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Summary

Recent advances in machine learning (ML) have helped solve many problems once
thought impossible for computers to solve. These methods are increasingly used to
develop flexible agents that learn to model and control through direct interaction
with real-world systems. Despite encouraging results, it is difficult to predict the
behaviour of such agents, which prevents their use in safety-critical applications.
This thesis is a broad investigation into the safe application of machine learning
methods to three different problems in the context of controlled dynamical systems,
namely (i) Control design, (ii) System identification, and (iii) Verification.

One of the main ways to realise a learning controller is through Reinforcement
learning (RL), where a learning agent is rewarded when it reaches a goal or performs
a desired behaviour. A variety of RL methods are applied to the problems of path-
following and collision avoidance (COLAV) for an autonomous ship. These two
goals are occasionally in conflict. A parameter controlling the tradeoff between
path-following and COLAV is given to the agent as an additional “insight”, allowing
the agent’s priorities to be controlled during operation. However, even though the
“conservativeness” of the agent is controllable using this scheme, experiments
show that collisions can still occur on rare occasions, thus confirming the need
for improved safety measures when using machine learning (ML) methods. A
guarantee of safety can be achieved by introducing a failsafe controller known
to be safe, a so-called safety filter. The second contribution of this thesis is the
implementation of a predictive safety filter for the milliAmpere ferry. This auxiliary
system is formulated as an optimal control problem (OCP), where the optimal
solution is a minimal perturbation to a nominal input to the system such that
the safety constraints are satisfied. The safety filter can be used with arbitrary
controllers (e.g. RL agents) while guaranteeing safe operation.

iii
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System identification is closely related to ML. In both cases, a set of model struc-
tures is chosen, the parameters are selected such that the predictions match the
available data without overfitting, and the model candidates are evaluated according
to task-specific metrics. Model structures are often designed from first principles
following physical laws, an approach referred to as physics-based modelling (PBM)
in this thesis. PBM becomes more challenging as the complexity or scale of the
system increases, and assumptions typically have to be made to make the resulting
model tractable. Modern ML practitioners are increasingly turning to more flexible
model structures such as neural networks (NNs) that can scale well without the need
for bespoke model structures; this is referred to as Data-driven modelling (DDM)
in this thesis. The combination of PBM and DDM techniques is also investigated in
this thesis. We propose the physics-guided neural network (PGNN), a novel NN
architecture where physics-based priors are injected into the intermediate layers of
a NN. This method is found to improve accuracy and generalisation on a variety of
dynamical system modelling tasks. However, the choice of injection layer plays a
significant role, and there is no principled way to choose the correct layer a priori.
Another way to augment PBM with DDM is through “boosting”, i.e. training a
second model to correct the errors of the first. This method is also known as the
Corrective source term approach (CoSTA), and we apply it to an ablated model of
an aluminium electrolysis cell and show that the corrected model is more accurate
and stable than a purely data-driven model. Stability is a common issue when using
NNs to model dynamical systems. This thesis investigates how regularisation and
network architecture can affect the stability of the resulting system. The results
show that introducing ℓ1 regularisation and skip connections can significantly im-
prove the predictive stability of NNs and that these measures are most effective
when used together. These effects persist even when the amount of training data is
reduced.

The third and last part of this thesis studies NNs as piecewise affine (PWA) systems,
which is an exact correspondence when the only nonlinearities present are PWA
functions. The work represents a step towards practical algorithms that can be used
to verify the safety of black-box models. The first contribution is a memory-efficient
algorithm for computing the linear pieces of a NN. However, the number of pieces
grows exponentially with the network’s depth and the input space’s dimension,
limiting the method to relatively small networks. Despite this, studying smaller
systems can still yield insights. A series of experiments were performed on NNs
trained to mimic a damped pendulum with different forms of regularisation. The
linear regions of the network are recorded regularly during the training process. It
is found that ℓ1 regularisation significantly reduces the apparent number of regions,
and a simple mechanism is proposed to explain this. Regularising using the ℓ2
norm has a similar but lesser effect to ℓ1 regularisation. Dropout regularisation
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is not found to change the number of regions significantly but instead affects the
structure of the regions. Weight normalisation is found to negate the observed
effects. One motivation for these methods is that reducing the number of regions
of a NN may make verification methods tractable. However, regularisation by
itself appears insufficient. Instead, an additional algorithm to discard insignificant
regions is proposed. A nonlinear benchmark based on modelling the vibrations of a
wing/payload system is chosen as a case study. It is shown that regularisation can
significantly reduce the number of regions at the cost of accuracy. Weight pruning
is shown to have little effect. In comparison, the PWA approximation algorithm
runs efficiently on a network with ten inputs and sacrifices little accuracy.
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Chapter 1

Introduction

The exponential growth of cheap sensors, connected devices, and computing power
has fuelled the development of machine learning (ML) algorithms that promise
to solve problems that were widely thought impossible to tackle using computers.
These advances have led to numerous breakthroughs in computer vision, natural
language processing, drug design, and robotics. ML is already being used to
automate many aspects of our lives to improve the productivity, efficiency, and
safety of the many systems we depend on.

Data-driven modelling (DDM) has proved to be an attractive approach from an
economic perspective because it reduces development costs and (in theory) yields
a product that can be continuously improved simply by acquiring more data and
computational resources. The success of this approach has inspired terms such as
“Software 2.0” [1], where DDM is the preferred way to solve engineering problems.
Furthermore, large-scale ML methods such as Deep learning (DL) are often based
on the composition of many simple operations, which allows them to run efficiently
in parallel and be applied to very large and high-dimensional datasets. However,
relying on a pure DDM approach is problematic when dealing with constrained
systems, e.g. self-driving cars, because many methods are black boxes, and it is
challenging to place guarantees on their behaviour.

For safety-critical problems, it is preferable to use a physics-based modelling (PBM)
approach where solutions are based on solid theory that can be used to reason about
the current and future behaviour of the system. Analyses of this kind allow us to
make preemptive design choices or protocols that ensure safe operation, which is
the domain of control theory, feedback systems, and formal verification. However,
modelling every aspect of a system to a high level of fidelity is often computation-
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ally intractable, forcing us to make assumptions, simplifications, and discretisations.
These measures are almost always necessary when developing low-level control sys-
tems, which must be able to respond to changes in state hundreds of times a second
while running on low-power microcontrollers. Furthermore, we may simply fail to
accurately describe aspects of our data that we do not fully understand, resulting in
an incomplete, unfaithful, or overly simplified representation of the original system.
In addition, when the equations are solved using numerical algorithms, the stability
of these must be verified. These issues are becoming increasingly important as our
systems become more complex, interconnected, and sophisticated.

This thesis studies how DDM and PBM can be combined effectively in the context
of controlled dynamical systems, a strategy which we refer to as hybrid analysis
and modelling (HAM). Fig. 1.1 shows a generic block diagram of such a system,
which also serves to structure the thesis. In the following sections, we will briefly
discuss each of the blocks and symbols shown in the figure and how modern control
methods approach them.

System†Controller∗

Observer

Planner
uxd

yx̂

Closed loop

Verification procedure‡

∗Chapter 3 †Chapter 4 ‡Chapter 5

Figure 1.1: Structure of the thesis as a generic feedback control system.
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1.1 Modelling and control of dynamical systems
Modern control methods are largely based on the state-space representation of
controlled dynamical systems [2]:

ẋ = f(x,u)

y = h(x,u)
(1.1)

where x(t) is the state of the system at time t, u(t) is the input signal, y(t) is
what we can measure from the system, and f ,h are the dynamics and measurement
functions respectively. Preliminary details about dynamical systems and relevant
examples are given in Chapter 2.

Successfully modelling f can allow us to predict how our system will change in
response to some input u, which can help us control the system as we wish. An
algorithm that computes u is known as a control law, control policy, or simply a
controller. When a controller provides feedback to some process, we refer to the
whole system as a closed-loop, as illustrated in Fig. 1.1. However, designing a
controller that automatically chooses u is nontrivial.

In the field of model checking and formal verification, there are two fundamental
properties that we wish to build into our systems: liveness and safety [3]. While the
former is not commonly used within the context of control theory, it nonetheless
transfers well. The liveness property is often summarised as “good things will
happen”, while safety implies that “bad things will not happen”, e.g. a self-driving
car should reach some destination without driving recklessly. Liveness and safety
are often two sides of the same coin; unsafe behaviour typically prevents the system
from achieving the desired goal. It is often trivial to stay safe if no action needs to
be taken. Most real-world systems are stochastic to some degree; in these cases, we
can only try to maximise the probability of liveness and safety. The performance
of the system is also often of interest (e.g. fuel consumption), which implies that
some control policies are “better” than others. Methods that select a controller
that provably maximises some performance metric are known as optimal control
methods.

There are multiple subproblems to consider when designing “live” and “safe”
systems.

(System identification) Determine f and h
(Control design) Develop an algorithm to choose u
(State estimation) Estimate x from noisy data y
(Verification) Check that Eq. (1.1) behaves as intended

Each problem corresponds to one of the blocks in Fig. 1.1, where the planner block
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also falls under the field of control design. This is because a planning algorithm
can be viewed as just another controller. In practice, it is common to nest multiple
control loops within one another where each outer loop passes on the desired state
to the inner loops. Connecting multiple modules in a feedback system can have
unexpected, sometimes destabilising consequences [2]. This fact highlights the
importance of the verification problem. Care must always be taken to ensure that
the modules play nicely together and continue to do so for all situations the system
might encounter.

1.1.1 System identification

System identification can be summarised in three steps: data collection, model
structure selection, and model fitting/validation [4]. In this thesis, we will mostly
assume that the data has already been collected and focus on the last two steps. In
broad terms, the structure of a model refers to some equation or process through
which the prediction ŷ(t) is computed from past data and parameters. Following
the notation of [5], this can be seen as the mapping:

ŷ(t | θ) = f̂(ψ(t),θ)

ψ(t) = ψ(Zt)
(1.2)

where θ represents the parameters of the model, Zt = {(yτ ,uτ ) | ∀ τ < t} is the
set of all past observations, and ψ(t) represents the vector of regressor variables
that summarise the past observations at time t. For example, ψ(t) might include
the last k measurements made, some running statistics, or a state estimate x̂(t).
Multiple model structures might be considered and ranked using task-specific
metrics in the validation/test stage.

One of the most fundamental structures that can be selected is the linear time-
invariant (LTI) system:

f̂(ψ(t),θ) = Ax(t) +Bu(t) (1.3)

where the parameters θ take the form of the matrices A and B. Classical control
theory has given us many strong results for LTI systems, allowing us to determine
many properties, e.g. stability, controllability, and observability. Many of these
results also play an essential role in the local analysis of nonlinear systems. The
superposition principle for linear systems implies that they can be characterised by
their frequency response to sinusoidal input signals, enabling a host of powerful
frequency domain methods based on manipulating the poles and zeros of the
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resulting transfer function. Other linear methods include ARMAX, output-error,
and finite-impulse response models.

If a linear system is insufficient, many nonlinear model structures have been pro-
posed over the years. Despite the near-infinite ways this can be done, many existing
methods are readily described as a basis expansion of the form [5]:

ŷ = Aκ (W(ψ− b))

κ(z) = [κ1(z1), . . . , κn(zn)]
⊤ (1.4)

where the rows of W and elements of b are parameters associated with the kth
scalar basis function κk, and A consists of some weighting parameters. These basis
functions are often parameterised using a single “mother-basis” κ1 = · · · = κn = κ
that is scaled and translated using the parameters W and b. Fourier series can be
expressed in this way by setting κ = cos and setting frequency and phase using
W and b, respectively. The wavelet transform can be expressed similarly, as can
B-splines. Changing the input to the basis functions to a quadratic of ψ yields
radial basis functions, which can represent sums of Gaussians and even nearest
neighbour algorithms. Eq. (1.4) is also the structure of a 1-layer neural network,
with activation function κ(z). Adding additional layers is simple: take the output
of Eq. (1.4) as a new set of regressor variables ψ[2], and repeat with a new set of
parameters W[2] and b[2].

A suitable model structure can often be derived from the mechanics and physics
of a system. This strategy is sometimes known as white-box modelling and falls
under the PBM approach in this thesis. Conversely, if a model is selected without
any physical insight, it is known as a black-box model, which corresponds to DDM.
Once a suitable structure has been determined, the optimal (sometimes sub-optimal)
parameters for the model are estimated from the data. When the parameters appear
linearly in the equation (e.g. Eq. (1.4)), linear regression can be used to identify
them.

1.1.2 Control design

Similarly to system identification, control design starts with selecting an appropriate
controller structure (often highly dependent on the model structure). Then the para-
meters of this structure are chosen according to some procedure. The parameters are
then commonly tuned experimentally by observing the response of the closed-loop
system. These procedures can be broadly grouped into two categories: model-based
control and model-free control.

Model-based methods typically obtain the closed-loop system by plugging the
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controller equations into the model and directly computing properties of interest.
The parameters can then be specified to get the desired response. For example, the
pole placement method applies linear state feedback to an LTI system and the poles
of the closed-loop system can be specified as desired. There are many methods
for nonlinear systems, and we cannot hope to cover all of them here. Notable
examples include (i) Feedback linearisation: the controller additively cancels out
the nonlinear dynamics and replaces them with stable LTI dynamics (ii) Gain
scheduling: linearise at multiple states and apply different linear state feedback
at each (iii) Integrator backstepping: Recursively stabilise nested feedback loops
(iv) Sliding-mode control: forces the state onto a lower-dimensional manifold with
desirable dynamics.

Optimal control methods represent the controller as an optimisation problem over a
time horizon with the model equations as a constraint. The infinite horizon optimal
control problem (OCP) has the form:

min
x,u

∫ ∞

0
J (x(t),u(t))

s.t. ẋ(t) = f (x(t),u(t))

x(0) = x0

x(t) ∈ X ∀t
u(t) ∈ U ∀t

(1.5)

The linear-quadratic regulator (LQR) problem is a quadratic OCP for linear systems
with an infinite time horizon that can be solved explicitly using the algebraic Ricatti
equation, resulting in an optimal linear state-feedback law. Suppose additional
constraints are added to the LQR problem. In that case, it can be discretised and
solved over a finite horizon for a given initial state to obtain an optimal trajectory and
input sequence. Repeatedly solving the problem and applying the first input in the
sequence is known as model predictive control (MPC). Although suboptimal, this
works well in practice and is widely used due to the ease of incorporating constraints
into the controller. Interestingly, the linear MPC problem can be solved explicitly
for all initial states, yielding a constant piecewise affine (PWA) controller. This
method also works if the system dynamics are PWA. However, despite the savings
in execution time, offline computations are demanding, and the memory cost is often
too prohibitive for low-level controllers. With developments in computing power
and optimisation algorithms, MPC is also becoming more and more applicable to
nonlinear systems.

Model-free methods estimate control parameters directly from data. These methods
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are commonly associated with Reinforcement learning (RL), but many adaptive
control methods also fall under this category. Most RL methods do not learn a
model and instead try to learn the expected future reward associated with states
and actions (as a value function). The control strategy is to pick the action that
maximises this value function at the current state. One of the issues with RL is
that it is relatively data-inefficient. Model-based RL methods that attempt to solve
the dual control problem show some promise here. However, current model-free
RL methods yield better performance because they explore the state space more
thoroughly and find better solutions [6].

1.1.3 State estimation

State estimation, also known as sensor fusion, is a family of methods that attempt
to reconstruct accurate estimates of x from noisy data. The Luenberger observer is
one of the most straightforward approaches; the state estimate is forced to track the
measurements y by using linear feedback [7]. The Kalman filter is one of the most
celebrated state estimation methods for linear systems and is also known as linear-
quadratic estimation (LQE) because it is the dual of the LQR problem [8]. When
LQR and LQE are used together, this is referred to as linear-quadratic Gaussian
(LQG) control. This duality can also be extended to nonlinear systems, implying
that control and state estimation methods are generally interchangeable. However,
this only holds for a subset of control problems [9]. The Extended Kalman filter
can be applied to nonlinear systems that again utilise local linearisation to update
the estimate [10]. However, the linearisation can lead to poor estimates of the
state covariance. The unscented Kalman filter addresses this by sampling a small
number of points around the current mean, propagating these through the system
equations, and then using the result to estimate the covariance instead [11]. Moving
horizon estimators frame the estimation problem as an optimisation problem and
are analogous to MPC.

In ML applications, state estimation methods have not been widely applied. For
classification and regression problems, injecting noise into the training data is
seen as a way to counter overfitting and improve the generalisation of a model.
On the other hand, architectures such as autoencoders are often used to learn a
latent space from which it is possible to reconstruct the input data [12]. This
concept has also been applied to measurements over time [13], and thus can be
linked to state estimation. A key difference is that state estimation techniques
attempt to reconstruct a predefined set of variables from measurements. In contrast,
autoencoding ML methods attempt to learn a mapping onto an undefined latent
space that allows for maximal retention of information. The latent space trick has
also been applied to model-based RL methods, such as the Dreamer methods from
Google [14, 15].
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1.1.4 Verification

xd

x0

Goal
Unsafe
Optimal

Sub-optimal
Unsafe

Figure 1.2: Illustration of safe vs. unsafe and sub-optimal trajectories.

Formally, a verification procedure checks that a system has some property [16].
As previously mentioned, the two fundamental properties of interest for controlled
dynamical systems are liveness and safety. A closed-loop system follows specific
trajectories determined by the system dynamics and the current control policy.
Fig. 1.2 shows the difference between safe, unsafe, and sub-optimal trajectories.

The most obvious way to verify a system is to test it in vivo or in simulation under
different conditions, which should always be done to benchmark its performance
accurately. However, there is always the possibility that an unsafe trajectory is
missed.

Typically, the goal of a controller is to force the state x towards some desired value,
denoted xd, s.t. the error xd − x → 0 over time. In other words, the origin 0
should be asympotically stable for the closed-loop system f(t,x,u) [17]. A “good”
controller should ensure this for a large set of initial states (known as the region of
attraction) while also resulting in a well-behaved trajectory (fast, non-oscillatory).

Many criteria for checking stability have been developed. Linear stability involves
linearising the closed-loop system at 0 and checking that all eigenvalues of the
system are negative [18]. Lyapunov stability is a more general property; if a non-
negative, energy-like function V (x) of the variables can be found, and V decreases
over time, then the system should converge to the lowest energy state (x = 0) [17].

Safety w.r.t. a constraint set can be verified using barrier functions, which involves
showing that the closed-loop system never crosses some level set b(x) = 0 of the
barrier function b(x) for a given set of initial conditions. If this level set completely
separates the initial conditions and the unsafe states, then safety is guaranteed.

Optimal control methods with the form Eq. (1.5) formulate both liveness and safety
requirements via constrained optimisation. The desired properties are therefore
guaranteed by construction and hold for MPC under the additional conditions of
recursive feasibility and a terminal constraint/cost [19].
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The issue with verification via testing/simulation is that it is impossible to verify
all feasible trajectories. This problem becomes more and more difficult in higher
dimensions. In some cases, it is possible to perform set-based computations that pre-
dict all reachable states of a system, given a set of initial conditions and admissible
inputs. This approach is known as reachability analysis and is becoming more and
more practical with advances in algorithms and computational power. Reachability
analysis methods have been applied to linear systems up to a billion dimensions
[20]. A challenge is that reachable sets usually require some overapproximation.
The wrapping effect occurs when reachable sets are overapproximated over multiple
timesteps, resulting in a very conservative estimate [21]. Reachability methods for
general nonlinear systems is an ongoing research topic; see, e.g. GoTube [22].

1.1.5 Connections to Explainable AI and Model Interpretability

This thesis began with the idea that improving the interpretability of DDM could
help build more trustworthy systems. One approach to this issue is explainable
artificial intelligence (XAI), where the aim is to develop algorithms for identifying
the causes and reasons behind the output of a black-box model. However, it
quickly became apparent that many methods for explainability could only provide
insight into the decision-making of a model after the fact. While this is helpful
for learning from accidents and errors, it would be preferable to make preemptive
design choices or protocols that ensure safe operation. This is the domain of
control theory, feedback systems, and formal verification. A brief survey of model
interpretability and explainability is nonetheless given for completeness.

The right to explanation is a legal right [23], which is best understood in the context
of decision-making where it is vital to justify the reasoning behind a decision. For
example, we might want to know the factors behind a particular classification of an
image.

In traditional statistical modelling, a model’s interpretability is seen as important
because it enables researchers to make inferences based on the model itself and
derive more knowledge from the system [24]. Because of this, although there is
often a tradeoff between interpretability and predictive accuracy (because simpler
models are easier to understand), the interpretable model is usually chosen.

The increasing amount of available data has enabled the development of learning
models with startling predictive power at the cost of interpretability. In particular,
neural networks (NNs) and deep learning models have seen extraordinary success
and interest. One of the most surprising discoveries is that these models can avoid
overfitting and generalise reasonably well, despite being highly over-parameterised.
For example, the widely publicised natural language model GPT-3 by OpenAI
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contains roughly 175 billion parameters [25]. Interpreting the outputs of such
models by examining the internals is daunting. Naturally, there is a growing debate
within the field on the role of interpretability and XAI, mainly around the various
conflicting and ill-posed definitions, if model interpretability is necessary, and if it
is even ethical to compromise predictive ability in the pursuit of it.

The notion of an interpretable model can be divided into three concepts [26]:

• Simulatability: Can a human follow the internal logic of the model?

• Decomposability: Is the model separable into multiple modules?

• Learning/algorithmic transparency: Is the learning process well understood?

According to these definitions, even linear models are not necessarily more inter-
pretable than NNs, as the only trade-off is between decomposability and learning
transparency. Indeed, NNs can identify useful and complex features, while a linear
model must rely on the developer to supply existing features. They also argue that
calls for interpretability usually arise when there is a mismatch between the real
objective and the objective that a model is trained on (e.g. mean squared error),
which can happen when the interpretability requirements are subjective. From
this perspective, the danger lies in sacrificing model performance or generating
misleading post hoc explanations to satisfy ill-conceived notions of interpretability.

There is also considerable debate on what constitutes an effective explanation. There
have been many proposals, e.g. textual and visual explanations, linearisations near
a specific input, and finding similar examples (i.e. an analogy). Gilpin et al. [27]
define two essential qualities of explanations: interpretability and completeness,
where an interpretable explanation is understandable by a human, and a complete
explanation describes the operation of the model to a high level of accuracy. For
example, a list of all the mathematical operations that a model performs is complete
but not always very interpretable. Likewise, a simple cause-and-effect explanation
is interpretable but does not necessarily reflect the model’s inner workings. Herman
et al. [28] argue that defining interpretability this way biases explanations towards
human requirements of simplicity, encouraging persuasive explanations that might
be misleading. However, there will always be a trade-off between interpretability
and completeness, and the trick might be to allow the user to control this trade-off
[27]. Other recent attempts to demystify the concept of interpretability and make
the discussion more rigorous have focused on the human aspect of explanations and
model interpretation [29].

The definition of interpretability that a researcher subscribes to is naturally determ-
ined by their aims and that of their field. This thesis uses the following definition:
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the ability to verify a controlled dynamical system’s liveness and safety properties.

1.2 Objectives and Contributions
The thesis is based on the following original works.

Journal publications

Paper A Eivind Meyer, Haakon Robinson, Adil Rasheed and Omer San. ‘Tam-
ing an Autonomous Surface Vehicle for Path Following and Collision
Avoidance Using Deep Reinforcement Learning’. In: IEEE Access 8
(2020), pp. 41466–41481

Paper B Haakon Robinson, Suraj Pawar, Adil Rasheed and Omer San. ‘Phys-
ics Guided Neural Networks for Modelling of Non-Linear Dynamics’.
In: Neural Networks 154 (2022), pp. 333–345

Paper C Haakon Robinson, Erlend Lundby, Adil Rasheed and Jan Tommy
Gravdahl. ‘Deep Learning Assisted Physics-Based Modeling of Alu-
minum Extraction Process’. Conditional Acceptance: Engineering
Applications of Artificial Intelligence. 2023

Conference publications

Paper D Haakon Robinson. ‘Approximate Piecewise Affine Decomposition
of Neural Networks’. In: Proceedings of the 19th Symposium on
System Identification (SYSID). vol. 54. 2021, pp. 541–546

Paper E Aksel Vaaler, Haakon Robinson, Trym Tengesdal and Adil Rasheed.
‘Safety Filter for Small Passenger Ferry’. Accepted: 42nd Interna-
tional Conference on Ocean, Offshore & Arctic Engineering. 2023

Preprints

Paper F Haakon Robinson, Adil Rasheed and Omer San. ‘Dissecting Deep
Neural Networks’. Jan. 2020. arXiv: arXiv:1910.03879

Paper G Erlend Torje Berg Lundby, Haakon Robinsson, Adil Rasheed, Ivar
Johan Halvorsen and Jan Tommy Gravdahl. ‘Sparse Neural Networks
with Skip-Connections for Nonlinear System Identification’. Pending
Review: CDC 2023. Jan. 2023. arXiv: arXiv:2301.00582

http://dx.doi.org/10.1109/ACCESS.2020.2976586
http://dx.doi.org/10.1109/ACCESS.2020.2976586
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http://dx.doi.org/10.48550/arXiv.2301.00582
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Objectives and Contributions of the candidate

Papers A to G address the following research questions (RQs).

RQ 1: What safety issues can arise when using ML con-
trollers?

Paper A

RQ 2: How can safety be guaranteed when using ML
controllers?

Paper E

RQ 3: What benefits and issues arise when using NNs
for system identification, and what role does the
architecture of the NNs play?

Papers B, C and G

RQ 4: How can domain knowledge be used together with
NNs for system identification?

Paper B

RQ 5: What are the challenges related to the verification
of NN-based systems?

Paper F

RQ 6: How can the NN verification problem be simpli-
fied?

Paper D

Papers B, D and F were mainly written by the candidate, with coauthors assisting
with discussions and proofreading. Papers C and G are the result of collaborations
with colleagues who contributed equally to all aspects of the work. Papers A
and E are the products of master student projects the candidate co-supervised,
where the students contributed to the software implementation, computational
experiments, writing, and proofreading. In addition to the supervision, the candidate
made significant contributions to the conceptualisation, methodology, software
implementation, writing, and proofreading steps.

1.3 Outline of the thesis
Chapter 2 presents the relevant background for this thesis and is best used as a
reference. Chapter 3 investigates how machine learning methods can be used to
learn controllers from data and is based on Papers A and E. Chapter 4 describes
some ways to develop dynamic models based on machine learning techniques and
how to utilise prior knowledge to improve their generalisation and is based on
Papers B, C and G. Chapter 5 describes a family of methods that treat many ML
methods as PWA functions, opening up possibilities for safety verification and
control synthesis, and is based on Papers D and F. Chapter 6 concludes the thesis
by discussing future work.



Chapter 2

Preliminaries

This chapter develops the fundamental concepts described in the introduction to
provide the theoretical background necessary for the remainder of the thesis.

2.1 Dynamical systems
This thesis studies the application of machine learning techniques to dynamical
systems. A dynamical system can be described as a set of differential equations that
describe the evolution of a state x on some domain Ω ⊂ Rn. Placing additional
conditions on the initial and boundary values of the state gives the following
boundary-value problem:

Lx(t, z) = f(t,x, z,u) ∀(t, z) ∈ Ω

Bx(t, z) = g(t, z) ∀(t, z) ∈ ∂Ω (2.1)

In this formulation, the state x can vary in time t and along some spatial dimensions
z. The differential operator L maps x to some function of its partial derivatives
(e.g. ∂/∂t), and f is a source term that describes the dynamics of the system as a
function of (t,x,u) on the domain Ω. The differential operator B and function g
determine the initial and boundary conditions of the problem on ∂Ω.

Eq. (2.1) generalises many typical ordinary differential equations (ODEs) and
partial differential equations (PDEs), and rarely has a closed form solution. Instead,
the equation can be solved numerically using, e.g. finite differences, finite element
analysis, or by projecting the equations onto an orthogonal basis, among many other
methods. The following sections give examples of dynamical systems and how to
rewrite them in the form of Eq. (2.1). The systems in this section exhibit a wide
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range of nonlinear phenomena, including periodic and aperiodic solutions, limit
cycles, and chaos. The motivation for investigating multiple systems in this thesis
is to show that ML methods are broadly applicable to various use cases, despite
their generality.

Example 2.1.1 (Damped pendulum). The equations of motion for a damped pen-
dulum are written as follows:

θ̈ +
d

m
θ̇ = − g

L
sin θ, θ(0) = θ0 (2.2)

where g = 9.81m s−1 is the gravitational acceleration, L is the length of the
(massless) pendulum arm, m is the mass of the ball, d is the damping coefficient,
and θ0 is the initial angle of the pendulum. In this case, we have

L =

(
∂2

∂t2
+
d

m

∂

∂t

)
, f(θ) = − g

L
sin θ (2.3)

Naturally, Eq. (2.2) can also be converted to two first order ODEs.

∂

∂t

[
θ
ω

]
=

[
ω

− g
L sin θ − d

mω

]
(2.4)

Now we have:

L =
∂

∂t
, f(θ, ω) =

[
ω − g

L sin θ − d
mω

]
(2.5)

This last formulation shows that the choice of L and f are not always unique.

