexσ2
sex = β2

sexp(1− p), for example 25 for a balanced phenotypic mean
(p ≈ 0.5) and βsex = 10. For the case of overdispersion, we can change ε in the linear
predictor for the simulation, so that ε ∼ N (0, Iσ2

E) with a chosen σ2
E > 1. In addition,

we fit two probit models, one without the random iid effect γ0, and one model with
the effect.

3.4 Data description
For the purposes of this thesis, the application dataset consists of observations of song
sparrows from Mandarte Island. Researchers have collected data from this population
since 1975, but we mainly use data from 1993-2018, as the individuals in these years
have a complete pedigree (Reid et al. 2021). Song sparrows are socially monogamous
and open nesting, but are known to aggressively defend territory against intrusion
from neighboring males (O’Loghlen and Beecher 1999; Reid et al. 2021).

The dataset contains parental linkage information for the individuals. In the pruned
dataset, that is, observations between 1994 and 2018, we have 2722 individuals with
a complete pedigree. In addition to parental knowledge, the data includes the natal
year, brood date, sex, coefficients of inbreeding, and proportion of genetic origin from
immigrants. Finally, we have the binary trait of interest, namely, juvenile survival to
adulthood, surveyed in April each year to determine if they had survived their first
winter. We provide a brief exploratory data analysis in Appendix B.

For the song sparrow data, we use the same fixed and random effects as in Reid
et al. (2021), and prior distributions as Rekkebo (2021), namely

η = β0 +
5∑

i=1
βixi +

2∑
j=1

γ0,jzj + a , (3.13)

γ0,1 ∼ N (0, σ2
0,1) , γ0,2 ∼ N (0, σ2

0,2) , a ∼ N (0,Aσ2
A) ,

E[yi|X] = Φ(ηi) ,

σ2
0,1, σ2

0,2, σ2
A ∼ PC(1, 0.05) ,

where the five fixed effects include the inbreeding coefficient, immigration coefficient,
natal year, brood date (in days), and sex. The three random effects (z1, z2, and a) are
the nest grouping factor, the natal year grouping factor, and the individual IDs where
we encode the pedigree in the relatedness matrix A. The prior sensitivity has been
shown to be low in this dataset (Rekkebo 2021), so we can safely impose PC(1, 0.05)
on all variance components.

3.4.1 Preprocessing the song sparrow data
The preprocessing step is especially important when working with real data. We start
by scaling all continuous variances. Using the scaled data, we continue by constructing
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the relatedness matrix A using the nadiv package (Wolak 2012), see Appendix D
for more details. Once A and A−1 are computed, we may fit Gaussian and binomial
models to the dataset, and compute heritability on the different scales as previously
described. Note that we require the inverse of A since the INLA framework operates
with precision matrices.

3.4.2 Residual analysis
Lastly, we present the methods used in residual analyzes carried out on the application
data. For the purposes of this thesis, we employ a cross-validated probability integral
transform test (PIT test). When computing PIT values, we use a subset of the data to
fit the model and evaluate the cumulative density function (CDF) of the predictions at
a set of realized data that is not part of the training set used in the model. The CDF
distribution should resemble the uniform distribution between 0 and 1, given that the
normality assumptions in our model are correct (Conn et al. 2018; Wang et al. 2018).

3.5 Overview of methodology
This section primarily summarizes the different scales of heritability used in the thesis.
Second, we summarize the methodology and thus what figures will be reported in the
following chapter.

3.5.1 Overview of heritability scales
A complete overview of the heritability scales and their expressions are provided in
Table 3.1. The first heritability scale is denoted h2

obs, observation-level heritability,
and is the heritability in a Gaussian model, computed directly as the proportion of
phenotypic variance explained by additive genetic variance. Without the presence of
fixed effects,

h2
obs = σ2

A

σ2
P

,

and with a fixed effect such as sex, σ2
P would also include the variance from the fixed

effect, β2
sexσ2

sex. The other observation-level scale is denoted by h2
Ψ, which is the result

of passing a binomial probit model through the back-transformation algorithm. The
computing scheme for h2

Ψ is provided in Algorithm 2.2 for a binomial model with a
probit link. Note that for this scale, we can pass the marginal fitted values for the
model with different sampling techniques, providing us with three ways of computing
h2

Ψ, previously denoted as Bayesian, Frequentist and No averaging.
By directly computing heritability for a probit model, we obtain the latent scale

with the notation h2
lat. The latent scale is not comparable to any heritability from the

Gaussian models, and consequentially will not be reported in the results or in the table
overview. However, by including link variance to the denominator of the heritability
expression, we get the heritability estimate of a probit model on the liability scale,

h2
Φ = σ2

A∑
i(σ2

i ) + 1 ,

where
∑

i σ2
i resembles the sum of all variance components from the random effects in

the model. Note that the liability and observation scales are not comparable. However,
recalling the threshold model (2.8), we may multiply h2

obs (from a Gaussian model) by
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p(1− p)/t2 to obtain h2
liab. Thus, we have the scales h2

obs and h2
liab for the Gaussian

models, as well as h2
Φ and h2

Ψ for the binomial models.

3.5.2 Experimental overview
For the simulation study, we first fit a Gaussian model for varying σ2

A between 10−3

and 104 and compute its heritability at the observation level (h2
obs). This heritability

is scaled back to the liability scale and compared to the theoretical liability scale
heritability, σ2

A/σ2
P . We compare the rescaling using the response with both threshold

and binomial dichotomization. Second, for σ2
A = 0.5 and σ2

E = 1, we fit a Gaussian
and probit model and compute all scales of heritability. We report the mean, mode,
and standard deviation, and show density on observation scales and liability scales.
To effectively estimate the mode of the heritability, we use kernel density estimation
with 512 equidistant points (R Core Team 2021). The deviance information criteria
(DIC) are provided alongside these results.

Third, we run a probit model with σ2
A = {0.1, 1} and σ2

E = 1 to compare the
heritability densities from the probit model back-transformation algorithm with the
three different sampling techniques of marginal fitted values. Subsequently, we run a
simulation that includes fixed effects in the linear predictor, for varying values of σ2

A,
also between 10−3 and 104, and using rounded dichotomization. The weight βsex for
the fixed effect is chosen to be 10 and 100, and the phenotypic mean p̂ is chosen to be
unbalanced p̂ = 0.1, and then balanced p̂ ≈ 0.5. Furthermore, for σ2

A = 10, βsex = 10,
σ2

E = 1, and p̂ = 0.1, we report the heritability density on observation scale.
Finally, we fit models without fixed effects, but with overdispersion, i.e., σ2

E > 1.
For σ2

A = 0.5 and σ2
E = {2, 5, 10}, we report the density of the heritability from a

probit model with an extra iid effect. We provide one last simulation run for σ2
A = 10

and σ2
E = 10. For the sake of comparison, we also report a regular probit model and a

Gaussian model without fixed effects and without any extra iid random effect, and
report the obtained heritability densities on the observation scale alongside the probit
model with an iid random effect.

For the application study, we first fit a Gaussian and probit model and compute all
heritabilities on the different scales, also reporting mean, (estimated) mode, standard
deviation, and plots of the heritability densities on observation and liability scales, as
well as the DIC. Continuing by replicating the methodology from the simulation case,
we compare the densities of the heritability obtained from the three different sampling
techniques of marginal fitted values for the probit back-transformation algorithm.
We also report the residual distribution and distribution of the Gaussian model’s
PIT values to determine model violations. The last robustness test is to report and
compare histograms of off-diagonal values of the generated relatedness matrix from
a real dataset, with the relatedness matrix from a simulated pedigree to determine
validity of the simulation data.
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Notation h2
obs h2

Ψ h2
liab h2

Φ

Scale Observation yi Observation yi Liability η̃i Liability ηi and η̃i

Model Gaussian Probit Gaussian Probit

Expression σ2
A,obs/σ2

P,obs Algorithm 2.1 using σ2
i,lat ∀i σ2

A,liab/
[∑

i(σ2
i,liab)

]
σ2

A,lat/
[∑

i(σ2
i,lat) + 1

]
Interpretation Observation-scale

heritability directly
computed from fitted values
of variance components.
Should be comparable to
h2

Ψ.

Observation-level
heritability obtained by
passing the latent fitted
values to the
back-transformation
algorithm. Should be
comparable to h2

obs.

Liability scale either
directly computed from an
underlying continuous scale
(in simulations) or by
scaling the observation-level
fitted values using the
coefficient from the
threshold model.

Liability-scale heritability
from transforming the
latent scale by adding
variance related to the link
function, here +1 (for a
probit link). Should be
comparable to h2

liab.

Details The proportion of total
variance explained by
genetic factors.

Estimators (originally) on
latent scale

With threshold model
transformation,
h2

liab = p(1− p)/t2 · h2
obs,

where t is the pth quantile
of a N (0, 1) density.

Estimators are on latent
scale, and assuming probit
link.

Table 3.1: An overview of the different heritability scales used in this thesis. For clarity, we explicitly include the scales that the estimated
variance components have in the respective subscripts. For instance, σ2

A,obs is when σ2
A is on the observation scale (that is, Gaussian model),

σ2
A,liab denotes when σ2

A has a liability scale, and σ2
A,lat denotes when it has a latent scale.
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Results

This chapter will present all the results of statistical models, posterior distributions,
and estimated heritability, with the aim of determining whether Gaussian modeling
can be sufficient to accurately estimate heritability. The results are segmented into
simulation and application studies, respectively. We start by presenting the data
generated by the simulation study and hence heritability estimates scaled following the
threshold model for the underlying distribution. Then, we present obtained estimates
of heritability for the different scales, followed by some robustness tests. For the case
with the application data, we also provide posterior heritability estimates and include
a residual analysis of the general Gaussian model for the application song sparrow
data. The figures and data establish the basis for the discussion in the next chapter.

4.1 Simulation study
4.1.1 Gaussian model on liability scale
The main results shown related to the fitting of the Gaussian model on the simulation
data are in Figures 4.1a to 4.1c, with σ2

A, ranging from 10−3 to 104. We show the
outcome for a threshold dichotomization (3.8) and binomial dichotomization (3.9).
The last graph uses simulations on a finer grid of σ2

A ranging from 10−3 to 0.25. The
blue line is the heritability of the fitted model on the liability scale, where we scale by
the factor p(1− p)/t2 to obtain the estimated h2

liab. The heritabilities on the liability
scale appear to generally coincide in the reported simulations.

4.1.2 Heritability on different scales
This section aims to provide an overview of the heritability estimates for its various
scales using the simulated data. Initially, we compare the Gaussian and probit models on
the liability scale and similarly on the observation scale. Furthermore, we specifically
consider the observation-scale heritability of the binomial model (h2

Ψ), where we
investigate how changing fixed effects averaging settings may affect h2

Ψ.
The posterior heritability density for the liability and observation scale shows

similarities between the Gaussian and probit models for heritability (Figure 4.2). The
notation and expressions for h2

obs, h2
liab, h2

Φ and h2
Ψ are given in Table 3.1. Finally,

some statistics (the mean, estimated mode, and standard deviation) of the same
posteriors are summarized in Table 4.1. Complementary to these results, we report the

22
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(a) Threshold dichotomization (b) Binomial dichotomization

(c) Threshold dichotomization for smaller σ2
A

Figure 4.1: Values of heritabilities for the true, underlying continuous scale in the
simulation study (red line), alongside the estimated heritability using a Gaussian
model. The green line shows the heritability on the observation scale (h2

obs) estimated
with a Gaussian model using the dichotomized data, whereas the blue line is scaled
by the threshold model formula to obtain heritability on the liability scale (h2

liab).
The point shows the mean of 50 runs, with each corresponding line resembling its
standard deviation.
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deviance information criteria for the two models (Table 4.2). In addition to the figures
presented here, we refer to Figure A.1 and Figure A.2 in the appendix, providing a
grid of density comparisons for the different heritability scales, for the application and
simulation data, respectively.

Model Mean Mode Standard deviation
Gaussian h2

obs 0.178 0.179 0.046
Probit h2

Ψ 0.217 0.183 0.08

Gaussian h2
liab 0.281 0.282 0.073

Probit h2
Φ 0.334 0.333 0.083

Table 4.1: Heritability estimates for Gaussian and probit models, in the simulation
data with σ2

A = 0.5, showing the mean, mode, and standard deviation. The first two
and the last two rows provide heritability comparable to each other. We refer to
Table 3.1 for a reference on how the different scales are computed.

(a) Liability scale (b) Observation scale

Figure 4.2: Posterior liability- and observation-scale densities of heritability for the
simulation data.

Observation scale from probit model

In the framework from de Villemereuil, Schielzeth, et al. (2016), there are several
parameter settings for computing observation scale heritability h2

Ψ from binary data,
whose difference is described in the methods chapter (section 3.2.1). As such, we
first investigate to what extent the heritability densities differ from each other. The
resulting posteriors for h2

Ψ are provided in Figure 4.3 for the simulation data, showing
little difference for a small σ2

A = 0.1, although larger deviations for a larger σ2
A. In

Model DIC (Simulation data)
Binomial probit 1180.620
Gaussian 1215.321

Table 4.2: Deviance information criteria (DIC) for the two model fits, for the
simulation data, with σ2

A = 0.5 fixed.
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Estimate Runtime
h2

Ψ Bayesian 26 sec
h2

Ψ Frequentist 11 sec
h2

Ψ No averaging 4 sec

Table 4.3: Runtime of computing 10, 000 samples of h2
Ψ in seconds for the three

methods provided by the QGglmm package, in simulation data with 900 observations.

addition to these posteriors, we show the runtime for computing 10, 000 samples in
Table 4.3.

(a) σ2
A = 0.1 (b) σ2

A = 1

Figure 4.3: Estimated posterior heritability for the different back-transformations
techniques, for a binomial probit model to simulations with small variance (σ2

A = 0.1)
and a simulation with larger variance (σ2

A = 1), respectively.

