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Abstract: Smart vapour barriers enable building envelopes to dry toward the interior side. This
property can be used in compact wooden roofs to create more slender structures by placing the
wooden load-bearing elements inside the insulation layer. There is, however, some concern that the
ceiling assembly on the interior side may inhibit inward drying by trapping moisture between the
vapour barrier and the ceiling boards. This article examined the water vapour resistance of gypsum
boards painted with two, four, and six layers of typical ceiling paints. WUFI® 2D simulations were
conducted to assess the risk of mould growth in compact wooden roofs with painted board ceilings.
It was found that a painted ceiling board may exhibit an equivalent stagnant air layer thickness
(sd value) between 0.074 m for two layers of the most vapour-open paint and 0.53 m for six layers
of the least vapour-open. For an unpainted board, the sd value was measured to be 0.071 m. The
difference was not found to make a substantial impact on the drying of a typical compact wooden
roof. The application of paint may cause the assembly to dry at a slightly slower rate but was not
found to present a notably higher risk of mould growth, even under unfavourable conditions.

Keywords: ceiling paint; compact wooden roof; smart vapour barrier; drying; mould growth risk

1. Introduction

New types of roof assembly are being developed to minimise material use and carbon
impact in the building sector. Conventionally, in compact roofs featuring wooden struc-
tural materials (compact wooden roofs), the structural elements must be separated from
the insulation layer due to the risk of moisture damage. In a conventional compact roof,
vapour-tight layers are used on both the exterior (roofing) and interior side (vapour barrier)
of the insulation layer [1]. In principle, this prevents moisture from entering the assembly.
However, any built-in moisture or leakage moisture (from exterior leaks of precipitation,
condensation of moisture from indoor air, or leakage from pipes) may be trapped inside
the assembly, increasing the risk of mould growth in organic materials. Mould growth may
lead to rot and the deterioration of the structure [2–4] and is associated with respiratory
health problems including asthma [5,6]. However, mould grows less intensely if no organic
materials are present [7]. To avoid mould problems, compact wooden roofs have conven-
tionally separated the insulation layer and the load-bearing elements [8]. This solution
yields low moisture risk but makes the roof assembly very thick, which may be a concern
for developments where the permitted building height is limited.

Recommendations for managing moisture in buildings stress that drying is necessary
if sources of moisture cannot be avoided [9,10]. Smart vapour barriers (SVBs), also called
“adaptive vapour barriers”, can be used to facilitate drying toward the interior side of
the assembly. Hence, SVBs may allow wooden structural elements to be placed within
the insulation layer and thus drastically reduce the overall thickness of the building en-
velope assembly [8,11]. SVBs form a crucial component of compact wooden roofs. Pilot
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projects [12,13] are built to document the moisture performance of compact wooden roofs
that use SVBs to achieve the necessary drying capability [14–17]. The intention is for
the roof to dry towards the interior side, as the roofing on the exterior side must remain
watertight to prevent the intrusion of moisture from the exterior.

The primary function of an SVB is to be water-vapour-permeable when the relative
humidity (RH) is high—typically during summertime in cold climates—and vapour-tight
when RH is low [15,18], as illustrated in Figure 1. This behaviour inhibits moisture transport
into the building envelope from the interior side but permits the drying of built-in moisture.
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However, materials used for the assembly of the building envelope may exhibit a
lower vapour permeability than desired, with implications for the effective drying of
moisture [9]. If the surface on the drying side is wholly or partially covered by a layer that
is less vapour-permeable than recommended, drying may be inhibited and mould growth
may result [9]. For exterior drying, this has been demonstrated to be a concern in the case
of wind barrier tape, which may be two orders of magnitude more vapour-tight than the
wind barrier itself, due to the adhesive [19]. For wind barriers, which cover the exterior
wall surface towards a ventilated air cavity, the Norwegian recommendations suggest that
the sd value (equivalent stagnant air layer thickness) should be 0.5 m or less to ensure
effective drying [20].