Example 2.1.2 (Generalised ship model). The model formulation is based on
the Robot-Inspired Model for marine craft [37], where the motion of the ship is
restricted to the xy plane:

η̇ = R(ψ)ν

Mν̇ = τ+ τwind −C(ν)ν−D(ν)ν
(2.6)

where the pose of the ship (position and heading) is denoted η = [x y ψ]⊤, and
the velocities are written as ν = [u v r]⊤. The M, C(ν), and D(ν) are the
inertia, Coriolis, and Damping matrices, respectively. The rotation matrix R(ψ) is
written as:

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (2.7)
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[38] expresses the inertia and Coriolis matrices as:

M =



m11 0 0
0 m22 m23

0 m32 m33


 , C(ν) =




0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0




c13(ν) = −m22v −m23r

c23(ν) = m11u

c31(ν) = −c13(ν)
c32(ν) = −c23(ν)

(2.8)

Note that these matrices combine rigid body and added mass terms, the latter being
a virtual mass added to the system due to the volume of fluid accelerated along with
the vessel. This trick simplifies the identification problem. The decoupled damping
matrix D(ν) can be written as:

D(ν) =



d11(ν) 0 0

0 d22(ν) d23(ν)
0 d32(ν) d33(ν)




d11(ν) = −Xu −X|u|u|u| −Xuuuu
2

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2

d23(ν) = −Yr − Y|v|r|v| − Y|r|r|r|
d32(ν) = −Nv −N|v|v|v| −N|r|v|r|
d33(ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr

2

(2.9)

where the coefficients appearing in dij(ν) are ship-specific parameters that can
be identified experimentally. The subscripts refer to the corresponding product
of terms in D(ν)ν, X,Y correspond to forces along the {x} and {y} axes of the
BODY frame respectively, and N refers to the torque about the {z} axis of the
BODY frame.

Example 2.1.3 (Hall-Héroult process). This system describes an industrial process
for extracting aluminium using electrolysis. The system is described by a set of
ODEs:

ẋ = f(x,u), (2.10)

where x ∈ R8 and u ∈ R5 represent the time-varying states and inputs of the



18 Preliminaries

system, respectively. The complete set of equations are:

ẋ1 =
k1(g1 − x7)

x1k0
− k2(x6 − g1) (2.11a)

ẋ2 = u1 − k3u2 (2.11b)

ẋ3 = u3 − k4u1 (2.11c)

ẋ4 = −
k1(g1 − x7)

x1k0
+ k2(x6 − g1) + k5u1 (2.11d)

ẋ5 = k6u2 − u4 (2.11e)

ẋ6 =
α

x2 + x3 + x4

[
u2g5 +

u22u5
2620g2

− k7(x6 − g1)2 (2.11f)

+ k8
(x6 − g1)(g1 − x7)

k0x1
− k9

x6 − x7
k10 + k11k0x1

]

ẋ7 =
β

x1

[
k9(g1 − x7)
k15k0x1

− k12(x6 − g1)(g1 − x7) (2.11g)

+
k13(g1 − x7)2

k0x1
− x7 − x8
k14 + k15k0x1

]

ẋ8 = k17k9

(
x7 − x8

k14 + k15k0 · x1
− x8 − k16
k14 + k18

)
, (2.11h)

where the intrinsic properties gi of the bath mixture are given as:

g1 = 991.2 + 112cx3 + 61c1.5x3 − 3265.5c2.2x3 (2.12a)

− 793cx2
−23cx2cx3 − 17c2x3 + 9.36cx3 + 1

g2 = exp
(
2.496− 2068.4

273 + x6
− 2.07cx2

)
(2.12b)

g3 = 0.531 + 3.06 · 10−18u31 − 2.51 · 10−12u21 (2.12c)

+ 6.96 · 10−7u1 −
14.37(cx2 − cx2,crit)− 0.431

735.3(cx2 − cx2,crit) + 1

g4 =
0.5517 + 3.8168 · 10−6u2

1 + 8.271 · 10−6u2
(2.12d)

g5 =
3.8168 · 10−6g3g4u2

g2(1− g3)
. (2.12e)

See Table 2.1 for a description of these quantities.

Lundby et al. present a more in-depth derivation of the model and the parameter
values [39]. The dynamics of the system are relatively slow. The control inputs
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u1, u3 and u4 are therefore well modelled as impulses representing discrete events
involving the addition or removal of substances. This results in step changes in
the linear states x2, x3, x5, which act as accumulator states for the mass of the
corresponding substance (see Table 2.1). The control inputs u2, u5 are piecewise
constant and always nonzero. The inputs u are determined by a simple proportional
controller π(x). Lundby et al. derived the simulation model from the mass/energy
balance of the cell [39]. Fig. 2.1 shows a schematic of the setup.

Table 2.1: Table of states, inputs, and other quantities used to model the electrolysis cell

Variable Physical meaning Units
x1 Mass side ledge kg
x2 Mass Al2O3 kg
x3 Mass AlF3 kg
x4 Mass Na3 AlF6 kg
x5 Mass metal kg
x6 Temperature bath ◦C
x7 Temperature side ledge ◦C
x8 Temperature wall ◦C
u1 Al2O3 feed kg/s
u2 Line current kA
u3 AlF3 feed kg/s
u4 Aluminium tapping kg/s
u5 Anode-cathode distance cm
cx2

Al2O3 mass ratio x2/(x2 + x3 + x4) -
cx3 AlF3 mass ratio x3/(x2 + x3 + x4) -
g1 Liquidus temperature ◦C
g2 Electrical conductivity Sm
g3 Bubble coverage -
g4 Bubble thickness cm
g5 Bubble voltage V

Example 2.1.4 (Lotka-Volterra system). Also known as the predator-prey model.
The Lotka-Volterra equations are often used to describe the interactions of a popu-
lation of predators x and a population of prey y:

ẋ = αx− βxy,
ẏ = δxy − γy, (2.13)

where ẏ and ẋ represent the instantaneous growth rates of the two populations due
to predation, overpopulation, and starvation. The solutions are periodic; as the prey
population x grows, the population of predators y can eat more and reproduce. The
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Figure 2.1: Schematic of the aluminium electrolysis cell for the Hall-Héroult process

prey population x then declines, causing y to drop as the predators starve. The
two variables thus appear as similar waves, with y lagging behind x. The values
α = 0.1, β = 0.05, δ = 0.1, γ = 1.1 were used.

The Lotka-Volterra equations, and predator-prey models in general, remain of
theoretical and practical interest today. Such systems have been successfully used
to model ecological communities [40], the spread of disease [41], and economic
growth cycles [42, 43, 44].

Example 2.1.5 (Duffing oscillator). The Duffing equation is a non-linear second-
order differential equation that describes an oscillator with complex, sometimes
chaotic behaviour. The Duffing equation was originally the result of Georg Duffing’s
systematic study of nonlinear oscillations [45]. Interest in the equation was later
revived with the advent of chaos theory. Since then, the system has come to be
regarded as one of the prototype systems in chaos theory [46], and related equations
continue to find applications today, e.g. to describe the rolling of ships [47]. The
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equation is

ẍ = γcos(ωt)− δẋ− αx− βx3 (2.14)

where x(t) is the displacement at time t and the term γcos(ωt) represents a sinus-
oidal driving force. The cubic term describes an asymmetry in a spring’s restoring
force that softens or stiffens as it stretches. The parameters used in this thesis are
δ = 1, α = 0.5, β = 1, γ = 3 and ω = 0.4. This time-varying system depends on
t, making it challenging to model using DDM as-is, as the input t is unbounded.
Instead, the system can be parameterised as follows:

ẋ = y

ẏ = γψ − δy − αx− βx3

ψ̇ = −ωθ
θ̇ = ωψ

ψ(0) = 1, θ(0) = 0

(2.15)

This formulation enables us to treat the system as if it were time-invariant. From a
ML perspective, this is equivalent to feature engineering, as the features cos(ωt)
and sin(ωt) are provided as additional inputs to the model.

Example 2.1.6 (Van der Pol oscillator). The Van der Pol equations were discovered
through the study of triode vibrations [48]. It describes a nonlinear oscillator that
approaches a limit cycle over time. Systems like this are immensely useful in a
variety of fields. For example, coupled Van der Pol systems have been used to
model biological circadian rhythms [49] and to model the asymmetries in vocal
folds[50]. Kuiate et al. [51] have even applied a variant of the system to encrypt
images on-the-fly. The Van der Pol oscillator can be written as:

ẋ = y

ẏ = µ(1− x2)y + x.
(2.16)

where x(t) is the displacement, and µ = 3 is a scalar that controls the effects of
the nonlinear damping term. In this thesis, the value µ = 3 is used. The system
approaches a stable limit cycle for all initial conditions. As x approaches the
maximum amplitude of the oscillation, ẋ increases. When reaching the maximum,
ẋ rapidly switches sign, and x begins to decrease slowly, building up speed in the
same way as it approaches the minimum. The system can exhibit chaos when forced
with an additional sinusoidal term.

Example 2.1.7 (Lorenz system). Lorenz initially developed this system to describe
atmospheric convection [52]. However, it later became one of the most well-studied
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systems in chaos theory and is often credited with the explosion of interest in the
subject [46]. The Lorenz equations have since been studied in connection with real
physical phenomena, such as unstable spiking in lasers [53] and turbulence [54].
The system has the following form:

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

(2.17)

For ρ < 1, the origin is globally stable. When ρ > 1, the system has three fixed
points: (0, 0, 0), and (±

√
(β(ρ− 1),±

√
(β(ρ− 1), ρ− 1), the latter of which are

referred to as C+ and C−. For ρ > σ(σ+β+3)
σ−β−1 the solutions of the system become

non-periodic and chaotic where almost all initial states will converge to an invariant
fractal set called the Lorenz attractor [55]. This thesis uses the values originally
used by Lorenz, namely σ = 10, ρ = 28, and β = 8/3.

Example 2.1.8 (Henon–Heiles system). Henon and Heiles originally developed
these equations to study the movement of a star around a galactic centre while
restricted to a plane [56]. The system is still used to study the escape dynamics of
orbits [57]. The following Hamiltonian describes the dynamics:

H = 1
2(ẋ

2 + ẏ2) + 1
2(x

2 + y2) + x2y − 1
3y

3 (2.18)

This Hamiltonian can be reformulated as a set of ODEs:

ẍ = −x− 2λxy

ÿ = −y − 2λ(x2 − y2)
(2.19)

This thesis uses the value λ = 1. The solution set features many periodic orbits,
chaotic orbits, and escape trajectories when the system’s energy is sufficiently high
[58]. The escape sets exhibit a rich fractal structure, adding complexity to the
system’s behaviour [59].

2.2 Neural networks
This section presents the general structure of a neural network and explains the
notation used in this thesis. A more in-depth discussion can be found in the textbook
by Goodfellow [60].

2.2.1 Layered neural networks

Fig. 2.2 shows the general structure of a simple NN N : X ⊂ Rnx 7→ Y ⊂ Rny

with L layers, where information is processed layer-by-layer in a pipeline. A
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Figure 2.2: Neural network with L fully connected layers with σ as an activation function.
The kth fully connected layer takes in the output of the previous layer x[k−1] and produces
the pre-activation z[k] = W[k]x[k−1] + b[k], where x[0] = x. This value is then passed
through the nonlinear activation function σ which operates element-wise on z[k], yielding
x[k] = σ(z[k]).

network where information only flows in one direction is known as a feedforward
network. The output of the network can be written as:

N (x) =
(
f [L] ◦ · · · ◦ f [1]

)
(x)

f [k](x) = σ[k](z[k])
(2.20)

where σ[k], W[k] and b[k] are the nonlinear activation function, connection weight
matrix, and bias vector for the kth layer of N respectively. As is common in the
literature [60], additional (purely convenient) notation is introduced to denote the
values at each “stage” in the pipeline:

z[k] = W[k]x[k−1] + b[k]

x[k] = f [k] (x) = σ[k](z[k])
(2.21)

The superscript ·[k] with square brackets is used to associate some vector or matrix
value with the kth layer of a network. In Eq. (2.21) layer “0” represents the input,
such that x[0] = x. Note that the first k layers of the network also form a valid
neural network. The subnetwork Nk is defined as:

Nk(x) =
(
f [k] ◦ · · · ◦ f [1]

)
(x) (2.22)

From this, it can be seen that a simple feedforward NN can be understood as the
application of alternating affine and nonlinear transformations of an initial input x
and choosing a linear activation function σ would cause the network to simplify to
a linear transformation.

The size of the matrix W[k] can become intractable for large x[k−1], which is
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often the case when processing images. This issue can be mitigated by imposing
some structure on the weights. For example, a convolutional layer assumes that
adjacent input regions will be processed similarly. A memory-efficient convolution
operation can then be used instead of multiplication with the large matrix W[k].
These networks are known as convolutional neural networkss (CNNs) and have
proven to be instrumental image processing tasks [61].

2.2.2 Neural networks as computational graphs

Sometimes it is also necessary to talk about individual neurons in the network.
Using the layer notation for feedforward networks, the connection weights of the
ith neuron in the kth layer ofN correspond to the ith row of W[k], which is denoted
as w[k]

i . Likewise, the bias of the same neuron is denoted b[k]i , and its output is x[k]i .

An issue with this notation is that organising a NN into layers can be restrictive.
Modern network architectures introduce tricks that do not fit the notation, e.g. skip
connections that “jump” over some layers [62], or models that combine the outputs
of multiple separate subnetworks.

In these cases, it is simpler to represent the NN as a graph with weighted edges and
designate a subset of the nodes as inputs or outputs. Every neuron is then given a
unique index n, and we can instead refer to its parameters using the parenthesised
superscript ·(n). Using this notation we refer to the weights w(n), bias value b(n),
pre-activation z(n), and output x(n). The initial values of the input nodes are then
set to x, and the following update equation is run until the value of all output nodes
is determined:

x(n) = σ
(
z(n)

)
= σ


 ∑

j∈P(n)

(
w

(n)
j x(j) + b(n)

)

 (2.23)

where P(n) is the set of neurons that are connected to neuron n, and w(n)
j is the

weight of the edge from the jth neuron to the nth. In an attempt to reduce possible
confusion between, e.g. w

[k]
i and w(n), the indices k and n are used to refer to

layers and neurons, respectively.

Most DL software frameworks, e.g. PyTorch [63] or Tensorflow [64], also take this
approach and represent NNs as computational graphs where each node represents a
differentiable function that operates on tensors of arbitrary order. For example, a
video can be represented as a 4th-order tensor, where the dimensions correspond
to the frame number, two indices for the pixel, and the colour channel. This
representation yields compact and concise code to process large amounts of data
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and efficiently compile the model.

2.2.3 Activation functions

There are many possible choices for the activation function σ. The activation
function σ is chosen to be any nonlinear function that maps R to some interval and
is applied element-wise to the layer input x[k]. Historically σ has been selected
as the sigmoid function (1 + exp(−x))−1, as this resembles the action potential
exhibited in biological neurons. However, the sigmoid function is associated with
the vanishing gradient problem in deep networks, making them challenging to train
[65, 66]. A popular activation function that mitigates this issue is the Rectified
Linear Unit rectified linear unit (ReLU), a PWA function:

σ(z) =

{
z z ≥ 0

0 z < 0
(2.24)

The surprising effectiveness and simplicity of ReLU have made it one of the most
popular activation functions today. However, it can also result in dead neurons,
which output zero for all inputs in the dataset. Therefore, the gradient of a dead
neuron is always zero, and gradient descent algorithms will never adjust the corres-
ponding parameters [60]. Similar activation functions such as Leaky ReLU [67] or
Swish [68] address this by ensuring there is a slight slope for z < 0.

2.3 Reinforcement Learning
This section briefly presents some fundamental concepts in RL. The standard
reference for the topic is the book by Sutton and Barto [69]. The aim of RL is to
train an autonomous agent by feeding it rewards (represented as a scalar value)
in response to reaching certain states x by taking some action u. There are deep
connections between RL and optimal control, although the aim of an RL agent
differs in that it seeks to maximise an unbounded reward. In contrast, optimal
control methods typically minimise a non-negative cost function.

The problem is traditionally separated into the agent, which applies actions u to the
environment, which in turn returns a measurement y (correlated with the state x)
and an associated reward r. Fig. 2.3 illustrates this process.

2.3.1 Fundamentals of RL

At each discrete time step of the learning process, an agent chooses an action u
based on its current state s within its environment. The agent does not usually know
the true state of the environment. In this case, we would call s an observation. How
the agent chose the specific action (i.e. the agent’s strategy) is commonly referred
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Agent Environment

Action ut

Observation yt

Reward rt

Figure 2.3: Structure of reinforcement learning.

to as the policy and denoted by π. Thus, the policy π can be considered a mapping
π : S → A from the state space to the action space. In order to learn, i.e. improve
the policy π, the agent then receives a numerical reward r from the environment.
The fundamental goal of the agent is to maximise its long-term reward (also known
as the return), and updates to the agent’s policy are intended to improve the agent’s
ability to do this. These concepts (i.e. agents, environments, observations/states,
policies, actions and rewards) are fundamental to the study of RL.

Remark 2.3.1. The reward may not solely depend on the latest action made. An
immediately attractive action may have downsides in the long term. Similarly,
an unexciting action in the short term may be optimal in the long term. Delayed
rewards are standard in RL environments.

Remark 2.3.2. The policy need not be deterministic. In rock-paper-scissors, the
optimal policy is stochastic.

Remark 2.3.3. Classic RL algorithms deal with discrete action spaces. However,
recent advances in the field have led to state-of-the-art algorithms that are naturally
compatible with continuous action spaces without any undesirable discretisation
[70].

As the environment may be stochastic, it is common to think of the process as a
Markov decision process (MDP) with state space S , action spaceA, reward function
r(st, at), transition dynamics p(st+1|st, at) and an initial state distribution p(s0)
[71]. The combined MDP and agent formulation allows us to sample trajectories
from the process by first sampling an initial state from p(s0) and then repeatedly
sampling the agent’s action at from its policy π(st) and the next state st+1 from
p(st+1|st, at). The agent receives a reward after each iteration, such that its total
reward is:
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Rt ≜
∞∑

i=t

r(si, ai) (2.25)

Remark 2.3.4. It is common to introduce a discount factor γ ∈ (0, 1] to encode
a preference for short-term rewards and to ensure that the infinite sum of rewards
will not diverge This factor is analogous to discount functions used in economics.
The discounted sum of rewards is then given by

∑∞
t=0 γ

tr(st, at). In the following
derivations, the discount factor is assumed to be incorporated into a time-dependent
reward function and is therefore neglected.

In stochastic environments, this is replaced with an expectation over many trials.
When the MDP is too large to admit a closed-form solution or to be tabulated, the
expected return is often approximated using the state-value function V π(s) and the
action-value function Qπ(s, a). V π(s) represents the expected return from time t
onwards given an initial state s, while Qπ(s, a) represents the expected return from
time t onwards conditioned on the initial action at.

V π(st) ≜ Esi>=t,ai>=t∼π [Rt|st] (2.26)

Qπ(st, at) ≜ Esi>=t,ai>=t∼π [Rt|st, at] (2.27)

where the expectations are taken over all states si after time t, and the corresponding
actions ai sampled according to the policy π, such that ai ∼ π.

2.3.2 Policy gradients

Value-based methods attempt to estimate the state-value function and then infer the
optimal policy. Policy-based methods instead try to optimise the policy directly. For
high-dimensional or continuous action spaces, policy-based methods are considered
the more efficient approach [72].

From now on, we consider the policy π(θ) to be stochastic (i.e. π(θ) : S ×A →
[0, 1]) and assume that it is defined by some differentiable function parametrised
by θ, enabling us to optimise it through policy-gradient methods. In general, these
methods are concerned with using gradient ascent approximations to gradually ad-
just the policy function parameterisation vector in order to optimise the performance
objective:

J(θ) ≜ Esi,ai∼π(θ) [R0] (2.28)

More formally, policy-gradient methods approach gradient ascent by updating
the parameter vector θ according to the approximation θt+1 ← αθt + ∇̂θJ(θ),
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where ∇̂θJ(θ) is a stochastic estimate of ∇θJ(θ) satisfying E
[
∇̂θJ(θ)

]
=

∇θJ(θ). Intuitively, estimating the policy gradient might be considered intractable,
as the state transition dynamics, which affect the expected reward and hence our
performance objective, are influenced by the agent’s policy in an unknown fashion.
However, the policy gradient theorem [73] establishes that the policy gradient
∇θJ(θ) satisfies:

∇θJ(θ) ∝
∑

s

µ(s)
∑

a

∇θπ(a|s)Qπ(s, a)

µ(s) = lim
t→∞

Pr{St = s|A0:t−1 ∼ π}
(2.29)

where µ is the steady state distribution under π and St and A0:t−1 are random
variables representing the state at time-step t, and the actions up to that point,
respectively. Interestingly, the expression for the policy gradient does not contain
the derivative ∇θµ(s), implying that approximating the gradient by sampling is
feasible because calculating the effect of updating the policy on the steady-state
distribution is not needed. By replacing the probability-weighted sum over all
possible states in Eq. (2.29) by an expectation of the random variable St under the
current policy, we have that

∇θJ(θ) ∝ Eπ

[∑

a

∇θπ(a|St)Qπ(St, a)
]

(2.30)

Similarly, we can replace the sum over all possible actions with an expectation of
the random variable At after multiplying and dividing by the policy π(a|St):

∇θJ(θ) ∝ Eπ

[∑

a

π(a|St)
π(a|St)

∇θπ(a|St)Qπ(St, a)
]

∇θJ(θ) ∝ Eπ
[∇θπ(At|St)

π(At|St)
Qπ(St, At)

]
(2.31)

Furthermore, it follows from the identity∇lnx = ∇x
x that:

∇θJ(θ) ∝ Eπ[∇θlnπ(At|St)Qπ(St, At)] (2.32)

Also, by considering that:
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∑

a

b(s)∇π(a|s) = b(s)∇
∑

a

π(a|s)

= b(s)∇1 = 0

(2.33)

It is straightforward to see that one can replace the state-action value function
Qπ(s, a) in Eq. (2.29) by Qπ(s, a) − b(s), where the baseline function b(s) can
be an arbitrary function not depending on the action a, without introducing a bias
in the estimate. However, it can be shown that the estimator’s variance can be
significantly reduced by introducing such a baseline. It is possible to calculate the
optimal (i.e. variance-minimizing) baseline [74], but commonly the state value
function V π is used, yielding an almost optimal variance [75]. The result is known
as the advantage function:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.34)

Intuitively, Eq. (2.34) represents the expected improvement obtained by an action
compared to the default behaviour. Furthermore, by following the same steps as
outlined above, we end up with the expression:

∇θJ(θ) ∝ Eπ[∇θlog π(At|St)Aπ(s, a)] (2.35)

Thus, an unbiased empirical estimate based on N episodic trajectories (i.e. inde-
pendent rollouts of the policy in the environment) of the policy gradient is:

∇θĴ(θ) =
1

N

N∑

n=1

∞∑

t=0

Ânt∇θ log π(ant |snt ) (2.36)

2.3.3 Advantage function estimation

As both Qπ(s, a) and V π(s) are unknown in general, it follows that Aπ(s, a) is
also unknown. Thus, it is commonly replaced by an advantage estimator Âπ(s, a).
Various estimation methods have been developed for this purpose. Generalised
Advantage Estimation (GAE), as originally outlined by Schulman et al. [75], is
one of the most widely used methods. GAE uses discounted temporal difference
(TD) residuals of the state value function as the fundamental building blocks. For
this, we reintroduce the discount parameter γ. However, even if γ corresponds
to the discount factor discussed in the context of MDPs, we now treat it as a
variance-reducing parameter in an undiscounted MDP. TD residuals [69], which are
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in widespread use within RL, and give a basic estimate of the advantage function,
are defined by:

δVt = rt + γV̂ (st+1)− V̂ (st) (2.37)

where V̂ is an approximate value function. The estimate is unbiased whenever
V̂ = V π, i.e. when the approximation equals the real value function. However, this
is unlikely to be the case in practice, so a common approach is to look further ahead
than just one step to reduce bias. More formally, by defining Â(k)

t as the discounted
sum of the k next TD residuals, we have that

Â
(1)
t = δV̂t = −V̂ (st) + rt + γV̂ (st+1)

Â
(2)
t = δV̂t + γδV̂t+1 = −V̂ (st) + rt + γrt+1 + γ2V̂ (st+2)

...

Â
(k)
t =

k−1∑

l=0

γlδV̂t+l

(2.38)

The defining feature of GAE is that, instead of choosing some k-step estimator Â(k)
t ,

we use an exponentially weighted average of the k first estimators, letting k →∞.
Thus, we have that:

Â
GAE(γ,λ)
t ≜ (1− λ)

(
Â1
t + λÂ2

t + λ2Â3
t + . . .

)
(2.39)

which can be shown by insertion of the definition of Â(k)
t to equal:

Â
GAE(γ,λ)
t =

∞∑

l=0

(γλ)lδV̂t+l (2.40)

Here, λ ∈ [0, 1] serves as a trade-off parameter controlling the compromise between
bias and variance in the advantage estimate; using a small value lowers the variance
as the immediate TD residuals make up most of the estimate, whereas using a large
value lowers the bias induced from inaccuracies in the value function approximation.

Due to the recent advances made within DL, a common approach is to use a
Deep neural network (DNN) for estimating the value function, which is trained
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on discounted empirical returns. More specifically, the DNN state value estimator
V̂θ(st), which is parametrised by θV F , is trained by minimizing the loss function:

LV Ft (θ) = Êt

[
V̂θ(st)−

∞∑

i=t

γi−tr(si, ai)

]
(2.41)

where the expectation Êt[. . . ] represents the empirical average obtained from a
finite batch of samples. The reader is referred to the textbooks by Goodfellow et al.
for a comprehensive introduction to DL [60], and Bishop et al. [76], which covers
supervised machine learning, of which DL is a subfield.

2.3.4 A surrogate objective

Optimising the performance objective using the empirical policy gradient approx-
imation from Eq. (2.36) is feasible. This approach yields the vanilla policy gradient
algorithm proposed by Williams et al. [77]. However, this inefficient approach
requires many samples to accurately estimate the policy gradient direction [78].
Accordingly, unless the step size is trivially small (yielding unacceptably slow
convergence), it is not guaranteed that the policy update will improve the perform-
ance objective, which leads to the algorithm having poor stability and robustness
characteristics [79].

Instead, state-of-the-art policy gradient methods such as Trust Region Policy Op-
timisation (TRPO) [80] and Proximal Policy Optimisation [81] optimise a surrogate
objective function which provides theoretical guarantees for policy improvement
even under nontrivial step sizes. Fundamentally, these methods rely on the relative
policy performance identity proven by Kakade et al. [78], which states that the im-
provement in the performance objective J(θ) achieved by a policy update θ→ θ′

is equal to the expected advantage (see Eq. (2.34)) of the actions sampled from the
new policy π′θ′ calculated w.r.t. the old policy πθ. More formally, this translates to:

J(θ′)− J(θ) = Eπ′
θ

[∑

t

γtAπθ(st, at)

]
(2.42)

This expectation is defined under the next (i.e. unknown) policy πθ′ , which we
cannot use to sample trajectories. However, Eq. (2.42) can be rewritten and finally
approximated by:
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J(θ′)− J(θ)
=

∑
t Est∼πθ′

[
Eat∼πθ′

[
γtAπθ(st, at)

]]

=
∑

t Est∼πθ′

[
Eat∼πθ

[
πθ′ (at|st)
πθ(at|st) γ

tAπθ(st, at)
]]

≈∑
t Est∼πθ

[
Eat∼πθ

[
πθ′ (at|st)
πθ(at|st) γ

tAπθ(st, at)
]]

(2.43)

The third and last steps can be seen as importance sampling and neglecting state
distribution mismatch respectively. Loosely stated, the last approximation assumes
that the change in the state distribution induced by a small update to the policy
parameters is negligible. This assumption is justified by theoretical guarantees
imposing an upper bound to the distribution chance provided by Kakade et al.
[78]. This suggests that one can reliably optimise the conservative policy iteration
surrogate objective [78]:

JCPI(θ′) = Êt
[
πθ′(at|st)
πθ(at|st)

Âπθt

]
(2.44)

However, this approximation is only valid in a local neighbourhood, requiring
a carefully chosen step size to avoid instability. In TRPO, this is achieved by
maximising JCPI(θ′) under a hard constraint on the Kullback-Liebler divergence
between the old and the new policy. However, as this is computationally expensive,
the proximal policy optimisation (PPO) algorithm refines this by integrating the
constraint into the objective function by redefining the objective function to:

JCLIP (θ′) = Êt
[
min

(
rt(θ)Â

πθ
t , clipϵ (rt(θ))Â

πθ
t

)]

clipϵ(x) = clip (x, 1− ϵ, 1 + ϵ)
(2.45)

where rt(θ) is a shorthand notation for the probability ratio πθ′ (at|st)
πθ(at|st) . The trunca-

tion of the probability ratio is motivated by a need to restrict rt(θ) from moving
outside of the interval [1− ϵ, 1 + ϵ]. Also, the expectation is taken over the min-
imum of the clipped and unclipped objective, implying that the overall objective
function is a lower bound of the original objective function JCPI(θ′). At each
training iteration, the advantage estimates are computed over batches of trajectories
collected from NA concurrent actors, each executing the current policy πθ for T
timesteps. Afterwards, a stochastic gradient descent (SGD) update using the Adam
optimiser [82] of minibatch size NMB is performed for NE epochs.

The PPO algorithm strikes a balance between ease of implementation and data
efficiency, and is likely to perform well in a wide range of continuous environ-
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Algorithm 2.1 Proximal Policy Optimisation
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . N do
For T time-steps, execute policy πθ.
Compute advantage estimates Â1, . . . ÂT

end for
for epoch = 1, 2, . . . NE do

Obtain mini batch of NMB samples from the NAT simulated time-steps.
Perform SGD update from minibatch (XMB,YMB).
θ← θ′

end for
end for

ments without extensive hyperparameter tuning [81]. Sensitivity to hyperparameter
choices is a frequently encountered problem for policy gradient methods [83, 84],
and given the computation time required to train and test agents in a collision
avoidance environment, this could be a detrimental bottleneck in our research.

2.3.5 Tools and libraries

The Python library OpenAI Gym [85] was created to standardise the benchmarks
used in RL research. It provides an easy-to-use framework for creating RL envir-
onments in which custom RL agents can be deployed and trained with minimal
overhead.

stable-baselines3 [86], another Python package, provides a large set of
state-of-the-art parallelizable RL algorithms compatible with the OpenAI gym
framework, including PPO. The algorithms are based on the original versions
found in OpenAI Baselines [87], but stable-baselines provides several
improvements, including algorithm standardisation and exhaustive documentation.
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Chapter 3

Machine learning for control

Machine learning for control (also known as intelligent control) is useful when
we lack a model for the target system or if the existing models are unsuitable for
control design purposes.

