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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (PhD) at the Norwegian University of Science and Techno-
logy (NTNU). The work performed during this PhD was carried out at the Depart-
ment of Chemical Engineering from November 2018 to December 2022, under the
supervision of Prof. Nadav Bar (supervisor, Department of Chemical Engineering)
and Prof. Lars Imsland (co-supervisor, Department of Engineering Cybernetichs).

The continuously growing increase in biotechnological processes for production
of fine and bulk chemicals, results in the necessity of more competitive solutions
to enable producers surviving in the markets. Process control is therefore one
of the key enablers for improving performance while maintaining quality. The
main motivation of this work is the investigation and application of different state
estimators (i.e. soft sensors). This is important to infer real-time information on the
unmeasured variables of interest (i.e. metabolite concentrations) by using all the
available information (i.e. output measurements), ensuring the possibility of state-
feedback and therefore enabling the implementation of control actions, to achieve
nearly-optimal performance. The original duration of the project was three years,
but then extended to four years for student supervision and technical support in the
laboratory.

The project was part of the iFermenter project, which has received funding from
the Bio Based Industries Joint Undertaking (JU) under the European Union’s Ho-
rizon 2020 research and innovation programme. The main purpose of iFermenter
was to fully exploit sugar residuals from pulp industry, delivering strains that can
handle sugar residual streams mixtures of carbons not commonly consumed by
bacteria, and handle the inhibitors contained in the raw materials. Additionally, the
project aimed to develop and implement control algorithms to enhance the auto-
mation in biotechnological processes, with the goal of creating affordable add-on
to bioreactors, easily transferable to other high value products by minimal invest-
ments. The consortium consisted of experts in different fields like microbiology,
synthetic biology, metabolic engineering, process system engineering, and envir-
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onmental engineering.

During my PhD studies I had the privilege to support the development of the Cy-
berGenome LAB at the Department of Chemical Engineering (IKP) at the Nor-
wegian University of Science and Technology (NTNU), transferring knowledge to
students. Additionally, I had the opportunity to work together with colleagues to
bridge the application of control algorithms in an experimental set-up. This was
achieved by a tight cooperation within the Process System Engineering group at
the Department of Chemical Engineering (IKP) and together with the Department
of Engineering Cybernetics (ITK). The cooperation resulted in the publications
which are part of this thesis.

This research work was supported within the iFermenter project from the Bio
Based Industries Joint Undertaking (JU) under the European Union’s Horizon
2020 research and innovation programme, grant agreement 790507. The JU re-
ceives support from the European Union’s Horizon 2020 research and innovation
programme and the Bio Based Industries Consortium.

Declaration of Compliance

I hereby declare that the thesis is an independent work in agreement with the exam
rules and regulations of the Norwegian University of Science and Technology
(NTNU). This work is original and my own work, and the sources I used were
properly cited and acknowledged.

Øvre Årdal, 12th April 2023
Andrea Tuveri
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Abstract

In the face of growing competition and soaring energy prices, the biotechnological
industry has also identified, as other chemical industries did before, the need for
on-line process optimization as a strategic solution. However, these solutions are
dependent on full-state feedback, which is often not available in an industrial set-
ting. Therefore, it becomes necessary to implement state estimators to combine
the mechanistic knowledge, usually obtained through unstructured Monod-like
models, and available measurements. This thesis therefore investigates the im-
plementation of three different state estimators to monitor a Fed-batch cultivation
of Corynebacterium glutamicum using experimental data.

In a real application, one of the limiting factors in the application of state estim-
ators is the lack of full knowledge on the system dynamics, often caused by lack
of full knowledge and changes in metabolism. Indeed, the unmodelled dynamics
can cause a significant difference between the system equations used for the pre-
dictions and the real process (i.e. structural plant-model mismatch). In this thesis,
we presented several approaches to handle these uncertainties using experimental
data.

Firstly, to handle the system uncertainty, we considered Bayesian state estimators.
More specifically, because of the need of avoiding negative concentrations, we
considered the constrained form of Extended (EKF) and Unscented (UKF) Kalman
filters and the Moving Horizon Estimator (MHE).

Secondly, to properly take the structural plant-model mismatch into account, we
implemented the state estimators with a variable and state dependent process noise
covariance matrix. Additionally, to handle the changes in metabolism which were
not included in the model dynamics, we proposed the possibility to change the
tuning parameters for the process parameters in a batch-to-batch fashion. This
improved the estimation accuracy, resulting in the possibility of monitoring the
unmeasured state continuously.

Thirdly, to further improve the estimation accuracy, we exploited the ability of

ix
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MHE to easily handle constraints to implement model adaptation through the use
of combined state and parameter estimation. To deal with the ill-posed problem
that arises by the addition of the parameters as optimization variables, we imple-
mented and compared two different regularization methods. Although the inclu-
sion of parameter adaptation resulted in improved estimates, it still suffered from
limitations due to the missing dynamics.

Fourthly, considering the possibility to use infrequent and delayed measurements
to improve the real-time information, we investigated the effect of different ap-
proaches to include them. This improved the estimation accuracy, however the
results showed that different approaches must be considered depending on the ap-
plication and quality of measurements.

Lastly, to summarise our results, we discussed them in the context of the available
literature. As the results also showed, there is no single solution to address all
the challenges, and the different approaches have their advantages and limitations.
It is therefore necessary for the practitioner to have a clear understanding of the
specific application to then find the most suitable approach to select.
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1 | Introduction

"I believe that no one who is familiar, either with
mathematical advances in other fields, or with the

range of special biological conditions to be
considered, would ever conceive that everything

could be summed up in a single mathematical
formula, however complex."

RONALD A. FISHER (1890-1962)
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2 Introduction

This chapter opens the work by introducing the motivation. Consecutively, the
contributions and publications related to the research objectives are presented and
the overall structure outlined.

1.1 Motivation
Biotechnological processes have acquired large momentum in the last decades,
for production of fine and bulk chemicals. Therefore, improving their perform-
ance while maintaining quality has become of paramount importance for ensuring
competitive industrial applications. Improvements in performance have been tra-
ditionally achieved through application of [1–3]:

• Genetic Engineering: creating genetically modified organisms (GMO), by
altering the DNA makeup of organisms [4].

• Synthetic Biology: using the tools developed and applied in genetic en-
gineering to design, or redesign, genetic-circuits in the organisms. This is
done to make them produce the desired substances, usually not present in
the natural world [1, 3, 5].

• Metabolic Engineering: optimizing regulatory processes within the or-
ganisms to increase the production/consumption of the desired substances,
therefore aiming to the optimal functioning of metabolic pathways [1, 3–5].

Within the biotechnological industry, pharmaceutical companies have seen a solid
growth in the last two decades, thanks to the improvements in the aforementioned
fields [1, 2]. However, although in 2017 they generated almost 2.2% of the world’s
gross domestic product, they have been recently affected by economic challenges,
associated to the use of outdated development and manufacturing technologies
[6]. Therefore, they are seeking for technological modernization, introducing ini-
tiatives such as quality-by-design (QbD) and process analytical technology (PAT)
[6]. This brought them to identify improvements in digitalization and data analyt-
ics as key strategic activities to achieve faster and cheaper product manufacturing,
therefore requiring Process Systems Engineering knowledge [2, 7, 8].

Process Systems Engineering (PSE) enables control and optimization at the pro-
cess level [1], yielding to (nearly-)optimal operations and, by consequence, achiev-
ing more profitable processes and tighter product quality specifications [2, 9]. As
reported in [8], the scope of PSE is vast and consists in the integration of different
disciplines to address problems such as reduction of energy consumption, respect
of environmental regulations and economical effectiveness of process operations.
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However, the lack of readily available on-line measurements of key process vari-
ables, one of the core elements of PSE [8], hinders the real-time application of its
tools in the bio-industry [1]. Thus, the next generation bio-tech industry, and in
particular the pharmaceutical industry, will need to make increasing use of state
estimators [2, 6, 10–12, 9], because of their ability of maximizing the informa-
tion obtained by the combination of measurements and models [1], by considering
uncertainties. The work behind this thesis therefore aims to contribute to the de-
velopment of state estimators, trough their application to a fed-batch cultivation
process of Corynebacterium glutamicum, investigating the possibilities to handle
plant-model mismatch when applied to an experimental data-set.

1.2 Thesis Outline

EKF 

UKF

Regularization

Constraints

Sensitivity

Observability

Identifiability

MHE
Optimization

Optimization

MHE
ConstraintsObservability

Optimization

Chapter 3: 
Application of three different 

nonlinear Bayesian state 
estimators (i.e. EKF, UKF, MHE)

Chapter 2: 
State estimators as "bridge" 

between modelling and control
algorithms to close the loop

Chapter 6: 
Discussion - A comprehensive overview of the implementation

of Bayesian state estimators to handle parameter uncertainty and 
plant-model mismatch. 

Experimental application and practical guidelines.

Chapter 4: 
Implementation of Parameter

Subset Selection Methods
for constrained regularization

Chapter 5: 
Inclusion of infrequent and 
delayed measurements to

enhance accuracy

Research Q3

multi-rate MHE

Background Research Q1 Research Q2

The role of state estimators in 
Process Systems Engineering

Available state estimators
to handle uncertainty

Combined estimation of
state and parameters to 

reduce plant-model mismatch

At-line sampling to enhance
information and reduce
plant-model mismatch

Constraints

Figure 1.1: Outline of the thesis. The figure shows the summary of the research questions
together with the implemented techniques and the chapters that address them.

The thesis is organized, as reported in Fig. 1.1, into six chapters. Chapter 2 intro-
duces the relevant background material for the work and points out the role of state
estimators. Thereafter, Chapters 3-5 present the original publications, answer-
ing the three research questions. Finally, Chapter 6 discusses the implementation
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choices, while Chapter 7 outlines the conclusions and future research directions.

As reported in Sec. 1.1, the importance of PSE for the achievement of more profit-
able plant operations (i.e. tight product quality specifications) and, more specific-
ally, the key role which state estimators have in the PSE-skill set, by maximizing
the return from the investment in model development trough the combination of
real-time process information, represents the first step towards the achievement
of closed-loop control in practice [6] (further elaborated in this thesis through
Chapter 2, Fig. 1.1). This led us to the following research questions:

Figure 1.2: Implementation block diagram for EKF and UKF integrated with the bacterial
cultivation process (Chapter 3). The recursive filter is represented by the blocks from 1 to
5. After each iteration the Kalman gain is calculated (1) followed by a correction (2) using
the available on-line measurements from the process (9). The constraints are activated
in (6-7) if condition (3) is not satisfied. Consecutively, the error covariance matrix is
updated in (4) and then used for the ahead projection (5), where the updated process noise
covariance is used (8). The estimated states are represented by the continuous green circle.

Research Question 1. What are the available state estimator to handle uncer-
tainty in nonlinear biological processes? Can these estimators accurately estimate
the unmeasured variables of interest, under plant-model mismatch and high input
changes?

Chapter 3 presents the experimental application of three Bayesian estimators (i.e.
Extended and Unscented Kalman Filter and Moving Horizon Estimator). Indeed,
as also mentioned in Chapter 2, Bayesian estimators result in an optimal choice to
address uncertainty when dealing with nonlinearities [13]. Firstly, to compensate
for the absence of a comparison between Extended and Unscented Kalman Filter
(EKF and UKF) applied to biological processes, we considered the comparison of
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the two state of the art estimators (i.e. EKF and UKF). However, although the UKF
presented a slight improvement, the results showed that the two filters performed
similarly. Secondly, motivated by avoiding the tedious common practice of trial-
and-error tuning of state estimators, found in the most applications in bioprocesses,
and inspired by the works of [14–16], we focused on the importance of properly
tuning the model uncertainty (i.e. process noise covariance matrix Q) to introduce
the noise in a nonlinear fashion, by considering that the noise rightfully enters the
model through the uncertain parameters [17] (Fig. 1.2). Thirdly, because the work
of [18] was the sole exception implementing constraints to recursive state estim-
ators (i.e. Kalman-like filters) in a bioprocess found in literature, we enforced the
importance of using constraints on the states to avoid infeasible (i.e negative) con-
centrations. This led us to the implementation of a QP-problem [19] for constrain-
ing the EKF and the UKF, as well as the investigation of an optimization-based
approach, such as the Moving Horizon Estimator (MHE, Fig. 1.3).

Figure 1.3: Block diagram for the MHE implementation (Chapter 3). The different terms
for the cost function are represented by the dashed red line, while the different constraints
are reported within the dashed-dotted blue line. The cost function takes the measure-
ments into account in both arrival and measurement error cost, while the process noise is
weighted by the error covariance matrix which is recalculated at every iteration.
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Research Question 2. How can we implement on-line model adaptation to further
improve the accuracy of the estimated states under plant-model mismatch?

Chapter 4 presents the implementation of an MHE for combined state and para-
meter estimation in an experimental application. This was done to improve the es-
timation accuracy of the variables of interest, considering the time varying nature
of parameters [17, 9]. The selection of an MHE was motivated by the works of
[20, 21] to exploit its advantage [22] of explicitly incorporating constraints to reg-
ularize the problem. This was used to estimate the parameters along with the
states, augmenting the system by adding them as states with zero dynamics, as
it is usually done when implementing Kalman-like filters [23]. Firstly, to evalu-
ate the possibility to simultaneously estimate states and parameters in absence of
full-state feedback, the implementation was done using an experimental data-set.
Indeed, previous works [21] implemented an MHE for the same purpose. How-
ever, their work presented an in silico application under full-state feedback (i.e. the
at-line measurements were available infrequently with a time delay). Secondly, to
deal with the ill-posed problem that arises by the combination of state and para-
meter estimation, a transformation-based regularization method (Subset Selection
by Transformation, SST) [24] was implemented and compared with a state of the
art method (Orthogonalization Method, OM) [25]. Additionally, a geometric in-
terpretation of SST [24] was given, to enhance the interoperability of SST in com-
parison to OM. Indeed, while OM reduces the number of the decision variables,
SST [24] reduces their search space (Fig. 1.4). Lastly, to determine the available
degrees of freedom for the optimization problem, a stopping criterion based on the
structural identifiability of the system [26] was proposed.

Research Question 3. When infrequent and delayed at-line measurements are
available, how can we best include them to enhance the quality of the real-time
information?

Chapter 5, following the works of [27–30] and taking into account the possibility
of industrial applications, investigated the implementation of different approaches
for the inclusion of at-line measurements. This was motivated by the possibil-
ity of improving the estimation accuracy by the use of infrequent and delayed
measurements in a multi-rate MHE (MMHE). Firstly, to present the challenges en-
countered by the practitioner in a real application, we implemented the MMHE us-
ing an experimetal data set. Secondly, to investigate different possible approaches
to obtain more or less smooth estimates, we defined the optimization problem by
either considering or not availability of at-line measurements at all times. This was
done through the use of variable and fixed structure MMHE as defined in [27, 28].
Thirdly, because in real application it is possible that measurements are available
with long delays, to avoid the necessity of increasing the estimation horizon (and
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θi

Orthogonalization Method (OM)
Subset Selection by 
Transformation (SST)

Planes, individual 
constraint regionsParameters

Lines, global
constraints regions

Regularization Methods for an Ill-posed Moving Horizon Estimation

• The comparison between the two regularization 
methods shows better performance and
increased flexibility for SST in comparison to OM;

• The two regularizations introduce a bias in the
estimates, leading the solution of the optimization
problem to become a compromise between
reducing variance and bias;

• Although the methods enable model 
adaptation, the lack of knowledge on the 
dynamics causes a limitation.

Figure 1.4: Geometric representation of the two regularization methods proposed in
Chapter 4. While the Orthogonalization Method (OM) constraints singular parameters θi,
leaving the other ones as degrees of freedom, Subset Selection by Transformation (SST)
constraints linear combinations of different θi, leaving them free to vary within the projec-
tion of the constrained region along their axes.

therefore the size of the optimization problem), we implemented the MMHE with
and without filter recalculation (Fig. 1.5) [30, 31]. Lastly, to limit the impulsive be-
haviour obtained when considering low uncertainty in the infrequent information
from the at-line measurements, we highlighted that their integration often results
in a trade-off between rejecting disturbances due to the measurement error or the
model error (due to plant-model mismatch) [30].
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Figure 1.5: Schematic representation with and without filter recalculation. The sample
(red) is collected at time k − T + 1 and its measurement is available at time k with a
delay of 29 minutes (T = 30 is the horizon). The black dashed line represents the window
horizon. Without filter recalculation (a), the measurement is put at time k − T + 1 (i.e.
sample time), however, it disappears in the next window shifting. When filter recalculation
is performed (b), the optimization problem is recalculated off-line, from time k − 2T + 2
to time k, resulting in a correction of the estimation from time k − T + 1.
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1.3 Contributions
Section 1.1 proposes general Process Systems Engineering techniques as the mean
for technological modernization, which the pharmaceutical industry is seeking for.
However, this span of techniques is wider than our scope. Indeed, our scope has
just focused on some specific directions as follows:

• The importance of state estimators, for inferring information on key pro-
cess variables under absence of measurement devices, for the promotion of
feedback control applications, was outlined.

• The application of two state of the art recursive Bayesian estimators (i.e. Ex-
tended and Unscented Kalman Filter) was presented and their performance
compared. This was done in an experimental application, where high input
variation was selected to test the predictive capability of the model in use.

• It was highlighted how, although utilizing a simple Monod-growth model,
the limitations of the plant-model mismatch could be counteracted by taking
it into account in the model uncertainty.

• The importance of constrained estimation techniques was highlighted, given
that this might be necessary when substrates or other metabolites are con-
sumed, since concentrations are strictly positive entities.

• As a response to the necessity of constraints on the state estimates, the Mov-
ing Horizon Estimator was tested and its limitation, given the presence of a
steady state off-set, discussed.

• To avoid the ill-posed optimization problem, resulting from the addition of
the parameters as decision variables, two regularization methods for on-line
parameter estimation were implemented in an MHE and compared.

• A stopping criterion for the definition of the available degrees of freedom in
the optimization problem was proposed, based on the structural identifiabil-
ity of the system.

• A practical implementation, highlighting the importance of selecting the
best approach when including infrequent measurements for improving the
estimation accuracy of a fully observable system, was presented using ex-
perimental data.
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2 | Background

"The most we can know is in terms of probabilities."

RICHARD P. FEYNMAN (1918-1988)

13
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2.1 Process Systems Engineering (PSE)
As recently reviewed in [8], Process Systems Engineering is the discipline related
to the development of systematic techniques such as mathematical modelling, data
analytics, design, optimization and control, for describing and regulating the be-
haviour of physico-chemical systems.

However, our intent is not an in-depth analysis of Process Systems Engineering
topics, but a brief introduction of its application to biotechnological processes, to
highlight the role that state estimators take in it. Therefore, the reader is referred
to [8] and references therein for a more detailed overview.

2.2 Bioprocess Systems Engineering (bio-PSE)
Bioprocess Systems Engineering represents a sub-group of the more general PSE,
aiming at applying PSE techniques to systems where also biological phenomena
are considered [1]. Following the works of [1, 2], we define four core components
for bio-PSE as 1) Modelling, 2) Monitoring, 3) Optimization and 4) Control.

2.2.1 Modelling

Bioprocesses are modelled, most often, using unstructured models based on
Monod kinetics [32, 17] or their variations (e.g. Haldane, Teissier [33]), con-
sidering the growth of the organism on a single limiting substrate. Additionally,
they can be easily extended to multiple sugars [34] and substrate inhibition (e.g.
Haldane [33, 35]).

However, due to their complexity, limited understanding of all the undergoing phe-
nomena, and limitations in terms of range and validity due to their dependence on
specific operating conditions [1, 2], biological systems present several limitations
for modellers. It is therefore left to the practitioner to discern between all the avail-
able techniques for the most appropriate model type (i.e. structured or unstructured
[36]), given the application of interest [37, 38].

By starting from their complexity, the inclusion of knowledge from systems bio-
logy and metabolic engineering enables the development of complex high-fidelity
models (i.e. structured models). Therefore, integrative models can be used to
merge mechanistic knowledge with gene expression and cellular function, unrav-
elling the biological mechanisms which regulate them. This allows the connection
of phenomena which occur at the bioreactor level (i.e. macro scale) to the ones
taking place at the molecular level, including metabolic fluxes (i.e. Flux Balance
Analysis, FBA [39]) or genetic circuits (e.g. Hill-Langmuir equation [40]). High-
fidelity models are certainly relevant for the investigation of the process behaviour
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in a rapid and inexpensive way, by reducing the number of individual experiments.
However, although holding excellent predictive capabilities, they can become com-
putationally intractable for on-line applications.

As stated above, the understanding of all the undergoing phenomena taking place
in a bioprocess can often be limited [41]. This, together with the growing interest
in data-driven modelling techniques, resulted in the consideration of data-driven
models (i.e. black-box or Machine Learning models). Black-box models have the
advantage of being able to capture and describe the complex dynamics of all the
undergoing processes (i.e. both at the bioreactor and molecular level). Simultan-
eously, these models suffer because of their dependence on big data-sets, sens-
itivity to noise and limitations under unseen process conditions, given that they
only present descriptive, but not explanatory, capabilities. However, hybrid mod-
els (i.e. grey-box models) can present an alternative solution to black-box models,
by complementing the use of black-box and mechanistic (i.e. white-box) models.
Indeed, hybrid models can combine the mechanistic understanding of white-box
models together with the data-based nature of black-box models, therefore com-
bining their explanatory and descriptive capabilities. As mentioned in [2], one
of the main challenges of hybrid models is on how to best combine data-based
and mechanistic knowledge. As was shown in [42] in the early 90’s, one option
could be the use of data-based approaches to model single growth-related para-
meters. However, as recently reviewed in [43], by today several directions can be
considered.

Indeed, taking into account limitations in terms of range and validity due to the
effect of the inputs to the cell metabolism (i.e. media recipes, supplements, op-
erating conditions) [2], data-driven or hybrid models can constitute a reasonable
choice [44], given their capability to learn from data (entirely or partially) the ef-
fect of the external inputs [43].

It is therefore important that the practitioner, when discerning between the dif-
ferent approaches and levels of complexity, selects the one more suitable for the
application of interest. In doing that, it becomes important to take into account
the available mechanistic knowledge, the available data, the time which the prac-
titioner intends to invest and finally, the desired output. Indeed, the latter will
depend on the necessity, whether the model is required to be descriptive (i.e. visu-
alization), explanatory (i.e. process understanding) or predictive (i.e. simulation
and forecasting). Relevant guidelines can be found in [7, 37, 38, 43].
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2.2.2 Monitoring

The availability of real-time information on critical process parameters, also re-
ferred here as variables of interest, is crucial for early detection of abnormal be-
haviour, but also to regulate product quality and yield, by the implementation
of control actions [7, 18]. The most straightforward way to measure qualitat-
ive and quantitative characteristics is through the use of sensors or measurement
devices. Although a variety of possibilities can be found in [45–47], the most
widely used, and relevant for our work, are sensors for measurement of pH, dis-
solved oxygen (DO2), biomass (e.g. absorbance probe) and different metabolites
(e.g. infrared probes such as NIR, MIR and Raman spectroscopy), together with
devices to measure off-gas composition and high performance liquid chromato-
graphy (HPLC). Similarly to [46, 47], these methods can be divided according to
the way the sample is analysed:

1. in-situ measurements (i.e. on site), where the analytical test is conducted
directly in the bulk material. This is further divided, based on the type of
interaction between the sample and the analytical device, in:

• in-line, where the detector has direct interface with the process;

• on-line, when the sample is removed automatically and transported to
the detector maintaining sterile conditions, through a by-pass.

2. ex-situ measurements (i.e. out site), where the sample is transported or
stored and the analytical test is conducted in an external environment. Based
on the type of interaction between the sample and the analytical device, they
are further divided in:

• at-line, when the detector is located in close proximity and the sample
is transported, through automated sample devices, to the analytical site;

• off-line, when the sample is stored and the analysis is conducted with
the support of an operator, a posteriori.

In-line and on-line measurements can directly provide real-time information, while
at-line could present a delayed real-time information, depending on the analytical
technique employed. The off-line measurements instead, can only be used a pos-
teriori, for calibration and validation.

However, when interested in real-time monitoring of a bioprocess, many variables,
in practice, are either not measurable, due to the high costs of the instrument, or can
only be measured infrequently, using devices that can only perform the analysis
off-line. In this case, the necessity of inferring information on all the variables of
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interest, requires the employment of state estimators. State estimators (also called
soft sensors [48]), beside inferring information on the unmeasured variables, using
the real-time information generated by the analytical devices which are available,
present, as additional feature, the ability to reduce the noise and the biases gener-
ated by the real-time sensor measurements (Fig. 2.1).

EstimatorModel

Input

Measuraments

Model
Prediction

State
Estimates

Estimation Algorithm

Figure 2.1: State estimation diagram, partially adapted from [9].

To this extent we could say that, by doing so, they create virtual measurements [45]
by combining the real-time information from the available sensors (i.e. sensor
fusion) to the process knowledge contained in the model (which can be either
mechanistic, data-based or hybrid as reported in Sec. 2.2.1).

Whereas a more detailed classification can be found in [49], in this work we will
classify state estimators applied to bioprocesses, in accordance to [9, 50, 51, 13],
into three categories, as reported in Fig. 2.2: 1) deterministic, which assumes that
both model and measurements can be fully determined given the operating con-
ditions; 2) Bayesian, assuming that the model and the measurements are affected
by random noise; 3) hybrid, which are a combination of the former two. Most
importantly, we will consider their nonlinear form, given the nonlinear nature of
the models that describe biological systems.

These three categories, as reported in Fig. 2.2, can be further divided [9]. Firstly,
deterministic estimator are divided into first-order systems (FOS) based estimat-
ors (e.g. extended Luenberger observer, ELO), where the dynamics are given by
linearized first-order differential equations and data-based regressions (e.g. par-
tial least squares, PLS), of which application can be found in [18, 52]. Secondly,



18 Background

Nonlinear State Estimators

Deterministic Bayesian Hybrid

1) Based on First Order Systems (FOS)
    (e.g. Extended Luenberger Observer)
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Figure 2.2: Classification of nonlinear state estimators, adapted from [9].

Bayesian estimators (Chapter 3) are divided into recursive (e.g. Extended and Un-
scented Kalman filters [53]) and optimization based ones (e.g. Moving Horizon
Estimator [22]). Lastly, hybrid estimators are obtained by combining determin-
istic and Bayesian approaches together. An implementation of the latter and its
advantages in comparison to a deterministic data-based one is found in [18].

Among all the presented classes, Bayesian estimators (Fig. 2.2), by assuming the
intrinsic stochastic (i.e. uncertain) nature of all variables, provide an approach
that uses the available real-time data to estimate the variables of interest, based
on probability distributions [51]. Therefore allowing the characterization of our
expectations, by using a measure of confidence or uncertainty [22]. This class of
estimators, which involves Extended Kalman Filter (EKF), Unscented Kalman Fil-
ter (UKF), Particle Filter (PF), Ensemble Kalman filter (EnKF), Moving Horizon
Estimator (MHE) and many others [49, 13], while differing from the determin-
istic approaches by the way the uncertainty is treated, are the most widely used in
bioprocesses [9, 49, 51], being suitable for complex nonlinear systems [9, 49, 13].

2.2.3 Optimization

Optimization of biological processes is of interest for cost reduction, quality en-
hancement, as well as meeting safety and environmental requirements, therefore
representing means for achieving competitive industrial applications (Chapter 1).
By being traditionally mostly characterized by batch or semi-batch (i.e. fed-batch)
operations [54, 55], the optimization of bioprocesses requires to obtain a dynamic
trajectory rather than a constant set-point and therefore necessitates the imple-
mentation of dynamic optimization. A general overview of dynamic optimization
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applied to biological processes can be found in [54, 55], where the authors covered
the available analytical and numerical tools to compute the optimal solution both
in the nominal case and in presence of uncertainty.

In a practical situation, given the batch-to-batch (i.e. run-to-run) variability caused
by uncertain model parameters or plant-model mismatch, disturbances or vari-
ations in initial conditions, the solutions based on nominal models can only de-
liver a sub-optimal response and therefore uncertainty must be taken into account
[55]. As reported in [55], in the absence of measurements, robust solutions can
be implemented, considering the worst-case scenario. By yielding to a conser-
vative approach, this motivates the use of stochastic (i.e. uncertainty-based) or
adaptive (i.e. measurements-based) approaches [56]. In case uncertainty charac-
teristics are changing or unknown (i.e. stochastic case) or not all the variables
of interest are measured (i.e. adaptive case), the implementation of a Bayesian
state estimator can be of use. Indeed, although they are mostly considered as
techniques to estimate the value of the states (i.e. average, mean or expectation),
through Bayesian estimation we consider the variables of interest as random vari-
ables (RV) and obtain a measure of their uncertainty (i.e. how much we can expect
them to vary from their mean), using information from the measurements and the
knowledge from the model. This approach leads the optimization problem being
divided in two subproblems: 1) the estimation problem, where the information
from the measurements is used; 2) the optimization problem, where the inputs are
updated towards the optimum through the model, while using the states as initial
conditions. These implementations come with their limitations, therefore special
considerations must be taken, as reported in [55–57]. However, this enhances
the importance and the usefulness of state estimators to implement dynamic Real
Time Optimization (RTO) [48, 56]. Moreover, it becomes important to mention
that state estimators can be directly phrased as least-squares optimization prob-
lems (e.g. Moving Horizon Estimator, MHE) [8, 22].

2.2.4 Control

Control is considered an integral aspect of Process Systems Engineering [8]. In-
deed it combines all the previously mentioned components to obtain the desired
outputs from the process. By considering the entire production plant consisting
of several units, following the work of [56, 58], the control system is divided in
several layers, based on their time scale, as reported in Fig. 2.3.

Traditionally, process control was mostly employed for regulation purposes. How-
ever, with the continuous improvement of advanced control and computational
methods, its scope has widened to cover the interaction between all the different
unit operations [8], in the so called plant-wide control [58]. The typical control
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Figure 2.3: Typical control hierarchy. The figure was adapted from figures in [56, 58].
The control inputs coming from the upper layer to the lower layer are reported in red.
Measurements (i.e. plant output) from the plant are reported in green. The estimated
states (i.e. estimated outputs) are reported in blue.

hierarchy used in plant-wide control is presented in Fig. 2.3. For our work, we
will limit to define the last three layers reported in Fig. 2.3: 1) Regulatory control;
2) Supervisory control; 3) Real Time Optimization.

