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Abstract

As renewable energy sources become more prevalent and distributed energy sys-
tems gain wider adoption, the demand for efficient and secure energy trading
mechanisms grows. Distributed Ledger Technologies (DLTs) hold great potential
in facilitating the integration of distributed energy resources into energy mar-
kets. However, the shift from a centralized energy system to a decentralized one
presents new challenges for scalability, making it crucial for DLTs to be able to
scale accordingly.

While much research has been conducted on blockchain-based DLTs, this thesis
focuses on the Directed Acyclic Graph (DAG)-based IOTA platform and its newly
implemented smart contract protocol. In 2021, the IOTA Smart Contract Platform
(ISCP) was introduced, enabling the operation of multiple blockchains on top of
the ”Tangle” and potentially increasing the number of transactions.

Despite the potential of the ISCP in energy markets, few existing studies eval-
uate its performance. The majority of performance assessments is based on the
previous version of IOTA and, as such, is out of date and does not factor in the
capabilities of ISCP. The thesis presents one of the first assessments of the scalab-
ility of ISCP in relation to energy markets.

Using a design science methodology, this thesis conducted three iterative design
cycles, resulting in the creation and evaluation of three artifacts. These artifacts
leverage smart contracts to support three key functions of the energy market:
information storage, trade matching, and contract settlement. By designing and
testing these artifacts, the thesis contributes to the development of scalable DLT-
based solutions for energy trading in decentralized energy systems.

The results of this study indicate that the default node configuration was able
to handle 30 bids per second, and that dividing the network into smaller sub-
networks is crucial for maintaining the performance and scalability of DLT energy
markets. This is in line with the current throughput of the Ethereum blockchain,
but the ISCP offers the added advantage of allowing small local energy markets
to operate concurrently and anchor to the global ledger. With the implemented
matching algorithm, the maximum number of bids per auction round was between
480 and 540. Depending on variables such as the number of nodes in the network
and the hardware the nodes were operating on, the total execution time to confirm
a transaction ranged from 4.56 to 15.1 seconds. Although this finding is consistent
with other studies related to DLT and the requirements of the energy markets, it
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Abstract ii

falls short of the performance offered by other second-layer solutions.
This study lays the groundwork for future investigations into using the ISCP

framework in energy markets. Further research is needed to evaluate the perform-
ance of the wasp chain under various conditions, investigate the potential benefits
of implementing DLT in centralized energy markets, and explore the possibility of
a decentralized estimation system with multiple nodes for increased resilience.



Sammendrag

Etter hvert som fornybare energikilder blir mer utbredt og distribuerte energisystemer
blir mer omfattende, øker etterspørselen etter effektive og sikre energihandels-
mekanismer. Distributed Ledger Technologies (DLT) har stort potensial for å lette
integreringen av distribuerte energiressurser i energimarkedene. Men skiftet fra
et sentralisert energisystem til et desentralisert presenterer nye utfordringer for
skalerbarhet, noe som gjør det avgjørende for DLTs å kunne skalere tilsvarende.

Mens mye forskning har blitt utført på blockchain-baserte DLTs, fokuserer
denne oppgaven på den Directed Acyclic Graph (DAG)-baserte IOTA-plattformen
og dens nylig implementerte smart kontraktprotokoll. I 2021 ble IOTA Smart Con-
tract platform (ISCP) introdusert, noe som muliggjør drift av flere blockchains på
toppen av "Tangle" og potensielt øker antall transaksjoner. Til tross for potensialet
til ISCP i energimarkedene, evaluerer få eksisterende studier ytelsen. De fleste
ytelsesvurderinger er basert på den forrige versjonen av IOTA og er dermed ikke
relevante og utforsker ikke mulighetene til ISCP. oppgaven presenterer en av de
første vurderingene av skalerbarheten til ISCP i forhold til energimarkedene.

Ved hjelp av en designvitenskapelig metodikk ble det gjennomført tre iterative
designsykluser, noe som resulterte i opprettelsen og evalueringen av tre artifakter.
Disse utnytter smarte kontrakter for å støtte tre nøkkelfunksjoner i energimarke-
det: informasjonslagring, handelsmatching og kontraktverifisering. Ved å designe
og teste disse artifaktene bidrar oppgaven til utviklingen av skalerbare DLT-baserte
løsninger for energihandel i desentraliserte energisystemer.

Resultatene av denne studien indikerer at standardnodekonfigurasjonen var
i stand til å håndtere 30 bud per sekund, og at deling av nettverket i mindre
undernett er avgjørende for å opprettholde ytelsen og skalerbarheten til DLT-
energimarkedene. Dette er i tråd med den nåværende hastigheten av Ethereum
blockchain, men ISCP tilbyr den ekstra fordelen at små lokale energimarkeder kan
operere samtidig og forankre seg i den globale ledgeren. Med den implementerte
matchingsalgoritmen var det maksimale antallet bud per auksjonsrunde mellom
480 og 540. Avhengig av variabler som antall noder i nettverket og maskinvaren
nodene opererte på, varierte den totale utførelsestiden for å bekrefte en transak-
sjon fra 4,56 til 15,1 sekunder. Selv om dette funnet er i tråd med andre studier
relatert til DLT og kravene til energimarkedene, faller det under ytelsen som tilbys
av andre lagløsninger.

Denne studien legger grunnlaget for fremtidige undersøkelser av bruken av
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ISCP i energimarkedene. Det er behov for ytterligere forskning for å evaluere
ytelsen under ulike forhold og undersøke de potensielle fordelene med å imple-
mentere DLT i sentraliserte energimarkeder, og utforske muligheten for et desen-
tralisert estimeringssystem med flere noder for økt motstandskraft.
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Chapter 1

Introduction

Many small-scale Distributed Energy Resources (DER) in the market can affect
the current distribution networks and their dependence on weather conditions
can introduce challenges to the power system [1]. Although DERs are closer to
the point of energy consumption and can therefore reduce the strain on the grid,
the fluctuations of most DERs, such as photovoltaic (PV) panels and wind power,
can cause load balancing issues. To overcome these challenges, various technolo-
gies can be used to better monitor and manage the grid in real time. The Smart
Grid provides a means to connect and utilize these DERs, thus creating an integ-
rated energy system capable of managing the supply and demand of electricity
in an efficient manner. These technologies range from smart meters and sensors
that collect and transmit data to advanced analytic tools that can help predict
power outages and minimize losses. Solutions such as distributed energy storage
systems, demand response programs and battery technologies can help achieve
more efficient electricity generation and delivery.

Traditional centralized energy systems currently dominate energy markets,
but the increase in distributed energy sources motivates research into distributed
control systems. Distributed Ledger Technology (DLT) is an approach to storing
and sharing data among multiple data storages. Some main benefits of DLTs are
trustlessness, openness, reliability, untamperability and traceability [2]. The tech-
nology allows transactions and data to be recorded and shared between a distrib-
uted network of participants, thus reducing dependence on a centralized entity to
control the system. However, the scalability of the DLT and especially blockchain
is an escalating issue when the usage of DLT increases. Bitcoin can only process 7
transactions per second (TPS) [3], while Ethereum can process between 30 and 40
TPS [4]. IOTA is a DLT which instead of the blockchain utilizes a Directed Acyclic
Graph (DAG). The IOTA foundation introduced the IOTA Smart Contract Protocol
(ISCP) in 2021. ISCP is a framework that extends the base protocol of the IOTA
ledger by introducing a multichain environment where all chains are anchored
on the IOTA Ledger. Each chain, called a wasp chain, is a separate ledger with
smart contracts, functionally equivalent to Ethereum smart contracts. Theoretic-
ally, the ISC can scale up to hundreds of thousands of smart contract transactions

1
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per second [5].
The +CityxChange1 project aims to develop a framework and tools to cre-

ate a common energy market. The services include a whole range of architecture
levels from assets in a physical infrastructure to technology and data storage solu-
tions. +CityxChange is a European Union-funded project that aims to develop
and test new solutions for energy-efficient and sustainable cities. The project is
being led by the city of Trondheim in Norway and involves a number of part-
ners from across Europe. This thesis is in collaboration with Aneo (previously
TrønderEnergi), which is a part of the +CityxChange project. To enable running
an energy market on DLTs there is a need for storing consumption and produc-
tion information, placing bids and offers, generating contracts between buyers
and sellers, and comparing the contracts to the actual amounts consumed and
produced. Creating a decentralized platform will allow energy to be exchanged
in real time between all energy market stakeholders. In this study, the technical
feasibility of the ISCP is evaluated and compared to the current state-of-the-art
solutions related to blockchain and the possible roadblocks.

1.1 Goals and research questions

This thesis aims to present the required knowledge and current solutions to en-
sure scalability for using DLT in electricity markets. The paper aims to develop
a Local Energy Market (LEM) based on the IOTA tangle and the newly released
IOTA smart contract Protocol. A private IOTA network is set up to develop the
energy market and a wasp chain is started. Afterwards, a smart contract is cre-
ated through design and creation methodology, which enables the submission of
bids and offers, as well as the generation and verification of contracts based on
logged consumption and production. The results are evaluated, tested and com-
pared with existing literature. The advantages and disadvantages of the ISCP are
discussed, and limitations and challenges are explored. Through this study, the
following research questions are answered:

• RQ2 Is using IOTA Smart Contract Protocol (ISCP) a feasible solution?

◦ RQ1.1 Is storing data in the ledger possible within a suitable time
frame and storage possibility?

◦ RQ1.2 Can auctions be performed on the ledger?
◦ RQ1.3 Can verification of contracts be performed on the ledger?

• RQ2 Are there other roadblocks to the implementation of DLT?

1.2 Contributions

This thesis aims to support the ongoing global green energy transition by deploy-
ing software for operation and participation in local energy and flexibility markets.

1https://cityxchange.eu/
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It also adds to the limited number of studies exploring the IOTA smart contract
protocol in general, and specifically in the energy markets. In this way it contrib-
utes to researchers and developers in this field. All of the performance tests are
based on the previous version of IOTA which is outdated and does not consider the
evaluation of IOTA Smart contract functionality. Furthermore, these evaluations
mainly target the performance of the DAG and it is necessary to evaluate the IOTA
Smart Contract Protocol.

1.3 Thesis structure

Chapter 1 introduces the thesis and its motivation.

Chapter 2 presents relevant theory to understand the findings and results in
the subsequent chapters. The definition and core concepts of energy markets and
DLTs are explained, in addition to relevant studies from the previous literature
review.

Chapter 3 presents the research methodology used and its relevance to the
thesis.

Chapter 4 clarifies the architecture of the+CityxChange project and describes
the prototype development.

Chapter 5 presents the results of the research.

Chapter 6 contains a discussion of each research question in relation to the
results from Chapter 5. The results are also compared with findings from other
research.

Chapter 7 concludes the research questions and lists future work.



Chapter 2

Background Theory

Section 2.5.1, 2.5.2 and 2.6. of this chapter is based on a previous structured liter-
ature review conducted in spring 2022 [6]. While the content remains largely un-
changed, some structural and grammatical changes have been made for the purpose
of this thesis.

2.1 Smart grid

The definition of the smart grid includes a variety of different systems. Typically,
it is a system consisting of numerous components, subsystems, and functions that
are controlled by a control system. In addition to a bidirectional flow of informa-
tion, the smart grid features a bidirectional flow of energy to establish a distrib-
uted energy delivery system and enable the power grid to respond dynamically
to events. A traditional power grid transfers power from a small number of pro-
ducers to a large number of consumers, whereas a smart grid allows participants
to use tools to monitor and manage their own energy usage and even sell excess
energy back to the electrical grid. A prosumer is a term used to describe a person
or a company that both produces and consumes electricity. However, the increase
in renewable energy sources installed by end-users can have an impact on the
grid, as system operators do not have complete control over them. The Internet
of Things (IoT) has become increasingly popular in recent years, particularly in
the context of smart grids [7]. In this context, IoT devices can help to manage
the grid better by providing real-time data and analytics to help them make in-
formed decisions. By providing real-time data and analytics, IoT devices can also
help reduce wastage and promote the use of renewable energy sources.

2.2 Power trading today

TSO & DSO

Distribution System Operator (DSO) and Transmission System Operator (TSO)
are companies that play critical roles in ensuring reliable and efficient operation

4
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of an electricity grid. In Norway it is Statnett, a state-owned company, which is
the TSO responsible for the transmission of electricity over long distances. On
the other hand, Elvia is an example of a Distribution System Operator (DSO) in
Norway. and is responsible for the distribution of electricity to end-users within
specific geographic areas. The main difference between TSO and DSO is the scope
of their responsibilities. DSO focuses on distributing electricity within a specific
geographic area while TSO focuses on transmitting electricity from generation
sources to distribution networks. The position in the network is depicted in Figure
2.1. Both DSOs and TSOs are responsible for maintaining and upgrading of their
respective networks. They also manage the supply and demand of electricity and
oversee the connection of new customers or generation sources to the network.
They work together to ensure that electricity is delivered to customers safely and
efficiently.

Figure 2.1: A simplified representation of the TSO/DSO structure [6]

Energy trading

Electricity markets that rely on day-ahead and intraday trading are designed to
help balance supply and demand for electricity in real time. Nordpool1 is a com-
pany that operates the Nordic power market and is responsible for the day-ahead
and real-time trading of electricity in Norway among other things. It also facilit-
ates the trading of electricity between generators and consumers.

The day-ahead market is a market where electricity is purchased and sold for
the next day in time-specific blocks, and it is based on factors such as weather,
prices, maintenance, and forecasted demand and generation. This allows elec-
tricity generators to plan their production and consumers to plan their energy
use more efficiently. In this market, prices are determined based on supply and
demand predictions. The generator and consumer can take advantage of the day-
ahead market to lock in prices, in this way reducing the uncertainty of price volat-
ility.

The intraday market is a spot market where electricity is bought and sold on
the same day, and it is based on the actual demand and generation. Nordpool

1https://www.nordpoolgroup.com/
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offers trading in 15-minute, 30-minute and hourly time blocks to meet the needs
of different market areas. This market is used to balance the supply and demand
of electricity in real time and to respond to unexpected changes from day-ahead
trading.

2.3 Demand response and flexibility

Demand response and flexibility are related concepts that refer to ways in which
the electrical grid can be managed to balance supply and demand for electricity.
Demand response refers to programs and mechanisms that incentivize customers
to reduce or shift their electricity usage during times of high demand. The goal of
demand response is to help utilities and grid operators manage demand so that
the operators can avoid or reduce the need for additional power plants and ensure
that the grid is not overloaded. The concept of demand response was introduced
in 1987 [8], but its relevance continues to grow due to the nature of the new
energy sources such as photovoltaic (PV) panels.