In marine systems, autonomy offers surface vehicles the opportunity to improve
transportation efficiency while reducing greenhouse emissions. However, for safe
and reliable autonomous surface vehicles (ASVs), effective path planning is a pre-
requisite which should cater to the two critical tasks of path following and collision
avoidance (COLAV).

Learning-based control approaches are gaining popularity today, particularly for
highly complex, nonlinear, and stochastic systems where standard control design
methods do not always perform satisfactorily [88, 89, 90]. Learning-based methods
can be used to discover new actions and patterns and adapt to the environment to
yield better performance. RL is an area of ML of particular interest for control ap-
plications, such as the guidance of surface vessels. Fundamentally, RL is concerned
with estimating the optimal behaviour for an agent in an unknown, potentially partly
unobservable environment, relying on trial-and-error-like approaches to iteratively
approximate the behaviour policy that maximises the agent’s expected long-time
reward in the environment. The field of RL has seen rapid development over the
last few years, leading to many impressive achievements, such as playing chess and
various other games at a level that is not only exceedingly superhuman but also
overshadows previous artificial intelligence (AI) approaches by a wide margin [91,
92, 93].

Despite the vast amount of literature on the topic and the numerous different ap-
proaches, of which only a small subset has been mentioned here, it appears that,

35
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when applied to vehicles with nonholonomic and real-time constraints such as
autonomous surface vehicles, no existing method is without drawbacks, whether
it is unrealistic assumptions about the vessel dynamics (if not an outright neglect
thereof), problems with scalability in terms of environment complexity (includ-
ing the degrees of freedom, the number of obstacles as well as their shapes and
their velocities), excessive computation time requirements in general, unrealistic
assumptions of availability of measurements, the disregard for desirable output path
properties such as continuity, smoothness, feasibility or even safety, an incompatib-
ility with external environmental forces, a lack of determinism (which may or may
not be deemed problematic), stability issues due to singularities or local minima
leading to sub-optimal guidance strategies [94, 95, 96].

The remainder of this chapter briefly overviews issues within marine vessels’
autonomy. Section 3.2 provides a short theoretical overview of the modelling
aspects of ships, and Section 3.1 reviews the literature on path planning and collision
avoidance. Section 3.3 shows how RL can be used to train an agent to perform
collision avoidance using an interactive simulation. A challenge with systems like
this is that it is difficult to guarantee performance. Our RL ship performs well and
can tune its behaviour online. However, there are still situations during the training
and test phase where it fails to avoid collisions. Safe RL is a field of research
that attempts to address this. One approach is to add an auxiliary failsafe that
monitors whether the agent is about to violate a constraint and “corrects” the input
to the system in a way guaranteed to be safe (although it might be conservative).
Section 3.4 presents a predictive safety filter for an autonomous ship. In this
chapter, we will explore an application of RL to the control of an autonomous ship.
Section 3.3 then shows how this model is used to create a simulation environment
with simulated sensors and how a RL agent can be trained by interacting with
such a model. Additionally, the agent is given insight into the reward function
during training, allowing us to tune its behaviour during operation. The results show
that the agent performs well on average but suffers occasional collisions. As an
additional failsafe, in Section 3.4, we design a predictive safety filter that guarantees
safety during operation.

3.1 Literature Review: Maritime Collision Avoidance
A rich set of studies on automatic maritime collision avoidance exist today, and
recent review articles can be found that summarise the majority of state-of-the-art
methods [97, 98]. A common way of structuring the COLAV system is using a
hierarchy of planners [99, 94, 100, 101]. Eriksen et al. [101] divide the COLAV
problem into three levels separated by their timescale: (a) High-level planning, (b)
Mid-level planning, (c) Low-level planning. High-level planners are also known
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as deliberate methods, and mid/low-level planners are sometimes called reactive
methods [102]. A high-level planner generates a trajectory or path to the final
destination, considering static obstacle data from, e.g. electronic navigation charts.
This problem corresponds to finding a series of waypoints ηi to follow in marine
navigation. Because of the larger timescales (minutes/hours/days), the dynamics of
the ship are often simplified, reducing this to a path-finding problem. Grid-based
or lattice-based methods typically discretise the map geometry [103] or partition
it into, e.g. Voronoi cells [104, 105, 106]. These can then be treated as graphs,
and algorithms such as A* search [107] can be used to find shortest/cheapest paths
[108]. Randomised sampling methods that explore the space using random steps
have also been successfully applied [109, 110].

Mid-level COLAV planning algorithms try to avoid static and dynamic obstacles
near the ownship. Dynamic obstacles are typically detected and tracked online
using the onboard exteroceptive sensors and Automatic Identification System (AIS)
data. At this level and timescale (seconds/minutes), the planner should consider the
vessel’s dynamics to suggest feasible manoeuvres for the ship to execute. Because
there may be multiple obstacles, the suggested manoeuvre should guarantee safety
at all time steps considered in its horizon, which is usually formulated as an optimal
control problem [111, 112, 113, 114, 115, 116]. The computational requirements
of such an approach can quickly grow with the complexity of the problem repres-
entation. These methods often have to make assumptions or simplifications to keep
the problem tractable. Another approach is to approximate the problem and attempt
to find suboptimal solutions that are “good enough”. Scenario-based MPC relies on
sampling to efficiently generate solution candidates and selects the best-performing
candidate. Tengesdal et al. [117] develop a method that considers multiple possible
own-ship and target-ship manoeuvres at a series of decision points in time.

At the lowest level (seconds or milliseconds), the planner must be able to react
quickly to unexpected situations. Low-level planners are also referred to as reactive
COLAV due to the short time scales involved. Such situations can arise when a
nearby vessel makes a sudden and dangerous manoeuvre or loses control of the
vessel. Higher-level planners can also fall back to reactive COLAV if there is high
uncertainty regarding the positions of nearby ships due to sensor malfunctions.
Classic examples include Potential Field (PF) methods [118, 119, 120, 121], dy-
namic window methods [122, 123, 124] and Velocity Obstacle methods [125, 126,
127].

No method is without drawbacks, and many existing works make unrealistic as-
sumptions about the environment, the ship dynamics, availability of measurements
or suffer from numerical issues [94, 95, 96]. Lower-level planners rely only on
data collected from the immediate environment and are susceptible to local minima
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that can lead a vehicle to a dead end [94]. Higher-level planners are generally
more likely to suggest a course that leads a ship to the intended goal, but they
require more computation than lower-level methods. Unforeseen obstacles or in-
complete/uncertain mapping data can necessitate frequent replanning, However,
the problem of optimal path planning amid multiple obstacles is provably NP-hard
[128], making it difficult to perform real-time replanning when computational
resources are limited [129].

A natural way to mitigate these weaknesses is to combine multiple methods in a
hierarchy. For example, a typical configuration is to switch a low-level planner
(e.g. the potential field method) whenever the high-level planner fails (e.g. the
surroundings do not match the charts). Such hybrid architectures are intended to
combine the strengths of reactive and deliberate approaches and have gained traction
in recent years [130, 101]. The approach presented in Section 3.4 is somewhat
related to this; the existence of some a priori known nominal path is assumed, but
strictly following the path will invariantly lead to collisions with obstacles. Unlike
other approaches, there is, however, no switching mechanism that activates some
reactive fallback algorithm in dangerous situations.

3.2 Modelling and control of ships
The models used in this thesis are based on the Robot-Inspired Model for marine
craft presented by Fossen [37]. Readers interested in a more detailed and rigorous
explanation of the principles behind marine craft modelling are referred to this
reference.

3.2.1 Reference frames

We will primarily use a geographic reference frame to describe the position of
ships, which can be seen as a tangent plane to the Earth at some reference point.
The advantage of this is that the equations of motion are simpler to express in
a Cartesian coordinate system. The North-East-Down (NED) reference frame
is denoted {n} = (xn, yn, zn), where the axes point North, East and Down (i.e.
towards the centre of Earth) respectively. The velocity of the ship is expressed w.r.t.
the BODY frame {b} = (xb, yb, zb), which has its origin at some point ob along the
centre line of the ship, and the axes point towards the front of the ship, starboard,
and downwards respectively.

3.2.2 State variables

The state of a marine vessel is represented by 12 generalised coordinates (6 for
pose, 6 for velocities), as per Society of Naval Architects and Marine Engineers
(SNAME) conventions [131]. The pose and generalised velocity of the ship are
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denoted as η and ν, respectively, and have the following elements:

η ≜ [xn yn zn ϕ θ ψ]⊤

ν ≜ [u v w p q r]⊤
(3.1)

where the [xn yn zn] are the position w.r.t. {n}, and the Euler angles [ϕ θ ψ]
are the roll, pitch, and yaw of the ship. The linear velocities [u v w] are called
surge, sway, and heave respectively, while the angular velocities [p q r] are called
the roll-rate, pitch-rate, and yaw-rate.

3.2.3 Dynamics

Assumption 3.2.1 (Calm sea). There is no ocean current, no wind and no waves
and thus no external disturbances to the vessel.

Twelve coupled, first-order, nonlinear ordinary differential equations describe the
vessel dynamics. In the absence of ocean currents, waves and wind, these can be
expressed in a compact matrix-vector form as:

η̇ = JΘ(η)ν

Bf = MRBν̇+CRB(ν)ν+ g(η) (rigid-body, hydrostatic)

+MAν̇+CA(ν)ν+D(ν)ν (hydrodynamic)

(3.2)

Here, JΘ(η) is the transformation matrix from the body frame {b} to the NED
reference frame {n}. MRB and MA are the mass matrices representing rigid-
body mass and added mass, respectively. Analogously, CRB(ν) and CA(ν) are
matrices incorporating centripetal and Coriolis effects. Finally, D(ν) is the damping
matrix, g(η) contains the restoring forces and moments resulting from gravity and
buoyancy, B is the actuator configuration matrix and f is the vector of control
inputs.

3.2.4 3-DOF manoeuvring model

This section outlines the ASV assumptions and the resulting 3-degrees of freedom
(DOF) model.

Assumption 3.2.2 (State space restriction). The vessel is always located on the
surface, and thus there is no heave motion. Also, there is no pitching or rolling
motion.

This assumption implies that the state variables zn, ϕ, θ, w, p, q are all zero. Thus,
we are left with the three generalised coordinates xn, yn and ψ and the body-frame
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velocities u, v and r. In this case, the transformation matrix JΘ(η) is reduced to a
basic rotation matrix Rz,ψ for a rotation of ψ around the zn-axis as defined by

Rz,ψ =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1




Furthermore, since restoring forces are unimportant for 3- DOF manoeuvring [132],
we set g(η) = 0. Also, by combining the corresponding rigid body and added mass
terms associated such that M = MRB +MB and C(ν) = CRB(ν) +CA(ν),
we obtain the simpler 3- DOF state-space model:

η̇ = Rz,ψ(η)ν

Mν̇+C(ν)ν+D(ν)ν = Bf
(3.3)

where η ≜ [xn, yn, ψ]⊤ and ν ≜ [u, v, r]⊤ and each matrix is 3x3.

Assumption 3.2.3 (Vessel symmetry). The vessel is port-starboard symmetric.

Assumption 3.2.4 (Origin at the centerline). The body-fixed reference frame {b}
is centred somewhere at the longitudinal centerline passing through the vessel’s
centre of gravity.

Assumption 3.2.5 (Sway-underactuation). There is no force input in sway, so the
only control inputs are the surge thrust Tu and the yaw moment Tr.

Assumptions 3.2.3 and 3.2.4, commonly found in manoeuvring theory applications,
justify a sparser structure of the system matrices, where some non-diagonal elements
are set to zero. Also, from Assumption 3.2.5 we have that f ≜ [Tu, Tr]

⊤. The
matrices and their numerical values are obtained from [132], where the model
parameters were estimated experimentally for CyberShip II, a 1:70 scale replica of
a supply ship, in a marine control laboratory.

3.3 Deep reinforcement learning for path following and collision
avoidance

This section explores how recent advances in RL can be applied to the guidance and
control of ASVs. Specifically, the goal is to train a RL agent to follow a predefined
path while avoiding any obstacles that it may encounter. This goal is accomplished
by training the agent in a simulated environment of randomly generated waypoints
and obstacles. Two types of measurements are made available to the agent: (i) A
set of virtual distance sensors for detecting nearby obstacles and (ii) Some values
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related to the relative position and orientation of the path. Multiple RL methods are
tested using the implementations from the stable-baselines project [86].

For simplicity, the scope is limited to static, circular obstacles, although the work can
easily be extended beyond these simplifications. The resulting interplay between the
environment (including the dynamics of the vessel itself) and the agent is illustrated
in Fig. 3.1. Although the agent is trained in simulation, thereby requiring a model
of the vessel in question, RL methods may also be applied to real-world systems
directly. Paper E and Section 3.4 explore how this might be done safely.

As these methods develop, direct application of RL will become more and more
feasible, enabling intelligent and self-improving controllers for autonomous systems.
Refer to Section 2.3 for an overview of basic RL concepts.

Sensor Readings

Path / Obstacles

Vessel

Control Policy

Value Function

Environment Agent

Observation reward

Control Inputs

Figure 3.1: Block diagram illustrating the interaction between the environment and the RL
agent.

3.3.1 Environment setup

The environment is an ocean surface filled with obstacles and a known path for
the agent to follow. The vessel dynamics (see Section 3.2.3) are considered part
of the environment, as it is outside the agent’s control. It is also critical that the
training environments are diverse so that the trained agent can generalise to unseen
obstacle landscapes, i.e. real-world deployments. A lack of diversity can lead to the
agents overfitting the training conditions. For instance, if all obstacles are located
very close to the path during training, the agent may learn to turn whenever it sees
an obstacle, even when it is not in the ship’s way. Also, if the obstacle density is
too low, it is unlikely that the agent would perform well in a high-obstacle-density
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environment.

The procedure outlined in Algorithm 3.1 randomly generates new, independent
training environments that meet the diversity requirements. Some randomly sampled
environments generated from this algorithm can be seen in Fig. 3.2. Achieving
good performance within these environments (i.e. adhering to the planned path
while avoiding collisions) necessitates a nontrivial guidance algorithm.

Algorithm 3.1 Generate path with obstacles
Require:

Number of obstacles No ∈ N0

Number of path waypoints Nw ∈ N0

Path length Lp ∈ N0

Mean obstacle radius µr ∈ R+

Obstacle displacement distance standard deviation σd ∈ R+

procedure GENERATEPATHCOLAVENVIRONMENT(No, Nw, Lp, µr, σd)
Draw θstart from Uniform(0, 2π)
Path origin pstart ← 0.5Lp [cos (θstart), sin (θstart)]

⊤

Goal position pend ← −pstart
Generate Nw random waypoints between pstart and pend.
Create smooth arc length parameterised path pp(ω̄) = [xp(ω̄), yp(ω̄)]

⊤ using
1D Piecewise Cubic Hermite Interpolator (PCHIP) provided by Python library
SciPy [133].

repeat
Draw arclength ω̄obst from Uniform(0.1Lp, 0.9Lp).
Draw obstacle displacement distance dobst from N (0, σ2d)
Path angle γobst ← atan2 (pp

′(ω̄obst)2,pp′(ω̄obst)1)
Obstacle position pobst ← pp(ω̄obst) +

dobst[cos (γobst − π
2 ), sin (γobst − π

2 )]
⊤

Draw obstacle radius robst from Poisson(µr).
Add obstacle (pobst, robst) to environment

until N0 obstacles are created
end procedure

In the current work the values of No = 20, Nw = U(2, 5), Lp = 400, µr = 30,
σd = 150 (where U is the uniform distribition) were used.

Agent

Although the agent, within the context of RL, can be considered to be the vessel
itself, it is more accurate to look at it as the guidance mechanism controlling the
vessel, as its operation is limited to outputting the control signals that steer the
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Figure 3.2: Four random samples of the stochastically generated path following scenario.
Note that the scenario difficulty is highly varying.

vessel’s actuators. As discussed in Section 3.2.4, the available control signals are
the surge thrust Tu, driving the vessel forward, and the yaw moment Tr, inducing
a change in the vessel’s heading. The RL agent’s action, which it will output at
each simulated time-step, is then defined as the vector a = [Tu, Tr]

⊤. Specifically,
the action network, which we train by applying the PPO algorithm described in
Section 2.3.4, will output the control signals following a forward pass of the current
observation vector through the nodes of the neural network. Also, the value network
is trained simultaneously, facilitating estimation of the state value function V (s),
which is used for GAE as described in Section 2.3.3.

Deciding what constitutes a state s is of utmost importance; the information
provided to the agent must be of sufficient fidelity for it to make rational guid-
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ance decisions, especially as the agent will be purely reactive, i.e. not be able to let
previous observations influence the current action. At the same time, by including
too many features in the state definition, we risk over-parameterisation within the
NNs, which can lead to poor performance and excessive training time requirements
[60]. Thus, a compromise must be reached, ensuring a sufficiently low-dimensional
observation vector while providing a sufficiently rich observation of the current
environment. Having separate observation features representing path-following
performance and obstacle closeness is a natural choice.

Path following

Figure 3.3: Illustration of the distances and angles for path following, namely the Cross-
Track Error (CTE) e, Along-Track Error (ATE) s, heading error χ̃, path reference point
pp(ω̄), look-ahead point pp(ω̄+∆LA) and look-ahead path tangential angle γp(ω̄+∆LA).

The agent needs to know how the vessel’s current position and if the heading is
aligned with the desired path. A few concepts often used for guidance can help
formalise this, illustrated in Fig. 3.3. First, we formally define the desired path as
the one-dimensional manifold given by:

P ≜
{
p ∈ R2 | p = pp(ω̄) ∀ ω̄ ∈ R+

}
(3.4)

Accordingly, for any given ω̄, we can define a local path reference frame {p}
centered at pp(ω̄) whose x-axis has been rotated by the angle:

γp(ω̄) ≜ atan2
(
y′p(ω̄), x

′
p(ω̄)

)
(3.5)



3.3. Deep reinforcement learning for path following and collision avoidance 45

relative to the inertial NED -frame. Next, we consider the so-called look-ahead
point pp(ω̄ + ∆LA), where ∆LA > 0 is the look-ahead distance. In traditional
path-following, lookahead-based steering, i.e. setting the look-ahead point direction
as the desired course angle, is a commonly used guidance principle [37]. Based on
the look-ahead point, we define the course error, i.e. the course change needed for
the vessel to navigate straight towards the look-ahead point, as:

χ̃(t) ≜ atan2

(
yp(ω̄ +∆LA)− yp(ω̄)
xp(ω̄ +∆LA)− xp(ω̄)

)
− χ(t) (3.6)

where χ(t) is the vessel’s current heading as defined in Section 3.2.2. As presented
by Breivik et al. [134], given the current vessel position p(t) we can define the
error vector ϵ(t) ≜ [s(t), e(t)]⊤ ∈ R2, containing the along-track error s(t) and
the cross-track error e(t) at time t:

ϵ(t) = Rz,−γp(ω̄) (p(t)− pp(ω̄)) (3.7)

Using Newton’s method, a natural approach for updating the path variable ω̄ is
to repeatedly calculate the value that yields the closest distance between the path
and the vessel. Newton’s method only guarantees a local optimum, which prevents
sudden path variable jumps given that the previous path variable value is used as
the initial guess [135]. Another approach is to update the path variable according to
the differential equation:

˙̄ω =
√
u2 + v2 cos χ̃(t)− γω̂s(t) (3.8)

where the ATE coefficient γω̂ > 0 ensures that the absolute ATE |s(t)| will decrease.
This method is computationally faster, so we use it in our Python implementation.
More specifically in the current work γω̂ = 0.05 and ∆LA = 100m.

Obstacle detection

Using rangefinder sensors as the basis for obstacle avoidance is a natural choice.
A reactive navigation system applied to a real-world vessel typically would entail
either such a solution or a camera-based one. Given the availability of standard
rangefinder sensors such as lidar, radar or sonar, this approach should enable a
relatively straightforward transition from the simulated environment to a real one.

In the setup used, N = 225 sensors with a total visual span of Ss = 4π
3 radians

(240 degrees) are arranged in the trivial manner illustrated in Fig. 3.4. The sensors
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Figure 3.4: Illustration of the distance sensor arrangement. The N = 225 sensors are
grouped into d = 25 sectors, where they are pooled into a single value.

are assumed to have a range of Sr = 150 meters, which was deemed sufficient
given the relatively small size of the vessel.

The trade-off between computation speed and sensor resolution must be considered
w.r.t. the number of sensors. In the experiments conducted in this research project,
225 sensors were chosen, even if it is likely that a much lower number of sensors
would yield similar performance. Regarding the visual span, it could be argued
that providing 180 degree vision would be sufficient to achieve good collision
avoidance, given the precondition of static obstacles. However, to avoid sub-
optimal performance due to a restrictive sensor suite configuration, the conservative
choice of having a 240 degree vision was made.

Even if, in theory, a sufficiently large neural network is capable of representing any
function with any degree of accuracy, including mappings from sensor readings
to collision-avoiding steering manoeuvres in our case, there are no guarantees
for neither the feasibility of the required network size nor the convergence of the
optimisation algorithm used for training to the optimal network weights [60]. Thus,
forcing the action network to output the control signal based on 225 sensor readings
(as well as the features intended for path-following) is unlikely to be a viable
approach, given the complexity required for any mapping between the full sensor
suite to the steering signal.

Instead, we propose three approaches for transforming the sensor readings into
a reduced observation space. As illustrated in Fig. 3.4, this involves partitioning
the sensor suite into d disjoint sensor sets, hereafter referred to as sectors. First,
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we define the sensor density n as the number of sensors contained by one sector:
n ≜ N

d

Each sector is made up of neighbouring sensors, so we can formally define the kth

sector, which we denote by Sk, as:

Sk ≜
{
x(k−1)n+1, . . . , xkn

}
(3.9)

where xi refers to the ith sensor measurement according to a counter-clockwise
indexing direction. This partitioning, which assumes that N is a multiple of d, is
illustrated in Fig. 3.4.

Based on partitioning the sensor suites into sectors, we then seek to reduce the
dimensionality of our observation vector. Instead of including each sensor meas-
urement xi in it, we provide a single scalar feature for each sector Sk, effectively
summarising the local sensor readings within the sector. The resulting dimen-
sionality reduction is significant; instead of having N sensor measurements in
the observation vector, we now have only d features. What remains is the exact
computation procedure by which a single scalar is outputted based on the current
sensor readings within each sector.

Always returning the minimum sensor reading within the sector, referred to as min
pooling, i.e. outputting the shortest measured obstacle distance within the sector, is
a natural approach which yields a conservative and thereby safe observation vector.
However, as seen in Fig. 3.5(b), this approach might be overly restrictive in specific
obstacle scenarios, where feasible passings between obstacles are inappropriately
overlooked. However, even if the opposite approach (max pooling) solves this
problem, it is easy to see that this can also lead to dangerous strategies when small
obstacles are ignored (see Fig. 3.5(c)).

We introduce a new pooling method to alleviate the problems associated with min
and max pooling. The new method computes the maximum feasible travel distance
within the sector, taking into account the location of the obstacle sensor readings as
well as the width of the vessel. This computation involves iterating over the distance
sensor readings in ascending order and checking whether it is feasible for the vessel
to advance any further. Algorithm 3.2 provides a pseudocode implementation of
this algorithm.

Algorithm 3.2 has a runtime complexity of O(dn2) when executed on the entire
sensor suite. Therefore, the feasibility pooling approach is asymptotically slower
than simple max or min pooling, which are O(dn). However, Fig. 3.6(a) shows
that this additional computation for n = 9 is negligible compared to calculating the
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Algorithm 3.2 Feasibility pooling for rangefinder
Require:

Vessel width W ∈ R+

Total number of sensors N ∈ N
Total sensor span Ss ∈ [0, 2π]
Sensor rangefinder measurements for current sector x = {x1, . . . , xn}
function FEASPOOL(x)

Angle between neighboring sensors θ ← Ss
N−1

Initialise I to be the indices of x sorted in ascending order according to the
measurements xi

for i ∈ I do
Arc-length di ← θxi
Opening-width y ← di/2
Opening was found si ← false
for j ← 0 to n do

if xj > xi then
y ← y + di
if y > W then

si ← true
break

end if
else

y ← y + di/2
if y > W then

si ← true
break

end if
y ← 0

end if
end for
if si is false then return xi
end if

end for
end function
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(a) Feasibility pooling

(b) Min pooling (c) Max pooling

Figure 3.5: Pooling techniques for sensor dimensionality reduction. For the sectors
coloured green, the maximum distance Sr was outputted. Min-pooling yields an overly
restrictive observation vector, effectively blocking most travel directions. On the other hand,
max-pooling is overly optimistic, potentially leading to dangerous situations. Feasibility
pooling strikes a balance between min and max pooling.

interception points between the rangefinder rays and the obstacles.

Table 3.1: Rangefinder configuration

Parameter Description Value
Umax Maximum vessel speed 2 m/s
W Vessel width 4 m
N Number of sensors 225
Ss Total visual span of sensors 240◦

Sr Maximum rangefinder distance 150 m
d Number of sensor sectors 25

Another interesting aspect to consider when comparing the pooling methods is the
sensitivity to sensor noise. A compelling metric for this is the degree to which the
pooling output differs from the original noise-free output when usually distributed
noise with standard deviation σw is applied to the sensors. Specifically, we report the
root mean squared error between the original pooling outputs and the noise-affected
measurements. The results for σw ∈ {1, . . . , 30} are presented in Fig. 3.6(b),
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showing that the proposed feasibility pooling method is slightly more robust than
the other variants.
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(b) Robustness metric for pooling methods for
σw ∈ {1, . . . , 30}

Figure 3.6: Computational time and robustness of the different pooling approaches. The
noise-affected measurements were clipped at zero to avoid negative values.

3.3.2 Rewards

Any RL agent is motivated by the pursuit of maximum reward. Ideally, the agent
should receive its reward at the end of the episode after reaching the goal position
or colliding with an obstacle. However, such a reward function is sparse, leaving
the agent with a near-impossible learning task. This issue can be alleviated by
designing a continuous reward signal that guides the agent to better performance.

Given the dual nature of the objective, which is to follow the path while avoiding
obstacles, rewarding the agent separately for its performance in these two domains
is natural. Thus, we introduce the reward terms rpf (t) and roa(t), being the reward
components at time t representing the path-following and the obstacle-avoiding
performance, respectively. Also, we introduce the weighting coefficient λ ∈ [0, 1]
to regulate the trade-off between the two competing objectives, leading to the
following reward function:

r(t) = λrpf (t) + (1− λ)roa(t) (3.10)

Path following performance

A reasonable approach to incentivise adherence to the desired path is to reward
the agent for minimising the absolute CTE e(t). Martinsen [135] uses a Gaussian
reward function centred at e(t) = 0 with some reasonable standard deviation σe
for this purpose. However, based on Fig. 3.7(a), we argue that the exponential
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e−γe|ye(t)| has slightly more reasonable characteristics for this purpose due to its
fatter tails, thus rewarding the agent for a slight improvement to an unsatisfactory
location.
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Figure 3.7: Cross-section and level curves for the path-following reward function for
γe = 0.05

However, these measures are not enough to encourage the agent to progress
along the path. The velocity component along the desired course is multiplied
by
√
u2 + v2 cos χ̃(t), which penalises the agent for moving backwards, and no

reward if it moves perpendicularly to the path. However, this reward function is
zero if the agent stands still or the course error is ±90◦, no matter what the CTE is.
Similarly, when the CTE grows large, it receives no reward regardless of the speed
or course error. To address this, we add constant multiplier terms 1, which yields
the following reward function for path-following:

rpf (t) = −1 +
(√

u2+v2

Umax
cos χ̃(t) + 1

)(
e−γe|ye(t)| + 1

)
(3.11)

where Umax is the maximum vessel speed. Note that, for added flexibility, it is
possible to replace the 1 multipliers with optimisable coefficients. However, for
parametric simplicity, we decide to use 1.

Obstacle avoidance performance

In order to encourage obstacle-avoiding behaviour, penalising the agent for the
closeness of nearby obstacles in a strictly increasing manner seems natural. Having
access to the sensor measurements outlined in Section 3.3.1 at each timestep, we use
these as surrogates for obstacle distances through which the agent is penalised. By
noting that the severity of obstacle closeness intuitively does not increase linearly
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with distance, but instead increases in some more or less exponential manner and
that the severity of obstacle closeness depends on the orientation of the vessel with
regards to the obstacle in such a manner that obstacles located behind the vessel
are of much lower importance than obstacles that are right in front of the vessel,
is it easy to see that the term (1 + |γθθi|)−1(γxmax (xi, ϵx)

2)
−1

, where θi is the
vessel-relative angle of sensor i such that a forward-pointing sensor has angle 0,
exhibits the desirable properties for penalising the vessel based on the ith sensor
reading. This reward function is plotted in Fig. 3.8.

In order to cancel the dependency on the specific sensor suite configuration, i.e. the
number of sensors and their vessel-relative angles, that arises when this penalty
term is summed over all sensors, we use a weighted average to define our obstacle-
avoidance reward function such that:

roa(t) = −
∑N

i=1 (1 + |γθθi|)−1(γxmax (xi, ϵx)
2)

−1

∑N
i=1 (1 + |γθθi|)−1

(3.12)

where ϵx > 0 is a small constant removing the singularity at xi = 0.
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Figure 3.8: Obstacle closeness penalty as a function of vessel-relative sensor angle and
obstacle distance, imposing a maximum penalty for obstacles in front of the vessel.