Firstly, the role of the regulatory layer (Fig. 2.3) is to stabilize the plant by using,
most often, single-input single-output (SISO) PI control loops [58]. In a biore-
actor, its task would be to maintain pH, dissolved oxygen (DO2), temperature and
stirring speed at predefined set-points or trajectories by manipulating the flow of
acid or base solutions and nutrients, aeration and power used for the heating system
and the motor [2]. Therefore, the objective of the regulatory layer (i.e. stabilizing
layer) is to control secondary measurements so that expert operators or the up-
per layer (i.e. supervisory layer) can handle the disturbances on the variables of
interest (i.e. primary outputs) [58].
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Secondly, the scope of the supervisory layer (i.e. tracking layer [59]) is to track a
trajectory, which consists in the execution of a recipe [59]. This layer can be im-
plemented using different advanced control structures [58], however, simple PIDs
can encounter difficulties by handling strong nonlinear dynamics. Therefore, the
method that obtained the most attention for trajectory tracking is nonlinear model
predictive control (NMPC) [56, 59].

Thirdly, the real time optimization layer (i.e. recipe optimization [59]) is the one
that determines the optimal recipe based on economic considerations and final de-
sired product quality [59], through dynamic optimization as reported in Sec. 2.2.3.
In case recipe optimization and tracking optimization are handled in an integrated
manner, the problem can be formulated in a single layer approach, removing the
time scale separation. Therefore, the recipe optimization can be reformulated,
by adding directly the trajectory constraints, obtaining a formulation that maxim-
izes the economic performance of the process, known as economic MPC (eMPC,
Fig. 2.3) [56, 59].

At last, it is important to mention that all the discussion above has been done
without considering the measurements availability. Indeed, as visible in blue in
Fig. 2.3, the implementation of this hierarchical control approach requires the
availability of measurements (i.e. state feedback). However, sometimes the evid-
ence necessary for making decisions is not directly available from process meas-
urements [22, 60]. It is therefore here that the relevance of state estimators be-
comes of key importance. In fact, when coupling process knowledge (Sec. 2.2.1)
with secondary observations (i.e. subset of measurable states), it becomes possible
to infer information on the unmeasured variables of interest (Sec. 2.2.2).

2.3 Fed-batch Cultivation Case Study
As reported in Sec. 2.2.2, state estimators combine the real-time information to
the process knowledge contained in the model. Therefore, to enable the possibil-
ity to monitor the the fed-batch bacterial cultivation process of Corynebacterium
glutamicum used in this work, we present the model and the measurements used
by the three Bayesian estimators implemented. The system in Fig. 2.4 is described,
following simple Monod-growth kinetics on a single substrate, trough the use of
an unstructured mechanistic model. The material balances used to the describe the
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Figure 2.4: The figure reports the different measurement devices available for the experi-
mental set-up.

dynamics of the process are as follows:

V̇ = Fin (2.1a)

Ẋ = µmax
S

KS + S
X −X

Fin

V
− kdX (2.1b)

Ṡ = −µmax
S

KS + S

X

YXS
− S

Fin

V
+ Sin

Fin

V
(2.1c)

ĊO2 = µmax
S

KS + S

X

YXCO2

− qairCO2 (2.1d)

Eq. 2.1 reports the model, used throughout the works presented in Chapters 3-5,
where the right hand sides define input u (Fin, Eq. 2.1a), growth, consumption and
formation (i.e. first term in Eq. 2.1b, 2.1c and 2.1d), dilution (i.e. second term in
Eq. 2.1b and 2.1c), cell death (i.e. third term in Eq. 2.1b), substrate addition given
the feeding concentration Sin (i.e. third term in Eq. 2.1c) and CO2 released in the
off-gas (i.e. second term in Eq. 2.1d).

The process was conducted at constant temperature (i.e. temperature in the water
jacket), pressure and pH (i.e. by addition of titrating agents, KOH and H3 PO4)
while dissolved oxygen (DO2) was maintained above 30% by correction of the
stirring speed. Through the sensors available in the reactor set-up (Fig. 2.4), meas-
urements for volume (i.e. input pump), biomass (i.e. absorbance probe) and CO2
(i.e. off-gas measurement device) were available. Therefore, because not all the
variables of interest (i.e. states) described by the system dynamics (Eq. 2.1) were
directly measured, the implementation of a state estimator was needed to monitor
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the glucose composition (Eq. 2.1c).

The system can be compactly described as:

ẋ(t) = f(x(t), θ(t), u(t)) + w(t) (2.2a)

y(t) = h(x(t)) + v(t) (2.2b)

w(t) ∼ N (0, Q(t)) (2.2c)

v(t) ∼ N (0, R) (2.2d)

where x = [V,X, S,CO2]
T is the state vector, y = [V,X,CO2]

T the output
measurement vector, θ = [µmax,KS , kd, YXS , YXCO2 ]

T the parameters vector
and u = [Fin] the input, while w ∈ Rnx and v ∈ Rny represent the continuous-
time noise vectors. The discretized system (Eq. 2.2) becomes:

xk = Fk−1(xk−1, θ, uk−1) + wk−1 (2.3a)

yk = Hkxk + vk (2.3b)

wk ∼ N (0, Qk) (2.3c)

vk ∼ N (0, R) (2.3d)

with discrete-time process (wk ∈ Rnx) and measurement (vk ∈ Rny ) noise. Ad-
ditionally, xk ∈ Rnx , θ ∈ Rnθ , uk ∈ Rnu and yk ∈ Rny are respectively states,
parameters, inputs and outputs.

2.3.1 Process Noise Covariance Definition

To define the additive process noise wk ∼ N (0, Qk) (Eq. 2.3) with variable pro-
cess noise covariance matrix Qk, following the works of [14] and [15], we defined
a new noise vector ω ∼ N (0, Qω) (where ω ̸= wk). The noise ω was considered
in the system dynamics as follows:

V̇ =Fin + ωV

Ẋ =− Fin

V
X + (µmax + ωµmax

)
S

(Ks + ωkS
) + S

X − (kd + ωkd
)X + ωX

Ṡ =
Fin

V
(Sin − S)− (µmax + ωµmax

)
S

(Ks + ωkS
) + S

X

(YXS + ωYXS
)
+ ωS

˙CO2 =(µmax + ωµmax)
S

(Ks + ωkS
) + S

X

(YXCO2 + ωYXCO2
)
− qairCO2 + ωCO2

(2.4)
defining the noise vector ω ∈ R(nx+nθ) as:

ω = [ ωµmax ωks ωkd
ωYXS

ωYXCO2
ωV ωX ωS ωCO2 ]T
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ω was added to the deterministic model (Eq. 2.1) twofold. In the state dynamics
(ωV , ωX , ωS , ωCO2), in order to address structural plant-model mismatch, and in
the parameters (ωµmax , ωKS

, ωkd , ωYXS
, ωYXCO2

), to address the uncertainty in the
model parameters. With this approach, the process noise covariance Qk ∈ Rnx×nx

becomes a state-dependant matrix, updated at each sampling time k. By compactly
rewriting Eq. 2.4 as:

ẋ = f(x, u, θ, ω) (2.5)

and defining Gk ∈ Rnx×(nθ+nx) as the Jacobian of Eq. 2.5 with respect to the
noise ω:

Gk =
∂f(x, u, θ, ω)

∂ω
(2.6)

the process noise covariance matrix is obtained as:

Qk = Gk ·Qω ·Gk
T (2.7)

where Qω is a constant related to the statistics of the parameter uncertainty.

2.4 Bayesian State Estimators
Between the various implementation approaches for state estimators reported in
Sec. 2.2.2, the focus will be placed here on Bayesian state estimators, because
of their ability to handle uncertainty when dealing with nonlinear processes. The
Bayesian approach to state estimation, called Bayesian inference [61], allows us to
infer information on the outcome of our future processes. Bayes’ rule (or theorem)
is the base for it (i.e. Bayesian estimation) and can be stated as follows [62, 61, 13]:

p(x|y) = p(y|x)p(x)
p(y)

(2.8)

where we indicate with x the states and with y the measurements. The conditional
probability density function (PDF) p(x|y) and p(y|x) are the PDF of the realization
x (or y) to occur given that y (or x) is true, while p(x) and p(y) represent the
(prior) PDF of the realization x (or y) without conditions. By defining the set of
measurements Yk = [y0, yi, . . . , yk], the posterior PDF p(xk|Yk) (i.e. the solution
of the estimation problem), is obtained from Eq. 2.8 as [62, 61, 13]:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(2.9)

Eq. 2.9 can be visualized as reported in Fig. 2.5. The application of Bayesian es-
timation to biological processes can be dated back to the early ’80s and ’90s, when
the pioneering works of [42, 63–68, 23] proposed the application of Extended
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Posterior:
p(xk|Yk)

Likelihood:
p(yk|xk)

x

PD
F

Prior:
p(xk|Yk-1)

Figure 2.5: Application of Bayes’ theorem for the estimation update. The figure reports
how the prior PDF p(xk|Yk−1) propagates to p(xk|Yk) trough the use of the Likelihood
function p(yk|xk) based on the the observations (i.e. measurements).

Kalman Filters (EKFs), for considering the random nature of process and meas-
urements, when interested in real-time monitoring of a cultivation process. These
works covered the development of high-fidelity first principle models together with
the combination of state and parameter estimation [63–66], the implementation of
hybrid models to cope with the complex behaviour of biological systems [42] and
the use of infrequent or delayed measurements [67, 68, 23].

Further studies have showed the experimental application of the EKF for combin-
ation of state and input estimation and the application of advanced measurement
techniques (e.g. near infrared and Raman spectroscopy) by coupling on-line and
off-line measurements. However, the linearized nature of EKFs, which could po-
tentially cause numerical challenges [69, 53], coupled with the improvement of
computational power, led the attention to nonlinear estimation techniques as Un-
scented Kalman Filters (UKFs), Particle Filters (PFs) and Moving Horizon Estim-
ators (MHEs).

The most recent experimental applications covered and spanned between applic-
ations of 1) EKFs coupling on-line and off-line measurements [70–72]; 2) PFs
implemented with advanced measuring devices (i.e Raman Spectroscopy) [73],
considering input uncertainty and complex sugar mixtures [34] and using time-
delayed off-line measurements [74]; 3) UKFs coupled with NMPC [75], with hy-
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brid adaptations [18] and for joint state and parameter estimation [76]; 4) MHEs
formulated through a min-max optimization approach to account for parameter
uncertainty [77] and coupled with NMPC implementation [78].

In accordance with the aforementioned works, our work intends to address tuning,
constraints handling, robustness due to high input variation, multi-rate estimators
to include infrequent measurements and adaptive approaches which were given
little or no attention before. Indeed, by using experimental data, our work deals
with the application of three different Bayesian estimators (i.e. EKF, UKF and
MHE) to estimate the concentration of the variables of interest under absence of
full state feedback and under high input variation for a fully observable system.

2.4.1 Extended Kalman Filter (EKF)

When applying Bayesian state estimators to nonlinear systems, the most common
approach is the Extended Kalman Filter (EKF) [79, 53]. In the EKF, the probability
density function (PDF) is propagated, at every iteration, through the linearization
of the system around the operating point, inherently causing linearization errors
which may not be appropriate for some systems [62, 53].

In this work, we implemented the discrete-time EKF [62, 53], however, as reported
in [62], this can be also implemented as continuous-time or hybrid, depending on
how the Riccati differential equation is solved. At k = 0 the EKF is initialized as:

x̂+0 = E [x0] (2.10a)

P0
+ = E

[
(x0 − x̂−0 )(x0 − x̂−0 )

T
]

(2.10b)

For k = 1, · · ·, N the estimated states are calculated as follows:
(1) the Jacobians of the process model are calculated using the filter estimate
(x̂k−1) as the nominal state trajectory:

Fk−1 =
∂f(xk−1, θ, uk−1)

∂x

∣∣∣∣
x̂k−1

(2.11a)

Gk−1 =
∂f(xk−1, θ, uk−1)

∂w

∣∣∣∣
x̂k−1

(2.11b)

(2) the predictions for state estimates (x̂−k ) and the estimation error covariance
matrix (Pk

− ∈ Rnx×nx), where Qk−1 = Gk−1QωGk−1
T and Qω ∈ Rnω×nω

(nω = nx + nθ, Eq. 2.7) is a tuning parameter, are obtained as:

x̂−k = F (x̂+k−1, θ, uk−1) (2.12a)

Pk
− = Fk−1Pk−1

+Fk−1
T +Qk−1 (2.12b)
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(3) the Jacobian of the observation model

Hk =
∂h(xk)

∂x

∣∣∣∣
x̂k

(2.13)

(4) through measurement update, incorporating the measurement yk, the Kalman
gain (Kk), the estimate (x̂+k ) and the posterior error covariance matrix (P+

k ) are
updated as:

Kk = P−
k Hk

T (HkP
−
k Hk

T +R)−1 (2.14a)

x̂+k = x̂−k +Kk(yk −Hkx̂
−
k ) (2.14b)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRKT
k (2.14c)

For the linear Kalman Filter (KF), P+
k is equal to the covariance of the estima-

tion error and therefore quantifies the uncertainty in the estimates. Differently, in
the linearized Kalman filter (i.e. EKF) this is no longer true because of the lin-
earization error. However, if the nonlinearities in the system and measurement
functions are not too severe or, if the linearization errors are small, then P+

k is a
good approximation of the covariance of the estimation error [79, 53].

2.4.2 Unscented Kalman Filter (UKF)

Differently from the EKF, which updates the first order moment (i.e. mean)
through the nonlinear function and the second order moment (i.e. covariance)
through linearization, the UKF instead approximates the PDF using a minimal
set of deterministically chosen weighted sample points (i.e. sigma points), by
propagating them through the nonlinear function (i.e. true system) as reported
in Fig. 2.6. The sigma points therefore completely capture the true mean and
covariance of the prior random variable and, when propagated through the true
nonlinear system, enable to obtain the posterior mean and covariance accurately
to the second order [80]. Therefore, while the UKF is accurate up to second order
moments in the PDF propagation, the EKF is accurate up to first order moment
[53].

The sigma points (i.e. weighted samples, χk,i) are calculated using the mean and
square root decomposition, using Cholesky factorization, of the covariance matrix
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Figure 2.6: The figure, adapted from [80, 53], reports the comparison for mean and covari-
ance propagation for the EKF (a) by linearization and the UKF (b) trough the sigma-points
transformation.

P ∈ Rnx×nx of the prior, to propagate the system from time (k − 1)+ to k−, as:

χk−1,0 = x̂+k−1 (2.15a)

χk−1,i = x̂+k−1 + x̃i i = 1, · · ·, 2nx (2.15b)

x̃i =

(√
(n+ λ)Pk−1

+

)

i

T

i = 1, · · ·, nx (2.15c)

x̃n+i = −
(√

(n+ λ)Pk−1
+

)

i

T

i = 1, · · ·, nx (2.15d)

where, λ is defined as:
λ = α2(nx + k)− nx (2.16)

and nx, α and k are respectively the size of the state vector and two tuning para-
meters. The parameter α controls the size of the sigma point distribution [53]. The
sigma points are than:
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(1) transformed using the nonlinear system F (·):

χk,i = F (χk−1,i, θ, uk) (2.17)

(2) combined to obtain an a priori state estimate at the discrete time point k:

x̂−k =

2n∑

i=0

Wm
(i)χk,i (2.18)

and (3) used to estimate the a priori error covariance as:

P̂−
k =

2n∑

i=0

Wc
(i)(χk,i − x̂−k )(χk,i − x̂−k )

T +Qk (2.19)

The weights Wm and Wc are defined as:

Wm
(0) =

λ

n+ λ
i = 0 (2.20a)

Wc
(0) =

λ

n+ λ
+ (1− α2 + β) i = 0 (2.20b)

Wm
(i) = Wc

(i) =
λ

2(n+ λ)
i = 1, · · ·, 2n (2.20c)

with β used to incorporate higher order moments of the distribution [53]. For the
measurement updates, the sigma points are transformed into γk,i:

γk,i = Hkχk,i (2.21)

and further combined to obtain the predicted measurement ŷk at time point k:

ŷk =

2n∑

i=0

Wm
(i)γk,i (2.22)

The covariance matrix of the predicted measurements is calculated as:

Py =

2n∑

i=0

Wc
(i)(γk,i − ŷk)(γk,i − ŷk)

T +R (2.23)

Whereas, the cross-covariance between x̂−k and ŷk as:

Pxy =

2n∑

i=0

Wc
(i)(χk,i − x̂−k )(γk,i − ŷk)

T (2.24)
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Through the measurement update (Eqs. (2.25b), (2.25c) and (2.25d)), implemen-
ted following the reformulation of [19] to avoid round-off errors, the posterior
statistics are calculated (i.e. approximated) as:

Kk = PxyPy
−1 (2.25a)

χk,i
+ = χk,i

− +Kk(yk − γk,i) (2.25b)

x̂+k =

2n∑

i=0

Wm
(i)χk,i (2.25c)

Pk
+ =

2n∑

i=0

Wc
(i)(χk,i − x̂−k )(χk,i − x̂−k )

T (2.25d)

2.4.3 Moving Horizon Estimator (MHE)

As an alternative to the recursive state estimators previously presented (i.e. EKF
and UKF), the MHE results an alternative approach for state estimation, where the
state estimates are obtained through the dependence on a bounded number of past
measurements [81]. Being an optimization-based method which uses a moving
window of past data (i.e. moving horizon, Fig. 2.7), the MHE has the ability to
directly incorporate constraints in both state and parameters, being formulated as
an optimization problem. Indeed, as it will be further presented in Chapter 3,
while for EKF and UKF we additionally implemented a QP-problem to obtain
the constrained forms of both EKF and UKF, this is straightforward in the MHE.
Additionally, because of its use of a moving window of past data, the MHE has
also the possibility to easily handle multi-rate measurements[82, 22, 83, 84, 49].

The MHE derives from batch least squares estimator (BLS), which was introduced
by [61] as the first optimization based estimator [81]. However, to overcome the
curse of dimensionality that comes with the BLS [85, 82, 81], the MHE, to approx-
imate the BLS, only employs a bounded horizon (i.e. window) of past measure-
ments to reduce the size of the optimization problem and summarizes the meas-
urements which are not considered in the current horizon through the arrival cost
Γ [81] (Fig. 2.7).

The MHE problem [20, 86] consists in finding the states and their noise (or addi-
tionally also the parameters θ as in Chapter 5) by solving the following constrained
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Figure 2.7: The figure reports the characteristic features of the MHE. (1) the moving
horizon used at time k (from k −N to k in orange), (2) the arrival cost Γ considering the
past measurements up to k − N and (3) the ability to include delayed measurements at
time k. The figure is used with permission from [81].

least-squares optimization problem:

min
xi,wi

∥∥x̂L − xL
∥∥2
PL

+

N∑

i=L

∥yi − h(xi)∥2V +

N−1∑

i=L

∥wi∥2Wk
(2.26a)

s.t. xi+1 = F (xi, θ, ui) + wi i = L, . . . , N − 1 (2.26b)

xi ≥ xmin i = L, . . . , N (2.26c)

The cost function (Eq. 2.26a) is given by the summation of three squared Euclidean
norms. The first term is the arrival cost (Γ) which summarises past information (up
to L = k−N , Fig. 2.7). In this work the arrival cost Γ was calculated through the
QR-factorization proposed by [20], however, as reviewed in [81], its calculation
can be performed through other several approaches (e.g. EKF). The second term
is the output noise cost, while the third is the process noise cost. Following the
work of [20], the three terms are weighted by:

PL = P−1/2, V = R−1/2, Wk = Qk
−1/2 (2.27)

where the notation for the squared norm is ∥b∥2B = bTBTBb [20]. The matrices
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P ∈ Rnx×nx , R ∈ Rny×ny and Qk ∈ Rnx×nx (Eq. 2.27) are respectively estim-
ation error, measurement noise and process noise covariance matrices. The states
xi are constrained with xmin as a lower bound, to avoid negative (i.e. infeasible)
concentrations, while the term x̂L (Eq. 2.26a) represents the optimal estimate of
xL.
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"The best material model of a cat is another, or
preferably the same, cat."
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a b s t r a c t

Availability of measurements of key process variables is of great importance to allow real time
monitoring and control applications. However, in microbial fermentation processes, the unavailability
of sensors or their high cost is a major barrier in automated process control applications. In this
study, we implemented an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF),
both augmented to take state constraints into account, in order to estimate biomass formation,
sugar consumption and CO2 formation in a fed-batch bacterial cultivation process. The filters use
a simple monod-growth model combined with an in-situ absorbance probe and an infrared off-gas
measurements device for monitoring of biomass production and substrate consumption. We tuned
the covariance matrices of the filters by a dedicated experiment, and tested their performance on
independent set of experiments. Our results demonstrate precise estimation of the biomass and glucose
consumption during the batch and the feeding phases, particularly when the process covariance matrix
is adapted to the phases to account for model inaccuracies during the feeding phase.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Corynebacterium glutamicum is an industrial workhorse widely
used as a production organism in white biotechnology [1]. C. glu-
tamicum has been used for decades in the large-scale production
of amino acids, more specifically L-glutamate and L-lysine [1].
However, the product portfolio from C. glutamicum bioprocesses
is continuously growing and, nowadays, C. glutamicum has be-
come a production platform for various bulk and fine chemicals,
materials, and biofuels [2]. The wide use of this bacteria requires
improvement to enable automatic processes with implementa-
tion of feedback controllers to avoid manual and, therefore time
consuming, operations. Ideally, all the important process vari-
ables can be measured and applied in the feedback control strat-
egy in order to achieve the desired performance of the process.
However, the lack of on-line sensors is the main barrier for the
implementation of feedback controllers. Indeed, high frequency
measurements are of great importance in monitoring and control
applications, but measurements of all the states in a desirable
frequency is not always possible. One way to overcome this
challenge is to employ sensor fusion, in which different combi-
nations of measurements are used, together with a state model,

∗ Corresponding author.
E-mail address: nadi.bar@ntnu.no (N. Bar).

to extrapolate information about unmeasured states in a so called
Soft Sensor.

In microbial cultivation, one of the most accurate measure-
ment techniques to quantify biomass (X), is through cell dry
weight (CDW). This offers a direct measurement of the biomass,
but its main disadvantage is the infrequent and delayed measure-
ments (measurements that are analytically time-consuming, and
can only be read after a considerable time delay). One alternative
is to determine the on-line optical density (OD) through specific
absorbance wave lengths, in particular in-situ near-infrared (NIR)
probes [3]. However, correlation between the OD data and the
biomass can be inaccurate, especially under low cellular concen-
trations and under high stirring rates, which generate noise in
the NIR signal, emerging from the formation of small bubbles [4].
Measuring the substrate and product concentrations is a more
challenging task. Sugars can be measured by High Performance
Liquid Chromatography (HPLC) methods, or they can be measured
photometrically by using enzymes kits or by spectroscopic data,
using appropriate wavelengths with NIR probes [5]. Although
instruments as HPLC or large spectral range NIR devices [5] are
available, their high costs or their delayed measurements are ma-
jor drawbacks. The use of simpler and easily available measure-
ments such as CO2 offered a partial solution to the lack of high
frequency measurement devices. As Gudi et al. [6] state, under
constant pH and head pressure the amount of CO2 in the broth

https://doi.org/10.1016/j.jprocont.2021.09.005
0959-1524/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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can be considered constant due to rapid gas-phase dynamics, thus
the gaseous CO2 outflow can be related to growth [5].

Previous reports include a model-free Extended Kalman Filter
(EKF) for parameter and state estimation in a yeast fermentation,
using macroscopic and elemental balances, with transfer rates
of O2 and CO2 in the liquid phase as the only on-line measure-
ments [7]. Gudi et al. [6] implemented an EKF in a bacterial
culture with the use of delayed measurements and model equa-
tions including carbon dioxide evolution rate (CER) and oxygen
uptake rate (OUR) as secondary measurements. Further studies
have also applied the EKF in presence of input uncertainty in an
anaerobic digestion [8] and in a yeast fermentation [3], coupling
on-line and off-line measurements. Goffaux et al. [9] presented
an alternative solution for state estimation with scarce off-line
measurements, where they applied EKF in the time intervals be-
tween samples to overcome the scarcity of measurements. These
successful pioneering implementations of the EKF in biological
processes [6,7], combined with new measurement techniques
such as Near Infrared Spectroscopy [4,10,11], brought efficient ap-
plications of the EKF as state estimator in microbial fermentation
systems. However, the implementation of EKF suffers from nu-
merical challenges due to linearization, particularly when dealing
with highly non-linear processes [12].

The numerical challenges associated with nonlinear systems
led the attention to nonlinear estimation techniques such as
the Unscented Kalman Filters (UKF) [13], and the Particle Filters
(PF) [14], that gained momentum due to the improvement of
computational power. PFs for instance, have been applied in
filamentous fungi to estimate the states during penicillin pro-
duction process using CO2 and O2 on-line measurements and
time delayed measurements of biomass [15]. In a similar pro-
cess, the PF was used to estimate the penicillin using off-gas
measurements combined with Raman Spectroscopy [16]. Later,
PFs have been implemented in bacterial cultivations [17] under
input uncertainty, using complex substrate mixtures (e.g. xy-
lose, mannose and glucose). Although the PFs reported above
provided satisfying results, their implementation can turn chal-
lenging in time-critical applications [15]. The UKFs in contrast, are
less computationally demanding than the PFs and are comparable
to computation efforts of EKFs [12,14,18]. The UKF approach
appears to be promising, as reported in few implementations in
bioprocesses [5,19]. One is the work of Dewasme et al. [19], which
presents the implementation of a Nonlinear Model Predictive
Controller (NMPC) coupled with an UKF. The other is the work
of Kramer et al. [5], applying a sigma-point Kalman Filter (SPKF)
with NIR spectroscopy, coupled with partial least squares (PLS)
modelling for state estimation in a yeast fermentation. Further-
more, to the best of our knowledge, only their work applied state
constraints in a real bioprocess application. The implementation
of state constraints is important in bioprocess, for instance, during
substrate depletion in batch processes, the state estimator can
calculate (infeasible) negative values of sugar concentrations.

Here, we present an implementation of UKF and compare its
performances with an EKF. Different from the work of [5], we im-
plemented the UKF without the use of off-line measurements and
sophisticated NIR probes [5] (e.g. large spectral range). Further-
more, unlike the approach of [5] that is based on the projection
of the sigma-points in the constrained area without accounting
for the new measurements, our approach is implemented as a
QP-problem (quadratic programming problem) to recalculate and
correct the sigma-points based on the measurements, knowledge
on their noise, and the predicted covariance [18]. For a fair com-
parison, we applied the same constraint handling also to the EKF.
The tuning, and then the testing of the estimators were conducted
by specially designed sets of experiments (Exp. I for tuning and
II for testing). The implementation of the filters was carried out
after the experiments were performed, in a true online fashion.

The two different state estimators could improve the pre-
diction of biomass and substrate concentration on-line during
cultivation accurately. The filters are able to estimate all the
model states also in the complete absence of direct sugar mea-
surements and in spite of model inaccuracies that emerge from
variances in the parameters and missing dynamics. The accuracy
of the estimation of the EKF and the UKF was comparable. The
state estimators were able to use measurements of CO2 and
biomass to obtain information of the glucose. Our results, how-
ever showing limitations under unmodelled dynamics, achieved
good estimation results without the need of any off-line measure-
ment or measurement devices such as HPLC, NIR spectroscopy
and Raman Spectroscopy, hence simplifying laboratory set-ups,
allowing a fully automatic monitoring of the states.

2. Material and methods

2.1. Platform microorganism

The Gram-positive, biotin auxotroph, and rod-shaped soil bac-
terium Corynebacterium glutamicum is an industrial workhorse
widely used as a production organism in industrial biotechnol-
ogy [1]. C. glutamicum ATCC13032 [20] was used in this work.

2.2. Experimental setup

The cells of C. glutamicum were harvested from a 200 mL
overnight shake flasks pre-culture, in complex medium 2YT (16
g of tryptone, 10 g yeast extract and 5 g of NaCl per litre)
before inoculation. The fermentation was performed in a 2.7 L
baffled stirred tank reactor Labfors5 (Infors AG, Switzerland). The
initial working volume of 1.5 L was inoculated to an OD600 of 1
approximately. The reactors were equipped with two six-bladed
Rushton impellers, with a distance from the bottom of the reactor
of 6 cm and 12 cm. The feed of 500 mL with 100 g/L of glucose
was added when the dissolved oxygen increased above 60% and
remained above it. An absorbance probe for biomass monitoring
(ASD12-N Absorption Probe, Optek GmbH) was used to measure
absorbance in the culture broth (wavelength 840–910 nm) and
an infrared off-gas analyzer for offgas composition (BlueInOne
Ferm, BlueSens GmbH). Dissolved oxygen was controlled above
30% by stirrer speed (200–1100 rpm), while the reactor was kept
at 1 bar and was aerated with 2 NL/min pressurized air. The
temperature was kept at 30 ◦C and the pH was maintained at
7 by addition of KOH (184 g/L) and H3 PO4 (188 g/L). Antifoam
(Antifoam 204, Sigma) was added manually when necessary. The
processes were considered finished when the dissolved oxygen
value raised from 30% to 60%. C. glutamicum was grown using
the minimal medium CGXII and glucose as sole-carbon source (20
g/L initial concentration). The composition of CGXII per litre is as
follows: 10 g (NH4)2SO4, 5 g urea, 0.26 g KH2PO4, 0.53 g K2HPO4,
0.01325 g CaCl2 × 2H2O, 0.25g MgSO4 × 7 H2O, 0.2mg biotin,
1mg FeSO4 × 7H2O, 1 mg MnSO4 × H2O, 0.1mg ZnSO4 × 7H2O,
0.02mg CuSO4, and 0.002mg NiCl2 × 6H2O [21].

2.3. Analytical procedures

Cell supernatants were automatically drawn and diluted 1 :

10, filtered through membrane filters (0.45 µm pore size), and
stored at 4 ◦C by the NUMERA system (Securecell, Switzerland).
A high-pressure liquid chromatography system (UltiMate 3000
series, Thermo Scientific, U.S.) was used for the quantification of
extracellular glucose. The separation of sugars was done using a
prewarm at 80 ◦C in a 300 × 7.8mm NUCLEOGEL SUGAR 810
Pb column (Macherey-Nagel, Germany), followed by a refractive
index detector (RefractoMax 520, Thermo Scientific). Deionized
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water was used at 0.4 mL/min as mobile phase. Biomass was de-
termined through filtering 3 mL of culture broth in pre weighted
filters of 0.2 µm. Each sample was rinsed with water and dried
at 60 ◦C for 72 h.