Flexibility, on the other hand, refers to the ability of the grid to adjust to
changes in supply and demand in real time. This can include both changes in
supply, such as fluctuations in wind or solar power generation, and changes in de-
mand, such as variations in electricity usage by customers. The goal of flexibility
is to ensure that the grid remains reliable and resilient, even when faced with un-
certainty or disturbances [9]. To sum up, demand response is focused on shifting
or reducing customers’ usage during peak hours, whereas flexibility is the overall
ability of the grid to adjust to the changing demand and supply.

2.3.1 Local Energy markets

Local energy markets (LEMs) refer to small-scale, localized electricity markets typ-
ically operated by a distribution system operator (DSO) or other local entity. These
markets allow local energy resources, such as solar panels, wind turbines, and en-
ergy storage systems, to participate in the electricity market and sell their excess
energy to other customers in the same area. They are also typically more local-
ized and focused on serving a specific geographic area, such as a neighborhood
or community. Local Energy Markets (LEMs) provide a platform for local energy
resources so that they can participate in the electricity market. LEMs can be di-
vided into three main categories [10]. Peer-to-peer markets allow direct trading
between individuals and businesses without an intermediary agent, which en-
ables selling and buying energy from neighbours. Community self-consumption
appears when co-located energy prosumers trade their surplus energy in a market,
which allows for more efficient use of energy resources and can help to reduce the
need for expensive transmission and distribution infrastructure, by reducing the
reliance of the grid. Finally, Transactive energy (TE) is a term used for systems
that enable machine-to-machine communication and exchange energy between
coordinated participants. It is often associated with large-scale implementations



Chapter 2: Background Theory 7

which aim to improve the grid and energy availability for larger areas. Transactive
energy is a more advanced concept that combines the use of technologies such as
smart grid and distributed ledgers to enable real-time management of the elec-
trical grid.

2.4 Distributed ledger

A distributed ledger (DLT) is a consensus-based system in which duplicated and
synced data are distributed among a network of peers. In this system new inform-
ation is added to the ledger; it is then digitally signed, and afterwards replicated
across all other nodes. The immutability of data, a core principle of DLT, is main-
tained through various forms of data structures which will be explained in Section
2.7 Data Structure.

In a distributed ledger the network of peers, also known as nodes, plays a
critical role in maintaining the integrity and security of the ledger. Each node is
a computer that is connected to the network and stores a copy of the ledger. The
nodes work together to validate and process new transactions. At the same time
they are also in charge of keeping the ledger in sync. Each node, or participant,
is identified by a unique address called a public key that is generated through
the use of a private key. A private key is a secret code that is used to sign and
authorize transactions, while a public key is a code that is used to identify the
node or participant.

Bitcoin was the first cryptocurrency that used a ledger [11]. It was created
in 2009 by an individual or a group using the pseudonym Satoshi Nakamoto.
Although Bitcoin originally intended to disrupt financial markets, the decentral-
ised principles of DLT have since been applied to a wide range of fields and have
gained significant interest. Secondly, Ethereum is a decentralized, open-source
blockchain platform that enables the creation of smart contracts and decentral-
ized applications (dApps) [12]. Ethereum is currently the most widely used smart
contract platform which is built on DLT. Finally, IOTA is an open-source platform
that aims to enable secure, efficient and scalable transactions between devices on
the Internet-of-Things (IoT) network, and also support the creation of new IoT-
based applications and services. IOTA uses a different approach to the traditional
blockchain technology used by most cryptocurrencies. Instead of using a chain of
blocks to record transactions, IOTA uses a directed acyclic graph (DAG) called the
Tangle which is a data structure that allows for fast and fee-free transactions [13].

2.5 Data Structure In Distributed Ledgers

Blockchain

At its core a blockchain consists of a series of blocks containing a list of transac-
tions. The transactions are grouped together in a block, and each block is linked
to the previous block with a cryptographic hash, as seen in Figure 2.2. This creates
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a chain of blocks, which is built on top of each other and thus contains a record
of all transactions which have occurred on the network up to that point.

Figure 2.2: Blockchain data structure

DAG

Compared to Bitcoin and Ethereum, IOTA builds on a Directed Acyclic Graph
(DAG) which they call ”The Tangle”. They argue that a typical DL consists of two
distinct types of participants: those who issue transactions and those who approve
transactions. The main idea of the tangle is that if a user issues a transaction,
they must also approve other transactions. The general idea is that by approving
a transaction, one also indirectly approves all of the predecessors’ transactions.
DAG is a data structure where each transaction refers to a number of previous
transactions. A comparison with blockchain can be seen in Figure 2.3. One of the
disadvantages of blockchain is the sequential nature of the blocks, where all nodes
must reach a consensus before releasing a new block which can waste resources.
Instead of being limited to one block, the DAG offers several blocks to which new
blocks can be attached. In this way transactions are processed in parallel instead
of in sequence[14].

Figure 2.3: Blockchain vs DAG. From Central Blockchain Council of America [15]

2.5.1 Consensus Algorithms

This section is based on a previous structured literature review conducted in spring
2022 [6]. While the content remains largely unchanged, some structural and gram-
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matical changes have been made for the purpose of this thesis. In addition was the
section Adaptive Proof of Work added.

The use of consensus algorithms helps to prevent the occurrence of malicious
nodes in the network. The DL is a distributed network and may not have a cent-
ralized authority that can verify the blocks. As a consequence, the network has to
work efficiently, even with dishonest nodes. This is called the Byzantine Generals
problem [16]. The most common consensus algorithms are Proof of Work, Proof
of Stake, and Proof of Authority.

Proof of Work

Proof of Work (PoW) utilizes the workload as a safeguard to prevent malicious
nodes, which may create a disincentive for malicious actors because of the com-
putational cost. The proof of work algorithm for Bitcoin uses the previous block’s
hash in addition to the new transactions to generate a hash. The block can be
accepted when this hash is smaller than the threshold. This is essentially brute-
forcing a hash function until a solution is found. [17] estimated the task to use
approximately 45.8 TWh per year.

Adaptive Proof of Work

IOTA does not have miner fees, and it is, therefore, necessary to add a rate con-
trol mechanism to not exceed the allowed throughput based on the available re-
sources. The mechanism should stop spam attacks and malicious attacks, but not
limit the rate for honest nodes. The main idea is to count the number of messages
recently issued by a node and increase the difficulty for that node to reduce the
number of messages it is able to send with the same amount of computational
power[18].

Proof of Stake

Proof of stake was developed as an energy-saving alternative to Proof of work.
Proof of stake uses cryptocurrencies as an alternative safeguard instead of com-
putational power. Initially, Ethereum utilized the Proof of Work (PoW) consensus
algorithm to reach consensus across its network, but it has now transitioned to
a new algorithm known as Proof of Stake (PoS). This decreases computational
power and energy usage by 99.98% [19]. Instead of malicious agents having to
”invest” in computational power, they have to invest in the cryptocurrency and
stake it. A penalty can be deducted from their cryptocurrency if an invalid block is
proposed. The distribution of cryptocurrencies defines the frequency with which
a node is allowed to generate new blocks. For example, if a user has 5% of the
cryptocurrencies in the blockchain, there is a 5% chance of being the next block
creator.
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Proof of Authority

The Proof of Authority algorithm restricts the addition of blocks to the blockchain
to predetermined nodes. In the initial block of the blockchain (genesis block) au-
thorized nodes are specified and it is their responsibility to add subsequent blocks.
Since only trusted nodes can add blocks, there is no need for a computational safe-
guard against malicious nodes. It is more energy-efficient than proof-of-work since
the identities of the nodes are utilized as a deterrent, otherwise the identity of the
malicious node would be exposed.

2.5.2 Main types of distributed ledgers

This section is based on a previous structured literature review conducted in spring
2022 [6]. While the content remains largely unchanged, some structural and gram-
matical changes have been made for the purpose of this thesis.

Public Ledger

A public or permissionless ledger allows any user to join the ledger network without
restrictions on the actions available. This is the most decentralized type of ledger
and the most transparent because anyone can access prior transactions. Public
ledgers are often associated with digital currency whose value gives incentives for
participants to behave fairly and offset the costs of participating in the consensus
algorithm. Due to their decentralized nature, they are often associated with proof
of work and are a reason for criticism because of their high energy consumption.

Private Ledger

A private or permissioned ledger is an invite-only network operated by a group
of participants. The central authority determines who can join the network where
all nodes are known and trusted. The main advantage of a private ledger is that
it allows private data to be shared between trusted entities.

Consortium Ledger

A consortium ledger is a hybrid of private and public ledger. The access is invite-
only and everyone can add transactions. However, block validation is performed
by a group of pre-selected nodes and is only valid if multiple nodes verify and
sign the block. Since only pre-selected nodes are able to add blocks, there is an
inherent centralization. As fewer nodes participate in the consensus, a consortium
ledger is susceptible to attacks on central institutions.

2.5.3 Smart contracts

Smart contracts can be defined as computer protocols that facilitate, verify, and
enforce contracts between two or more parties [20]. They also mediate and mon-
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itor transactions and enforce contractual clauses. Ethereum is currently the most
widely used smart contract platform. When a smart contract is executed, data is
added, modified or removed from the distributed ledger. The smart contract is
added to the ledger by generating a transaction with the compiled code. This se-
cures the code and makes it impossible to tamper with. Once the smart contract
is deployed, it cannot be updated.

In the EVM any transaction that changes the state in the ledger has an asso-
ciated cost, paid in gas. Gas in Ethereum refers to the computational units used
to execute smart contract operations on the Ethereum Virtual Machine (EVM). It
acts as a measurement of the computational effort required to execute a specific
operation and serves as a fee paid by the contract invoker to incentivize miners
to include the transaction in the blockchain. Gas is an important mechanism in
Ethereum that helps maintain the network’s integrity by mitigating the risk of
denial-of-service (DoS) attacks and ensuring that network resources are allocated
fairly [21]. Every transaction must specify the quantity of gas willing to consume.
Each operation has a predefined cost, including database reads and writes, and
every computational step has a pre-defined cost, and the total cost of a transaction
is: Cost of transaction = gas limit * gas price.

View Call

A ”view call” is a synchronous invocation of a smart contract used to retrieve in-
formation from the ledger without modifying the state of the smart contract [5].
Since they do not modify the state, they do not require a transaction to be pos-
ted. The view is run in the context of the current state and returns the requested
information to the caller of the view.

Request Call

A ”request call” is a way to invoke a smart contract function [5]. The request can
modify the smart contract state and perform actions that would change the ledger
state. Requests are signed by the private key of the caller. An important note is
that if a view is called within a request call, the view requires gas to run.

Ethereum

Ethereum utilizes the Ethereum Virtual Machine (EVM) to execute the transac-
tions. The Ethereum Virtual Machine (EVM) is a decentralized, virtual machine
that executes smart contracts on the Ethereum network. These contracts are stored
on the blockchain and the EVM executes them when the conditions specified in
the contract are met. One of the key features of the EVM is its Turing complete-
ness which means that it can perform any computation that can be expressed in a
finite number of steps [20]. This allows developers to build various applications
on the Ethereum platform, including financial transactions, supply chain manage-
ment, and more. In addition to its ability to execute smart contracts, the EVM also
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includes features such as a memory store, a stack for storing data, and a set of
opcodes (operations codes) for performing various functions. These features en-
able the EVM to perform complex computations and execute smart contracts. The
smart contracts are written in high-level coding language, such as Solidity, and
compiled into source code.

IOTA

IOTA smart contract Protocol (ISCP) works as a Layer 2 (L2) extension on the
IOTA Ledger. [18] The concept of "Layer 2" refers to solutions built on top of a
base protocol, often called "Layer 1". Each wasp chain is run by its own set of
validator nodes. To produce a valid threshhold signature a quorum of ⌊2N/3+1⌋
validators is required to validate a set of transactions[5]. Each validator node owns
a private key which produces a partial signature. These validators agree on the
new state of the ledger and settle them on the layer 1 protocol, thereby making
the state immutable and irreversible. Layer 2 solutions take transactions off-chain
and only occasionally settle them on-chain, as seen in Figure 2.4.

Figure 2.4: Blockchain data structure

Each L2 chain has its own state and smart contracts, and that is why the Layer
1 has the ability to run multiple blockchains in parallel. Each group of validators
can control their own Layer 2 blockchain and therefore increase throughput. Each
wasp chain consists of one or more wasp nodes as depicted in Figure 2.5.

The Virtual Machine (VM) is a part of the chain responsible for state trans-
itions on the ledger. The VM includes core smart contracts and built-in interpret-
ers such as WebAssebmly ( wasm) interpreters and EVM interpreters. It supports
EVM/Solidity smart contracts and brings the development from years of imple-
mentations on Ethereum.
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Figure 2.5: Network architecture *ADD JSON-RPC*

The communication with the smart contract is performed through Remote
Procedure Call (RPC) API. This enables the Python class to interact with a network
node, and to read and write to the ledger. Using the web3.py package requires
setting up the environment to connect to the correct wasp chain and the correct
smart contract.

2.6 Previous Structured Literature Review

As mentioned previously, this section is based on a previous structured literature re-
view conducted in spring 2022 [6]. While the content remains somewhat unchanged,
this provides a summary of the findings and some structural and grammatical changes
have been made for the purpose of this thesis.

Spring 2022 was devoted to gaining knowledge on a topic of choice related to
the master’s degree in computer science at NTNU. The research goal and research
questions were as follows:

• RQ1 Acquire an overview of the field of blockchain for demand response
• RQ2 What are the current solutions for the use of blockchain in demand

response?

◦ RQ2.1 What are the current solutions to ensure scalability?
◦ RQ2.2 What are the current solutions to ensure privacy?
◦ RQ2.3 What are the current solutions to ensure security?

2.6.1 Previous Structured Literature Review

The SLR was conducted in the spring of 2022 as a preparation project whose goal
was to acquire knowledge about the research topic. The research fields for the
SLR were the emerging interest in the DLT and its relation to energy markets.
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The purpose of conducting a structured literature review was to learn about
the domain of interest. A more systematic approach has the benefit of reducing
biases in the research. Planning consists of identifying the need for the SLR, cre-
ating the research questions, and developing and reviewing the protocol for the
later processes. The search was performed in Google Scholar, which used research
databases such as ScienceDirect and IEEEXplore.