Total reward

In order to discourage the agent from standing still at a safe location, we impose a
constant living penalty rexists < 0 to the overall reward function. A simple way of
setting this parameter is to assume that, given a total absence of nearby obstacles
and perfect vessel alignment with the path, the agent should receive a zero reward
when moving at a specific slow speed αrUmax, where αr ∈ (0, 1) is a constant
parameter. This condition is encoded using the following function:



3.3. Deep reinforcement learning for path following and collision avoidance 53

rexists + λ
((

αrUmax
Umax

+ 1
)
(1 + 1)− 1

)
= 0

rexists = −λ(2αr + 1)
(3.13)

Also, in the interest of having bounded rewards, we enforce a lower bound activated
upon collisions by defining the total reward:

r(t) =

{
(1− λ) rcollision (if collision)

λrpf (t) + (1− λ) roa(t) + rexists (otherwise)
(3.14)

Deciding the optimal value for the trade-off parameter λ is nontrivial. This issue
is closely connected to the fundamental challenge tackled in this project, namely
how to avoid obstacles without deviating unnecessarily from the desired trajectory.
Thus, we initialise it randomly at each environment reset by sampling it from a
probability distribution. In order to familiarise the agent with different degrees
of radical collision avoidance strategies (λ → 0), which is helpful in dead-end
scenarios where the correct behaviour is to ignore the desire for path adherence in
order to escape the situation, we sample log10 λ from a gamma distribution such
that:

− log10 λ ∼ Gamma(αλ, βλ) (3.15)

To let the agent base its guidance strategy on the current λ, we include log10 λ as an
additional observation feature. The reward parameters were set as αλ = 1.0, βλ =
2.0, γe = 0.05, γθ = 4.0, γx = 0.005, ϵx = 1.0m, αr = 0.1, rcollision = −2000.

The complete observation vector, which in the context of RL represents the state s,
contains features representing the position and orientation of the vessel regarding
the path and the pooled sensor readings and the logarithm of the current trade-off
parameter λ.

3.3.3 Methodology

Training

The RL agent is trained using the PPO algorithm (see Algorithm 2.1) implemented
in the Python library stable-baselines [86], with the hyperparameters given
by γ = 0.999, T = 1024, NA = 8, K = 106, η = 0.0002, NMB = 32, λ = 0.95,
c1 = 0.5, c2 = 0.01, ϵ = 0.2. The action and value function networks were
implemented as fully-connected NNs, both using the tanh(.) activation function and
consisting of two hidden layers with 64 nodes. We simulate the vessel dynamics
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Table 3.2: Observation vector s at timestep t.

Observation feature Definition
Surge velocity u(t)

Sway velocity v(t)

Yaw rate r(t)

Look-ahead course error γp(ω̄
(t) +∆LA)− χ(t)

Course error χ̃(t)

CTE e(t)

Reward trade-off parameter log10 λ
(t)

Obstacle closeness, first sector 1− 1
Sr

FeasPool(x = {x1, . . . xd})
...

...
Obstacle closeness, last sector 1− 1

Sr
FeasPool(x = {xN−d, . . . xN})
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Figure 3.9: Gamma-distribution with parameters αλ = 1, βλ = 2 from which − log10 λ is
drawn.

using the fifth-order Runge-Kutta-Fahlberg method [136] using the timestep ∆t =
0.1s. Whenever the vessel either reaches the goal pend, collides with an obstacle or
reaches a cumulative negative reward exceeding −5000, the environment is reset
according to Algorithm 3.1.

Evaluation

We analyse the agent’s performance based on quantitative and qualitative testing.
Evaluating how the value of the reward trade-off parameter λ, which is fed to the
agent as an observation feature, influences the guidance behaviour is of particular
interest. A wide range of values was tested, including both radical path adherence
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(i.e. λ = 1) and various shades of radical obstacle avoidance strategies (i.e. λ→ 0).
The exact values can be found in Table 3.3.

Quantitative testing

In order to obtain statistically significant evidence for the guidance ability of the
trained agent, we simulate the agent’s behaviour in 100 random environments gen-
erated stochastically according to Algorithm 3.1. We then report the performance
criteria regarding success rate, average CTE, and average episode length. In the
current context, the success rate is defined as the percentage of episodes in which
the agent reached the goal, average CTE is defined as the average deviation from
the path in metres, and the average episode length is expressed in seconds.

Qualitative testing

In addition to the statistical evaluation, we observe the agents’ behaviour in the test
scenarios shown in Fig. 3.10.

Comparison with alternative RL algorithms

In order to assess the performance of the PPO algorithm on this guidance problem,
we train the agent using several other frequently cited model-free policy gradient
algorithms, a class of RL algorithms known for excelling at continuous control
tasks [84]. Deep Deterministic Policy Gradient (DDPG) [70], Actor Critic using
Kronecker-Factored Trust Region (ACKTR) [137] and Asynchronous Advantage
Actor Critic (A3C) [138] are all available in the stable-baselines library.
Their quantitative test results will be included as benchmarks for the performance
of the PPO agent.

3.3.4 Results and Discussions

This chapter presents the test results obtained from training and testing the agent
and discusses the findings.

Training process

We train the agent for 3903 episodes, corresponding to more than 5 million sim-
ulated time-steps of length ∆t = 0.1s. At this point, all the metrics used for
monitoring the training progress had stabilised. The training process ran eight
parallel simulation environments for faster convergence and took approximately 48
hours on an Intel Core i7-8550U processor.

Test results

As outlined, each value of λ was tested for 100 episodes, all of which took place
in randomly generated path following environments according to Algorithm 3.1.
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Table 3.3: Quantitative test results obtained from 100 episode simulations per agent.

Agent λ Success Rate Avg. CTE Avg. Ep. Length
1 1 97% 34.92 m 1001 s
2 9× 10−1 97% 36.56m 1028 s
3 5× 10−1 99% 38.15m 1024 s
4 1× 10−1 100% 49.13m 1077 s
5 1× 10−2 100% 63.95m 1062 s
6 1× 10−3 100% 68.36m 1238 s
7 1× 10−4 100% 72.99m 1480 s
8 1× 10−5 100% 70.40m 1469 s
9 1× 10−6 100% 70.51m 1212 s

A larger sample size is beneficial for quantitative evaluation, but in the interest of
time, 100 test episodes for each λ value was a reasonable compromise. Calculating
the interception points between the rangefinder rays and the obstacles is the most
computationally expensive part of the simulation. Thus, the simulation can be made
orders of magnitude faster by lowering the sampling rate of the sensors. However,
we decided to perform the testing without any restrictions on the sensor suite. The
observed test results are displayed in Table 3.3.

Additionally, we simulated each agent in the four outlined qualitative test scenarios.
Except for scenario B, in which all agents chose more or less the same trajectory, the
other scenarios reflect the differences between the agents. The agents’ trajectories
in each test scenario are plotted in Fig. 3.10.

The PPO agent was superior to the other RL tested algorithms. PPO was also the
only method that completed the task to an acceptable degree. A possible reason is
that only the default set of hyper-parameters in the stable-baselines package
were tested for the other RL algorithms. The A3C agent was the least competent,
mindlessly guiding the vessel in an arbitrary direction until a collision occurred.
The ACKTR agent appears to master the path-following task but frequently crashes.
The DDPG agent rarely collides but does not follow the path and often goes in
circles. All four algorithms are compared in Fig. 3.11, where the trained agents
are simulated in a randomly generated scenario. The figure illustrates the superior
performance of the PPO agent.

These results indicate that a reactive RL agent can become proficient at the combined
path-following / COLAV task after being trained using the state-of-the-art PPO
algorithm. Before conducting any experiments, we assumed that decreasing λ and
thus decreasing the degree to which the agent would prioritise path adherence over
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(d) Test scenario D

Figure 3.10: Agent trajectories in qualitative test scenarios when λ parameter is varied.
The behaviour in terms of collision avoidance is significantly modulated.

collision avoidance would lead to a higher success rate. Also, we expected this
performance increase to come at the expense of the agent’s ability to follow the path,
leading to an increase in the average CTE. The results show a clear and reliable
trend, supporting our hypothesis. As seen in Table 3.3, the collision avoidance
rate stabilises at 100% when λ is sufficiently small. Fig. 3.12, which features two
episodes extracted from the training process, clearly illustrates why a small λ will
lead to a lower collision rate and cause a significant worsening in path following
performance.

From plotting the test metrics against λ, it becomes clear that the trends can be
described mathematically by simple parametric functions of λ. After deciding
on suitable parameterisations, we use the Levenberg-Marquardt curve-fit method
provided by the Python library SciPy [133] to obtain a non-linear least squares
estimate for the model parameters. The fitted models for our evaluation metrics can
be visualised in Figs. 3.12(a) and 3.12(b). The fitted parametric models allow us to
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Figure 3.11: Comparison of agent trajectories in randomly generated scenarios for different
RL algorithms. All agents were given λ = 1. Only the PPO agent managed to reach the
goal.

generalise the observed results to unseen values of λ.

3.3.5 Discussion

These results demonstrate that RL is a viable approach to the challenging dual-
objective problem of controlling a vessel to follow a path given by a priori known
waypoints while avoiding obstacles. More specifically, we have shown that the
state-of-the-art PPO algorithm converges to a policy that yields intelligent guidance
behaviour under the presence of non-moving obstacles surrounding and blocking
the desired path.

Engineering the agent’s observation vector and the reward function involved design-
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Figure 3.12: Empirical success rates. (a) The agent’s empirical success rate and avg. CTE
fitted to f̂(λ) = a+ 1−a

1+λb and f̂(λ) = a+ bλ−c, respectively. The non-linear least squares
estimate for the success rate model parameters is a = 0.937, b = 5.364, whereas the
estimate for the average CTE model parameters is a = 73.6, b = −35.8, c = −0.265. (b)
The agent’s empirical average episode length fitted to f̂(λ) = a− b log10 λ. The non-linear
least squares estimate for the model parameters is a = 982, b = 99.1. The point marked
as an outlier was excluded from the regression. For small λ, the agent will avoid entire
clusters of obstacles instead of individual obstacles. Thus, the log-linear model will only be
valid until a certain point; this threshold is labelled “critical obstacle avoidance”.

ing and implementing several novel ideas, including the Feasibility Pooling al-
gorithm for intelligent real-time sensor suite dimensionality reduction. By augment-
ing the agent’s observation vector by the reward trade-off parameter λ, and thus
enabling the agent to adapt to changes in its reward function, we have demonstrated
through experiments that the agent is capable of adjusting its guidance strategy (i.e.
its preference of path-adherence as opposed to collision avoidance) based on the λ
value that is fed to its observation vector.

Even in challenging test environments with many obstacles, the agent’s success
rate is > 90% when λ is chosen in favour of path-following and close to 100%
when a more defensive strategy is chosen. It is worth mentioning that here, we only
studied the impact of λ on the agent’s performance. However, we currently lack a
procedure for optimising this parameter, e.g. by analysing AIS data. This problem
is left as future work.

3.4 Constraint satisfaction using a safety filter
As seen in Section 3.3, it is challenging to guarantee that ML controllers will always
respect constraints, especially during the initial training phase. Besides safety
considerations, a system might have physical constraints that must be respected.
For example, an autonomous ship with azimuthal thrusters must avoid all collisions
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while keeping in mind the maximum output and turning rate of its thrusters. This
issue limits the applicability of RL methods to many real-world systems.

A natural solution to this problem is to use a predictive safety filter [139]. This
auxiliary system component detects when the controlled system is headed towards
an unsafe state. It immediately falls back to a control policy known to be safe, as
a driving instructor might intervene during a lesson. The defining characteristic
of a predictive safety filter is that it attempts to find a minimal modification to the
control inputs w.r.t. the constraint set over a finite number of future time steps.

This separation of concerns yields a modular approach, where the learning-based
component can be freely designed and optimised while the safety filter guarantees
constraint satisfaction. The advantages are two-fold. First, the predictive safety filter
is a simpler optimisation problem than a predictive controller that simultaneously
optimises performance and safety. Secondly, the learning-based component can
be trained using more complex, sparser cost functions without compromising the
convergence of the safety filter, which can yield higher performance after training.
In maritime systems, the predictive safety filter is comparable to COLAV systems
for autonomous ships.

The predictive safety filter is formulated as an optimisation problem over mul-
tiple time steps [139] and is, therefore, most comparable to a mid-level COLAV
algorithm. The novelty of this work is the implementation and validation of a safety
filter on a maritime vessel that can act as a safety harness around, e.g. learning-based
planning algorithms higher up in the planning hierarchy.

The work demonstrates the potential for such methods to enable safer navigation
and is illustrated for a passenger ferry voyaging in a narrow water canal. The
contributions of this article are thus:

• The implementation of a predictive safety filter on a passenger ferry platform
for both anti-grounding and ship collision avoidance.

• Validation of the proposed method for a variety of scenarios in simulation

The article is structured as follows. Relevant modelling of the own-ship platform is
presented in Section 3.4.1. The safety filter is detailed in Section 3.4.2. Results and
their discussions are presented in Section 3.4.3, and finally, Section 3.4.4 concludes
the current work.

3.4.1 Modelling

This section considers milliAmpere 1, a small passenger ferry prototype for urban
environments. It aims to be a safe, flexible, and on-demand replacement for bridges
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[140]. The ferry is small and manoeuvrable, with two azimuthal thrusters mounted
on the underside, which allow it to navigate crowded waterways with other ships.

The equations of motion are standard and are given in Example 2.1.2. Pedersen
presents a more in-depth derivation of the model and experimental identification of
the parameters specific to the milliAmpere ferry [38]. The following sections present
the thruster dynamics of the ferry and a simple Line-of-Sight (LOS) controller for
waypoint tracking.

Figure 3.13: The Milliampere ferry

where the pose of the ship is η = [x y ψ]⊤, the velocity is ν = [u v r]⊤, and
the rigid body mass M, Coriolis matrix C(ν) and damping matrix D(ν) are all
3× 3 matrices. Furthermore, the kinetics can be written as:

Azimuthal thruster dynamics and control allocation

The ferry has two azimuthal thrusters that rotate freely, as shown in Fig. 3.14. These
angles are α, the motor speeds (in RPM) as ω, and the resulting net thrusts as f .
We use the subscript i to refer to properties of an individual thruster, e.g. αi is the
angle of the ith thruster. From Fig. 3.14, we see that the net force and moment on
the ship are:
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τ =



τx
τy
τm


 = T(α)f =




cosα1 cosα2

sinα1 sinα2

ℓ1 sinα1 ℓ2 sinα2



[
f1
f2

]
. (3.16)

Choosing the thrust f to achieve some force τ is known as the control allocation
problem. The simplest approach is to extend T(α) by decomposing the thrust
vectors into their x and y components:

τ =Tefe

=



1 0 1 0
0 1 0 1
0 ℓ1 0 ℓ2







f1,x
f1,y
f2,x
f2,y




(3.17)

thereby yielding the linear transformation Te. Appropriate values for f and α
can be found by taking the pseudoinverse of Te. We denote the control allocation
mapping as:

(α, f) = T−1(τ) s.t.





fe = T†
eτ

fi =
√
f2i,x + f2i,y i ∈ {1, 2}

αi = atan2(fi,y, fi,x) i ∈ {1, 2}
(3.18)

This approach does not consider actuator constraints and can yield infeasible control
sequences. In this case, the control allocation problem T−1(τ) is formulated as a
constrained Nonlinear Program (NLP) [37]. Control feasibility is implicitly handled
by the predictive safety filter framework when actuator constraints are included
in the formulation. The thrust fi is related to the motor RPM ωi by the following
invertible function:

f = L(ω) (3.19)

This mapping was determined experimentally and modelled as an invertible poly-
nomial [38]. The relationship between the desired motor RPM ωd and the actual
value ω is modelled as a proportional control law with gain Kωi corresponding to
thruster i:

ω̇i = Kωi(ωd,i − ωi) (3.20)
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Finally, the azimuthal thrusters have a constant turning rate Kαi , which is approx-
imated with the help of the function:

λ(β; ϵ) = ssa(β)√
ssa(β)2+ϵ

(3.21)

where ssa(·) is the smallest signed angle function. Given the desired angles αd and
the actual angles α, the turning rate for the ith thruster is then:

α̇i = Kαiλ (αd,i − αi; ϵi) (3.22)

where Kαi , ϵi,Kωi are thruster-specific parameters. We refer to [38] for the precise
values.

Full dynamics

The full dynamics of the ferry can now be written as follows:

η̇ = R(ψ)ν

ν̇ = M−1 (T(α)L(ω)−C(ν)ν−D(ν)ν)

ω̇ = Kω(ωd − ω)

α̇i = Kαiλ (αd,i − αi; ϵi)

(3.23)

The inputs to this model are the desired thruster angles αd and thrust vector ωd,
which are typically computed from a desired force τd using Eq. (3.18). However, as
we shall see later, it is simpler to skip this step in formulating the predictive safety
filter and select αd and ωd as decision variables.

Naive controller

In order to validate the safety filter, we use a simple LOS guidance law controller
that tracks a path specified by a sequence of waypoints. When the ownship comes
within a specified radius of the current target waypoint, the reference is switched to
the next waypoint in the sequence [37]. The LOS guidance law is defined as:

ψd = πp − arctan
(ye
∆

)
(3.24)

where πp is the angle of the vector from the previous waypoint to the current target
waypoint defined in the North-East (NE)-frame, ∆ is the look-ahead distance, and
ye is the cross-track error [37]. The desired force on the ship is then defined as:
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τd =



τx,d
τy,d
τm,d


 =




Tx,d
0

Kp(ψd − ψ)


 (3.25)

The τd vector is a constant desired force Tx,d in the forward ship direction, zero
desired force laterally, and a desired moment proportional to the difference between
the desired heading and actual heading. Finally, the desired force vector is mapped
to control inputs (fd,αd) by:

(fd,αd) = T−1(τd)

(α,ω) =
(
αd,L

−1(fd)
) (3.26)

These control inputs are likely unsafe or infeasible and are passed on to the safety
filter for evaluation and modification.

Figure 3.14: Actuators on the milliAmpere ferry: Two azimuthal thrusters can rotate freely.

3.4.2 Safety filter

The predictive safety filter is formulated as an optimisation problem constrained
by the ferry dynamics, state and actuator limits, and anti-collision conditions. The
objective of the problem is to find a minimal perturbation δ to the input τ such that
the safety requirements are satisfied. The modified input τ̄ is then passed to the
system. Fig. 3.15 shows how the safety filter interacts with an idealised guidance
and navigation system. Note that we assume perfect knowledge of the state of
the ship and obstacles; we leave the handling of uncertainty and robust constraint
satisfaction as future work.

The system dynamics given by Eq. (3.23) are discretised using an explicit Runge-
Kutta method of order 1 with constant time-step h. The inputs and states at each
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Figure 3.15: Interactions between safety filter and typical guidance system. State estimation
is not included in this work.

time step are taken as decision variables, also known as direct multiple shooting. In
the following, we use subscript k to refer to the time step, i for a vector element,
and j for the jth obstacle. The full NLP is written as: :

min
ηk,νk,αk,ωkδk

N∑

k=1

γ2α∥δα,k∥2 + γ2ω∥δω,k∥2

s.t.αlb ≤ αi,k ≤ αub ∀i, k
ωlb ≤ ωi,k ≤ ωub ∀i, k
ᾱk = αk + δα,k

ω̄k = ωk + δω,k

ηk+1 = ηk + hR(ψ)νk

νk+1 = νk + hM−1[τ(ᾱk, ω̄k)−C(ν)ν−D(ν)ν]

|ᾱi,k+1 − ᾱi,k| ≤ ∆α ∀i, k
|ω̄i,k+1 − ω̄i,k| ≤ ∆ω ∀i, k
(Apk − b) + d ≤ 0 ∀k
gj(pk,oj,k) > 0 ∀j, k
oj,k+1 = oj,k + vjh ∀j, k

(3.27)

The position [x y] of the own-ship at time-step k is denoted pk, and d is the safe
radius. The perturbed inputs ᾱ and ω̄ are bounded by (αlb, αub) and (ωlb, ωub)
respectively, and rate-limited by the constants ∆α and ∆ω respectively. The
rate-limiting constraints were chosen instead of directly modelling the actuator
dynamics given in Eq. (3.23). This step simplifies the constraint formulation while
maintaining a sufficiently accurate approximation, particularly for α.
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Anti-grounding is achieved by defining a safe water region using the linear constraint
set defined by A and b, regularly updated as the vessel advances along the path.
Section 3.4.2 describes how A and b are computed. In this formulation, both
static and dynamic obstacles are modelled as ellipses centred at the positions
oj,k = [xobs yobs], where k again refers to the time-step and j is the obstacle
index. The unsafe ellipses are represented as signed distance functions gj(·), which
measure the distance between the safe radius of the own-ship and the surface of
the jth ellipse, and are defined precisely in Section 3.4.2. If the safe radius and the
ellipse intersect, the distance functions return a negative value. Dynamic obstacle
movement is modelled with a constant velocity vj , which updates the position
oj,k at each time step. Further implementation details and parameter values can be
found in Section 3.4.2.

Anti-grounding constraint representation

In the vicinity of land, the area where the ship can safely navigate within a given
timespan is generally a non-convex set. This constraint is challenging to model in an
optimisation problem. Instead, a convex subset of this area is identified online from
cartographic data. We refer to this area as the Convex Safe Set (CSS). The procedure
is based on the algorithm presented by Bitar et al. [141] and is summarised in
Algorithm 3.3. Our implementation uses the Shapely python package [142]. The
estimated CSS is updated every 10 seconds during the simulation. The advantages
of this approach are that it is relatively cheap to compute the CSS, it can be
represented as a linear constraint set, and it can be pre-computed at regular points
along a nominal trajectory if needed. The disadvantage is that a CSS can be overly
conservative, especially when the vessel is near either land or some obstacle.

Algorithm 3.3 Inner convex safe set estimation
p← Current position of ship
H ← Rectangle with center at p and width,height = Dmax

S ← Polygonal representation of safe region around p, extracted from map data
S′ ← H ∩ S
B ← Boundary(S′)
C ← Empty table for storing constraints
while B ̸= Empty do

pn ← Nearest point on B, as seen from p
C ′ ← Constraint line orthogonal to (pn − p), with mid-point at pn
Remove segments of B that are outside of constraint line C ′, as seen from p
Add constraint line C ′ to table C

end while
return C
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Figure 3.16: Algorithm for computing convex safe set

Obstacle constraint representation

Each obstacle is represented as an oriented ellipse, which provides more design
flexibility than a circular representation and more closely matches the profile of a
typical vessel. In theory, it is possible to use Algorithm 3.3 to compute a safe set
without obstacles. However, requiring the safe set to be convex can be conservative,
e.g. when the vessel must perform a sharp turn.

Fig. 3.17 illustrates a situation where the convex safe set works poorly. Here
the vessel must navigate between two obstacles (denoted obs1 and obs2), and the
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nominal trajectory is, in fact, safe. However, due to the approach angle, no possible
convex set contains the nominal trajectory. The safety filter, therefore, corrects
course and takes an evasive manoeuvre instead. It can be argued that this issue
resolves itself when the ship passes obs1, and a CSS that contains the nominal path
can then be found. However, depending on the vessel’s speed, it may already be
too late to correct course again and avoid obs2. In the best case, the vessel may
take the turn later than desirable, which breaks Rules 8 and 16 of Convention on
the International Regulations for Preventing Collisions at Sea (COLREGS) (i.e.
manoeuvres must be made or signalled in ample time).

By representing the obstacles directly using additional constraints, the predictive
safety filter can plan much more effectively. We show experimentally in Sec-
tion 3.4.3 that this problem is still very tractable despite the added complexity.

Convex
safe set

Obs₁ Obs₂

Nominal 
Trajectory

"Safe" 
Trajectory

Figure 3.17: Illustration of a convex safe set that also takes obstacles into account. Despite
the nominal trajectory being safe, the safe set’s convexity requirement is overly conservative.

We define the parameters for the jth obstacle as the tuple (oj ,vj , aobs,j , bobs,j , θobs,j),
where oj is the coordinate vector for the centre of the obstacle, vj is the velocity of
the obstacle, aobs,j and bobs,j is 1/2 the length of the ellipse in its semi-major and
semi-minor axes respectively, and θobs denotes the angle between the coordinate-
frame x-axis and the semi-major axis of the elliptical obstacle. The formula for an
elliptical disk can be written as:

E(x, a, b) ≤ 0 (3.28)

where

E(x, a, b) =
x21
a2

+
x22
b2
− 1 (3.29)
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The constraint function gj(p,o) for the jth obstacle is defined as:

gj(p,o) = E [R(θobs)(p− o), aobs + d, bobs + d] (3.30)

where R(θobs) is the rotation matrix:

R(θobs) =

[
cos θobs − sin θobs
sin θobs cos θobs

]
(3.31)

Eq. (3.30) can be expanded as:

gj(p,o) =
(cos θobs(x− xobs)− sin θobs(y − yobs))2

(aobs + d)2

+
(sin θobs(x− xobs) + cos θobs(y − yobs))2

(bobs + d)2
− 1 (3.32)

To take into account the dynamic obstacle motion over the prediction horizon,
we include a movement constraint on the form oi,k+1 = oi,k + vih, where the
linear velocity of the ith obstacle is denoted vi. Straight-line obstacle motion is
thus assumed, which is here deemed reasonable as we do not consider longer time
horizons.

Implementation

The CasADi symbolic framework is used to encode the resulting optimisation
scheme efficiently [143], which is then solved using the open-source IPOPT soft-
ware [144]. A time-step of h = 0.5s yielded sufficiently accurate state predictions
for the relatively slow dynamics of the ship. Furthermore, a prediction horizon of
N = 30 was selected because it satisfactorily balanced performance and computa-
tional complexity.

The optimal control problem hasN(nx+nu) = 30(6+4) = 300 decision variables
to be computed for each iteration of the optimisation algorithm. All experiments
were run on a consumer-grade laptop. The cost parameters were chosen as follows:

γ2α =
1

(αub − αlb)2

γ2ω =
10

(ωub − ωlb)2
(3.33)

Due to the relatively high cost of perturbing ω, the safety filter prioritises turning
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the ship by modifying α, rather than slowing down by setting ω̄ ≈ 0. Table 3.4
shows the parameters used in the experiments.

Table 3.4: Safety filter parameters

Parameter Value Description

∆ 100m Lookahead distance
Kψ 200 Heading gain
Tx,d 350N Constant forward force

N 30 Horizon length
h 0.5 s time-step
∆α 0.5 rad Rate limit (α)
∆ω 0.875 krpm Rate limit (ω)
αlb −π [rad] Lower bound (α)
αub π [rad] Upper bound (α)
ωlb −4 krpm Lower bound (ω)
ωub 4 krpm Upper bound (ω)
d 5m Own-ship safe radius
γα 0.159 rad−1 Perturbation cost (α)
γω 0.39 krpm−1 Perturbation cost (ω)

3.4.3 Results and discussions

Realistic scenarios in the Trondheim canal were constructed using the seacharts
library for Python [145]. All scenarios were designed in the Trondheim canal, as
shown in Fig. 3.18, and can be summarised as:

(a) Two wide barriers blocking the canal

(b) Planned path cuts through the land

(c) Curved barrier forcing the ship to backtrack

(d) Case (c) with a longer prediction horizon

(e) Single incoming ship

(f) Two incoming ships

Fig. 3.19 shows how the safety filter corrects unsafe control inputs to avoid colli-
sions in each test case. While we will discuss the results of each case individually,
additional focus has been placed on cases (c) and (d), which demonstrate the
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Trondheim fjord

Canal

Nidelv river

Figure 3.18: Simplified navigational chart of Trondheim area

consequences of handling goal fulfilment and safety separately. The actual perturb-
ations done to the azimuthal angles in cases (c) and (d) are shown in Figs. 3.20
and 3.21 respectively, and the computation time throughout each case is plotted in
Fig. 3.23. The motor speed perturbations were relatively small due to the high cost
placed on them and were therefore not included.

Fig. 3.19(a) shows that the system can perform effective anti-grounding even when
the reference waypoint is infeasible. Notably, a kink is introduced into the otherwise
smooth trajectory. This quirk is due to a small outcrop of land further along the path,
which yields an overly conservative anti-grounding safe set. Upon investigation, it
was found that this type of behaviour can also occur when there is a tight chokepoint
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Naive LOS
Obstacles

(d) Concave static obstacles: Horizon N = 50
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LOS + Safety filter

(e) Single dynamic obstacle

(f) Multiple dynamic obstacles

Figure 3.19: Overview of results for all test cases
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Figure 3.20: Azimuth angle control input modification for case (c)
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Figure 3.21: Azimuth angle control input modification for case (d)

in the canal, as seen in Fig. 3.22.

Fig. 3.19(b) shows that the safety filter can avoid large obstacles by turning early.
This scenario represents the worst-case where the ownship needs to move from one
canal bank to the other in relatively little time.

Figs. 3.19(c) and 3.19(d) show how the behaviour of the safety filter for a planning
horizon of 30 s and 50 s respectively. In the first case, the concavity of the barrier
forces the ownship to backtrack. In this situation, the safety filter has to force
the ownship to move in the opposite direction of the desired path. A shorter
planning horizon causes the ownship to turn quite late, causing an aggressive
turning manoeuvre. The looping behaviour can be explained by the fact that
the safety filter no longer activates when the ownship moves away, such that the
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Figure 3.22: Comparison of best -and worst-case performance for convex safe set estima-
tion algorithm

naive controller moves the ownship towards the barrier again. This issue is easily
mitigated by increasing the planning horizon, as shown in Fig. 3.19(d).

The longer planning incurs a higher solve-time for the safety filter, which occasion-
ally reaches the threshold of computation time. While this might cause the solver
to return a sub-optimal solution, in practice, the solve-times quickly decay due to a
warm-start strategy being used (see Fig. 3.23(b)).
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Figure 3.23: Solve time throughout the trajectory for Cases (c) and (d)

Fig. 3.19(e) shows how the safety filter can also easily handle a large moving
obstacle. The positions of the ownship and the dynamic obstacle are shown at
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three different time steps for clarity. The safety filter can also avoid multiple
dynamic obstacles, as shown in Fig. 3.19(f). Again, the positions of the ownship
and obstacles are plotted multiple times. These two test cases highlight that the
safety filter does not follow the COLREGS [146]. Specifically, the ownship should
give way to the right (rules 14 and 15), with a manoeuvre initiated in ample time
to signal its intention to the other ships (rule 8). The simple objective function in
Eq. (3.27) does not capture these considerations. Instead, the role of the safety
filter is to serve as a “last line of defence” for a learning-based algorithm trained to
manoeuvre correctly in traffic situations.