The drying of materials toward the interior side of the vapour barrier (sd value > 10 m [21])
has received little attention. In cold climates, the vapour barrier is placed toward the
interior side of the building envelope. Only very limited vapour transport occurs across
conventional vapour barriers, and the thermal and moisture gradients to the interior air
are very low. Hence, drying towards the interior has usually not been a point of concern.
However, when using vapour retarders or SVBs, drying towards the interior becomes
important to the drying performance of the structure [22]. The drying performance of
SVBs and smart vapour retarders has been a subject of study in recent years by, e.g., Tariku
et al. [23], Yoshinaga [24], and Fechner and Meißner [25].

For roofs, the interior surface is the ceiling assembly. It typically consists of painted
plaster or gypsum boards that are separated from the vapour barrier by a small air cavity
caused by the battens used to fix the vapour barrier to the roof beams. The air cavity is also
commonly used to hide electric cables. However, there is a concern that a too vapour-tight
ceiling may trap moisture and prevent the roof assembly from drying adequately.

A limited number of earlier studies on the water vapour permeability of paint were
identified. In 1953, Eckhaus et al. [26] found that pigmented paints were more porous and
vapour-permeable than non-pigmented paints, and that the porosity (and hence, vapour
permeability) increased sharply at a critical point of pigment saturation. Similar conclusions
were found by Thun and Øvregaard [27] in 1961. Pigmented, butyl-based paints exhibited a
much higher vapour permeability than other investigated paints. Huldén and Hansen [28]
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reported similar findings, and also that the effect of aging on the water vapour permeability
of paints was primarily caused by cracking rather than any deterioration of the paint.
Topçuoğlu et al. reached similar conclusions to the previous studies in 2006, summing up
their findings as follows: “. . .the barrier property of the waterborne acrylic based paint
films against humidity decreases with decreased binder content due to uneven distribution
of the pigments, consequently, porous structure formation in the films.” [29].

Šadauskienė et al. [30] measured the permeability of exterior paints to determine their
impacts on the exterior drying of rendered façades. The sd value of the paint when applied
to render was found to be less than 0.6 m. Brito et al. [31] found that “the way the paint
systems affect the drying of the substrate . . . may vary significantly depending on the
moisture content of the substrate”. In the context of the quote, a substrate refers to the
material to which the coat of paint is being applied.

Two of the identified studies investigated paint for corrosion protection, which is not
normally relevant for painted ceilings, but their results are included here for the sake of
completeness. Nicodemo et al. [32] examined the water permeability properties of corrosion
protection paint. They noted that the concentration of the curing agent in the paint affected
the water vapour permeability as well as the oxygen permeability. For corrosion protection,
oxygen permeability should be kept at a minimum. Hoseinpoor et al. [33] noted that in
the context of corrosion protection, the tendency for paint to blister was lower for a paint
system with a less permeable topcoat.

The present study seeks to investigate whether a painted ceiling assembly may exhibit
a sufficiently high vapour resistance to interfere with the intended inward drying of the
roof assembly through an SVB. To address this general inquiry, the following research
questions were formulated:

• What is the range of water vapour resistance for common ceiling paints?
• What are the implications of the water vapour resistance of ceiling paints on the drying

properties of compact wooden roofs?

The following limitations to the study are acknowledged: The study investigated
six ceiling paints that were available from commercial suppliers in Norway, applied to a
standard gypsum board. The physical or chemical basis of the properties of paint were not
explored. A section of a compact wooden roof was simulated in WUFI® 2D to assess the
theoretical drying capability of a roof using these paints. The simulation of the SVB used
moisture properties of the Isola AirGuard® Smart2 SVB [34]. The simulation investigated
drying conditions in a compact wooden roof assembly designed to satisfy Norwegian
technical requirements. The simulation did not consider the situation at the roof corners,
edges, or any other interruptions to the standard roof geometry.