The selected query was:

"distributed ledger" AND "demand response" AND
"flexibility" AND "prototype" AND "smart grid"

The literature study aimed to find a more manageable number of studies.
Based on the selected search phrase, 177 related publications were found. Ini-
tially, the exclusion criteria (EC1-5) found in table 2.1 were used to reduce the
number of publications. The time frame of the papers ranged mainly from 2018 to
2022, and only 17 were published before 2018. Articles which appeared multiple
times in the search due to publicising them in different journals were removed to-
gether with the papers that were not accessible. Using the exclusion criteria, the
number of papers was reduced to 119. The method to identify if the papers met
the primary inclusion criteria IC1, IC2 and IC3 was to read the titles and abstracts.
The criteria are found in Table 2.1.

The secondary inclusion criteria IC5, IC6, and IC7 ensure that the papers are
related to scalability, security, and privacy implementations. The process of con-
trolling if the paper passes the secondary criteria was skim-reading through the
papers. IC3 was also used for the secondary process because after skim-reading, it
was found that some papers initially included did not have any implementation or
prototype, which greatly reduced the number of papers that satisfied the criteria.

Criteria Identification Criteria
EC1 The study done before 2018
EC2 The study not written in English
EC3 Paper without empirical evidence
EC4 The paper is not accessible or available
EC5 The study is not a duplicate
IC1 The study is in the field of distributed ledger
IC2 The study focuses on demand response
IC3 The study presents a prototype or implementation
IC4 The study ensures scalability
IC5 The study ensures security
IC6 The study ensures privacy

Table 2.1: Exclusion Criteria
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Figure 2.6: Selection process

2.6.2 Results

The previous SLR resulted in findings related to scalability, privacy and security.
A significant portion of the literature concentrated on the scalability of the DL. 10
studies were related to scalability out of 12 studies found in the preliminary study.
Second-layer solutions, aggregation of data and sharding are some of the possible
tools to utilize to ensure scalability. In addition, some papers compare the cost
associated with running on ledger technologies. The distribution of papers can be
seen in Figure 2.7. A selected subset of these studies were chosen to be included
in the background of this thesis.
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Figure 2.7: Distribution of papers related to topic.

2.6.3 Scalability

By reducing the amount of data that needs to be submitted to the blockchain, in-
cluding more transactions in a block becomes possible, ultimately reducing trans-
action delay. This approach involves sending a digital fingerprint to the blockchain
and using the immutability of the blockchain to verify the database. Implement-
ing a second-layer database can significantly increase throughput by reducing the
number of transactions submitted to the distributed ledger. However, the down-
side of a database layer is that it requires the maintenance of two systems.

Another approach to handling large amounts of data is implementing an ag-
gregation solution. This approach prevents the transmission of large amounts of
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data to the blockchain and subsequently to all other nodes, because not all nodes
require information about every consumption. Dividing the networks into inde-
pendent layers may have the benefit of reducing the dependence on a network
connection. By enabling trading in a local network, one may utilize some of the
demand response even if parts of the network are inaccessible. Aggregation may
remove verifiability and transparency, making it more difficult to trace transac-
tions back.

C. Pop et al. [22] improved scalability by proposing a scalable second-tier
approach that combines the blockchain and a NoSQL database to register data to
the blockchain less frequently while leveraging the scalability of NoSQL for off-
chain energy data. Real-time energy data is maintained outside of the blockchain
in their proposed system, and every 30 minutes, a single transaction including
all of the energy data is submitted to the blockchain. Each aggregated energy
transaction is monitored and validated against the strategy of the smart contract,
and prosumers that deviate from the original plan may receive a penalty. Their
off-chain configuration handled up to 50,000 transactions per second.

Following the same approach, C. Pop et al. [23] collects energy data and stores
the real-time data in a scalable, off-chain database. A deviation can be determ-
ined by comparing real-time data with the flexibility request. This is recorded on
the blockchain and serves as a fingerprint for the off-chain data associated with
the transaction. As only the deviation is transacted, the blockchain is freed from
maintaining the real-time data. In addition, they claim that each prosumer may
be required to send only one transaction per hour, which would significantly limit
the number of transactions.

A. Lucas et al. [24] present a proof of concept for a demand response registry
on the HyperLedger Fabric to evaluate its viability and performance. They tested
the concept with 3, 10, and 28 participants and demonstrated that the total ex-
ecution time was unaffected by the number of participants. However, execution
time increased exponentially if the number of transactions per second exceeded
32. In addition, they discovered that the number of participants and transactions
increased the probability of errors. The total execution time for 28 nodes and 64
transactions was 12 seconds. The implementation was a laboratory size, with 1
DR provider, one aggregator, and one battery storage system.

2.6.4 Cost

M. Foti and M. Vavalis [25] published at the time the first large-scale simulation
which compared a decentralized blockchain-based market with a centralized im-
plementation. They simulated up to 1000 houses and 40 producers and compared
three scenarios with different levels of decentralization. The goal was to find the
different costs based on how much was done on the DLT and if it was economic-
ally feasible. They created a blockchain network consisting of 250 nodes, where
40 of these were generators. They argued that since the power grid already relies
on regulators, there is some inherent centralization, and it is therefore suited to
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use a private Ethereum consortium blockchain. As they wanted a specific clearing
time, they used a PoA consensus algorithm. The first scenario has all the com-
putation done on the blockchain, and one particular account was responsible for
clearing the market. This resulted in a cost of $11.80 for each user per day. The
first scenario, where the computations are on-chain, provided another challenge.
The node responsible for calculating the market-clearing had an associated cost
of $4304 per day. The second one was a random account that cleared the market,
which resulted in $15.85 per day. In the third approach, the blockchain was only
used for a consensus on the transactions, while the market-clearing was computed
externally, and the cost associated was $4 per day. The cost reported was with a
clearing time of 15 minutes because a more frequent clearing time resulted in
higher costs. The third approach, where the blockchain is only used as a reference
and there is little to no computation on the blockchain was argued to be the most
secure.

2.6.5 Sharding

CEnTra is an application of sharding in blockchain proposed by S. Mitra et al. [26].
They develop a hierarchical model and extend the original sharding presented by
ChainSpace. Due to the fixed location of consumers and producers, the sharding
can consider their physical location when they are mapped to a shard because it
is more likely to transfer power to nearby nodes. A transaction containing inputs
from different shards has to lock the objects in their shard and proceed with the
execution. By preventing inter-shard communication, as few as possible objects
are locked, and a minimal amount of shard has to execute the code. One node is
selected to represent the entire location within an area. When an area has an ex-
cess or deficit of energy, the representative node can transact with other locations.
The hierarchical model enables the propagation of energy transactions between
locations, which can continue at higher levels. This allows it to propagate informa-
tion and energy differences to the different agents in a city-scale implementation,
such as consumers, transformers, sub-stations, distribution networks, and trans-
mission networks. In this way, the nodes can transact without being aware of the
energy availability of other locations. The basic random sharding in ChainSpace
increased the throughput by 59.52% compared to no sharding. Compared to the
random sharding in ChainSpace, their shard mapping increased the performance
by 39.57% for 250 inputs.

2.6.6 Consensus Algorithm

Since the inaugural Bitcoin whitepaper, the consensus algorithm has developed
and continues to grow, [27]. Consensus algorithms have a significant impact on
the throughput of the blockchain. Multiple papers claim that the PoW consensus
algorithm is not efficient enough to guarantee scalability. As stated in Table 2.2,
only one of ten articles concerning scalability utilized the PoW consensus algorithm.
The majority of articles utilized a private blockchain, which can boost throughput
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by restricting who can join the network and minimizing the processing require-
ments to secure the blockchain. The previous literature review resulted in stud-
ies for multiple ledger technologies. The technologies, consensus algorithms and
whether they were public or private are shown in Table 2.2

Report Platform blockchain Consensus
[26] ChainSpace private Other
[28] Ethereum private PoW
[22] Ethereum Private PoA
[25] Ethereum Private PoA
[24] HLF Private Other
[23] Ethereum Private PoA
[29] QuarckChain Unknown Other
[30] HLF private Other
[31] HLF Private Other
[32] Ethereum Public PoA
[33] HLF private Other

Table 2.2: Different consensus algorithms used in the related reports. HLF: Hy-
perLedger Fabric

A. Mandal [34] found in their study that some of the consensus algorithms,
which are in use, do not protect privacy. They implemented improvements to the
algorithms to prevent consumption/production data from being stored directly
on the blockchain, where everyone can read it. The goal of anonymization or
pseudonymization is to make smart meter data unlinkable to its originator. In
the paper, they found that there are some cases where it is possible to link the
smart meters to their users by comparing the pseudonym attributes with the user’s
attributes. They also found that total anonymization is not suited for electricity
providers because they need to be able to invoice the users.

2.7 Verifiability

In addition to the proposed Electron Volt Exchange (EVE) architecture for scalab-
ility by S. Saha et al. [30], they also provide a method for verifying the measured
consumption and production. They introduce a new notion of distributed meas-
urement verification to validate and cross-validate the power injected into the
system and the measured power from the sensor measurements. They focus on
the power flow between aggregators and verify the prosumer’s transacted energy
vs. the actual energy.

The second-tier solution presented by C. Pop et al. [22] also ensures that data
has not been tampered with. They present a tamper-evident registration of smart
meter data using digital fingerprinting on the off-chain sensor data to be linked to
the on-chain transactions. They altered the input energy data and saw that their
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solution could identify tampering. Afterwards, they were able to estimate the real
input value. This resulted in less than a 0.75% difference from the monitored data.
Due to the temper-evident feature, the impact on the energy forecasting process
was less than 5%.

The transparency of the blockchain is often a desired feature and makes it pos-
sible to audit and bring openness. Energy data is private information and should
not be stored on the blockchain using the prosumer’s digital identity. GDPR, which
aims to protect the personal information of users, also institutes laws one must
adhere to.

In a standard blockchain implementation, the prosumers’ monitored energy
data is published to the blockchain. Even though there is no link between the
prosumers’ address and their identity, a malicious agent can establish this rela-
tion, which is why it is called a pseudo-anonym system. C. Pop et al. [23] solve
this by proposing a zero-knowledge proof to prevent the exposure of private in-
formation in the blockchain. On top of the blockchain technology, they define a
decentralized demand response implementation. Zero-knowledge proof guaran-
tees the privacy of prosumers’ energy data. The system provides a demand request
that users attempt to fulfil. The users report the resulting demand response and if
the result is validated they can receive financial compensation.
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Research Method

3.1 Design Science Methodology

Design science is important because it provides a systematic and rigorous ap-
proach to solving complex problems and research questions. The Design prin-
ciples followed in this research were influenced by the work of [35] and [36].
Their design principles involve a structured process of identifying problems, de-
fining objectives, developing and evaluating potential solutions, and finally com-
municating the results. This process helps to ensure that the resulting artifacts
are effective, useful, and relevant to the needs of the stakeholders in a specific
context. The context may include people, businesses, organizations, and existing
technologies that are relevant to the problem. The Design science methodology
also helps to identify any potential limitations or challenges that may need to be
considered when developing an artifact. The guidelines presented by Peffers et al.
in [35] are as follows and consist of 6 steps which are described below and shown
in Figure 3.1.

20
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Figure 3.1: design principle process
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3.1.1 Activity 1: Problem Identification and Motivation

The first step was to identify the problem which needs to be solved. This research
was performed in connection with the digital economy NTNU project1 which tries
to transform the digital economy, thus allowing for changing scale and scope of
economic activities, transactions, products and services. In addition, NTNU is part
of the CityxChange project which aims to change city blocks to be energy positive
by finding solutions to utilize tools such as flexibility. The previous literature re-
view and discussions with the CityxChange project were important to identify the
task and gain motivation. The decision landed on utilizing the newly implemented
ISCP. However, the previous literature review did not result in studies related to
the ISCP or IOTA in general. It was therefore necessary to perform a new literature
review.

Refresh of state-of-the-art

The previous SLR did not yield any IOTA-related findings. Therefore, a second
SLR was necessary for finding the prior work related to IOTA. Due to the limited
number of studies related to IOTA Smart contracts, the query used for finding
articles was greatly expanded. Instead of solely focusing on energy markets, the
related studies included all implementations of IOTA smart contracts. The smart
contract protocol on IOTA is relatively new, with very few papers published related
to the topic. To focus on the smart contract implementation on IOTA, the query
”WASP” was added. Since this is a relatively new term, this greatly reduced the
number of related studies. The query used to perform the SLR was:

"IOTA" and "WASP" and "Smart Contract"

12 studies were found in the search. Since there was a very limited number of
studies, all the studies could be fully read through and there was no need for
reducing the number of studies based on title and abstract. The inclusion criteria
presented in Table 3.1 were used to eliminate studies. IC1 and IC2 ensured that
the study presented an implementation of the new ISCP. Then IC3 and IC4 ensured
that the study was either related to energy markets or performance.

IC Identification Criteria
IC1 The study focuses on IOTA Smart Contract Protocol
IC2 The study presents a prototype or implementation
IC3 The study focuses on Energy markets
IC4 The study focuses on performance

Table 3.1: Inclusion Criteria

1https://www.ntnu.edu/digital-transformation/digeco
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Results

The following two papers were selected from the literature review as they are
relevant to the topic under discussion.

C. Mullaney et al. [37] demonstrated that an IOTA wasp network was ad-
vantageous for users and enhanced transfers between prosumers. Each agent in
the microgrid was equipped with a smart meter which was responsible for fore-
casting future energy consumption. Their network consisted of three wasp chains
that could trade with each other. Each microgrid was composed of five Photovol-
taic agents and was connected to its own Wasp chain and could interface directly
with the smart contracts without affecting other microgrids. This enabled them
to utilize the layer 2 frameworks that the wasp chains offered. Consequently, the
microgrid could balance its supply and demand before querying other microgrids.
Communication with other microgrids could be done through the Layer 1 ledger.
They employed a double auction with a uniform price as the market mechanism.
They demonstrated that IOTA and ISCP used far less energy than conventional
blockchains and also showed an average of 166.41% benefit for the microgrids
and a 6.3% benefit for the consumers. The results were obtained by utilizing the
smart contract off-ledger. They ran the smart contracts off-ledger to assess the be-
nefit of the market mechanism and utilized a python script and real-world data.

J. Rosenberger et al. [38] detailed results from two industrial use cases and
experiments were presented on a private DLT network based on IOTA in the Indus-
trial Internet of Things (IIoT), focusing on the resource demands for IIoT devices
with different network setups. Two use cases were presented, where the second
use case required Smart contract functionality. The results confirmed the suitabil-
ity of IOTA for IIoT devices. Furthermore, an overview of the required resources of
the IIoT devices with different transaction rates and network sizes was provided.
An average response delay of 24 seconds and an average CPU usage of 20The
results confirm the suitability of IOTA for IIoT devices. Furthermore, an overview
of the required resources of the IIoT devices with different transaction rates and
networks sizes are given. They achieved an average response delay of 24 seconds
and an average CPU usage of 20%.