3. State estimation

This section is structured as follows: firstly, we introduce
the system (Section 3.1) and assess its structural identifiability
(Section 3.1.1). Secondly, we present the available measurement
signals (Section 3.2) and, given them, we analyse the observability
of the system (Section 3.3). Lastly, we propose our implemen-
tation approach (Section 3.4) and apply it to the EKF and the
UKF.

3.1. System model

The system is modelled using Monod-like kinetics for growth
on a single sugar, with linear cell death and considering dilution
when the feeding is added, as follows [22]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dV
dt = Fin
dX
dt = −

Fin
V X + µmax

S
Ks+S X − kdX

dS
dt =

Fin
V (Sin − S)− µmax

S
Ks+S

X
YXS

dCO2
dt = µmax

S
Ks+S

X
YXCO2

− qairCO2

(1)

with state and input vector defined as:

x = [V , X, S, CO2]
T and u = [Fin]

where V , X , S and CO2 denote the states, volume, biomass, sub-
strate and carbon dioxide, respectively. Fin is the flow in the
reactor, Sin is the concentration of substrate in the input, µmax, KS ,
kd, YXS and YXCO2 are the time invariant parameters (Table 1) and
qair is the air inflow. The equation for CO2 is adopted from [5].
The parameters were obtained from one experimental data set
of biomass, glucose and CO2 values from the off-gas analyzer by
using a nonlinear least-squares data fitting algorithm (lsqnonlin,
Matlab).
Table 1
Model parameters of Equation (1) with estimated values, units, and standard
deviation.
Parameter Description Value Unit Std. Dev.

µmax Maximum growth rate 0.19445 [h−1
] 3.25 ·10−6

KS Monod growth constant 0.007 [g L−1
] 3.92 ·10−6

kd Death rate constant 0.006 [h−1
] 4.49 ·10−6

YXS S from X yield 0.42042 [g g−1
] 3.58 ·10−6

YXCO2 CO2 from X yield 0.54308 [g g−1
] 2.22 ·10−6

The parameters standard deviation was calculated using the
Fisher Information Matrix (FIM). Indeed the FIM is a lower bound
for the parameters covariance matrix [23]. The FIM is approxi-
mated by the number of samples (N), the weighted residual sum
of squares (RSS) and the Jacobian matrix J for the set of optimal
parameters (p = p̂, Table 1) as follows [23]:

FIMp = N(RSS)−1JJT |p=p̂ (2)

The parameter covariance matrix is then calculated as:

cov(p̂) = FIMp
−1 (3)

3.1.1. Structural identifiability
Structural identifiability is essential when conducting parame-

ter estimation. However, structural identifiability only assess if it
possible to uniquely determine the process parameters given the
outputs (measurements) and the dynamics of the system. Indeed,
structural identifiability does not imply practical identifiability,
since this will be dependent on the quantity and quality of the
experimental data and on the accuracy with which the model

can describe the dynamics of the system (minimum model mis-
match) [24]. For the structural identifiability analysis the GenSSI
toolbox was used in this work [25]. The method computes the
Lie derivatives of the system, and the Jacobian of the series
coefficient with respect to the parameters [26]. The computation
determined that the system in Eq. (1) is structurally identifiable.

3.2. Signal processing

The signals are collected every 60 s from the different mea-
surement devices and handled through the Process Information
Management System Lucullus (Securecell, Switzerland). Signals
from the absorbance probe (wavelength range 840–910 nm) are
calibrated with the regression curves from experimental data to
set them in CDW. The absorbance probe is an invasive probe
(ASD12-N Absorption Probe, Optek GmbH) that measures ab-
sorbance in the culture broth in a range of 0.05−4 concentration
units (CU). The calibration curve from CU to cell dry weight
(CDW) is obtained by linear regression from experimental data
for two separate ranges.

For CU ⩾ 0.9:

CDWCU = 22.187 · CU − 5.0991 (4)

and for CU < 0.9:

CDWCU = 11.124 · CU + 0.66116 (5)

Signals from the off-gas analyzer are instead scaled with respect
to the volume of the broth, to obtain a relative value for the CO2.
The off-gas analyzer is a non-invasive infrared (IR) measurement
device (BlueInOne Ferm, Blue-Sens GmbH) that measures the
concentration of CO2 in the outflow in a range between 0%–25%.
The signal for the volume is obtained by integrating the signals
from the pumps and the volume withdrawn with the off-line
samples.

3.3. Local observability

The observability of a system defines when it is possible to
infer the internal states given the history of measurements and
the corresponding inputs [14]. However, when dealing with non-
linear systems, global observability is not applicable, and we have
to consider local observability as defined in [27]. We consider the
system as:

ẋ = f (x)+ g(x) · u (6)

y = h(x) (7)

We can find the observation space of the system by calculating
the map O, therefore we calculate the Lie derivatives as follows:

L1 = h(x) (8)

L2 = Lf h =
∂h
∂x

f (9)

L3 = Lgh =
∂h
∂x

g (10)

L4 = Lf (Lf h) =
∂(Lf h)

∂x
f (11)

L5 = Lg (Lf h) =
∂(Lf h)

∂x
g (12)

L6 = Lf (Lgh) =
∂(Lgh)

∂x
f (13)

L7 = Lg (Lgh) =
∂(Lgh)

∂x
g (14)

From this we obtain the observation space as:

O = {L1, L2, L3, L4, L5, L6, L7} (15)
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We then find the observability codistribution dO:

dO = span{d(L1), d(L2), d(L3), d(L4), d(L5), d(L6), d(L7)} (16)

This gives the dimension of the observability codistribution.
When dO(x) has the dimension of the state vector (n), the system
is locally observable. This can be used to identify, given the
system, the necessary measurements for the system to be locally
observable. As reported in Appendix, the observability analysis
gives the possibility to evaluate, given the process dynamics and
the measurement function, which measurements are needed to
ensure the observability of the system at every time [27].

3.4. Proposed approach

The two different state estimators are implemented as in
Fig. 1. When glucose reaches negative values, a quadratic func-
tion subject to linear constraints is optimized (Quadratic Pro-
gramming, QP) to obtain feasible estimates (block 3, Fig. 1).
The implementation of the QP-problem differs in the two cases
since it constraints directly the states in the EKF (Eq. (31)) and
the sigma points in the UKF (Eq. (50)). Indeed, constraining the
sigma points has a direct impact on the error covariance matrix
(block 7, Fig. 1) [18], which is therefore updated in the UKF. To
adapt the filter to the case of abruptly changing dynamics, as
it happens under a sudden increase in sugar concentration, the
parameter uncertainty is increased to correct the filter trust in
the measurements (block 8, Fig. 1).

3.4.1. Extended Kalman filter
The Extended Kalman Filter (EKF) is implemented as in [12,

14]. The system is given as follows, where f (Eq. (17)) is obtained
by discretizing the system described in Eq. (1) by explicit Euler
method.

xk = f (xk−1, uk−1, wk−1) (17)

yk = h(xk)+ vk (18)

wk ∼ N (0,Qk) (19)

vk ∼ N (0, R) (20)

with discrete-time process (wk) and measurement (vk) noise,
respectively with covariance Qk and R. At k = 0 the EKF is
initialized as:

x̂+0 = E [x0] (21)

Po+ = E
[
(x0 − x̂−0 )(x0 − x̂−0 )

T ] (22)

For k = 1, · · · ,Nend estimated states are calculated as follows:
(a) the Jacobians of the process model

Fk−1 =
∂ f (xk−1, uk−1, 0)

∂x

⏐⏐⏐⏐
x̂k−1

Gk−1 =
∂ f (xk−1, uk−1, 0)

∂w

⏐⏐⏐⏐
x̂k−1

(b) the predictions for state and covariance

x̂−k = f (x̂+k−1, uk−1, 0) (23)

Pk− = Fk−1Pk−1
+Fk−1

T
+ Gk−1Qk−1Gk−1

T (24)

(c) the Jacobian of the observation model

Hk =
∂h(xk)

∂x

⏐⏐⏐⏐
x̂k

(25)

(d) the measurement update, incorporating the measurement yk

Kk = P−

k Hk
T (HkP−

k Hk
T
+ R)−1 (26)

x̂+k = x̂−k + Kk(yk − h(x̂−k )) (27)

P+

k = (I − KkHk)P−

k (I − KkHk)T + KkRK T
k (28)

We constrained the EKF using the QP-problem proposed by [18]
for constraining the sigma-points in the UKF, differently from the
constrained approaches proposed in [28].

The QP-problem defined as:

min
x̂+k

J s.t. Dkx̂+k ≤ dk (29)

is solved by minimizing the objective function

J = x̂+T
k (Dk

TRk
−1Dk + (Pk−)−1)x̂+k +

−2(ykTRk
−1Dk + (x̂−k )

T (Pk−)−1)x̂+k
(30)

over x̂+k , subject to the constraints:

Dkx̂+k ≤ dk (31)

3.4.2. Unscented Kalman filter
The system is as for the EKF, given in Eqs. (17)–(20). The

state estimate and the covariance for the Unscented Kalman Filter
are implemented as follows [12,14,18], with additive noise. To
propagate the system from time (k − 1)+ to k−, we choose the
sigma points as:

χk−1,0 = x̂+k−1

χk−1,i = x̂+k−1 + x̃i i = 1, · · · , 2n

x̃i =
(√

(n+ λ)Pk−1
+

)
i

T

i = 1, · · · , n

x̃n+i = −

(√
(n+ λ)Pk−1

+

)
i

T

i = 1, · · · , n (32)

Here, λ is given by

λ = α2(n+ k)− n (33)

where n is the size of the state vector and α and k are tuning
parameters. The parameter α controls the size of the sigma point
distribution [12]. The matrix square root was calculated by using
Cholesky factorization. We transformed the sigma points using
the nonlinear system f (·):

χk,i = f (χk−1,i, uk, 0) (34)

and combined them to obtain an a priori state estimate at the
discrete time point k:

x̂−k =

2n∑
i=0

Wm
(i)χk,i (35)

and estimated the a priori error covariance as:

P̂−

k =

2n∑
i=0

Wc
(i)(χk,i − x̂−k )(χk,i − x̂−k )

T
+ Qk (36)

The weights Wm and Wc are defined as:

Wm
(0)

=
λ

n+ λ
i = 0 (37)

Wc
(0)

=
λ

n+ λ
+ (1− α2

+ β) i = 0 (38)

Wm
(i)
= Wc

(i)
=

λ

2(n+ λ)
i = 1, · · · , 2n (39)

with β used to incorporate higher order moments of the distribu-
tion [12]. For the measurement updates, we transform the sigma
points into γk,i:

γk,i = h(χk,i) (40)
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Fig. 1. Implementation Procedure. The figure reports the proposed implementation for the EKF and UKF integrated with the bacterial cultivation process. The recursive
filter is represented by the blocks from 1 to 5. Where 1 represents the Kalman gain calculation after each loop, 2 the correction term, where the newly available
outputs from the on-line process 9 (volume, biomass and CO2) are used to estimate the states. The condition to activate or not the optimization is represented
by step 3. Indeed if the concentration of glucose is non negative the error covariance matrix is updated in 4 and then used for the projection ahead in 5. In case
the condition in 3 is not satisfied (negative glucose concentrations are estimated), the optimization is solved (6, blue dashed area). In the case of the EKF only
the step 6 is implemented, while for the UKF also step 7, since the constrained estimation of the sigma points has a direct impact on the calculation of the error
covariance matrix. The estimated states are represented by the continuous green circle. Step 8 (red dotted area) represents the entering parameters covariance, which
is increased once the glucose is fed again to the system (changing systems dynamics) and kept constant afterwards. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

and combined them to obtain the predicted measurement at time
point k:

ŷk =
2n∑
i=0

Wm
(i)γk,i (41)

We then estimated the covariance of the predicted measurements
as:

Py =
2n∑
i=0

Wc
(i)(γk,i − ŷk)(γk,i − ŷk)T + R (42)

The cross-covariance between x̂−k and ŷk as:

Pxy =
2n∑
i=0

Wc
(i)(χk,i − x̂−k )(γk,i − ŷk)T (43)

The measurement update is:

Kk = PxyPy−1 (44)

χk,i
+
= χk,i

−
+ Kk(yk − γk,i) (45)

x̂k =
2n∑
i=0

Wm
(i)χk,i (46)

Pk+ =

2n∑
i=0

Wc
(i)(χk,i − x̂−k )(χk,i − x̂−k )

T (47)

The measurement update equations (Eqs. (45), (46) and (47))
are implemented following the reformulation of [18] to avoid
round-off errors. The constraints implementation is done by solv-
ing a QP-problem as shown in [18] when the sugar estimate goes
below zero.

The QP-problem defined as:

min
χk,i

J s.t. Dkχk,i ≤ dk (48)

is solved by minimizing the objective function

J = χk,i
T (Dk

TRk
−1Dk + (Pk−)−1)χk,i+

−2(ykTRk
−1Dk + (χk,i

−)T (Pk−)−1)χk,i
(49)

for χk,i, subject to the constraints

Dkχk,i ≤ dk (50)

4. Results

The results are structured as follows: we first assess the ob-
servability of the system in Section 4.1, then we propose in
Section 4.2 the tuning parameters for the EKF and UKF and
evaluate the performance of the filters (Section 4.3) using two
different experiments.

4.1. Observability analysis

Here we conducted local observability analysis using Lie
derivatives (Section 3.3). For the system to be observable the
dimension of the observability co-distribution (dO) must be equal
to the dimension of the state vector (n = 4) at any time.
This was done by simulation of different available measurement
scenarios Appendix. The calculation of the Lie derivatives was
done in Matlab by symbolic differentiation and this was feasible
as the problem is of small size [29]. The results showed that the
system is locally observable when measuring volume, biomass
and CO2 (Fig. A.8). Measuring only the volume and the biomass
was critical for local observability (Fig. A.8). However, the combi-
nation of measurements of volume and CO2 or biomass and CO2
showed that the system can be locally observable under specific
process conditions, i.e. in absence of glucose depletion or under
continuous feeding Appendix.

4.2. Filter tuning

The filter receives the signals from the sensors every 60 s. Both
the EKF and the UKF filters were tuned using Experiment I only.
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Table 2
Noise, description and numerical value.
Noise Description Value

σ 2
µmax µmax variance 1.05 ·10−11

σ 2
KS KS variance 1.54 ·10−11

σ 2
kd kd variance 2.02 ·10−11

σ 2
YXS YXS variance 1.28 ·10−11

σ 2
YXCO2

YCO2 variance 4.91 ·10−12

nV Additive noise V 1 ·10−2

nX Additive noise X 1 ·10−2

nS Additive noise S 1 ·10−2

nCO2 Additive noise CO2 1 ·10−4

To ensure a fair comparison, the tuning parameters are the same
for the EKF and the UKF. The initial conditions are given as:

x0 =
[
1.5 1.2 20 0

]T
x̂+0 = x0

P0+ =

⎡⎢⎣2.09 · 10−8 0 0 0
0 1.10 · 10−5 0 0
0 0 1.09 · 10−4 0
0 0 0 2.17 · 10−5

⎤⎥⎦
The measurement noise covariance matrix R was tuned as

follows

R = diag
[
10−2 1 10−3

]
(51)

while the process noise covariance matrix Qk was tuned as in [3,
30]:

Qk = Gk · Qw · Gk
T (52)

where the Jacobian Gk is defined as:

Gk =
∂ f (x, u, w)

∂w

Here, w represents the noise vector

w =
[

σ2
µmax σ2

ks σ2
kd σ2

YXS σ2
YXCO2

nV nX nS nCO2
]T

with description and variance values in Table 2 obtained as ex-
plained in Section 3.

The matrix Qw is a diagonal matrix of the variances elements
of w:

Qw = diag
[

σ2
µmax σ2

ks σ2
kd σ2

YXS σ2
YXCO2

nV nX nS nCO2
]

The process noise is then modelled with the variance values
reported in Table 2 obtained from the parameters standard devi-
ation (Table 1) and with an additive noise (ni) in order to avoid
Qk to become zero or indefinite when the substrate S is depleted.
The value of Qk then varies at every iteration (k). Because the
dynamics of the process is significantly different between the first
and the second batch phase, we tested two different tuning cases
for Qw: (1) Constant parameter uncertainty (CU, Table 2), and
(2) modified parameter uncertainty (MU), increasing, during the
second batch phase (from 21 h), the variance of σ 2

KS and σ 2
YXCO2

to 3.38 · 10−2 and 4.91 · 10−2 respectively. Indeed, the parameter
uncertainty, and therefore the covariance, is increased once the
glucose is fed again to the system (second batch) and kept to that
value once it changes. The rational behind the modified process
noise is the increased uncertainty due to unmodelled dynamics of
the glucose uptake by our simple model during the second batch
phase, caused by utilization of byproducts accumulated under
overflow metabolism (cf. discussion in Section 5).

The system measurement function h(x) is:

h(x) =
[
V X CO2

]T (53)

Table 3
RMSE values for the tuning experiment (Exp. I). The values show how the filters
perform similarly and always better than the model and also how the RMSE
improved with modified parameter uncertainty (MU) compared to constant
uncertainty (CU) between first and second batch phase.
RMSE Biomass Glucose

Model EKF UKF Model EKF UKF

CU 2.45 1.15 1.15 1.78 1.64 1.53
MU 2.45 1.15 1.15 1.78 1.04 0.92

Table 4
RMSE values for the validation experiment (Exp. II). The values confirm the
improvement obtained by the use of the filters and the similar performance
of the two filters and also how the RMSE improved with modified parameter
uncertainty (MU) compared to constant uncertainty (CU) between first and
second batch phase.
RMSE Biomass Glucose

Model EKF UKF Model EKF UKF

CU 2.47 1.10 1.11 2.22 1.34 1.28
MU 2.47 1.10 1.11 2.22 0.84 0.86

The linearized measurement matrix (H , Eq. (25)) is then:

H =

[1 0 0 0
0 1 0 0
0 0 0 1

]
(54)

The available measurements in our process are the volume,
the value from the absorption probe and the carbon dioxide ratio
in the off-gas:

y =
[
V CDW CO2

V

]T
(55)

The other tuning parameters for the UKF (defined in Sec-
tion 3.4.2) were tuned as follows:

α = 0.001
k = 1
β = 2

According to [12] α is chosen heuristically between 0 and 1 and
should be kept as low as possible. Since we assume that the
noise follows a Gaussian distribution, the value of β is optimal at
2 [12]. For the tuning of the UKF in the case of modified parameter
uncertainty (MU) between first and second batch, the parameter
α was selected equal to 1 to avoid divergence of the filter when
the uncertainty of the estimates is high.

4.3. Experimental results

Tuning Experiment (Exp. I). The model prediction of biomass
and cell death was accurate for the first batch, but exhibited
a large discrepancy with the reference measurements (CDW)
during the second batch (Fig. 2). In comparison, both the EKF
and the UKF estimated the biomass formation with good accuracy
compared to the reference measurements (RMSE 1.15, Table 3
and Fig. 2).

Increasing parameter uncertainty (MU, Section 4.2), because
of unmodelled dynamics in the second batch, did not affect the
biomass estimation (Table 3 and Fig. 2 bottom row).

The glucose prediction of the model and estimated values of
the EKF and the UKF were accurate during the first batch phase
when compared to the off-line measurements (Fig. 3). When
maintaining the parameter uncertainty constant during the en-
tire process (CU, Section 4.2), the values estimated from the
EKF and the UKF showed the inability of the filters to correctly
estimate the sugar consumption after feeding (Fig. 3 top row),
likely due to unmodelled utilization of accumulated byproducts
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Fig. 2. Biomass growth-tuning experiment (Exp. I). This experiment was used to tune the filters. The experimental results correspond to the off-line measurement
(blue circles with error bars), and the sensor measurement (dashed–dotted grey line for the absorption signal). The figures report the results for the two filters
with same (a and b) and with different parameter uncertainty between first and second batch (c and d). The model (thin grey line), the EKF (Fig. a and c, black
continuous line) and the UKF (Fig. b and d, black continuous line) can follow the measurements in the batch phase (0–21 h). However, the model simulations present
discrepancies from the experimental data after the feeding (from 21 h), which are eliminated by the application of the EKF and the UKF.

Fig. 3. Glucose concentration-tuning experiment (Exp. I). The experimental results correspond to the off-line measurement (blue circles). The figures report the results
for the two filters with same (a and b) and with different parameter uncertainty between batch and feeding phase (c and d). The model (thin grey line), the EKF
(Fig. a, black continuous line) and the UKF (Fig. b, black continuous line) can follow the measurements in the first batch phase and during the feeding (0–26 h).
However, the model simulations present discrepancies from the experimental data after the feeding (a and b, from 26 h), which are not eliminated by the application
of the EKF and the UKF. The dotted lines represent the confidence intervals (2−σ intervals) of the estimated values. The results indicate that the variance is similar
for both filters under dynamic conditions, but it differs under steady state between the EKF (a) and the UKF (b). However, when considering different parameter
uncertainty between the first and second batch phase, both the EKF (c) and the UKF (d) are able to follow the measurements.
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Fig. 4. CO2 formation-tuning experiment (Exp. I). The figure reports the percentage of CO2 in the off-gas for the two filters with same (a and b) and with different
parameter uncertainty between first and second phase (c and d). The model (grey line) follows the measurements (dashed–dotted line) form the off-gas analyser in
the batch phase, with the exception of noise between 5 and 7 h, while shows higher discrepancy during and after feeding. The 2− σ intervals (dotted lines) show
that the EKF (a and c) shows a reduced uncertainty compared to the UKF (b and d).

(see Section 5). Most importantly, when increasing the parameter
uncertainty during the second batch phase, to account for this
unmodelled dynamics (MU, Section 4.2), both filters exhibited
an improvement in the estimation of glucose consumption, with
values closer to the off-line measurements (Table 3 and Fig. 3
bottom row). Interestingly, the confidence intervals of the EKF
(2−σ bounds, Fig. 3 bottom left) increased under sugar depletion,
reflecting the uncertainty of the prediction, to then decrease at
the end of the fed-batch. Indeed, however the estimated values
of the UKF were slightly better than the ones of the EKF for
the CU and MU cases (7% and 12%, respectively, Fig. 3 bottom
right), the confidence intervals (2 − σ bounds) of the UKF were
larger than the ones of the EKF during the second batch. This
is likely because of the large discrepancy between the model
prediction and measurements. This is mostly visible for the CO2
(Fig. 4), reflecting the fact that the model uncertainty is large
(see Section 5). Indeed, the model predictions of CO2 formation
followed the measurements of the off-gas during the first batch
(Fig. 4) but were reduced rapidly to zero in the second one. This
is in contrast to the measurements which indicate CO2 formation
emerges from catabolism of byproducts (see Section 5).

The open-loop model was less accurate compared to the two
filters, exhibiting nearly double RMSE (2.45 for biomass and 1.78
for glucose, Table 3).

Note that the off-line measurements of the biomass (CDW) and
the sugar concentration (HPLC measurements) were only used
to evaluate the estimated values but were not used by the filter
algorithms during the calculations.

Validation Experiment (Exp. II). We tested the performance
of the model and the filters in a dedicated validation experiment.
The tuning of the filters was kept unchanged, i.e. they were not
adapted to the validation experiment (Figs. 5–7). For complete-
ness of this work, we present the results for the CU case also in
the validation experiment. Indeed, these results show that under

constant parameter uncertainty the filters are unable to correctly
estimate the drop in glucose consumption after feeding.

Firstly, we observed that the model had a large discrepancy
compared to the off-line measurements (Fig. 5), both during the
first and the second batch. Secondly, the error of the model is in
magnitude of 2-fold compared to the filters (Table 4). The model
predictions are particularly erroneous in the first exponential
growth phase of the Experiment II (Figs. 5–7), discrepancy that
emerged likely due to experimental and cell-to-cell variations.

Both the filters estimated the biomass accurately by using the
on-line measurements (both for CU and MU case) with respect to
the reference values (Fig. 5). The RMSE values of the filters were
55% lower than the value of the model (Table 4).

The glucose predicted by the model in the validation exper-
iment was inaccurate for both the first and the second batch
(Fig. 6), with a slower consumption than the reference measure-
ments during the first batch and faster consumption after feeding.
The EKF and the UKF showed accurate estimations of the glucose
during the first and second batch (until 25 h), but during glucose
depletion (26–30 h), the drop in the sugar consumption rate was
not captured by the model nor by the filters in the CU case (total
RMSEs 1.34 and 1.28, for the EKF and the UKF respectively, Fig. 6
top row). Most importantly, the filters with modified parameter
uncertainty (MU, Section 4.2) successfully captured the slower
sugar consumption after feeding (Fig. 6 bottom row), although
the confidence intervals of the UKF exhibited chattering (Fig. 6
bottom right). Indeed, the case with modified parameter uncer-
tainty (MU) between the two phases showed an improvement of
the estimates at the cost of an higher uncertainty (Fig. 6).

The modelled CO2 prediction generally captured the dynamics
of the CO2 formation in the validation experiments, but was
delayed in the first batch, and with larger error during and after
feeding (Fig. 7). The filters however, with the information from
the measurements, captured the CO2 formation most accurately.
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Fig. 5. Biomass growth-validation experiment (Exp. II). These experimental results were used to validate, test and compare the model performance against the EKF
and the UKF. The figures report the results for the two filters with same (a and b) and with different parameter uncertainty between first and second batch (c and
d). The experimental results correspond to the off-line measurement (blue circles with error bars), and the sensor measurement (dashed–dotted grey line for the
absorption signal). The model (thin grey line), presents discrepancies from the experimental data, showing a slower growth during the whole fed-batch. However,
the EKF (Fig. a and c, black continuous line) and the UKF (Fig. b and d, black continuous line) can follow the measurements.

5. Discussion

This work presents the implementation of two Kalman-like
filters to estimate biomass, glucose and CO2 during a fed-batch
fermentation process. The filters were based on a process model
and updated their estimates using only two measurement de-
vices, i.e. an in-situ absorbance probe to measure biomass and
an off-gas sensor to measure CO2. The performance and accuracy
of the filters were evaluated using a separate set of control
measurements, i.e. biomass and glucose (Section 2.3), and this
information was not used by the filters at any time point during
the experiments.

One important novelty of this work is to be able to predict
the unmeasured glucose by two filters under excess of substrate,
using only an in-situ absorbance probe and an off-gas analyzer
(Section 2). We also compared and evaluated the performance of
the two filters by training–testing sets of experiments. Previous
works did present successful implementations of state estima-
tors in microbial cultivation processes [5,9,16,19], but using slow
and accurate off-line sampling and/or advanced measurement
devices, for instance using a NIR with a large spectral range (950–
1750 nm) that is able to detect sugars, biomass and ethanol [5].
In fact, successful estimation of sugars based on manual biomass
sampling and/or advanced NIR spectroscopy and CO2 measure-
ments was already demonstrated in [5], but only under substrate
limitation during feeding. In contrast, excess of substrate usually
leads to changes in metabolism, which influence the dynamics of
substrate consumption and CO2 formation. Because this dynamics
are not modelled, the filters, which only rely on the model and
the measurements, can lead to erroneous estimates of the sugar
(see below). In this work, we resolved this problem by increasing
the parameter uncertainty in Qw during the second batch under
excess of substrate (MU), forcing the filters to rely more on

the measurements than on the model. This led both filters to
accurately estimate the glucose concentration in the complete ab-
sence of direct sugar measurements and under varying metabolic
conditions. Importantly, we demonstrated accurate predictions
using exclusively the low cost off-gas analyser and a simple and
low cost absorbance probe (Section 2.2), potentially eliminating
the need to measure glucose with more expensive and off-line
devices such as HPLC.

Not surprisingly for a simple Monod model, its prediction of
a fed-batch process was biased for the biomass, glucose and CO2,
particularly under feeding. These results were consistent in both
experiments, and the slight variations in the values are likely
due to variations in experimental conditions (e.g. inoculation, cell
culture and variations in media composition) which were not
included in the model dynamics. The large discrepancy of the
model compared to the reference measurements after feeding,
particularly for glucose consumption, emerges most likely due to
unmodelled dynamics. For instance, different authors discussed
the formation of organic acids under oxygen limitation in C.
glutamicum [31–35], such as acetate and lactate that become
available for the cells. Indeed, this intermediates are released
by the cells during cultivation phases with reduced growth and
available substrate and subsequently utilized [35] as alternative
substrates, when the cells enter a state of prolonged substrate
limitation [36]. This is more likely to occur under high glu-
cose feeding rates and low dissolved oxygen [33,34] and is not
part of our model. Our simple open-loop Monod model, with
its parameter estimated by a dedicated experiment (Section 3),
although maybe suitable for the first batch phase, did not per-
formed reliably in the second batch phase, for both subsequent
experiments we tested. The performance of the two filter strate-
gies was similar for the biomass, but the UKF predicted the overall
glucose consumption more accurately than the EKF for both the
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Fig. 6. Glucose concentration-validation experiment (Exp. II). The experimental results correspond to the off-line measurements (blue circles). The figures report the
results for the two filters with same (a and b) and with different parameter uncertainty between first and second batch phase (c and d). The model (thin grey line)
presents a slower consumption rate during the first batch, however the EKF (Fig. a, black continuous line) and the UKF (Fig. b, black continuous line) can follow
the measurements in the first batch and during feeding (0–21 h). The model simulations present discrepancies from the experimental data after the feeding phase
(from 26 h) with a faster consumption rate, which are not eliminated by the application of the EKF and the UKF. The dotted lines represent the confidence intervals
(2− σ intervals) of the estimated values. The results indicate that the variance is similar for both filters under dynamic conditions, but it differs under steady state
between the EKF (a) and the UKF (b). The filters (a and b) successfully eliminated the discrepancies between model simulations and experimental data, being also
able to estimate the time at which the glucose is depleted (7 h). However, when applying a different parameter uncertainty between the two phases, both the EKF
(c) and the UKF (d) followed the measurements.

training set and the testing experiment. Most importantly, we
demonstrated in this work that in the absence of full state mea-
surements, both Kalman-like filters required different parameter
uncertainty (Qw) for the first and the second batch (MU). This is
in order to account for the unmodelled dynamics, particularly of
the byproducts utilization during the second batch phase, which
decreases the glucose consumption rate. Previous works [3,5,8]
tuned and employed a constant parameter uncertainty Qw for
the entire fed-batch process. Interestingly, they report accurate
results for the feeding phase, likely of two important reasons:
(1) all the states were measured or (2) substrate is fed with a
low feeding rate, presenting a case of frequent and abrupt sugar
starvation and subsequently rapid utilization of any potential
byproducts. Adaption of the values in the process noise matrix
Qw that correspond to the unmodelled uncertainty, in our case
the CO2 from the biomass yield (YCO2) and the monod growth
constant (Ks), were highly effective and greatly improved both
filters performance (over 50% more accurate, see Tables 3 and
4). Notably, the estimators exhibited significant increase in the
confidence regions (2 − σ bounds) of the sugar estimate after
the feeding phase. This indicates that although the filter suc-
cessfully captured the states (indicated by the lower RMSE in
both experiments), the estimates had high uncertainty bounds.
This is likely because in the complete absence of direct sugar
measurements, the large discrepancy between the measurement
and model predictions increases the predicted covariance matrix
P .