3.4.4 Discussion

Self-improving systems that can automatically learn from experience and optimise
their performance are increasingly becoming a reality. In practice, it is challenging
to guarantee safe operation due to the learning subsystems without significantly
restricting their model class. In order to retain this flexibility, other systems that
robustly guarantee safety are essential tools in designing control systems that
incorporate learning components.

The predictive safety filter framework proposed by Wabersich et al. is adapted to
the domain of autonomous collision avoidance for ships [139]. The filter activates
when the control system proposes a potentially unsafe trajectory, and it computes a
minimal adjustment of the input in order to satisfy the constraints.

Anti-grounding is achieved via the computation of a convex safe set from carto-
graphic data using the method proposed by Bitar et al. [141]. In addition, static
and dynamic obstacles are modelled as ellipses, and the corresponding distance
functions are used as constraints in formulating the predictive safety filter.

The predictive safety filter was implemented using open-source software and is
shown to be feasible for real-time applications (< 1Hz), despite the nonlinear
obstacle constraints. The performance was not optimised further in this work, but
this can be achieved without significant effort by using the acados library [147]
to compile the solver code or simply by using faster hardware.

The limitations of the approach include (i) Sub-optimal behaviour when the planning
horizon is too short, (ii) Conservative, safe set estimation that performs poorly in
narrow canals, (iii) Static obstacles are modelled with constant velocities (iv)
No handling of uncertainties (v) The safe trajectories do not follow traffic rules
according to the COLREGS [146]. Points (ii-v) are of particular interest and will
be the subject of future work.
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Chapter 4

Modelling and system
identification

Many real-world phenomena can be modelled as differential equations, which allow
us to predict the change in the state of the system over time. The evolution of the
weather, progression of chemical reactions, the spread of diseases, and dynamics
of vehicles can all be modelled as dynamical systems. These equations are often
derived from first principles, an approach we refer to as PBM. Through careful
observation, we can develop theories to describe and understand the underlying
system. This understanding is condensed into mathematical equations, which
are either solved directly or discretised via some numerical algorithm to make
predictions about the system.

Despite the considerable effort involved in developing most models, in the end,
they must be adjusted and tuned so that their predictions match the observations
we make. In this sense, all models are data-driven, and our prior knowledge only
serves to provide the appropriate structure. Since most of our effort is placed into
the design of this structure, it would be immensely useful if we could develop
algorithms that automate this process. This is the intuition behind DDM, where we
try to develop models directly from data (see Fig. 4.2(b)). This approach has gained
popularity with the rapid progress in machine learning and the massive increase in
the amount of available data. Indeed, DDMs offers enormous flexibility and can
provide remarkably accurate predictions with relatively little computation, even
when the underlying data-generating process is not understood. However, it is well
known that these models do not generalise well, meaning that they often fail when
faced with data that is not well represented by the training data.

77
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In applications where large amounts of high-dimensional data are available (or
can be generated on demand), DNNs have been successfully applied to problems
once considered impossible to solve computationally. For example, [91] combine
DNNs and Monte-Carlo tree search to create an agent that plays Go at superhuman
levels. This approach is not limited to boardgames; [148] use a variant of this
method to greatly improve on protein-structure prediction, a very difficult problem
from computational chemistry. Within the realm of dynamical systems, [149] use
physics-incorporated convolutional recurrent NNs for dynamical systems forecast-
ing and source identification. They are also often used in RL to represent a value
function or a model for some dynamical system. The reason behind this success
is that NNs are universal function approximators. More importantly, they can be
efficiently evaluated on parallel hardware such as a graphics processing unit (GPU)
and are trained using SGD. This means that they can be scaled to very large prob-
lems. However, they require a lot of data to achieve good performance and avoid
overfitting. One hypothesis for this is that NNs are typically over-parameterised
and therefore require many steps to adjust all of the parameters. Overtraining
on the same limited dataset will cause the model to overfit the training data and
perform poorly on unseen data. While over-parameterisation has been found to
aid convergence during training [150], it also introduces redundant information
into the weights. Furthermore, there is a lack of robust theory for the analysis of
properties such as stability and robustness, and practitioners often have to fall back
on empirical testing to assure the safety of their models. Despite these advantages,
there remain some challenges before these models can find their way into high stake
or safety-critical applications.

For problems where data is scarce or expensive to procure, these drawbacks mean
that a middle ground between PBM and DDM is sought, with a preference for
more transparent linear methods that can yield more insight into the underlying
phenomena. For example, [151] use multivariate statistical methods to develop
a model of the internal state of an aluminium smelting process. We call this
approach HAM, although many other terms have been coined in the literature, such
as Informed Machine Learning [152], Scientific Machine Learning (SciML) [153],
and Structured Learning [154]. Models following this paradigm are developed at
the intersection of PBM, DDM and Big-Data (see Fig. 4.3).

A natural way to merge DDMs and PBMs is to treat them as modules and connect
them in some configuration. For example, Fig. 4.1 shows how NNs can be seen as
dense computational graphs, which can correspond to equations.
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Figure 4.1: Correspondence between equation-based models and computational graphs

4.1 Literature review
Both [155] and [156] provide comprehensive overviews of techniques for integrating
DDM with PBM. Many of the hybridisation techniques fall into the following
categories: (i) Embedding PBMs inside NNs, (ii) Model order reduction, (iii)
Physics-based regularisation terms, (iv) Data-driven equation discovery, (v) Error
correction approaches, and (vi) Sanity check mechanisms using PBMs.

4.1.1 Structural methods

The most straightforward class of methods is to simply embed a PBM into a
differentiable framework such as PyTorch [63]. For example, recent work developed
a differentiable convex optimisation solver that can be used as a module in a NN
[157]. In related work, [158] propose the differentiable physics engine, a rigid body
simulator that can be embedded into a NN. They demonstrate that it is possible
to learn a mapping from visual data to the positions and velocities of objects,
which are then updated using the simulator. The same has been done for linear
complementarity problems, which has been used to create a differentiable physics
simulator with analytical gradients [158]. Similar ideas have been used to simulate a
structural dynamics problem by designing a hybrid recurrent neural network (RNN)
that contains an implicit numerical integrator [159]. This approach can serve as a
powerful inductive bias for machine learning problems, allowing the specification
of structure and constraints. However, PBM methods are often iterative, which
increases computational costs relative to a standard NN during both training and
inference. The advantage of these approaches is that they are usually quite data-
efficient. A disadvantage is that these embedded PBMs are often iterative methods,
making both inference and training more expensive. Furthermore, iterative methods
can be difficult to train using SGD methods due to vanishing/exploding gradients
when the loop is unrolled.
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4.1.2 Model order reduction methods

Reduced order models (ROMs) are a successful and widely adopted methodology
[160]. A ROM method typically projects complex partial differential equations onto
a lower dimensional space based on the singular value decomposition of the offline
high-fidelity simulation data. This yields a set of ODEs that can be efficiently
solved [161]. ROMs have been used to accelerate high-fidelity numerical solvers
by several orders of magnitude [162]. However, ROMs tend to become unstable in
the presence of unknown/unresolved complex physics. Recent research by Pawar et
al. has shown how unknown and hidden physics within a ROM framework can be
accounted for using DNNs [163, 164]. Despite these benefits, ROMs require full
knowledge of the original equation before they can be applied.

4.1.3 Physics-based regularisation terms

Instead of encoding prior knowledge to produce increasingly complex models,
inductive biases can be introduced into the training method itself. The physics-
informed neural network (PINN) treats a NN as the solution x of a PDE [165], e.g.
Lx = f(x), where L is a linear differential operator such that Lx represents any
linear combination of derivatives of x. Every term of Lx can be computed using
automatic differentiation for a selection of sample points, and the network will con-
verge to the true solution x when optimised with the cost function (Lx− f(x))2.
This penalty term can be introduced as a soft constraint for models that are addition-
ally trained on measurement data. PINNs can be used to solve problems such as heat
transfer, as was done by Zobeiry et al. [166] for parts in a manufacturing process.
The PINN approach has also been extended to control applications by framing the
method in a state-space setting [167]. Shen et al. create a model for classifying
bearing health by training a NN on physics-based features and regularising the
model using the output from a physics-based threshold model [168]. In practice,
optimising such complex cost functions turns out to be quite challenging [169].

4.1.4 Data-driven equation discovery

Data-driven equation discovery methods attempt to describe data by constructing
equations from a dictionary of function primitives [170]. These methods are benefi-
cial when the data are described by hidden or partially known physics. The solutions
to this problem are sparse, and many methods employ feature selection based on
l1 regularisation or gene expression programming to find parsimonious solutions
[171, 172]. Other works optimise this search by trying to discover symmetries in
the data [173]. A notable work is SinDy [174], which uses compressed sensing
to approximate data using a sparse library of functions. This is useful when the
learned model needs to be interpretable and human-readable. This approach is
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arguably useful for scientific discovery as well, as it produces equations that can be
further analysed and combined with existing theories. These approaches have only
been shown to work for relatively low-dimensional examples and require significant
computational time. One of the limitations of this class of method is that, in the
case of sparse regression, additional features are required to be handcrafted, while
in the case of symbolic regression, the resulting models can often be unstable and
prone to overfitting.

Deep symbolic regression approaches ([175] and [176]) treat a NN itself as an
expression tree and optimise it directly to obtain a closed-form equation, where the
neurons in each layer have different activation functions representing the library of
allowed functions. While this can quickly fit higher dimensional data, like standard
NNs, it tends to overfit the data. While deep symbolic regression can, in theory,
express arbitrary compositions of the allowed functions, not all of these functions
are relevant, and their presence can induce overfitting. A related concept, called
physics-guided neural network (PGNN) ([177, 178, 31]), mitigates this somewhat
by only using features that appear in existing PBMs, along with standard activation
functions such as ReLU to retain the universal approximation capabilities of the
network. These functions act as a store of prior knowledge that the network can
utilise while still modelling the unknown physics as a black box. Similarly to the
PBM embedding approach, complicated features can increase the computational
cost.

4.1.5 Error correction and sanity check mechanisms

Corrective source term approach (CoSTA) is a method that explicitly addresses
the problem of unknown physics [179]. This is done by augmenting the governing
equations of a PBM with a DNN-generated corrective source term that takes into
account the remaining unknown/neglected physics. One added benefit of the
CoSTA approach is that the physical laws can be used to keep a sanity check on the
predictions of the DNN used, i.e. checking conservation laws. A similar approach
has also been used to model unresolved physics in turbulent flows [180, 181].
However, even these approaches assume a specific structure for at least the known
part of the equation.

4.1.6 Challenges

While many HAM approaches have seen some success, they suffer from various
issues, such as increased computational cost for training and inference, inconsistent
training convergence, and overfitting. See ([182, 183, 184, 185]) for more in-
depth reviews of this field. In this work, the efficacy of the CoSTA approach is
investigated, where the output of a discretised PBM is corrected by a DDM trained
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on the error of the base model. This approach is a natural way to use existing
models. For example, [186] used compressed sensing to recover the residual of a
PBM from sparse measurements, which is used to improve state estimates using
a Kalman filter. CoSTA also has theoretical justifications [179], as it is possible
to correct a variety of model errors in this way. Blakseth et al. apply CoSTA to
multiple heat transfer problems and show that CoSTA model has an inbuilt sanity
check mechanism. [179, 187]

Data-driven modelling using neural networks

NNs are dense models with many parameters. The largest networks in use today
often have more parameters than the amount of available data to train them on.
For example, the widely publicised GPT-3 model has 175 billion parameters [25].
Because of this, avoiding overfitting and getting deep learning models to generalise
is an important topic in deep learning. Methods that accomplish this are generically
referred to as regularisation [60]. Examples of such methods include weight decay
[188], dropout [189], and batch normalisation [190], all of which are essential
tools in ensuring a low generalisation error for these models. In recent years,
more and more research has shifted towards sparse architectures with significantly
fewer non-zero trainable parameters than their dense counterparts [191]. There
are many reasons for this. First of all, sparser networks are much cheaper to store
and evaluate, which is vital for practitioners wishing to deploy their models on
lower-cost hardware [192]. Secondly, recent work shows a tantalising hint that
sparse models may generalise better than their dense counterparts. In their seminal
work, [193] show with high probability that randomly initialised dense NNs contain
subnetworks that can improve generalisation compared to the dense networks.

Many regularisation methods can be expressed as a penalty function R(w) that
operates on the parameters θ of the network. The total loss function C(xi,yi,θ)
used for training the network can then be written as:

C(xi,yi,θ) = L (yi,N (xi;θ)) + λR(w) (4.1)

where the set D = {(xi,yi)}Ni=1 is the training dataset, L(·, ·) is the loss function
and λ ∈ R+ serves to trade-off L(·, ·) and R(·).
The standard choice of loss function L(·, ·) for regression tasks is the Mean squared
error (MSE):

L(xi,yi) = (xi − yi)
2 (4.2)
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In the training process, the total cost function C(·, ·) is minimized to find optimal
values of the parameters:

θ∗ = argmin
θ

{
1

N

N∑

i=1

C(xi,yi,θ)

}
. (4.3)

The most straightforward way to penalise non-sparse θ is the ℓ0 norm, often referred
to as the sparsity norm:

Rℓ0(w) = ||w||0 =
∑

i

{
1 wi ̸= 0,

0 wi = 0.
(4.4)

It is clear that ℓ0(θ) returns the number of nonzero parameters. It has been shown
that adding this regularisation term can yield unique solutions for over-determined
linear systems, which is the basis of compressed sensing [194]. However, ℓ0(θ) is
non-differentiable, making it unsuitable for gradient descent optimisation. In fact,
[195] show that this optimisation problem is NP-hard [195]. Instead, we can utilise
the ℓ1 norm, which is a convex relaxation of the ℓ0 norm and is given by:

Rℓ1(w) = ||w||1 =
∑

i

|wi| (4.5)

The ℓ1 norm sometimes does not reduce the weights to zero, but rather to very small
magnitudes. In this case, we can apply a threshold to the weights and set all weights
below this threshold to zero. This method is known as magnitude pruning and is
the simplest of a family of pruning methods [191]. Despite its simplicity, it can
reduce the computation complexity of a NN while maintaining the performance of
the model [196].

4.2 Physics guided neural networks for modelling of non-linear
dynamics

From the previous discussion, it is clear that almost all the HAM approaches dis-
cussed above require information about the structure of the equation representing
the physics, which is not always available. We often have a very simplistic under-
standing of a system. For example, we can have some understanding of the diurnal
variation of solar radiation but not of its influences on atmospheric flow. [177]
proposed a physics-guided machine learning (PGML) approach to exploit prior
knowledge of this kind. The idea behind the PGML approach is to inject partial
knowledge into one of the layers within a DNN to guide the training process. The
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Figure 4.2: Building a model requires assumptions and simplifications. The result is that
of the physics we can observe and understand; only a small part of the physics can be
described using models, and even less can be numerically simulated. In contrast, large
datasets can cover the full space, enabling general ML models to provide predictions in the
absence of understanding or models.

PBMDDM

Big data

HAM

Figure 4.3: Hybrid analysis and modelling at the intersection of PBM, DDM and Big data.

partial knowledge can, for example, come from a simplistic model or an empirical
law [178, 197].

This work extends the PGML concept to modelling nonlinear dynamical systems.
Since we limit the model space to NNs, we call the approach PGNN. Through
a series of experiments involving a variety of equations representing nonlinear
dynamical systems like Lotka-Volterra, Duffing, Van der Pol, Lorenz, and Henon-
Heiles equations, we attempt to answer the following questions:

• What are the effects of knowledge injection on training convergence?

• How does the accuracy/performance change with the choice of injection
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layer?

• Is there any correlation between model uncertainty and knowledge injection?

The proposed method’s brief background and rationale are given in Section 4.2.1.
Section 4.2.2 details the selected dynamical systems considered in our study. Finally,
the results are discussed in Section 4.2.3, and conclusions and recommendations
for future work are made in Section 4.2.4.

4.2.1 Physics-guided neural networks
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Figure 4.4: PGNN framework: The purple arrows correspond to the training phase, the
green arrows correspond to the prediction phase, and the white circles represent the data.

The basic idea behind PGNN is to generalise the Principal Component Regression
(PCR). In PCR, instead of directly regressing the dependent variable on the explan-
atory variables, the latent variables derived from the explanatory variables after
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applying Principal Component Analysis (PCA) are used as regressors. Replacing
the high dimensional explanatory variables (containing redundancy) with lower
dimensional latent variables as the input to the regression model can significantly
reduce the complexity of the regressors and make them more robust. However, two
problems are associated with PCR: (i) the latent variables computed using PCA can
only be a linear combination of the explanatory variables, (ii) The regression task is
decoupled from the latent variable computation.

In the PGNN approach, both the computation of the latent variables and the re-
gression are combined within a neural network framework with bottleneck layers
representing the latent variable layers. Additionally, the latent variables can be
supplemented with additional features (partial knowledge) to improve the accuracy
and reduce the uncertainty of the trained PGNN model. If the additional features
were combined with the explanatory features as input to the DNN, chances are high
that they would get corrupted during the training process.

We now present the rationale behind the PGNN approach to modelling nonlinear dy-
namics. Many studies have recently used deep learning to model the spatiotemporal
dynamics of high-dimensional systems [198, 199, 163]. Given some dynamical
system ẋ = f(x), a NN can be trained directly on the mapping x(·) by sampling
repeatedly from the system. After training, the network can then be numerically
integrated in order to perform predictions on the future states of the system, e.g.
by computing the forward Euler step xk+1 = xk + h f̂(xk). Consider a dataset
generated by a more general dynamical system:

Lx = f (g(x),h(x)) (4.6)

where L is a linear differential operator, and f(·), g(·) and h(·) are functions of the
state. Now, the following scenarios can arise:

1. Eq. (4.6) is fully known meaning that the operator L, and the functions f(·),
g(·) and h(·) are precisely known

2. The operator L is known but one or two of the functions f(·), g(·) and h(·)
are unknown

3. The operatorL is known, but the functions f(·), g(·) and h(·) are all unknown

4. The operator L and the functions f(·), g(·) and h(·) are all unknown

A purely PBM approach using the known equations can be applied to the first
scenario. The only advantage of DDM over PBM is possibly superior computational
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performance, which may enable real-time applications. In the second and third
scenarios, while the problem can, in theory, be solved entirely using DDM, it would
be unwise to ignore the known part completely. Incorporating them into the DDM
may simplify the learning task and improve generalisation. In the fourth scenario,
PBM is impossible, and it is necessary to model the process entirely from data.

Assume now that only h(x) is known in Eq. (4.6). Then Eq. (4.6) can be learned
using a PGNN with an h(x) injected at a hidden layer of the neural network, as
shown in Fig. 4.4. By stacking known features into an intermediate layer, they can
be utilised more effectively. The significance of which layer is used for injection is
unknown.

Here, we briefly explain the architecture of the NN and PGNN. A neural network
consists of several layers with a predefined number of neurons. Each neuron has
a weighted connection to all neurons in the previous layer and a bias term, which
amounts to an affine transformation:

zl = Wlχl−1 + bl (4.7)

where χl−1 is the output of the (l − 1)th layer, Wl is the matrix of weights rep-
resenting the incoming connection strengths the lth layer, and bl is the bias vector.
For notational simplicity we define χ0 = x. The transformed input is then passed
through a node’s activation function ζ, which is some nonlinear function. The
introduction of this nonlinearity prevents the chain of affine transformations from
simplifying and allows the neural network to learn highly complex relations between
the input and output. The output of the lth layer can be written as:

χl = ζ(zl), χ0 = x (4.8)

where ζ is the activation function. Some possible choices are the ReLU, tanh, and
sigmoid activation functions. We refer the reader to [60] for a complete overview.
If there are L layers between the input and the output in a neural network, then the
output of the neural network can be represented as follows:

ẋ = ζL
(
WL,bL, . . . , ζ2

(
W2,b2, ζ1(W

1,b1,x)
))

(4.9)

where x and ẋ are the independent and dependent variables of the system, respect-
ively. The above equation can also be written as:

ẋ = ζL(·;θL) ◦ · · · ◦ ζ2(·;θ2) ◦ ζ1(x;θ1) (4.10)
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where θ represents the weights and biases of the corresponding neural network
layer. For the PGNN framework, the information from the known part of the system
is injected into an intermediate layer of the neural network as follows:

ẋ = ζL(·;θL) ◦ · · · ◦ C (ζi(·;θi), h(x))︸ ︷︷ ︸
Known function injection

◦ · · · ◦ ζ1(x;θ1) (4.11)

where C(·, ·) represents the concatenation operation and the available information
about the system, i.e. h(x), is injected at ith layer. However, the choice of this
layer is significant, and there is currently no way to know beforehand which layer
will yield the best results. Therefore, we apply knowledge injection at each layer
and compare the results.

4.2.2 Methodology

We performed experiments on five nonlinear dynamical systems (see Examples 2.1.4
to 2.1.8) to test the applicability of the PGNN approach. These systems were chosen
because of the variety of nonlinear phenomena that they exhibit. For each system,
suitable injection terms are identified. The same NN architecture (3 hidden layers)
was used in all cases to reduce the number of experiments. The functions were then
injected with the following configurations: no injection, injection in the first layer,
second layer, and third layer. Then, ten models were trained on the data for each
injection configuration to estimate the model uncertainty.

Dynamical systems and injection terms

The dynamical systems used for these experiments are presented in more detail in
Examples 2.1.4 to 2.1.8.

The Lotka-Volterra system is presented in Example 2.1.4 and is also known as the
“predator-prey model”. The equation’s only nonlinear term is xy, which we will use
as an injection term.

The Duffing oscillator is shown in Example 2.1.5, exhibiting complicated oscillatory
behaviour. The x3 term is used for knowledge injection, and we also reuse the
cos(ωt) term to see if providing redundant features has any effect.

The Van der Pol system can be found in Example 2.1.6 and tends to a limit cycle.
The x2y term is relatively complex, and we select this for knowledge injection.

The Lorenz system (see Example 2.1.7) is a famous chaotic system with solutions
that represent a butterfly (possibly the origin of the term “The Butterfly Effect”).
The terms xy and xz are natural candidates for injection, although, for brevity, only
xy is tested.
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The Henon-Heiles system was initially developed to describe stellar motion around
the centre of a galaxy. More details can be found in Example 2.1.8. This system has
several features that can be injected. We try xy and y2, with x2 omitted because it
appears in the equation similarly to y2.

Data generation and pre-processing

For each of the five dynamical systems, we generated training data for the NNs
and a test set to judge if the trained model can generalise to previously unseen
states. A set of initial conditions x0 was manually chosen for each system, and the
corresponding trajectories were generated using the RKF45 solver with adaptive
time-stepping until a final time T . We used the implementation in the SciPy
software stack [133], which is based on the Dormand-Prince pair of formulas [200].
The resulting data were then interpolated to generate a regular time series with
timestep h. The time derivative at each data point was estimated as the forward
difference (f(x+)− f(x)) /h. The datasets can then be described as a list of pairs
D = {(xk,yk)}, where xk and yk are the kth state and time derivative respectively.
A validation set was constructed by reserving 20% of the data. The validation set is
not used to train the models but to evaluate the models’ generalisation performance
on unseen data during training. The initial conditions and other parameters used
for each system are provided in Table 4.1. The test trajectory was generated from
the last initial condition for each system, as discussed in Section 4.2.3. The total
numbers of training, validation, and test data for each system are given in Table 4.2.

Neural network architectures and training

The same network architecture was used in all cases for better comparison. The
networks were given three hidden layers with 32, 64, and 32 neurons, respectively.
This architecture was found to have a sufficiently high capacity to model all sys-
tems and is small enough to avoid overfitting. The injection was performed by
concatenating the injection term to the selected hidden layer. Each model ensemble
consisted of ten NNs, which yielded decent uncertainty estimates. The models were
implemented in TensorFlow [64] and trained using the ADAM optimiser [82] with
default parameters. The models were trained on batches of 32 samples at a time
(this number is known as the batch size) for a total of 100 epochs. An epoch is the
number of batch iterations after which the model will have trained on all data within
the training set. We describe each batch as a set of indices B ⊂ N that correspond
to data in D.

Since this is a regression problem, the mean-squared error (MSE) was utilised as a
loss function. The loss for the training batch B is then:
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Table 4.1: Parameters and initial conditions used to generate the datasets. The training set
was constructed by simulating each system with the initial conditions (IC) shown below
using Runge-Kutta-Fehlberg method (RKF45) with adaptive timestep until time T , and
then estimating the pairs (x(t), ẋ(t)) at regular time intervals of length h. 20% of these
pairs were reserved for the validation set. The test set was generated from a different initial
condition, as shown below.

System h T Test IC Train & Val. IC

Lotka-Volterra 0.05 s 200 s (5, 1)
(2, 1) (10, 1) (12, 1)
(15, 1) (20, 1) (22, 1)

(25, 1)

Duffing 0.05 s 200 s (1, 0.5)
(1, 1) (0, 1) (91, 1)

(1, 91) (0, 91) (91, 91)

Van der Pol 0.005 s 20 s (2, 95)
(0, 6) (0,−2) (91, 2)
(1, 94) (0, 0.1) (1, 3)

(92, 5)

Lorenz 0.005 s 25 s (1, 1, 95)
(1, 1, 1) (5, 1, 1)
(1, 5, 1) (1, 1, 5)
(95, 1, 1) (1, 95, 1)

Henon-Heiles 0.05 s 100 s (90.325, 0.4, 0, 0)

(0.1, 0.5, 0, 0)
(0.3, 0.4, 0, 0)
(90.35, 0.4, 0, 0)
(0.3, 90.1, 0, 0)

Table 4.2: Size of the training and validation datasets for each system. The total number of
data points can be computed from Table 4.1 as T/h× (number of ICs), and taking 20% of
the total as the validation set.

System Training data Validation data Test data
Lotka-Volterra 22400 5600 4000

Duffing 19200 4800 4000
Van der Pol 22400 5600 4000

Lorenz 24000 6000 5000
Henon-Heiles 6400 1600 2000
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LMSE(B;θ) =
∑

k∈B
∥yk − f̂(xk;θ)∥ (4.12)

where (xk,yk) is the kth pair in the dataset D, as described in Section 4.2.2.
Regularisation methods such as weight decay are used during training to prevent
overfitting. We did not encounter any overfitting issues, so we omitted regularisation
to reduce the number of comparisons.

Model evaluation

It was found that simply reporting the MSE on the test set did not clearly show how
the models performed. Therefore, we chose to report the model performance as
the MSE between a rolling forecast and the test trajectory, which we refer to as
the rolling forecast mean squared error (RFMSE). A trajectory is generated from
an initial condition during the rolling forecast stage. The forecast state at the next
time step is predicted using a forward Euler step from the previous state, starting
from the given initial condition. The timesteps showed in Table 4.1 were used.
The resulting trajectories of the model ensemble were then compared to the actual
trajectory of the system. We believe that reporting the RFMSE more accurately
reflects the actual use case of these models and makes it easier to qualitatively see
how knowledge injection can affect the predictive accuracy and model uncertainty
within each model class.

4.2.3 Results and discussion

In this section, we report the performance of the ensembles in terms of their train-
ing/validation loss, as well as the RFMSE on the test trajectory (see Section 4.2.2).
The model uncertainty within each model class is shown using 95% confidence
bounds around the average predictions. We also report the mean training and valida-
tion loss for each ensemble. The loss signals of all models were smoothed using an
exponential moving average filter using a weight of 0.2 before being averaged. The
smoothing improves the clarity of the plots and allows us to compare overall trends
between ensembles as well as the stability of the training. First, an overview of the
results is presented, and then we provide a more detailed look at the best-performing
injection term within each model class.

Overview of results

The RFMSE for each model class is visualised in Fig. 4.5. Note that the data has
been normalised due to the different scales of each test set, such that a value of 1
represents the top performer for each system. Additionally, because the predictions
of the models blow up in some cases, we compute the RFMSE on a shorter time
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interval: [25s, 70s, 2.5s, 2.5s, 15s] for the Lotka-Volterra, Duffing, Lorenz, Van der
Pol, and Henon-Heiles systems respectively. For all systems, the best-performing
ensemble on average was a PGNN, often by a significant margin. The choice of
injection layer appears to be a significant factor, although, at this stage, the data
shows no conclusive pattern. This result is surprising, as all of the nonlinear terms
show up as additive terms in the equations, and there does not appear to be a
good reason for the difference. Methods such as layer-wise relevance propagation
[201] could be adopted to interpret the impact of the choice of layer for knowledge
injection, and we consider it as part of our future work.

Figure 4.5: The relative RFMSE for all model ensembles across different systems. The
values for each system have been divided by the minimum RFMSE in each group for better
comparison, such that the top performers for each system have a value of 1. Note that
in some cases, the rolling forecasts have diverged. Because of this, we do not compute
the RFMSE on the full trajectory. Instead we use the final times [25s, 70s, 2.5s, 2.5s, 15s]
for each system respectively. The 68% confidence intervals shown here were chosen to
improve clarity while allowing for a comparison between models.
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Lotka Volterra system

Fig. 4.6 shows that injecting the xy term in any layer caused the networks to reach
a lower validation loss more quickly. This improvement was greatest when the
injection was placed in the first hidden layer. Fig. 4.7 shows the mean rolling
forecast of the ensembles with a 95% confidence interval. Injection in the first layer
significantly improves the accuracy and uncertainty of the forecast. However, the
forecast quickly blows up for the models with second and third-layer injections,
with the latter being especially pronounced.