3.1.2 Activity 2: Define the objectives for a solution

It is important first to identify the problem the artifact is intended to address.
The next step is to identify the wanted outcomes , such as improving efficiency,
reducing costs, or addressing a particular challenge. Identifying specific metrics
that can be utilized to evaluate the performance might also be beneficial. Activity
1 identified the problems and laid the foundation for generating the objectives of
this paper. Research question 1, ”Is using IOTA Smart Contract Protocol (ISCP)
a feasible solution?”, was the main objective of the study. The limited number of
studies present a gap in the cross-section between energy markets and the IOTA
smart Contract Protocol. Through the discussion with Aneo, it was decided that
three possible solutions could be further looked into. This laid the basis for RQ1.1
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Is storing data in the ledger possible within a suitable time frame and storage
possibility? , RQ1.2 Can auctions be performed on the ledger? and RQ1.3 Can
verification of contracts be performed on the ledger?

3.1.3 Activity 3: Design and development

The core of design and research is the development of a new artifact that deals
with the research problems or objectives. This might involve designing and pro-
totyping of a new artifact. The artifact should be designed to perform a specific
function, and be feasible in the given timeframe with the available resources. It
should also provide utility for the intended users or stakeholders and have a mean-
ingful contribution to the research field.

Initially, it was planned to utilize the native Rust and Go implementation to
create smart contracts. However, quickly some roadblocks appeared early in the
implementation and it was decided to utilize the EVM support and the corres-
ponding Solidity implementation.

It was decided to split Research question 1 into three artifacts. These parts
build on top of each other and make it possible to test different components of
the energy market separately in relation to different use cases. These questions
are also affected by the methods used for testing and evaluating the prototype.
The design and development of the artifacts are described in Chapter 4.

3.1.4 Activity 4: Demonstration

A demonstration is an important part of design science because it validates the use-
fulness and effectiveness of the artifact. It is achieved through empirical testing
and evaluation, which can include interviews and experiments. The demonstra-
tion may be in a controlled laboratory setting or in a real-world setting to assess
its performance and impact. The design and development were supported by two
types of data generation and observations.

The smart contract will be tested in a simulated environment to ensure that
it behaves correctly under various conditions. This involves creating a variety of
test scenarios to simulate different conditions. The contract will then be executed
in the simulated environment, and the results will be observed to ensure that it
behaves as expected. This is done continuously while developing the contract.

3.1.5 Activity 5: Evaluation

The evaluation focuses on assessing the effectiveness and utility of the artifact that
was developed in the previous steps. It might involve conducting experiments or
case studies to test the artifact under different conditions, or collecting feedback
from users or experts in the field. It should be considered if it is feasible to use the
artifact in a real-world setting, including factors such as cost and ease of use.

After passing simulated testing, the smart contract will be deployed to a test
net for further testing. This involves going from unit testing to a more real-life
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scenario and running the system on multiple node count inputs to test scalability.
The first research question aims to determine the technical limitations of the solu-
tion. To evaluate this, the focus will be on five aspects of the solution: total time
used to confirm a transaction, the size of the ledger, total time used to retrieve
information from the ledger, CPU usage, and gas usage. These metrics provide a
comprehensive picture of the efficiency and scalability and help understand the
limitations and strengths of this DL platform. The success of the artifact will be
measured against the performance of other implementations on different DLTs
and in addition measured against the requirements of energy markets. The data
extracted from the testing is quantitative, and the previous research referred to in
Chapter 2.6 makes it possible to extrapolate qualitative insight based on quantit-
ative data.

The python module ”time”2 has been used to measure the transaction times.
To measure the CPU and memory usage, the ”psrecord”3 was used, a tool based
on the psutil4 library, which can retrieve information on running processes and
system utilization (CPU, memory, disks, network, sensors) in Python.

The second Research question ”Are there other roadblocks to the imple-
mentation of DLT?” is related to the limitations related to the approach and prob-
lems related to other areas. This question requires an exploration of the different
aspects of the implementation. Since design science is inherently an iteration-
based approach, different aspects of the solution will be explored, and limitations
will also be discovered during the development.

3.1.6 Activity 6: Communication

Effective communication is essential because it helps ensure that the results are
disseminated and can be used by others to solve similar problems. This study aims
to meticulously follow all the necessary steps and provide valuable insights to the
scientific community. Chapters 4., 5., 6. present both the technical aspects of the
artifact as well as its implications.

2https://docs.python.org/3/library/time.html
3https://github.com/astrofrog/psrecord
4https://github.com/giampaolo/psutil/
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Prototype development

This section will describe how the system was implemented. Firstly, it will discuss
the architecture of the +CityxChange Local Flexibility Market, before it goes into
details of the implementation. The prototype development was divided into three
iterations, where each iteration created an artifact which was tested. The first
artifact allows a user to securely log all the necessary information needed to enable
the DLT implementation. The second artifact is used to ensure the functionality
of the market maker who can facilitate trades. The third artifact is designed to
verify and validate that the correct amount of resources has been consumed or
produced based on the agreement.

4.1 +CityxChange architecture

+CityxChange is a project trying to change city blocks and districts from being
energy negative to energy-positive [39]. This process includes finding solutions
to utilize tools such as flexibility and other renewable resources. The project’s ap-
proach and solutions for establishing local Positive Energy Blocks (PEBs) are more
than just obtaining a balance between local energy consumption and production,
but rather optimising available and viable local renewable energy sources in order
to scale local PEBs to the district level. A scalable and efficient PEB is dependent
on systems and solutions being able to utilise this flexibility in order to obtain
a balance between local production/utilisation of renewables and local energy
consumption.

The traditional end-customer can be an active market participant by provid-
ing both locally generated power and utilising available flexibility in consumption.
When prosumers generate energy today, they must traditionally sell it to the DSO
since it requires information about the electricity delivered into the grid to main-
tain grid quality. As the first organization globally, +CityxChange was granted a
special permit to sell energy locally 1. These are the participants of the Local Flex-
ibility Market (LFM) [40]:

1https://www.tu.no/artikler/forst-i-verden-med-kjop-og-salg-av-strom-i-nabolaget/518324

26
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• Assets and asset owner: Energy resources which consume, and/or produce
and store energy in the market. These are often referred to as consumers,
producers or prosumers.

• Asset integrator: Integration services, ABBOPTIMAX ®, that provide com-
munication between the market operator and the asset management system.

• Trading platform: Digital service used for trading power between assets in
LFM which in the case of +CityxChange is Volue.

• Market operator: Services to support LFM operations, in this case Aneo.

The architecture and communication between the actors in the Local Flexibil-
ity market is shown in Figure 4.1

Figure 4.1: Overview of architecture

+CityxChange utilizes three market rounds and the timeframe of the different
rounds is presented in Figure 4.2.
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Figure 4.2: Timeline of different market rounds

Day-ahead

The market operator will submit the predicted net load for all assets to the market
platform (Nordpool). There is no energy trading in this round, but the nomina-
tions represent the best estimate of the load profile for the following day. Nomin-
ations consist of energy usage per hour and are submitted for the following day.
This is a part of the balancing obligation for the market operators as they integrate
LFM into the global market.

DSO trading

The day-ahead trading round forecasts the energy balance for the following day.
There is always a chance that the real energy balance may differ from this pre-
diction. As a result, +CityxChange allows the DSO to purchase flexibility from the
assets in the LFM. Keeping energy use below a certain threshold can be helped by
lowering the amount of energy needed.

Asset trading

The asset trading round means trading between assets in a specific trading win-
dow for the following timeslot or the nearest future. This gives the assets a greater
awareness of the present and anticipated production and consumption. The mar-
ket operator currently generates bidding curves for each asset for the next delivery
period and the trades can be used to transmit control signals to the asset integrator
to turn on or off certain components.
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Figure 4.3: Bidding curves for buy and sell

4.2 Specifications and architecture

An Local Flexibility Market (LFM) is a large and complex system with many act-
ors and processes. Initially, the IOTA ledger was planned to be used only as a
verification method to make the transactions immutable. Through the literature
review and discussions with Aneo and after examining the complexity of the LFM,
it became apparent that IOTA could be used to a larger extent than just a verific-
ation method. When IOTA was utilized, the platform could be extended to enable
users to store production and consumption information, place or match bids and
offers, as well as verify contracts. The proposed solution focuses on the ”asset
trading” round in the +CityxChange architecture. The interface between market
operator and its trading platform was used to create the required functions and
seamlessly integrate them into the current architecture.

The interface consists of the following functions illustrated in Figure 4.4:

• Sending bids to the platform
• Seeing all bids in the auction
• Starting and running the auction and creating the contracts
• Returning all contracts
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Figure 4.4: Current sequence diagram

As depicted in Figure 4.5 the DLT implementation can be viewed as a stan-
dalone solution that is capable of communicating with multiple providers in the
system. There are two alternative bidding methods. The first one, shown as the
dotted line Market operator - DLT in Figure 4.5, refers to the centralized initial-
ized transactions with which the market operator engages the smart contract on
behalf of the users. This permits the delegation of particular tasks to the system
operator while maintaining the immutability and trustlessness of the smart con-
tract and DLT. Additionally, this connection is needed for the Market Operator to
verify and settle the contracts.

The second one, a user-initiated transaction, permits the user to govern the
participation and execution of the smart contract in a decentralized manner. This
is shown as the dotted line Asset integrator - DLT in Figure 4.5. This connection
is also needed for the asset integrator to retrieve the contracts and the subsequent
usage for the next time period. Each alternative has its own advantages and dis-
advantages. The decentralized transaction encourages decentralization and user
autonomy, whereas the centralized transaction can enhance efficiency and scalab-
ility. The choice of method will depend on the specific use case and the acceptable
trade-offs. Currently, the bids and offers are generated from the system operator,
but since the goal of DLT is to be decentralized, both methods will be investigated.
The market operator generates and submits the bidding curves to the trading plat-
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form for each asset for the subsequent delivery period.

Figure 4.5: Overview of architecture

4.2.1 Functional requirements

To ensure the successful development of the prototype, it is essential to establish
a clear set of functional requirements. These requirements outline the essential
features and capabilities that the prototype must possess to meet its intended
goals. Additionally, they serve as a reference point throughout the development
process, helping to ensure to remain focused on building a solution that meets the
following requirements:

1. Log electricity consumption and production
2. Create a new auction round
3. Place a bid or offer
4. Generate contracts based on the bids and offers
5. Verify consumption and production compared to the contract

The requirements reflect the existing interface from the market operator, and cri-
teria 1. and 5. were added to enable verification, all of which are necessary to
create a Local flexibility market. The market operator does not have a directly
compatible interface for logging energy consumption and production to the ledger,
but this is added to the proposed solution to make sure it delivers the functions
needed to achieve the local flexibility market. The technical requirements and the
resulting sequence of actions are depicted in Figure 4.6.
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Figure 4.6: Proposed sequence diagram
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4.3 Development tools and technology stack

4.3.1 Solidity

Rust, Go, and Solidity are programming languages supported by the ISCP. After
investigating the potential of each programming language, Solidity was selected.
Solidity is a high-level, object-oriented programming language designed for smart
contracts. It is intended for the Ethereum Virtual Machine (EVM), and it draws
inspiration from C++, Python and Javascript. Solidity’s advantage is the number
of resources and documentation generated by years of Ethereum development.
Numerous Solidity tools and tutorials simplify the development process for ISCP.
By employing it for ISCP, developers may take advantage of the same capabilities
that have made Ethereum smart contracts so successful. It also allows the imple-
mentation to be tested on EVM-compatible DLTs.

4.3.2 Remix

Remix IDE is a no-setup tool for developing smart contracts. It facilitates smart
contract testing, debugging and deployment. In addition, it permits testing and
debugging on a local instance of the ledger. As a result, Remix IDE provides a use-
ful and convenient method for developing smart contracts, enabling developers
to rapidly deploy and test smart contracts prior to committing the contract to an
actual distributed ledger.

4.3.3 JSON-RPC

An application needs to be connected to a node to be able to read or write data to
or from the ledger. For this purpose, the wasp node exposes a JSON-RPC which
defines data structures and rules, and transfers the data over an HTTP socket. This
enables easier interaction between the network and is used by many libraries.

4.3.4 web3.py

Web3.py makes interacting with blockchain networks easy and convenient for
Python developers, allowing them to use the same powerful language they already
know to access Ethereum and other DLT protocols. It is an implementation of
web3.js for Python, allowing users to access Ethereum and other DLT networks
using Python code easily. It offers an API to interact with remote DLT nodes over
JSON RPC. 2.

4.3.5 Metamask

Metamask is a browser extension that in combination with Remix enables fast de-
ployment and interaction with Smart Contracts. Metamask enables users to con-

2https://github.com/ethereum/web3.py
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nect their browsers to DLT networks and provides an easy-to-use interface for
transactions, signing messages, and deploying smart contracts. Metamask makes
it easy to access and interact with decentralized applications (dApps), creating
a much more user-friendly experience than manually managing wallet keys and
connecting to the DLT network.

4.3.6 Jupyter Notebook

Jupyter Notebook is a tool that allows users to create notebooks and documents
that can contain live code, equations, visualizations, and narrative text. It is widely
used for data science and machine learning and has quickly become a valuable tool
for DLT developers who can take advantage of the same capabilities to develop
dApps. By using Jupyter Notebook, developers can interactively write and execute
code, analyze data, embed visualizations and share documents in an easy-to-use
interface.