In the MU case, the tuning of the UKF was highly sensitive
to the spread of the sigma points (denoted by the parameter α)
and therefore we needed to be more conservative to avoid large

covariance increase. A possible reason the UKF exhibits larger
covariance in the MU case is likely due to the design of the noise
covariance matrix Qk. A previous work presented the possibility
to add an extra positive definite matrix to Qk, seeing it as a
trade-off between stability and accuracy [37]. Indeed, when this
additive term is set too large, the filter can exhibit significant
deviation, and the state covariance matrix P (Eq. (47)) can present
high condition number, causing the filter to misinterpret the
residual information and therefore lead to divergence issues [38].
Under increased covariance the UKF also exhibits chattering. This
instability can be a consequence of the constraint handling im-
plementation (QP-problem, Sections 3.4.1 and 3.4.2). While both
implementations used an identical QP-problem, the states of the
UKF were constrained by optimization of the sigma points, which
may often trigger hard saturation constraints. Due to the different
nature of the filters, a large covariance matrix is not encountered
in the EKF, which being just a first order approximation, will
not see the nonlinear effects [12]. The increase of the covariance
matrix in the UKF will be further investigated and it will be part
of future works.

We suggest several manners to improve the predictions of
the filters we presented: (1) Apply full state measurements or
improve the measurement devices, on the expense of increased
costs and instrumentation complexity. In industrial bio-processes
this may not be a feasible alternative, especially in production
of low-value products. The error in the estimation can be also
corrected by using a few scarce sugar measurements, particularly
at the transient parts of the bio-process. This was demonstrated
by [5], where the authors increased the state estimate accuracy by
adding sugar measurements to their SPKF. (2) Improve the model
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Fig. 7. CO2 formation-validation experiment (Exp. II). The figure reports the percentage of CO2 in the off-gas for the two filters with same (a and b) and with
different parameter uncertainty between the first and the second (c and d). The model (grey line) shows a more similar dynamic behaviour with the measurements
(dashed–dotted line) in the first batch compared to the tuning experiment (Exp. I) with a less accentuate noise between 4 and 6 h but with a slower CO2 production.
However, the model still shows higher discrepancy during and after the feeding phase. The 2 − σ intervals (dotted lines) show that the EKF (a and d) presents a
reduced uncertainty compared to the UKF (b and d).

to include intracellular processes in the cells as byproduct for-
mation/consumption and oxygen limitation. Although modelling
these processes have the potential to increase the accuracy of
the filters, they are increasing the model complexity, subjected
to an increase in model uncertainty and parameter over-fitting.
(3) Different model dynamics can be adopted for the batch phase
and consecutive feeding phases, for instance by separate sets of
equation for the sugar consumption, or a separate model pa-
rameter set for the batch and the feeding phases, particularly
the yield coefficient YXS . (4) Implementation of adaptive esti-
mation (i.e. adaptive UKF) as presented in [39]. As the authors
presented in [39], the measurement noise covariance (R) can be
adaptively tuned utilizing the available outputs. However, this
would be mostly effective with an high confidence in the process
model [40], while, in the presented case a possibility is to tune
the process noise covariance (Q) when anomalies are detected
in the dynamics of the bacterial cultivation process, allowing an
adaptive model uncertainty.

Implementation of a fully on-line, low cost state estimator is
important for feedback control of microbial cultivations. Although
it is possible to estimate sugar concentrations by advanced de-
vices, these are either high-cost (wide range NIR, FTIR) or incor-
porate major challenges in on-line implementation, for instance
due to time-demanding measurements or a full integration of the
device to the system (HPLC). An estimator that integrates low-
cost measurement devices with an accurate model have a great
potential to promote a closed feedback control loop in microbial
processes and increase their performance.

6. Conclusions

This paper presents an implementation of an UKF and an
EKF to estimate biomass and sugar concentrations during a fed-
batch process, in the absence of direct sugar measurements. We

demonstrated that two simple, low-cost on-line measurements
could describe the dynamic behaviour of the entire process and
lead to an improved accuracy of the estimates, particularly when
the process noise variance values were adapted to the phase of
the process (MU). Our results indicated that the UKF was more
accurate than the EKF. The UKF- and EKF-based soft sensors can
therefore provide a solution for sensor fusion that can be used
to achieve an holistic feedback control in a real fermentation
process.
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Appendix. Observability analysis

Fig. A.8. The simulation results report the dimension of the observability space
dO for the different measurement combinations (I–IV). In the left are reported
the results for Case I (continuous grey) and II (dashed–dotted black). While in
the right for Case III (dashed–dotted black) and IV (continuous grey).

Observability test was conducted considering different mea-
surement functions as follows:

Case I — Volume and biomass

h(x) =
[
V
X

]
(56)

Case II — Volume and CO2

h(x) =
[

V
CO2

]
(57)

Case III — Biomass and CO2

h(x) =
[

X
CO2

]
(58)

Case IV — Volume, biomass and CO2

h(x) =

[ V
X

CO2

]
(59)

The results of the observability analysis are reported in Fig. A.8.
The simulation test showed that the system is observable when
information about volume, biomass and CO2 is available (Case
IV), with dO = 4. On the contrary, it showed that in the other
considered cases the system into consideration was not locally
observable (Case I, II and III). Indeed, in case of availability of only
volume and biomass (Case I) the dimension of the observability
space dOwas equal to 3. Measuring instead volume and CO2 (Case
II) its dimension was 4 except when glucose is depleted, while
when measuring biomass and CO2 (Case III) it showed that the
dimension of the observability space was 3 except during feeding.

This results show that to ensure local observability of the
system, measurements of volume, biomass and CO2 are necessary
and that only measurements of volume and biomass are not suf-
ficient. However, they also show that, under specific conditions,
the sole measurements of volume and CO2 (Case II) or biomass
and CO2 (Case III) ensure local observability. Indeed, in absence
of glucose depletion volume and CO2 ensure local observability,
while, under continuous feeding, also biomass and CO2 alone are
sufficient.
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dynamics, which require the implementation of nonlinear state estimators to infer unmeasured
metabolites in the cultivation broth. Among the various nonlinear available estimator strategies,
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1. INTRODUCTION

Automation of biological processes is limited due to the
unavailability of on-line measurement devices that can
quantify variables of interest. The lack of sensors can
be circumvented by implementing state estimators that
enable to monitor the process in real-time. These state
estimators are dependent on mathematical models (Rao,
2000) that represent the system in a simplified manner (i.e.
Monod growth model). Different applications of nonlinear
estimation techniques, including Extended Kalman Filters
(EKFs), Particle Filters (PFs) and Unscented Kalman
Filters (UKFs), are available, as reported in Tuveri et al.
(2021). However, those applications are all based on recur-
sive Bayesian estimators, which approximate the posterior
conditional probability density function (pdf ) using mea-
surements available at the current sampling instant.

Differently from them, optimization-based methods such
as the Moving Horizon Estimator (MHE) use a moving
window of past data (Robertson et al., 1996; Rawlings and
Bakshi, 2006; Bavdekar et al., 2013; Ali et al., 2015). Most
importantly, from a practical point of view and in contrast
to the recursive Bayesian estimators, the MHE has:
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• the ability to explicitly incorporate bound constraints
in states and parameters;

• the possibility to easily handle multi-rate measure-
ments;

• higher computational times (CPU times).

Indeed, MHE has the ability to explicitly incorporate
physical constraints on states and parameters, and dis-
turbances in the form of time-varying parameters can be
added as extra degrees of freedom in the optimization
(Robertson et al., 1996; Rao et al., 2003; Kühl et al.,
2011). On the other hand, the EKFs or UKFs methods
require strategies like clipping (Haseltine and Rawlings,
2005) or other optimization-based methods (Kol̊as et al.,
2009; Tuveri et al., 2021) to avoid the estimation of neg-
ative concentrations. Additionally, time-varying parame-
ters and disturbances have to be included as additional
states, without the possibility to constrain them within
predefined boundaries. Moreover, many real-time systems
incorporate measurement devices with various sampling
rates and times. For instance, whereas some absorbance
probes sample every 10 seconds, sugar measurements by
high performance liquid chromatography (HPLC) can be
acquired every 30-60 minutes. The MHE, by considering
a window of past measurements, is of interest in the case
of such multi-rate measurements (Elsheikh et al., 2021),
since it easily allows to place them in an adequate position
within the time horizon. For those reasons, the MHE is a
promising approach within bioprocesses.
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2011). On the other hand, the EKFs or UKFs methods
require strategies like clipping (Haseltine and Rawlings,
2005) or other optimization-based methods (Kol̊as et al.,
2009; Tuveri et al., 2021) to avoid the estimation of neg-
ative concentrations. Additionally, time-varying parame-
ters and disturbances have to be included as additional
states, without the possibility to constrain them within
predefined boundaries. Moreover, many real-time systems
incorporate measurement devices with various sampling
rates and times. For instance, whereas some absorbance
probes sample every 10 seconds, sugar measurements by
high performance liquid chromatography (HPLC) can be
acquired every 30-60 minutes. The MHE, by considering
a window of past measurements, is of interest in the case
of such multi-rate measurements (Elsheikh et al., 2021),
since it easily allows to place them in an adequate position
within the time horizon. For those reasons, the MHE is a
promising approach within bioprocesses.

The continuously increasing interest in real-time opti-
mal control has brought advances in nonlinear Model
Predictive Control (NMPC) algorithms and consequently
in MHE methods (Findeisen et al., 2007). Indeed, even
though fewer results are available in the literature about
MHE, it can be seen as the dual of Model Predictive
Control (MPC), since they both share moving horizon
approach and dynamic optimization. The pioneering work
of Kühl et al. (2011) in fact, transferred a fast real-
time iteration approach developed for NMPC to MHE,
contributing to its feasibility in real-time.

Although some in-silico applications within bioprocess
monitoring are available (Räıssi et al., 2005; Valipour and
Ricardez-Sandoval, 2021; Bae et al., 2021; Elsheikh et al.,
2021), the implementation of MHE combined with experi-
mental data is almost non-existent and, to the best of our
knowledge, it was only presented by Goffaux and Wouwer
(2008). In Goffaux and Wouwer (2008) the authors present
a robust receding horizon approach in the case of uncer-
tain parameters, by selecting the worst parameter real-
ization in a min-max optimization approach. To reduce
the high computational demand, model linearization and
monotonicity assumptions are required. Differently from
the implementation in Goffaux and Wouwer (2008), our
approach does not require linearisation or monotonicity
of the model, parameter realisation is considered nominal
and model uncertainty is a free variable minimized in the
cost function. In order to demonstrate the benefits of MHE
in bioprocess monitoring, we present an implementation
of MHE using real experimental data of a fed-batch bac-
terial cultivation of Corynebacterium glutamicum, previ-
ously presented in Tuveri et al. (2021). The estimation
performance obtained here by the MHE is accurate with
respect to the off-line samples. Moreover, we demonstrate
the incorporation of hard state constraints directly in the
optimization formulation. This is an important advantage
when the practitioner needs to avoid nonphysical estimates
(i.e. negative concentrations).

2. INPUT AND OUTPUTS

The on-line output measurements were collected every 60
seconds and used by the estimator to measure biomass,
volume and CO2 respectively and to infer the unmeasured
glucose composition. Signals from the absorbance probe
were obtained in concentration units (0.05 - 4 CU) and
than converted to g/L (cell dry weight, CDW) using a
calibration curve as follows.
CU ≥ 0.9:

CDWCU = 22.187 · CU − 5.0991

CU < 0.9:

CDWCU = 11.124 · CU + 0.66116

On-line CO2 signals were obtained as measure of the
composition in the outflow (0%–25%). The volume was
calculated by integrating on-line the signals from the
pumps, taking into account also the amount of volume
taken for the off-line samples (8 mL/sample). The feeding
profile is reported in Fig. 1. From here on we will define
the two different phases as batch (from zero to the start
of the feeding) and fed-batch or second batch (from the
feeding on). More information about measurements and
experimental setup are reported in Tuveri et al. (2021).
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Fig. 1. Feeding profile.

3. SYSTEM MODEL

The dynamics are modelled by using simple Monod ki-
netics for growth on glucose as fed-batch process (Eq.
1), with the addition of linear cell death (Tuveri et al.,
2021), where the state vector is defined by x(t) =
[V (t), X(t), S(t), CO2(t)]

T and the input vector by
u = [Fin(t)]. From here on we will drop the time-dependent
notation for simplicity. The states V , X, S and CO2

are respectively volume, biomass, substrate and carbon
dioxide. Fin is the inflow of glucose with concentration
Sin (100g/L), while qair is the inflow of air (2 NL/min).





dV
dt = Fin

dX
dt = −Fin

V X + µmax
S

Ks+SX − kdX

dS
dt = Fin

V (Sin − S)− µmax
S

Ks+S
X

YXS

dCO2

dt = µmax
S

Ks+S
X

YXCO2
− qairCO2

(1)

The parameters are µmax, KS , kd, YXS and YXCO2
(Table

1). Those parameters were obtained using a nonlinear
least-squares data fitting algorithm (lsqnonlin, Matlab) by
a dedicated experiment (Tuveri et al., 2021).

Table 1. Values of model parameters (Eq. 1)
with unit and standard deviations.

Parameter Description Value Unit Std. Dev.

µmax Maximum growth rate 0.19445 [h−1] 3.25 ·10−6

KS Monod growth constant 0.007 [g · L−1] 3.92 ·10−6

kd Death rate constant 0.006 [h−1] 4.49 ·10−6

YXS S from X yield 0.42042 [g · g−1] 3.58 ·10−6

YXCO2 CO2 from X yield 0.54308 [g · g−1] 2.22 ·10−6

The covariance matrix for the parameters is calculated
through the Fisher Information Matrix (FIM) as in Tuveri
et al. (2021), where also structural identifiability and local
observability for the system were positively assessed.

4. MOVING HORIZON ESTIMATION

The MHE estimates the states using past measurements
at specific time points in the horizon T = tN − tL, where
tN represents the current time and tL the starting point of
the horizon. The time horizon is then discretized according
to the sampling rate.

The dynamics of the process (Eq. 1) are described by a set
of ordinary differential equations (ODEs):

ẋ = f(x, u, w) (2)

y = h(x) (3)
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Fig. 2. The figure reports the MHE implementation, where
the red dashed line represents the cost function (Eq.
6) and the blue dashed-dotted line its constraints.
Measurements are given to both arrival and measure-
ment error cost, while the measurement error covari-
ance matrix is calculated at every iteration to weight
for the model noise.

By discretizing it, we obtain:

xk+1 = F (xk, uk, wk) (4)

yk = h(xk) (5)

where k denotes the sampling time tk and wk is a random
variable.

The MHE problem (Kühl et al., 2011; Andersson et al.,
2016) consists in finding the states and their noise ob-
tained by solving the following constrained least-squares
optimization problem:

min
xi,wi

(
‖x̂L − xL‖2PL

+

N∑

i=L

‖yi − h(xi)‖2V +

N−1∑

i=L

‖wi‖2Wk

)

s.t. xi+1 = F (xi, ui, wi) i = L, · · ·, N − 1

xi ≥ xmin i = L, · · ·, N
(6)

The states xi are constrained with xmin = [0, 0, 0, 0] as a
lower bound, to avoid negative (unfeasible) concentrations.
Following the work of Kühl et al. (2011), we define:

PL = P−1/2, V = R−1/2, Wk = Qk
−1/2 (7)

and consider ‖b‖2B = bTBTBb. The first term of the opti-
mization (Eq. 6) is the arrival cost (Γ), which summarises
the effect of measurements previous to the estimation hori-
zon (up to tL) and it is updated by single QR-factorization
as in Kühl et al. (2011). The term x̂L (Eq. 6) represents
the optimal estimate of xL.

The matrices P , R and Qk (Eq. 7) are defined respectively
as error, measurement noise and process noise covariances
(Tuveri et al., 2021). Moreover, to take into account
different process dynamics (Elsheikh et al., 2021), the

process noise covariance Qk is updated as in Tuveri et al.
(2021). However since MHE, differently from EKF and
UKF, takes into account several past measurements within
the horizon T , the corresponding process noise covariance
matrix Qk is used for each sampling time (k) within
the horizon. Along the optimization horizon (30 min),
states (xi) and process noise (wi) are optimized using the
information from the mechanistic model and the outputs
(1 min sampling rate). The implementation of the MHE
is illustrated in Fig. 2. To transform the continuous time
model, we apply three point Legendre collocation on finite
elements. The Nonlinear Programming (NLP) problem
was solved using IPOPT (Wächter and Biegler, 2006)
embedded in CasADi (Andersson et al., 2019).

4.1 Arrival Cost Update

Several approaches can be used to calculate the arrival
cost. An interesting review on different arrival cost schemes
and how they can effect the stability of the MHE is
presented in Elsheikh et al. (2021). Here we describe the
QR-factorization approach employed in this work, which
approximates the arrival cost to a quadratic term that
is updated before each new horizon (Kühl et al., 2011).
Altough the QR-factorisation is a linearised technique as
the EKF, it also holds all the numerical properties of
the square-root Kalman Filter and the influence of past
information can only grow within the limits of the process
noise covariance Qk (Kühl et al., 2011).

When we shift the horizon to a new start point at tL+1,
the arrival cost would ideally be defined as:

Γ(xL+1) = min
xL

(
‖x̂L − xL‖2PL

+ ‖yL − h(xL)‖2V + ‖wL‖2WL

)

s.t. xL+1 = F (xL, uL, wL)
(8)

However, since xL+1 is described by a nonlinear function,
we do not have an analytical expression for the ideal arrival
cost Γ. For obtaining an explicit solution of Eq. 8, some
approximations are carried out. First, we define the term
x(tL+1|xL) as the solution of the ODEs (Eq. 4) in the
interval from t ∈ [tL, tL+1] with xL as initial value. By
linearizing x(tL+1|xL) around the best available estimate
x∗, we obtain:

x(tL+1|xL) ≈ x(tL+1|x∗) +A · (xL − x∗)
≈ x̃+AxL

(9)

where x̃ := x(tL+1|x∗)−Ax∗ and matrix A is the derivative
of x(tL+1|xL) with respect to xL:

A =
∂F (xL, uL)

∂xL

∣∣∣∣
x∗

Since in this case h(xL) is linear, we can represent it as
h(xL) = HxL, where H is a selector matrix. This way it
becomes possible to solve, analytically, Eq. 8 by rewriting
it as:

min
xL

∥∥∥∥∥
PL(x̂L − xL)
V (yL −HxL)

WL(xL+1 − x̃−AxL)

∥∥∥∥∥

2

2

(10)

and transforming it using QR-factorization:
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Fig. 2. The figure reports the MHE implementation, where
the red dashed line represents the cost function (Eq.
6) and the blue dashed-dotted line its constraints.
Measurements are given to both arrival and measure-
ment error cost, while the measurement error covari-
ance matrix is calculated at every iteration to weight
for the model noise.

By discretizing it, we obtain:

xk+1 = F (xk, uk, wk) (4)

yk = h(xk) (5)

where k denotes the sampling time tk and wk is a random
variable.

The MHE problem (Kühl et al., 2011; Andersson et al.,
2016) consists in finding the states and their noise ob-
tained by solving the following constrained least-squares
optimization problem:

min
xi,wi

(
‖x̂L − xL‖2PL

+

N∑

i=L

‖yi − h(xi)‖2V +

N−1∑

i=L

‖wi‖2Wk

)

s.t. xi+1 = F (xi, ui, wi) i = L, · · ·, N − 1

xi ≥ xmin i = L, · · ·, N
(6)

The states xi are constrained with xmin = [0, 0, 0, 0] as a
lower bound, to avoid negative (unfeasible) concentrations.
Following the work of Kühl et al. (2011), we define:

PL = P−1/2, V = R−1/2, Wk = Qk
−1/2 (7)

and consider ‖b‖2B = bTBTBb. The first term of the opti-
mization (Eq. 6) is the arrival cost (Γ), which summarises
the effect of measurements previous to the estimation hori-
zon (up to tL) and it is updated by single QR-factorization
as in Kühl et al. (2011). The term x̂L (Eq. 6) represents
the optimal estimate of xL.

The matrices P , R and Qk (Eq. 7) are defined respectively
as error, measurement noise and process noise covariances
(Tuveri et al., 2021). Moreover, to take into account
different process dynamics (Elsheikh et al., 2021), the

process noise covariance Qk is updated as in Tuveri et al.
(2021). However since MHE, differently from EKF and
UKF, takes into account several past measurements within
the horizon T , the corresponding process noise covariance
matrix Qk is used for each sampling time (k) within
the horizon. Along the optimization horizon (30 min),
states (xi) and process noise (wi) are optimized using the
information from the mechanistic model and the outputs
(1 min sampling rate). The implementation of the MHE
is illustrated in Fig. 2. To transform the continuous time
model, we apply three point Legendre collocation on finite
elements. The Nonlinear Programming (NLP) problem
was solved using IPOPT (Wächter and Biegler, 2006)
embedded in CasADi (Andersson et al., 2019).

4.1 Arrival Cost Update

Several approaches can be used to calculate the arrival
cost. An interesting review on different arrival cost schemes
and how they can effect the stability of the MHE is
presented in Elsheikh et al. (2021). Here we describe the
QR-factorization approach employed in this work, which
approximates the arrival cost to a quadratic term that
is updated before each new horizon (Kühl et al., 2011).
Altough the QR-factorisation is a linearised technique as
the EKF, it also holds all the numerical properties of
the square-root Kalman Filter and the influence of past
information can only grow within the limits of the process
noise covariance Qk (Kühl et al., 2011).

When we shift the horizon to a new start point at tL+1,
the arrival cost would ideally be defined as:

Γ(xL+1) = min
xL

(
‖x̂L − xL‖2PL

+ ‖yL − h(xL)‖2V + ‖wL‖2WL

)

s.t. xL+1 = F (xL, uL, wL)
(8)

However, since xL+1 is described by a nonlinear function,
we do not have an analytical expression for the ideal arrival
cost Γ. For obtaining an explicit solution of Eq. 8, some
approximations are carried out. First, we define the term
x(tL+1|xL) as the solution of the ODEs (Eq. 4) in the
interval from t ∈ [tL, tL+1] with xL as initial value. By
linearizing x(tL+1|xL) around the best available estimate
x∗, we obtain:

x(tL+1|xL) ≈ x(tL+1|x∗) +A · (xL − x∗)
≈ x̃+AxL

(9)

where x̃ := x(tL+1|x∗)−Ax∗ and matrix A is the derivative
of x(tL+1|xL) with respect to xL:

A =
∂F (xL, uL)

∂xL

∣∣∣∣
x∗

Since in this case h(xL) is linear, we can represent it as
h(xL) = HxL, where H is a selector matrix. This way it
becomes possible to solve, analytically, Eq. 8 by rewriting
it as:

min
xL

∥∥∥∥∥
PL(x̂L − xL)
V (yL −HxL)

WL(xL+1 − x̃−AxL)

∥∥∥∥∥

2

2

(10)

and transforming it using QR-factorization:

(
PL 0

−V H 0
−WLA WL

)
= Q

(R1 R12

0 R2

0 0

)
(11)

The QR-factorization decomposes the matrix in the objec-
tive function (Eq. 10) into the product of an orthogonal
matrix Q and an upper triangular matrix R (Elsheikh
et al., 2021). From Eq. 11, we then obtain an equivalent
problem of the form:

min
xL

∥∥∥∥∥

(
γ1
γ2
γ3

)
+

(R1 R12

0 R2

0 0

)(
xL

xL+1

)∥∥∥∥∥

2

2

(12)

The analytical solution of this problem (Eq. 12) results
in the approximated quadratic expression for the arrival
cost:

Γ
′
(xL+1) = ‖γ3‖22 + ‖γ2 +R2xL+1‖22 (13)

Since the first term of Eq. 13 is given, the arrival cost
updates are given by:

x̂L+1 = −R−1
2 γ2, PL+1 = R2 (14)

4.2 Moving Horizon Estimation Setup

The filter receives the signals from the sensors every 60
seconds. The states and the input of the system are defined
in Section 3, while the measured outputs are:

y = [V CDW CO2]
T

(15)

The initial states are given by:

x0 = [1.5 1.2 20 0]
T

with initial covariance matrix:

P0
+ =

[
2.09·10−8 0 0 0

0 1.10·10−5 0 0
0 0 1.09·10−4 0
0 0 0 2.17·10−5

]

and measurement noise covariance matrix R:

R =

[
10−2 0 0
0 10−1 0
0 0 10−3

]

The process noise covariance matrix Qk was tuned as in
Tuveri et al. (2021), where Gk is the Jacobian with respect
to the model noise vector w:

Gk =
∂f(x, u, w)

∂w

and Qk is obtained as:

Qk = Gk ·Qw ·Gk
T (16)

With Qw defined as the covariance matrix of the noise w:

Qw = diag
[
σ2
µmax

σ2
ks

σ2
kd

σ2
YXS

σ2
YXCO2

σ2
V σ2

X σ2
S σ2

CO2

]

The values of Qw are reported in Table 2. The values are
kept equal to those reported in Tuveri et al. (2021), except
the values for σ2

V and σ2
CO2

, which have been modified
as they are considered tuning parameters. The additive
noise terms on the states are added to prevent the process
noise covariance Qk from being zero or indefinite whenever
the substrate is depleted. To compensate for unmodelled
dynamics, the values of σ2

KS
and σ2

YXCO2
(Table 2) are

increased, once the feeding phase is started and then kept
constant thereafter.

Table 2. Variances (σ2
i ) of additive noise (wi)

in parameters and states. The parameters vari-
ance is obtained from Table 1. These values
are kept constant until the second batch phase
(Fed-batch values), when the values of σ2

KS
and

σ2
YXCO2

are increased to compensate for the

unmodelled dynamics.

Variance Additive noise Batch Fed-batch

σ2
µmax

in µmax 1.05 ·10−11 -

σ2
KS

in KS 1.54 ·10−11 3.38 ·10−2

σ2
kd

in kd 2.02 ·10−11 -

σ2
YXS

in YXS 1.28 ·10−11 -

σ2
YXCO2

in YXCO2 4.91 ·10−12 4.91 ·10−2

σ2
V in V 1 ·10−1 -

σ2
X in X 1 ·10−2 -

σ2
S in S 1 ·10−2 -

σ2
CO2

in CO2 1 ·10−1 -

5. RESULTS

In this section, the estimation results (Fig. 3) for the
system presented in Sec. 3 obtained by the application
of the MHE with incorporation of state constraints (Sec.
4) are presented. The parameters were tuned as was pre-
sented in Sec. 4.2, while the time horizon was 30 min-
utes. As was reported in Tuveri et al. (2021), intracellular
metabolic changes (e.g byproduct formation) during the
batch and the feeding phases was not accounted for by
the simple Monod model (because these changes are not
entirely mapped), resulting in discrepancy between the
model and the real dynamics. The results we obtained
here (Fig. 3) are accurate with respect to the off-line
measurements. The state estimator accurately follows the
sugar consumption after adaptation of the tuning to the
changes in metabolism due to high glucose feeding.

5.1 State Estimates
Using the MHE described in Sec. 4, we estimated with
good accuracy the unmeasured glucose, following the
changes in its concentrations also under high model mis-
match (Fig. 3). It can be seen that the model predictions
present a discrepancy compared to the off-line values. This
is visible in both the first and the second (after feeding)
batch. Despite these poor model predictions, the MHE
improves the estimates by using the available information
on the measurements.

Firstly, the off-line measurements of biomass are based
on cell dry-weight, and are usually inaccurate due to
manual sampling that exhibit high variance, e.g. at time
t = 8 (Fig. 3a). The MHE, relying on the on-line OD
high frequency measurements, estimated the biomass ac-
curately compared to these off-line measurements, and
at the same time corrected the biased biomass model
prediction. Secondly, the consumption of the unmeasured
sugars was well captured by the estimator, compared to
the highly accurate sugar measurements (HPLC), even
under high model-mismatch. Notably, the estimator could
capture the change of sugar consumption rate after the
feeding phase when we increased the parameters variance
in the process noise covariance matrix Qk. Thirdly, the
model predictions for the CO2 present the largest error.
The CO2 model predictions present a delay in the first
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Fig. 3. Estimation results with 1 minute sampling in-
terval. The blue circles (off-line measurements) and
the dashed-dotted grey lines (sensor measurements)
correspond to the experimental results. The solid grey
is the open-loop model prediction and the solid black
is the estimated value. The figures present the results
for biomass (a), glucose concentrations (b) and CO2

output (c). The MHE accurately estimated the states,
and improved the estimate of the glucose compared to
the model prediction.

batch and a high model mismatch in the second batch
(feeding phase). However, this discrepancy is compensated
by the MHE with the information on the measurements.
Fourthly, it remains worth mentioning that similar results
can be achieved by the application of recursive Bayesian
state estimators (i.e. EKF and UKF) as shown in Tuveri
et al. (2021). However, here we want to present the MHE
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Fig. 4. Estimation results for the CO2 output with a
sampling interval of 10 minutes. The dashed-dotted
grey lines (sensor measurements) correspond to the
experimental results. The solid grey is the open-loop
model prediction and the solid black is the estimated
value. The estimated value presents a steady state
offset.

as an alternative framework where constraints can be in-
corporated explicitly. Moreover, the reader must take into
account that in this application the initial state vector
x0 was initialized by using the true states of the system
at the initial time, given a certain initial error covariance
matrix P0 as in Tuveri et al. (2021). In the case of uncertain
initial state vector x0, the error covariance matrix would
be initialized to a different value and the MHE would show
slower convergence to correct the states. Our implementa-
tion of the MHE was dependent on the sampling frequency.
The estimates of biomass X and CO2 exhibited a steady
state offset (Fig. 4) when the sampling rate was lower than
60 seconds. There are several explanations to that, and we
will discuss two of them that we think are more relevant:

1) The tuning of the parameters R and Qk weights differ-
ently the contribution of measurements and model infor-
mation in the optimization problem. Indeed, tuning needs
to be done after the frequency of the output measurements
is defined. In our case we selected a sampling rate of 60 sec-
onds as in Tuveri et al. (2021) and a relatively short hori-
zon (30 minutes). We found that a short sampling interval
combined with a sufficient horizon length improves the
performance of the MHE, consistent with what reported
in Schei (2008), where the author states that it is desirable
to choose short sampling times intervals and a long data
window. This is also consistent with what was reported
in Haseltine and Rawlings (2005). Here the authors state
that for short time horizons there is the possibility that
the data within the horizon can not overcome the biasing
of the arrival cost approximation. The tuning of the MHE
presents therefore a compromise between performance and
computational requirement (Schei, 2008), since longer time
horizons imply a bigger optimization problem. However,
the time it took to solve our optimization problem was in
the interval 0.05 to 1 seconds, well within the time update
interval (60 seconds).