2. Methodology
2.1. Laboratory Measurements
2.1.1. Selection of Products

This study sought to investigate the implications and consequences of painting over
a gypsum board ceiling of a compact wooden roof assembly. Ceilings may be painted
by a contractor as part of the construction process or by inhabitants seeking to refurbish,
adding multiple layers of paint to the gypsum boards. Commercially available ceiling paint
products were thus purchased at two local consumer-oriented hardware stores and one
professional paint supply store. The selected paints were all specifically marketed as ceiling
paints. The six paints belonged to different cost tiers, from “professional quality” to the
most inexpensive paint on offer. A standard white colour was chosen for all six paints.
They were made by five different manufacturers. One of the paints was advertised for its
low rate of degassing and was marketed towards allergy sufferers and pregnant women.
All paints were delivered in three-litre buckets.

One type of commercially available gypsum board was also purchased, to serve as
substrate for the paints.
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2.1.2. Preparation of Samples

One gypsum board was acquired for each type of paint and stored in a laboratory
climate for about a week before sample preparation began. The gypsum boards were
delineated into four equal segments, and each segment was painted with two layers of
paint. The paint was evenly applied while the boards were lying flat with the painted
surface up, indoors in a laboratory climate. The amount of paint applied per coat was in
accordance with the manufacturers’ recommendations. The paint was allowed to dry for
the time specified by the manufacturer, and for four hours at a minimum between each
layer of paint. Two of the segments were then painted with two additional layers of paint.
Finally, one of these segments was painted with two more layers. The samples were all
painted by the same experienced laboratory technician using the same type of equipment,
to ensure that the paint layers maintained thickness and cover as uniformly as possible.

After a minimum of one week, the plates were cut into four sections along the segment
delineation lines: two sections with two layers of paint, one with four layers and one with
six layers. One of the two-layer sections was set aside for spares in case additional samples
were required. The three remaining sections were cut into six pieces each. A circular
specimen with a diameter of 0.174 m was prepared from each piece using a circular vice
and a band saw. Five such specimens were required to run a test, leaving one as a spare
for each series. The unpainted gypsum board used for measurements was stored together
with the painted samples.

2.1.3. Test Procedure

The test procedure used to determine the water vapour resistance of the specimens was
carried out as described in NS-EN ISO 12572:2016 [35]. The specimens were conditioned
in a controlled climate chamber (23 ± 1 ◦C, RH 50 ± 5%) for 3–4 days before mounting
in cups to create the test samples. Each sample consisted of a circular cup filled with a
solution of potassium nitrite (KNO3), using the painted gypsum specimen as its sealed lid.
The samples were stored and weighed in the controlled climate chamber until the end of
the tests. A series of samples is portrayed in Figure 2.
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Figure 2. Samples of painted gypsum board, stored on shelves in a controlled climate chamber.

The KNO3 solution ensured a constant RH of 94% [35] within the test sample cup.
The evaporated salt solution diffused through the specimen, at a rate determined by the
specimen’s water vapour permeability. The mass of the samples was weighed after initial
preparation, and then at regular intervals. A reference weight of 1000 g was weighed before
and after the samples to correct the output of the scale. The scale was a METTLER TOLEDO
in the Excellence line, which measured at a resolution of 0.001 g and was accurate to within
0% at the time of weighing. The scale was kept within a plastic housing to protect from
interference. Its accuracy is controlled annually by the Norwegian Metrology Service. The
scale is pictured in Figure 3.
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The interval of weighing depends on the expected water vapour permeability value
and may be adjusted as the results begin to become apparent. For the present study, a
weighing interval of once per day was selected and followed throughout the measurement
period. The water vapour permeability is determined by the rate of change in weight over
time. A stable rate of change is deemed to have been found if the change in weight over
five consecutive weight measurements remains constant to within ±5% of their average
rate of change [35].