(a) Training loss (b) Validation loss

No injection xy layer 1 xy layer 2 xy layer 3

Figure 4.6: Comparison of the training and validation loss for the Lotka-Volterra system
for different injection configurations.

Duffing system

Fig. 4.8 compares the training and validation loss of the models injected with x3

and cos(ωt) terms. Both training and validation loss are significantly improved
with the x3 injection, while cos(ωt) appears to have little effect.

The predicted trajectories for x3 models can be seen in Fig. 4.9, while the cos(ωt)
models have been omitted for brevity. Note that the figure shows a time segment
from 75s–100s to highlight the differences between the models. We observe that
knowledge injection improves the accuracy and model uncertainty in all cases, and
all ensembles perform similarly.

It is interesting that although cos(ωt) is available as an input to the network (due to
the parameterisation described in Example 2.1.5), injecting the same term changes
the RFMSE significantly, despite being redundant information. However, this is
not reflected in the training and validation loss, where the baseline model and the
models injected with cos(ωt) appear to have nearly identical training characteristics.
When forecasting over more extended periods, we found that the cos(ωt) models
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(a) No injection (b) Injection xy in the first layer

(c) Injection xy in second layer (d) Injection xy in third layer

Truth Prediction 95% conf.
x y

Figure 4.7: Rolling forecast for the Lotka-Volterra system with and without injection at
different layers. The best results are achieved through knowledge injection in the first layer.
Injecting into the second and third layers leads to more blowups.

yielded unstable predictions with a higher blow-up rate. The other models tended
to decay instead.

Van der Pol system

For this system, the functions x2y and x2 were injected in all three layers. Fig. 4.10
shows how the x2y injected models improve validation loss by 1-2 orders of
magnitude better than the model without injection.

This improvement can be understood by inspecting Fig. 4.11, which shows a rolling
forecast on the test trajectory near a fast transient. The figure shows that the models
without injection fail to capture the transient and converge to the slow dynamics
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(a) Training loss (b) Validation loss

No injection cos(ωt) layer 1 cos(ωt) layer 2 cos(ωt) layer 3

xy layer 1 xy layer 2 xy layer 3

Figure 4.8: Comparison of the training loss for the Duffing oscillator for different injection
configurations.

afterwards. The long duration of the slow dynamics likely leads to a significant
build-up of error throughout the trajectory.

Surprisingly, the ensemble without knowledge injection exhibits very low model
uncertainty. The fast and slow dynamics of the Van der Pol oscillator might again
explain this. The dataset is likely unbalanced, dominated by slower varying states
due to the longer duration of the slow dynamics. This imbalance could cause poor
performance on the fast transients, which can be seen as relatively rare events.

Fig. 4.11 shows that this is greatly improved through knowledge injection. All
injected models track the transient more closely, reach the correct value for the
slow dynamics, and the actual trajectory is within the 95% confidence intervals for
all model classes. The model uncertainty naturally increases at the transient and
appears to shrink to zero when the slow dynamics begin.

Lorenz System

The function xy was used for knowledge injection. Fig. 4.12 clearly shows that
knowledge injection improved the training convergence and final validation loss
over 100 epochs. Fig. 4.13 shows that the ensemble without injection stays close to
the actual trajectory but oscillates out of phase with the ground truth. Injection in
the first and second layers seems to reduce this lag, and the second layer injection
performs marginally better with lower model uncertainty. The predictions from the
ensemble with third-layer injections quickly diverge.
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(a) No injection (b) Injection x3 in the first layer

(c) Injection x3 in second layer (d) Injection x3 in third layer

Truth Prediction 95% conf.
x y

Figure 4.9: Rolling forecast for the Duffing oscillator with and without injection at different
layers. A small time segment from 45s–70s from the forecast is shown here to highlight the
differences between the models.

Henon–Heiles system

All models performed similarly for this system, as shown for the xy injection in
Fig. 4.15. Fig. 4.14 shows that the injected models converge slightly faster and
reach an overall lower validation loss.

4.2.4 Discussion

The physics-guided neural network PGNN framework was applied to a set of
five different dynamical systems represented by first and second-order non-linear
ordinary differential equations. Three systems had two suitable injection terms,
which were also investigated for eight system and injection terms combinations.
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(a) Training loss (b) Validation loss

No injection x2y layer 1 x2y layer 2 x2y layer 3

xy layer 1 xy layer 2 xy layer 3

Figure 4.10: Comparison of the training and validation loss for the Van der Pol oscillator
for different injection configurations.

All possible injection layers were evaluated and compared. The main conclusions
from the work are as follows:

• Knowledge injection can accelerate training and lead to better convergence.
However, knowledge injection does not guarantee performance improvement.

• Accuracy of the models can generally be improved through knowledge in-
jection. Knowledge injection helped the models capture the fast transients
for the Van der Pol system, which were relatively underrepresented in the
dataset. However, the improvements were insignificant for some problems,
e.g. the Henon-Heiles system.

• The study remains inconclusive regarding the impact of knowledge injection
on model uncertainty. We see a shrinkage in the uncertainty for the Duffing
oscillator, but for Van der Pol, we see an increase. However, it should be
stressed that lower uncertainty with poor prediction would not be desirable.

The first limitation of this work is that the choice of injection layer was found to
impact performance significantly, and the results do not show how such a choice
could be made a priori. A second limitation is that we do not propose a method to
identify relevant information to inject into the network’s hidden layers. Instead, we
tried all combinations of injection layers and terms and selected the best performers.
However, this will scale poorly for network architectures with more hidden layers or
multiple injection terms. Hyperparameter search algorithms (for example, genetic
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(a) No injection (b) Injection x2y in the first layer

(c) Injection x2y in second layer (d) Injection x2y in third layer

Truth Prediction 95% conf.
x y

Figure 4.11: Rolling forecast for the Van der Pol oscillator with and without injection at
different layers.

algorithms due to the discrete optimisation variable) may be helpful tools for choos-
ing an effective injection layer. However, this still involves training multiple models.
A more straightforward solution to both problems is to make all injection features
available to all layers via skip connections. However, preliminary results in this
direction have shown that this does not reach the same level of performance as the
best single injection layer. Combining this approach with sparsifying regularisation
may bias the network towards selecting the best injection layer and term. The role
of the injection layer could be elucidated by testing the PGNN approach with deeper
architectures and recurrent NNs. Another method that could help identify suitable
injection terms is symbolic regression based on gene expression programming. By
running a large ensemble on the data and selecting the most frequently appearing
terms, it might be possible to collect good injection terms.
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(a) Training loss (b) Validation loss

No injection xy layer 1 xy layer 2 xy layer 3

Figure 4.12: Comparison of the training and validation loss for the Lorenz system for
different injection configurations.

Extensions of PGNNs may help model more complex systems with rich dynamics
and environmental interactions. Significant assumptions are typically made about
the nature of environmental forces, and practitioners often defer to the data, e.g.
when modelling the average wind force on marine vessels [37, 202, 203]. There is
already much work where more advanced ML techniques such as RL are applied
to these systems [30]. The improved training characteristics and low overhead of
PGNNs may prove helpful in these RL contexts, where data efficiency is relatively
poor. Furthermore, the learned weighting of explicit features arguably makes the
models more interpretable, often desirable in safety-critical contexts. However,
more work is needed in this direction. PGNNs may also require fewer parameters
than conventional DNNs to model the same data, which could enable the use of
existing robustness verification algorithms [204], vastly improving confidence in
these systems during deployment.

The attractiveness of prior knowledge injection is that it generalises two of the
most common hybridisation methods: input feature engineering and output error
correction. By injecting arbitrary features into a neural network’s intermediate
layers, we open the proverbial black box and recognise its potential as a general-
purpose feature learner and feature selector powered by stochastic optimisation.

4.3 Corrective source-term approach
In this work, we extend and apply CoSTA to correct a misspecified PBM of a
complex aluminium extraction process simulation. The main contributions are:

• An extension of CoSTA to multidimensional problems: The previous works
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(a) No injection (b) Injection xy in the first layer

(c) Injection xy in second layer (d) Injection xy in third layer

Truth Prediction 95% conf.
x y z

Figure 4.13: Rolling forecast for the Lorenz system without and with injection at different
layers. Here the injection is most effective at the second layer, while the third layer injection
causes the predictions to blow up.

utilising CoSTA were limited to modelling a single state temperature in
either one or two-dimensional heat transfer. The current application of the
aluminium extraction process involves eight states.

• A successful application of CoSTA to a system with external control inputs:
None of the previous work involved any control inputs. In the current work,
five inputs are used to excite the system.

• A successful application of CoSTA to a system with complex coupling
between different states and inputs: The complex system considered here
involves eight states and five inputs which form a set of eight ordinary
equations which are highly coupled. The previous works involving heat
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(a) Training loss (b) Validation loss

No injection xy layer 1 xy layer 2 xy layer 3

y2 layer 1 y2 layer 2 y2 layer 3

Figure 4.14: Comparison of the training and validation loss for the Henon Heiles system
with different injection configurations.

transfer involved only one partial differential equation hence the potential of
CoSTA to couple problems was never evaluated earlier.

This section is structured as follows. Section 4.3.2 presents an ablated version of the
aluminium electrolysis plant from Example 2.1.3. Section 4.3.1 We then outline the
methodology of the work in Section 4.3.3, namely how the data was generated, how
the models were trained, and how they were evaluated. In Section 4.3.4, we present
the results and give a detailed discussion about the behaviour of the process and the
models. We then summarise our findings and outline future work in Section 4.3.5.

In order to investigate the applicability of CoSTA to engineering applications, we
perform a case study on an aluminium extraction process using the Hall-Héroult
process. In the following sections, we describe the underlying PBM for this system,
the fundamentals of NNs, and the CoSTA approach to HAM.

4.3.1 Corrective source term approach

This section outlines the CoSTA approach, illustrated in Fig. 4.16. Suppose we
want to solve the following general problem:

Lx = f(x,u) (4.13)

where L is a differential operator, x is the unknown state of the system that we
wish to compute, and f(·, ·) is a source term that depends on the state x and external
inputs u(t).
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(a) No injection (b) Injection xy in the first layer

(c) Injection xy in second layer (d) Injection xy in third layer

x y ẋ ẏ

Truth Prediction 95% conf.

Figure 4.15: Rolling forecast for the Henon-Heiles system without and with xy injection
at different layers. Injecting functions appear to aid the learning of this system significantly.
The best results are achieved by into the last hidden layer.

Assume now that we have a PBM designed to predict x, and let x̃ denote the PBMs
prediction of the actual solution x. If x̃ ̸= x, there is some error in the PBM, and
this error must stem from at least one of the following misspecifications in the
model:

1. Incorrect f in Eq. (4.13), replaced by f̃ .

2. Incorrect L in Eq. (4.13), replaced by L̃ .

3. A combination of the above.

4. Discretisation of L , replaced by LD1.
1Derived using, for example, finite differences. This step is necessary when Eq. (4.13) lacks
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CoSTA

L̃x̂ = f σ+

PBM DDM

Figure 4.16: CoSTA combines PBM and DDM into a unified model by adding a NN
-generated corrective source term to the governing equation of the PBM.

Note that case 4 is also mathematically equivalent to misspecifying L . For example,
∂
∂t could be approximated using a forward finite difference. We can write this
using the difference operator ∆h, such that h is the time step and 1

h∆h f(t) =
(f(t+ h)− f(t)) /h. We can therefore limit our discussion to Cases 1 and 2
without loss of generality.

Suppose now that the PBM -predicted solution x̃ is given as the solution of the
following system:

L̃ x̃ = f̃ (4.14)

This formulation encompasses both Case 1 (L̃ = L and f̃ ̸= f ), Case 2 ( L̃ ̸= L
and f̃ = f ), and combinations thereof (for L̃ ̸= L and f̃ ̸= f ). Furthermore,
suppose we modify the system above by adding a source term σ̂ to Eq. (4.14) and
let the solution of the modified system be denoted ˆ̃x. Then, the modified system
reads

L̃ ˆ̃x = f̃ + σ̂ (4.15)

and the following theorem holds.

Theorem 4.3.1. Let ˆ̃x be a solution of Eq. (4.15), and let x be a solution of
Eq. (4.13). Then, for both operators L̃ , L and both functions f , f̃ , such that ˆ̃x and
x are uniquely defined, there exists a function σ such that ˆ̃x = x.

Proof. Define the residual σ of the PBMs governing Eq. (4.14) as:

σ = L̃x− f̃ . (4.16)

Instead of defining the residual in terms of the approximate solution (e.g. as is
done in truncation error analysis [205]), we define σ by inserting the solution into

analytical solutions, which is almost always the case.
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Eq. (4.13). If we set σ̂ = σ in Eq. (4.15), we then obtain:

L̃ ˆ̃x = f̃ + σ̂ (4.17)

= f̃ + L̃x− f̃ (4.18)

= L̃x (4.19)

=⇒ ˆ̃x = x+ c (4.20)

where c is a function of independent variables. We can eliminate c by setting
appropriate boundary conditions.

This proof shows that we can always find a corrective source term σ̂ that com-
pensates for any error in the PBMs governing Eq. (4.14) such that the solution ˆ̃x of
the modified governing Eq. (4.15) is equal to the actual solution x. This observation
is the principal theoretical justification of CoSTA.

4.3.2 Ablated physics-based model for aluminium extraction

We test the approach using the aluminium electrolysis system presented in Ex-
ample 2.1.3. As previously discussed, we are interested in modelling scenarios
where the PBM does not capture the complete underlying physics of the system.
This case is illustrated in Fig. 4.2(a), where the black background represents unob-
servable physical phenomena not adequately explained by available theory. The
orange ellipse represents physics ignored due to assumptions. The red ellipse cor-
responds to resolved physics after solving PBM numerically, while the blue ellipse
corresponds to the modelled physics.

The model presented in Eq. (2.11) makes some simplifications compared to the
actual process of aluminium electrolysis. Firstly, we only model the heat transfer
through the side walls, assuming that the heat flow through the top and bottom
of the plant is negligible in comparison. The model may thus overestimate the
internal temperatures, and the required power input through the line current u2
may be slightly lower than in practice. Secondly, the spatial variations of the state
variables are not considered. Instead, only the average values of the states, such
as the side ledge temperature, or cumulative values, such as the mass of the side
ledge x1, are computed. Routine operations such as the alumina feeding and anode
replacement disturb the local thermal balance and cause local thermal imbalances
[206]. Modelling these local variations would require knowledge of, e.g. the mass
transfer inside the cell due to the flow patterns, velocity fields in the bath, and
current distribution. These phenomena (corresponding to the orange ellipse of
Fig. 4.2(a)) are challenging to model and measure and are therefore omitted to
reduce complexity.
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For this case study, we use simulation data generated from Eq. (2.11) to validate
the CoSTA method. To that end, we simplify further: we ignore Eq. (2.12a) and set
the liquidus temperature g1 to a constant.

g1,PBM = 968◦C (4.21)

We refer to the resulting model as the ablated PBM . This choice was made because
the model is sensitive to errors in g1. Inspecting Eq. (2.11) shows that the ablated
PBM will incorrectly predict the evolution of [x1, x4, x6, x7, x8]. As we will see
later in Section 4.3.4 and Fig. 4.20, this can lead to errors of roughly 5◦C in g1, and
500kg in the side ledge mass x1 (a relative error of 10%). The case study aims to
develop a DDM to correct the ablated PBM using measurement data sampled from
the actual model.

4.3.3 Method and experimental setup

In this section, we explain how we generated the data, how the data was divided
into training, validation and test sets, and how the models were evaluated.

Data generation and preprocessing

The dynamical system data is generated by integrating the set of non-linear ODEs
in Eq. (2.11) representing the system dynamics using the fourth-order numerical
integrator Runge-Kutta 4 (RK4) with a fixed timestep ∆T = 10s. One time-series
simulation starts at an initial time t0 with a set of initial conditions x(t0) and last
until a final time T = 5000×∆T . For the slow dynamics of the aluminium process,
a sampling time of 10s turns out to be sufficiently fast with negligible integration
errors. Higher sampling frequencies would lead to unnecessary high computational
time and large amounts of simulation data. The initial conditions for each trajectory
were uniformly sampled from the ranges shown in Table 4.3. Each simulation
generates a set of trajectories with 8 states and 5 inputs. Forty simulated trajectories
are used for training the models, and 100 simulated trajectories are used as the test
set. This relatively large number of test cases was chosen to allow us to explore the
statistics of how the model performs.

Fig. 4.17 shows the time series evolution of the entire training set and test set. The
training set trajectories are blue, while the test set trajectories are orange. The
figures show that the ranges of the training and test sets are similar, indicating that
models are evaluated on interpolation cases in the test set.

Estimation of the time derivative

The ODEs in Eq. (2.11) are time-invariant. This means that at time k + 1, ẋk+1

in general only depends on the current state and input (xk,uk) at time k. In other
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Figure 4.17: Training and test set trajectories of the system states. Only ten random sample
test trajectories are shown here for clarity.
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words, the system has the Markov property. Therefore, the datasets are listed in
pairs D = {(xk,yk)} = {(xk,uk), ẋk}. The Markov assumption does not always
hold in practice, and the state vector must therefore be augmented with additional
information, i.e. lookback states from previous time steps. Takens’ Theorem
gives an upper bound on the number of necessary lookback states [207]. The time
derivatives at time k are estimated as the forward difference ẋk = (xk+1 − xk)/h,
where h is the time step. A value of h = 10s is used. This numerical derivative
induces a discretisation error. However, since the dynamics of the aluminium
electrolysis is slow, this error is considered negligible. Because the systems are
driven by an input signal u, we must choose a value for uk at each time step. This
choice will significantly affect the variation in the dataset.

Table 4.3: Initial conditions for system variables. For x2 and x3, concentrations cx2 and
cx3 are given.

Variable Initial condition interval
x1 [2060, 4460]
cx2 [0.02, 0.05]
cx3 [0.09, 0.13]
x4 [11500, 16000]
x5 [9550, 10600]
x6 [940, 990]
x7 [790, 850]
x8 [555, 610]

Input signal generation

While machine learning models are beneficial for function approximation and
interpolating data, they do not always extrapolate correctly. The quality and variety
of the training data are significant factors and must therefore cover the intended
operational space of the system. Here, the operational space means the region of the
state space in which the system operates, meaning state and input vectors [x⊤,u⊤]⊤

observed over time. The data should capture the different nonlinear trends of
the system covered by the operational space. For systems without exogenous
inputs, variation can only be induced by simulating the system with different initial
conditions x(t0). The initial conditions are generated similarly for systems with
exogenous inputs. Moreover, the input vector u will excite the system dynamics.
The aluminium process has a feedback controller that ensures safe and prescribed
operation. However, operational data from a controlled, stable process is generally
characterised by a low degree of variation, which is insufficient for effective system
identification. A well-known convergence criterion for identifying linear time-
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invariant systems is persistency of excitation (PE). A signal x(tk) is PE of order
L if all sub-sequences [x(tk), . . . ,x(tk + L)] span the space of all possible sub-
sequences of length L that the system is capable of generating. While the PE
criterion is not directly applicable to nonlinear systems, sufficient coverage of the
dynamics is required for successful system identification [4, 208].

We add random perturbations to the control inputs to push the system out of its
standard operating conditions. In general, each control input i is given by:

ui = Deterministic term + Random term (4.22)

The control inputs u1, u3 and u4 are impulses. The random term is zero for
these control inputs when the deterministic term is zero. The deterministic term
is a proportional controller. The control inputs u2 and u5 are always nonzero.
These control inputs have constant deterministic and random terms that change
periodically. The random term stays constant for ∆Trand seconds before changing
to a new randomly determined constant.

Choosing the period ∆Trand balances different objectives. On the one hand, in-
creasing the period ∆Trand is desirable to stabilise and evolve to reveal the system
dynamics under the given conditions. On the other hand, it is desirable to test
the systems under many different operational conditions. By empirically testing
different periods ∆Trand and seeing how the dynamics evolve in simulation, it
turns out that setting ∆Trand = 30∆T is a fair compromise between the two. In
this study, we generate the random disturbances using the Amplitude-modulated
Pseudo-Random Binary Signal (APRBS) method [209]. Table 4.4 gives the nu-

Table 4.4: Equations used to control the aluminium process

Input Deterministic term Random term interval ∆Trand
u1 3 · 104(0.023 9 cx2) [92.0, 2.0] ∆T
u2 1.4 · 104 [97 · 103, 7 · 103] 30 ·∆T
u3 1.3 · 104(0.105 9 cx3) [90.5, 0.5] ∆T
u4 2(x5 9 104) [92.0, 2.0] ∆T
u5 0.05 [90.015, 0.015] 30 ·∆T

merical values of the deterministic term of the control input, the interval of values
for the random terms, and the duration ∆Trand of how long the random term is
constant before either becoming zero (u1, u3, u4) or changing to a new randomly
chosen value (u2, u5).
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Training

The models were trained on the training set using the total-loss function shown in
Eq. (4.1), where the loss function L(·, ·) is the MSE as shown in Eq. (4.2). Four
different model types were compared:

• Dense NN

• Sparse NN

• PBM + Dense NN

• PBM + Sparse NN

The dense networks were trained with λ = 0, and sparse networks with λ = 10−4.
The architecture of all networks was [13, 20, 20, 20, 20, 8] (13 inputs, eight outputs,
four hidden layers with 20 neurons each) . The ReLU activation function was
used for all layers except the output layer, which had no activation function. The
same architecture was used for all networks for a fairer comparison. All models
were trained for 100 epochs (an epoch is defined as one complete pass over the
dataset). The ADAM optimiser [82] was used with the following default parameters:
Initial learning rate η = 103, Gradient forgetting factor β1 = 0.9, and Gradient
second-moment forgetting factor β2 = 0.999.

Performance metrics

This work will focus on long-term forecast error as a performance measure. The
initial condition x(t0) is given to the models. Then the consecutive n time steps
of the states are estimated {x̂(t1), ..., x̂(tn)}, refered to as a rolling forecast. The
model estimates the time derivatives of the states dx̂i/dt based on the current state
x(ti) and control inputs u(ti) and initial conditions x0 = x(t0), or the estimate of
the current state variables x̂(ti) if t > t0:

dx̂(ti)

dt
=

{
N (x̂(ti), u(ti)) , if ti > t0

N (x0(ti), u(ti)) , if ti = t0
(4.23)

Then, the next state estimate x(ti+1) is calculated as:

x̂(ti+1) = x̂(ti) +
dx̂(ti)

dt
·∆T (4.24)

The rolling forecast can be computed for each state xi for one set of test trajectories
Stest. However, presenting the rolling forecast of multiple test sets would render
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the interpretation difficult. By introducing a measure called Average Normalised
Rolling Forecast Mean Squared Error (AN-RFMSE) that compresses the informa-
tion about model performance, the models can quickly be evaluated on many test
examples. The AN-RFMSE is a scalar defined as:

AN-RFMSE =
1

p

p∑

i=1

1

n

n∑

j=1

(
x̂i(tj)− xi(tj)

std(xi)

)2

, (4.25)

where x̂i(tj) is the model estimate of the simulated state variable xi at time step
tj , std(xi) is the standard deviation of variable xi in the training set Strain, p = 8
is the number of state variables and n is the number of time steps the normalised
rolling forecast MSE is averaged over. Hence, for every model Nj and every test
set time series Stest(i), there is a corresponding AN-RFMSE.

4.3.4 Results and discussion

Ten instances of the 4 model types were trained on the same dataset for uncertainty
quantification. Only one instance of the ablated PBM was used as defined in
Section 4.3.3. All model instances were evaluated on 100 test trajectories, yielding
4100 data points. Some of the model forecasts were found to blow up. We set a
threshold where a blow-up is defined as when the final predicted state’s normalised
MSE exceeds 3. Fig. 4.18 shows a violin plot of the AN-RFMSE for all model
types, without the blow-ups. The AN-RFMSE is shown at three different times to
demonstrate all model types’ short-term, medium-term, and long-term performance.
Fig. 4.19 shows the frequency of blow-ups for each model type. These results
show that on average, all DDM and CoSTA models have a lower RFMSE than
the ablated PBM in the short and medium term. However, we still observe that all
DDM and CoSTA models experience some blow-ups in the long term, which the
PBM model does not. The dense DDM fared the worst, as 27.3% of the forecasts
were found to result in blow-ups in the long term. The sparse DDM marginally
improves on the RFMSE, but we found that the blow-up rate was significantly
reduced in the long term compared to the dense DDM. Both dense and sparse
CoSTA models were significantly more accurate than the DDM models. The sparse
CoSTA had similar accuracy to the dense CoSTA models in the short and medium
term. However, the sparse CoSTA model had no blow-ups in the short and medium
term and had half the blow-up rate of the Sparse DDM in the long term. These
experiments demonstrate that CoSTA can reliably correct misspecified PBMs and
improves predictive stability compared to end-to-end learning. The base PBM does
not exhibit any blow-up issues, implying that the blow-ups can be attributed to
using NNs. If long-term forecasts are required (> 3000 timesteps), we recommend
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Figure 4.18: Violin-plot of the AN-RFMSE for all model types for 100 different initial
conditions and inputs signals. The width of the bar reflects the distribution of the data points,
and the error bars represent the range of the data. The error is shown after three different
times to compare the short, medium, and long-term performance. We trained ten different
instances for each model type for statistical significance. We see that CoSTA improves the
predictive accuracy over the whole trajectory. Introducing sparse regularisation appears to
improve performance for DDM. However, it only appears to affect CoSTA models in the
long term, where sparse CoSTA appears to have less variance.

combining the CoSTA approach with a sanity check mechanism to detect potential
blow-ups.

Fig. 4.20 shows the mean predictions for each model type for a representative
test trajectory, along with a 99.7% confidence interval to show the spread of the
predictions from the ten instances of each model type. For better clarity, only
the sparse models are shown due to their superior performance compared to their
dense counterparts. Before discussing the differences between the models, we will
describe the system’s dynamics and how the incorrect PBM behaves in comparison.

First, note that all variables are non-negative, as they reflect different physical
quantities in the system, i.e. mass, temperature, and current. Inspecting Eq. (2.11),
we see that the states x2, x3, and x5 are linearly dependent on u1, u2, u3, and u4.
We refer to these as the linear states, and the rest as the nonlinear states.
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Figure 4.19: Bar chart of the number of times model estimates blow up and diverges. The
plot contains 100 initial conditions and input signals for all model types. The number
of blow-ups was counted after three different times to compare the performance in the
short, medium, and long term. We trained ten different instances for each model type for
statistical significance. We see that applying CoSTA can increase the predictive stability in
the long term. That is, the number of blow-ups for CoSTA models is far less than for DDM.
However, PBM does not suffer from significantly fewer blow-ups than CoSTA.

Liquidus temperature

Fig. 4.20(i) shows the true liquidus temperature g1 (in black) and the constant PBM
estimate of the liquidus temperature (in red dotted line). The liquidus temperature
g1, which is the temperature at which the bath solidifies, is determined by the
chemical composition of the bath. That is, g1 is determined by the mass ratios
between x2, x3, and x4. The fact that PBM assumes g1 to be constant induces
modelling errors for the PBM.

Mass of side ledge

Fig. 4.20(a) shows the mass x1 of frozen cryolite (Na3 Al F6) which makes up the
side ledge. The solidification rate ẋ1 is proportional to the heat transfer Qliq−sl
through the side ledge (Qliq−sl ∼

(
g1−x7
x1

)
) minus the heat transfer Qbath−liq

between the side ledge and the bath (Qbath−liq ∼ (x6 − g1)). The solidification
rate ẋ1 is dependent on the value of g1, and therefore the PBM incorrectly predicts
the mass rate ẋ1. In Fig. 4.20(a), we see that the PBM modelling error for x1
starts to increase after approximately one hour. At the same time, the actual
liquidus temperature g1 drifts away from the constant PBM estimate of g1, see
Fig. 4.20(i). As we can see, the PBM overestimates g1. Therefore, the PBM will
also overestimate the heat transfer out of the side ledge, leading to an overestimate
of the amount of cryolite that freezes and hence an overestimate of the increase
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in side ledge mass. However, this modelling error is limited by the effect that an
increased side ledge mass (and therefore increased side ledge thickness) leads to
better isolation. Thus, the PBM estimate of the heat transfer through the side ledge
Qliq−sl is inversely proportional to the x1 estimate, and the modelling error of x1
reaches a steady state for a constant modelling error in g1. In addition to modelling
errors due to errors in the g1 estimate, modelling errors of x6 and x7 propagate as
modelling errors in ẋ1.

Both the mean of DDM and the mean of CoSTA models appear to predict the
response of x1 correctly. However, both model classes show a growing spread.
While the error spread of both model classes appears to grow over time, the DDM
error grows roughly twice as fast. Furthermore, both CoSTA and DDM show some
cases where the error bound becomes significantly large, meaning that one or more
models fail. These cases appear more frequently for the DDM models, and the
errors are more significant than for the CoSTA models. Figs. 4.20(f) and 4.20(g)
shows that these error peaks often coincide with the peaks in the bath temperature
x6 and the side ledge temperature x7.

Mass of alumina

Fig. 4.20(b) shows the mass x2 of aluminium in the bath. Eq. (2.11) shows that ẋ2
(mass rate of Al2O3) is proportional to u1 (Al2O3 feed), and negatively proportional
to u2. Fig. 4.20(b) shows that this yields a saw-tooth response that rises as u1
spikes, and decays with a rate determined by u2. This state has no dependence on
g1 nor other states that depend on g1. Therefore the PBM (and CoSTA predict this
state with no error. On the other hand, the spread of the DDM models grows over
time, with the mean error eventually becoming significant.

Mass of aluminium fluoride

The x3 state (mass of Al F3) acts as an accumulator, rising when Al F3 is added to
the process (u3 spikes), and falling when Al2O3 is added to the process (u1 spikes).
The latter is caused by impurities (Na2 O) in the Alumina (Al2 O3) reacting with
Al F3, generating cryolite (Na3 Al F6). The latter effect is relatively small, as seen
in Fig. 4.20(c). Despite this, the DDM models these decreases correctly. However,
the DDM models become less and less accurate as time passes. The PBM and
CoSTA model x3 with no error.