2) Model mismatch can deteriorate the optimal solution,
leading to steady-state offsets (Kühl et al., 2011). As
it was presented previously (Elsheikh et al., 2021), due
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Fig. 3. Estimation results with 1 minute sampling in-
terval. The blue circles (off-line measurements) and
the dashed-dotted grey lines (sensor measurements)
correspond to the experimental results. The solid grey
is the open-loop model prediction and the solid black
is the estimated value. The figures present the results
for biomass (a), glucose concentrations (b) and CO2

output (c). The MHE accurately estimated the states,
and improved the estimate of the glucose compared to
the model prediction.

batch and a high model mismatch in the second batch
(feeding phase). However, this discrepancy is compensated
by the MHE with the information on the measurements.
Fourthly, it remains worth mentioning that similar results
can be achieved by the application of recursive Bayesian
state estimators (i.e. EKF and UKF) as shown in Tuveri
et al. (2021). However, here we want to present the MHE

0 10 20 30 40

Time [h]

0

1

2

3

C
O

2
 [
%

]

Fig. 4. Estimation results for the CO2 output with a
sampling interval of 10 minutes. The dashed-dotted
grey lines (sensor measurements) correspond to the
experimental results. The solid grey is the open-loop
model prediction and the solid black is the estimated
value. The estimated value presents a steady state
offset.

as an alternative framework where constraints can be in-
corporated explicitly. Moreover, the reader must take into
account that in this application the initial state vector
x0 was initialized by using the true states of the system
at the initial time, given a certain initial error covariance
matrix P0 as in Tuveri et al. (2021). In the case of uncertain
initial state vector x0, the error covariance matrix would
be initialized to a different value and the MHE would show
slower convergence to correct the states. Our implementa-
tion of the MHE was dependent on the sampling frequency.
The estimates of biomass X and CO2 exhibited a steady
state offset (Fig. 4) when the sampling rate was lower than
60 seconds. There are several explanations to that, and we
will discuss two of them that we think are more relevant:

1) The tuning of the parameters R and Qk weights differ-
ently the contribution of measurements and model infor-
mation in the optimization problem. Indeed, tuning needs
to be done after the frequency of the output measurements
is defined. In our case we selected a sampling rate of 60 sec-
onds as in Tuveri et al. (2021) and a relatively short hori-
zon (30 minutes). We found that a short sampling interval
combined with a sufficient horizon length improves the
performance of the MHE, consistent with what reported
in Schei (2008), where the author states that it is desirable
to choose short sampling times intervals and a long data
window. This is also consistent with what was reported
in Haseltine and Rawlings (2005). Here the authors state
that for short time horizons there is the possibility that
the data within the horizon can not overcome the biasing
of the arrival cost approximation. The tuning of the MHE
presents therefore a compromise between performance and
computational requirement (Schei, 2008), since longer time
horizons imply a bigger optimization problem. However,
the time it took to solve our optimization problem was in
the interval 0.05 to 1 seconds, well within the time update
interval (60 seconds).

2) Model mismatch can deteriorate the optimal solution,
leading to steady-state offsets (Kühl et al., 2011). As
it was presented previously (Elsheikh et al., 2021), due

to the complexity of biological systems, model mismatch
is often encountered in bioprocesses and it can not be
simply handled by a proper design of Qk. Moreover, as
already presented in Tuveri et al. (2021), the system un-
der consideration presents a high model mismatch due
to sudden metabolic changes after an exposure of the
bacteria to high glucose concentration following an oxygen
deprivation period. There are two possible remedies to this
problem. One is to consider the system with unknown non-
Gaussian uncertainties (through the use of a Gaussian
mixture model) as was recently presented in Valipour
and Ricardez-Sandoval (2022). Indeed the authors show
how their approach is effective in cases involving either
unexpected process or measurement (e.g. sensor drift)
noises. The other is to include model parameters as de-
cision variables in the optimization problem (Bae et al.,
2021). Interestingly, the optimization problem will adapt
the model (by adapting the parameter values) during the
metabolic change periods. The inclusion of parameters as
decision variables in the optimization problem may not
only reduce the time for the practitioner to manually
tune the MHE by trial and error, but also reveal possible
changes in metabolic behaviors, leading to more robust
models. However, if this is not coupled with a proper
choice of parameter selection to optimize, it may lead to
an ill-conditioned problem with over-fitted parameters, as
previously discussed in Bae et al. (2021). This will be
however part of further investigations.

6. CONCLUSION

This work presents the implementation of an MHE for
the estimation of biomass, glucose concentrations and CO2

formation in a fed-batch cultivation process. We reported
here the efficacy of the MHE as an alternative state
estimator in bioprocesses, demonstrating its advantage
under necessity of hard state constraints. We showed
that although the results were accurate with respect to
the off-line measurements, simple tuning could not fully
compensate for unmodelled dynamics. As a future work,
the MHE has the potential to serve as a powerful tool
that can both estimate the states in real-time and allow
an adaptive parameter estimation. This will enable the
detection of changes in metabolic behaviours and, as a
consequence, the basis for more robust model predictions.
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4 | A Regularized Moving Hori-
zon Estimator for Combined
State and Parameter Estim-
ation

"Among all of the mathematical disciplines, the
theory of differential equations is the most important.

It furnishes the explanation of all those elementary
manifestations of nature which involve time."

MARIUS SOPHUS LIE (1842-1899)
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Abstract

Due to the lack or high costs of measurement devices to monitor and control metabolites in microbial cultivation processes,
state estimators are often required. These estimators depend on available on-line measurements and model dynamics.
However, they are often characterised by simple models due to the lack of full knowledge on the process dynamics and
high variability in the cell metabolism. This causes uncertainty in the model parameters and therefore the necessity of
on-line model adaptation, for instance through simultaneous state and parameter estimation. However, these estimation
problems are often ill conditioned. The Moving Horizon Estimator (MHE) is a good candidate in this context, since it
easily allows enforcing hard constraints as well as regularization to address the ill-posedeness. In this work, we present a
method for simultaneous state and parameter estimation in the absence of full state measurements, with the aid of two
regularization methods, in a microbial fed-batch cultivation.

Keywords: State Estimation, Parameter Estimation, Moving Horizon Estimator, Regularization, Optimization,
Bioprocess

1. Introduction

Real-time monitoring is of paramount importance in
control of bioprocesses. Indeed, it is critical for quality
assessment and therefore feedback implementations. How-
ever, in many applications this is a great challenge, since
not all the variables of interest can be directly measured
on-line. In the case that key variables are unmeasured,
state estimators can be used to infer information from the
available measurements to compensate for it (Doyle III,
1998; Dochain, 2003). State estimators, also called Soft
Sensors (Dochain, 2003), depending on mathematical mod-
els (Rao, 2000) that usually represent the real system
in an oversimplified manner (e.g. Monod growth model,
Monod (1949)), can yield to poor estimates, due to the high
model uncertainty, mostly caused by biological variability
(Jabarivelisdeh et al., 2020).

Schei (2008) and Mohd Ali et al. (2015) reviewed the
implementation of state estimators in chemical processes,
discussing design issues, as well as general guidelines for se-
lecting the proper technique in specific applications. Among
the various state estimators reported, optimization-based
methods, such as the Moving Horizon Estimator (MHE),
have two main advantages: (1) they can handle multi-rate
measurements easily (Rao, 2000), often encountered in

∗Corresponding author
Email address: nadi.bar@ntnu.no (Nadav Bar)

bioprocesses (Elsheikh et al., 2021); (2) they can explic-
itly incorporate equality or inequality constraints in both
states and parameters that may vary in the model (Rao,
2000; Rao et al., 2003), enabling the possibility to handle
uncertainty (Doyle III, 1998; Dochain, 2003).

Whereas the capability of handling constraints in combi-
nation with multi-rate measurements has been extensively
exploited for biological applications, to the best of our
knowledge, constraints handling methods have been mostly
applied to either state or parameter estimation, not both.
Our work aims to account for model uncertainty by simul-
taneously performing state and parameter estimation in
absence of full state feedback. Although not applied to a
biological process, the work of Liu et al. (2021) also recently
presented simultaneous state an parameter estimation in
an MHE. However, differently from the work of Bae et al.
(2021) and ours, they used a penalty quadratic term for
the calculation of the arrival cost (i.e. to take the past
information into account).

The majority of the up to date MHE applications in
bioprocesses, reconstruct both states and key parameters
using multi-rate full state feedback (Gatzke and Doyle III,
2002; Küpper et al., 2009, 2010; Vercammen et al., 2016;
Jabarivelisdeh et al., 2020; Elsheikh et al., 2021; Bae et al.,
2021; Hernández Rodríguez et al., 2021; Valipour and
Ricardez-Sandoval, 2021; Valipour and Ricardez-Sandoval,
2022; Valipour and Ricardez-Sandoval, 2022). Some of the
reported applications (Gatzke and Doyle III, 2002; Küpper
et al., 2009, 2010; Vercammen et al., 2016; Hernández Ro-
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dríguez et al., 2021) have shown successful reconstruction of
critical model parameters (i.e. model update or adaptation).
Elsheikh et al. (2021) presented a review on the utilization
of multi-rate measurements and the effect of different ar-
rival cost updates. Valipour and Ricardez-Sandoval (2021)
and Jabarivelisdeh et al. (2020) showed the implementa-
tion of an MHE along with a nonlinear Model Predictive
Controller (NMPC), while Valipour and Ricardez-Sandoval
(2022) and Valipour and Ricardez-Sandoval (2022) focused
on the improvement of the estimation of unexpected process
and measurement noises, by the adoption of non-Gaussian
distributions. Bae et al. (2021) presented instead an im-
plementation that attenuates the ill-posed problem arising
from the estimation of all parameters, by reducing the num-
ber of decision variables (i.e. regularization method). Fewer
and less recent works focused on inferring information on
the unmeasured states (Raïssi et al., 2005; Goffaux and
Wouwer, 2008) without taking into account the possibility
to estimate the model parameters. The work of Raïssi et al.
(2005) presented an implementation where the solution of
the optimization is a bounded set consistent with model,
measurements and errors. Goffaux and Wouwer (2008),
on the other hand, implemented a min-max optimization
problem to deal with parameter uncertainty.

The concept of expressing the uncertain parameters as
bounded variables can be dated back to the work of Gross-
mann and Sargent (1978) and later addressed by Bonvin
et al. (2001). Considering that MHE has the ability to
explicitly incorporate physical constraints on the param-
eters, and that disturbances in the form of time-varying
parameters can be added as extra degrees of freedom in the
optimization problem (Robertson et al., 1996; Rao et al.,
2003; Kühl et al., 2011), MHE results a good candidate
for performing combined state and parameter estimation.
However, uncertainty in the model parameters can poten-
tially cause a large bias in the estimates of the unmeasured
states (Dochain, 2003). Moreover, the inclusion of process
parameters as decision variables, can lead to an ill-posed
optimization problem. Therefore, to obtain a unique local
solution, regularization methods are required.

Several approaches have been proposed for selecting
parameters subsets (i.e. regularization methods) to atten-
uate ill-posed parameter estimation problems. McLean
and McAuley (2012) reported and divided them in differ-
ent categories: (1) methods based on the correlation and
collinearity indexes (López C. et al., 2015; Anane et al.,
2019), (2) Orthogonalization Method (Yao et al., 2003;
Lund and Foss, 2008; Thompson et al., 2009; Bae et al.,
2021), (3) methods based on the Fisher Information Matrix
(FIM) characteristics (Balsa-Canto et al., 2007), and (4)
methods based on Principal Component Analysis (PCA)
and eigenvalue-eigenvector decomposition (Vajda et al.,
1989; Kim and Lee, 2019; Nakama et al., 2020; Chen et al.,
2022). In addition to these methods, common practice is
also to allow the variation of only one poorly known pa-
rameter per measurement value (Dochain, 2003). Further
details on regularization techniques can also be found in

Kravaris et al. (2013). Most of the regularization meth-
ods are dependent on cut-off or threshold values for the
selection of the number of constraints. However, some
authors already presented alternatives, to avoid cut-off val-
ues, based on the minimisation of the mean squared error
(MSE) to improve model prediction (Chu et al., 2009; Wu
et al., 2011).

To capture the changing or missing dynamics caused
by the plant-model mismatch Psichogios and Ungar (1992);
Jabarivelisdeh et al. (2020); Bae et al. (2021), our work
exploits the ability of MHE to explicitly incorporate physi-
cal constraints on the parameters, to continuously update
them.

This is done by adding them as single degrees of free-
dom to the optimization problem and, as also reported
in Bae et al. (2021), will result in parameter drifts. To
overcome the ill-conditionedness of the problem that arises
from that, we implemented and compared two different
regularization methods, coupled with a stopping criterion
based on structural identifiability. The latter allowed to
select, at each time point, the number of active constraints
necessary to regularize the problem, based on the available
on-line information. Firstly, to reduce the search space
of the decision variables, we adopted the regularization
approach (Subset Selection by Transfomation, SST) as pro-
posed by Kim and Lee (2019) and implemented it in an
MHE. This was done using real experimental data of a fed-
batch bacterial cultivation of Corynebacterium glutamicum
(Tuveri et al., 2021). Secondly, to evaluate the properties
of SST and show its advantages, we compared it to the
known Orthogonalization Method (OM) (Lund and Foss,
2008; Bae et al., 2021). Finally, to avoid using a stopping
criterion based on a threshold value, for the selection of
the number of the active constraints on the parameters, we
proposed a strategy based on the structural identifiability
of the system (Villaverde, 2019), in both OM and SST.
The results, validated using experimental data from a real
bioprocess, present accurate state estimates with respect to
the reference values also allowing simultaneous parameter
adaptation.

2. Experimental Setup

The experiment was conducted using the C. glutam-
icum ATCC13032 strain. The cells were harvested in a
shake flask pre-culture over night in 2YT complex medium
and then inoculated in a 2.7 L baffled stirred tank reactor
Labfors5 (Infors AG, Switzerland). The experiment was
conducted with initial volume of 1.5 L and initial OD600
of 1. The 500 mL of glucose feeding (100 g/L) were added
once the dissolved oxygen stabilized above 60 %. Tem-
perature, pressure and pH were kept respectively to 30
◦C, 1 bar and 7. The reactor was aerated with 2 NL/min
pressurized air and the dissolved oxygen was controlled
above 30% by modifying the stirrer speed (200–1100 rpm).
C. glutamicum was cultured on CGXII minimal medium
and glucose used as carbon source. On-line measurements
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for absorbance (840–910 nm, ASD12-N Absorption Probe,
Optek GmbH), volume and off-gas composition (BlueInOne
Ferm, BlueSens GmbH) were available every 10 seconds
trough the process information management system Lucul-
lus (Securecell, Switzerland). Off-line samples for sugars
were instead collected and stored at 4◦C by the NUMERA
system (Securecell, Switzerland). Glucose samples were
analyzed using an high-pressure liquid chromatography sys-
tem (UltiMate 3000 series, Thermo Scientific, U.S.). The
off-line biomass was instead evaluated by measuring cell
dry weight. The reader is referred to Tuveri et al. (2021)
for more details on cultivation process and analytical pro-
cedures.

3. Bioprocess description

This section starts by introducing the system dynamics
(Sec. 3.1) and the noise structure (Sec. 3.1.1). Following
this, on-line (i.e. outputs) and off-line measurements (i.e.
reference values) are described (Sec. 3.1.2) together with
the signal processing (Sec. 3.1.3).

3.1. System Model
The process describes an aerobic bacterial cultivation,

which is performed in two phases:

• A batch phase, up to complete sugar depletion and
stabilization of dissolved oxygen above 60%;

• A fed-batch phase, followed a short period of starva-
tion.

The system dynamics are described using first order Monod-
like kinetics (Tuveri et al., 2021). In addition, cell death is
considered to be linear and dilution is due to the addition
of feeding. The model equations are the following:

V̇ =Fin

Ẋ = − Fin

V
X + µmax

S

Ks + S
X − kdX

Ṡ =Fin

V
(Sin − S) − µmax

S

Ks + S

X

YXS

˙CO2 =µmax
S

Ks + S

X

YXCO2
− qairCO2

(1)

The states V , X, S and CO2 in Eq. 1 represent the concen-
trations of volume, biomass, glucose (or substrate, sugar)
and carbon dioxide (CO2), respectively. Fin indicates the
feeding flow to the reactor, given a substrate concentra-
tion Sin. In addition, qair represents a constant gas inflow.
From herein, we define:

• State vector x ∈ Rnx and input u ∈ Rnu :

x = [V, X, S, CO2]T and u = [Fin] (2)

• Measured outputs y ∈ Rny :

y = [V, X, CO2]T (3)

• Parameters θ ∈ Rnθ :

θ = [µmax, Ks, kd, YXS , YXCO2 ]T (4)

This allows us to write the model in Eq. 1 as ẋ = f(x, u, θ).
Additionally, by adding the parameters as state variables
with zero dynamics (θ̇i = 0), the system in Eq. 1 can be
written as:

ẋa = f̄(xa, u) (5)
where xa ∈ Rnx+nθ is defined as xa = [x, θ].

Table 1: Model parameters θ ∈ Rnθ for the system in Eq. 1 given
values, units and standard deviation (Tuveri et al., 2021).

Parameter Description Value Unit Std. Dev.
µmax Maximum growth rate 0.19445 [h−1] 3.25 ·10−6

KS Monod growth constant 0.007 [g · L−1] 3.92 ·10−6

kd Death rate constant 0.006 [h−1] 4.49 ·10−6

YXS S from X yield 0.42042 [g · g−1] 3.58 ·10−6

YXCO2 CO2 from X yield 0.54308 [g · g−1] 2.22 ·10−6

3.1.1. Noise Structure Tuning
Following the works of Leu and Baratti (2000) and

Kolås et al. (2009), the process noise was added to the
deterministic plant model (Eq. 1) twofold. In the states, in
order to address unmodelled dynamics, and in the parame-
ters, to address parameter uncertainty (standard deviations
are reported in Table 1). Indeed, the idea is that the model
uncertainty (Leu and Baratti, 2000; Kolås et al., 2009)
arises mostly from the uncertainty in the model parameters
(ωµmax

, ωKS
, ωkd

, ωYXS
, ωYXCO2

). Moreover, in our case, to
prevent the noise covariance matrix from becoming singular
when the substrate S is depleted, the noise is added to the
state dynamics (ωV , ωX , ωS , ωCO2). The noise enters the
material balances (Eq. 1) as:

V̇ =Fin + ωV

Ẋ = − Fin

V
X + (µmax + ωµmax ) S

(Ks + ωkS ) + S
X − (kd + ωkd )X + ωX

Ṡ =Fin

V
(Sin − S) − (µmax + ωµmax ) S

(Ks + ωkS ) + S

X

(YXS + ωYXS ) + ωS

˙CO2 =(µmax + ωµmax ) S

(Ks + ωkS ) + S

X

(YXCO2 + ωYXCO2 ) − qairCO2 + ωCO2

(6)
given the noise vector ω ∈ R(nx+nθ):

ω = [ ωµmax ωks ωkd
ωYXS

ωYXCO2
ωV ωX ωS ωCO2 ]T

with ω ∼ N (0, Qω), where the diagonal elements of the
covariance matrix Qω ∈ R(nx+nθ)×(nx+nθ) are reported in
Table 2. For the batch phase, the values of Qω related to
the parameters θ are tuned by setting them equal to the
value of the variance, obtained by parameter estimation
on a single experiment, while the ones related to the states
x are defined as tuning parameters and therefore selected
manually. For the fed-batch phase, only the values of σ2

KS

and σ2
YXCO2

are increased to compensate for unmodelled
dynamics (Tuveri et al., 2021). The model with noise
(Eq. 6) can be compactly written as:

ẋ = f(x, u, θ, ω) (7)
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Table 2: Diagonal elements of the covariance matrix Qω . The values
are kept constant until the fed-batch phase, when the values of σ2

KS

and σ2
YXCO2

are increased to compensate for unmodelled dynamics.

Variance Additive noise Batch Fed-batch Unit
σ2

µmax
in µmax 1.05 ·10−11 - [h−2]

σ2
KS

in KS 1.54 ·10−11 3.38 ·10−2 [g2·L−2]
σ2

kd
in kd 2.02 ·10−11 - [h−2]

σ2
YXS

in YXS 1.28 ·10−11 - [g2·g−2]
σ2

YXCO2
in YXCO2 4.91 ·10−12 4.91 ·10−2 [g2·g−2]

σ2
V in V 1 ·10−1 - [L2·h−2]

σ2
X in X 1 ·10−2 - [g2·h−2]

σ2
S in S 1 ·10−2 - [g2·h−2]

σ2
CO2

in CO2 1 ·10−1 - [h−2]

The process noise covariance Qk ∈ Rnx×nx for the system
described as in Eq. 6, is updated at each sampling time k
as (Tuveri et al., 2021):

Qk = Gk · Qω · Gk
T (8)

Eq. 8 therefore allows to have a state-dependant varying
covariance Qk, where Qω is a constant related to the statis-
tics of the parameter uncertainty. Gk ∈ Rnx×(nθ+nx) is the
Jacobian of Eq. 7 with respect to the noise ω:

Gk = ∂f(x, u, θ, ω)
∂ω

(9)

Additionally, to estimate the parameters θ together with
the states x, we define them as additional state variables
and the augmented state vector becomes xa ∈ Rnx+nθ .
In accordance with the work of Grossmann and Sargent
(1978), the parameters are considered as bounded variables,
given that probability distribution functions for the pa-
rameters are available. This is done to reflect the drifting
characteristics of the model parameters used to describe
the system, as was previously showed in Bae et al. (2021).
Therefore, by approximating the probability distribution
functions of the parameters to be normal, with mean value
θ0 and variance σθ

2 (Table 2), we will treat them as drift-
ing bounded variables, allowing them to vary within their
bounds at each iteration. The augmented model (Eq. 10)
can therefore be written as:

V̇ =Fin + ωV

Ẋ = − Fin

V
X + (µmax + ωµmax ) S

(Ks + ωkS ) + S
X − (kd + ωkd )X + ωX

Ṡ =Fin

V
(Sin − S) − (µmax + ωµmax ) S

(Ks + ωkS ) + S

X

(YXS + ωYXS ) + ωS

˙CO2 =(µmax + ωµmax ) S

(Ks + ωkS ) + S

X

(YXCO2 + ωYXCO2 ) − qairCO2 + ωCO2

µ̇max =ωµmax

K̇s =ωKs

k̇d =ωkd

ẎXS =ωYXS

ẎXCO2 =ωYXCO2

(10)
Eq. 10 can be written compactly as ẋa = f̄(xa, u, ω). The
state-dependant covariance matrix for the augmented sys-
tem Q̄k ∈ R(nx+nθ)×(nx+nθ) is updated at each sampling
time k as:

Q̄k =
[
Qk 0
0 Qθ

]
(11)

Where the state-dependant submatrix Qk (Eq. 8) is up-
dated at each sampling time k, while Qθ ∈ Rnθ×nθ is a
constant diagonal matrix with variances σθ

2 defined in
Table 2. The latter is done to allow the parameters to vary
within the bounds at each iteration k and it is a necessary
assumption since the real dynamics of the parameters are
unknown.

3.1.2. On-line and Off-line measurements
The on-line output measurements y were available with

a frequency of 10 seconds and used by the estimator to
monitor biomass, volume and CO2 and to infer the unmea-
sured glucose composition. Additionally, to have reference
values for evaluating the estimation performance, off-line
samples of X and S were taken with a lower sample fre-
quency and not used at any time by the estimator. The
samples for biomass X were collected manually approx-
imately every 3 hours, whereas for glucose S they were
collected automatically by the NUMERA auto-sampler
every hour. Additional information is available in Tuveri
et al. (2021).

3.1.3. Signal Processing
The on-line output measurements y were used by the

estimator every 60 seconds. Signals from the absorbance
probe were obtained in concentration units (0.05 - 4 CU)
and than converted to g/L of biomass X (cell dry weight,
CDW) using a calibration curve as follows:

CDWCU =
{

22.187 · CU − 5.0991 CU ≥ 0.9
11.124 · CU + 0.66116 CU < 0.9

On-line CO2 signals were obtained by measurements of
the composition in the outflow (0%–25%). The volume
measurement V was calculated by integration of the on-
line flow signals every 10 seconds. Moreover, to consider
the amount of volume taken for the off-line samples (8
mL/sample), these values were iteratively integrated with
the pump signals. Although available every 10 seconds,
each of the measurements was only used by the estimator
every 60 seconds. This is done to not increase the size of
the optimization problem.

4. Background theory

This section presents some important concepts utilized
to develop the proposed approaches presented in the fol-
lowing section. We first introduce the sensitivity matrix
(Sec. 4.1) which is the base for the regularization methods
implemented. Than, briefly discuss the local observability
and identifiability of the system (Sec. 4.2), for the further
introduction of the stopping criterion used in the regular-
ization methods.
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4.1. Sensitivity Matrix
The sensitivity matrix of model outputs is typically

defined as the Jacobian of the outputs (y) with respect
to the parameters θ (Vajda et al., 1985; Yao et al., 2003;
Lund and Foss, 2008; Thompson et al., 2009; Bae et al.,
2021; Chen et al., 2022). However, because in this work
we are interested in the effect of the parameters on the
states, following the work of Bae et al. (2021), we define it
as the Jacobian of the state variables (x) with respect to
the parameters (θ):

Sθ,mn = ∂xm

∂θn

∣∣∣∣
x̂,θ̂

(12)

where:
m = 1, . . . , nx

n = 1, . . . , nθ

and x̂ and θ̂ are respectively the estimates of states and
parameters. The idea behind using the state variables
(x) instead of the output measurements (y) is to identify
the model parameters (θ) which have a significant effect
on the state variables (Bae et al., 2021). This allows us
to identify time-varying values for the parameters (θ) so
that the estimated state variables (x̂) can better match
the off-line samples (y∗) and therefore the underlying true
process behaviour (i.e. obtain lower RMSE). The sensi-
tivity matrix therefore summarizes locally the influence
of the parameters on the state variables. It is important
to carefully scale Sθ since this will directly affect the in-
formation obtained for the parameter estimation method
(Vajda et al., 1989; Yao et al., 2003; Lund and Foss, 2008;
Thompson et al., 2009; McLean and McAuley, 2012; Chis
et al., 2016). Therefore, to address the problem of different
orders of magnitudes in the parameters, their logarithm
(log(θ)) is used to avoid scaling issues due to differences in
their orders of magnitude (Vajda et al., 1989; Chis et al.,
2016). Additionally, to take into account the character-
istics of the data and the available variation ranges, we
will refer to the same scaling method applied in Thompson
et al. (2009), McLean and McAuley (2012) and Bae et al.
(2021), by using the state and parameter variance obtained
from the covariance matrix. The scaled sensitivity matrix
Z ∈ Rnx×nθ is defined as:

Zm,n = ∂xm

∂log(θn)
log(σθn

)
σxm

∣∣∣∣
x̂,θ̂

(13)

In the following, unless differently stated, we will refer to
the sensitivity as defined in Eq. 13.

4.2. Local Observability and Identifiability
Observability of nonlinear systems based on Lie algebra

is a structural and local property (Hermann and Krener,
1977; Isidori, 1985; Nijmeijer and van der Schaft, 1990;
Powel and Morgansen, 2015; Villaverde, 2019). The local
observability of the system in Eq. 1 was already analyzed

and discussed by Tuveri et al. (2021). However, the focus
there was limited to assess the possibility to infer informa-
tion about the unmeasured variable of interest (S). Here
instead, we take into account also the process parameters
(θ) and therefore need to evaluate structural identifiability
(Villaverde, 2019). By assuming that the only input is Fin

(previously defined in Eq. 2), being Sin and qair constant
over time (Sec. 2), the system in Eq. 5 can be written as
an input-affine system, with the terms only dependent on
the states (f̄x) and the ones dependent on the input (f̄u)
such that:

ẋa = f̄x(xa) + f̄u(xa) · u (14)
y = h(x) (15)

If we now consider that f̄u(xa) does not carry any infor-
mation about the parameters (see Eq. 1), we can define
the map O, which represents the observation space of the
system (Eq. 14), without considering the term f̄u(xa) · u,
as:

O = {O1, O2, O3} = {L0
f̄x

h, L1
f̄x

h, L2
f̄x

h} (16)
Where:

L0
f̄x

h = h, L1
f̄x

h = ∂h

∂xa
f̄x L2

f̄x
h =

∂(L1
f̄x

h)
∂xa

f̄x

And obtain the codistribution dO:

dO = span{d(O1), d(O2), d(O3)} (17)

The dimension of the codistribution dO defines if the
system is locally observable (dO = nx). Moreover, when
considering structural identifiability, if dO has the same
size as the augmented vector (nx + nθ), the system is
said to be locally observable with identifiable parameters
(Villaverde, 2019). The system in consideration (Eq. 1) is
locally observable, since dO = nx when considering only the
states x, but not all the parameters are locally identifiable
at every iteration, since dO < nx + nθ when considering
the augmented vector xa. Therefore indicating that the
available information in the latter is not enough to estimate
all states and parameters together.