2.2. WUFI Simulations
2.2.1. Geometry and Materials

The geometry of the modelled roof assembly, with monitor points for moisture assess-
ment, is shown in Figure 4. This assembly is typical for the middle of a roof span, with
mineral wool insulation placed within a frame structure made of 0.048 m wide wooden
beams placed at a centre-to-centre distance of 0.6 m. A plywood board served as the roof
underlay, covered with a bituminous roofing sheet. The SVB was mounted on the underside
of the insulation layer. The ceiling was a gypsum board separated from the vapour barrier
by a 0.023 m air cavity. The modelled geometry consisted of a cut-out of one 0.6 m wide
section of the roof, centred around a wooden beam. Since this cut-out was symmetrical
around the wooden beam, only one half of the section was modelled to save computing
resources. Hence, the width of the simulated area is 0.3 m.
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2.2.2. Simulation Input Data

The roof assembly was modelled using the hygrothermal simulation program WUFI®

2D by Fraunhofer IBP [36]. WUFI is an acronym of Wärme Und Feuchte Instationär—which,
translated, means heat and moisture transiency. The material parameters used for the
simulation are shown in Table 1. Material data were retrieved from the built-in WUFI
material library, except the smart vapour barrier, whose data were found in the technical
approval document [34], as conducted in a previous study by Storaas [17]. Table 2 shows
the simulation input parameters. The simulation location of Kristiansund was chosen
because its climate was previously found to be the most challenging for moisture safety in
compact wooden roofs in Norway—if a solution is found not to present a mould risk there,
it may be considered safe everywhere else too [17,37]. Oslo, as a comparison case, exhibits a
warmer and drier climate. Rather high initial moisture values for the materials were chosen,
to create a situation where the moisture safety of the assembly was dependent on the rate
of drying. SINTEF generally recommends not to encapsulate a wooden structure whose
moisture content is above 15 weight-% [38]. However, 20 weight-% is not an uncommonly
high wood moisture level during the construction period. Using 20 weight-% illustrates
the effects of drying to a greater degree. Likewise, a simulation start date in September
is considered to elevate the mould growth risk, as the assembly is then considered to be
encapsulated right at the beginning of the wetting season, and the longest possible amount
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of time elapses before drying begins. It may be considered a worst-case scenario for these
moisture simulations.

Table 1. Material properties for the WUFI 2D simulations. The sd value is given for the direction of
drying, vertically.

Materials Density [kg/m3]
Thermal Conductivity

[W/(mK)]
sd Value

[m]

Roofing 715 2.3 300
Plywood 410 0.13 3.78

Wood (Scandinavian spruce transverse
direction II) 390 0.13 38

Mineral wool 60 0.040 0.45

Smart vapour barrier 85 2.4 0.25–12.8
(See Table 3 in [34])

Air cavity 1.3 0.16 0.012
Gypsum board 850 0.2 0.071

Table 2. WUFI Mould Index parameter settings.

Parameter Setting

Sensitivity class Sensitive
Material class Relevant decline

Type of surface Planed
Type of wood Softwood

Occupant exposition class Surfaces inside constructions without direct
contact with indoor air

Table 3. Input parameters for the simulations in WUFI 2D.

WUFI 2D Settings Standard Parameters Variations

Numerical grid Mode X Coarse
Mode Y Medium

Exterior climate Kristiansund Oslo

Initial moisture

Wood 20 weight-% 15 weight-%
Mineral wool 80% RH

Gypsum board 80% RH
Bitumen roofing 80% RH

Air cavity 80% RH
Smart vapour

barrier 80% RH

Gypsum board sd value 0.071 m * 0.533 m **
Distance between beams 0.6 m

Roof slope 0◦

Short-wave radiation absorptivity 0.88
Interior temperature 23 ◦C

Interior moisture supply Humidity Class 2
Simulation begins 2022-09-01

Duration of simulation 43,800 h (five years)
* Equivalent to that of an unpainted gypsum board, see Section 3.1. ** Equivalent to the highest measured sd value
in the laboratory tests.