4.4 Setup

Setting up the IOTA ledger3 and the WASP chain 4 can be a challenging effort. It is
recommended to follow the guidelines provided by the IOTA Foundation. A quick
overview of the steps is as follows:

1. Start the Docker image, which initialises the IOTA ledger
2. Initialize a wasp client and connect it to the IOTA network generated in Step

1, or the public network if requested
3. Start the Wasp node or nodes with the correct configuration
4. Deploy the wasp chain
5. Request funds from the faucet
6. Deposit funds from the L1 to L2 for transactions
7. Deploy the smart contract

a. Save the smart contract address and the ABI for the smart contract
b. Utilize the smart contract address and ABI to communicate with the

smart contract

To generate a wasp chain with multiple nodes, each node has to trust each
other. This task is done by distributing the PubKey and NetID from each node to
all other nodes which should be in the network.

wasp-cli peering info

PubKey: xx
NetID: 127.0.0.1:4000

3https://wiki.iota.org/shimmer/smart-contracts/guide/development_tools/docker_preconfigured/
4https://wiki.iota.org/shimmer/smart-contracts/guide/chains_and_nodes/installing-wasp/
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4.4.1 Interact with the Wasp chain

To interact with the wasp chain requires the web3.py package. Each wasp node
exposes a JSON-RPC to be able to communicate with the ledger. To be able to call
a smart contract, the chain address, smart contract address and ABI are required.
Here is an example of these:

1 import web3
2
3 self.w3 = web3.Web3(web3.Web3.HTTPProvider("http://IP:9090/chain/CHAINURL/evm/

jsonrpc"))
4 self.abi = ’[{"inputs":[{"internalType":"uint256","name":"_buyId","type":"uint256

"},...’
5 self.address = *SMART CONTRACT ADRESS*
6 self.contract_instance = self.w3.eth.contract(address=self.address, abi=self.abi)
7 self.chain_id = self.w3.eth.chain_id

Code listing 4.1: Parameters to interact with smart contracts

The presented code in Code Listing 4.2 is a Python function that enables the
creation, signing, and submission of a transaction to a JSON-RPC endpoint, fol-
lowed by waiting for a reply. This is an example of how to send a transaction, and
other transaction types follow the same principles.

The place_bids function takes a list of bids as input and performs the fol-
lowing steps. First, it initiates an account using the private key stored in the
”PRIVATEKEY” variable. Then, it constructs a transaction object using the buildTrans-
action method. This transaction is defined with several parameters, including the
”chainId” of the blockchain, the ”from” address of the sender, the ”nonce” value
which prevents replay attacks, and the ”gasPrice” value which is the amount of
token the sender is willing to pay per unit of gas used to process the transac-
tion. Subsequently, the transaction object is signed using the private key associ-
ated with the account. Next, the signed transaction is submitted to the network
via the send_raw_transaction method, and, lastly, the code waits for the trans-
action to be processed by the network and a receipt to be generated, using the
wait_for_transaction_receipt method.

1 def place_bids(self, bids: List[Bid]):
2 myAddress = self.w3.eth.account.from_key(*PRIVATEKEY*)
3 call_function = self.contract_instance.functions.placeMultBids(bids).

buildTransaction({"chainId": self.chain_id, "from": myAddress.address, "
nonce": self.w3.eth.getTransactionCount(myAddress.address), "gasPrice":
self.w3.eth.gas_price})

4 signed_tx = self.w3.eth.account.sign_transaction(call_function, private_key=
myAddress.privateKey)

5 send_tx = self.w3.eth.send_raw_transaction(signed_tx.rawTransaction)
6 tx_receipt = self.w3.eth.wait_for_transaction_receipt(send_tx)

Code listing 4.2: Code to generate, sign and send a transaction



Chapter 4: Prototype development 36

4.5 Access Control

Smart contract access control refers to the mechanisms and policies that determ-
ine which parties are able to interact with a smart contract and perform certain
actions. This is an important aspect of smart contract security as it ensures that
only authorized parties are able to execute functions and make changes to the
contract.

A Role-Based Access Control (RBAC) was utilized to assign specific roles for
users with the appropriate role. When a smart contract is published, the creator
is set as its owner. After initialization, one can use the changeOwner (Line 13)
function to change the owner. Specific functions in the smart contract can only be
executed by its owner, providing a secure way to handle operations on the smart
contract. This enables functions to have the onlyOwner modifier for functions
that are intended only to be accessible to the smart contract owner.

A whitelist was added to prevent bids and offers from being submitted without
permission. The list can be modified by the owner to prevent bids from unauthor-
ized agents. The owner calls the addUser function to add an user to the whitelist.
The function to add bids to an auction round uses the verifyUser modifier to en-
sure the address is allowed to place a bid or offer. In order to prevent sub-functions
from being called from external users or programs, the internal/private modifier
can be utilized only to allow the smart contract itself to call the functions.

1
2 mapping(address => bool) whitelistedAddresses;
3 address owner;
4
5 constructor(){
6 owner = msg.sender;
7 whitelistedAddresses[msg.sender] = true;
8 }
9 modifier onlyOwner() {

10 require(msg.sender == owner, "Ownable: caller is not the owner");
11 _;
12 }
13 function changeOwner(address newOwner) public onlyOwner {
14 whitelistedAddresses[owner] = false;
15 owner = newOwner;
16 whitelistedAddresses[newOwner] = true;
17
18 }
19 modifier isWhitelisted(address _address) {
20 require(whitelistedAddresses[_address], "You need to be whitelisted");
21 _;
22 }
23
24 function verifyUser(address _whitelistedAddress) public view returns(bool) {
25 bool userIsWhitelisted = whitelistedAddresses[_whitelistedAddress];
26 return userIsWhitelisted;
27 }
28
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29 function addUser(address _addressToWhitelist) public onlyOwner {
30 whitelistedAddresses[_addressToWhitelist] = true;
31 }

Code listing 4.3: Functions for access control

4.6 First Iteration

The first iteration was performed to evaluate the possibility of storing informa-
tion on the ledger. This step focused on creating the structures to enable more
complex functionality. The entire smart contract can be found in Appendix A. The
first iteration can be utilized independently of the other iterations as a part of a
verification process to verify the bids and contracts.

4.6.1 Auction

The Auction structure was the base for storing data and executing market mech-
anisms. When generating a smart contract, if not further specified, the address
used to deploy the contract is the owner of the contract. The contract owner is
allowed to start a new auction, but if there is already an auction in progress, line
14, auctions[currentAuction].finished prevents it. This was to prevent multiple
auctions from being run simultaneously. Since only one auction can be run simul-
taneously, the currentAuction specifies the current auction.

1 mapping(uint => Auction) public auctions;
2
3 uint public currentAuction = 0 ;
4
5 struct Auction{
6 uint auctionId;
7 Bid[] bids;
8 Bid[] offers;
9 Contract[] contracts;

10 bool finished;
11 uint startTime;
12 }
13 function newAuction(uint _auctionId) public onlyOwner {
14 if (auctions[currentAuction].finished currentAuction==0)
15 if( currentAuction==0 auctions[_auctionId].auctionId != 0){
16 Auction storage a = auctions[_auctionId];
17 a.auctionId = _auctionId;
18 a.finished =false;
19 a.startTime = block.timestamp;
20 currentAuction = _auctionId;
21 emit auctionStarted(currentAuction);
22 }
23
24 }
25 }
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Code listing 4.4: Auction structure and newAuction function

4.6.2 Bid

A bid is a buy or sell offer which consists of volume and price. userId is mandatory
to link the bid to the user. Since each asset can provide multiple bids, bidNr is
added. The variable isSelling, specifies if it is a buying or selling offer. A user
can place a bidding curve consisting of multiple bids. To reduce the number of
transactions, a placeBids function was added. Solidity does not support floats,
and it was decided to multiply each value with 1000, to create numbers with 3
decimal points. This is sufficient in the test scenario.

1 struct Bid{
2 uint userId;
3 uint volume;
4 uint price;
5 bool isSelling;
6 uint bidNr;
7 }

Code listing 4.5: Bid structure

4.6.3 Contract

A Contract is created whenever a seller and buyer are found to be a match for one
another. It provides the buyer and seller IDs in addition to the amount and price
agreed upon. The addition of contracts is being done to make it possible to verify
levels of consumption and production. Through the interface the market operator
requires the contract for both the seller and buyer, but to reduce the amount of
data stored on the chain, this is generated in the interface, and not stored on the
blockchain.

When the selling and buying bids are matched, a contract is generated. The
purpose of adding contracts is to enable verification of consumption and produc-
tion. The contract includes the amount of energy being traded as well as the price
per unit which is agreed on.

1 struct Contract{
2 uint buyId;
3 uint sellId;
4 uint volume;
5 uint price;
6 }

Code listing 4.6: Contract structure
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4.7 Second Iteration

The objective of the LFM is fair and equal profit distribution and volume maxim-
ization. Profits should not be affected by the order of bids. As a result, LFM seeks
to level the playing field so that all bidders have an equal opportunity to compete
for the same resources without any bidder or group of bidders being favoured.
A double-auction market is a frequently utilized market strategy where suppliers
and consumers submit bids for price and quantity. In [10], it was found that 25%
of 139 studies implemented a variant of double auction. This finding indicates
that the double auction has become a popular choice for energy markets, possibly
because of its ability to provide both buyers and sellers with a fair price.

Quantity
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Figure 4.7: Intersection of bids and offers

When a buyer places a bid, they specify the maximum price they are willing
to pay for a given amount of electricity. The seller places an offer, specifying the
minimum price they are willing to accept for a given amount of electricity. At the
end of an auction round, the market operator ends the auction, matches the bids
and offers, and finds the clearing price. The bids, bn, and offers, sn are sorted
based on price as shown below where a quicksort algorithm [41] is used:

b1 ≥ b2 ≥ ...≥ bn

s1 ≤ s2 ≤ ...≤ sn
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Priority is given to the producer with the lowest unit price and the consumer
with the highest unit price by sorting the bids. The lowest and highest prices are
matched. The pseudocode for the algorithm is presented in Algorithm 1 and the
code can be seen in Appendix A, line 272 to line 398. This trading round continues
until either the producers or consumers are depleted, or until all demands have
been satisfied. The clearing price is then determined by comparing this price to
the bids placed by buyers and offers made by sellers. The current solution estab-
lishes a single price for all contracts. This solution is fair and transparent because
all parties are charged the same price for the contract, regardless of the amount
offered. The solution also prevents unfair advantages and situations in which one
party can manipulate the market by submitting an unreasonable bid or offer.

Once the auction is finished, the assets can retrieve the contracts for their
respective user IDs and see their commitment in the auction period.

Algorithm 1 Uniform double auction

Require: n≥ 0
Ensure: y = xn

y ← 1
sor tedBids← sor tDecending(bids)
sor tedO f f er ← sor tAscending(o f f ers)
bid = sor tedBids[0]
o f f er = sor tedO f f ers[0]
N ← n
while bid ← biddersLeng th, o f f er ← o f f ersLeng th do

if bid.price ≥ sel ler.price then
if buy.quanti t y ≥ sel l.quanti t y then

generateCont ract(bid, o f f er)
o f f er.amount−= bid.amount
getNex tO f f er(sor tedO f f ers)

end if
if buy.quanti t y ≤ sel l.quanti t y then

generateCont ract(bid, o f f er)
bid.amount−= o f f er.amount
getNex tBid(sor tedBids)

end if
else

generateCont ract(bid, o f f er)
getNex tBid(sor tedBids)
getNex tO f f er(sor tedO f f ers)

end if
end while
clearingprice = lastPrice
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4.8 Third iteration

The third iteration focused on the implementation of the settlement of contracts.
When a contract between bids and offers is made, the subsequent consumption
and production data can be used to verify if the contract was fulfilled.

4.8.1 Consumption

Logging of consumption and production is provided in addition to the data related
to the auction rounds. Logging is also required to verify that the amounts specified
in the contracts are correct.

1 mapping(uint => Log[]) public logging;
2 mapping(uint => mapping(uint => Log)) public logMapping;
3 struct Log {
4 uint userId;
5 int usage;
6 bool isSelling;
7 uint timeStamp;
8 }

Code listing 4.7: Consumption and production logging

4.8.2 Verification of the contracts

When designing a system for logging and storing data on a blockchain, it is im-
portant to carefully consider the type of data structure to be used. In this case,
two different data structures were implemented to store information about energy
consumption and production. One of these data structures is a double mapping,
which is particularly useful for storing structured information that corresponds to
a specific auction round. This type of mapping allows for efficient retrieval of in-
formation based on both the auction round and the user ID. On the other hand, an
array data structure is more appropriate for logging sporadic events that may not
match the auction rounds. This type of data structure is useful when information
is logged at irregular intervals.

Once the contracts are created, both parties are anticipated to adhere to the
predetermined energy volume, and the amount of energy consumed or produced
can be compared against the promised values registered in the contract. A crucial
part of the operation is to ensure that market participants receive payment for
what they have sold or produced. If the delivered amount does not reflect the
agreed amount, the contract is not fulfilled and can be marked as such. This occurs
after the predefined market interval is elapsed. For instance, suppose a contract is
created between two users for 10 Kwh. In that case, if the seller only provides 5
Kwh, they will receive payment for that amount but must purchase the remaining
5 Kwh from the global market.

To assist with the verification, a starttime and endtime were added to the Auc-
tion structure, which also enables the auction period to be variable and not based
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on any hardcoded timeframe. This is why the function newAuction(uint _auc-
tionId) was modified to newAuction(uint _auctionId, uint _startTime, uint
_endTime)

The function VerifyContract is called with the auctionId and UserId. The func-
tion iterates through the contracts for the auction and checks whether the cor-
responding logs from the period match the agreed-upon amounts. If there is a
deviation, the function returns a flag marking the contract as unfulfilled.
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Results

5.1 Prelimenary tests

By following the procedures outlined in Chapter 4.4, the IOTA ledger and wasp
chain setup show that they are operational. The initial step in implementing this
system is to activate the hornet nodes, followed by the wasp nodes, and finally
deploy the wasp chain. Once the wasp chain has been successfully deployed, it
should be available through the Wasp Dashboard. As illustrated in Figure 5.1, the
dashboard depicts a deployed wasp chain.

Figure 5.1: Screenshot from the Wasp dashboard

The testing scenarios were conducted on a private GoShimmer network with
up to 4 nodes. The private network was achieved by utilizing the docker private
network tool in the ”private_tangle” directory of the Hornet repository 1.

When the network is running, a transaction can be sent through the JSON-RPC
to interact with the wasp chain. When a transaction is added to a block, the current
block can be explored through the wasp and hornet dashboard. Figure 5.2 shows
block #654 which refers to the previous state of the block as seen highlighted as
1 and 2. These two can be found in the tangle presented in Figure 5.3. When the
block is committed, the current state and block hash 3,4 can be found in figure
5.4. The hash on the tangle can be seen in the highligted 5.

1https://github.com/iotaledger/hornet/tree/develop/privatet angle
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Figure 5.2: Block #654 from the wasp dashboard

Figure 5.3: The message added to the tangle seen from the Hornet dashboard

Figure 5.4: The message added to the tangle seen from the Hornet dashboard
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5.1.1 Functional requirements

One critical aspect of testing the performance of the prototype is ensuring that it
meets the functional requirements that have been established in Chapter 4.2.1.
Therefore, it is essential to verify that each requirement has been fulfilled before
moving on to testing its performance. If the prototype is not verified to meet each
functional requirement, any performance issues may be attributed to missing fea-
tures or capabilities instead of technical limitations.