4.1.3 Robustness tests
Lastly, we present some results exploring the robustness of the models, namely by
introducing fixed effects and overdispersion. Figure 4.4 illustrates how the heritability of
the Gaussian model, once transformed to its liability scale, is relative to the theoretical
value for varying values of σ2

A. In this context, the theoretical value includes fixed
effects variance in the denominator, (Nakagawa and Schielzeth 2013)

h2
liab = σ2

A

σ2
A + σ2

E + β2
sexσ2

sex
. (4.1)

The plot is similar to Figure 4.1, although the subplots differ in the magnitude
of the fixed effect term rather than different dichotomization methods. We can also
see a significant deviation between the estimated and true h2

liab for the case of fixed
effects. Additionally, we provide the posterior density of heritability when including
fixed effects to assess differences quantitatively (Figure 4.5). The plot shows the
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posterior heritabilities for a Gaussian and a probit model fitted on simulation data
where βsex = 10, σ2

E = 1, and varying σ2
A and p̂. It seems like the estimate from the

Gaussian and probit models differ more in the presence of fixed effects. The second
robustness factor examined is overdispersion. The heritability of the resulting models
for varying σ2

E are shown in Figure 4.6, where generally all models seem to produce
similar posterior heritability estimates.

(a) σ2
A = 0.5, σ2

E = 2 (b) σ2
A = 0.5, σ2

E = 5

(c) σ2
A = 0.5, σ2

E = 10 (d) σ2
A = 10, σ2

E = 10

Figure 4.6: A comparison between two probit models and a Gaussian model fitted
with the simulation data. One of the probit models has an additional random iid
effect to account for overdispersion, whereas the other does not have the random iid
effect. The heritability densities are shown for varying σ2

A and σ2
E .
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(a) (b)

(c)

Figure 4.4: Estimates for heritability with a Gaussian model including fixed effects.
The red line shows the true heritability on the liability scale and includes fixed
effects variance as part of phenotypic variance. Subfigure (a) shows the results for
an unbalanced p̂ = 0.1 and βsex = 10, whereas the phenotypic mean is balanced in
the other subfigures. Furthermore, subfigure (b) demonstrate βsex = 10 and (c) with
βsex = 100. The points show the mean over 50 runs with each corresponding line
resembling its standard deviation.
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(a) β = 10, σ2
A = 10, σ2

E = 1, p̂ = 0.1 (b) β = 10, σ2
A = 10, σ2

E = 1, p̂ = 0.5

(c) β = 10, σ2
A = 500, σ2

E = 1, p̂ = 0.1 (d) β = 10, σ2
A = 500, σ2

E = 1, p̂ = 0.5

Figure 4.5: Posterior heritability for simulations with fixed effects on observation-
scale. The first column shows the results with an unbalanced trait, p = 0.1, and the
other column for a balanced trait p = 0.5. Furthermore, the first row show densities
where σ2

A = 10, and the second row when σ2
A = 500.
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4.2 Application study
4.2.1 Heritability on different scales
Replicating the method in the previous section, we present the heritability estimates
for the application data. They are provided in Figure 4.7 and Table 4.4, showing
similarities between the heritability of the Gaussian and probit models on the respective
scales. Similarly to the simulation case, we employ the different parameter settings
in the algorithm for observation-scale heritability from the probit model, yielding
Figure 4.8.

Model Mean Mode Standard deviation
Gaussian h2

obs 0.034 0.027 0.018
Probit h2

Ψ 0.03 0.022 0.016

Gaussian h2
liab 0.062 0.049 0.032

Probit h2
Φ 0.055 0.042 0.027

Table 4.4: Heritability estimates for the Gaussian and probit models, in the appli-
cation data, showing the mean, mode, and standard deviation. The first and last
two rows provide heritability comparable to one another. We refer to Table 3.1 for a
reference on how the different scales are computed.

(a) Liability scale (b) Observation scale

Figure 4.7: Posterior liability- and observation-scale densities of heritability for the
application data.

4.2.2 Gaussian residual analysis
In addition to computing the estimated heritability, we would like to explore the
residual distribution of the Gaussian model for the application dataset. We fit a
Gaussian model using INLA to the application data, in which we also compute the
model’s PIT values to evaluate the goodness of fit. Figure 4.9 shows the sorted PIT
values in ascending order relative to their quantiles, which would resemble a straight
line for a uniform distribution, which is not the case for our data. Figure 4.10 shows
the PIT values over the mean of the posterior fitted values, as well as a cubic spline
smoothing plot. The PIT values show a clear pattern rather than being uniformly
distributed, which is also the case for the plot of the residuals (Figure 4.11).
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Figure 4.8: Estimated posterior heritability for the different back-transformations
techniques, for a binomial probit model to the application data.

Model DIC (Application data)
Binomial probit 2600.499
Gaussian 2712.749

Table 4.5: Deviance information criteria (DIC) for the two model fits, for the
application data.

Another result that we may attribute to the residuals of the Gaussian model is
that INLA seems to not always converge for the first initial values for this dataset, but
succeeds all times on its second attempt. We cannot observe the same errors when
fitting probit models, nor in the Gaussian simulation case. It is also relevant to report
the deviance information criteria for the Gaussian and corresponding probit model
(Table 4.5).

The final plot provided, Figure 4.12, is a general comparison of off-diagonal values
in the relatedness matrix for both datasets. The figure showcases a relatively similar
structure in both the simulation and the song sparrow data. In particular, the general
relatedness in the song sparrow dataset has more tailing for larger values and a larger
mode than in the simulation case. However, both datasets still provide off-diagonal
relatedness values around the same area, (0, 0.2), strengthening the simulated data as
a viable tool for interpreting real-world data.
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Figure 4.9: Sorted PIT values over quantiles in Gaussian application model.

Figure 4.10: PIT values over the mean of the posterior fitted values, using application
data. The black dots are the PIT values, the blue line is a cubic spline smoothing and
the grey area shows its 95% confidence interval.
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Figure 4.11: Residuals of the Gaussian model with the song sparrow data. That
is, yi − ŷi for all observed i. The blue-colored dots resemble the difference between
the mean of the fitted values and the true observation where juvenile survival is
true. Similarly, the red dots are when the trait is false (not survived). The dark grey
lines are the 95% credible intervals for each of the residuals, based on the quantiles
computes from the posterior fitted values.

(a) Simulation data (b) Song Sparrow data

Figure 4.12: Histograms showing the density of the different relatedness values in the
relatedness matrix for the simulation data, and the song sparrow data, respectively.
The diagonal values (measuring relatedness to the individual itself) are not included,
as self-relatedness is one by construction.
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Discussion

The present discussion chapter aims to provide a critical review and comparison of the
different scales of heritability estimates obtained using the different models. The results
in the previous chapter provide the basis for discussion, where we specifically will
evaluate the validity of the Gaussian model, its computational aspects, and whether a
Gaussian model can be sufficient for heritability estimation. Included in the chapter is
a section on future potential work in the same research domain.

5.1 Gaussian estimates in simulation
The overall results in Figure 4.1 show that the scaled heritability from the Gaussian
model coincides well with the true heritability on the underlying scale. For lower values
of σ2

A and hence h2 (Figure 4.1c), both the scaled and unscaled plots seem to be close.
However, when h2 increases, it becomes more apparent that we need the threshold
scaling.

One potential problematic component of the model specification in the simulation
case is the choice of priors. In the model, the prior is chosen based on the true value
for σ2

A, ensuring a well-suited prior estimate. However, this may not reflect the degree
of prior knowledge in most datasets, especially not in wild population surveys. To
challenge this prior assumption, we performed two different simulations: one with a
constant PC prior PC(1, 0.05) for all σ2

A, and one case with PC(U, 0.05) with U = 2σ2
A.

Both simulations yielded results very similar to the varying priors explained in the
methods chapter. Furthermore, we can also note that the binomial dichotomization
shown in Figure 4.1b seems to somewhat underestimate the underlying heritability,
compared to the threshold dichotomization. The dichotomized values in this case are
binomial realizations with success probability given by applying the normal cumulative
density function (Φ) to η̃, and this dichotomization choice introduces variance that
would explain this result. One way to consider the introduced variance from binomial
dichotomization is that the mapping from an underlying Gaussian distribution onto
the binary traits is not exact and contributes to some unexplained variability. Thus,
binomial dichotomization can represent the same as including residual variance in the
denominator.

33
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5.2 Interpretability on different scales
This section will consider how the heritabilities obtained from the different scales
relate to each other, aiming to answer whether one can use Gaussian regression instead
of binomial regression. Recall that a summary of the different scales is provided in
Table 3.1.

The first result to consider is the mean and mode of posterior heritability (Tables
4.1 and 4.4). The means and modes have relatively little skewness, since the mean
and mode are close to each other, although the mode is consistently lower than its
corresponding mean. This can be attributed to some small positive skewness in all of
the models.

We may also note that for the application data, the Gaussian h2
obs is less than one

standard deviation away from the corresponding probit models on the observation
scale, h2

Ψ and h2
Φ. The simulation data become more challenging to interpret. The

underlying heritability would in our case be 0.5/(1 + 0.5) = 1
3 , assuming it follows a

Gaussian distribution before dichotomization. In this case, the heritability from the
Gaussian model transformed to the liability scale h2

liab, along with the link variance
transformation h2

Φ, provides estimates closest to the true value (see Table 4.1). This
is in line with what we expected, as the two heritability estimates have the same
liability scale, whereas the others are on a different scale. Furthermore, solving for
the theoretical h2

obs using the threshold model and the true value for h2
liab, we obtain

with the simulated p̂ = 0.46, that the true heritability of the observation scale would
be 0.211. As expected, the Gaussian h2

obs and binomial back-transformed h2
Ψ are the

closest, where the binomial model’s mode is, to a small degree, closer to the true
value than the Gaussian mode (Table 4.1). Hence, it seems that the Gaussian model
overestimates heritability, albeit to a small degree.

The figures supporting the heritability estimates from the tables are the figures of
its posterior density (Figures 4.2 and 4.7). Recall that h2

Ψ is more computationally
intensive but also more precise than h2

Φ, which motivates comparing the precise h2
Ψ

to the Gaussian model instead of h2
Φ. In addition, the liability scale for the Gaussian

model should be equivalent to h2
Φ (de Villemereuil, Schielzeth, et al. 2016).

Observing first the observation scale (Figures 4.2b and 4.7b), we can instantly
remark that h2

obs and h2
Ψ are very similar. The Gaussian estimate is more positively

skewed for the application data, but is generally very similar to h2
Ψ in terms of shape

and numerical values. The simulation has a larger deviation between modes, as the
probit one seems to be shifted towards the right. This is in line with our observations
from the table summary. The liability scale for the Gaussian model is compared with
h2

Φ (Figures 4.2a and 4.7a), where we observe similar deviations, though with less
skewness for the Gaussian model.

5.2.1 Robustness of the models
Robustness tests provide information on the performance of various models in esti-
mating heritability on different scales. Based on the fixed effect Gaussian models for
varying σ2

A (Figure 4.4), the Gaussian model obtains estimates of underlying heritabil-
ity that somewhat approximate the theoretical true value for a balanced phenotypic
mean. However, heritability appears to be overestimated, especially in the case of an
unbalanced phenotypic mean. Thus, it seems like the threshold model breaks down
with a dominating fixed effect.

Additionally, the posterior density of heritability on the observation scale (Fig-
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ure 4.5) suggests that both the binomial and Gaussian models struggle to accurately
estimate heritability on the observation scale when a fixed effect dominates the linear
predictor. In general, it is difficult to determine whether the back-transformed probit
or the Gaussian model is the closest to the correct value in this result, as we have no
true observation-scale heritability for reference. The true heritability (based on the
chosen values for the other components of the linear predictor) is on a liability scale,
and we cannot safely state that p̂, the estimator for the marginal phenotypic mean p,
is sufficient to approximate each conditional pi. Recall that each dichotomized yi has
its underlying probability pi and is dependent on the covariate for each individual i.

The difference between heritability from the back-transformed probit and Gaussian
models appears to also be apparent in larger values of σ2

A, though to a smaller degree
with a balanced phenotypic mean (Figures 4.5c and 4.5d). When the magnitude of
βsex for the fixed effect decreases, the proportion of total variance from fixed effects
becomes smaller, meaning that we would expect the two heritability densities to be
closer to the same value, which is confirmed in Figure A.3 in the appendix.

An important aspect that may explain the results is that the simulation only has
one single, binary, and dominating fixed effect. As a consequence, the individual’s
response is directly associated with its covariate for the fixed effect. Had we used more
fixed effects, effects with a smaller weight β and perhaps continuous covariates, the
inclusion of fixed effects may not lead to the same results as we have in our simulations.
Supporting this idea are the results from the simulation work where the model uses
several fixed effects, where the Gaussian model obtains heritability estimates close to
the probit model with back-transformation (Figure 4.7).

The second aspect of robustness concerns overdispersion, and the results are
provided in Figure 4.6. However, the alternative probit model without any random iid
effect results in almost exactly the same posterior density as a standard probit model
(with an iid effect), for all combinations tested of σ2

A and σ2
E . This indicates that the

model with an iid parameter sends the iid parameter towards zero and attributes
the overdispersion variance to the additive genetic variance instead. In the general
simulation runs, we also include an iid term, where we see that h2

lat is very close to
one, indicating that the iid effect goes towards zero for simulations as well. Although
the probit model does not differ when including an iid term in its linear predictor, the
Gaussian model generates observation-level heritability closely resembling the probit
models for the four combinations of σ2

A and σ2
E .