5. Proposed approach

Simultaneous estimation of both states and parameters
can lead to an ill-posed optimization problem. To atten-
uate the ill-posed problem that arises by the addition of
the parameters as decision variables, we consider two dif-
ferent approaches, namely the Orthogonalization Method
(OM) (Sec. 5.2.1) and the Subset Selection by Transfoma-
tion (SST) (Sec. 5.2.2). Both methods are based on the
sensitivity matrix and reduce the parameter space, but
while OM keeps a subset of parameters constant, SST fixes
linear combinations of parameters (i.e. clusters of param-
eters). The SST method can be therefore regarded as a
more flexible approach, since it constrains linear combina-
tions and not single parameters. This enables to vary more
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Figure 1: Geometric representation of the constraint implementation. Orthogonalization Method (OM, left) and Subset Selection by
Transformation (SST, right). Each plane represents an individual constrained region. When more than one constraint is selected, the
constrained region is represented by their intersection (blue line). In OM (left), constraints are used for singular parameters (planes) and
the degrees of freedom are the unconstrained parameters (blue line). In SST (right), constraints are implemented by linear combinations of
different θi and therefore the planes are not required to be normal to an axis, leaving more freedom to the individual parameters. Here, both
θ1 and θ3 (right) can vary within the projection of the constrained region (blue line) along their axes. The values reported here are only for
illustration purposes.

parameters simultaneously. However, a stopping criterion
for the decision on how many degrees of freedom can be
used for the estimation of the parameters is necessary for
both methods (OM and SST). In this work we propose a
stopping criterion based on the structural identifiability
(Sec. 5.1).

This section will first present the stopping criterion
proposed (Sec. 5.1), explaining how to practically use iden-
tifiability as a decision making criterion for constraints
selection. Secondly, it introduces the two regularization
approaches (i.e. OM and SST) together with the applica-
tion of the proposed stopping criterion (Sec. 5.2). Thirdly,
it shows the implementation of the aforementioned meth-
ods in a MHE formulation (Sec. 5.3), for the combined
estimation of states and parameters.

5.1. Lie-based Constraints Selection
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Figure 2: Dimension of the observability space (dO) for the open loop
model and Glucose (S) dynamics. dO is calculated without taking
into account the terms related to the input (u, Eq. 14). The decrease
in dO (dO = 5) is a consequence of the sugar depletion.

The intention of this work is to present a consistent
and simple method to select the constraints for regulariz-

ing the optimization problem (Fig. 1). Although different
regularization methods have been presented (McLean and
McAuley, 2012), their dependence on a cut-off or threshold
value might hinder their results (Chu et al., 2009; Wu et al.,
2011; Kim and Lee, 2019; Nakama et al., 2020; Chen et al.,
2022). We therefore want to use the information obtained
by the local identifiability (structural property) as a base-
line for the decision method of constraints selection. That
is, at any time, we select the available degrees of freedom
given the dimension of the observability co-distribution dO
for the augmented system. The open loop test in Fig. 2
reports the dimension of the observability co-distribution
dO for the system in Eq. 1, calculated as in Sec. 4.2. The
system is locally observable (dO > 4, Fig. 2), but not all pa-
rameters are structurally identifiable (dO < 7 under sugar
depletion, Fig. 2). However some information can still be
retrieved also when the substrate is depleted. During the
dynamic phases of the process (0-11 hours and 20-25 hours)
the available information from the data is higher. Both
under absence (dO = 7) and presence (dO = 5) of sugar
depletion, it is possible to infer information of some of the
parameters without having an ill-posed problem.

To introduce the method, we start by defining the
dimension of the observability co-distribution dO. This is
equivalent to the maximum number of degrees of freedom
(i.e. decision variables of the optimization problem):

DOFmax = dO (18)

Eq. 18 indicates that dO, being a local property, gives
us information about the maximum number of states and
parameters that can be estimated, given the available in-
formation at each time. The maximum DOF (DOF max)
is given by nx + ny, which is 7 for this problem. Four of
these degrees of freedom (DOFx = 4) are used for the esti-
mation of the state variables (nx). Following the previous
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considerations, the degrees of freedom (DOFθ) available
for estimating the parameters are given by:

DOFθ = DOFmax − DOFx (19)

Therefore, the number of constraints (nθs) that we need to
impose on the estimation problem to achieve identifiability
is:

nθs
= nθ − DOFθ (20)

That is, whenever DOFθ < nθ, we will add linear con-
straints on the parameters to attenuate the ill-posed esti-
mation problem. However, since in real microbial cultiva-
tions the substrate is not entirely consumed (S , 0), some
precautions must be taken. For numerical reasons, small
values of S (in this work < 10−3 g/L) should be considered
S = 0 during the on-line calculation of dO.

5.2. Regularization Methods
This section describes the two regularization methods

adopted (i.e. OM and SST) (Sec. 5.2.1 and Sec. 5.2.2),
together with their geometrical interpretation (Sec. 5.2.3).

5.2.1. Orthogonalization Method

Figure 3: Orthogonalization Method implementation block diagram.
Initial values are given and the scaled sensitivity matrix is obtained
in (1). Then the scaled parameter with the biggest norm is added
to vector Yl (2) and the matrix projection is calculated in (3), given
(1) and (2). Consecutively, the residual error is obtained in (4).
Finally, the stopping criteria are verified in (5) and (6). If one of
these conditions is satisfied, the vector of constrained parameters is
obtained in (8). More specifically, condition (6) is set with a threshold
of 10−8. If not the method goes to (7) and starts again to add an
extra parameter to be constrained.

Among the various Parameter Subset Selection (PSS)
methods, the Orthogonalization Method is the heuristic
method most commonly used due to its simplicity (Yao
et al., 2003; Lund and Foss, 2008; Kim and Lee, 2019;
Bae et al., 2021). In the context of MHE, this method is
appealing due to its small computational loads (Bae et al.,
2021). However, an unsuitable selection of the cut-off value
for the stopping criterion, might result in poor estimates.
To avoid that, we present here its implementation together
with the stopping criterion previously presented (Sec. 5.1).
For that purpose, we start with the scaled sensitivity matrix
Z (Eq. 13):

Z = [z1, z2, . . . , znθ
] (21)

The elements zi of the Eq. 21 represent the column vectors
of Z. Those vectors are sorted in decreasing order, by
calculating the Euclidean norm. We take the one with
the largest norm z1, representing the main direction, and
normalise it:

q1 = z1∥∥z1
∥∥ (22)

At the first step (l = 1), Zl = Z, Yl−1 = ø and Θl−1 = ø.
The parameter θl, corresponding to the column vector zl,
is than appended to the vector Θl = [Θl−1, θl]. Similarly,
the matrix Yl is defined by appending ql. Given Yl, we
calculate the matrix projection of Zl onto it:

Ẑl = Yl(Y T
l Yl)−1Y T

l Zl (23)

If we now subtract the projection Ẑl (Eq. 23) we obtain
the residual error (Eq. 24) which is orthogonal to Yl:

El = Zl − Ẑl (24)

The method stops, differently from Bae et al. (2021), if the
following condition, based on the stopping criterion defined
in Sec. 5.1, is satisfied:

size(Θl) = DOFθ (25)

where DOFθ is obtained as in Eq. 19. If this condition is
not satisfied, we set Zl+1 = El until all the parameters are
ranked or until Y T

l Yl is nearly singular (Yao et al., 2003;
Bae et al., 2021). The reader is referred to Strang (2016);
Yao et al. (2003); Lund and Foss (2008); Thompson et al.
(2009); McLean and McAuley (2012); Kim and Lee (2019);
Bae et al. (2021) for more detailed information.

5.2.2. Subset Selection by Transformation

Figure 4: Subset Selection by Transformation block diagram. This
method requires the calculation of the right eigenvector matrix
through singular values decomposition (SVD) in (2), given the scaled
sensitivity matrix in (1). Then the submatrix of the right eigenvectors
corresponding to the smallest eigenvalues is selected according to
the DOFθ at the kth iteration (3) and set equal to the constraint
coefficient matrix C (4). The constraints are selected in (5) and the
right hand side defined based on the initial parameters θ0.

Subset Selection by Transformation (SST), was firstly
introduced by Kim and Lee (2019) and further applied in
Kim et al. (2019) and Chen et al. (2022). As observed in
Nakama et al. (2020), and reported in Chen et al. (2022),
Subset Selection by Transformation (SST) induces the

7



same regularization effect as Principal Component Regres-
sion (PCR). Also known as Truncated Singular Values
Decomposition (TSVD) (Kim and Lee, 2019), PCR is an
eigenvalue-eigenvector based analysis that reveals existing
dependencies among the parameters and that can reduce
the parameter space by using the eigenvectors of the re-
duced Hessian matrix (Nakama et al., 2020). However,
while in PCR the parameters are projected onto the sub-
space of the eigenvectors associated with the larger eigen-
values, in SST the parameter space is restricted by adding
constraints in the directions of the eigenvectors associated
with the smaller eigenvalues. Following the works of Kim
and Lee (2019), Kim et al. (2019) and Chen et al. (2022),
we linearized the model in Eq. 1 around θ = θ0:

x = x0 + Sθ(θ − θ0)
= Sθθ + c

(26)

where x0 and θ0 represent the initial values, Sθ is the
sensitivity matrix (Eq. 12) and c = x0 − Sθθ0 is a constant.
By adopting the Hessian approximation (H ≈ ST

θ Sθ), as
reported in Vajda et al. (1985), we can analyze the changes
in the state variables x with respect to the parameters θ.
Based on the eigenvalue-eigenvector decomposition, the
Hessian approximation H ≈ ST

θ Sθ, can be represented as:

ST
θ Sθ = DΣDT (27)

with D ∈ Rnθ×nθ as the orthogonal eigenvectors matrix.
Moreover, given that D is an orthonormal matrix (DT D =
DDT = I), we can rewrite Eq. 26 (Kim and Lee, 2019;
Chen et al., 2022):

x = SθDDT θ + c

= Mα + c
(28)

where M = SθD and α = DT θ. In this way we have
obtained a vector α ∈ Rnθ of transformed parameters.
Note that the eigenvalue-eigenvector decomposition of the
approximated Hessian based on either Sθ or Z (Eq. 13),
for the calculation of Eq. 28, does not change the direction
of the eigenvectors (D), but just the magnitude of the
eigenvalues (Ω). Eq. 27 can then be rewritten with respect
to Eq. 13 as:

ZT Z = DΩDT (29)

Consequently, based on the stopping criterion defined in
Sec. 5.1, the number of active constraints (nθs) (Eq. 20)
is defined. The vector α (Eq. 28) can therefore be further
divided in two subvectors α1 and α2 as:

x = M1α1 + M2α2 + c (30)

where the magnitude of the eigenvalues sorts them in de-
scending order. This two subvectors indicate the clus-
ters of parameters corresponding to the larger eigenvalues
(α1 = DT

1 θ) which are estimated, and the ones correspond-
ing to the smaller eigenvalues (α2 = DT

2 θ) which are fixed

(i.e. constraints). Given this decomposition, it is possible
to find a constraint coefficient matrix C ∈ RnθS

×nθ :

Cθ = r (31)

where C = DT
2 is a submatrix of DT (Eq. 29) and r ∈ RnθS

is a given constraint right-hand side vector. By defining
the constraint right-hand side vector as r = Cθ0, Eq. 31
becomes:

Cθ − Cθ0 = 0 (32)
Eq. 32 will therefore constrain, at each iteration k, the
newly estimated parameters based on the nominal con-
ditions (θ0), which represent the local optimal solution
(Table 1) previously obtained as discussed in Tuveri et al.
(2021). Our contribution to the method, in addition to
what previously presented in Kim and Lee (2019), consists
in its geometric interpretation. Indeed, while the work
of Kim and Lee (2019) looks at the problem trough the
transformation of the parameters (i.e. θ = Dα, by rotating
the axis trough directions of the principal components) and
constrains the unselected transformed parameters to their
nominal values (i.e. α2 = α2,0), in our work we look at it
from the constraints point of view (Nakama et al., 2020).
Therefore showing that Eq. 32, which mathematically is
equivalent to the method of Kim and Lee (2019), geometri-
cally implies fixing the constraints in the directions of the
smaller eigenvalues (Fig. 1) while maintaining the direction
of the axes of the original parameters θ. This has the ad-
vantage of enhancing the interpretability of SST, which, as
previously stated in Kim and Lee (2019), can complement
OM and PCR. Indeed, our interpretation shows that: (1)
by maintaining the same axes (Fig. 1), SST can be directly
compared with the state of the art OM (Yao et al., 2003;
Lund and Foss, 2008), as will also be further explained
in Sec. 5.2.3; (2) by looking at the problem from the con-
straints point of view, SST has the same regularization
effect as PCR.

5.2.3. Interpretation of Regularization Methods
Given the two regularization methods, OM (Sec. 5.2.1)

and SST (Sec. 5.2.2), we want to show how the implemen-
tation of constraints differs. This concept is geometrically
represented (for three dimensions) in Fig. 1, and mathe-
matically translates, for OM, to:

[
1 0 0
0 1 0

]


θ1
θ2
θ3


 =

[
r1
r2

]
(33)

and, for SST, to:

[
C11 C12 C13
C21 C22 C23

]


θ1
θ2
θ3


 =

[
r1
r2

]
(34)

where Eq.s 33 and 34 are equivalent to Eq. 31. Indeed,
while in OM we constrain single parameters θ at every
iteration (Eq. 33), in SST we constrain clusters of them

8



(Eq. 34). The main reasoning for using SST is to allow the
change of the parameters along the directions with higher
certainty, while restricting them along the less sensitive
directions. These directions represent a linear combination
(i.e. cluster) of parameters with a fixed relationship that
can provide a more flexible approach than constraining
single parameters (Fig. 1).

5.3. Moving Horizon Estimator
Consider the system dynamics, described by a set of or-

dinary differential equations (ODEs), which is given by the
system in Eq. 1 augmented by considering the parameters
as additional states (Eq. 5) together with the measurement
function h(x) = Hx (Eq. 35b). The implementation of one
of the regularization methods previously presented OM
(Sec. 5.2.1) and SST (Sec. 5.2.2) consists in adding a set
of algebraic equations (g(θ) = 0) to enforce equality con-
straints on the parameters (Eq. 35c). We than obtain a
system of differential algebraic equations (DAEs):

ẋa = f̄(xa, u) + w (35a)
y = h(x) (35b)
0 = g(θ) (35c)

where x ∈ Rnx is the state vector, y ∈ Rny the output
vector, u ∈ Rnu the input vector, θ ∈ Rnθ the param-
eters vector, xa ∈ R(nx+nθ) the augmented vector and
w ∈ R(nx+nθ) is the process noise random variable. Here w
is different from ω ∈ R(nx+nθ) which is solely a tuning pa-
rameter for Q̄k, indeed while ω ∼ N (0, Qω), w ∼ N (0, Q̄k).
The discretization of Eq. 35, given the sampling time tk,
yields to:

xa,k+1 = F̄ (xa,k, uk) + wk (36a)
yk = h(xk) (36b)
0 = g(θk) (36c)

F̄ : R(nx+nθ) × Rnu → R(nx+nθ) is obtained by discretiza-
tion of f̄ . The solution to the MHE problem (Kühl et al.,
2011; Andersson et al., 2016) consists of finding param-
eters, states and their noise within a finite-time horizon
T = tN − tL. Where tL and tN are respectively the initial
and final times of the horizon. This is done by solving
the following constrained least-squares optimization prob-
lem every 60 seconds (i.e. when new measurements are
available), along the horizon T (30 min):

min
xi,θi,wi

∥∥∥∥
x̂L − xL

θ̂L − θL

∥∥∥∥
2

PL

+
N∑

i=L

∥yi − h(xi)∥2
V +

N−1∑

i=L

∥wi∥2
Wk

s.t. xa,i+1 = F (xa,i, ui) + wi i = L, . . . , N − 1
(37a)

g(θi) = 0 i = L, . . . , N (37b)
xi ≥ xmin i = L, . . . , N (37c)
θmin ≤ θi ≤ θmax i = L, . . . , N (37d)

The aim is to obtain states (xi), parameters (θi) and pro-
cess noise (wi) using the available information from the
model (Eq. 1) and the outputs (1 min sampling rate). The
constraints in Eq. 37 are defined as:

• equality constraints on the state variables based on
the process dynamics (Eq. 37a) and on the process
parameters, based on the regularization method se-
lected in Eq. 37b (Sec.s 5.2.1 and 5.2.2);

• inequality constraints based on physical limitations
of the process variables (xmin = [0, 0, 0, 0], Eq. 37c)
and the parameters uncertainty (given the parameter
bounds θmin and θmax, Eq. 37d). The latter allows
to maintain the newly estimated parameters close
to the nominal values, given that, under presence of
structural plant-model mismatch, parameter adapta-
tion might not necessarily lead to an improved model
(Marchetti et al., 2008).

The cost function (Eq. 37) is given by the summation
of three Euclidean norms. The first term is the arrival
cost which summarises past information (its calculation is
reported in S1). The second is the output noise cost, and
the third is the process noise cost. The three terms are
weighted by (Kühl et al., 2011):

PL = P −1/2, V = R−1/2, Wk = Q̄
−1/2
k

(38)

where the notation for the squared norm is ∥b∥2
B = bT BT Bb

(Kühl et al., 2011). P ∈ R(nx+nθ)×(nx+nθ), R ∈ Rny×ny

and Q̄k ∈ R(nx+nθ)×(nx+nθ) are respectively error, measure-
ment noise and process noise (for the augmented system)
covariance matrices. The terms x̂L and θ̂L (Eq. 37) repre-
sent, instead, the optimal estimates of xL and θL.

The optimal solution of the nonlinear programming
(NLP) was obtained using IPOPT (Wächter and Biegler,
2006) embedded in CasADi (Andersson et al., 2019), where
the continuous time model was discretized by a three point
Legendre collocation on finite elements.

6. Results

In the present section we first describe the implementa-
tion and the tuning parameters (Sec. 6.1). Then we present
the results obtained. Firstly, to show how the presence
of structural plant-model mismatch and the absence of
full state feedback can hinder the estimation results, we
present the possibility to use additional constraints on the
parameters to find a trade-off between state and parameter
estimates (Sec. 6.2). This is shown by using the Subset
Selection by Transfomation (SST) method, since one of the
novelties of the work is to present SST as a more flexible reg-
ularization method in a MHE formulation. Consecutively,
to show the advantages of SST, we compare the results
obtained by its implementation to the ones obtained by the
use of OM. To evaluate the accuracy of the estimates of
biomass X and glucose S, and compare the results obtained
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trough the different methods, we calculate the root mean
squared error (RMSE) with respect to the reference off-line
measurements, which were not used at any time by the
estimator. In addition, to avoid that the zero values for
the glucose could average out the RMSE, we calculate it
separately for both batch (0-8 hours) and fed-batch phase
(20-30 hours), without taking the zero values into account.

6.1. Implementation
The sampling rate was set to 1 min together with an

estimation horizon T = 30 min. For the starting phase of
the MHE problem, when the estimation window is smaller
than the number of available measurements (i.e. k <
T ), the initial state vector was used (Kühl et al., 2011).
The parameters θ, to be estimated along with the states,
were appended to the augmented state vector xa at each
sampling interval. The MHE was initialized given the
real values for the states and the nominal parameters (θ0)
reported in Table 1 as initial conditions:

xa,0 = [ 1.5 1.2 20 0 0.19445 0.007 0.006 0.42042 0.54308 ]T

The initial error covariance matrix was selected as:

P0
+ =

[
Px,0

+ 0
0 Pθ,0

+

]

with Px,0
+ obtained, according to Schneider and Georgakis

(2013), as P0 = diag((x̂0 − x0)T (x̂0 − x0)):

Px,0
+ =

[
2.09·10−8 0 0 0

0 1.10·10−5 0 0
0 0 1.09·10−4 0
0 0 0 2.17·10−5

]

and

Pθ,0
+ =




1.05·10−11 0 0 0 0
0 1.54·10−11 0 0 0
0 0 2.02·10−11 0 0
0 0 0 1.28·10−11 0
0 0 0 0 4.95·10−12




The measurement noise covariance matrix R:

R =
[

10−2 0 0
0 10−1 0
0 0 10−3

]

And the process noise covariance matrix for the augmented
system Q̄k was tuned as in Section 3.1.1 (Eq. 11), main-
taining Qω and Qθ unchanged troughout the different case
studies. Moreover, for the arrival cost calculation (Sec. S1),
to take into account the variation between the past in-
formation and the new horizon T, a weighting matrix
W̄L ∈ R(nx+nθ)×(nx+nθ) (Sec. S1) is defined as follows:

W̄L =
[
WL 0
0 I

]

Where WL ∈ Rnx×nx is defined as Wk = Q
−1/2
k for k = L

and Inθ×nθ is the identity matrix. I was selected as the
identity matrix so that, being always smaller than Wk,
changes with respect to the past information in the states
are penalized more than the ones in the parameters.

6.2. Trade-off between state and parameter estimates
To present the possibility to find a trade-off between

model update and estimation accuracy, we present how the
implementation of additional bounds on the parameters
(i.e. inequality constraints, Eq. 37d), differently leaves the
possibility to adapt the model. In this extent, we present
in this section the estimated states and the effects of the
bounds on the parameters (i.e. inequality constraints) using
three different cases. The aim is to show how the bounds
selected can influence the performance of model prediction
and estimation accuracy. Table 3 reports the bounds for
the three presented cases.

6.2.1. Bounds Selection
In Case 1 the bounds on the parameters were selected

to demonstrate the possibility to find a trade-off between
model update and estimation accuracy (Table 3). This
was achieved by carefully relaxing the standard deviations
σθi reported in Table 1, therefore defining bounds on the
parameters that leave them enough possibility to vary and
adapt the model. Moreover, the bounds for YXS were kept
narrower than for the other parameters because of its only
dependence on the glucose (S).

Table 3: Lower (θmin) and upper (θmax) parameter bounds.

Case θmin/θmax µmax Ks kd YXS YXCO2

Case 1 θmin 0.15 5 · 10−3 1 · 10−5 0.3846 0.10
θmax 0.30 8 · 10−3 7 · 10−3 0.4562 2

Case 2 θmin 0.1941 6.6 · 10−3 5.6 · 10−3 0.4201 0.5429
θmax 0.1948 7.4 · 10−3 6.4 · 10−3 0.4208 0.5433

Case 3 θmin 0.10 5 · 10−3 1 · 10−5 0.3846 0.10
θmax 0.40 3 · 10−2 9 · 10−3 0.4562 2

Following the idea that an improvement in the model
prediction can compromise the accuracy of the estimates,
in Case 2 we selected tighter bounds on the parameters
(Table 3). The main idea is to allow the parameters to only
vary within their uncertainty range as also reported in Kim
et al. (2019), therefore reducing the penalization on the
accuracy of the estimates. These bounds were also selected
based on the standard deviations σθi

reported in Table 1.
However, considering that the standard deviation for the
parameters was obtained by a single experiment, the values
were relaxed by increasing the order of magnitude of the
variance either by two times what reported in Table 1 (i.e.
θ0 ± 102 · σθi

). This was done to take only batch-to-batch
variations into account.

To show the influence and necessity of bounds to fur-
ther regularize the optimization problem, in Case 3 we
selected higher variation margins for the parameters. In-
deed, the bounds were defined to leave more freedom to the
parameters to adapt, however, considering their necessity
to avoid the deterioration of the glucose estimates. The
only parameter maintained with tight bounds was YXS ,
due to its only dependence on S. Moreover, the reader is
here warned that lower values were selected as non zero
because of the presence of the logarithm in the calculation
of the sensitivities (Eq. 13).
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Figure 5: Subset Selection by Transformation, Case 1 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95%
σ). An improvement in the updated model is visible in (a) during the batch phase (0-20 hours) and during the fed-batch phase (over 20 hours).
The updated model captures the sugar and the CO2 dynamics correctly until the end of the fed-batch phase (after 25 hours). Off-line samples
are only reported as reference, but not used by the estimator.
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Figure 6: Subset Selection by Transformation, Case 2 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95%
σ). While improvement in the updated model is moderate, RMSE values show a good performance for the glucose estimate, with a value of
0.93 (b). Off-line samples are only reported as reference, but not used by the estimator.
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Figure 7: Subset Selection by Transformation, Case 3 - Biomass (a), glucose (b) and CO2 (c) compositions and confidence intervals (95% σ).
These results show the dependence of the methods on the bounds, to avoid deterioration of both state and parameter estimates. In (b) it is
visible how the performance of the SST method is less influenced (in comparison to OM) by the choice of the bounds. Off-line samples are
only reported as reference, but not used by the estimator.

6.2.2. Estimation Results using Constrained Regularization
By solving the optimization problem, defined in Eq. 37,

the estimates are:
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Figure 8: Subset Selection by Transformation - RMSE values calculated for both the updated model and the estimated states with respect to
the reference off-line values of biomass (X) and glucose (S). RMSE for glucose is also calculated for the single phases (batch and fed-batch)
without taking the zero values into account.

• the estimated states (x̂) presented in Fig. 5, 6 and 7;
• the estimated parameters (θ̂, reported in S2), consid-

ered as additional states and estimated along with
the states.

In addition, the results presented in Fig. 5, 6 and 7
report:

• the on-line data (y) for X (yX) and CO2 (yCO2)
which are the on-line measurements used by the esti-
mator;

• off-line samples (y∗) for X (yX
∗) and S (yS

∗) which
are only reported as reference values to validate the
accuracy of the estimates and used to calculate the
root mean squared error (RMSE), but not used at
any time by the estimator;

• confidence intervals for the estimates (95% σ), ob-
tained from the diagonal elements of the error covari-
ance matrix P .

This results are obtained by the implementation of the
MHE with SST as regularization method. To evaluate their
accuracy, the RMSE (Fig. 8) is calculated with respect to
the off-line measurements (y∗) of biomass X (yX

∗) and
substrate S (yS

∗), reported by blue dots in Fig. 5a and b,
as follows:

RMSEy∗ =

√√√√ 1
ny∗

ny∗∑

j=1
(y∗ − x̂)2 (39)

Additionally, to show the limitation of the model on
describing the dynamic behaviour of the state variables
(x), due to the plant-model mismatch (particularly visible
during the fed-batch phase), we report in Fig. 5, 6 and 7
the model simulations for:

• the nominal model (i.e. open loop model), simulated
by using the nominal parameters (θ0), reported in
Table 1;

• the updated model, simulated a posteriori, using the
estimated parameters (θ̂), reported in S2.

Firstly, to give the reader a reference of the accuracy on
the estimates obtained by simultaneously esimating states

and parameters, we present the RMSE obtained by solely
estimating the states, as previously presented in Tuveri
et al. (2022) (Table 4).

Table 4: RMSE values calculated for both the nominal model and
the estimated states with respect to the reference off-line values of
biomass (X) and glucose (S) based on the results presented in Tuveri
et al. (2022). RMSE for glucose is also calculated for the single phases
(batch and fed-batch) without taking the zero values into account.
The values of the parameters for the nominal model are reported in
Table 1.

Biomass Glucose
RMSE tot. tot. Batch Fed-batch

Estimate 1.23 1.01 0.78 1.71
Nom. Model 1.83 2.11 3.68 2.05

Relatively accurate and comparable estimates were
found for the biomass, with RMSE of 1.15 (Case 1, Fig. 5a),
1.21 (Case 2, Fig. 6a) and 1.11 (Case 3, Fig. 7a), presenting
respectively 5%, 3% and 10% improvement with respect
to solely estimating the states (Table 4). The estimates
of glucose present instead a bigger difference, resulting in
a RMSE of 1.09 for Case 1, 0.94 for Case 2 and 1.53 for
Case 3. This therefore results in the sole improvement of
Case 2, which improves the estimate of the glucose by 7%
with respect to solely estimating the states (Table 4), while
Case 1 and Case 3 penalize it by 8% and 51% respectively.
Moreover, the RMSE of the transient phases only (dura-
tion in which sugar values are not zero) shows that the
error varies between 1.50 and 1.52 for Case 1, 0.76 to 1.58
for Case 2 and 1.76 to 2.36 for Case 3 (Fig. 8). There-
fore, while Case 2 shows an overall higher accuracy on the
glucose estimates, Case 1 presents a more balanced error
between batch and fed-batch phase and Case 3 presents
the highest RMSE.

Effect on the unmeasured states. The results show
that Case 2, by presenting tighter bounds, yields to more
accurate estimate for the glucose (Fig. 6b). Due to the fact
that both states and parameters are estimated in absence
of direct glucose measurements, it is reasonable that the
estimates will be a compromise between improved model
prediction capabilities and accurate estimates. Indeed, pa-
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rameters related to the glucose dynamics (i.e. µmax, Ks

and YXS , Eq. 1) are dependant on the available informa-
tion on the glucose. More specifically, YXS , which is only
dependent on the glucose, is the most affected. Therefore,
tighter bounds on these parameters lead to more accurate
glucose estimates.

Trade-off between variance and bias. When com-
paring the results obtained in the three different cases, it is
possible to see that the unmeasured state (i.e. glucose, S)
presents an higher bias in Case 1 and Case 3 (Fig. 5b and
7b) with respect to Case 2 (Fig. 6b). However, as mostly
visible for the CO2, Case 2 presents higher variance in the
estimates (Fig. 6c) with respect to the other two. There-
fore, this interestingly shows how the combined estimation
of state and parameters presents the necessity to find a
trade-off between reducing variance and bias.

Effect of structural model mismatch. The updated
model, calculated with the newly estimated parameters,
yields to good predictions in Case 1 (RMSEX = 1.26
and RMSES = 1.33) and Case 3 (RMSEX = 1.35 and
RMSES = 1.38), especially for the batch phase, presenting
respectively an RMSE of 0.92 (Fig. 5b) and 1.18 (Fig. 7b)
for the glucose. Differently, Case 2, having tighter pa-
rameters bounds, does not presents such improvement in
the predictions as the other two cases (RMSEX = 1.84
and RMSES = 2.11, Fig. 6). Instead it presents a slight
penalization of the model prediction of less than 1% (Ta-
ble 4). However, the improvement is limited in all the cases,
due to the lack of knowledge on the process dynamics (i.e.
structural plant-model mismatch, 25-30 hours Figures 5,6
and 7). It is sensible to understand that the improvement
can not overpass the limitations of the model in use. In
fact, the RMSE for the updated model, shows an increase
of almost 40% between batch and fed-batch phases (Fig. 8),
due to the higher structural plant-model mismatch in the
latter. The updated parameters values are reported in
Sec. S2.

6.3. Subset Selection by Transformation as an alternative
to the Orthogonalization Method

To show the advantages of implementing SST in an
MHE formulation, we compare the results previously pre-
sented (Sec. 6.2.2) to the ones obtained by the implemen-
tation of OM (Figures 9, 10 and 11).