The debugging tool in Remix IDE was used to ensure that data structures and
functions such as adding bids and offers were correctly generated. This made
it easy to test the solution. The first tests of the matching algorithm were per-
formed with the bids presented in Figure 5.5 and Figure 5.6. The contracts were
returned as a list of tuples. The figures below give a clearer picture of the con-
nection between the bids and the contracts, where the corresponding bids and
contracts are marked in green.

Figure 5.5: First test of contract generation
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Figure 5.6: Second test of contract generation

The interface for the market operator was also tested at this stage. One of the
test scenarios consisted of matching bids and partially fulfilling some orders. In
addition, the market operator requires the contract for both the seller and buyer,
but to reduce the amount of data stored on the chain, this is generated in the
interface, and not stored on the blockchain. Figure 5.7 shows the data presented
through the market operator interface. Figure 5.8 shows the result of running the
action with 10 buyers and 1 seller. The total demand is 90 but the supply is only
50, which results in the matching of 5 of the bids with the highest price, and a
partial fill of 1.

Figure 5.7: Use +CityxChange interface
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Figure 5.8: View of bids and offers and the resulting contract through the inter-
face

The VerifyContract function was tested by performing the auction round and
logging consumption to the ledger. The first log data did not exceed the amount
specified in the contract and returned a False flag and the corresponding returned
values seen in Table 5.1 on line 1. Afterwards, another logging was performed and
the verifyContract was run again. This resulted in a return value of True and the
corresponding return values seen in Table 5.1 on line 2.

ID Fufilled buyer ID Seller ID Quantity Price Actual Sold Actual Bought
1 False 1 2 1000 1000 0 500
2 True 1 2 1000 1000 0 1000

Table 5.1: VerifyContract where the users have partially fulfilled the obligation
and after fufillment

5.2 Performance

Due to the fact that the nodes are all running on the same machine, the runtimes
mentioned below would represent the best case scenario whereas real life test-
ing would include network delays. Since the test scenarios were performed on a
private network, it was decided to utilize a spammer plugin. This adds an artificial
network load to the IOTA tangle and can simulate a more real-world scenario. The
specifications of the laptop and desktop are presented in Table 5.2.
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Desktop Laptop
CPU i9 12900k i7 7500U
Cores/threads 16/16 2/4
Memory 16GB 24GB

Table 5.2: CPU and memory specifications of systems

The bar graph presented in Figure 5.9 compares the average runtime (in
seconds) of the PlaceBids function when run on two different types of hardware:
a laptop and a desktop computer. The testing was performed by creating a thread
for each asset. The graph shows that the average runtime of the process increases
as the number of assets being processed increases. When processing 1 asset, the
average runtime on a laptop is 4.56 seconds and 4.83 seconds on a desktop, with
the laptop being slightly faster. As the number of assets increases to 10, the aver-
age runtime on a laptop increases to 6.31 seconds and on a desktop it increases to
5 seconds, suggesting a better performance of the desktop. When processing 25
assets, the average runtime on a laptop is 9.27 seconds whereas on a desktop it
is 6.92 seconds. The result shows a significant difference in performance between
the two. Finally, when processing 50 assets, the average runtime on a laptop is
9.82 seconds and on a desktop is 9.31 seconds, with the desktop showing a slightly
better performance. To sum up, the graph shows that the laptop performance is
generally slower than the desktop but with a small difference when the number
of assets is low. As the number of assets increases, the gap between the two per-
formances broadens.
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Figure 5.9: Runtime when running on different hardware

The bar graph presented in Figure 5.10 compares the average runtime (in
seconds) for running a placebids function to the ledger with 1 and 4 nodes. The
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runtimes with 4 nodes utilized a quorum of 3, meaning that 3 out of the 4 nodes
needed to agree to the proposed block. The graph shows that the average runtime
of the process increases as the number of assets being processed increases, regard-
less of the number of nodes. When processing 1 asset, the average runtime on 1
node is 4.56 seconds and 12.08 seconds on 4 nodes, with the 1 node being sig-
nificantly faster. As the number of assets increases to 10, the average runtime on
1 node increases to 6.31 seconds and on 4 nodes stays about the same, at 11.59
seconds, showing a better performance of 1 node. When processing 25 assets, the
average runtime on 1 node is 9.27 seconds and on 4 nodes it is 13.97 seconds,
showing a significant difference in performance between the two. Finally, when
processing 50 assets, the average runtime on 1 node is 9.82 seconds and on 4
nodes is 15.10 seconds, with 1 node showing a slightly better performance. All in
all, the graph shows that the 4-node performance is generally slower than 1-node
performance, and the gap between the two performances widens as the number
of assets increases.
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Figure 5.10: Runtime when different number of assets sends transactions

The relation between the amount of data present on the ledger and the runtime
to call a view function is shown in Figure 5.11. The blue line represents the time
for retrieving the last item in an array. It can be observed that as the number of
elements increases, the time taken to process them also increases. When the num-
ber of elements is low, around 100-400, the time used to process them is relatively
low, around 0.02-0.03 seconds. The time used to process the elements continues
to increase as the number of elements increases, with time used reaching 0.27
seconds at 5000 elements. The red line represents the time used to retrieve in-
formation for a Mapping.
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Figure 5.11: Time used as a function of the number of elements

To assess CPU and memory usage, the "psrecord" library was employed on a
laptop equipped with four cores. During the test, the monitor was connected to
the wasp chain process, and the test ran for around 70 seconds. The results, shown
in Figure 5.12, reveal that the CPU usage readings could reach up to 400%. The
test involved three blocks and three sets of transactions, with each set consisting
of 50 assets and placing a bidding curve of 3 bids each.

Figure 5.12: CPU and memory utilization of the wasp node on a laptop
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The storage requirements were tested using 50 assets and executing 24 auc-
tions rounds. This represented 24 hours with a time period of 1 hour. Each prosumer
submitted a bidding curve consisting of 3 bids and the resulting contracts were
also added. This resulted in an increase of the ledger size by 19 MB. The Con-
sumption log was also acquired using 50 prosumers and a 1 hour timeperiod,
which resulted in required storage of 1.71 MB.
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Figure 5.13: Gas used to perform the market matching based on number of bids
placed

The StopAuction function performs the market matching of bids and offers.
The number of bids and offers affect the amount of gas used as seen in Figure
5.13. The gas usage increased linearly, and 480 bids and offers resulted in a gas
usage of 47826394; increasing the number of bids and offers to 540 resulted in
an error, indicating that the requested operation exceeded the maximum gas limit
allowed by the Virtual Machine:

{’code’: -32000, ’message’: ’request might require
more gas than it is allowed by the VM (50000000)’}
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Discussion

The purpose of the current study was to explore the possibility of utilizing the
ISCP to provide a platform for energy markets. The results presented in Chapter
5 revealed interesting findings related to the performance of the wasp chain. This
is one of the first studies that includes performance metrics in relation to energy
market on ISCP. The discussion will be divided based on the research questions.

6.1 Is using IOTA smart contracts a feasible solution?

6.1.1 Research Question 1.1

Is logging data to the ledger possible within a suitable timeframe and storage
possibility?

The runtime of the function to submit bids varied based on two factors: the
number of assets sending transactions and the number of nodes in the network.
Additionally, the runtimes on both desktop and laptop increased with the number
of assets sending transactions. The data indicates that there was no limit to the
number of transactions the chain could handle within the test parameters presen-
ted in this study. These findings align with previous research on different DLTs,
such as the 12-second transaction time achieved in [24] with 28 nodes and 64
transactions per second, and the 15-second transaction time achieved in [37]with
5 photovoltaic agents in their microgrids. However, the scalability of DLT-based
solutions like the tested wasp chain implementation may be lower than those that
use a database as a second layer solution, as seen in studies such as [22],[23],
[30]. Consequently, future large-scale implementations using the wasp chain may
encounter similar limitations as other DLTs, highlighting the importance of limit-
ing the number of assets per wasp chain to eliminate the need for implementing
database layers.

The transaction time increased with a higher number of assets submitting
bids to the platform. Nordpool offers trading in 15-minute, 30-minute and hourly
blocks to meet the needs of different market areas. The average execution time
for a transaction was between 4.65 and 12.08 seconds for a single address placing
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bids. If the worst case transaction time is 12.08 seconds and the auction round is
15 minutes, each asset can provide around 75 bids. Hence, this seems sufficient
when assets submit bids and offers for their individual consumption and produc-
tion. Nevertheless, this can lead to complications in the setting of a centralized
provider for bids for the user. If the centralized bidder is required to add bids for
each individual user, this may cause difficulties in delivering all bids within the re-
quired timeframe. A central entity submitting bids and offers for 100 users would
require between 7.6 minutes and 20.1 minutes. This can be satisfactory for auction
rounds in the 1-hour mark, but can cause difficulties with shorter auction rounds
or more users. This can be mitigated by committing bids for multiple users simul-
taneously, but it clearly shows that the specific implementations in smart contracts
need to be taken into account.

In addition, the runtimes seem to correlate with an increase in the number of
nodes in the committee. This observation suggests that there is a trade-off between
the number of nodes and the runtime. One possible explanation for this trend is
that as the number of nodes increases, the system requires more time to reach a
consensus on the transactions. This study has some limitations as it only evaluated
the performance of 1 and 4 nodes in the network. However, the results obtained
are still meaningful and can provide insights into the performance of the system.
Furthermore, the results obtained are comparable to the findings in [38], which
evaluated 5 and 10 nodes in the network. In the case where the market operator is
responsible for all the nodes, the primary advantage of a larger number of nodes is
improved availability in the event of node disconnection. One potential direction
for future research is investigating the possibility of having each asset host its own
node, which would enable a significant increase in the number of nodes.

It should be noted that the test setup used to execute the experiments relat-
ing to the laptop runtime presented in Chapter 5 might have some limitations. As
shown in Figure 5.12, the laptop, equipped with four cores, was nearly fully util-
ized during the tests. Moreover, all the wasp chain nodes and the hornet nodes that
make up the IOTA tangle were run on the same computer. The number of cores
is related to the number of nodes in the committee, with each node assigned at
least one core. However, this factor may have influenced all results and should be
taken into consideration when analyzing the outcomes of the results.

Furthermore, it is important to note that the runtimes mentioned earlier were
conducted on a single computer and did not include network delays. To improve
this, the possibility of multiple wasp chains anchoring on the tangle makes it pos-
sible to distribute assets into different wasp chains based on their physical loc-
ation, whether it is a neighbourhood or a city district. This approach could po-
tentially benefit the wasp chain by utilizing the proximity of nodes to potentially
reduce network delays. As demonstrated in [26], sharding using the ChainSpace
Hyperledger showed improvements in throughput, indicating that further exam-
ination of this strategy for the wasp chain may be worthwhile. Additionally, this
is relevant to energy markets, as balancing energy based on location is crucial.
Therefore, the wasp chain can potentially improve its performance by utilizing
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distributed computing and sharding to optimize its network and improve its effi-
ciency.

The microgrids can be run in parallel since a group of independent wasp nodes
can control each microgrid, as shown in Figure 6.1. This allows for standalone
implementations that can be written independently of the entire network. Each
microgrid has its own instance of the wasp chain that can be called without the
knowledge of the other chains.

Another advantage of using the tangle is the independence of anchoring to the
network, unlike Layer 1 Ethereum solutions, where transactions are dependent on
network traffic. Therefore, the use of the public tangle is unlikely to impact the
transaction confirmation time. In essence, it should be noted that each microgrid
has its own performance limits, but the advantage of running them in parallel is
that the global ledger is not significantly influenced by the increase in the number
of microgrids. This means that the scalability of the system can be maintained
even as the number of microgrids grows, provided that the performance limits of
each microgrid are taken into consideration.

IOTA Ledger

Microgrid / Wasp Chain

Figure 6.1: Overview of microgrids

The storage requirements were tested using 50 prosumers and an 1-hour time
period for 24 hours. Each prosumer submitted a bidding curve consisting of 3 bids,
and the resulting contracts were also added. This resulted in an increase of the
ledger size by 19 MB. The Consumption log was also acquired using 50 prosumers
and a 1-hour time period, and this resulted in the required storage of 1.71 MB.
Extrapolating this information to a one-year period yields a storage requirement
of approximately 6.9 GB for bids and 625 MB for the consumption log. An increase
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in the number of nodes from the perspective of the wasp chain would result in the
duplication of data, whereas from the perspective of the tangle, the data is stored
off-ledger and does not significantly impact the network. It is worth mentioning
that as the system grows, additional testing and optimization may be required to
ensure efficient and effective data management.

In this project a role-based access control was implemented to control access
to adding information to the ledger. However, it should be noted that this does
not prevent access to the information on the ledger. The choice of the type of dis-
tributed ledger, whether a public or private ledger, is a tradeoff between privacy
and openness. The large amount of data generated by the microgrids can be a
privacy concern, as highlighted in the work of [23], where a malicious agent can
establish a relationship between consumer and producer data and their identity.
Due to the small size of microgrids, the possibility of establishing such relation-
ships may be increased. This can be mitigated by preventing the storage of private
information, as proposed in the work of [23] or [34]. However, using smart con-
tracts to execute market matching and contract verification can pose challenges
to encrypting or obfuscating data, as the information needs to be available to all
nodes but this could hinder the application of encryption techniques. Many solu-
tions address this issue by utilizing private networks, thus limiting the openness
of the information. The wasp chain which utilizes a private network anchoring to
the public network limits the verifiability for end-users as they only have access
to the anchor hash in the public tangle. As the wasp chain consists of key/value
pairs and does not use a blockchain, the information can be pruned, allowing for
the removal of data about customers who wish to be forgotten.

6.1.2 Research Question 1.2

Can auction round be performed on the ledger?
To ensure the integrity of the Layer 2 implementation and prevent malicious

actors, it is beneficial to include a cost associated with sending transactions, even
though it is not strictly necessary. Additionally, because the computations are dis-
tributed, optimizing code to reduce gas usage can ultimately lead to less compu-
tational power required in the network. The default gas limit per block set is 15M.
Based on the analysis of the committing of bids, it was determined that each bid
required approximately 100 000 gas. With a block time of 5 seconds, this cor-
responds to a theoretical throughput of 30 TPS and 150 bids per block. During
testing, the achieved TPS was found to be between 9.9 and 32.9, which is within
the expected range of the theoretical values. When comparing to the private net-
work utilized in [22], they had set a block time of 15 seconds and each logging
consumed 137,131 gas which resulted in 4 transactions per minute.