5.3 Normality of Gaussian model
The normality tests of the Gaussian model indicate that the residuals are far from
normally distributed, clearly violating the model assumptions of a linear model
(Figures 4.9 to 4.11). Violation of the model assumptions has consequences for further
model inference, since, for example, the F-test is sensitive to the normal assumption
(C. A. Markowski and E. P. Markowski 1990). In general, models that violate their
assumptions can also lead to more biased estimates, since the predictor in linear
regression assumes Gaussian residuals with constant variance. If the residuals no longer
have constant variance, the equivalence between the closed form solution (2.3) and
the maximum likelihood estimate also becomes violated. Thus, the estimates from the
predictor and consequently variance and heritability estimates can also be subject to
bias. This clear violation is here, however, expected, seeing as the model fits a binary
phenotype as the response.
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Another result in favor of using binomial regression is the deviance information
criterion whose values are shown in Tables 4.2 and 4.5. In both datasets, the binomial
model has a significantly lower DIC value than the Gaussian equivalent. Note that we
cannot compare DIC values across different datasets, as they should only be used in
model selection. Thus, varying values between probit models for the different datasets
are expected, and we cannot infer any conclusions from such a result.

Despite clear violations, we still see overall good performance from the Gaussian
model. Therefore, the bias to additive genetic variance introduced by normality
violation may not be severe enough to bias heritability. Since heritability is a ratio
between variances, another possibility would be that the bias in σ2

A is somewhat
counteracted by taking the ratio of total phenotypic and additive variance. These
hypotheses are difficult to test for but can explain why the heritability bias in the
Gaussian model is not larger.

5.4 Computational aspects
An important result highlighted in the back-transformation techniques on the applica-
tion data (Figure 4.8), is that the simpler, yet faster method No averaging yields results
strikingly similar to the two slower methods averaging over fixed effects. Estimates
deviate significantly more in the simulation case (Figure 4.3) when using a larger
additive genetic variance.

As shown by the execution time of the methods in seconds (Table 4.3), the fastest
technique (No averaging) is more than six times faster than the most computationally
demanding (Bayesian). In the specific case of a binary probit model, the algorithm
does not require numerical integration, meaning that all methods are sufficiently fast
and we can use the method denoted by Bayesian. If we had considered other link
functions without a closed form back-transformation such as the logit link, the fastest
method might be the only viable choice.

In general, the choice of fixed effects is expected to substantially change the
heritability estimate (Wilson 2008), in line with the results of the simulation with
sufficiently high σ2

A, but contradictory to our results for the application data. We
fit our models in a Bayesian statistical context, and other modeling frameworks can
yield different results. In addition, de Villemereuil (2020) shows a case study in which
averaging changes the observation-scale heritability from about 0.3 without averaging,
to 0.2 with averaging. Thus, we cannot state that one does not need the process of
averaging over fixed effects in general. The results also show that for sufficiently large
σ2

A, the different densities of h2
Ψ will deviate more from one another (Figure 4.3b).

Lastly, we have not tested different values for the hyperparameter w, the integration
width in Algorithm 2.1. With a smaller w, the integrals are evaluated over a smaller
space, which would yield more accurate results assuming it would not increase the
numerical integration error. However, for the case of binary probit, w is not used and
thus is not taken into account.

5.5 Further work
The robustness tests indicate that including fixed effects in the denominator may be
appropriate. However, the tests do not clarify which cases it is necessary to include
variance from fixed effects, seeing as the application data provides accurate estimates
without including variance from fixed effect in the heritability estimation. Another
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shortcoming of the findings is to what extent we can generalize the results of the
robustness tests. Although we have tested some extensions, the simulation datasets
do not introduce complex animal models with several fixed effects. An alternative
approach would be to fit two animal models without fixed effects, one with the data
for xsex = 0, and the latter with xsex = 1. Then, one would expect, for a sufficiently
large sample size, that the heritability would be similar.

Another aspect worth considering is modeling with a more unbalanced response
variable. For example, looking at models whose binary trait is highly unbalanced
(p < 0.1), could provide insight into limitations to the Gaussian model, as suggested
in van Vleck (1972). Furthermore, some animal models may also have generous use
of interaction terms in the model statements, which has neither been discussed nor
included in this thesis. Also, note that a deliberate limit in the thesis was made
by assuming that heritability is the most important metric when analyzing wild
populations. However, heritability has been subject to scrutiny and some claim that
other measurements related to additive genetic variance can be more appropriate, such
as evolvability (Hansen et al. 2011).

Finally, in wild population studies, missing data tend to be more prevalent compared
to the datasets used in this thesis. For the simulation case, we have an artificially
complete pedigree. For our song sparrow data, we also have a complete pedigree that
is not comparable to most wild population survey data. In a further study, it could be
interesting to see how missing data and sensitivity to pedigree errors can influence
Gaussian heritability estimates, for instance, by applying a capture-recapture animal
model (Papaix et al. 2010).



Chapter 6

Conclusion

This thesis has explored the use of Gaussian models on binary phenotypes within the
framework of the animal model and Bayesian statistics, directly obtaining observation
scale heritability. The results, based on a dataset and simulation data, show that the
Gaussian models can indeed be useful to easily obtain a heritability estimate, as a
simpler and more direct alternative to binomial models with back-transformations.
The results are limited to the datasets and models applied in the thesis and do not
account for highly unbalanced phenotypes.

Furthermore, simulated data indicate that the introduction of overdispersion does
not significantly challenge the Gaussian model. However, the heritability estimates
from a Gaussian model diverge from the back-transformed probit model upon the
introduction of fixed effects in the simulation study. Additionally, the simulation work
has demonstrated that including the variance from a fixed effect in the denominator for
heritability may be necessary to get an accurate heritability estimation in a Gaussian
model. The models with the application data containing several fixed effects do not
exhibit the same effect, and it seems like the Gaussian model provides estimates very
close to the probit models’ estimates. In general, using a Gaussian model also limits
the use for further inference, as its general predictive abilities are significantly worse
on binary phenotypes than a binomial model.

The findings show that a Gaussian mixed model is able to capture heritability on
an observation scale that closely resembles the state-of-the-art back-transformation
techniques for binomial models. Further investigation is required to determine exactly
what effects decrease the power of a Gaussian model, although the results in this
thesis indicate that it would be applicable in most practical cases. In the long term,
the results can provide the foundation for developing a simpler, more effective, and
easily interpretable statistical method for estimating additive genetic variance.
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Appendix A

Additional plots

Figure A.1: Posterior distributions of estimated heritability for the Gaussian and
probit model, in the application data. The densities are reported in a grid comparing
each different type of scale to each other. That is, for both scales for the Gaussian
model, we compare the posterior heritability with the probit model for its three
different scales. The resulting 3×2 grid shows how they act comparatively.
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Figure A.2: Posterior distributions of estimated heritability for the Gaussian and
probit model, in the simulation data with σ2

A = 0.5 and σ2
E = 1. The densities are

reported in a grid comparing each different type of scale to each other. That is, for
both scales for the Gaussian model, we compare the posterior heritability with the
probit model for its three different scales. The resulting 3×2 grid shows how they act
comparatively.
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(a) β = 1, σ2
A = 10, σ2

E = 1, p = 0.5 (b) β = 5, σ2
A = 10, σ2

E = 1, p = 0.5

(c) β = 1, σ2
A = 500, σ2

E = 1, p = 0.5 (d) β = 5, σ2
A = 500, σ2

E = 1, p = 0.5

Figure A.3: Posterior heritability for simulations with fixed effects on observation-
scale, varying on β between 1 and 5 across the columns, and between σ2

A = 10 and
500 across the rows.
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Exploratory Data Analysis

Data frame overview
Pedigree
The first object is d.ped which contains the pedigree information.

summary(d.ped)

## ninecode gendam gensire
## Min. :109137448 Min. :109137468 Min. :109137448
## 1st Qu.:146164012 1st Qu.:146130794 1st Qu.:146130313
## Median :176124850 Median :176124382 Median :176124004
## Mean :196520240 Mean :188116000 Mean :185463038
## 3rd Qu.:243185045 3rd Qu.:226189260 3rd Qu.:226189228
## Max. :999999999 Max. :999999999 Max. :266176829
## NA's :59 NA's :59

It has columns ninecode, gendam, and gensire. The first column cannot be NA and
is the unique identifier for an individual, whereas gendam and gensire are references
(foreign keys) to the known maternal and paternal link, respectively. Both of these
columns have 59 NAs. In fact, these NAs overlap completely since they are the founder
population with no defined paternal or maternal link:

d.ped[is.na(d.ped$gendam), "gensire"]

## [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [51] NA NA NA NA NA NA NA NA NA

We see that gensire is NA for all instances where gendam is also NA. This is the
founder population with no defined parental linkage.

d.Q
This table has the columns g1, foc0 and ninecode (ID).

45
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head(d.Q)

## foc0 g1 ninecode
## 1 1 0 109137407
## 2 1 0 109137408
## 3 1 0 109137418
## 4 1 0 109137420
## 5 1 0 109137421
## 6 1 0 109137425

Considering only the first results, it might seem like foc0 and g1 are binary/cat-
egorical variables, but plotting the values across indices show that the order of the
rows are structured so that they start at 1 and 0 respectively.

par(mfrow = c(1, 2))
plot(d.Q$g1, main = "g1")
plot(d.Q$foc0, main = "foc0")
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We can also look at the correlation between these two values

cor(d.Q$foc0, d.Q$g1)

## [1] -1

Hence, we have a very strong negative correlation here. We can also look at the
individuals whose ID were in the founder population:
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founder_population.id <- d.ped[is.na(d.ped$gendam), "ninecode"]
table(d.Q[which(d.Q$ninecode %in% founder_population.id),

c("foc0", "g1")])

## g1
## foc0 0 1
## 0 0 33
## 1 26 0

The values seem to be relatively balanced between 0 and 1 in the founder population.
This supports the idea that they measure the immigration contribution to the genetic
composition of the individuals. All immigrant individuals are completely immigrant,
have no pedigree and are thus part of the founder population. The latter are those
who are the “initial” natives on the island, meaning that their values must be exactly
zero.

ped.prune
This is a pruned pedigree, only considering the 1993-2018 observations but also
combining the knowledge of the 1975-1992 observations into them.

qg.data.gg.ind
This object has the following shape:

head(qg.data.gg.inds)

## ninecode natalyr sex.use nestrec surv.ind.to.ad brood.date sex.use.x1
## 1 111111112 2012 0 3086 0 120 1
## 2 111111121 2015 0 3237 0 141 1
## 3 143173366 1993 1 1838 1 96 1
## 4 143173381 1993 2 1867 1 102 2
## 5 143173382 1993 1 1867 0 102 1
## 6 143173384 1993 1 1851 0 102 1
## f.coef foc0 g1 natalyr.no sex
## 1 0.11155218 0.4085679 0.5914321 38 0
## 2 0.04814660 0.3299752 0.6700248 41 0
## 3 0.05108643 0.5283203 0.4716797 19 0
## 4 0.03125000 0.6250000 0.3750000 19 1
## 5 0.03417969 0.4335938 0.5664062 19 0
## 6 0.02148438 0.6328125 0.3671875 19 0

The response variable we will use is surv.ind.to.ad. Below are some elementary
properties of the data.

## [1] "Earliest year: 1993"

## [1] "Number not survived: 1817" "Number survived: 661"

## [1] "natal year correlation: 1"
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## [1] "correlation between sex and sex.x1: 0.842997540673555"

An overview of the columns:
• ninecode: Individual ID
• natalyr : The year the individual was born, e.g. 2015.
• sex.use: Not in use
• nestrec: ID for nest number
• brood.date: Day of the year when the first offspring in individuals nest hatched
• sex.use.x1 : Sex of individual, 1 or 2
• f.coef : Inbreeding coefficient
• foc0 : “How foreign” individual is, related to f.coef
• g1 : Inverse of foc0.
• natalyr.no: The same as the natal year, starting with 1974 as 0 (2015=41).

Vizualization of juvenile survival
We will have a look at how the response, juvenile survival, relates to the other covariates
in our data.

First, we look at sex:

## Warning: package 'ggplot2' was built under R version 4.2.2

0

500

1000

1500

0 1
Survival

co
un

t Sex

Male

Female

Distribution of juvenile survival to adulthood

It seems like the sex in relation to survival is relatively balanced here. We can note
that it seems like a larger portion of those surviving are females. Next, we examine
the breeding coefficient.
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Here we see that survival is a bit more skewed toward lower inbreeding coefficients.
We may also plot the proportion of individuals who survived over each year:

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0.0

0.2

0.4

0.6

1993 1997 2001 2005 2009 2013 2017
Year

P
or

tio
n 

su
rv

iv
ed

Portion of juvenile survival by year

There seems to be very little trending over the years, but possibly a small negative
trend. We also examine if there is some correspondence between genetic group coefficient
(g1) and juvenile survival.
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This shows a similar result to the inbreeding coefficient, namely a skew towards
the right (lower values of coefficient) in the group that survived. Finally, we plot the
survival probability based on brood date:

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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This last plot seems to indicate that survival is relatively stable and somewhat
decreasing for those hatched relatively late. For the largest values of brood date, we
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get an increasing trend but also much uncertainty since not that many were hatched
this late.



Appendix C

Patching rbv

How the bug arises
The function rbv generates random breeding values based on a pedigree. The pedigree
must either be a data frame with columns id, dam, sire, or a phylo object. The issue
arises when using GeneticsPed to generate the pedigree since this returns a multi-class
object rather than just one single object.