2.3. WUFI Mould Index VTT

The WUFI plug-in WUFI Mould Index VTT [39] was used to assess the mould growth
risk in the simulated assembly. This plug-in uses a mould growth model based on the
work of Viitanen et al. [40–43]. The model describes mould growth based on the factors
surface material, temperature, relative humidity (RH), and time. The predicted probability
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of mould growth activity is indicated on a scale from 0 to 6. The index is annotated as
a “traffic light”, where a green label indicates an acceptably low risk of mould growth, a
yellow label indicates that further investigation may be necessary, and a red label indicates
unacceptable risks. For materials inside an assembly, not exposed to air, a Mould Index
value of 2 is the threshold between the green and yellow label, while a value greater than 3
yields a red label. A Mould Index value greater than 3 may be physically interpreted to
indicate visible mould growth [42].

The simulation parameter settings for the WUFI Mould Index VTT plug-in are listed
in Table 3. The monitoring point for moisture in the upper part of the roof assembly,
seen in Figure 4, was chosen because it is the most humid part of the assembly and thus
represents the highest moisture risk [16,17]. Additional simulations were also conducted
with a monitoring point on the back (unpainted) side of the gypsum board, to assess mould
risk toward the interior side of the assembly.

3. Results
3.1. Laboratory Measurements

The measured sd values for the gypsum board with the six types of paint applied
are shown in Table 4. The gypsum board itself had a declared sd value of 0.078 m in its
product datasheet but was measured to be 0.071 m (the standard deviation of the mean
was calculated to be 0.001 m). The latter figure was used in the simulations to simulate an
unpainted ceiling.

Table 4. Measured sd values [m] for the different samples (including gypsum board), by number of
layers. The standard deviation of the mean for each measurement series is shown in brackets.

Product Two Layers Four Layers Six Layers

A 0.29 (0.003) 0.44 (0.006) 0.53 (0.007)
B 0.093 (0.001) 0.12 (0.001) 0.14 (0.001)
C 0.32 (0.009) 0.43 (0.008) 0.52 (0.005)
D 0.074 (0.001) 0.087 (0.000) 0.091 (0.001)
E 0.16 (0.002) 0.27 (0.007) 0.36 (0.007)
F 0.18 (0.002) 0.28 (0.004) 0.36 (0.003)

Note that the water vapour resistance, as expressed through sd values, increased at a
far-below-linear rate with multiple layers of paint for every product.

3.2. WUFI Simulations

Table 5 describes the variable configurations of each simulation case as well as the
VTT Mould Index of each simulation scenario. The application of paint has little impact
on the Mould Index. Rather, the initial moisture content of the structure is a much more
significant risk factor for mould growth. For every simulation case, the Mould Index on the
back side of the gypsum board was found to be 0.01 or lower.

Figure 5 shows the moisture performance of each simulation case as evaluated by
using the WUFI Mould Index VTT. In the worst simulation case, the Mould Index rises in
the first two years of simulation, because the structure is wetted during the first autumn
and the built-in moisture does not dry sufficiently before the next wetting season. However,
eventually, the structure dries out in every case, and conditions cease being favourable for
mould growth. The effect of the ceiling paint makes very little difference to the overall
Mould Index score of each simulation.
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Table 5. Description of the six simulation cases and the VTT Mould Index results for each case. The
simulation variables are otherwise as listed in Table 2.

Simulation Case

Variable 1 2 3 4 5 6

Location
Kristiansund X X X X

Oslo X X

Ceiling Unpainted X X X
Painted X X X

Initial wood moisture
content

20% X X X X
15% X X

Mould Index 4.76 4.80 1.19 1.24 2.89 2.93
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Figure 5. Development of the VTT Mould Growth Index (see Section 2.3) for the six simulation cases.
The vertical grid lines are spaced one year apart.

Figure 6 shows the moisture development of each simulation case as indicated by
the total water content in the assembly over time. The importance of the local climate is
evident, as the simulation case in Oslo dries out faster than the ones in Kristiansund and
converges to a lower value.
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4. Discussion
4.1. What Is the Range of Water Vapour Resistance for Common Ceiling Paints?