A simple uniform double market solution was used to match the bids and
offers. However, the bidding algorithm and the trading algorithm could be more
advanced to find a better solution, such as [37], which looks at the users and
system benefits. This was, however, not in the scope of this study. The current
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solution utilized the last traded value as the price to settle all trades, but this may
not be sufficient as the result may not be representative of the correct clearing
price.

The market matching algorithm was limited to a maximum between 480-540
bids per auction round, due to the increasing amount of computation, although
this is a limit which can be modified. Nevertheless, a transaction may use band-
width, storage and computation in arbitrary quantities. Not capping the computa-
tion may cause halting problems and result in denial-of-service attacks. Since the
definition of flexibility is that there are multiple possibilities to reduce or increase
consumption based on multiple scenarios, it may be assumed that the number of
bids per asset is more than 1. With the current setup of the wasp chain, depending
on the number of bids per asset, the number of possible assets to maintain in each
wasp chain is shown in Figure 6.1.

# of bids per asset maximum # of assets
1 480
2 240
3 160
4 120
5 96
10 48
20 25

Table 6.1: Number of assets depending on number of bids.

This adds to the issue that smart contracts are not particularly ”smart”. This
is due to the computational cost of executing complex code on a DL and because
programming languages are often restricted due to computational and security
reasons. However, it is important to be aware that complex computation on the
EVM does decrease the amount of data possible to add [41]. Thus the appropri-
ate size for the wasp network is related to the computations which are performed
on the network. The effects of increasing the gas limit per block need to be ex-
plored. However, decreasing the number of assets per wasp chain and increasing
the number of wasp chains increases the maintenance of the networks. The lim-
ited number of bids which can be processed within a smart contract emphasises
the possibility to utilize the DL as a data storage solution to verify data instead of
executing computations.

The IOTA tangle offers a significant benefit over other blockchain platforms by
being fee-less. As highlighted by [25], using the public Ethereum network can be
costly, while the IOTA network allows for anchoring the state with little to no cost.
This is a benefit since even second-layer solutions need to anchor the state on the
layer 1 ledger. Ethereum has since switched to a PoS consensus algorithm, which
reduces the computational power needed to run the network, but this does not
necessarily translate to improved scalability or reduced costs. However, it should
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be noted that the IOTA tangle may not be affected by the consensus algorithm in
the same way as Ethereum and Bitcoin, as the mechanisms for adding transactions
to the ”Tangle” are different. Although the computational requirements are lower,
the sequential nature of the blockchain layered on top of the tangle may impact the
network’s throughput. Most of the solutions found in the SLR deployed a private
ledger, but the wasp chain stands out by enabling a combination of public and
private ledgers. Keeping information private while still anchoring the state on the
public ledger makes it possible to increase trust in the network. Additionally, the
wasp chain can be transformed into a consortium network if desired. However,
this would make all information public and only restrict the ability to create and
add transactions to a selected group of participants. Such a network configuration
may be appropriate for certain use cases, but it is important to carefully consider
the trade-offs between privacy and accessibility when making such a decision.

6.1.3 Research Question 1.3

Can verification of contracts be performed on the ledger?
When working with energy markets, verification of contracts on the ledger is

an important consideration. This process involves the utilization of large amounts
of data. As a result, it is essential to consider the efficiency of information re-
trieval when implementing data structures to ensure timely and accurate contract
verification. The efficiency of retrieving information from the wasp chain depends
largely on the data structure of the stored information.

A mapping has a lookup time of O(1), which means that the retrieval time is
constant and independent of the number of elements stored in the data structure.
On the other hand, the lookup time for an array can be O(log n) or O(n), depend-
ing on whether it is sorted or unsorted. The reason for this is that a sorted array can
perform a binary search, which is more efficient than a linear search performed in
an unsorted array. If the data stored in the array is a time series, it can be assumed
to be almost sorted. In such cases, using a sorting algorithm, which has a runtime
of O(nlog n) [41], may not be necessary. Instead, a linear search through the array
may be sufficient to find the desired element. Therefore, it is crucial to evaluate
each data structure based on how the data is expected to be used. As the data in
the wasp chain is stored in a key/value pair, there is no inherent data structure
for performing searches, and it must be implemented separately. The two types
of data structure seem to have certain advantages based on the design and how
it is decided to log information. Double mapping is particularly useful for storing
structured information that corresponds to a specific auction round. This mapping
type allows for efficient retrieval of information based on the auction round and
the user ID. On the other hand, an array data structure is more appropriate for
logging sporadic events that may not match the auction rounds. This type of data
structure is useful when information is logged at irregular intervals.

As demonstrated in this study, when logging the consumption data of a single
asset every hour for a year results in 8,760 elements. Extrapolating this data to
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a 15-minute time block results in 35,040 elements and an estimated worst-case
retrieval time of 1.7 seconds. Therefore, it is advisable to keep the logging of
consumption and production to the same time frame as the auction period to
reduce the lookup time. Comparing a single log to the generated contracts is much
simpler, which greatly reduces the lookup time.

The mentioned number of elements is per asset, which raises the subject of
how the assets are divided. Dividing the components into smaller assets can im-
prove traceability and provide a more detailed view of consumption and produc-
tion. The study referenced in [22] was able to achieve 5 transactions per second
per user for up to 2000 users, which may not be feasible with the ISCP implement-
ation presented in this study. Therefore, the use of aggregation may be required
to be possible within the time frame, but this presents the problem of storing the
information outside of the blockchain. The solution may need to implement an
aggregator that combines the information to ensure that a single asset does not
exceed the maximum number of transactions per second. For example, if a build-
ing has a photovoltaic energy source, battery storage, and multiple flexible energy
consumers, they can be treated as one asset with a combined log of consumption
or production. However, since the contracts are generated per bid in the bidding
curve, keeping track of which bidding in the curve that each asset has posted may
be beneficial.

It is also important to mention that while anchoring the state on the tangle
provides immutability to the data, it does not automatically verify its accuracy or
authenticity. Therefore, an additional layer of authentication is required to ensure
that the data added to the blockchain is trustworthy [22, 30]. It is important to
understand that the immutability of data on the ledger does not guarantee its
trustworthiness and that incorrect or false data can still be added to the block-
chain. Hence, proper measures must be taken to authenticate the data before it is
added to the ledger.

6.2 Are there other road blocks for the implementation

Initially, it was planned to utilize the native Rust and Go implementation to create
smart contracts but due to some early struggle, it was decided to coose a Solidity
implementation. The ISCP is relatively new and due to this, there is limited know-
ledge available on published code. Most of the information surrounding ISCP was
quite basic and did not provide in-depth knowledge of debugging and writing
code. However, knowledge will undoubtedly improve as the technology matures.
However, the implementation currently cannot support native functions that IOTA
may offer. Furthermore, operating the wasp chain in its newly released state can
be a challenging process, which may lead to more errors.

The Solidity programming language and EVM also have their own set of chal-
lenges. Debugging a smart contract using Remix IDE is somewhat restricted, and
identifying where the transaction failed can be a difficult process. In addition,
smart contracts are immutable, meaning that any protocol for changing the con-
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tract must be established beforehand. Any errors within the smart contract could
have significant effects on the system and would be difficult to repair due to the
irreversible nature of the contract. However, by using a blockchain-based solu-
tion, it is possible to save the state of the data before errors occur, allowing for
the system to be restored to a previous state if needed.

In the current regulatory framework, the DSO controls the electricity market as
they are responsible for the grid. The current goal of the system operator is to keep
the grid operational and provide benefits for all users on the network. However,
regulatory changes must occur to enable users to play a more active role in trading
by utilizing DLTs. Current regulations do not favour individual independence [42].
The core of DLT lies in establishing mutual trust in decentralized and autonomous
systems. However, the number of nodes and the number of responsible entities
dictates how decentralized the solution is, and this has some caveats in an energy
market where the DSO is solely responsible for all the nodes. In addition, the
proposed system in its current state has a centralized estimation algorithm, which
may provide a single point of failure and can be particularly concerning. However,
even with centralized estimation, multiple nodes may aid the system if one or a
few nodes lose connection.



Chapter 7

Conclusion and future work

This study has presented the required knowledge and current solutions to ensure
scalability for using DLT in local flexibility markets. Additionally, the technical
feasibility of an ISCP solution has been explored and compared to current state-
of-the-art solutions and the ISCP scalability potential has been illuminated.

This study is a significant contribution to the field of decentralised energy mar-
kets as it is one of the first to examine the potential of ISCP. The findings indicate
that additional research is required to thoroughly investigate the potential of this
field and to develop new technologies and applications based on the preliminary
investigations.

To facilitate an energy market on DLTs, consumption and production data must
be stored, bids and offers must be placed, contracts must be generated between
buyers and sellers, and contracts must be compared to actual consumption and
production. However, a decentralised energy market does not inherently require
all three aspects to operate. Throughout the three iterations, the system met the
defined requirements; however, the evaluation of the prototype revealed some
limitations.

The design science approach was used to develop and evaluate the solution.
The methodology involved the creation of an artifact which was rigorously evalu-
ated through various methods. Through this approach, the thesis provides a know-
ledge contribution in the IOTA/energy markets field. In order to create the energy
market, a private IOTA network was set up and a WASP chain was launched, fol-
lowed by the development of a smart contract.

The solution has satisfied the main requirements of the project and proof of
concept has been developed. However, the system has not been tested by other
developers or in a real-life test, so it is difficult to conclude that the solution will
work in real life. Despite the limitations, findings from the present study can help
understand practices and develop approaches to the new ISCP. The results of this
study may be useful in the scope of solutions and help DSO become more aware
of possibilities to include the users to take a larger role in the energy market.

The ability to divide the network into multiple smaller chains appears ad-
vantageous and can assist in the scalability of the solution, thus further reducing
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its performance requirements. The performance of the proposed solution can be
divided into two categories: limitations imposed by the design of the ledger tech-
nologies and limitations imposed by the optimization of the smart contract.

Is storing data in the ledger possible within a suitable time frame and storage
possibility?

RQ 1.1 is mostly influenced by the performance limitations of the design of the
DLT. Depending on variables such as the number of nodes in the network and
the hardware the nodes were operating on, the total execution time to confirm a
transaction ranged from 4.56 to 15.1 seconds. This is consistent with other stud-
ies regarding other single-layer solutions and appears to meet the requirements
of energy markets, but it does not match the performance of other second-layer
solutions. The theoretical 30 TPS for bids and the measured 32.9 to 9.9 is based
on multiple variables and it is difficult to specify the time complexity of the solu-
tion based on the number of assets and nodes because the scope of the study was
rather small. However, it is worth noting that this performance applies to each
Local Flexibility market. This significantly increases the scalability by allowing
each Local flexibility market to process close to the amount that the global public
Ethereum network can handle.

However, one could argue that distributed ledger technologies are essentially
storage solutions that have no bearing on the authenticity of the represented data.
The DLT guarantees the verifiability of all data sent to it. However, inaccurate
data remains inaccurate on the DLT. A system deploying DLTs would require a
method for authenticating bids, offers, and, most importantly, consumption and
production data.

Can auctions be performed on the ledger?

RQ1.2 was mostly influenced by the performance limitations of the smart con-
tract. With the implemented matching algorithm, the maximum number of bids
per auction round was between 480 and 540. This is a limit that can be altered by
modifying the configuration of the wasp chain, and various matching algorithms
may use varying amounts of gas and permit fewer or more bids per auction round,
but this must be tested further. A simplistic uniform double auction was used in
the setup. However, due to time constraints, the platform implementation took
priority. As the platform has now been verified, further development can be con-
ducted to examine alternative market clearing algorithms.

Can verification of contracts be performed on the ledger?

RQ1.3 was affected by both the performance limitations of the smart contract and
by the performance limitations of the design of the DLT. The structures generated
by the smart contract have a significant impact on performance. This was demon-
strated in this thesis through a relatively straightforward comparison between an
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Array and a Mapping (Hash Map), but the comparison shows that a database solu-
tion can have a significantly greater number of functions than smart contracts. In
addition, the proposed solution is limited in comparison to database layer solu-
tions based on the number of assets and the frequency with which information is
stored.

Are there other roadblocks to the implementation of DLT?

Although the implementation of native functions offered by IOTA has been chal-
lenging due to the limited knowledge about coding for the relatively new ISCP,
continuous improvement efforts are expected to overcome these difficulties as
knowledge about ISCP expands. Solidity and the EVM implementation on the
wasp chain were utilized early on to address the challenge of programming in
Rust/Go.

In addition, the necessity of implementing DLT in a centralized energy market,
where the DSO is responsible for all nodes, raises questions about establishing mu-
tual trust in decentralized systems. Furthermore, the current centralized system
may be vulnerable to a single point of failure, especially if energy consumption
estimation remains centralized. To address this issue, a decentralized estimation
system with multiple nodes could potentially provide greater resilience to the sys-
tem in the event of a node failure. As DLT continues to evolve, it offers promising
solutions for creating more resilient and trustworthy decentralized energy sys-
tems.