Minimal viable product to reproduce issue

library(GeneticsPed)

## Warning: package 'GeneticsPed' was built under R version 4.2.2

## Loading required package: MASS

##
## Attaching package: 'GeneticsPed'

## The following object is masked from 'package:stats':
##
## family

library(MCMCglmm)

## Loading required package: Matrix

## Warning: package 'Matrix' was built under R version 4.2.2

## Loading required package: coda

## Warning: package 'coda' was built under R version 4.2.2

## Loading required package: ape

## Warning: package 'ape' was built under R version 4.2.2

52
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ped0 <- generatePedigree(nId = 100, nGeneration = 9,
nFather = 50, nMother = 50)

pedigree <- ped0[ , c(1,3,2)]
names(pedigree) <- c("id", "dam", "sire")
attr(pedigree, "class") # Contains 2 classes

## [1] "Pedigree" "data.frame"

Trying to use rbv will end in an error

u <- rbv(pedigree, 0.4)

The error code is

Error in if (attr(pedigree, "class") == "phylo") { :
the condition has length > 1

Patching the issue
The only line required to change is in rbv.R, and is the fifth line. Simply change it
from

if(attr(pedigree, "class")=="phylo"){ped=FALSE}

and change it to:

if(any(attr(pedigree, "class")=="phylo)){ped=FALSE}

Then, rebuild the modified package. A patched tarball file is available on Github
here.

https://github.com/frederni/TMA4900-MasterThesis/blob/main/MCMCglmm-rbv-patch.tar.gz


Appendix D

R script

R code acknowledgements
The application dataset and a large portion of data preprocessing is provided by Jane
Reid. The re-implementation into INLA is also largely based on the work from Stefanie
Muff.

Data loading
We start by installing and importing required packages.

req.packages <- c("BiocManager", "ggplot2", "latex2exp", "nadiv",
"QGglmm", "cowplot", "reshape2", "showtext")

to.install <- req.packages[
is.na(match(req.packages, installed.packages()[,1]))
]

if(length(to.install) > 0L){
install.packages(to.install)

}
for(pack in req.packages){

suppressPackageStartupMessages(
library(pack,character.only = TRUE, quietly = TRUE))

}

if (!require("GeneticsPed", quietly = TRUE)) {
BiocManager::install("GeneticsPed")

}
if (!require("MCMCglmm", quietly = TRUE)) {

# rbv patch
install.packages("../MCMCglmm-rbv-patch.tar.gz")

}
if (!require("INLA", quietly = TRUE)) {

install.packages(
"INLA", repos=c(getOption("repos"),

INLA="https://inla.r-inla-download.org/R/stable"),

54
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dep=TRUE)

}
library(MCMCglmm)
library(MASS)
library(bdsmatrix)
library(INLA)

library(GeneticsPed) #

# Plotting libraries and settings

library(grid)
texfont <- "CMU Serif"
showtext_auto()
font.paths(file.path(

Sys.getenv("LOCALAPPDATA"), "Microsoft",
"Windows", "Fonts"

))
font_add(texfont, regular = "cmunrm.ttf")
theme_set(theme_bw() + theme(text = element_text(family = texfont,

size = 20)))

# Dataset import
qg.data.gg.inds <- read.table("../data/qg.data.gg.inds.steffi.txt",

header = TRUE
)
d.ped <- read.table("../data/ped.prune.inds.steffi.txt",

header = TRUE
)
d.Q <- read.table("../data/Q.data.steffi.txt", header = TRUE)

qg.data.gg.inds$natalyr.id <- qg.data.gg.inds$natalyr.no

Some global settings:

SAVE.PLOT <- TRUE
n.samples <- 10000
# iid N(0,1) noise in songsparrow formula:
FORMULA.EXTRA.IID.NOISE <- FALSE

Below we do a couple more preprocessing steps, namely:
• build a pedigree structure from the denormalized table with prepPed.
• assign new IDs to each individual starting at 1.
• keep a mapping record between the original IDs (ninecode) and the new 1-indexed

IDs.
• use this mapping to transform the IDs for each individual’s Dam and Sire to the

same.
• compute the inverse of the relatedness matrix.
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# Scale the continuous variances for stability
qg.data.gg.inds$f.coef.sc <- scale(qg.data.gg.inds$f.coef,

scale = FALSE)
qg.data.gg.inds$g1.sc <- scale(qg.data.gg.inds$g1,

scale = FALSE)
qg.data.gg.inds$natalyr.no.sc <- scale(qg.data.gg.inds$natalyr.no,

scale = FALSE)
qg.data.gg.inds$brood.date.sc <- scale(qg.data.gg.inds$brood.date,

scale = FALSE)

# Binarize `sex` covariate
qg.data.gg.inds$sex <- qg.data.gg.inds$sex.use.x1 - 1

Deriving A
For INLA we need IDs that run from 1 to the number of individuals

d.ped <- nadiv::prepPed(d.ped)
d.ped$id <- seq_len(nrow(d.ped))

# Maps to keep track of the Ninecode to ID relations
d.map <- d.ped[, c("ninecode", "id")]
d.map$g1 <- d.Q[match(d.map$ninecode, d.Q$ninecode), "g1"]
d.map$foc0 <- d.Q[match(d.map$ninecode, d.Q$ninecode), "foc0"]

# Give mother and father the id
d.ped$mother.id <- d.map[match(d.ped$gendam, d.map$ninecode), "id"]
d.ped$father.id <- d.map[match(d.ped$gensire, d.map$ninecode), "id"]

# A can finally be constructed using `nadiv`
Cmatrix <- nadiv::makeAinv(

d.ped[, c("id", "mother.id", "father.id")])$Ainv

# Stores ID twice (to allow for extra IID random effect)

qg.data.gg.inds$id <- d.map[
match(qg.data.gg.inds$ninecode, d.map$ninecode),
"id"

]
qg.data.gg.inds$u <- seq_len(nrow(qg.data.gg.inds))

INLA
The general INLA formula is provided below, where f() encode the random effect:

formula.inla.scaled <- surv.ind.to.ad ~ f.coef.sc + g1.sc +
natalyr.no.sc + brood.date.sc + sex +
f(nestrec, model = "iid", hyper = list(

prec = list(
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initial = log(1 / 0.05),
prior = "pc.prec",
param = c(1, 0.05)

) # PC priors
)) +
f(natalyr.id, model = "iid", hyper = list(

prec = list(
initial = log(1 / 0.25),
prior = "pc.prec",
param = c(1, 0.05)

) # PC priors
)) +
f(id,

model = "generic0", # Here we need to specify the covariance matrix
Cmatrix = Cmatrix, # via the inverse (Cmatrix)
constr = FALSE,
hyper = list(

prec = list(initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05))

) # PC priors
)

if (FORMULA.EXTRA.IID.NOISE) {
formula.inla.scaled <- update(

formula.inla.scaled,
~ . + f(u,

model = "iid", constr = TRUE,
hyper = list(prec = list(

initial = log(1),
fixed = TRUE

))
)

)
}

Now we call INLA models. Note that we pass some control arguments to the function
call. We compute DIC (Deviance information criterion) for all models with dic flag in
control.compute. For the binomial models, we want to be able to use QGglmm and
average over all fixed effects. This is done by supplying the latent marginal predicted
values, which are not computed unless you pass the return.marginals.predictor
flag set to true. We also want to set the CPO flag to true in the Gaussian model, so we
can look a bit at its “residuals” (PIT values). Lastly, the control.family argument
is used to pass the link functions for binomial models.

fit.inla.probit <- inla(
formula = formula.inla.scaled, family = "binomial",
data = qg.data.gg.inds,
control.compute = list(dic = TRUE,

return.marginals.predictor = TRUE),
control.family = list(link = "probit"),

)
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fit.inla.gaussian <- inla(
formula = formula.inla.scaled, family = "gaussian",
data = qg.data.gg.inds,
control.compute = list(dic = TRUE, cpo = TRUE)

)

data.frame(
Gaussian = fit.inla.gaussian$dic$dic,
Probit = fit.inla.probit$dic$dic,
row.names = "Deviance Information Criteria"

)

Latent heritability
Below is a function to get h2

obs, h2
lat and h2

Φ based on a fitted model.

get.h2 <- function(inla.fit, n, use.scale = FALSE, model = NA,
include.fixed = FALSE) {

#' Get heritability
#'
#' Get n samples of heritability (hˆ2) from INLA object
#' @param inla.fit fitted model
#' @param n number of samples
#' @param use.scale flag for adding link variance to denominator
#' @param model string representation of model type
#' @param include.fixed flag for including fixed effects variance
#' @return n-sized vector of heritability samples
samples <- inla.hyperpar.sample(n = n, inla.fit)
denominator <- 0
for (cname in colnames(samples)) {

denominator <- denominator + 1 / samples[, cname]
}
if (include.fixed) {

# Grab variance from summary object in INLA fit
denominator <- denominator + sum(inla.fit$summary.fixed[, "sd"]ˆ2)

}

if (use.scale) {
scales.dictionary <- list(

binom1.probit = 1, binom1.logit = piˆ2 / 3,
round = 0.25

)
scale.param <- get(model, scales.dictionary)
denominator <- denominator + scale.param

}

h2.inla <- (1 / samples[, "Precision for id"]) / denominator
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return(h2.inla)
}

threshold.scaling.param <- function(p) {
# hˆ2_liab = threshold.scaling.param * hˆ2_obs
p * (1 - p) / (dnorm(qnorm(p)))ˆ2

}

Simulation data
We implement a general simulation method that, based on the passed arguments,
generates simulation data and fits animal models onto the dichotomized response.

simulated.heritability <- function(NeNc = 0.5, idgen = 100, nGen = 9,
sigmaA = 0.8, linear.predictor = NA,
simulated.formula = NA,
dichotomize = "round",
pc.prior = NA, probit.model = FALSE,
simulated.formula.probit = NA,
DIC = FALSE) {

#' Simulate and fit animal model
#'
#' Generate pedigree, fit Gaussian (INLA) model and provide
#' heritability estimate.
#' @param NeNc Effective/Census population mean, used to determine
#' number of fathers and mothers per generation,
#' @param idgen Number of individuals per generation in pedigree
#' @param nGen Number of generations in pedigree
#' @param sigmaA: Additive genetic variance
#' @param linear.predictor Callable function of two parameters, the
#' first 'u' (breeding values), the second for the data
#' @param simulated.formula Formula expression using the response
#' name `simulated.response`, param `id` and `Cmatrix`, both of
#' which are defined locally in this method.
#' @param dichotomize Dichotomization method (round, binomial, etc)
#' @param pc.prior (optional) parameters for PC prior
#' @param probit.model (optional) flag to fit binomial probit model
#' in addition to the Gaussian model.
#' @param simulated.formula.probit (opt) Formula for probit model
#' @param DIC (optional) Flag for computing DIC for the models
#'
#' @return A list with the following items:
#' heritability: Posterior latent heritability samples
#' summary: List of mean, standard deviation and quantiles of hˆ2
#' p: Portion of `TRUE` observations in simulated response
#' simulated.response: The observed values in simulation dataset
#' fit: Gaussian fitted model
#' fit.probit: Probit fitted model, if `probit.model=F`, is `NULL`.
ped0 <- generatePedigree(
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nId = idgen, nGeneration = nGen,
nFather = idgen * NeNc, nMother = idgen * NeNc

)
# Set correct format for pedigree
pedigree <- ped0[, c(1, 3, 2, 5)]
names(pedigree) <- c("id", "dam", "sire", "sex")

# Generate random breeding values
# The following will CRASH if you don't
# use the patched MCMCglmm package!
u <- rbv(pedigree[, c(1, 2, 3)], sigmaA)

simulated.d.ped <- nadiv::prepPed(pedigree, gender = "sex")
# Binarize from (1,2) to (0,1)
simulated.d.ped$sex <- simulated.d.ped$sex - 1
simulated.Cmatrix <- nadiv::makeAinv(pedigree[, c(1, 2, 3)])$Ainv
# Make index to allow iid noise random effect
simulated.d.ped$ind <- seq_len(nrow(simulated.d.ped))

# Generating "true" y_i

if (dichotomize == "binom1.logit") {
simulated.response <- rbinom(length(u),

size = 1,
prob = pnorm(linear.predictor(u, simulated.d.ped))

)
} else if (dichotomize == "round") {

# This assumes mean of \eta_i is 0
simulated.response <- ifelse(

linear.predictor(u, simulated.d.ped) <= 0, 0, 1
)

} else if (dichotomize == "round_balanced") {
# Get balanced residuals for unbalanced linear predictor
cutoff <- mean(linear.predictor(u, simulated.d.ped))
simulated.response <- ifelse(

linear.predictor(u, simulated.d.ped) <= cutoff, 0, 1
)

} else if (is.numeric(dichotomize)) {
stopifnot(dichotomize >= 0 & dichotomize <= 1)
eta_values <- linear.predictor(u, simulated.d.ped)
cutoff <- quantile(eta_values, 1 - dichotomize)
# e.g. dichotomize=0.1, p should be about 0.1
simulated.response <- ifelse(eta_values <= cutoff, 0, 1)

} else {
stop(paste0(

"Unknown dichotomization method '", dichotomize, "'. ",
"Consider using 'binom1.logit' or 'round'."