Mass of molten cryolite

The state x4 represents the mass of molten cryolite in the bath, where ẋ4 =
k5u1 − ẋ1. The first term represents additional cryolite generated by reactions
between impurities in the added alumina (u1) and AlF3 (x3). The second term
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describes how the cryolite can freeze (x1) on the side ledge, which can melt again
as the side-ledge temperature x7 increases. As seen in Fig. 4.20(d), the response
of x4, therefore, mirrors that of x1, with relatively small upturns when alumina is
added (u1). Inspecting Fig. 4.20a, we see that the models have identical behaviour.
Incorrectly estimating x4 causes some issues. The mass ratio cx2 (see Table 2.1) is
essential in terms of determining the cell voltage Ucell. A forecasting error of x4
will propagate as a forecasting error of cx2 , leading to inaccurate estimates of the
cell voltage Ucell. This point is elaborated when discussing the bath temperature
x6.

Mass of produced metal

The state x5 has linear dynamics with a saw-tooth characteristic, growing at a rate
proportional to the line current (u2) and falling when metal is tapped (u4 spikes).
Looking at Fig. 4.20(e), the DDM models have similar error dynamics to the other
linear states, while the PBM and CoSTA models have virtually no error.

Temperature of the bath

The bath temperature x6 has several possible sources of PBM modelling errors. As
discussed earlier, since the PBM overestimates the side ledge thickness due to a
modelling error of g1, it follows that the PBM overestimates the thermal insulation
of the side ledge and the bath temperature, as the heat transfer out of the bath is
underestimated. In Fig. 4.20(f), we see this overestimate of x6 provided by the PBM
after approximately one hour, simultaneously as the PBM starts to overestimate the
side ledge mass x1.

Furthermore, the change in bath temperature ẋ6 is determined by the energy balance
in the bath. The energy balance in the bath consists of several components, namely
the electrochemical power Pel which adds energy to the system, the heat transfer
from the bath to the side ledge Qbath−sl which transports energy out of the bath,
and the energy Etc,liq required to break inter-particle forces in the frozen cryolite
liquidus temperature. The electrochemical power Pel = Ucell · u2 is the product
of the cell voltage Ucell and the line current u2. The cell voltage is given by
Ucell =

(
g5 +

u2u5
2620g2

)
, where g5 is the bubble voltage drop, and u2u5

2620g2
is the

voltage drop due to electrical resistance in the bath. The bubble voltage-drop g5
increases exponentially when the operation gets close to an anode effect. Anode
effects occur when the mass ratio of alumina - cx2 is reduced to the critical mass
ratio of alumina cx2,crit ∼ 2. Anode effects can explain the error peaks in the x6
estimate, which are most present for the DDM models. Fig. 4.20(f) shows the peaks
of the error band for the DDM happen simultaneously with overestimates of x4 (see
Fig. 4.20(d)), indicating that the DDM wrongly predict anode effects in these cases.
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Moreover, the voltage drop due to electrical resistance is given by u2u5
2620g2

, where u2
is the line current, u5 is the anode-cathode distance, 2620[m2] is the total surface
of the anodes and g2 is the electrical conductivity. Within reasonable operational
conditions, 1

g2
can be approximated as a function that increases linearly with

the increasing mass ratio of alumina cx2 . The modelling error in x4 can therefore
propagate to x6. After approximately eight hours, the error bound of CoSTA models
shows that one of the models overestimates x6, followed by an underestimate of
x6. A possible explanation is that the CoSTA model first erroneously predicts the
anode effect. The underestimate of x6 that instantaneously follows can be caused
by an underestimate of cx2 that is lower than cx2,crit, which leads to negative Pel
values in the model.

Temperature of the side ledge

The change in temperature of the side ledge ẋ7 is determined by the heat balance
in the side ledge. That is, the heat transfer from the bath to the side ledge Qliq−sl,
the heat transfer from the side ledge to the side wall Qsl−wall, and the energy
Etc,sol required to heat frozen side ledge to liquidus temperature from side ledge
temperature. The change of side ledge temperature depends on the side ledge
thickness x1, the bath temperature x6, the side ledge temperature x7, the wall
temperature x8 and the liquidus temperature g1. As argued above, for the PBM
modelling errors in x1, x6, x7, x8, and g1 will propagate as modelling errors in
the side ledge temperature change ẋ7. For the DDM and CoSTA models, the error
bounds for the modelling errors of x7 shown in Fig. 4.20(g) are mainly growing
simultaneously with error spikes in x6, presumably caused by erroneously predicted
anode effects, as explained above.

Temperature in the wall

Fig. 4.20h shows that the temperature of the side wall x8 changes according to the
heat transfer from the side ledge to the wall Qsl−wall, and the heat transfer from
the wall to the ambient Qwall−0. Changes in the wall temperature ẋ8 depend on the
side ledge temperature x7, the wall temperature x8, and the side ledge thickness x1.
PBM modelling errors of these states at time k propagate as modelling errors in the
side wall temperature x8 in the next time step, k + 1. Hence, the PBM will, with
correct inputs, always model the correct ẋ8 since the PBM model of ẋ8 is equal to
the simulator.

4.3.5 Conclusions and future work

In this work, we presented a recently developed approach in modelling called the
Corrective Source Term Approach CoSTA. CoSTA belongs to a family of HAM
tools where PBM and DDM are combined to exploit the best of both approaches
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Figure 4.20: Rolling forecast of a representative test trajectory. 10 CoSTA models with
sparse corrective NNs, 10 DDMs consisting of sparse NN models, as well as a PBM, are
predicting the test set trajectories given the initial conditions and the input vector at any
given time.
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while eliminating their weaknesses. The method was applied to model an aluminium
extraction process governed by very complex physics. First, ground-truth data were
collected using a detailed high-fidelity simulation. Then, an ablated model was
created by setting an internal variable of the simulator to a constant. Finally, the
ablated model was supplemented with a corrective source term modelled using a
NN that compensated for the ignored physics. The main conclusions from the study
are as follows:

• CoSTA, in all the scenarios investigated, could correct for the ignored physics
and was consistently more accurate than both the PBM and DDM over a
reasonably long time horizon.

• CoSTA was consistently more stable and consistent in predictions compared
to pure DDM.

• Regularizing the networks using ℓ1 weight decay was effective in improving
model stability in both DDM and CoSTA.

One significant benefit of the CoSTA approach is that it can maximise the utilisation
of domain knowledge, only using black-box DDM to handle physics that are not
well known. Although it remains to be investigated in future work, it can be
expected that much simpler models will be sufficient for modelling the corrective
source terms. These source terms can then be investigated to achieve additional
insight giving more confidence in the model. Even if it is not possible to interpret
the source terms, it should still be possible to place bounds on their outputs using
domain knowledge. These bounds can then be used as an inbuilt sanity check
mechanism. For example, since we know the amount of energy put into the system,
the source terms for the energy equation will be bounded, so any NN -generated
source term violating this bound can be confidently rejected, making the models
more attractive for high-stake applications like the one considered here. Another
topic worth investigating is the robustness of the method to noise.

4.4 Sparse neural networks with skip-connections for nonlinear
system identification

Recent research has found that using sparser networks may be the key to training
models that can generalise across many situations. One hypothesis is that NNs
are typically over-parameterised and require many training iterations to adjust all
parameters. However, overtraining the models on the same limited dataset will lead
to overfitting and poor performance on unseen data. While over-parameterisation
has been found to aid convergence during training [150], it also introduces redundant
information into the weights. In particular, [193] showed empirically that for any
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dense architecture, there is a high probability that a sparse subnetwork will train
faster and generalise better than the dense network. This statement is known as the
Lottery Ticket Hypothesis. Many sparsification methods can be seen as attempts
to extract such a “winning lottery ticket” from an initially dense network. There
have been numerous advances in this field, and we refer to [191] for a recent and
comprehensive review. The well-known ℓ1 regularisation is used to induce weight
sparsity in the model.

Another challenge related to using NNs is the choice of architecture and hyper-
parameters. Typical networks have multiple layers which are densely connected,
although this can vary between domains. Choosing an appropriate architecture in-
volves trial and error to improve performance and avoid overfitting. It is commonly
understood that the early layers of a neural network significantly impact the overall
performance. However, deep networks often suffer from the vanishing or exploding
gradient problem, which prevents effective training of these early parameters [60].
Skip-connections were initially proposed to circumvent this by introducing a shorter
path between the early layers and the output [62]. The method enabled the training
of significantly deeper networks, but [210] also demonstrated that they may help
improve training convergence.

In dynamical systems and control, models are often developed with a purpose, i.e.
designing a control system or state observer. Crucially, we are interested in the
behaviour and performance of the controlled system in terms of objectives such as
energy efficiency or yield. Accordingly, the model does not need to be perfectly
accurate for the entire state space so long as the resulting closed-loop performance
is sufficient. This methodology is sometimes called identification for control (I4C).
If high-frequency measurements from the system are available, only the short-term
behaviour of the model is essential since any drift out of the operational space is
quickly corrected. However, if measurements are rarely available, such as in the
aluminium electrolysis process that we consider, the long-term model behaviour
and open-loop stability become much more critical. Stable long-term predictions
are also crucial for effective decision-making.

In this work, we investigate the effects of adding skip connections and ℓ1 regular-
isation on the accuracy and stability of these models for short, medium, and long
horizons. We address the following questions:

• How do skip connections affect the stability and generalisation error of NNs
trained on high-dimensional nonlinear dynamical systems?

• How does sparsity affect stability and generalisation error for NNs with skip
connections when modelling nonlinear dynamics?
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• How does the amount of training data affect NNs with skip connections
compared to NNs without skip connections?

We make the following contributions:

• We perform a black box system identification of an aluminium electrolysis
cell using different NN architectures.

• We demonstrate that the accuracy and open-loop stability of the resulting mod-
els is greatly improved by using ℓ1 weight regularisation and incorporating
skip connections into the architecture.

• This advantage is consistent across datasets of varying sizes.

We evaluate NNs for nonlinear system identification by first training them on
synthetic data generated from a known PBM. The model we will use is presented in
Example 2.1.3, which describes the internal dynamics of an aluminium electrolysis
cell based on the Hall-Héroult process. Fig. 2.1 shows a diagram of the electrolysis
cell. Traditional PBMs of such systems are generally constructed by studying the
mass/energy balance of the chemical reactions.

4.4.1 Deep neural network with skip connections

A NN with L layers can be compactly written as an alternating composition of
affine transformations Wz+ b and nonlinear activation functions σ : Rn 7→ Rn:

N (z) = NL ◦ · · · ◦ N2 ◦ N1

Ni(z) = σ[i](W[i]z+ bi),
(4.26)

where the activation function σ[i], weight matrix W[i], and bias vector bi corres-
pond to the ith layer of the network. The universal approximation property of
NNs makes them attractive as a flexible model class when many data are available.
The representation capacity is generally understood to increase with depth and
width (the number of neurons in each layer). However, early attempts to train
deep networks found them challenging to optimise using backpropagation due to
the vanishing/exploding gradients problem. One of the major developments that
enabled researchers to train deep NNs with many layers is the skip connection. A
skip connection is simply an additional inter-layer connection that bypasses some
of the layers of the network. This “shortcut” provides alternate pathways through
which the loss can be backpropagated to the early layers of the NN, which helps
stabilise the gradients. In this work, we utilise a modified DenseNet architecture
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proposed by Huang et al. [211], where the outputs of earlier layers are concatenated
to all the consecutive layers. We simplify the structure such that the model only
contains skip-connections from the input layer to all consecutive layers. We call
this architecture InputSkip, which has reduced complexity compared to DenseNet.
This design is motivated by the fact that the output of each layer (including the final
output) becomes a sum of both a linear and a nonlinear transformation of the initial
input x. Hence, the skip connections from the input layer to consecutive layers
facilitate the reuse of the input features for modelling different linear and nonlinear
relationships more independently.

4.4.2 Method and setup

In this section, we present all the details of data generation, preprocessing, and the
methods required to reproduce the work. The steps can be briefly summarised as
follows:

• Use Eq. (2.11) with random initial conditions to generate 140 trajectories with
5000 timesteps each. Set aside 40 for training and 100 for testing. Construct
three datasets by selecting 10,20, and 40 trajectories, respectively.

• For each model class and dataset, train ten instances on the training data.

• Repeat all experiments with ℓ1 regularisation, see loss function in Eq. (4.27).

• Use trained models to generate predicted trajectories along the test set and
compare them to the 100 test trajectories.

Data generation

Eq. (2.11) was discretised using the RK4 scheme with a fixed timestep h = 10 s
and numerically integrated on the interval [0, 5000h]. We used uniformly randomly
sampled initial conditions from the intervals shown in Table 4.5 to generate 140
unique trajectories. We set aside 40 trajectories for training and 100 of the traject-
ories as a test set. The 40 training trajectories were used to create three datasets
of varying sizes (small, medium, large), namely 10, 20, and 40 trajectories. The
datasets contained 50000, 100000, and 200000 individual data points.

Eq. (2.11) also depends on the input signal u. In practice, this is given by a
deterministic control policy u = π(x) that stabilises the system and keeps the state
x within some region of the state space that is suitable for safe operation. However,
data collected using the deterministic policy was insufficient to successfully train
our models because the controlled trajectories showed minimal variation after some
time, despite having different initial conditions. This lack of diversity in the dataset
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resulted in models that could not generalise to unseen states, which frequently arose
during evaluation. To inject more variety into the data and sample states x outside
of the standard operational area, we used a stochastic controller

πs(x) = π(x) + r(t)

that introduced random perturbations r(t) to the input. These perturbations were
randomly sampled using the APRBS method [209, 208].

In system identification, it is typical to optimise the model to estimate the function
ẋ = f(x,u). However, this is not feasible for Eq. (2.11) because the inputs u are
not differentiable. Instead, we discretise the trajectories using the forward Euler
difference and use this as the regression variable:

yk =
xk+1 − xk

h

The datasets are then constructed as sets of the pairs ([xk,uk],yk).

Table 4.5: Initial conditions intervals for x

Variable Initial condition interval
x1 [2060, 4460]
cx2 [0.02, 0.05]
cx3 [0.09, 0.13]
x4 [11500, 16000]
x5 [9550, 10600]
x6 [940, 990]
x7 [790, 850]
x8 [555, 610]

Training setup

We optimise the models by minimising the following loss function using stochastic
gradient descent:

J(B,θ) = 1

|B|
∑

i∈B
(yi −N (xi,ui))

2 + λ

L∑

j=1

|W[j]| (4.27)

where B is a batch of randomly sampled subset of indices from the dataset, L is
the number of layers of the NN, and λ is the regularisation parameter. This loss
function is the sum of the MSE of the modelN w.r.t. the regression variables y, and
the ℓ1 norm of the connection weight matrices W[i] in all layers. We used a batch
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size of |B| = 128. We used the popular ADAM solver [82] with default parameters
to minimise Eq. (4.27).

Evaluation of model accuracy

As previously mentioned, we are interested in evaluating the long-term predictive
accuracy of the models. The model N (x,u) is used to generate an estimated
trajectory from the initial condition x(t0), using the following recurrence relation:

x̂k+1 = x̂k + hN (x̂k,uk) (4.28)

where x̂0 = x0. Note that the input signal uk is replayed directly from the test
trajectory. Borrowing a term from the field of time-series analysis, we refer to this
as a rolling forecast. To evaluate the accuracy of a model over multiple trajectories,
we define the AN-RFMSE:

AN-RFMSE =
1

p

p∑

i=1

1

n

n∑

j=1

(
x̂i(tj)− xi(tj)

std(xi)

)2

, (4.29)

where x̂i(tj) is the model estimate of the simulated state variable xi at time step tj ,
std(xi) is the standard deviation of variable xi in the training set Strain, p = 8 is
the number of state variables and n is the number of time steps being averaged over.

Evaluation of model stability

A symptom of model instability is that its predictions can blow-up, which is char-
acterised by a rapid (often exponential) increase in prediction error. We define a
blow-up as the point where the normalised mean absolute error for all system states
exceeds three (this corresponds to standard deviations). We detect this as follows:

max
j<n

[
1

p

p∑

i=1

( |x̂i(tj)− xi(tj)|
std(xi)

)]
> 3 (4.30)

where p = 8 is again the number of state variables and n is the number of time
steps to consider. This estimate is conservative. However, this does not lead to a
significant underestimation of the number of blow-ups. Once a model starts to drift
rapidly, the normalised error rapidly exceeds three standard deviations.

4.4.3 Results and discussions

We characterise the different model classes (PlainDense, PlainSparse, InputSkip-
Dense, InputSkipSparse) by estimating their blow-up frequencies and their RFMSE
on the validation data. The blow-up frequency is an interesting measure since it can
indicate how stable the model is in practice.
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We perform a Monte Carlo analysis by training ten instances of each model class
and evaluating these on 100 trajectories randomly generated using the actual model,
yielding 1000 data points for each model class. We repeat the experiments for three
different dataset sizes to study the data efficiency of the models.

Fig. 4.21 presents the total number of blow-ups recorded within each model class
after 100h, 2000h, and 5000h (short, medium, and long term respectively). For
simplicity, blow-ups were detected by thresholding the computed variance of a
predicted trajectory and manually inspected. It is clear that for short time horizons,
all the models exhibit robust behaviour independently of the size of the training
datasets. However, for medium and long time horizons, PlainDense, PlainSparse,
and InputSkipDense architectures exhibit a significant number of blow-ups and,
therefore, instability. Fig. 4.21(a) - Fig. 4.21(c) show that PlainDense is generally
the most unstable, with up to 67% of all trajectories resulting in a blow-up. For the
smallest amount of training data (Fig. 4.21(a)) PlainSparse and InputSkipDense
have similar blow-up frequencies. The stability of InputSkipDense and PlainDense
improves with more training data, measured by the number of blow-ups. However,
both models are more unstable relative to PlainSparse, which also shows improved
stability for the larger datasets.

In comparison, almost no blow-ups are recorded using the InputSkipSparse architec-
ture, even for the small training dataset. In Fig. 4.19, the orange bars corresponding
to the blow-up frequency of InputSkipSparse models are not visible for any train-
ing sets due to the significantly lower number of blow-ups. For InputSkipSparse
models trained on the smallest dataset, only 3 out of 1000 possible blow-ups were
reported for the longest horizon. Apart from that, no blow-ups were reported for
the InputSkipSparse models. Only a few blow-ups were recorded after 5000h in
the medium term.

Fig. 4.22 presents a violin plot of the accuracy of each model class, expressed in
terms of RFMSE over different time horizons. Only the plot for the smallest dataset
(50000 points) is shown because the results are similar. A larger width of the violin
indicates a higher density of that given RFMSE value, while the error bars show
the minimum and maximum recorded RFMSE values. The model estimates that
blew up (see Fig. 4.21) are omitted. In this way, we estimate the generalisation
performance of the models only within their regions of stability. Note that the violin
plots for model classes with many blow-ups are made using fewer samples and can
be seen as slightly “cherry-picked”. Nonetheless, the InputSkipSparse architecture
consistently yields more accurate results, up to an order of magnitude better than
the others in the long term.
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Figure 4.21: Divergence plot: Number of trajectories that blow up over different time
horizons. The total number of trajectories is 1000, so the values can be read as a permille.
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Figure 4.22: Model accuracy expressed in terms of RFMSE over different horizons. Ten
models of each model type (PlainDense, PlainSparse, InputSkipDense, InputSkipSparse)
are trained on the smallest dataset of 50000 data points. The model estimates that blow up
(see Fig. 4.21) are excluded. The error bars for each model type represent 95% confidence
intervals. Sparse models with skip connections (InputSkipSparse) are consistently more
accurate than sparse and dense models without skip connections.

4.4.4 Discussion

This work compared the performance of two different model structures trained with
and without sparsity promoting ℓ1 regularisation. The two model types are a stand-
ard NN and a more specialised architecture that includes skip-connections from the
input layer to all consecutive layers. Four model structures were tested: PlainDense,
PlainSparse, InputSkipDense, and InputSkipSparse. The main conclusions of the
article are as follows:

• NNs with skip connections are more stable for predictions over long time
horizons compared to standard NNs. Furthermore, the accuracy of NNs with
skip connections is consistently higher for all forecasting horizons.

• Sparsity-promoting ℓ1 regularisation improves the stability of all models
tested. This improvement was more apparent for models with the InputSkip
architecture than the standard models.

• The InputSkipSparse showed satisfactory stability characteristics even when
the amount of training data was restricted, suggesting that this architecture is
more suitable for system identification tasks than the standard NN structure.
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Figure 4.23: Rolling forecast of a representative test trajectory
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The case study shows that both sparsity-promoting regularisation and skip connec-
tions can result in more stable NN models for system identification tasks while
requiring fewer data and improving their multi-step generalisation for both short,
medium and long prediction horizons. Despite the encouraging performance of
the sparse-skip networks, we can not guarantee similar performance for noisy data.
We have only investigated the use of synthetic data devoid of any noise, although
such a study will be an interesting line of future work. This case study also has
relevance beyond the current setup. In more realistic situations, we often have a
partial understanding of the system we wish to model (see Eq. (2.11)) and only wish
to use data-driven methods to correct a PBM when it disagrees with the observations
(e.g. due to a faulty assumption). As shown in Section 4.3, combining PBMs and
data-driven methods in this way also has the potential to inject instability into the
system. Finding new ways to improve or guarantee out-of-sample behaviour for
data-driven methods is paramount to improving the safety of these systems.
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Chapter 5

Verification

DNNs are still regarded as “black box” models, and few guarantees can be made
about their behaviour. The idea of adversarial attacks has exposed that many existing
DNNs models have very low robustness. It has been shown that by changing the
input minimally in a targeted way, DNNs can be tricked into giving erroneous
output. Such attacks are sometimes limited to a single pixel [212]. One way to
address this is via adversarial training, where adversarial examples are identified
and included in the training process. While this has been shown to improve the
robustness of the model, it does not guarantee that other examples do not exist.
This issue is critical when applying DNN to safety-critical systems like robotic
surgery or autonomous cars, making it challenging to safely and responsibly apply
these models in a system identification or control context. There is a clear need
for practical methods to verify these models by checking and certifying properties
such as robustness and stability, motivating recent research into the verification of
DNNs.

It is well known that NNs with PWA activation functions are themselves PWA, with
their domains consisting of a vast number of linear regions. If we can find ways
to compute these linear regions, we can apply the many existing tools to analyse
and control the PWA systems. Prior work on this topic has focused on counting the
number of linear regions rather than obtaining explicit PWA representations.

A wealth of literature exists on PWA systems, particularly in modelling and control.
For example, the explicit solution to the linear MPC problem is a PWA function, and
there are schemes for using PWA models in the optimisation loop [213]. Further-
more, methods exist for verifying the stability of PWA systems and stabilising them
[214]. Positive invariant sets can be constructed for PWA systems by analysing

129
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the possible transitions between the linear regions of the system [215]. Thus, by
decomposing a DNN into its PWA representation, these established methods can be
used to obtain concrete stability results for a large family of NNs.

Algorithms have been developed to provide such robustness guarantees for piece-
wise linear networks w.r.t. some perturbation with a bounded norm. Liu et al.
[204] give a good overview of such methods. These bounds are often computed
by formulating the network as a set of constraints in a mixed integer optimisation
problem [216, 217, 218]. However, the problem is computationally expensive and
has been shown by Katz et al. to be NP-complete [219]. This fact means that even
relatively small networks can take several hours to verify [218].

There is significant research interest in reducing the computational demands of
verification. A relatively simple approach is to reduce the size of the neural net-
work, which can be done (i) before training by adjusting the architecture of the
network (e.g. neural architecture search), (ii) after training (using model compres-
sion/knowledge distillation methods), or (iii) during training (by pruning neurons
or weights). Methods have been developed to identify all neurons and layers with
a constant influence over the relevant domain and prune them [220, 221]. Both
papers report that training the original network with ℓ1 weight decay improved
compression results significantly.

In Section 5.1, we propose a novel method to compute the PWA representation of
any fully connected neural network with rectified linear unit activations.

In Section 5.2, we use this method to visualise the linear regions of a neural
network during training and see how common types of regularisation can influence
them. This investigation provides a more intuitive and geometric perspective on
weight sparsity, the dying neuron problem, and the mechanism by which standard
weight decay tends to induce either dead or constant-effect neurons. We also
construct a pathological example where sparsity-inducing regularisation leads to
worse generalisation.

An obstacle to scaling this approach to larger models is that the number of regions
grows exponentially with the depth and input dimension of the network. However,
most of the linear regions of the networks appear to provide little additional inform-
ation. Taking advantage of this fact, Section 5.3 describes a method to compute an
approximate PWA representation of a neural network and demonstrates its use on
a nonlinear system identification benchmark based on data from an F-16 jet. The
severity of the approximation can be easily controlled via a single parameter. This
tool makes applying the numerous analysis and control design methods available
for PWA systems possible.
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5.1 Computing linear regions of piecewise affine neural network
This section presents an algorithm that can convert any neural network using
fully connected layers and ReLU activations into its exact PWA representation
that can be visualised and analysed, giving an insight into the inner workings of
the network. Existing linear programming (LP) methods (specifically the MPT
toolbox for MATLAB© [222]) for working with polyhedral sets and hyperplane
arrangements were adapted for this purpose. The approach can also be extended to
any linear/affine layer (convolutional layers, batch normalisation), as well as any
PWA activation function (Leaky ReLU, maxout).

5.1.1 PWA functions

A PWA function p : Rn 7→ Rm with N pieces can be written as:

p(x) =





W1x+ b1 ∀x ∈ Ω1

...
...

WNx+ bN ∀x ∈ ΩN

(5.1)

Each (Wi,bi) is associated with some region Ωi ⊂ Rn. We refer to each case of
Eq. (5.1) as pi(x). All Ωi are disjoint, implying that p is single-valued and only
one pi(x) is active at one time. This definition does not restrict p to be continuous;
however, this is assumed in most cases.

Note that any individual affine transformation can also be written as a piecewise
linear (PWL) function by lifting it to homogeneous coordinates:

[
pi(x)
1

]
=

[
Wi bi
0 1

] [
x
1

]
∀x ∈ Ωi (5.2)

This identity allows chains of affine transformations to be written more compactly
as a series of matrix multiplications, which we will use to simplify the notation of
this chapter.

5.1.2 PWA neural networks and activation patterns

Neural networks consisting of linear/affine layers and continuous PWA activation
functions are themselves PWA and continuous [223] (see Eq. (5.1)). This section
shows this non-rigorously, starting with a simple scalar example, defining activation
patterns and linear regions, and presenting relevant notation.

This section makes heavy use of the indexing notation presented in Section 2.2,



132 Verification

where the superscript ·(n) is used to associate a symbol to the neuron with index n,
while ·[k] refers to the kth layer of the network.

First, consider a NN with L layers each consisting of a single neuron:

N (x) =
(
σ[L] ◦ f [L] ◦ · · · ◦ σ[1] ◦ f [1]

)
(x)

f [k](x) = w[k]x+ b[k]
(5.3)

Let the activation function for all neurons be the following continuous PWA func-
tion:

σ(n)(z) =

{
a1z, z ≥ 0

a2z, z < 0
(5.4)

where n is the index of the neuron. An offset term is omitted without loss of
generality because any such term could be cancelled by an equal offset in the bias
vector of the previous fully connected layer. This function divides its input space
into two intervals, namely (−∞, 0) and [0,∞). Instead of writing down the whole
network as a chain of operations, we can write it recursively and expand each case:

N (x) =





a1z
[L]

for z[L] ≥ 0

a2z
[L]

for z[L] < 0

=





a21w
[L]z[L−1] + a1b

[L],

for z[L] ≥ 0 and z[L−1] ≥ 0

a1a2w
[L]z[L−1] + a1b

[L],

for z[L] ≥ 0 and z[L−1] < 0

a1a2w
[L]z[L−1] + a1b

[L],

for z[L] < 0 and z[L−1] ≥ 0

a22w
[L]z[L−1] + a1b

[L],

for z[L] < 0 and z[L−1] < 0

(5.5)

It is easy to see that all cases are affine transformations and will remain so after
subsequent expansions. We can therefore conclude that N (x) is a PWA function.
Fully expanding the expression leads to 2L different cases, where each case is
associated with some set of inputs x that results in a specific configuration of
{sgn(z[k])}Lk=1.
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More generally, every z[k] must lie in one and only one of the intervals that the
activation function σ(z) is defined on, in this case, (−∞, 0) and [0,∞). This “active
interval” is referred to as the activation of a neuron, while the set of activations of
all neurons in a network is called the activation pattern [218], denoted by π. The
set of all inputs x that result in a specific activation pattern is called a linear region.

For this simple example, we can introduce a shorthand to refer to the intervals of
Eq. (5.4), namely {−} = (−∞, 0) and {+} = [0,∞). An activation pattern could
now be written as π = (−,−,+, . . . ,−), where the position of the sign in the tuple
corresponds to the layer of the neuron. However, when considering NNs with more
complex architectures, it is more convenient to explicitly assign each neuron some
index n and associate this with either {+} or {−}. An activation pattern, according
to this definition, has the form:

π = {(1, a1), . . . , (n, an)} , ai ∈ {+,−} (5.6)

Defining activation patterns in this way permits the specification of partial activation
patterns, where only a subset of all neurons are given fixed activations. Now, given
some activation pattern π, we can compute the corresponding affine transformation
simply by replacing each σ(n) with the linear transformation specified by π and
simplifying the resulting expression. This operation applied to the nth neuron of
the network (see Eq. (5.4)) is given the following notation:

σ(n | π)(x) =





a1x if (n,+) ∈ π
a2x if (n,−) ∈ π
σ(n)(x) otherwise

(5.7)

Applying this operation to a layer of neurons is written as:

σ[k | π](x) =




σ(n1 | π)(x)
σ(n2 | π)(x)
σ(n3 | π)(x)

...