Case 1. The estimates for biomass obtained by SST
and OM are comparable, with RMSE of 1.15 for SST
(Fig. 8) and 1.16 for OM (Fig. 12). The estimates of
glucose present instead a difference, with a 18% increase
in RMSE for OM (1.29) with respect to SST (RMSE 1.09).
Moreover, the difference increases when looking only at
the transient phases (1.66-1.96 for OM and 1.50-1.52 for
SST). Additionally, also the updated model presents a 30%
improvement in the predictions by SST (RMSE 0.92) with
respect to OM (RMSE 1.26).

Case 2. The RMSE values (Figures 8 and 12) show
similar results, especially for the glucose estimates (RMSE
0.94 for SST and 0.91 for OM). These results show that,

when adopting tighter bounds on the parameters, the per-
formance of the two methods is similar. However, it is
important to note that while OM presents a slightly bet-
ter improved RMSE for the glucose estimate (0.91) while
presenting an RMSE for the biomass estimates of 1.22, the
SST presents a more pronounced improvement in both of
them (0.94 and 1.21) with respect to the case when only
estimating the states (Table 4).

Case 3. The results obtained in this case (Fig. 11)
show that OM is more influenced than SST (Fig. 7) by the
selection of the bounds. Indeed, the RMSE calculated for
the glucose estimates and the updated model in the batch
phase are respectively 15 and 20% higher for OM (Fig. 12).

These results show us how both methods necessitate
bounds to limit the possibility of deteriorating both state
and parameter estimates. However, they also show that
SST, by yielding lower RMSE values under looser bounds,
presents less dependence on the bounds selection.

7. Discussion

In this work we present the use of two different meth-
ods, namely Orthogonalization Method (OM) and Subset
Selection by Transformation (SST), for combined state
and parameter estimation in a MHE framework, where
the estimates were obtained based on the knowledge of
the on-line measurements of volume (V), biomass (X) and
carbon dioxide (CO2).

One of the main contributions of this work is to apply
MHE as a state estimator, to an experimental data-set, to
estimate, in addition to the states, the model parameters.
This is done to account for model uncertainty in the ex-
perimental data-set. However, as visible when comparing
the RMSE values (Fig. 8), the more uncertain the model
parameters are (i.e. model uncertainty), the larger is the
estimation bias of the unmeasured states. This is consistent
with what is stated in Dochain (2003). Moreover, when
including all the parameters, an ill-posed problem arises.
To alleviate that, we implemented and compared two regu-
larization methods (i.e. OM and SST). Therefore taking
practical identifiability into consideration (McLean and
McAuley (2012); Chis et al. (2016); Kim and Lee (2019)).
The advantage of this implementation is to enable the selec-
tion of different subsets of parameters during the process,
to avoid overfitting when adapting them. Another novelty
of this work, therefore consists in the implementation of
the SST method in an MHE and its comparison to the
performance with a state of the art method as the OM.
Additionally, an important aspect of this work is also the
introduction of a stopping criterion based on the structural
identifiability of the system (Villaverde, 2019). This by-
passes the need to define an heuristic threshold value for
the selection of the number of active constraints, therefore
leading to a more consistent model adaptation. Moreover,
the choice of this stopping criterion allows both methods
to have a comparable way to select the available degrees
of freedom. Additional stopping criteria are available in
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Figure 9: Orthogonalization Method, Case 1 - Biomass (a), glucose (b) and CO2 (c) compositions, and their confidence intervals (95% σ).
An improvement in the updated model is visible in (a) in the batch (0-20 hours) while less pronounced in the feeding phase (25-30 hours).
Similarly, the parameter adaptation could not yield to a glucose model (b) better than the nominal during the feeding phase. In contrast, the
updated model for the CO2 (c) could compensate better for the first 25 hours. Off-line samples are only reported as reference, but not used by
the estimator.
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Figure 10: Orthogonalization Method, Case 2 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% σ).
While the improvement in the updated model is moderate, RMSE values show a good performance for the glucose estimate, with a value of
0.96 (b). Off-line samples are only reported as reference, but not used by the estimator.
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Figure 11: Orthogonalization Method, Case 3 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% σ).
These results show the dependence of the methods on bounds to avoid deterioration of both states and parameter estimates. This is mostly
noticeable in (b). Off-line samples are only reported as reference, but not used by the estimator.

literature, like the definition of a threshold as in Nakama
et al. (2020) and Bae et al. (2021), or the minimization

of the Mean Squared Error (MSE) proposed by Chu et al.
(2009); Wu et al. (2011) and applied in Kim and Lee (2019)
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Figure 12: Orthogonalization Method - RMSE values calculated for both the updated model and the estimated states with respect to the
reference off-line values of biomass (X) and glucose (S). RMSE for glucose is also calculated for the single phases (batch and fed-batch) without
taking the zero values into account.

and Chen et al. (2022). Indeed, the comparison between
the two regularization methods, when the stopping criteria
is a threshold, would be purely based on trial and error
tuning of this threshold, and will not necessarily tell us
about how effective the two regularizations are. We did not
compare the proposed criteria with the minimization of the
MSE because, due to the absence of full-state feedback (i.e.
measurements of the substrate S is missing) and therefore
the lack of information on all the state variables, an on-line
selection of the degrees of freedom would not be possible.

Our work presents the possibility to estimate glucose by
on-line measurements of other states (i.e. volume, biomass
and CO2), whereas the estimation of the internal states
(i.e. parameters) was not the main focus, the parameters
were estimated in order to adapt the model uncertainty.
Indeed, the idea is that parameters should adapt in order
to consider batch-to-batch variation, aiming to obtain more
accurate state estimates (i.e. lower RMSE with respect to
the off-line samples y∗). Consistent with Bae et al. (2021),
simultaneous estimation of states and parameters improves
the estimates of the variables of interest.

The results obtained for Case 1 in Fig. 5 and Fig. 9 in-
dicate that the SST method yields improved accuracy over
the OM method, for both glucose estimate and model pre-
diction capabilities. This improved accuracy (see Sec. 6.3) is
a consequence of the different parameter estimation strate-
gies. Indeed, in all the cases OM allows to vary a maximum
of three parameters per iteration (see Sec. S2). In contrast,
in SST all the parameters can potentially vary, within the
clusters. Therefore, enabling higher flexibility for model
adaptation. This is in agreement with what is reported
in Kim and Lee (2019), Nakama et al. (2020) and Chen
et al. (2022), stating that transformation of the constraints
provides more flexibility to the regularization. Addition-
ally, the results of Case 2 indicate that tighter bounds on
the model parameters yield better accuracy of the glucose
estimates, both for SST (RMSE 0.94) and OM (RMSE
0.91), reducing the effect of the bias. Therefore presenting
a good compromise for the glucose estimates (Fig. 6b and
Fig. 10b). Lastly, Case 3 supports these results, since by
relaxing the bounds the estimates exhibited deterioration

in both states and parameters. Therefore showing that
both methods necessitate additional bounds (i.e. inequality
constraints). This necessity emerges mainly for two reasons:
1) The discontinuities in the derivatives, due to sudden
changes in the process dynamics (e.g. 8, 20 and 23 hours,
Fig. 7), which cause the parameters to hit the bounds,
and 2) The absence of knowledge about the dynamics of
the process (i.e. structural plant-model mismatch), which
causes limitations on the model improvement. However,
the results presented in Case 3 show that SST (Fig. 8), by
maintaining a fixed relationship between the parameters,
presents less dependence on the bounds in comparison to
OM (Fig. 12), where the bounds are the only limitation on
the parameters. Since, as also reported in Kim et al. (2019),
the choice of the bounds reflects the level of uncertainty
in the parameters, their selection can be based on prior
knowledge or historical data (i.e. θ0 ± α · σθ) depending
on the level of conservativeness desired (i.e. Case 2 ) or by
certain physical considerations (i.e. Case 1 and Case 3 ).

At this point, it is possible to discuss the differences
between OM and SST. In fact, the different selection of
constraints on the parameters will change the search region
of the optimization problem (i.e. differently regularise the
problem, Fig. 1). For instance, SST will use a different or-
thonormal base for the constraint selection, in comparison
to the OM, based on the eigenvectors of the approximated
Hessian, creating clusters that maintain the same relation
between the parameters as in the nominal case (θ0). Con-
versely, OM will yield solutions that maintain singular
parameters at nominal values (θ0). Therefore, while SST
allows more parameters to vary (i.e. clusters) but with
fixed relationships among them, OM allows fewer parame-
ters to vary freely (Fig. 1), and is therefore a less flexible
approach. In other words, while OM reduces the number
of decision variables, SST reduces their search region.

The optimization problem finds local optimal estimates
(of states x and parameters θ) given the available infor-
mation (i.e. model, measurements and constraints). This
strongly depends on the available measurements and the
regularization method selected, and therefore on the given
constraints that intrinsically carry information (Psichogios
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and Ungar, 1992). Indeed, due to the absence of multi-
rate full state feedback, also the unmeasured states are
affected, potentially presenting a large bias in the estimates
(Dochain, 2003). Under this scenario, the available infor-
mation over a finite horizon is limited. As a consequence,
the model is likely to overfit the data, therefore resulting
in poor model predictions (Bae et al., 2021). Addition-
ally, as reported in Bonné and Jørgensen (2001), the use
of regularization results in biased estimates, becoming a
trade-off between reducing variance and bias. As shown
in the results, Case 1 and Case 3 present an higher bias
(Fig. 5b and 7b) but a lower variance (Figures 5c and
7c) compared to Case 2 (Fig. 6b and c). It is therefore
important to consider that, given the total absence of in-
formation on the sugar measurements, limitations on the
parameter estimation, and consequently on the prediction
capability of the model will arise. In fact, as visible in the
comparison of the three cases presented (Sec. 6.2.2), a high
variation in the parameters related to the sugar consump-
tion (i.e. µmax, KS and YXS), although could improve
model prediction, would decrease the accuracy of the sugar
estimates. Because these estimates are dependent on the
tuning of the weights in the optimization (i.e. MHE), it
is reasonable to assume that one possible solution is an
iterative correction of the weight Qk for the model error
cost (Dochain, 2003), to account for improvement in the
model prediction. This, which is also in agreement with
the work of Kim et al. (2019), where the authors state
that, to avoid biased estimates when unanticipated model
mismatch occurs, significant a priori knowledge about the
structural model mismatch is necessary, will be further
investigated in future works.

Finally, it is important mentioning that the results ob-
tained by SST are satisfactory, given the simplicity of the
model and its limitations. For instance, either the esti-
mates or the model predictions can be improved, without
the guarantee of an accurate tracking of the drifting model
parameters (Bae et al., 2021). It can therefore be consid-
ered that the improvements in the estimates are due to
the reduction of the effect of the uncertainty caused by
plant-model mismatch and unmodeled disturbances (Kim
et al., 2019), rather than the accurate estimation of model
parameters (Bae et al., 2021). Thus, the parameters can
only improve the model accuracy but they can not compen-
sate for the lack of knowledge about its dynamics. In fact,
it is clear from Figures 5a, 6a and 7a that the model is
unable to properly describe the transition between growth
phase and steady state for the biomass, especially after
feeding. This applies also for the transient phase of the
glucose (25-30 hours, Figures 5b, 6b and 7b). Indeed, de-
spite the complexity of biological processes (Becker and
Wittmann, 2012), bioprocesses are usually represented by
oversimplified, unstructured Monod models. However, they
are based on very simplistic representations of the cellu-
lar metabolism, by involving lumped parameters for the
description of the intracellular phenomena (Jabarivelisdeh
et al., 2020). To further illustrate that, we refer the reader

to Section S3, which shows the difference between batch
and fed-batch phases by the same model.

A possible solution to overcome this limitation is the
use of hybrid (grey-box) models (Zendehboudi et al., 2018;
Narayanan et al., 2019; Boiroux et al., 2019; Bradford et al.,
2021). Some pioeneering works on the use of hybrid models
to compensate for the lack of knowledge on the process
dynamics can be found in process system engineering ap-
plications (Johansen and Foss, 1992), and more specifically
for fed-batch bioreactors in Psichogios and Ungar (1992).
As stated in Boiroux et al. (2019), hybrid models attempt
to combine the advantages of first principle (i.e. white-box)
and black-box (Narayanan et al., 2019) or Gaussian Pro-
cess models (Bradford et al., 2021), by using the synergy
between them (Narayanan et al., 2019). Indeed, in the case
of absence of complete knowledge of the cell metabolism
(i.e. lack of knowledge on the dynamics of the process),
the hybrid model can correctly follow the physics of the
process and therefore exhibit improved interpolation and
extrapolation capabilities (Narayanan et al., 2019). These
results therefore provide the opportunity to exploit the
advantages of SST in the case of implementation of hybrid
models.

8. Conclusions

This work presents the simultaneous estimation of states
and parameters by an MHE in a microbial experimental
fed-batch process. We here presented the comparison of
two different regularization methods implemented in an
MHE, for the selection of the additional decision variables
(i.e. parameters or clusters). In addition, we proposed
a stopping criterion based on structural identifiability to
avoid the selection of cut-off values for the constraints
selection. The results also present how, under presence of
high model-mismatch, the necessity of additional inequality
constraints (i.e. bounds on the parameters) is necessary
when no full state feedback is available. Although under
certain limitations, the results present accurate estimates
and the possibility to adapt the model on-line.
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S1. Arrival Cost Update

The arrival cost (Γ), which is the first term in the cost
function (Eq. 37), takes into account the effect of measure-
ments previous to the estimation horizon (up to tL). As
presented in Elsheikh et al. (2021), Γ can be calculated
using different approaches and this can affect the stability
of the MHE itself. In this work we update it by using
the single QR-factorization approach as described in Kühl
et al. (2011). The QR-factorization is a linearised technique
as well as the Extented Kalman Filter, however, it also
holds the numerical properties of the square-root Kalman
Filter. Moreover, the past information can influence the
optimization only within the limits given by the process
noise covariance Q̄k (Kühl et al., 2011). When we shift the
horizon to a new start point at tL+1, the arrival cost would
ideally be defined as:

Γ(xL+1, θL+1) = min
xL,θL

(∥∥∥∥
x̂L − xL

θ̂L − θL

∥∥∥∥
2

PL

+ ∥yL − h(xL)∥2
V +

∥∥∥∥
wL

wθ
L

∥∥∥∥
2

W̄L

)

s.t. wL = xL+1 − F (xL, θL, uL)
wθ

L = θL+1 − θL

(A.1)
However, due to the nonlinearity of the model (i.e. xL+1
is described by a nonlinear function), the arrival cost Γ in
Eq. A.1 does not have an analytical expression. Hence, we
define the term x(tL+1|xL) as the solution of the DAEs
(Eq. 36) in the interval from t ∈ [tL, tL+1] with xL as
initial value. To have an analytically solvable least-squares
problem, x(tL+1|xL) (Eq. A.2) is linearized around the best
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available estimate x∗ and θ∗, to obtain an explicit solution
of Eq. A.1:

x(tL+1|xL) ≈ x(tL+1|x∗, θ∗) + A · (xL − x∗) + Aθ(θL − θ∗)
≈ x̃ + AxL + AθθL

(A.2)
here x̃ := x(tL+1|x∗) − Ax∗ − Aθθ∗ and matrices A and Aθ

are the derivatives of x(tL+1|xL) with respect to xL and
θL:

A = ∂F (xL, θL, uL)
∂xL

∣∣∣∣
x∗,θ∗

, Aθ = ∂F (xL, θL, uL)
∂θL

∣∣∣∣
x∗,θ∗

Besides, similarly should be done for h(xL). However, since
h(xL) is here linear, we can represent it, by using a selector
matrix H, as h(xL) = HxL. This way it becomes possible
to solve, analytically, Eq. A.1 by rewriting it as:

min
xL

∥∥∥∥∥∥∥∥∥∥

PL

(
x̂L − xL

θ̂L − θL

)

V (yL − HxL)

WL

(
xL+1 − x̃ − AxL − AθθL

θL+1 − θL

)

∥∥∥∥∥∥∥∥∥∥

2

2

(A.3)

by transforming the problem in Eq. A.3 with free variables
xΓ (i.e. xL, xL+1, θL and θL+1) by QR-factorization (AΓ =
QR), we obtain:

AΓ =




PL 0
−V H 0

−W̄L

(
A Aθ

0 I

)
W̄L


 = Q




R1 R12
0 R2
0 0


 (A.4)

The QR-factorization decomposes the matrix in the objec-
tive function (Eq. A.3) into the product of an orthogonal
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matrix Q and an upper triangular matrix R (Elsheikh
et al., 2021). From Eq. A.4, we then obtain an equivalent
problem of the form:

min
xL,θL

∥∥∥∥∥∥∥∥




γ1
γ2
γ3


+




R1 R12
0 R2
0 0







xL

θL

xL+1
θL+1




∥∥∥∥∥∥∥∥

2

2

(A.5)

where, given that Eq. A.5 is solving −Q−1AΓxΓ +RxΓ = 0,
and the first term is γL, we can express it as:




γ1
γ2
γ3


 = −Q−1




PL 0
−V H 0

−W̄L

(
A Aθ

0 I

)
W̄L







xL

θL

xL+1
θL+1




(A.6)
Finally, the approximated quadratic expression for the ar-
rival cost results from the analytical solution of the problem
in Eq. A.5:

Γ
′
(xL+1) = ∥γ3∥2

2 +
∥∥∥∥γ2 + R2

(
xL+1
θL+1

)∥∥∥∥
2

2
(A.7)

Since the first term of Eq. A.7 is given (Eq. A.6), the arrival
cost updates are obtained as:

(
x̂L+1
θ̂L+1

)
= −R−1

2 γ2, PL+1 = R2 (A.8)

S2. Parameter variation and inequality constraints
effect

In order to show to the reader the importance of the utiliza-
tion of bounds (i.e. inequality constraints), to avoid that
the plant-model mismatch and the discontinuities in the
derivatives (due to sudden changes in the process dynamics)
can influence the estimation performance, we report here
the estimated parameters for Case 1 (Fig.s S1 and S2),
Case 2 (Fig.s S3 and S4) and 3 (Fig.s S5 and S6).

S2.1. Case 1
Orthogonalization Method. The estimated parameters
obtained are reported in Fig. S1, together with the num-
ber of degrees of freedom available (Eq. 19). The DOFθ

(Fig. S1f) present a minimum of 1 and a maximum value
of 3. The number of constrained parameters is therefore
obtained by Eq. 20. Moreover, for the OM, the degrees
of freedom are reduced when the determinant of YkY T

k

approaches zero (≤ 10−8, implemented in the algorithm
Fig. 3), causing the DOFθ to chatter (Fig. S1f).
Several relevant observations can be found. Firstly, the dis-
crepancy between model and on-line measurements (Fig. 9a
and c, 4-7 hours) is compensated by increase in µmax, lead-
ing to a faster growth rate (Fig. S1a) whereas YCO2 is
decreased for the same reason (Fig. S1e).
Secondly, both µmax and YXS (Fig. S1a and d, 7-9 hours)
are decreased while the substrate is being consumed. The

parameter Ks (Fig. S1b, 7-9 hours) however is increased
together with YXCO2 , to adapt (in Fig. 9b) the glucose
consumption (Eq. 1) to the estimated values and compen-
sate the mismatch between measured CO2 and the model
(Fig. 9c). Moreover, it is worth mentioning that abrupt
changes in the process dynamics led to discontinuities in
the derivatives and therefore sharp spikes in the estimated
parameters (8, 20 and 23 hours, Fig. S1).
Thirdly, between 20 and 22 hours biomass increases due
to the addition of glucose (Fig. 9a), requiring the need to
increase µmax (Fig. S1a). At the same time, sugar (Fig. 9b)
is simultaneously consumed, diluted and added to the
system (u, Eq. 1). However, only one of these phenomena
(consumption) is dependent on the parameters. It becomes
therefore reasonable that the optimization problem will
therefore bring Ks (Fig. S1b) and YXS (Fig. S1d) up to the
boundaries to compensate for the plant-model mismatch
(Fig. 9b). Similarly, YCO2 (Fig. S1e) is also increased to
reduce the discrepancy between model and on-line outputs
(Fig. 9c).
Lastly, when DOFθ = 1 (Fig. S1f), only kd is optimized
(Fig. S1c). Between 10 and 20 hours its value reach the
upper bound since there is no growth and death is dominant
in the biomass dynamics (Fig. 9a). In contrast, we see that
kd chatters between lower and upper bounds after 30 hours
(Fig. S1c). This is reasonable since we can see that the
uncertainty in the outputs increased (Fig. 9c) and therefore
the quality of the data is reflected in it.
Subset Selection by Transformation. The parameters
reported in Fig. S2, although sometimes limited at the
boundaries, present a different dynamic behaviour (com-
pared to OM, Fig. S1) due to the differences in the two
methods. It is important to note that the main differ-
ence between the OM and SST is the fact that, the OM
constrains individual parameters whereas SST constrains
linear combinations of parameters (Fig. 1). This implies
that more than one parameter can vary within each clus-
ter (Fig. S2). In order to understand this difference, we
compare the results obtained in Fig. S1 (OM) and Fig. S2
(SST). While in Fig. S1 (1-9 hours) DOFθ = 3 and it is
possible to see that these degrees of freedom are used only
to estimate µmax, YXS and YXCO2 (keeping the other two
constrained at their nominal values), in the SST method
all the parameters are estimated (Fig. S2).
We observed several differences in the SST performance,
in comparison to OM. Firstly, similarly to what we have
seen in OM (Fig. S1), the discrepancy between model and
outputs (Fig. 5a and c, 4-8 hours), is compensated by
an increase in µmax, for a faster growth rate (Fig. S2a)
and a decrease in YCO2 (Fig. S2e). In addition, since
more parameters can vary simultaneously, also Ks and kd

compensate for the plant-model mismatch (Fig. S2b and
c).
Secondly, during substrate consumption µmax (Fig. S2a, 8-
9 hours) is decreased and YXCO2 is increased. In contrast,
YXS (Fig. S2d) is increased together with kd (Fig. S2c)
while Ks (Fig. S2b, 8-9 hours) is first decreased and than
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Figure S1: Orthogonalization Method, Case 1 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and YCO2
(e) with their bounds (inequality constraints, dotted lines). In addition, the available degrees of freedom (DOFθ) are reported (f).

Figure S2: Subset Selection by Transformation, Case 1 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and
YCO2 (e) with their bounds (inequality constraints, dotted lines). In addition, the available degrees of freedom (DOFθ) are reported (f). In
contrast to OM, here all parameters are updated.

increased, although presenting a spike due to discontinuities
in the derivative (caused by sudden changes in the process
dynamics), to adapt (in Fig. 5) the outputs or the estimated
value to the model.
Thirdly, we can see that between 20 and 22 hours the
addition of glucose (Fig. 5b) led to an increase in µmax

(Fig. 5a and S2a). This sugar will be consumed by the
organism, however, dynamically the addition of glucose
prevails over consumption and dilution (Eq. 1). However,
all the parameters are unrelated to the input (u) and the
increase in Ks and YXS will take that into account. In
addition, kd (Fig. S2c) and YCO2 (Fig. S2e) increase to
compensate for the model discrepancy as well (Fig. 5a and

c). Moreover, differently from OM, here we can see that
during sugar consumption (22-30 hours, Fig. 5b) all the
parameters except YCO2 are differently estimated. Indeed,
kd first increases and than decreases (Fig. 5c) together with
Ks and µmax, while YXS saturates up to the boundaries
due to lack of information of glucose measurements in order
to compensate for the plant-model mismatch in Fig. 5b.
Lastly, when DOFθ = 1 (Fig. S2f), only kd is optimized
(Fig. S2c) and, similarly to OM, chatters after 30 hours
(Fig. S1c).

S2.2. Case 2 and 3
While in Case 2 the boundaries are tight and give a better
estimation in terms of RMSE, they limit the possibility
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Figure S3: Orthogonalization Method, Case 2 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and YCO2
(e) together with their bounds (dotted line). In addition, the available degrees of freedom (DOFθ) are reported (f). Decrease in the DOFθ is
due to the precaution taken in the OM to avoid utilizing singular matrices.

Figure S4: Subset Selection by Transformation, Case 2 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and
YCO2 (e) together with their bounds (dotted line). In addition, the available degrees of freedom (DOFθ) are reported (f).

of the model to adapt to the dynamics (Fig.s 10 and 6).
However, when looking at the results for Case 3, we see
that, although the model gains flexibility (Fig.s 11 and
7), the limitations due to the plant-model mismatch and
the discontinuities in the derivatives, still require the use
of inequality constraints to limit the deterioration of the
estimates (Fig.s S5 and S6).

S3. Plant-model mismatch

To show the limitation of using a simple unstructured
Monod model, we present the results obtained by fitting sep-
arately the batch (Fig. S7) and the fed-batch phase (Fig. S8)
together with the respective parameters (Table S5).

Table S5: Model parameters θ ∈ Rnθ values obtain for batch and
fed-batch phases only, compared with the nominal values used in the
estimation problem.

Parameter Description Nominal Batch Fed-batch
µmax Maximum growth rate 0.19445 0.2290 0.2015
KS Monod growth constant 0.007 0.0051 0.0096
kd Death rate constant 0.006 0.0061 0.0037
YXS S from X yield 0.42042 0.4104 0.4407
YXCO2 CO2 from X yield 0.54308 0.5740 0.6284
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Figure S5: Orthogonalization Method, Case 3 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and YCO2
(e) together with their bounds (dotted line). In addition, the available degrees of freedom (DOFθ) are reported (f). Decrease in the DOFθ is
due to the precaution taken in the OM to avoid utilizing singular matrices. This case presents the largest bounds (among all three cases). The
parameters hit the bounds only in the case of discontinuities in the derivatives, and therefore bounds are necessary to not let this penalize the
estimation performance.

Figure S6: Subset Selection by Transformation, Case 3 - Estimated parameters (continuous black lines) µmax (a), Ks (b), kd (c), YXS (d) and
YCO2 (e) together with their bounds (dotted line). In addition, the available degrees of freedom (DOFθ) are reported (f). This case presents
larger bounds in the inequality constraints. The parameters stay mostly within the bounds, which they only hit in the case of discontinuities
in the derivatives. Moreover, the variation of YXS (d) is more limited than the other parameters in order to avoid that it can penalize the
variation of the model without having enough information.
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Figure S7: Model fit obtained using solely the Batch data-set.

0 10 20 30 40
Time [h]

5

10

15

B
io

m
as

s [
g/

L]

Model (Fed-batch)
off-line CDW

0 10 20 30 40
Time [h]

0

5

10

15

20

25

Su
ga

r [
g/

L]

Model (Fed-batch)
off-line S

0 10 20 30 40
Time [h]

0

1

2

3

4

5

C
O

2 
[%

]

Model (Fed-batch)
off-gas CO2

Figure S8: Model fit obtained using solely the Fed-batch data-set.
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In this chapter, to enhance the contributions of this thesis in regard to monitor-
ing of biological processes under the presence of uncertainty and plant-model
mismatch, we will first summarize the results presented in Chapters 3, 4 and 5
(Chapters 6.1) and consecutively contextualize them with respect to the available
literature (Chapters 6.2).

6.1 Research Questions
In this section we will take into consideration the research questions given in
Chapter 1 and give a short summary on them:

Research Question 1. What are the available state estimator to handle uncer-
tainty in nonlinear biological processes? How can these estimators accurately
estimate the unmeasured variables of interest under plant-model mismatch?

In Chapter 3, to investigate the possibility of handling uncertainty in a nonlinear
biological process, we implemented three different Bayesian estimators (i.e. EKF,
UKF and MHE) using experimental data-sets from a Corynebacterium glutamicum
fed-batch cultivation process. Because Bayesian estimators assume that variables
have a stochastic nature and take probability distributions into account (Chapter 2),
they resulted a valuable approach to handle uncertainty. Indeed, although the use
of a simple Monod model with structural plant-model mismatch, all the estimators
presented the possibility of accurately estimating the variables of interest, present-
ing an improvement compared with the model predictions.

To ensure an accurate estimation of the unmeasured variable (i.e. glucose), we
firstly analyzed the observability of the system. The local observability analysis
presented in Chapter 3 showed that to ensure the local observability of the system
under consideration, measurements of volume, biomass and CO2 were necessary.
The analysis also showed that, under continuous feeding (i.e. CSTR) or in absence
of sugar depletion, the sole use of biomass and CO2 or volume and CO2 were suf-
ficient. However, it is important to note that the local observability of the system
does not guarantee the accuracy of the estimates, because the local observability
analysis performed through Lie derivatives is only a structural property of the sys-
tem and does not use any information of the uncertainty of either the measurements
or the model.

Secondly, to obtain an accurate estimation of the glucose concentration, we gave
importance to the tuning of the process covariance matrix (Q, Sec. 2.3.1). This
was done by selecting a state-dependent variable process noise covariance matrix
(Qk, Eq. 2.7), following the works of [14, 15]. Under dynamic conditions, the con-
centration of the variables of interest (i.e. metabolites) will change (i.e. increase or
decrease) and therefore the only use of constant, additive process noise covariance
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matrix Q can result in unsatisfactory estimates or divergence of the estimator, if
the orders of magnitude of dynamic changes and model uncertainty do not remain
consistent. Therefore, to obtain a variable, state dependant process noise covari-
ance matrix Qk, we considered that the model uncertainty mostly comes from the
uncertain, lumped parameters used in the unstructured Monod model [39]. Addi-
tionally, to handle the possible changes in metabolism in the second batch phase
(i.e. batch-to-batch variation), we increased the trust on the measurements by in-
creasing the uncertainty in two of the model parameters (i.e. Ks and YCO2), relying
less on the model predictions to achieve more accurate estimates.

Thirdly, to avoid negative (i.e. infeasible) concentrations, we implemented state
constraints through a QP-problem, in both EKF and UKF. Moreover, because of
the necessity of implementing state constraints, we investigated the MHE as an
alternative approach, due to its ability to easily handle state constraints, and dis-
cussed the importance of hyperparameter tuning (i.e. R, Qk and horizon lenght T )
to ensure that the data within the horizon can overcome the bias of the arrival cost
approximation.

Lastly, we compared EKF and UKF which showed a comparable performance.
This might be related to the fact that 1) the updates were faster (i.e. minutes) than
the dynamics of the system (i.e. hours) and therefore the linear approximation did
not hampered the performance of the EKF; 2) while the measurement function im-
plemented throughout this work was linear, the presence of nonlinearities in the
measurement functions could work in favour of the UKF. Additionally, we imple-
mented the MHE separately. Although the EKF and UKF estimators are not dir-
ectly comparable with the MHE because of different tuning of σ2

V and σ2
CO2

, they
presented similar performances. However, the reader must consider that, while the
computational effort of EKF and UKF is lower, the MHE has the advantage of
easily implementing state constraints.