))
}
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p <- mean(simulated.response) # portion of true responses

# Model fitting LMM for binary trait
# First reload formula environment to access local variables
environment(simulated.formula) <- environment()
environment(simulated.formula.probit) <- environment()

simulated.fit.inla <- inla(
formula = simulated.formula, family = "gaussian",
data = simulated.d.ped, control.compute = list(dic = DIC)

)

# Checks for error status in INLA fit,
if (simulated.fit.inla$mode$mode.status != 0) {

cat("\n[WARNING], INLA status",
simulated.fit.inla$mode$mode.status, "\n")

}
heritability <- get.h2(simulated.fit.inla, 10000)

# Also fit probit if specified
if (probit.model) {

fit.probit <- inla(
formula = simulated.formula.probit, family = "binomial",
data = simulated.d.ped,
control.compute = list(return.marginals.predictor = TRUE,

dic = DIC)
)

} else {
fit.probit <- NULL

}
list(

heritability = heritability,
summary = list(

mean = mean(heritability),
standard.deviation = sd(heritability),
quantiles = quantile(heritability, probs = c(0.025, 0.5, 0.975))

),
p = p,
simulated.response = simulated.response,
fit = simulated.fit.inla,
fit.probit = fit.probit

)
}

Now we try to run it through the model pipeline. Here we try ηi = ui + ei (extra
iid effect) and yi = ui + εi.
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simulated.formula <- simulated.response ~ f(id,
model = "generic0",
Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(

prec = list(initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05))

))
simulated.formula.probit <- simulated.response ~ f(id,

model = "generic0",
Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(

prec = list(initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05))

)) + f(ind, model="iid", hyper=list(prec=list(
prior="pc.prec", param=c(1,0.05))))

get.simulated.threshold.value <- function(
NeNc, idgen, nGen, sigmaA, linear.predictor, simulated.formula,
Vp = NA) {

#' Get hˆ2 statistics from simulation
#'
#' Makes a dataframe showing observation hˆ2 and
#' liability hˆ2 with 95% confidence interval. Most parameters are
#' for generating pedigree and not covered in this docstring.
#' @param Vp Total phenotypic variance, used to get "true" hˆ2
#' @return A dataframe with said statistics
stopifnot("Vp required to get true hˆ2" = !is.na(Vp))
sim.result <- simulated.heritability(

NeNc, idgen, nGen, sigmaA,
linear.predictor, simulated.formula

)
threshold.scaled.h2 <- threshold.scaling.param(sim.result$p) *

sim.result$heritability
simulation.h2.true <- sigmaA / (Vp)

data.frame(
Simulation = c(

simulation.h2.true, mean(threshold.scaled.h2),
paste0("(", paste(format(

quantile(threshold.scaled.h2, probs = c(0.025, 0.975)),
digits = 4

), collapse = ", "), ")"),
mean(sim.result$summary$mean)

),
row.names = c(

"True hˆ2", "Estimated hˆ2_obs, mean",
"95% Confidence interval", "Estimated latent mean"
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)
)

}

get.simulated.threshold.value(
NeNc = 0.5, idgen = 100, nGen = 9, sigmaA = 0.05,
function(u, .) {

u + rnorm(length(u))
},
simulated.formula,
Vp = 0.05 + 1

)

Further, we quantitatively look into estimates for different σ2
A:

Performance over varying VA

plot.h2.deviation <- function(
dichotomize = "round",
title = "Simulation heritability",
SAVE.PLOT = TRUE, plot.fn = NA, sigma.scale = "log",
lin.pred = NULL,
dynamic.priors = FALSE, simulated.formula = NULL, Ve = NULL,
fixedeffects = FALSE) {

#' Plot hˆ2 estimate, alongside true value, for a series of V_A
#'
#' For each V_A, generate simulation and fit a Gaussian model.
#' Then, plot the obtained hˆ2 for observation and liability scale,
#' alongside the true value.
#' @param dichotomize Dichotomization method, used for simulation
#' @param title ggplot legend title used as title for all (sub)plots
#' @param SAVE.PLOT flag for saving plot to disk
#' @param plot.fn (optional) String to add to the end of the
#' filename, before file extension, when saving the plot.
#' @param sigma.scale either "log" or "small", deciding what values,
#' and the spacing between values of V_A to be iterated over.
#' @param lin.pred linear predictor for simulation
#' @param dynamic.priors Flag for changing model priors based on V_A
#' @param simulated.formula Formula for simulatin
#' @param Ve Residual variance, or fixed effects variance
#' for that model
#' @param fixedeffects Flag to determine if model has fixed effects
#' @return List with item "p" for the ggplot object.

if (sigma.scale == "log") {
sigmaA.list <- c(1:10 %o% 10ˆ(-3:3)) # Log scale[10ˆ-3, 10ˆ3]

} else if (sigma.scale == "small") { # Linear scale [10ˆ-3, 0.259]
sigmaA.list <- seq(0.001, 0.26, by = 0.01)

} else {
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stop("Unrecognized scale for sigmaA.")
}
pc.U.list <- c(rep(10, 10) %o% 10ˆ(-3:3))
# pc.U.list <- 2*sigmaA.list # Alternative dynamic prior

estimates <- c()
latent <- c()
true.vals <- c()
est.CI.u <- c()
est.CI.l <- c()
plist <- c()
iter.num <- 0
Ve0 <- Ve
for (sigmaA in sigmaA.list) {

cat(">")
if (dynamic.priors) {

iter.num <- iter.num + 1
if (sigmaA < 1) {

pc.prior <- c(1, 0.05)
} else {

pc.prior <- c(pc.U.list[iter.num], 0.05)
}

} else {
pc.prior <- c(1, 0.05)

}
if (is.null(simulated.formula)) { # Defaults eta = a_i + e

simulated.formula <- simulated.response ~ f(id,
model = "generic0",
Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(

prec = list(initial = log(sigmaA), prior = "pc.prec",
param = pc.prior)

)
)

}
if (is.null(lin.pred)) { # The 'usual' linear predictor

lin.pred <- function(u, .) u + rnorm(length(u))
}
result <- simulated.heritability(

NeNc = 0.5, idgen = 100, nGen = 9, sigmaA = sigmaA,
linear.predictor = lin.pred,
simulated.formula = simulated.formula,
dichotomize = dichotomize,
pc.prior = pc.prior

)

if (is.null(Ve)) {
# Fallback residual variance
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Ve <- 1
}
if (fixedeffects) {

# betaˆ2 * Var(x_fixedeffect):
Ve <- Ve * var(result$simulated.response)
posterior <- get.h2(result$fit, 10000, include.fixed = TRUE)

} else {
posterior <- result$heritability

}

simulation.h2.true <- sigmaA / (sigmaA + Ve)

latent <- c(latent, mean(posterior)) # Observatoin-level
threshold.scaled.h2 <- threshold.scaling.param(result$p)*posterior

true.vals <- c(true.vals, simulation.h2.true)
estimates.CI <- quantile(threshold.scaled.h2,

probs = c(0.025, 0.975))
estimates <- c(estimates, mean(threshold.scaled.h2))
est.CI.l <- c(est.CI.l, estimates.CI[1])
est.CI.u <- c(est.CI.u, estimates.CI[2])
plist <- c(plist, result$p)
# Reset Ve
Ve <- Ve0

}
res <- data.frame(

estimates = estimates,
true.vals = true.vals, latent = latent,
est.CI.l = est.CI.l, est.CI.u = est.CI.u,
sigmaA = sigmaA.list,
plist = plist

)
# Plotting
p <- ggplot(data = res, aes(x = sigmaA)) +

geom_ribbon(aes(ymin = est.CI.l, ymax = est.CI.u), alpha = 0.1) +
geom_line(aes(y = true.vals, color = "atrue"), size = 1.5) +
geom_line(aes(y = estimates, color = "bliab"), size = 1.5) +
geom_line(aes(y = latent, color = "obs"), size = 1.5) +
xlab(TeX("$\\sigma_Aˆ2$")) +
ylab(TeX("$hˆ2$")) +
scale_x_log10() +
scale_color_manual(

name = title,
values = c(

"atrue" = "darkred", "bliab" = "steelblue",
"obs" = "chartreuse3"

),
labels = c(

expression("True " * h["liab"]ˆ2),
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expression("Fitted " * h["liab"]ˆ2),
expression("Fitted " * h["obs"]ˆ2)

)
) +
theme(text = element_text(size = 18), legend.text.align = 0)

if (SAVE.PLOT) {
ggsave(

paste0(
"../figures/simulation_deviance_",
if (!is.na(plot.fn)) plot.fn, ".pdf"

), p + theme(legend.position = "none"),
width = 20, height = 20,
units = "cm"

)
# Save legend as separate plot
p.legend <- cowplot::get_legend(p)
pdf(paste0(

"../figures/simulation_deviance",
if (fixedeffects) "_fixedeffects", "_legend.pdf"

), width = 7.87402, height = 7.87402)
grid.newpage()
grid.draw(p.legend)
dev.off()

}
return(list(p = p))

}

We also implement a method to average over several runs, reducing stochasticity.
This should be ran on a remote node rather than locally, as just one run takes several
minutes.

multiple.h2.dev <- function(sigma.scale, ntimes,
title = "Simulation heritability", ...){

#' Run plot_h2_deviation `ntimes`
#'
#' Repeats the runs several times, and outputs error plot with
#' mean +- SD
#' @param sigma.scale Sigma values to test, either 'log' or 'small'
#' @param ntimes Number of repeated runs
#' @param title Legend title, charcter
#' @param ... Additional parameters for plot_h2_deviation
#' @return Dataframe with all info to plot the errorplots

if (sigma.scale == "log") {
sigmaA.list <- c(1:10 %o% 10ˆ(-3:3))

} else if (sigma.scale == "small") {
sigmaA.list <- seq(0.001, 0.26, by = 0.01)

} else {
stop("Unrecognized scale for sigmaA.")

}
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n.sigma <- length(sigmaA.list)
# Initialize containers: each col is one run
all.h2obs <- matrix(ncol = ntimes, nrow = n.sigma)
all.h2liab <- matrix(ncol = ntimes, nrow = n.sigma)
all.truevals <- matrix(ncol = ntimes, nrow = n.sigma)
for(i in 1:ntimes){

cat(paste0("\n [Run ", i ,"/", ntimes, "]\n"))
res <- plot.h2.deviation(SAVE.PLOT = FALSE,

sigma.scale = sigma.scale, ...)
cat("Latent:", res$p$data$latent)
all.h2obs[, i] <- res$p$data$latent
all.h2liab[, i] <- res$p$data$estimate
all.truevals[, i] <- res$p$data$true.vals

}
plot.data <- data.frame(

model = rep(c("h2obs", "h2liab", "true"),
each = n.sigma, times = 2),

top = c(rowMeans(all.h2obs) + apply(all.h2obs, 1, sd),
rowMeans(all.h2liab) + apply(all.h2liab, 1, sd),
rowMeans(all.truevals) + apply(all.truevals, 1, sd)

),
mid = c(rowMeans(all.h2obs), rowMeans(all.h2liab),

rowMeans(all.truevals)
),
btm = c(rowMeans(all.h2obs) - apply(all.h2obs, 1, sd),

rowMeans(all.h2liab) - apply(all.h2liab, 1, sd),
rowMeans(all.truevals) - apply(all.truevals, 1, sd)

),
xax = rep(sigmaA.list, times=3)

)
return(plot.data)

}

We test out a single run over several values below.

### Plots for sigmaA in (10ˆ-3, 10ˆ3)

simulation.res <- plot.h2.deviation(
plot.fn = "round",
SAVE.PLOT = TRUE, dynamic.priors = TRUE

)
simulation.res$p

### Plot for small values og sigmaA, but finer grid
simulation2.res <- plot.h2.deviation(

SAVE.PLOT = TRUE, sigma.scale = "small",
plot.fn = "small", dynamic.priors = TRUE

)
simulation2.res$p
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### Standard plotting with different dichotomization techniques
plot.h2.deviation(

dichotomize = "binom1.logit",
title = "Simulation heritability",
plot.fn = "binom", dynamic.priors = TRUE

)

If multiple runs have been done on remote server, loads and plots the results here,

# Multiple hˆ2 deviation plotter
markov.plotter <- function(df, legend.name=""){

ggplot(df, aes(x=xax)) +
geom_pointrange(aes(ymax=top, ymin=btm, y=mid, color=model)) +
geom_line(aes(y=mid, color=model)) +
xlab(TeX("$\\sigma_Aˆ2$")) +
ylab(TeX("$hˆ2$")) +
scale_x_log10() +
scale_color_manual(

name = legend.name,
values = c(

"true" = "darkred", "h2liab" = "steelblue",
"h2obs" = "chartreuse3"

),
labels = c(

expression("Fitted " * h["liab"]ˆ2),
expression("Fitted " * h["obs"]ˆ2),
expression("True " * h["liab"]ˆ2)

)
) +
theme(text = element_text(size = 18), legend.position = "none")

}
load("markovh2dev_50_runs.Rdata")
mp1 <- markov.plotter(markov.result1)
mp2 <- markov.plotter(markov.result2)
mp3 <- markov.plotter(markov.result3,

legend.name="Simulation heritability")
ggsave("../figures/simulation_deviance_round.pdf", mp1)
ggsave("../figures/simulation_deviance_small.pdf", mp2)
ggsave("../figures/simulation_deviance_binom.pdf", mp3)
# Store legend separately
mp3.legend <- cowplot::get_legend(

mp3 +theme(legend.position = "right", legend.text.align = 0))
pdf("../figures/simulation_deviance_legend.pdf",

width = 7.87402, height = 7.87402)
grid.newpage()
grid.draw(mp3.legend)
dev.off()
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Without residual in linear predictor
We also check what happens if we rerun with ηi = ai, i.e. without residuals on
underlying scale. Similar results.

get.simulated.threshold.value(
0.5, 100, 9, 10, function(u, .) u,
simulated.formula, 10

)

Now we want to look into how A (the relatedness matrix) looks like.

plot.A.matrix <- function(pedigree, title.append = NULL) {
#' Plot histogram of relatedness from pedigree
#'
#' Compute relatedness matrix from pedigree and output
#' histogram of its off-diagonal values.
#' @param pedigree Pedigree dataframe/object
#' @param title.append (optional) extra text in plot title
#' @return ggplot object of histogram
A.matrix <- nadiv::makeA(pedigree)
A.diag <- diag(A.matrix)
A.nondiag <- A.matrix
diag(A.nondiag) <- NA
ggplot(data = data.frame(values = A.nondiag@x)) +

geom_histogram(aes(x = values, y = ..density..),
binwidth = 0.005) +

ylim(c(0, 9)) +
xlim(c(0, 0.4)) +
labs(

x = "Relatedness value", y = "Density",
title = paste0("Off-diagonal values", title.append)