Laboratory measurements indicate that all the examined ceiling paints exhibited
relatively low values of water vapour resistance. The sd values of the painted gypsum
boards ranged from 0.1 to 0.5 m, depending on the number of layers of paint. This is
comparable to the recommended sd value for wind barriers and breather membranes to
facilitate drying to the exterior in ventilated cladding assemblies [20]. As indicated by the
results in Section 3, the sd value of six layers with the least permeable paint was almost
double that of the SVB when the roof was in a state of drying. The water vapour resistance
did not increase linearly according to the number of layers. The added vapour resistance of
each additional layer appeared to decrease with the number of layers. There was, however,
some uncertainty related to the thickness of the paint coat, as this was not measured during
testing. The samples were prepared from the middle of the gypsum boards, where the
thickness of the board and paint was assumed to be more uniform than along the edges.

Note also that six layers of paint are not realistic for the ceiling of a newly built
building. However, using these values helps to illustrate the impact of the ceiling paint to
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a greater degree, since repainting during the lifetime of the building will eventually add
more layers of paint.

4.2. What Are the Implications of the Water Vapour Resistance of Ceiling Paints on the Drying
Properties of Compact Wooden Roofs?

The impact of the water vapour resistance of ceiling paints on drying was shown to be
comparably small. In practice, there was little difference between an unpainted gypsum
board and one painted with six coats of the most vapour-tight paint in this study. Gypsum
boards painted with common ceiling paints may be considered sufficiently vapour-open to
effectively facilitate drying. Even the least vapour-open configuration did not substantially
impact the water content of the simulated compact wooden roof assembly relative to the
unpainted board, although the drying rate was lowered slightly. The initial water content
of the assembly, and the local climate, were shown to impact the drying rate and mould
growth to a vastly higher degree.

It may be interesting for future studies to evaluate the drying rate using even more
vapour-tight ceiling assemblies. An earlier study of compact wooden roofs with SVBs
simulated an internal water vapour resistance up to 1 m, indicating a difference large
enough to warrant further study [16].

The present study investigated a generic case of a flat, black roof that received no
shading. A shaded roof, one oriented away from the sun or a roof covered by a rooftop
terrace deck, will receive less solar radiation and, hence, less heat. This will reduce inward
moisture transport compared to the simulated case in the present study. In these cases,
the impact of the ceiling paint may be greater. This also means that the design will be
even more effective in climates outside of Norway, with greater solar radiation and, thus,
increased moisture transportation.

The amount of built-in moisture was shown to impact the moisture performance of
the roof to a substantial degree. The consequences of allowing an initial moisture content
of 20 weight-% were substantial compared to 15%. Conversely, using a vapour-open ceiling
assembly to facilitate drying did not compensate for failing to allow the materials to dry
before encapsulating the assembly.

The impact of the building’s location is also substantial. A roof assembly in Oslo
will experience vastly less mould growth and dry out almost three years earlier than an
identical roof assembly in Kristiansund. These findings agree with earlier studies of drying
and mould growth in roof assemblies in Norway [16,17,37].

5. Conclusions

The study indicates that gypsum boards painted with commonly available ceiling
paints will exhibit sufficiently low water vapour resistance to facilitate effective drying to
the interior side of a compact wooden roof with an SVB. The water vapour resistance of
the ceiling assembly was found to be very low, regardless of which paint was used and
up to six layers of paint. Other factors like built-in moisture or the exterior climate were
found to influence the drying rate and mould growth risk to much greater degrees. These
results may be used to create reference design guidelines for the use of SVBs in compact
wooden roofs.

For future work, it may be interesting to study cases where the impact of ceiling
paint may conceivably be greater, for instance in roofs that receive little heating from
solar radiation and thus exhibit less inward drying. Future studies may also investigate
the impact of ceiling assemblies with even higher water vapour resistance. Interesting
materials for study may include pre-painted MDF boards, foil-coated particle boards, or
paint intended for use in bathrooms. Other roof details and geometries should also be
studied to evaluate the moisture performance of SVBs in compact wooden roofs under a
wider range of conditions. Sufficient documentation of the performance is necessary to
ensure that the solution can be adopted on an industry-wide scale.
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