Research Question 2. How can we implement on-line model adaptation to further
improve the accuracy of the estimated states under plant-model mismatch?

To handle the structural plant-model mismatch, in Chapter 4 we investigated the
possibility of capturing the changing or missing dynamics through parameter ad-
aptation. This was done in an MHE, by adding the parameters as single degrees of
freedom in the optimization problem.

Firstly, to include the parameters as degrees of freedom in the optimization prob-
lem, we augmented the model by considering them as additional states. However,
the improvements in the estimates are due to the reduction of the effect of the un-
certainty caused by plant-model mismatch and unmodeled disturbances [87] rather
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than the accurate estimation of model parameters [21]. Because the estimation of
the internal states (i.e. parameters) was not our main focus, instead of consider-
ing the parameters as additional states, it is possible to consider their changes as
disturbances (i.e. noise) as reported in [20]. This needs some attention. Indeed,
although considering them as disturbances would have the advantage of reducing
the number of states and therefore the size of the optimization problem solved at
every iteration, this approach would not ensure that only one degree of freedom is
used for every single parameter. Alternatively, when considering the parameters as
states, we make sure that one degree of freedom is used for every single parameter
accordingly to its statistics (i.e. this is enforced by θ̇i = wθi).

Secondly, to overcome the ill-conditioness of the problem that arises by adding
parameters as degrees of freedom, we implemented and compared two regular-
ization methods in an MHE, namely Orthogonalization Method (OM) [25, 88]
and Subset Selection by Transformation (SST) [24, 87]. Although parameters
can be estimated also using EKF or UKF by considering the parameters as ad-
ditional states (i.e. model augmentation), the MHE was selected because it results
in a more straightforward approach to include regularization methods. The res-
ults presented in Chapter 4 showed how the use of regularization methods leads
to a trade-off between reduction of variance and bias. Indeed, the parameter ad-
aptation penalizes the estimates of the unmeasured state, becoming a trade-off for
the practitioner, for either improvement of estimates or model predictions, there-
fore resulting that significant previous knowledge on the structural mismatch is
necessary to avoid biased estimates [87]. Moreover, comparing OM and SST, we
showed how SST, by incorporating previous knowledge on the parameters, res-
ults in a more flexible and robust approach under higher parameter uncertainty.
Although the results presented an improvement with comparison to the estimates
obtained without the addition of parameter adaptation, an accurate tracking of the
drifting model parameters was not guaranteed. Indeed, the structural plant-model
mismatch posed a limitation on the improvement of the model adaptation and the
improvements of either estimates or model predictions resulted from the correction
of the plant-model mismatch and unmodelled disturbances.

Lastly, to determine the number of degrees of freedom for the optimization prob-
lem (and therefore the number of parameters to estimate at each iteration), we
proposed a stopping criterion based on the structural identifiability of the system.
This enabled us to have the possibility to update a variable number of parameters
per iteration, avoiding the selection of a stopping criterion based on a threshold,
which would be simply based on trial and error [89, 90], or based on the minim-
ization of the Mean Squared Error (MSE) proposed by [89], which instead would
not have been possible in our case because of absence of full-state feedback (i.e.
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measurements of glucose were not available for the estimator).

Research Question 3. When infrequent and delayed at-line measurements are
available, how can we best include them to enhance the quality of the real-time
information?

To enhance real-time information, in Chapter 5 we presented the different results
obtained including infrequent and delayed measurement in the estimator. This was
done, using experimental data, with a multi-rate MHE (MMHE), because of its
ability, in comparison of EKF and UKF, to handle delayed measurements trough
the use of a window of past measurements. However, as presented in [31], delayed
measurements can also be included in recursive Bayesian state estimators as the
EKF and the UKF.

Firstly, we implemented the MMHE always considering the fast measurements,
while considering the slow measurements error only when those delayed measure-
ments were available (i.e. variable structure) and putting them back within the ho-
rizon at the time the measurement was taken [81]. Additionally, because of the pos-
sibility to achieve smoother estimates, we also implemented the MMHE consider-
ing the slow measurements always available and keeping a constant slow measure-
ment error between two consecutive sampling times (i.e. using a zero-order hold
to extrapolate and spread the slow measurement error at the fast sampling rate) and
therefore always have an error for the slow measurements at the same frequency
as the fast ones (i.e. fixed structure) [28, 27, 29].

Secondly, to improve the estimation accuracy, we implemented both MMHE with
variable and fixed structure using filter recalculation as proposed by [30] and also
presented in [31] for EKFs. In this case the optimization problem (and therefore all
the estimates) are recalculated off-line from the time at which the sample was taken
until the current time, therefore using the information from the slow measurements
throughout different horizons (Fig. 1.5). This improved the estimation accuracy for
the variable structure, while it did not for the fixed structure. Most likely because
of the stronger effect of the plant-model mismatch in the fixed structure.

Lastly, the results showed how the selected approach could differently influence
the estimation accuracy. Indeed, while the implementation of a variable struc-
ture with filter recalculation resulted the most accurate in our case for monitoring
purposes, we showed how a fixed structure MMHE would deliver smoother es-
timates, therefore being preferable in cases of more uncertain or erroneous at-line
measurements and, most importantly, showed how the implementation of a fixed
structure could be preferred for control purposes, because the sudden correction
of the estimates could be reflected in the control actions, possibly resulting in un-
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wanted output behaviours. Additionally, the results also presented the importance
of tuning the uncertainty of the slow measurements, showing that their inclusion
becomes a trade-off between rejecting the error due to plant-model mismatch and
the newly acquired measurements [30]. We conclude that the choice of MMHE
implementation therefore depends on the specific application and the desired out-
put.

6.2 Development and Design of State Estimators
In this section, we will discuss the results presented, in the form of general
guidelines for the application of state estimators in the bioprocess industry. This
section is, by no means, exhaustive, however we aim to provide relevant comments
and ideas on the design of the main components of the state estimators which
emerged while conducting this work. This is therefore done, by complementing
general guidelines present in literature, relevant for the development and imple-
mentation of state estimators in a bioprocess, in relation to the works presented in
Chapters 3, 4 and 5.

Figure 6.1: The figure, adapted from [9], reports a step-by-step workflow for the design
of state estimators. In case the condition for observability is not satisfied, possibilities
to ensure that are reported (red box). Similarly, in case the performance desired is not
achieved, possibilities to improve that are reported (red box).

Most importantly, when developing a state estimator, as also stated in [9, 49, 50]
and reported in Fig. 6.1, it is important to define:
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1. the problem (i.e. what we want to estimate);

2. the available model and output measurements (y), together with their rela-
tionship, to evaluate if their combination allows to infer information on the
variables of interest;

3. the assessment of the observability of the system (i.e. the possibility to infer
information on the variables of interest, given the available information);

4. the understanding of the sources of uncertainty to properly tune the different
parameters (i.e. hyperparameters);

5. the necessity to implement constrained or adaptive approaches;

6. the evaluation of the performance, coupled with the selection of the most
suitable approach.

6.2.1 Problem Definition

The reactor set-up used in this work is reported in Fig. 6.2, with all the available
in-line and on-line measurements. The interest, in this work, was to monitor the
concentration of glucose, together with biomass and volume in the reactor, con-
tinuously. However, either direct or indirect measurement for the glucose were
not available, neither in-line nor on-line. Therefore, it was necessary to infer this
information using the available measurements and the physical insight (i.e. model)
to develop a state estimator (i.e. soft sensor).

6.2.2 Model Development and Measurement Selection

In Sec. 2.2.1, we presented different possibilities to develop models, because of
their central role in the development of state estimators, since they incorporate the
physical or data-based knowledge we have on the process. Simply, we could say
that they incorporate our experience, creating relations between the outputs (i.e.
values that we measure) and the states (i.e. variables of interest).

As reported in Chapters 3, 4 and 5, we modelled the process using an unstructured
first principle model, based on Monod-like kinetics (Sec. 2.3). Considering states
(x) and measurements (y), the dynamics of the process (Fig. 6.2) can be formulated
as a set of ordinary differential equations (ODEs) as:

ẋ = f(x, θ, u) (6.1a)

y = h(x) (6.1b)

where x are the states, θ the model parameters, u the input and y the measurements.
The selection of process dynamics and the measurement function in Eq. 6.1, was
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Figure 6.2: Bioreactor scheme with available in-line (i.e. absorbance for biomass, dis-
solved oxygen DO2 and pH) and on-line measurements (i.e. off-gas composition for O2

and CO2, volume and temperature).

done to relate the latter to the variables that we intended to estimate (i.e. glucose),
in absence of direct measurements.

Firstly, by considering the available measurements reported in Fig. 6.2, the bio-
mass and the volume can be directly measured trough the absorbance probe and
the input to the reactor respectively. Additionally, for the glucose, it seems reas-
onable to consider the dissolved O2 and CO2 in the broth (i.e. aqueous solution)
and the off-gas measurements for O2 and CO2, because the substrate uptake (i.e.
consumption) is related to respiration. Taking into account the phenomena occur-
ring in both liquid and gas phase can be beneficial, as reported in [63]. However,
in [63] the consideration of both O2 and CO2 was done to compensate for the lack
of other measurement devices available, as the absorbance probe in our case, to
infer information on all the variables of interest. Thus, it is important to note that
complementing our system dynamics with those presented in [63], if not strictly
necessary (e.g. the system is not observable or certain dynamics can not be neg-
lected), would increase the number of model parameters and state variables, there-
fore increasing the size of the system and hampering the advantages of a simple
dynamic model for the implementation of a state estimator. Indeed, by following
the idea of [50] that a further improvement of first principle knowledge should be
taken with care, and that the priority is to include the main process nonlinearities,
we have adopted an approach similar to [18], by only taking the CO2 composition
in the off-gas into account. This is done considering that the amount of CO2 in the
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reactor (i.e. aqueous) is constant (i.e. quasi-steady state), due the rapid gas-phase
dynamics, given constant head pressure and pH (i.e. tightly controlled) [63, 68].

By selecting as available measurements y = [yV , yX , yCO2 ] and defining the state
variables of the system in Eq. 6.1 given by x = [V,X, S,CO2], we can rewrite the
discrete set of ODEs in Eq. 6.1:

xk = F (xk, θk, uk) (6.2a)

yk = Hxk (6.2b)

where H is a selector matrix that represents the linear relation between y and x.

The values of the nominal parameters θ = [µmax,KS , kd, YXS , YCO2 ] used
throughout the Chapters 3-5 were obtained off-line, by nonlinear least-squares
data-fitting, on a single experimental data set. However, the practitioner is
advised to use several data sets to better cover the batch-to-batch variation in the
parameter estimates and therefore obtain a more robust measure of the parameters
uncertainty.

Additionally, it is important to comment on the measurement selection. Indeed, in
the presented case the composition of CO2 in the off-gas was not of interest per se,
but it was only added in the system dynamics to add information on the variables
of interest (i.e. biomass and glucose). The use of additional measurements of
secondary variables (i.e. CO2 in our case) can be done by developing static or
dynamic models, either mechanistic, data-based or hybrid. In the case of static
models, as was recently presented in [12], those should be used as measurement
functions (h(x), Eq. 6.1b), while the dynamic ones should be considered as extra
states (i.e. augmented system, Eq. 2.1d), therefore developing a model specifically
for state estimation purposes.

6.2.3 Observability

After developing the model and selecting the measurements, an important step
in the design of a state estimator is the evaluation of the observability of the
system. This defines the possibility to infer information on the states (i.e. vari-
ables of interest) given the knowledge on the external outputs (i.e. measurements)
[9, 49, 13, 60, 26]. The practitioner must note that, as reported in [18] and in
Sec. 6.2.2, in the absence of full observability the system must be restructured for
the purpose (Sec. 6.2.1). In this direction, the work of [60] presents an algorithm
to systematically select the minimal set of required measurements to ensure full
observability. Indeed, if measurements are not correctly selected to ensure observ-
ability or detectability [48, 49, 60], the estimator will be unable to infer inform-
ation on the non-observable states, therefore leading to the prediction of those
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through simulation results rather than estimation [18]. Alternatively, if infrequent
and delayed measurements are available, these can be used to ensure observability
[30, 31, 81]. Although infrequent measurement present additional information for
the estimator, care must be taken on selecting the implementation for their inclu-
sion, as mentioned in [31, 27, 28] and in Chapter 5. Indeed, the selected approach
can strongly influence the estimation accuracy.

Observability is a property of the system, dependent on the given dynamics (ẋ =
f(x, θ, u)), inputs (u) and measurement function (y = h(x)), which for nonlin-
ear sytems is usually evaluated using Lie derivatives, as reported in Chapters 3
and 4. However, besides the observability analysis through Lie derivatives, which
is solely a qualitative property of the system (i.e. it only gives a yes or no an-
swer), it exists the possibility to analyze the observability through the observability
Grammian [49, 26], which instead gives a quantitative measure in addition to the
qualitative one. A discussion on the two approaches discern from the interests of
this work. Therefore, the most interested reader is referred to [49, 91, 92].

6.2.4 Uncertainty Quantification

As it was pointed out in the works of [14–16], most often practitioners give very
little attention to the importance of uncertainty quantification, considering the pro-
cess (Q), measurement (R) and initial measurement noise (P0) covariance matrices
as purely trial and error tuning parameters.

The tuning of the process noise covariance Q is usually considered the most chal-
lenging task. However, in the case of biological processes, models are usually de-
veloped by off-line parameter identification, through nonlinear least-squares data-
fitting, using experimental data. Therefore, it must be considered that the noise
does not always simply enters in an additive way, since quite often we might have
some knowledge of it. Consequently, it is important to consider that the process
of parameter identification not only gives the estimated value (i.e. mean), but
also their uncertainty. Thus, it is with this mindset that the practitioner should
approach the tuning of the process (or model) uncertainty Q, hence avoiding the
tedious work of purely estimating uncertainty based on a trial and error approach.
Indeed, this approach not only simplifies the selection of the values for Q, but also
follows the idea that most often the noise does not only enters the model addit-
ively but also trough uncertainty in the model parameters or the inputs [14–16],
therefore becoming state or input dependent. Indeed, it is our advice, when tuning
the process noise covariance matrix Q, to first consider the parameter (Chapters 3
and 4) and input [15] uncertainties, while using the additive noise for fine tuning.
The latter is also meant to take into account structural model mismatch and avoid
numerical issues.
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The tuning of the measurement noise covariance matrix R is, instead, usually con-
sidered a less challenging task, since most often the measurement noise covariance
matrix can be considered time-invariant and readily available form the manufac-
turer of the device [16]. However, the possibility of having a time-varying R must
be taken into account [93]. Indeed, 1) in the case of unstructured regression mod-
els to calibrate the sensors [12] or 2) in the case of structured state-dependant or
input-dependant noise in the measurement devices, a similar approach to the one
presented for the tuning of the process noise covariance Q (Sec. 2.3.1) must be
considered. This is however feasible only in the presence of data-sets of a reason-
able size, as it is often the case in industrial applications [12].

In contrast to the previous two, the initial measurement noise covariance matrix
P0 can not be evaluated experimentally and its tuning will mostly affect the speed
of convergence of the estimator [16]. Following the work of [16], in the works
presented throughout Chapters 3, 4 and 5, its calculation was based on the true
initial state. However, in case this is not available, an average value based on the
expected lower and upper bounds can be employed.

6.2.5 Constraints and Adaptive Approaches

When considering bioprocesses, since the majority of them are conducted in batch
or fed-batch mode, it is often common that concentrations can become zero or
close to zero. This can become problematic when performing state estimation,
since the probability of an expected value close to zero can cause the estimate to
find its realization in the negative domain. Thus, if such situation is encountered
or expected, it is necessary to avoid it by implementing non-negativity constraints
(e.g. x ≥ 0). From a probability point of view, this consists in truncating the
probability density function [62, 22]. In the case of MHEs, this can be done in a
straightforward way, by simply adding inequality constraints in the optimization
problem as presented in Chapters 3 and 4. Differently, when dealing with EKFs
or UKFs, this can be done using different approaches and, the most commonly
implemented one is clipping, which simply consists in projecting back into their
bounds the estimates that violate the constraints [79, 62, 53]. However, different
approaches have been proposed later in the works of [19, 94]. Indeed, in the applic-
ation of EKF and UKF presented in Chapter 3, the utilization of a QP-problem was
implemented, following the work of [19], only when constraints were violated.

Constraints however, not only can be useful to avoid infeasible values for the estim-
ates, but they can also be implemented for adaptive estimation approaches, when
interested in the joint estimation of states and parameters in the presence of plant-
model mismatch. Thus incorporating robustness to modelling errors (Chapter 4)
[13, 9, 21]. Indeed, when interested on the joint estimation of states and para-
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meters, the practitioner must take into account that the estimation of all the model
parameters might result in an ill-posed problem and that constraints might be used
to avoid that [48], by limiting the number of the parameters being estimated or
by limiting them through the selection of linear combinations of them, as reported
in Chapter 4 [90]. This, as mentioned above, results in a more straightforward
approach in MHEs, although also possible to implement in EKFs and UKFs.

6.2.6 Technique Selection

Given that the system is observable and that information on the uncertainties is
available, we discourage the simple use of deterministic models, while encour-
aging for the use of state estimators, to also take the uncertainties into account. In
this extent, it becomes therefore important to select the most convenient approach,
given necessities and limitations of the specific application.

Firstly, in case the sole interest is to infer information on the unmeasured variables
of interest, we believe EKFs and UKFs should be taken into account firstly, given
their simplicity and their low computational requirements (Chapter 3).

Secondly, if the necessity of implementing constraints arises, constrained EKFs
and UKFs [19, 53] can be considered, although MHEs might result in a more nat-
ural approach to implement constraints (Chapter 3). Moreover, also in the case of
systems described by differential algebraic equations (DAE), algebraic equations
can be simply added to the existing set of constraints in the formulation [13]. How-
ever, when choosing to implement an MHE, care must be taken in the selection of
the time horizon, aiming to find a trade-off between computational requirement
and performance (Chapter 3) [50].

Thirdly, under presence of plant-model mismatch, we believe that the use of MHEs
presents the most flexible approach (Chapter 4) for on-line model adaptation. In-
deed, on-line model adaptation would benefit from the use of past horizon inform-
ation to deliver smoother estimates, simultaneously allowing to include different
types of regularization approaches, in the form of penalties or algebraic equations
implemented through constraints, to obtain the most accurate solution.

Lastly, when including infrequent and delayed samples, although EKF or UKF
also present the possibility to handle them [31], MHE results to be the preferred
approach because of its ability to easily handle delays, considering an horizon of
past measurements [27–30, 81, 21]. However, as discussed in Chapter 5, for the
inclusion of infrequent measurements the selection of the correct implementation
is crucial. Indeed, the practitioner must select it depending on the specific applic-
ation and the desired outcome.
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"We must have an industry where the machine takes
over everything is able to take over, so that it can

create us the profit we would like to use to go on a
forest trip or watch the sunset." [95]
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7.1 Conclusion
In this work we presented the important role that state estimators have in the
next-generation biotech industry (Chapters 1 and 2). Moreover, through the ex-
perimental application of three different Bayesian state estimators, we highlighted
different possibilities to infer information on unmeasured variables under the pres-
ence of uncertainty and plant-model mismatch (Chapters 3, 4 and 5).

In Chapter 3:

• we implementated three different Bayesian state estimators, namely EKF,
UKF and MHE;

• we focused on the importance of local observability analysis for the selection
of the necessary measurements to ensure the observability of the system;

• we highlighted the necessity of careful hyperparameter tuning, most spe-
cifically the process noise covariance matrix Qk and the horizon length T
for the MHE;

• we considered the need to implement state constraints in both EKF and UKF
and the alternative of using MHE to avoid negative concentrations during
sugar depletion.

In Chapter 4:

• we evaluated the possibility to capture the changing or missing dynam-
ics through parameter adaptation, improving the estimation accuracy under
plant-model mismatch;

• we implemented two different regularization methods (i.e. Orthogonaliza-
tion Method and Subset Selection by Transformation) in a MHE and gave
their geometric interpretation for an easy comparison of the two;

• we proposed a stopping criterion based on the structural identifiability of the
system.

In Chapter 5:

• we implemented a multi-rate MHE (MMHE) to include delayed and slow
measurements to enhance the accuracy of the estimates;

• the MMHE was implemented with both variable and fixed structure;
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• to further improve the estimation accuracy, we have implemented both fixed
and variable structure with filter recalculation;

• we discussed as, in our case, a variable structure would be preferable for only
monitoring purposes, while a fixed structure, delivering smoother estimates,
is preferred for control purposes.

Additionally, through Chapter 6, we discussed our results contextualizing them
within general guidelines for the development and design of Bayesian state estim-
ators.

7.2 Future Outlook
Firstly, to extend the results obtained in this work, future works should investigate
the use of hybrid models, to better characterise the system dynamics and therefore
limit the hindering effect of structural plant-model mismatch.

Secondly, the use of redundant sensors is important, considering their industrial
implementation, for either the detection of sensor failure and the implementation
of algorithms to detect that or for the application to systems which present both
space and time dynamics (i.e. described by partial differential equations), such as
tubular reactors for the cultivation of microalgae.

Thirdly, focus should be placed on the implementation of optimal sample schedul-
ing techniques, minimizing the uncertainty of the estimates. This is important to
reduce costly and time consuming measurements when sensors are not available
and infrequent measurements have to be adopted to ensure the observability of the
system.

Lastly, as a continuation of this work, simultaneous state and parameter estimation
should be tested in closed-loop, when controlling experimental cultivations in real
time. During the past years, we have upgraded and improved the laboratory set-up
at the Department of Chemical Engineering at NTNU and works are ongoing for
the real-time control of the cultivation processes.



108 Concluding Remarks and Future Outlook



A | Appendix

109



110 APPENDIX A

A.1 Basic Concepts of Probability and Statistics
The experimental practitioner is, most likely, used to take triplicates (or more gen-
erally multiple samples) to determine the concentration of a certain metabolite.
Indeed, this is done to define the mean and the sample variance, which represent,
respectively, the average and the distance from the mean [96]. We take, as ex-
ample, five samples of the concentration of glucose g =

[
g1, g2, g3, g4, g5

]

in the cultivation broth at a certain time point (t = 4h) and analyze them obtaining:

g =
[
5.4 5.8 5.4 5.8 5.7

]
(A.1)

Given N = 5 as the sample size, we obtain:

m =

N∑
i=1

gi

N
= 5.62 (A.2a)

S2 =

N∑
i=1

(gi −m)2

N − 1
= 0.042 (A.2b)

which represent the mean (Eq. A.2a) and the sample variance (i.e. variation in our
samples, Eq. A.2b) of our realizations (i.e. measured glucose concentrations).

If now we want to conduct a second experiment in the same conditions, we do not
have a certainty of the values we will get, but we can expect that, by taking five
samples at the same time point (t = 4h) we have an information on the probabilities
from the previous experiment (Eq. A.1), which are 40% of obtaining 5.4, 40% of
obtaining 5.8 and 20% of obtaining 5.7. Therefore, we can define the probability
p for the expected concentration x:

p =
[
p1, p2, p3

]
=

[
0.4, 0.4, 0.2

]

x =
[
x1, x2, x3

]
=

[
5.4, 5.8, 5.7

]

This probability allow us to define the expected value (E[x]) and its variance (σ2)
as:

E[x] =

3∑

j=1

pjxj = 5.62 (A.4a)

σ2 = E
[
(x− E(x))2

]
=

3∑

j=1

pi(xj − E(x))2 = 0.042 (A.4b)
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However, most often, we are not only interested in measuring the glucose (g), but
also the biomass (b) and the product (r), therefore expecting different concentra-
tions. Given M = 1, . . . , 3 the number of different concentrations, we will have
M = 3 different random variables (RV). Each of them will have an expected value
(E[xM ]). However, since the biomass grows and produces by consuming glucose,
these RV will be correlated and they will have a joint probability (pgb) which rep-
resents the probability that RV 1 produces g and RV 2 produces b. Therefore, we
can define a covariance (i.e. measure of joint variability) as:

σ2
gb =

∑∑
pgb(g − E[g])(b− E[b]) (A.5)

where Eq. A.5, written in matrix form for M = 1, 2 (i.e. g and b), becomes the
covariance matrix V:

V =
∑∑

pgb

[
(g−E[g])2 (g−E[g])(b−E[b])

(g−E[g])(b−E[b]) (b−E[b])2

]

For a more in depth explanation the reader is referred to [96, 62], which we used
as a reference here.

A.2 Eigenvalues, Eigenvectors and Singular Values Decom-
position

Eigenvectors q are vectors which define the direction of Aq (i.e. directions of the
invariant action), where A ∈ Rn×n. Eigenvalues λ instead, are scalars values
which tell whether the eigenvector q is stretched, shrunk, reversed or unchanged
(i.e. magnitude of the invariant action). Their relationship is defined as follows
[96, 97]:

Aq = λq

The eigenvalues λ are obtained by solving det(A−λI) = 0 (i.e. the characteristic
polinomial), where I ∈ Rn×n is the identity matrix. For every λ, the correspondent
eigenvectors are obtained by solving (A−λI)q = 0. This allows us to decompose
(or factorize) matrix A ∈ Rn×n (i.e. eigendecomposition) as follows:

A =

n∑

i=1

λiqiqi
T = QΛQT (A.6)

Eq. A.6 coincides with Singular Values Decomposition in the case the matrix A
is symmetric and positive definite [97]. Indeed, more generally, given a matrix
B ∈ Rm×n, it can be decomposed in three terms as follows:

B =

n∑

i=1

uiσivi
T = UΣV T
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The three terms geometrically correspond to rotation, stretching and rotation [96].
Where U and V are the matrices of the singular vectors, which form an orthonor-
mal basis for the SVD and describe the directions of its maximum action. Matrix
B can therefore be diagonalized as:

Av = σu

where σ represents the singular values which instead describe the magnitude of the
maximum action. For a further explanation the reader is referred to [96].

A.3 Cholesky Factorization
Given a matrix A ∈ Rm×m symmetric and positive definite, then there exists a
unique lower triangular matrix C ∈ Rm×m such that [96, 98, 97]:

A = CTC (A.7)

Eq. A.7 represents the Cholesky factorization of the matrix A [96, 98, 97].

A.4 Gradient, Hessian, Jacobian and Sensitivity
Given a variable vector x ∈ Rnx and a function f : Rnx → R the vector of first
order partial derivatives ∇f(x) (i.e. gradient) is defined as [97]:

∇f(x) =




∂f
∂x1

...
∂f

∂xnx


 (A.8)

The matrix of the second order partial derivatives ∇2f(x) (i.e. Hessian, H) is
defined as [97]:

∇2f(x) =




∂2f
∂x1

2
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xnx

∂2f
∂x2∂x1

∂2f
∂x2

2 . . . ∂2f
∂x2∂xnx

...
...

...
∂2f

∂xnx∂x1

∂2f
∂xnx∂x2

. . . ∂2f
∂xnx

2




If we now maintain the variable vector x ∈ Rnx and define a new function g(x) so
that g : Rnx → Rm, we can define the Jacobian (J) as [97]:

J(x) =




∂g1
∂x1

. . . ∂g1
∂xnx

...
. . .

...
∂gm
∂x1

. . . ∂gm
∂xnx


 (A.9)
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The Jacobian (Eq. A.9) is also called Sensitivity matrix (S(x) = J(x)) [99]. In-
deed, also following [97], each of the elements in Eq. A.8 (i.e. partial derivatives)
defines the sensitivity of the function f with respect to a component.

A.5 Linear Programming (LP)
Linear Programming (LP) refers to the solution of a problem where the objective
function is linear as well as the constraints. Generally it can be written as [97]:

min
x

ϕ(x) = cTx (A.10a)

s.t. Ax = a (A.10b)

Bx ≥ b (A.10c)

where x ∈ Rnx represents the vector of decision variables, while c ∈ Rnx is
the gradient of the objective ϕ(x) (Eq. A.10a). Equations A.10b and A.10c in-
stead, are the equality and inequality constraints. The system in Eq. A.10 is writ-
ten as a minimization problem, however, if the interest is to find the maximum,
the objective function can be simply transformed by multiplying ϕ(x) by −1 (i.e.
ϕ(x) = −cTx).

A.6 Quadratic Programming (QP)
Quadratic Programming (QP) refers to the solution of a QP-problem (i.e. an op-
timization problem where the objective function is quadratic and the constraints
linear) and can generally be written as [97]:

min
x

ϕ(x) =
1

2
xTQx+ cTx (A.11a)

s.t. Ax = a (A.11b)

Bx ≥ b (A.11c)

where x ∈ Rnx represents the vector of decision variables, while Q ∈ Rnx×nx

and c ∈ Rnx are respectively the Hessian and the gradient of the objective ϕ(x)
(Eq. A.11a). Eq. A.11b and A.11c instead, represent respectively equality and
inequality constraints. If the Hessian Q is positive semidefinite, the QP-problem
is convex and its solution represents the global minimum. If not, the solution is a
local minimum.

The QP-problem can be seen as a special case of an NLP-problem. Moreover, in
case the problem is convex, its solution does not results much more difficult than
an LP-problem [97].
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A.7 Nonlinear Programming (NLP)
Nonlinear Programming (NLP) refers to the solution of a NLP-problem (i.e. an
optimization problem where at least the objective function or the constraints are
nonlinear). Generally it can be stated as [97]:

min
x

ϕ(x) (A.12a)

s.t. hi(x) = ai i = 1, . . . , n (A.12b)

gj(x) ≥ bj j = 1, . . . ,m (A.12c)

where x ∈ Rnx represents the vector of decision variables. ϕ : Rnx → R instead
represents a generic objective function (Eq. A.12a), while h : Rnx → Rn and g :
Rnx → Rm represent two generic functions for equality and inequality constraints
(Eq. A.12b and A.12c).

A.8 Least-Squares Problem
Least-squares problems are most often encountered for the identification of model
parameters using experimental data. This is done through the minimization of a
nonlinear least-squares function defined as follows [97]:

ϕ(x) =
1

2

n∑

i=1

ri
2(x) (A.13)

where ri(x) is the residual function and is given by:

ri(x) = yi − f(x, ti) (A.14)

with measurements yi and model predictions (e.g. concentrations) given by
f(x, ti). Therefore, the residual ri(x) (Eq. A.14) represents the distance, at each
time point ti, between the model and the measurement. This problem becomes
an LP, QP or NLP whether it follows the definitions given in Sections A.5, A.6
or A.7. For a more extensive explanation the reader is referred to [97].
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