)
}

# For the simulation data:
ped0 <- generatePedigree(

nId = 100, nGeneration = 24,
nFather = 0.5 * 100, nMother = 0.5 * 100

)
pedigree <- ped0[, c(1, 3, 2)]
names(pedigree) <- c("id", "dam", "sire")
simulated.d.ped <- nadiv::prepPed(pedigree)
plot.A.matrix(simulated.d.ped,

title.append = ", 24 generation simulation")
if (SAVE.PLOT) {

ggsave("../figures/relatedness-offdiagonal-sim.pdf",
width = 20, height = 20, units = "cm"

)
}
# Song sparrow data
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plot.A.matrix(d.ped[, c("id", "mother.id", "father.id")],
", Song sparrow data")

if (SAVE.PLOT) {
ggsave("../figures/relatedness-offdiagonal-songsparrow.pdf",

width = 20, height = 20, units = "cm"
)

}

Residual analyses on Gaussian model
• The first plot are the sorted PIT values over quantiles, analogous to a Q-Q plot

in frequentist data. It shows a clear non-linear trend but rather a sigmoid-like
curve.
• The second plot shows the PIT values across the different posterior fitted value

means. Here we expect no clear pattern for well-behaved models, which is not
the case in our model.
• The third plot is the residuals yi − ŷi with 95% credible interval. Here, we see a

clear separation of those

pit.g <- fit.inla.gaussian$cpo$pit # PIT-values

# <Plot 1> Analogous to QQ-plot so should be linear
# --------
ggplot(data = data.frame(

Quantiles = seq_along(1:length(pit.g)) / (length(pit.g) + 1),
PIT = sort(pit.g)

)) +
geom_point(aes(x = Quantiles, y = PIT)) +
ggtitle("Sorted PIT values for Gaussian model") +
theme(text = element_text(size = 14))

if (SAVE.PLOT) ggsave("../figures/PIT-sorted.pdf")

# <Plot 2> Posterior mean fitted values as a function of PIT values
# -------- analagous to "Residuals vs fitted"

ggplot(
cbind(fit.inla.gaussian$summary.fitted.values, pit.g),
aes(x = mean, y = pit.g)

) +
geom_point() +
geom_smooth() +
labs(

title = "PIT values over posterior mean fitted values",
x = "Posterior fitted values (mean)",
y = "PIT value"

) +
theme(text = element_text(size = 14))

if (SAVE.PLOT) ggsave("../figures/PIT-over-fitted.pdf")
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# <Plot 3> Plot of 'residuals', i.e. difference in true data and the
# -------- mean of the fitted values
df.resid <- qg.data.gg.inds$surv.ind.to.ad -

fit.inla.gaussian$summary.fitted.values
rownames(df.resid) <- seq_len(nrow(df.resid))
df.resid$class <- qg.data.gg.inds$surv.ind.to.ad

ggplot(
data = df.resid,
aes(

x = as.numeric(row.names(df.resid)),
y = mean, color = factor(class)

)
) +

geom_errorbar(aes(ymin = `0.025quant`, ymax = `0.975quant`),
color = "darkgrey"

) +
geom_point() +
scale_color_manual(

name = "Juvenile survival",
values = c("darkred", "steelblue")

) +
labs(title = "Residuals of Gaussian model", x = "Index",

y = "Residuals") + theme(text=element_text(size=14))
if (SAVE.PLOT) ggsave("../figures/Residuals-gaussian.pdf")

Transformations of heritability
Before developing methods for transformed heritability, we need to be able to sample
from the marginal fitted values on latent scale.

marginal.latent.mode <- function(fit) {
#' Helper function
#'
#' Get mode for each marginal linear predictor in `fit`
#' @param fit Fitted INLA object
#' @return vector of modes
modes <- c()
iter <- 1
for (predictor in names(fit$marginals.linear.predictor)) {

xy <- get(predictor, fit$marginals.linear.predictor)
modes[iter] <- xy[, "x"][which.max(xy[, "y"])]
iter <- iter + 1

}
modes

}
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marginal.latent.samples <- function(fit, nsamples) {
#' Sample values from each predictor in fit
#'
#' Rather than only using mode for each predictor, we use samples
#' from its posterior.
#' @param fit Fitted INLA object
#' @param nsamples Number of samples
#' @return A list of `nsamples` elements, with each element in the
#' list being a vector of the predictor size
#' (i.e., number of observations in data)
out.transpose <- matrix(

nrow = nsamples,
ncol = length(fit$marginals.linear.predictor)

)
for (i in seq_along(fit$marginals.linear.predictor)) {

xy <- get(
names(fit$marginals.linear.predictor)[i],
fit$marginals.linear.predictor

)
out.transpose[, i] <- inla.rmarginal(nsamples, xy)

}

# We want list where each list element is one sample (transposed)
out <- list()
for (i in 1:nsamples) {

out[[i]] <- out.transpose[i, ]
}
out

}

report.max.skewness <- function(posterior) {
#' Get skewness for all predictors
#'
#' Computes skewness and prints maximum and minimum skew with index
#' @param posterior list of predictors, assumed form [x, y]
#' @return None (invisible `NULL`)
library(e1071)
iter <- 1
posterior.skews <- c()
for (predictor in names(posterior)) {

posterior.skews[iter] <- skewness(get(
predictor, posterior)[, "x"])

iter <- iter + 1
}
cat(

"Minimum skew for list no.", which.min(posterior.skews),
"with skewness",

min(posterior.skews), "and max for list no.",
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which.max(posterior.skews),
"with skewness", max(posterior.skews), ".\n"

)
}

We can now define methods to obtain heritability on the different scales. The first
function computes h2 on latent scale, or using the direct transformation by including
link variance in denominator. The second method is more comprehensive and uses
the library QGglmm to obtain estimates on data scale. So far we’ve only used QGglmm
without averaging over fixed effects. This takes considerably more time to process, but
we still do that one time to compare the results. Then we compare the heritability on
four different scales
• Using 10k samples from the marginal linear predictor, and using this to average

over
• Grabbing the mode for each marginal linear predictor, and passing the mode for

each 10k sample
• No averaging, i.e. use intercept value instead.
• Use direct scaling method with link variance.

get.h2.from.qgparams <- function(inla.fit,
modelname,
n,
averaging = FALSE,
averaging.mode.only = FALSE) {

#' Get heritability using QGglmm::QGParams()
#'
#' Computes a posterior of data-scale heritability using QGParams
#' @param inla.fit Fitted INLA model
#' @param modelname string specifying model type
#' @param n Number of samples for posterior distribution
#' @param averaging Flag for averaging over fixed effects
#' @param averaging.mode.only Other flag to determine what helper
#' to call to.
#' @return List of n observation-scale heritabilities

stopifnot(modelname %in% c("Gaussian", "binom1.probit",
"binom1.logit"))

samples.posterior <- inla.hyperpar.sample(n = n, inla.fit)
vp.samples <- 0
for (cname in colnames(samples.posterior)) {

vp.samples <- vp.samples + 1 / samples.posterior[, cname]
}

if (!averaging) {
mu <- inla.fit$summary.fixed$mean[1] # Intercept
va.samples <- 1 / samples.posterior[, "Precision for id"]
kwargs <- list(verbose = FALSE)

h2.getter <- function(...) {
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get("h2.obs", suppressWarnings(QGparams(...)))
}
posterior <- mapply(h2.getter, mu, va.samples, vp.samples,

modelname, MoreArgs = kwargs
)
return(posterior)

} else {
# Average over fixed effects
vp.samples <- 0
df <- data.frame(

va = as.vector(1 / samples.posterior[, "Precision for id"]),
vp = as.vector(vp.samples)

)
if (!averaging.mode.only) {

# Bayesian approach
df$predict <- marginal.latent.samples(inla.fit, n)

posterior <- do.call("rbind", apply(df, 1, function(row) {
QGparams(

predict = row[["predict"]], var.a = row[["va"]],
var.p = row[["vp"]],
model = modelname, verbose = FALSE

)
}))

} else {
predict.argument <- marginal.latent.mode(inla.fit)
posterior <- do.call("rbind", apply(df, 1, function(row) {

QGparams(
predict = predict.argument, var.a = row[["va"]],
var.p = row[["vp"]],
model = modelname, verbose = FALSE

)
}))

}
return(posterior$h2.obs)

}
}

Compute the 3 different approaches with QGglmm (this is quite slow). We also
include time estimates here.

ti <- Sys.time()
h2.psi.sparrow <- data.frame(

bayesian =
get.h2.from.qgparams(fit.inla.probit, "binom1.probit",

n.samples,
averaging = TRUE,
averaging.mode.only = FALSE

)
)
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cat(
"\n-\nRuntime for Bayesian:",
difftime(Sys.time(), ti, units = "secs"), "secs.\n"

)
ti <- Sys.time()
h2.psi.sparrow$frequentist <- get.h2.from.qgparams(fit.inla.probit,

"binom1.probit",
n.samples,
averaging = TRUE,
averaging.mode.only = TRUE

)
cat(

"\n-\nRuntime for Frequentist:",
difftime(Sys.time(), ti, units = "secs"), "secs.\n"

)
ti <- Sys.time()
h2.psi.sparrow$noavg <- get.h2.from.qgparams(fit.inla.probit,

"binom1.probit",
n.samples,
averaging = FALSE

)
cat(

"\n-\nRuntime for No averaging:",
difftime(Sys.time(), ti, units = "secs"), "secs.\n"

)

We do the same for simulation data

# We store an instance of a gaussian and probit model with V_A = 1
tmp <- simulated.heritability(

sigmaA = 1, linear.predictor = function(u, .) u + rnorm(length(u)),
simulated.formula = simulated.formula,
probit.model = TRUE,
simulated.formula.probit = simulated.formula.probit

)
fit.sim.probit <- tmp$fit.probit

ti <- Sys.time()
h2.psi.sim1 <- data.frame(

bayesian =
get.h2.from.qgparams(fit.sim.probit, "binom1.probit",

n.samples,
averaging = TRUE,
averaging.mode.only = FALSE

)
)
cat(

"\n-\nRuntime for Bayesian:",
difftime(Sys.time(), ti, units = "secs"), ".\n"

)
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ti <- Sys.time()
h2.psi.sim1$frequentist <- get.h2.from.qgparams(fit.sim.probit,

"binom1.probit",
n.samples,
averaging = TRUE,
averaging.mode.only = TRUE

)
cat(

"\n-\nRuntime for Frequentist:",
difftime(Sys.time(), ti, units = "secs"), ".\n"

)
ti <- Sys.time()
h2.psi.sim1$noavg <- get.h2.from.qgparams(fit.sim.probit,

"binom1.probit",
n.samples,
averaging = FALSE

)
cat(

"\n-\nRuntime for No averaging:",
difftime(Sys.time(), ti, units = "secs"), ".\n"

)

# Also fit for smaller V_A, i.e. 0.1
tmp <- simulated.heritability(

sigmaA = 0.1,
linear.predictor = function(u, .) u + rnorm(length(u)),
simulated.formula = simulated.formula,
probit.model = TRUE,
simulated.formula.probit = simulated.formula.probit

)

fit.sim.probit <- tmp$fit.probit

h2.psi.sim2 <- data.frame(
bayesian =

get.h2.from.qgparams(fit.sim.probit, "binom1.probit",
n.samples,
averaging = TRUE,
averaging.mode.only = FALSE

)
)
h2.psi.sim2$frequentist <- get.h2.from.qgparams(fit.sim.probit,

"binom1.probit",
n.samples,
averaging = TRUE,
averaging.mode.only = TRUE

)
h2.psi.sim2$noavg <- get.h2.from.qgparams(fit.sim.probit,

"binom1.probit",
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n.samples,
averaging = FALSE

)

plot.qgglmm.heritability <- function(h2.psi, dataset, SAVE.PLOT,
plot.title = NA,
fn.append = NULL) {

#' Plot heriability density
#'
#' Compares posterior heritability using different transformations
#' @param h2.psi Dataframe of n rows and a column for each
#' back-transformation technique
#' (bayesian, frequentist, no averaging, phi).
#' @param dataset Either 'application' or 'simulation' specifying
#' which dataset is used
#' @param SAVE.PLOT Flag to store plot to disk
#' @param plot.title (optional) title for plot. No title if unused.
#' @param fn.append (optional) string to append to filename
#' @return ggplot object
color.map <- c(application = "Dark2", simulation = "Spectral")
stopifnot(dataset %in% names(color.map))
p <- ggplot(data = melt(h2.psi)) +

geom_density(aes(x = value, fill = variable), alpha = 0.5) +
scale_fill_brewer(

palette = color.map[dataset],
labels = c(

expression(h[Psi]ˆ2 * ", Bayesian"),
expression(h[Psi]ˆ2 * ", Frequentist"),
expression(h[Psi]ˆ2 * ", No averaging")

)
) +
ylab("Density") +
xlab("Heritability") +
theme(legend.text.align = 0, legend.title = element_blank()) +
{

if (!is.na(plot.title)) ggtitle(plot.title)
} +
{

if (dataset == "simulation") xlim(c(0,quantile(
melt(h2.psi)$value,0.99)))

}

if (SAVE.PLOT) {
set_null_device(cairo_pdf)
p.legend <- cowplot::get_legend(p)
pdf(paste0("../figures/qgglmm-comparison-", dataset,

"-legend.pdf"),
width = 3, height = 3

)



Chapter D: R script 78

grid.newpage()
grid.draw(p.legend)
dev.off()
ggsave(

paste0(
"../figures/qgglmm-comparison-",
dataset, fn.append, ".pdf"

),
p + if (dataset == "simulation") theme(legend.position = "none"),
width = 20, height = 10, units = "cm"

)
}
p

}

plot.qgglmm.heritability(h2.psi.sparrow, "application",
SAVE.PLOT,
plot.title = NA

)
plot.qgglmm.heritability(h2.psi.sim1, "simulation",

SAVE.PLOT,
plot.title = NA,
fn.append = "va1"

)
plot.qgglmm.heritability(h2.psi.sim2, "simulation",

SAVE.PLOT,
plot.title = NA,
fn.append = "va0.1"