7.1 Future work

This study provides useful insights into the potential use of the ISCP framework
in energy markets, and there are still many areas for future work. Nevertheless,
this study serves as an excellent foundation for the future development of energy
markets on ISCP. In particular, it is crucial to investigate the performance of the
wasp chain, which serves as the foundation of the energy market platform. While
the experiments conducted in this study were informative, further comprehensive
testing is necessary to gain a more in-depth understanding of the capabilities and
limitations of the wasp chain. Further investigation of the wasp chain performance
and its impact on energy markets is necessary to identify areas for optimization
and improvement. In particular, it will be important to evaluate the performance
of the wasp chain under different conditions, such as high transaction volumes
or higher number of nodes. In addition, there needs to be further investigation
of the potential benefits of implementing decentralized bidding algorithms. This
will help to identify potential bottlenecks or areas for optimization, which can in
turn improve the efficiency and reliability of the energy market platform.
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Appendix A

Additional Material

1 // SPDX-License-Identifier: MIT
2
3 pragma solidity ^0.8.13;
4 contract Mapping {
5 mapping(uint => Auction) public auctions;
6 uint[] auctionIds;
7 mapping(address => bool) whitelistedAddresses;
8 uint public currentAuction = 0 ;
9

10 address public owner;
11 struct Bid{
12 uint user;
13 int quantity;
14 int price;
15 bool isSelling;
16 int bidNr;
17 }
18 struct Auction{
19 uint auctionId;
20 Bid[] bids;
21 Bid[] offers;
22 Contract[] contracts;
23 bool finished;
24 uint startTime;
25 uint endTime;
26 Clearing clearing;
27 }
28 struct Contract{
29 uint buyId;
30 uint sellId;
31 int quantity;
32 int price;
33 int actualSold;
34 int actualBought;
35 }
36 struct Clearing {
37 int clearingQuantity;
38 int clearingPrice;
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39 }
40
41 mapping(uint => Log[]) public logging;
42
43 struct Log {
44 uint userId;
45 int usage;
46 bool isSelling;
47 uint timeStamp;
48 }
49
50
51 mapping(uint => mapping(uint => Log)) public logMapping;
52 uint[] timeStamps;
53
54 function logUsageMapping(uint userid, int usage, bool isselling, uint timestamp

) public {
55 logMapping[userid][timestamp]=(Log(userid, usage,isselling,timestamp));
56 }
57
58 function getUsageMap( uint userId, uint timeframe) public view returns (Log

memory log){
59 return logMapping[userId][timeframe];
60
61 }
62 function getUsage( uint userId, uint timeframe) public view returns (Log memory

log){
63 for (uint i=0;i<logging[userId].length;i++){
64 if (logging[userId][i].timeStamp == timeframe){
65 return logging[userId][i];
66 }
67
68 }
69 return Log(0, 0,false,0);
70 }
71 function getUsageInv( uint userId, uint timeframe) public view returns (Log

memory log){
72 for (uint i=logging[userId].length;i>=0;i--){
73 if (logging[userId][i].timeStamp == timeframe){
74 return logging[userId][i];
75 }
76
77 }
78 return Log(0, 0,false,0);
79 }
80
81 function logUsage(uint userid, int usage, bool isselling, uint timestamp)

public {
82 logging[userid].push(Log(userid, usage,isselling,timestamp));
83 //check if
84 }
85 function logUsages(Log[] memory _logs) public {
86 for (uint i=0;i<_logs.length;i++){
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87 logging[_logs[i].userId].push(Log(_logs[i].userId, _logs[i].usage,_logs
[i].isSelling,_logs[i].timeStamp));

88 }
89 //check if
90 }
91 function logUsagesMapping(Log[] memory _logs) public {
92 for (uint i=0;i<_logs.length;i++){
93 logMapping[_logs[i].userId][_logs[i].timeStamp]=(Log(_logs[i].userId,

_logs[i].usage,_logs[i].isSelling,_logs[i].timeStamp));
94 }
95 }
96 constructor(){
97 owner = msg.sender;
98 whitelistedAddresses[msg.sender] = true ;
99 }

100 function changeOwner(address newOwner) public onlyOwner {
101 owner = newOwner;
102 whitelistedAddresses[newOwner] = true;
103
104 }
105
106 function getCurrentAuction() public view returns (uint current){
107 return currentAuction;
108 }
109 function auctionFinished() public view returns (bool finished){
110 return auctions[currentAuction].finished;
111 }
112 modifier onlyOwner() {
113 require(msg.sender == owner, "Ownable: caller is not the owner");
114 _;
115 }
116 modifier isWhitelisted(address _address) {
117 require(whitelistedAddresses[_address], "You need to be whitelisted");
118 _;
119 }
120
121 function verifyUser(address _whitelistedAddress) public view returns(bool) {
122 bool userIsWhitelisted = whitelistedAddresses[_whitelistedAddress];
123 return userIsWhitelisted;
124 }
125
126 function addUser(address _addressToWhitelist) public onlyOwner {
127 whitelistedAddresses[_addressToWhitelist] = true;
128 }
129 event auctionStarted(uint _auctionId);
130 event auctionStopped(uint _auctionId);
131
132 function newAuction(uint _auctionId, uint startTime, uint endTime) public

onlyOwner {
133 if (auctions[currentAuction].finished || currentAuction==0){
134 if( currentAuction==0 || auctions[_auctionId].auctionId == 0){
135 Auction storage a = auctions[_auctionId];
136 a.auctionId = _auctionId;
137 a.finished =false;
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138 a.startTime = startTime;
139 a.endTime = endTime;
140 currentAuction = _auctionId;
141 emit auctionStarted(currentAuction);
142 }
143
144 }
145 }
146
147 function stopAuction() public onlyOwner {
148 if(!auctions[currentAuction].finished){
149 auctions[currentAuction].finished = true;
150 computeClearing();
151 emit auctionStopped(currentAuction);
152 }
153
154 }
155
156 function getAuction(uint _auctionId) public view returns (uint auctionId/*,
157 uint quantity,
158 uint price,
159 bool isSelling,
160 uint bidNr*/) {
161 // Mapping always returns a value.
162 // If the value was never set, it will return the default value.
163 return auctions[_auctionId].auctionId;
164 }
165 function placeMultBids(Bid[] memory _bids) public isWhitelisted(msg.sender){
166 if (!auctions[currentAuction].finished){
167 for (uint i=0;i<_bids.length;i++){
168 if(_bids[i].isSelling){
169 auctions[currentAuction].offers.push(_bids[i]);
170 }else{
171 auctions[currentAuction].bids.push(_bids[i]);
172 }
173 }
174 }
175 }
176 function placeBid(uint _user, int _quantity, int _price, bool _isSelling, int

_bidNr) public isWhitelisted(msg.sender){
177 if (!auctions[currentAuction].finished){
178 if(_isSelling){
179 auctions[currentAuction].offers.push(Bid(_user,_quantity, _price,

_isSelling,_bidNr));
180 }else{
181 auctions[currentAuction].bids.push(Bid(_user,_quantity, _price,

_isSelling,_bidNr));
182 }
183 }
184 }
185
186 function getBids(uint _auctionId) public view returns (Bid[] memory){
187 return auctions[_auctionId].bids;
188 }
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189
190 function getOffers(uint _auctionId) public view returns (Bid[] memory){
191 return auctions[_auctionId].offers;
192 }
193
194 function verifyContract(uint _auctionId, uint _userId) public view returns (

bool, Contract[] memory){
195 int amountBought;
196 int amountSold;
197 Log[] memory logForUser;
198 logForUser = logging[_userId];
199 Contract[] memory contractsforUser = auctions[_auctionId].contracts;
200 bool fulfilled = false;
201 for (uint i=0;i<logging[_userId].length;i++){
202 if (logging[_userId][i].timeStamp > auctions[_auctionId].startTime &&

logging[_userId][i].timeStamp < auctions[_auctionId].endTime){
203 //if buyid or sellid == userid -> save
204 //logForUser.push(logging[_userId][i])
205 if (logging[_userId][i].isSelling){
206 amountSold += logging[_userId][i].usage;
207 }
208 else {
209 amountBought += logging[_userId][i].usage;
210 }
211
212 }
213 }
214 for (uint i = 0; i < contractsforUser.length; i++) {
215 if (contractsforUser[i].buyId == _userId) {
216 if (amountBought >= contractsforUser[i].quantity) {
217 contractsforUser[i].actualBought = contractsforUser[i].

quantity;
218 amountBought -= contractsforUser[i].quantity;
219 fulfilled = true;
220 }else{
221 contractsforUser[i].actualBought = amountBought;
222 amountBought = 0;
223 fulfilled = false;
224 }
225 } else if (contractsforUser[i].sellId == _userId) {
226 if (amountSold >= contractsforUser[i].quantity) {
227 contractsforUser[i].actualSold = contractsforUser[i].

quantity;
228 amountSold -= contractsforUser[i].quantity;
229 fulfilled = true;
230 }else{
231 contractsforUser[i].actualSold = amountSold;
232 amountSold = 0;
233 fulfilled = false;
234 }
235 }
236 }
237 return (fulfilled, contractsforUser);
238 }
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239
240
241 function addContract(uint _buyId, uint _sellId, int _quantity, int _price)

public isWhitelisted(msg.sender){
242 if (auctions[currentAuction].finished){
243 auctions[currentAuction].contracts.push(Contract(_buyId,_sellId,

_quantity,_price,0,0));
244
245 }
246 }
247 function addMultContract(Contract[] memory _contracts) public isWhitelisted(msg

.sender){
248 if (auctions[currentAuction].finished){
249 for (uint i=0;i<_contracts.length;i++){
250 auctions[currentAuction].contracts.push(_contracts[i]);
251 }
252 }
253 }
254 function getContracts(uint _auctionId) public view returns (Contract[] memory){
255 return auctions[_auctionId].contracts;
256 }
257 function getContractsForUser(uint _auctionId, uint _user) public view returns (

Contract[] memory){
258 Contract[] memory contracts2 = new Contract[](auctions[_auctionId].

contracts.length);
259 for (uint i=0;i<auctions[_auctionId].contracts.length;i++){
260 if (auctions[_auctionId].contracts[i].buyId == _user || auctions[

_auctionId].contracts[i].sellId == _user){
261 contracts2[i] = (auctions[_auctionId].contracts[i]);
262 }
263 }
264 return contracts2;
265 }
266
267 function getClearing(uint _auctionId) public view returns (Clearing memory){
268 return auctions[_auctionId].clearing;
269 }
270
271
272 function quickSortDescending(Bid[] storage arr, int left, int right) internal {
273 int i = left;
274 int j = right;
275 uint pivotIndex = uint(left + (right - left) / 2);
276 int pivot = arr[pivotIndex].price;
277 while (i <= j) {
278 while (arr[uint(i)].price > pivot) i++;
279 while (arr[uint(j)].price < pivot) j--;
280 if (i <= j) {
281 Bid memory a = arr[uint(i)];
282 arr[uint(i)] = arr[uint(j)];
283 arr[uint(j)] = a;
284 i++;
285 j--;
286 }
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287 }
288 if (left < j)
289 quickSortDescending(arr, left, j);
290 if (i < right)
291 quickSortDescending(arr, i, right);
292 }
293
294 function quickSortAscending(Bid[] storage arr, int left, int right) internal {
295 int i = left;
296 int j = right;
297 uint pivotIndex = uint(left + (right - left) / 2);
298 int pivot = arr[pivotIndex].price;
299 while (i <= j) {
300 while (arr[uint(i)].price < pivot) i++;
301 while (arr[uint(j)].price > pivot) j--;
302 if (i <= j) {
303 Bid memory a = arr[uint(i)];
304 arr[uint(i)] = arr[uint(j)];
305 arr[uint(j)] = a;
306 i++;
307 j--;
308 }
309 }
310 if (left < j)
311 quickSortAscending(arr, left, j);
312 if (i < right)
313 quickSortAscending(arr, i, right);
314 }
315 function getPriceCap() pure private returns(int){
316 return 9999;
317 }
318 function computeClearing() public{
319 int demand_quantity = 0;
320 int supply_quantity = 0;
321 int buy_quantity = 0;
322 int remaining_sell = 0;
323 int remaining_buy = 0;
324 uint i = 0;
325 uint j = 0;
326 Clearing storage clearing = auctions[currentAuction].clearing;
327 Bid[] storage bids = auctions[currentAuction].bids;
328 Bid[] storage offers = auctions[currentAuction].offers;
329
330 //sort arrays, consumer’s bid descending, producer’s ascending
331 if (bids.length != 0){
332 quickSortDescending(bids, 0, int(bids.length - 1));
333 }
334 if (offers.length != 0){
335 quickSortAscending(offers, 0, int(offers.length - 1));
336 }
337 if(bids.length > 0 && offers.length > 0){
338
339 Bid memory buy = bids[i];
340 Bid memory sell = offers[j];
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341 remaining_sell = sell.quantity;
342 remaining_buy = buy.quantity;
343 while(i<bids.length && j<offers.length && buy.price>=sell.price){
344 if (remaining_buy > remaining_sell){
345 remaining_buy -= remaining_sell;
346 auctions[currentAuction].contracts.push(Contract(buy.user,

sell.user, remaining_sell, buy.price,0,0));
347 ++j;
348
349 if(j < offers.length){
350 sell= offers[j];
351 remaining_sell = sell.quantity;
352 }
353 }
354 else if (remaining_buy < remaining_sell){
355 remaining_sell -= remaining_buy;
356 auctions[currentAuction].contracts.push(Contract(buy.user,

sell.user, remaining_buy, sell.price,0,0));
357
358 i++;
359
360 if(i < bids.length){
361 buy = bids[i];
362 remaining_buy = buy.quantity;
363 }
364 }
365 else{
366 clearing.clearingQuantity = buy_quantity;
367 auctions[currentAuction].contracts.push(Contract(buy.user,

sell.user, buy.quantity, buy.price,0,0));
368
369 i++;
370 j++;
371
372 if(i < bids.length){
373 buy = bids[i];
374 remaining_buy = buy.quantity;
375
376 }
377
378 if(j < offers.length){
379 sell= offers[j];
380 remaining_sell = sell.quantity;
381 }
382
383 }
384
385 }
386 clearing.clearingQuantity = (demand_quantity > supply_quantity) ?

demand_quantity: supply_quantity ;
387 if (i == bids.length || j == offers.length) {
388 clearing.clearingPrice = (i == bids.length) ? offers[j].price :

bids[i].price;
389 } else {
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390 clearing.clearingPrice = (bids[i].price > offers[j].price) ?
bids[i].price : offers[j].price;

391 }
392
393 }
394 for (uint k=0;k<auctions[currentAuction].contracts.length;k++){
395 auctions[currentAuction].contracts[k].price = clearing.

clearingPrice;
396 }
397
398 }
399
400
401 }

Code listing A.1: Contract.sol




	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Goals and research questions
	Contributions
	Thesis structure 

	Background Theory
	Smart grid
	Power trading today
	Demand response and flexibility
	Local Energy markets

	Distributed ledger
	Data Structure In Distributed Ledgers
	Consensus Algorithms
	Main types of distributed ledgers
	Smart contracts

	Previous Structured Literature Review
	Previous Structured Literature Review
	Results
	Scalability
	Cost
	Sharding
	Consensus Algorithm

	Verifiability

	Research Method
	Design Science Methodology
	Activity 1: Problem Identification and Motivation
	Activity 2: Define the objectives for a solution
	Activity 3: Design and development
	Activity 4: Demonstration
	Activity 5: Evaluation
	Activity 6: Communication


	Prototype development
	+CityxChange architecture
	Specifications and architecture
	Functional requirements

	Development tools and technology stack
	Solidity
	Remix
	JSON-RPC
	web3.py
	Metamask
	Jupyter Notebook

	Setup
	Interact with the Wasp chain

	Access Control
	First Iteration
	Auction
	Bid
	Contract

	Second Iteration
	Third iteration
	Consumption
	Verification of the contracts


	Results
	Prelimenary tests
	Functional requirements

	Performance

	Discussion
	Is using IOTA smart contracts a feasible solution?
	Research Question 1.1
	Research Question 1.2
	Research Question 1.3

	Are there other road blocks for the implementation

	Conclusion and future work
	Future work

	Bibliography
	Additional Material