)

Compare different scales
First, we fit the simulation probit model and get simulation-based heritability on all
scales. Now we compute the heritability on the different scales - for song sparrow data.
First we make a function to help us obtain all heritability scales in a dataframe.

get.all.heritabilities <- function(fit.gaussian, fit.probit, p, n,
fixed = FALSE) {

#' Get hˆ2 for all scales
#'
#' For a Gaussian and probit fit, computes heritability on all scales
#' @param fit.gaussian Fitted Gaussian model
#' @param fit.probit Fitted Probit model
#' @param p Phenotypic mean for the data, used in threshold formula
#' @param n Number of samples
#' @param fixed Flag for including fixed effects variance
#' @return Dataframe of `n` rows with columns 'gaussian',
#' 'guassian.liability', 'probit.latent', 'probit.scaled',
#' 'probit.qgglmm'
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out <- data.frame(gaussian = get.h2(fit.gaussian, n,
include.fixed = fixed))

out$gaussian.liability <- threshold.scaling.param(p) * out$gaussian
out$probit.latent <- get.h2(fit.probit, n, include.fixed = fixed)
out$probit.scaled <- get.h2(fit.probit, n,

model = "binom1.probit",
use.scale = TRUE, include.fixed = fixed

)
out$probit.qgglmm <- get.h2.from.qgparams(fit.probit,

"binom1.probit", n,
averaging = TRUE

)
out

}

# Application data
heritability <- get.all.heritabilities(

fit.inla.gaussian, fit.inla.probit,
mean(qg.data.gg.inds$surv.ind.to.ad),
n.samples,
fixed = FALSE

)

simulation.res2 <- simulated.heritability(0.5, 100, 9,
sigmaA = 0.5,
linear.predictor = function(u, .) u + rnorm(length(u)),
simulated.formula = simulated.formula,
probit.model = TRUE, DIC = TRUE,
simulated.formula.probit = simulated.formula.probit

)
heritability.sim <- get.all.heritabilities(

simulation.res2$fit, simulation.res2$fit.probit,
simulation.res2$p, n.samples,
fixed = FALSE

)

Method to export heritability estimates in a TeX table

get.mode <- function(vec) {
#' General helper to get mode of a vector
d <- density(vec)
d$x[which.max(d$y)]

}

print.one.metric <- function(fit, param, digits) {
#' Helper for heritability table, rounding estiamtes
paste(

round(mean(get(param, fit)), digits), " & ",
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round(get.mode(get(param, fit)), digits), " & ",
round(sd(get(param, fit)), digits),
sep = ""

)
}

print.heritability.table <- function(digits, h2, simulation = T) {
#' Output LaTeX table of heritability
#'
#' Writes table of heritability with posterior mean, posterior mode
#' and standard deviation, to a TeX file. Works for both datasets.
#' @param digits Number of significant digits
#' @param h2 Heritability DF with different scales
#' @param simulation Simulation flag for the table's filename
filename <- ifelse(simulation, "heritability simulation",

"heritability application")
header <- paste(

"% TABLE FROM R:", format(Sys.time(), "%a %b %d %X %Y"), "\n",
"\\begin{tabular}{lccc}\n",
"\\hline\n",
"Model & Mean & Mode & Standard deviation \\\\ \n",
"\\hline \n"

)
main <- paste(

" Gaussian $hˆ2_\\text{obs}$ &",
print.one.metric(h2, "gaussian", digits), "\\\\ \n",
"Probit $hˆ2_{\\Psi}$ &",
print.one.metric(h2, "probit.qgglmm", digits), "\\\\ \n",
" & & & \\\\ \n",
"Gaussian $hˆ2_\\text{liab}$ &",
print.one.metric(h2, "gaussian.liability", digits), "\\\\ \n",
"Probit $hˆ2_{\\Phi}$ &",
print.one.metric(h2, "probit.scaled", digits), "\\\\ \n",
"\\bottomrule"

)
footer <- "\\end{tabular}"

write(paste(header, main, footer, sep = "\n"),
file=paste0("../figures/", filename, ".tex"))

}
print.heritability.table(3, heritability, FALSE)
print.heritability.table(3, heritability.sim, TRUE)

Code for part of discussion:

write(paste0("$\\hat p=", round(simulation.res2$p,2),
"$, that the true heritability of the observation scale",
" would be $",
round(1/3*1/threshold.scaling.param(simulation.res2$p),3),
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"$."),
file="../figures/trueh2discussion.tex")

The table gives some indication, but we also want to look qualitatively on the
densities. We start by just plotting a grid to compare each Gaussian vs. Probit scale
two by two.

plot_grid_of_heritability <- function(heritability, SAVE.PLOT,
plot.fn, colorscheme = NA) {

#' Plot 3x2 grid of hˆ2 comparisons
#'
#' Compare density of posterior heritability between all scales for
#' Gaussian model to all scales of the probit model. First row is
#' observation-scale compares to latent, psi and phi, respectively.
#' Second is the same for liability scale in the Gaussian case,
#' and the same three cases for probit.
#' @param heritability DF of all heritability estimates
#' @param SAVE.PLOT Flag for storing plot to disk
#' @param plot.fn Filename, must include file extension
#' @param colorscheme (optional) Color palette to use for density
#' @return List of all individual plots, as well as the grid plot
p1 <- ggplot() +

geom_density(
data = melt(heritability[, c("gaussian", "probit.latent")]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{obs}$ vs. $hˆ2_{lat}$")) +
if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)

p2 <- ggplot() +
geom_density(

data = melt(heritability[, c(
"gaussian.liability",
"probit.latent"

)]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{liab}$ vs. $hˆ2_{lat}$")) +
if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)

p3 <- ggplot() +
geom_density(

data = melt(heritability[, c(
"gaussian",
"probit.qgglmm"

)]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{obs}$ vs. $hˆ2_{\\Psi}$")) +
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if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)
p4 <- ggplot() +

geom_density(
data = melt(heritability[, c(

"gaussian.liability",
"probit.qgglmm"

)]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{liab}$ vs. $hˆ2_{\\Psi}$")) +
if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)

p5 <- ggplot() +
geom_density(

data = melt(heritability[, c(
"gaussian",
"probit.scaled"

)]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{obs}$ vs. $hˆ2_{\\Phi}$")) +
if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)

p6 <- ggplot() +
geom_density(

data = melt(heritability[, c(
"gaussian.liability",
"probit.scaled"

)]),
aes(x = value, fill = variable), alpha = 0.5

) +
theme(legend.position = "none", axis.title = element_blank()) +
labs(title = TeX("$hˆ2_{liab}$ vs. $hˆ2_{\\Phi}$")) +
if (!is.na(colorscheme)) scale_fill_brewer(palette = colorscheme)

set_null_device(cairo_pdf)
p <- plot_grid(p1, p3, p5, p2, p4, p6, ggplot() +

theme_void(),
get_legend(

ggplot(data.frame(v = c("Gaussian", "Probit"), x = c(0, 0))) +
geom_density(aes(x = x, fill = v), alpha = 0.5) +
scale_fill_discrete(breaks = c("Gaussian", "Probit")) +
theme(legend.title = element_blank()) +
if (!is.na(colorscheme)) scale_fill_brewer(palette =

colorscheme)
),
axis = "tblr"
)
if (SAVE.PLOT) ggsave(paste0("../figures/", plot.fn), p)
list(p1 = p1, p2 = p2, p3 = p3, p4 = p4, p5 = p5, p6 = p6, p = p)
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}
plot.h2.appl <- plot_grid_of_heritability(

heritability, SAVE.PLOT, "grid_application_gaussian_vs_binom.pdf",
"Dark2"

)
# For simulation:
plot.h2.sim <- plot_grid_of_heritability(

heritability.sim, SAVE.PLOT,"grid_simulation_gaussian_vs_binom.pdf",
"Spectral"

)

plot.h2.appl$p
plot.h2.sim$p

Key takeaways:
• The Gaussian model to liability scale doesn’t fit well with the other latent models.
• The scalings from binomial latent onto data scale fit well with the Gaussian one
The ones of greatest importance are plots (1, 2) (p3) and (2, 3) (p6), so we extract

them in particular

plot.h2.appl$p3 +
theme(legend.position = "right", legend.title = element_blank()) +
scale_fill_brewer(palette = "Dark2",labels = c(

TeX("Gaussian $hˆ2_{obs}$"), TeX("Probit $hˆ2_\\Psi$"))
) +

theme(legend.text.align = 0, legend.position = "bottom",
legend.text = element_text(size = 23)) + ggtitle("")

if (SAVE.PLOT) ggsave(
"../figures/heritability_application_obsscale.pdf")

plot.h2.appl$p6 +
theme(legend.position = "right", legend.title = element_blank()) +
scale_fill_brewer(palette = "Dark2", labels = c(

TeX("Gaussian $hˆ2_{liab}$"), TeX("Probit $hˆ2_\\Phi$"))) +
theme(legend.text.align = 0, legend.position = "bottom",

legend.text = element_text(size = 23)) + ggtitle("")
if (SAVE.PLOT) ggsave(

"../figures/heritability_application_liabscale.pdf")

plot.h2.sim$p3 +
theme(legend.position = "right", legend.title = element_blank()) +
scale_fill_brewer(palette = "Spectral", labels = c(

TeX("Gaussian $hˆ2_{obs}$"), TeX("Probit $hˆ2_\\Psi$"))
) +

theme(legend.text.align = 0, legend.position = "bottom",
legend.text = element_text(size = 23)) + ggtitle("")

if (SAVE.PLOT) ggsave(
"../figures/heritability_simulation_obsscale.pdf")
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plot.h2.sim$p6 +
theme(legend.position = "right", legend.title = element_blank()) +
scale_fill_brewer(palette = "Spectral", labels = c(

TeX("Gaussian $hˆ2_{liab}$"),
TeX("Probit $hˆ2_\\Phi$"))) +

theme(legend.text.align = 0, legend.position = "bottom",
legend.text = element_text(size = 23)) + ggtitle("")

if (SAVE.PLOT) ggsave(
"../figures/heritability_simulation_liabscale.pdf")

Finally, we want to look at DIC values for simulation model. It can’t be compared
to the song sparrow data directly, but how much the Gaussian and probit differ can
be compared.

data.frame(
Gaussian = simulation.res2$fit$dic$dic,
Probit = simulation.res2$fit.probit$dic$dic,
row.names = "Deviance Information Criteria"

)

Fixed effects for simulation
We now add a sex covariate to the linear predictor. We use that

Var[βsexxsex] = β2
sexσ2

sex

linear_predictor_fixedeffects <- function(u, simulated.d.ped) {
#' \Tilde{\eta} = a + N(0, varE) + betaSex x_{sex}
varE <- 1
betaSex <- 100
out <- c()
intercept <- 0
residuals <- rnorm(length(u), mean = 0, sd = sqrt(varE))
for (idx in seq_along(u)) {

out <- c(
out,
intercept + betaSex * simulated.d.ped$sex[idx] + u[idx] +

residuals[idx]
)

}
out

}
simulated.formula.fixedeffects <- simulated.response ~ sex +

f(id,
model = "generic0",
Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(

prec = list(
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initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05)

) # PC priors
)

)

# u = a + 100*x_sex + N(0,1) - balanced binary trait
m <- plot.h2.deviation(

dichotomize = "round_balanced", title = TeX("$\\beta_{sex}=100$"),
SAVE.PLOT = SAVE.PLOT, plot.fn = "fixedeffects_beta100",
sigma.scale = "log",
lin.pred = linear_predictor_fixedeffects,
simulated.formula = simulated.formula.fixedeffects,
Ve = 100ˆ2, fixedeffects = TRUE, dynamic.priors=TRUE

)
m$p + xlim(c(1,10ˆ4)) + theme(legend.position = "none")
if(SAVE.PLOT){

ggsave("../figures/simulation_deviance_fixedeffects_beta100.pdf")
} # Re-save figure with specified x-lim.

# Re-run with smaller magnitude for fixed effect
linear_predictor_fixedeffects <- function(u, simulated.d.ped) {

varE <- 1
betaSex <- 10
out <- c()
intercept <- 0 #-4.5
residuals <- rnorm(length(u), mean = 0, sd = sqrt(varE))
for (idx in seq_along(u)) {

out <- c(
out,
intercept + betaSex * simulated.d.ped$sex[idx] + u[idx] +

residuals[idx]
)

}
out

}

# u = a + 10*x_sex + N(0,1) - balanced binary trait
m2 <- plot.h2.deviation(

dichotomize = "round_balanced", title = TeX("$\\beta_{sex}=10$"),
SAVE.PLOT = SAVE.PLOT, plot.fn = "fixedeffects_beta10",
sigma.scale = "log",
lin.pred = linear_predictor_fixedeffects,
simulated.formula = simulated.formula.fixedeffects,
Ve = 10ˆ2, fixedeffects = TRUE, dynamic.priors = TRUE

)
m2$p

# u = a + 10*x_sex + N(0,1) - somewhat unbalanced



Chapter D: R script 86

m3 <- plot.h2.deviation(
dichotomize = 0.1,
title = "Simulation heritability for \nfixed effects model",
SAVE.PLOT = SAVE.PLOT, plot.fn = "fixedeffects_beta10_unbalanced",
sigma.scale = "log",
lin.pred = linear_predictor_fixedeffects,
simulated.formula = simulated.formula.fixedeffects,
Ve = 10ˆ2, fixedeffects = TRUE, dynamic.priors = TRUE

)
m3$p

# How unbalanced is the response?
summary(m3$p$data$plist)

Similar to the case without fixed effects, we provide code for plotting based on
results form remote server.

load("markovfixed_50_runs.Rdata")
mp4 <- markov.plotter(res.fixed1)
mp5 <- markov.plotter(res.fixed2)
mp6 <- markov.plotter(res.fixed3,

legend.name="Simulation heritability for\nfixed effects model")
fixed.fn <- "../figures/simulation_deviance_fixedeffects_"
ggsave(paste0(fixed.fn, "beta100.pdf"),

mp4+xlim(c(1,10ˆ4)))
ggsave(paste0(fixed.fn, "beta10.pdf"), mp5)
ggsave(paste0(fixed.fn, "beta10_unbalanced.pdf"), mp6)
mp6.legend <- cowplot::get_legend(

mp6 +theme(legend.position = "right", legend.text.align = 0))
pdf("../figures/simulation_deviance_fixedeffects_legend.pdf",

width = 7.87402, height = 7.87402)
grid.newpage()
grid.draw(mp6.legend)
dev.off()

For sufficiently large choice of β corresponding to sex, we get progressively worse
results as is expected.

Fixed effect model performance
Another aspect we can examine, is how the grid plots of heritability scales would look
like if we use a Gaussian and probit model with (somewhat dominating) fixed effect.
This is implemented below.

plot.fixedeffects.h2 <- function(sA, .dichotomize, include.fixed = T,
sE = 1, beta = 10, SAVE.PLOT = T,
plot.legend=F) {

#' Plot h2 density of gaussian and backtransformed probit model,
#'
#' Fit simulation models with fixed effects, compute h2 for
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#' Gaussian and probit case, backtransform probit h2 and plot
#' @param sA Additive genetic variance sigmaˆ2_A
#' @param .dichotomize character denoting dichotomization method
#' @param include.fixed Wether or not to include in denom. of h2
#' @param sE Error variance sigmaˆ2_E
#' @param beta Weight for fixed effect in linear predictor
#' @param SAVE.PLOT Flag for storing plot to disk
#' @param plot.legend Flag for including legend in saved plot
.pc.prior <- c(10ˆ(ceiling(log10(sA))), 0.05)
.linear_predictor_fixedeffects <- function(u, simulated.d.ped) {
out <- c()
intercept <- 0
residuals <- rnorm(length(u), mean = 0, sd = sqrt(sE))
for (idx in seq_along(u)) {

out <- c(
out,
intercept + beta * simulated.d.ped$sex[idx] + u[idx] +

residuals[idx]
)
}

out
}
fits <- simulated.heritability(

idgen = 100, dichotomize = .dichotomize, pc.prior = .pc.prior,
sigmaA = sA, linear.predictor = .linear_predictor_fixedeffects,
simulated.formula = simulated.formula.fixedeffects,
probit.model = TRUE,
simulated.formula.probit = simulated.formula.probit

)
h2.sim.fixed <- get.all.heritabilities(fits$fit, fits$fit.probit,

fits$p, n.samples,
fixed = FALSE)

p <- ggplot(melt(h2.sim.fixed[, c("gaussian", "probit.qgglmm")])) +
geom_density(aes(x = value, fill = variable), alpha = 0.5) +
scale_fill_discrete(

name = "",
labels = c(TeX("Gaussian $hˆ2_{obs}"),TeX("Probit $hˆ2_\\Psi$"))

) +
theme(legend.text.align = 0) +
xlab("Heritability") +
ylab("Density") + theme(legend.position = "bottom")

if (SAVE.PLOT) {
p.legend <- cowplot::get_legend(p)
pdf("../figures/fixedeffects_gaussian_probit_legend.pdf",

width = 5.5, height = 1)
grid.newpage()
grid.draw(p.legend)
dev.off()
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legend.pos <- if(plot.legend) "right" else "none"
plot.height <- if(plot.legend) 10 else 20
fn_append <- if(plot.legend) "_wide" else NULL
fn_append <- if(beta != 10) paste0(fn_append, "_beta_", beta) else

fn_append
ggsave(

paste0("../figures/fixedeffects_gaussian_probit_sA", sA,
"_p_", 10*round(fits$p,1), fn_append, ".pdf"),
p+theme(legend.position = legend.pos), width = 20,
height = plot.height, units = "cm"

)
}

}
plot.fixedeffects.h2(10, 0.1,plot.legend=T)
plot.fixedeffects.h2(10, 0.1)
plot.fixedeffects.h2(10, "round_balanced")
plot.fixedeffects.h2(500, 0.1)
plot.fixedeffects.h2(500,"round_balanced")

# For appendix:
for(beta_sex in c(1,5)){

plot.fixedeffects.h2(sA=10, .dichotomize = "round_balanced",
beta=beta_sex)

plot.fixedeffects.h2(sA=500, .dichotomize = "round_balanced",
beta=beta_sex)

}

IID noise to probit simulation

alternative.probit.sim <- function(sigmaA, linear.predictor,
fit.gaussian = NULL) {

#' Simulate and fit model with and without extra noise
#'
#' Modified version of `simulated_heritability()` to fit probit
#' model, one with an extra IID noise in INLA formula,
#' and one without.
#' @param sigmaA Additive genetic variance
#' @param linear.predictor Callable of two variables, for
#' simulating response
#' @param fit.gaussian Flag for also fitting Gaussian model.
#' Will fit as long
#' as it's not `NULL`.
#' @return List of two probit fits, gaussian fit (or `NULL`) and p,
#' the simulation's phenotypic mean.

# Init
idgen <- 100
NeNc <- 0.5
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nGen <- 9

# Generate pedigree
ped <- generatePedigree(

nId = idgen, nGeneration = nGen, nFather = idgen * NeNc,
nMother = idgen * NeNc

)
ped <- ped[, c(1, 3, 2, 5)]
names(ped) <- c("id", "dam", "sire", "sex")
u <- rbv(ped[, c(1, 2, 3)], sigmaA)
simulated.d.ped <- nadiv::prepPed(ped, gender = "sex")
simulated.Cmatrix <- nadiv::makeAinv(ped[, c(1, 2, 3)])$Ainv
simulated.d.ped$ind <- seq_len(nrow(simulated.d.ped))

# Generate binary response
simulated.response <- ifelse(

linear.predictor(u, simulated.d.ped) <= 0, 0, 1)
p <- mean(simulated.response)

# INLA fitting
formula.overdisp <- simulated.response ~ f(id,

model = "generic0", Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(prec = list(

initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05)

))
) +

f(ind,
model = "iid", constr = TRUE

)
formula.standard <- simulated.response ~ f(id,

model = "generic0", Cmatrix = simulated.Cmatrix,
constr = FALSE,
hyper = list(prec = list(

initial = log(1 / 10), prior = "pc.prec",
param = c(1, 0.05)

))
)

fit.overdisp <- inla(
formula = formula.overdisp, family = "binomial",
data = simulated.d.ped,
control.compute = list(return.marginals.predictor = TRUE)

)
fit.standard <- inla(

formula = formula.standard, family = "binomial",
data = simulated.d.ped,
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control.compute = list(return.marginals.predictor = TRUE)
)
if (!is.null(fit.gaussian)) {

# Also compute Gaussian model
fit.gaussian <- inla(

formula = formula.standard, family = "gaussian",
data = simulated.d.ped

)
}

list(
fit.overdisp = fit.overdisp,
fit.standard = fit.standard,
fit.gaussian = fit.gaussian,
overdisp.p = p

)
}

Here, we fit a probit with the formula yi = β0 + ai + γ0,i, where the last is a
random iid effect. The simulated data has overdisperion in its data via the residual
vector being N (0, 3).

overdisperion_wrapper <- function(nsamps, vA, vE, SAVE.PLOT) {
#' Wrapper for running overdispersion tests
#'
#' Wrapper for calling alternative model fitting with extra noise,
#' and for
#' plotting thee results.
#' @param nsamps Number of samples for posterior heritability
#' @param vA Additive genetic variance
#' @param vE Additional noise (should be more than 1)
#' @param SAVE.PLOT Flag for storing plot to disk

list2env( # Loads fit.overdisp, fit.standard, fit.gaussian, p
alternative.probit.sim(vA, function(u, .) u + rnorm(length(u),

0, sqrt(vE)),
fit.gaussian = TRUE

), .GlobalEnv
)
df.probit.comp <- data.frame(

Overdispersion = get.h2.from.qgparams(fit.overdisp,
"binom1.probit",

nsamps,
averaging = TRUE

),
Standard = get.h2.from.qgparams(fit.standard, "binom1.probit",

nsamps,
averaging = TRUE

),



Chapter D: R script 91

Gaussian = get.h2(fit.gaussian, nsamps)
)

curr.plot <- ggplot(data = melt(df.probit.comp)) +
geom_density(aes(x = value, fill = variable), alpha = 0.5) +
scale_fill_discrete(name = "", labels = c(

TeX("$hˆ2_\\Psi$ with iid effect"),
TeX("$hˆ2_\\Psi$ without iid effect"),
TeX("$hˆ2_{obs}$")

)) +
xlab("Heritability") +
ylab("Density") +
theme(legend.position = "bottom") +
xlim(c(0, quantile(melt(df.probit.comp)$value, 0.95)))

if (SAVE.PLOT) {
p.legend <- cowplot::get_legend(curr.plot)
pdf("../figures/overdisperions_legend.pdf", width = 9, height = 1)
grid.newpage()
grid.draw(p.legend)
dev.off()
ggsave(

paste0("../figures/overdispersion_vE-vA_", vE, "-", vA, ".pdf"),
curr.plot + theme(legend.position = "none")

)
}

}

overdisperion_wrapper(10000, 0.5, 2, SAVE.PLOT)
overdisperion_wrapper(10000, 0.5, 5, SAVE.PLOT)
overdisperion_wrapper(10000, 0.5, 10, SAVE.PLOT)
overdisperion_wrapper(10000, 10, 10, SAVE.PLOT)

Illustrative figures
Addendum - Illustrative figure for fitted values in a probit model. This is intended to
demonstrate the different scales you get when using GLMMs.

mod <- simulated.heritability(
linear.predictor = function(u, .) u + rnorm(length(u)),
simulated.formula = simulated.formula,
probit.model = T,
simulated.formula.probit = simulated.formula.probit

)
pmod <- mod$fit.probit
eta_samples <- marginal.latent.samples(pmod, 20)

# Plotting
sample_ids <- sort(c(LETTERS, letters))[1:40]
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eta_df <- data.frame(
elem = c(

rep(sample_ids[1:20], each = 900), # Latent eta
rep(sample_ids[21:40], each = 900)), # Phi(eta)

value = c(
unlist(eta_samples),
pnorm(unlist(eta_samples))

)
)
custom_palette <- c(

colorRampPalette(c("pink", "darkred"))(20),
colorRampPalette(c("lightblue", "darkblue"))(20), "darkgreen"

)

ggplot(eta_df) +
geom_line(aes(x = value, color = elem), stat = "density",

alpha = 0.25, size = 2) +
# True values
geom_vline(xintercept=0,size=2,color='green4') +
geom_vline(xintercept=1, size=2, color='green4') +
scale_color_manual(values = custom_palette) +
theme(legend.position = "none") +
xlab("(Predicted) response") +
ylab("Density")

if (SAVE.PLOT) {
ggsave("../figures/illustration_probit_scales_fitted_values.pdf",

width = 20, height = 10, units = "cm"
)
# Generate legend
plegend <- ggpubr::get_legend(

ggplot(melt(data.frame(r = rnorm(1), b = rnorm(1),
t = rnorm(1)))) +

geom_line(aes(x = value, color = variable), stat = "density",
size = 2, alpha = 0.9) +

scale_color_manual(
name = "",
labels = c(TeX("$\\eta$"), TeX("$\\Phi(\\eta)$"),

"True observations"),
values = c(r = "darkred", b = "darkblue", t = "green4")

) +
theme(legend.text.align = 0, legend.position = "bottom",

text = element_text(family = texfont)
)

)
pdf("../figures/illustration_probit_scales_fitted_values_legend.pdf",

width = 4.2, height = 1
)
grid.newpage()
grid.draw(plegend)
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dev.off()
}

The second is an illustrative figure for binomial vs linear regression in general.

data(mtcars)
library(ggplot2)
library(cowplot)
p1 <- ggplot(mtcars, aes(x = hp, y = vs)) +

geom_point(alpha = .5) +
ggtitle("Binomial regression") +
stat_smooth(method = "glm", se = F,

method.args = list(family = binomial)) +
ylim(c(-0.2, 1.01)) +
theme(title = element_text(size = 16))

p2 <- ggplot(mtcars, aes(x = hp, y = vs)) +
geom_point(alpha = .5) +
stat_smooth(method = "lm", se = F) +
ggtitle("Linear regression") +
ylim(c(-0.2, 1.01)) +
theme(title = element_text(size = 16))

plot_grid(p1, p2, ncol = 2, align = "v", axis = "tb")
if (SAVE.PLOT) {

ggsave("../figures/linear-vs-logistic-example.pdf",
width = 20, height = 10, units = "cm"

)
}

The final plot is an illustration of the threshold model.

threshold.illustration <- function(){
x <- seq(-3, 3, length.out = 100)
threshold <- -0.4
df <- data.frame(x = x, y = dnorm(x))
df$samps <- c(rep(NA,10), runif(80, 0, dnorm(x[11:90])), rep(NA,10))
df$sampscol <- ifelse(df$x >= threshold, "a", "b")
cols <- c(hcl(h=seq(15,375,length=3), l=65, c=100)[1:2])
# Create the ggplot
ggplot(df, aes(x = x, y = y)) +

geom_point(aes(x = x, y = samps, colour = sampscol)) +
geom_line(linewidth=0.7) + ylab("") + xlab("") +
geom_vline(aes(xintercept=threshold, linetype='Threshold M'),

linewidth=0.7) +
theme_classic(24) + theme(text=element_text(family=texfont)) +
scale_color_manual(name="", values=cols,

labels=c("Phenotype 2","Phenotype 1")) +
scale_linetype_manual(name="", values=c('Threshold M'=2))

ggsave("../figures/illustration_thresholdmodel.pdf",
width=20, height=10, units="cm")
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}
threshold.illustration()
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