 ∀ neurons ni ∈ layer k (5.8)

We also extend the notation to Eq. (5.3) and all subnetworks as follows:

N [L | π](x) =
(
σ[L | π] ◦ f [L] ◦ · · · ◦ σ[1 | π] ◦ f [1]

)
(x) (5.9)
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The discussion so far has been limited to the scalar network described by Eq. (5.3).
Now consider a network with L fully connected layers. We use Eq. (5.2) to express
the network as a series of alternating matrix multiplications and applications of
σ(z). The operation performed by a fully connected layer (without activation) is:

[
z[k]

1

]
=

[
W[k] b[k]

0 1

] [
x[k−1]

1

]
= T[k]

[
x[k−1]

1

]
(5.10)

With a slight abuse of notation, we treat the linear transformation T[k] as a function
and use the composition operator ◦ to represent matrix multiplications such as
(T[2] ◦T[1])x = T[2]T[1]x. The network can then be written as:

[
N (x)
1

]
=

(
σ[n] ◦T[n] ◦ · · · ◦ σ[1] ◦T[1]

)([
x
1

])
(5.11)

As mentioned before, σ[k](z) applies σ[k] to z element-wise. Eq. (5.7) then becomes
a diagonal matrix:

σ[k | π](z) = diag
{
σ[k | π](z1), σ[k | π](z2), . . . , σ[k | π](zn)

}
(5.12)

It is now easy to see how the network in Eq. (5.11) simplifies into a linear trans-
formation when subject to some activation pattern π. However, only a subset of
all possible activation patterns can be triggered by some input to the network, as
demonstrated in the next section using some simple examples.

5.1.3 Linear regions of a simple piecewise affine neural network (PWANN)

yσ

σ

σ

x1

x2

Figure 5.1: Illustration of the linear regions of a single-layered network. Filled and hollow
circles represent active/inactive ReLUs of the same colour.

Consider a neural network with two inputs and one hidden layer with three nodes
and ReLU activation, as shown in Fig. 5.1. The general form of the network in
homogeneous coordinates is:
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[
N (x)
1

]
= σ

(
T

[
x
1

])
= σ

([
W b
0 1

] [
x
1

])
(5.13)

Each row of the parameter matrix T corresponds to a single neuron. Eq. (5.13) can
then be written as:

N (x) =




σ
(
w

[1]
1 x+ b

[1]
1

)

σ
(
w

[1]
2 x+ b

[1]
2

)

σ
(
w

[1]
3 x+ b

[1]
3

)


 (5.14)

The vector w[1]
i represents the ith row of W[1], which corresponds to the incoming

connection weights of a single neuron. Each neuron has two activation states given
by the complementary half-spaces wx + b < 0) and wx + b ≥ 0, respectively.
The boundary between these two modes is given by wx+ b = 0, which defines a
line. In the general case, this boundary will be a hyperplane in Rn when there are n
inputs, as shown in Fig. 5.2.

(inactive)

w⊤x+ b ≤ 0

(active)

w⊤x+ b > 0

Figure 5.2: Each node with ReLU activation has two modes: one where it is active and one
where it is inactive. Boundaries are therefore drawn, with a shaded side representing the
inactive side.

Superimposing these boundaries yields a hyperplane arrangement, which defines a
set of polyhedral regions Pi in the input space, each corresponding to a different
activation pattern πi. Fig. 5.1 illustrates some example regions, where the activation
states of each neuron are represented using colour instead of symbols such as {+}
and {−}.
The ReLU activation function is equivalent to Eq. (5.4) with a1 = 1 and a2 =
0, implying that an inactive neuron is equivalent to setting the corresponding
row in the T matrix to zero. Fig. 5.3 lists all possible linear regions for this
example. Note that there is one activation pattern that is not feasible, namely
π = {(1,−), (2,−), (3,−)}.
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Figure 5.3: The complete PWA representation for the simple network in Fig. 5.1. For
clarity, the activation states of each ReLU (denoted σ) have been colour-coded, where a
filled/hollow dot corresponds to activity/inactivity, respectively. Each piece computes a
copy of this transformation, with some rows set to zero.
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We add a layer with a single neuron to the network, as shown in Fig. 5.4. The
input space of the second layer now consists of multiple regions, each defined by a
unique activation pattern πi, within which the output of the first layer is an affine
transformation given by N [1 | πi]. The output of the second layer is then:

N [2 | πi](x) = σ[2]
(
w[2]N [1 | πi]x+ b[2]

)
(5.15)

The switching boundary of the second layer is then given by w[2]N [1 | πi]x+ b[2] =
0. As the input x moves between regions, the activation pattern of the first layer
will abruptly change. Therefore, the switching boundary of the second layer is
continuous but appears to “bend” whenever a neuron of the previous layer changes
its activation, as seen in Fig. 5.4. This phenomenon is generally seen whenever a
neuron boundary crosses any boundary of a previous layer, as illustrated in Fig. 5.5.

yσσ

σ

σ

x1

x2

Figure 5.4: Illustration of the linear regions in Fig. 5.1, after adding a layer with one
neuron. The input to the second layer varies with the activation pattern of the first layer,
resulting in a piecewise continuous boundary where each piece is a distinct hyperplane.

Figure 5.5: Diagram of the switching boundaries of successive layers. The boundaries of
each neuron “bend” at the boundaries of previous layers.

So far, we have seen that PWA activation functions induce a hyperplane arrange-
ment at each layer, where the arrangement’s cells are the network’s linear regions.
Furthermore, neurons in previous layers modify the switching behaviour of neurons.



138 Verification

5.1.4 Representing the linear regions

The previous examples demonstrated how the PWA representation might be ob-
tained when the activation pattern πi is known and describe the structure of the
linear regions. What now remains is to explicitly compute the regions, which are
polyhedra [224, 225]. The most practical approach is to define the regions using
the hyperplanes themselves, known as the H-representation, where the region is
defined as the intersection of the half-spaces defined by the hyperplanes [226]. If
the bounding hyperplanes have indicesH = {1, 2, . . . , n}, then the polyhedron P
can be written as:

P = {x | w⊤
i x+ bi ≥ 0, ∀i ∈ H} (5.16)

Alternatively, this can be written as the matrix inequality:

H

[
x
1

]
=



w⊤

1 b1
...

...
w⊤
n bn



[
x
1

]
≥ 0 (5.17)

In particular, the matrix representation makes it easy to quickly test whether a
point is contained within the region, to compute an internal point by finding the
Chebyshev centre and can be used to check for intersections between polytopes
of different dimensions [227, 222]. A drawback is that there may be redundant
constraints, which can slow down later operations. Identifying and removing the
redundant constraints is also generally expensive, as this involves solving an LP for
each hyperplane. However, heuristics exist to reduce this number [228].

Finding the regions defined by the neuron boundaries of a layer with PWA activation
is equivalent to finding the regions of a hyperplane arrangement. A compact
and rigorous discussion of hyperplane arrangements is given by Stanley [229].
Zavslavsky’s Theorem gives an upper bound on the maximal number of regions for
n hyperplanes in Rd [230].

d∑

j=0

(
n

j

)
(5.18)

The number of regions increases quickly with d and n. A surface plot of Eq. (5.18)
is given in Fig. 5.6. The regions may be found by iteratively bisecting a growing
collection of regions, as illustrated in Fig. 5.7. If the bisecting hyperplane is given by
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Figure 5.6: Growth of Zavslavsky’s upper bound for the number of regions in a hyperplane
arrangement.

w⊤
bix+ bbi = 0, then the H-representations of the positive and negative half-spaces

are given by:

h = [ wbi bbi ] (positive half-space)

9h = [9wbi 9 bbi ] (negative half-space)
(5.19)

Then, assuming that the current region has the H-representation H =
[
W b

]
, the

new H-representations of the two subregions will be:

H+ =

[
W b
w⊤

bi bbi

]

H− =

[
W b
9w⊤

bi 9bbi

] (5.20)

The regions H+ and H− can be understood as the intersections between H and the
positive/negative half-spaces on either side of the bisecting hyperplane. Therefore
the superscript corresponds with the neuron activation associated with the hyper-
plane. If the hyperplane bisects the region, neither H+ nor H− are empty sets. If
the hyperplane does not bisect the region, then exactly one of the subregions is an
empty set. Whether the matrix H represents an empty set requires solving a phase I
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Algorithm 5.1 Add hyperplane h to region tree T
function ADDTOTREE(node T, hyperplane h, index n)

(H, C, π)← T ▷ Extract region, children, and activation
H+,H− ← (H ∩ h), (H ∩ −h) ▷ Eq. (5.20)
if H+ = ∅ then ▷H+ = ∅ and H− ̸= ∅

π ← π ∩ {(n,−)}
else if H− = ∅ then ▷H+ ̸= ∅ and H− = ∅

π ← π ∩ {(n,+)}
else ▷ Hyperplane intersects with region H

if C = ∅ then
C ← {(H+, ∅, {(n,+)}), (H−, ∅, {(n,−)})} ▷ Add children

else
for child Tc ∈ C do

ADDTOTREE(Tc, h, n) ▷ Recurse over children of node
end for

end if
end if

end function

LP. The hyperplanes can then be considered individually, checking for intersections
with all the regions found so far and bisecting when there is an intersection.

A naive implementation would replace each region once it has been bisected, main-
taining a flat set of regions. However, the search space can be reduced significantly
by retaining all regions and subregions in a binary tree, which we refer to as the
region tree T. Intuitively, if a hyperplane does not intersect a region, it will not
intersect any of its subregions, allowing us to rule out all descendants of that region.
The number of pruned regions increases with the depth of the tree.

The ith node of the region tree is represented as the tuple Ti = (Pi, Ci), where Pi
is the associated region and Ci is the set of children of the node. Then, for every
hyperplane h in the arrangementH, we attempt to add h to the tree by recursively
checking for intersections. Algorithm 5.1 shows the pseudocode for this procedure.

In addition to identifying which regions are feasible, we must keep track of each
node’s activation pattern πi. Fortunately, this information can be extracted from the
node feasibility check. Whenever a neuron obtains a particular activation (+ or −),
this must also hold for all descendant nodes. The activation pattern at each node
can then be recovered by traversing the tree depth-first. The pseudocode is shown
in Algorithm 5.2.
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Algorithm 5.2 Depth-first traversal of region tree to find activation patterns
function TRAVERSE(node T, activation pattern π)

(H, C, πpartial)← T
for each (n, a) ∈ πpartial do

π[n]← a
end for
for each child Tc ∈ C do

TRAVERSE(T, π)
end for
if C = ∅ then

yield (T, π)
end if

end function

Figure 5.7: Illustration of a procedure for finding the regions of a hyperplane arrangement.
Each hyperplane is considered and is used to bisect the previously found regions by adding
it to their H-representations. At each iteration, searching all previously found regions for
intersections is necessary. The search space can be significantly reduced by checking the
parent regions first and storing the regions in a binary tree structure, adding new nodes
every time a hyperplane bisects a region.

5.1.5 Algorithm

As shown in the examples, a neural network can be converted to its PWA represent-
ation in an iterative fashion, starting at the input layer. Using Algorithm 5.1, we can
associate each region of a hyperplane arrangement as the leaf node of a binary tree,
where the remaining nodes represent the ancestor regions. Now we must compute
the network output within each region and handle the switching behaviour across
layers.
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Algorithm 5.3 Compute linear regions of network N
function GETLINEARREGIONS(network N , initial region P0)
T0 ← {P0, ∅, ∅} ▷ Initialise region tree
W ← {(T0, I)} ▷ Initialise working set
n← 0, k ← 1 ▷ Initialise neuron and layer indices
for each layer (σ,W,b) ∈ N do

for each (T, P) ∈ W do
for each row [w, b] of [W,b] do

h← [w, b]
ADDTOTREE(T, Ph, n)
n← n+ 1

end for
end for
W ← ∅
leaf nodes A ← TRAVERSE(T0)
for each (Ti, πi) ∈ A do

Compute Pi = N [k | πi] ▷ Eq. (5.12)
W ←W ∩ {(Ti,Pi)}

end for
k ← k + 1

end for
end function

In Algorithm 5.3 the nodes Ti with a known linear transformation Pi are stored
in the working setW . Every element inW is a tuple of the form (Ti,Pi), where
Ti is a polyhedral region and Pi is a matrix that defines the affine transformation
computed within that region. In practice, Pi might be implemented as an additional
attribute on Ti or in a hash table indexed by the corresponding activation pattern
πi. The neural network N is represented as the tuple (σ,W,b), corresponding to
Eq. (2.20).

As the size of the working set increases after processing each layer, it is clear
that the worst-case performance of the algorithm is highly dependent on the total
depth of the network. However, it is not clear how quickly the working set will
grow. For example, some regions in the working set may be intersected multiple
times by the node boundaries in the next layer, while others will not. Despite
this, the problem is inherently parallelisable. When parsing a network layer, the
hyperplane arrangement problem is solved separately for each region in the working
set, allowing for significant speedups when many cores are available.
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5.1.6 Results

All runtimes were measured using a machine with a 6-core, 3.5GHz processor and
16 GB of RAM. The polyhedral computations described in previous sections were
performed using the MPT toolbox for MATLAB©. The results for Algorithm 5.3
in terms of the number of hyperplanes have been presented together in Fig. 5.8(a).
The runtimes for Algorithm 5.3 are also presented regarding the number of regions
in Fig. 5.8(b), showing that the runtime is roughly proportional to the number of
regions found. The effect of increasing the input dimension (and thus the size of
the required LPs) is almost negligible in comparison, suggesting that it is the high
number of calls to the LP solver rather than the size of the LPs that dominates the
time complexity of Algorithm 5.3. As the LPs are relatively small, choosing an LP
solver with a low amount of presolving might yield significant improvements. Our
implementation used the default LP solver included with MATLAB© (linprog),
which is often outperformed by other solvers.

The runtime of the main algorithm was measured with and without parallelisation
on the available six cores. The runtime as a function of the number of regions
of the final network is shown in Fig. 5.8(c). Networks with an input dimension
of up to four were processed as the number of regions quickly exploded, and
the runtimes became intractable for networks with larger input dimensions. The
runtime increases exponentially with the size of the network. Parallelisation was
very effective, with the performance increasing by a factor approaching the number
of cores used (i.e. six cores). The per-region cost decreases with the input dimension,
suggesting an efficiency gain when increasing the input dimension. However, the
corresponding points on the lines represent networks of very different sizes for any
given number of regions. In theory, networks with two inputs and three hidden
layers with ten neurons might have similar region counts as networks with four
inputs and two hidden layers with five neurons. However, the small network will
likely take longer to process because it has an additional hidden layer and more
neurons.

As previously mentioned, PWA functions are widely used to represent complex
dynamical systems. NNs are not as commonly used due to the difficulty of reasoning
about their behaviour. However, it is possible to train a neural network on dynamical
data and then retrieve its PWA form. The algorithm is now applied to a neural
network with two inputs. Each output is plotted separately as a surface, and the
linear network regions are plotted in the plane. The neural network was given two
hidden layers, with 15 and 5 neurons, respectively. The network was trained on the
dynamics described by Example 2.1.1, using the following parameter values: g =
9.81, m = 1, L = 5, and d = 0.1. This can be reformulated as a system of first order
ODE where x1 = θ and x2 = θ̇:
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Figure 5.8: Plots of Algorithm 5.3’s runtime against the number of hyperplanes and found
regions. Increasing the input dimension d significantly increases the runtime due to the
increased number of regions.

[
ẋ1
ẋ2

]
=

[
x2

− g
L sinx1 − d

mx2

]
(5.21)

A training dataset was created by sampling x = [θ, θ̇] 50000 times from the
continuous uniform distribution U(−π, π) and the normal distribution N (0, 5)

respectively, creating a sample of states x =
[
θ θ̇

]⊤
. The corresponding ẋ was

then found through Eq. (5.21). Then the neural network was trained on the data
using the Adam (derived from “adaptive moment estimation”) optimiser with a
learning rate of 0.003 for 50 epochs, finally achieving a root mean square error
(RMSE) of 1.615 · 10−4. The true and learned dynamics were then simulated using
the MATLAB© function ode45. Fig. 5.9 compares the two. The NN’s complete
PWA form is shown in Fig. 5.10 as a pair of surface plots, along with the 116 linear
regions.

Interestingly, the linear regions show a concentration of horizontal boundaries
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Figure 5.9: True and simulated trajectory using the neural network with θ0 = π
4 . The

network displays some asymmetries in its trajectory, suggesting that the learned pendulum
would swing slightly higher on one side. It also appears to converge slightly off-centre of
the origin because the neural network does not assume energy conservation.

around θ̇ = 0, along with several vertical boundaries. Because the network is locally
linear, the boundaries determine any changes in gradient. It is, therefore, likely that
the concentration of horizontal boundaries serves to give the two outputs a constant
slope in the θ̇ direction (see Figs. 5.10(b) and 5.10(c)). Likewise, the vertical
boundaries form large sheets arranged in a sinusoidal shape that approximates
Eq. (2.2). It is interesting to see such a structure emerging during the training
process. However, there are still some irregularities related to the large number
of small regions between closely packed boundaries. These small regions are
numerous but highly redundant as they do not contribute significantly to the shape
of the output.

Analysing the stability of such a representation can be challenging because it
requires keeping track of all possible transitions between regions. For example,
this is done in energy-based methods [214]. It may therefore be desirable to take
steps to simplify the PWA representation either during or after the training process
by merging boundaries that appear redundant or by introducing new boundaries.
Adding a form of regularisation that forces similar connection weights for neurons
in the same layer to converge together could help reduce the effective region count.
The architecture of a network could then be simplified by merging neurons with
very similar weights. Likewise, if the network performs poorly in a particular region
of the state space, neurons can be split in two, introducing additional boundaries.
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Figure 5.10: The complete PWA form of the NN that was trained to imitate a
pendulum. The linear regions appear to have arranged themselves in patterns
supporting the output’s shape.

5.1.7 Related work

Studies of the linear regions of NNs started with the need to understand how
expressive1 these networks are, and how this changes with the network architecture
[225, 224, 231]. Expressivity is often measured using the Vapnik-Chervonenkis
(VC) dimension [232], and tight bounds have been found for the VC dimension of
PWA NNs [233]. Heuristics for the expressivity of PWA networks have also been
developed [234]. Empirical evidence strongly suggests that increasing the depth of
a network has a more significant impact on expressivity than increasing the width
of existing layers [223, 235]. Serra et al. present upper and lower bounds on the
maximum number of regions that improve on previous results, along with a mixed-
integer formulation from which the regions can be counted by enumerating the
integer solutions [218]. They established that for a network with input dimension d,
number of hidden layers L, each with n nodes and ReLU activation, the asymptotic

1A more expressive network can compute more complex, rich functions.
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bounds for the maximal number of regions are:

Lower: Ω
(
(nd )

(L−1)dnd
)

Upper: O(ndL)
(5.22)

This upper bound is exponential in both d and L. Unfortunately, the most useful
NNs are those with large input dimension d and many hidden layers L. The number
of linear regions of such a network is enormous. It is likely due to this that there have
been a limited number of studies into identifying these regions. There have been
studies on approximating nonlinear NNs with PWA functions [236]. Conversely,
work has been done on the inverse problem of representing PWA functions more
compactly as NNs [237].

Chapter 12 of [238] shows how feedforward, convolutional, and recurrent NNs
using ReLU or perceptron activation functions can be explicitly rewritten as a binary
regression tree with hyperplane splits. This transformation is shown in Fig. 5.17
for a feedforward neural network with an activation function that shows a single
transition at c = 0. This brute-force approach yields trees of depth N with 2N

leaf nodes, where N is the number of neurons in the network. Bertsimas et al.
[238] show that much shallower regression trees with depths between 4− 8 yield
comparable performance to 2-layer NNs with 256 neurons in each layer on some
regression tasks, hinting at the idea that some of the inner complexity of the network
is redundant.

5.1.8 Discussion

The previous sections presented an algorithm to obtain the PWA representation of a
neural network using ReLU activation functions. Results demonstrating conversions
of randomly initialised NNs with up to four dimensions and three layers were
reported, the largest of which had 31835 linear regions. A parallelised version
of the algorithm could perform this conversion on a standard desktop computer
in around a minute. With more computational resources and further algorithmic
optimisations, it is clear that much larger networks will be able to be converted.

The examples demonstrated the algorithm for networks with fully connected layers
and ReLU activations only. However, the approach may be generalised to any linear
layer and arbitrary PWA activation functions (for example, leaky ReLU). The family
of linear layers includes convolutional layers, normalisation layers, and networks
with more complex branching architectures, which encompass most architectures
in use today.

The input dimension of the network is a significant source of complexity, limiting
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this approach to networks with fewer inputs. Alternatively, the method may be
applied to a subset of the network’s inputs, i.e. finding the linear regions in an input
subspace. Using the method together with dimensionality reduction techniques is
an approach that shows great promise for the study of complex systems that resist
analysis.

5.2 Regularising Piecewise Affine Neural Networks
An issue with Algorithm 5.3 is that it does not scale well to realistically sized NNs.
However, it is common to employ some form of regularisation during training, e.g.
the sparsity inducing ℓ1 regularisation used in Section 4.4. It stands to reason that
this must also influence the linear regions of the network being trained and possibly
reduce the total number. Xiao et al. [239] report that robustness verification
algorithms run faster on networks that are suitably regularised during training.
Specifically, weight sparsity and ReLU stability were found to be the most significant
factors, where ReLU stable neurons are defined to have a constant effect within a
certain perturbation radius of the input x. The adversarial robustness of the network
is also related to the minimum distance between the input x and the decision
boundary or the nearest linear region boundary [240].

Despite the observations that standard forms of regularisation appear to be useful
for training easily verifiable, compressible, and robust models, there is still a lack of
understanding of how regularisation affects the linear regions of a neural network.
This section aims to visualise and quantify this relationship by plotting the linear
regions and reporting their size and number during training, with the hope that this
will yield greater insight into the inner workings of these networks. The results
of applying various regularisation strategies to a neural network are presented and
discussed in Section 5.2.2 before we conclude with a short note on the implications
of the work in Section 5.2.3.

5.2.1 Experiments

This section describes the setup of the experiments that were performed. First, we
discuss the investigated regularisers, then the network architecture used in all the
experiments is explained, and finally, the dataset and the training procedure are
presented.

Regularisers

Regularisation has been defined as “any modification to a learning algorithm that
aims to reduce generalisation error” [60], which can include techniques such as
weight decay, dropout, dataset augmentation, adding noise, parameter tying, batch
normalisation, weight normalisation, and early stopping, among many others. To
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limit the scope of the work, we only consider ℓ1 and ℓ2 weight decay, weight
normalisation (with weight decay), and dropout. ℓ1 and ℓ2 weight decay are
standard techniques that penalise the 1 and 2 norms of the network parameters,
respectively, scaled by a parameter λ. We do not apply weight decay to the bias
of the network. Weight normalisation is a reparameterisation of the connection
weights s.t. ∥w∥ = g proposed by Salimans et al. [241]:

w = g
v

∥v∥ (5.23)

Salimans et al. show that weight normalisation has similar properties to batch
normalisation, with the added effect of separating the “direction” of the connection
weights (in a vector sense) from their magnitude. The output of the neuron (with
input x to the layer) is σ(g vx/ ∥v∥+b). The smallest distance between the origin
and the activation boundary of the ith neuron in the first hidden layer is di = bi/gi.
The scalar g now modulates the strength of the output of the neuron, but increasing
g will also move the neuron boundary closer to the origin, and vice versa.

Network architecture

Despite the availability of algorithms, the full PWA representation can only be
found for relatively small NNs due to the typically large number of linear regions.
The network’s size is further constrained by the need to visualise the regions at many
points during the training process. The architecture was therefore kept relatively
small, with two inputs/outputs and two hidden layers with 20 and 10 neurons,
respectively. Reducing the size of the network below this resulted in inconsistent
training convergence. Both hidden layers were given ReLU activation, as this is
the most popular piecewise linear activation function. The same neural network
architecture was used for all the experiments. The initial weights of the network
were set to be the same in all the experiments, with zero initial bias. A visualisation
of the linear regions and the two outputs of the network is shown in Fig. 5.11.

Dataset

A simple synthetic dataset for a damped pendulum (Example 2.1.1 with unit para-
meters) was chosen, which can be represented by the following ODEs:

[
ẋ1
ẋ2

]
=

[
x2

− sinx1 − x2

]
(5.24)

Note that when the pendulum is dropped from the topmost position (x1 = π), the
maximum angular velocity is bounded by |ẋ1| = |x2| < 0.87. A dataset with
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Figure 5.11: The randomly initialised network used in all experiments. Note that the
network has no initial bias, and therefore all neuron boundaries initially intersect the origin.

a reasonable range of values can therefore be sampled from an input space of
[−π, π]× [−π, π], which has the advantage (for visualisation purposes) of being
square. The training set was generated by uniformly sampling 10000 points from
the chosen input space, while 20% of the points were reserved for validation. The
surface described by Eq. (5.24) is shown in Figs. 5.12(a) and 5.12(b). While running
the experiments, the regularisers were observed to display a tendency to align the
neuron boundaries with the axes. This kind of alignment is a useful bias for the
pendulum example. To see why, note that the first variable ẋ1 is linear and has no
curvature. The Jacobian of ẋ2 is:

J2 =

[
0 0

sinx1 0

]
(5.25)

We see that the surface only curves in the x1 direction. The pendulum model
Eq. (5.24) is therefore well described by networks with neuron boundaries parallel
to the y-axis. In order to test the regularisers on an example where this is not true, a
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new dataset was generated by setting x1 ← 1√
2
(x1 + x2) and x2 ← 1√

2
(x1 − x2):

[
ẋ1
ẋ2

]
=

[
1√
2
(x2 − x1)

− sin 1√
2
(−x1 − x2)− 1√

2
(x2 − x1)

]
(5.26)

This corresponds to the dynamics of Eq. (5.24), but rotated π/4 rad about the z-axis
(see Figs. 5.12(c) and 5.12(d)).
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Figure 5.12: (a) and (b) are the two outputs of the normal pendulum dynamics, while (c)
and (d) show the rotated outputs. The rotated outputs have a curvature that is not aligned
with the axes and should therefore alter the behaviour of sparsity-inducing regularisers.

Training

Each experiment was run for 200 epochs, with a batch size of 40 (250 iterations
per epoch), using the ADAM optimiser with an initial learning rate of η = 0.001
and exponential decay rates β1 = 0.9 and β2 = 0.999. In each experiment, the
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linear regions after 40 epochs (10000 batch iterations) are shown, and the epoch
that performed the best overall on the validation set is reported. The total number
of regions and regions overlapping with the dataset’s domain are shown throughout
the training process. However, due to computer precision issues, the regions could
only be found on a 1000 × 1000 square, so the total number of regions may be
more than reported.

5.2.2 Results

The results are presented in the following order: standard ℓ1 and ℓ2 weight decay,
weight normalisation with weight decay, dropout with and without weight normal-
isation, and weight decay and dropout on the rotated dataset. The results of each
experiment are summarised in 4 plots, which are as follows. First, the linear regions
after 40 epochs of training (10000 batch iterations) are plotted, followed by the
regions of the model with the lowest validation loss. The regions are plotted on
the domain [−10, 10]× [−10, 10] to give a better overview. Note that this is larger
than the domain of the dataset, which is [−π, π]× [−π, π]. Then the total number
of regions (along with the number of regions that overlap with the dataset domain,
any regions outside this can be considered constant influence regions) are plotted
over the training process. Finally, the log area of the regions is presented.

Weight decay

Both ℓ1 and ℓ2 penalties were tested with various penalty parameters λ. Weight
decay was only applied to the connection weights, not the bias values. The results
for λ = 0.001 and λ = 0.0001 are shown in Fig. 5.13. The network trained without
regularisation showed a roughly constant number of regions within the dataset
domain while the total number of regions increased. The distribution of region
areas also spread out. ℓ1 and ℓ2 weight decay strongly align the neuron boundaries
with the axes.

Both regularisers significantly reduced the number of regions within the dataset’s
domain and the total number of regions. ℓ1 weight decay was much more aggressive
in this respect, as many neuron boundaries appear to have been pushed away from
the origin. These observations are supported by the area plots, which show a strong
and sudden increase in the area of the regions. This increase occurs around the
same time as a sharp fall in the total number of regions, which is likely an artefact
of the method used to calculate the regions, which limited the computations to a
1000×1000 square. If any neuron boundaries were pushed beyond this, the number
of reported regions would appear to drop. These observations can be explained by
inspecting the output of the ith neuron in the first layer:
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Figure 5.13: Linear regions of a neural network after applying ℓ1 and ℓ2 weight decay with
different penalty parameters λ. The number of regions overlapping with the dataset domain
and the total number of regions are shown. Finally, the log area of the regions is presented
throughout the training process.
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σ(z) = σ
(
w

[1]
i x+ b

[1]
i

)
(5.27)

where z = 0 represents the switching hyperplane of this ReLU neuron. The smallest
distance between the origin and the boundary of the ith neuron in the first hidden
layer is then:

d
[1]
i =

∣∣∣b[1]i
∣∣∣
∥∥∥w[1]

i

∥∥∥
−1

2
(5.28)

This distance for a neuron in the second layer will depend on the first layer’s
activation pattern π. For simplicity, we assume that all 1st layer neurons are active.
The origin-boundary distance for the ith second layer neuron is then:

d
[2]
i =

∣∣∣w[2]
i b[1] + b

[2]
i

∣∣∣
∥∥∥w[2]

i W[1]
∥∥∥
−1

(5.29)

Forcing the connection weights W[1] and W[2] to be small while keeping the biases
b[1] and b[2] unchanged will also increase this distance.

Weight normalisation with weight decay

Fig. 5.14 shows that weight normalisation appears to slow down the previously
observed effects of weight decay, as the number of regions within the domain
decreased more slowly. Furthermore, even without weight decay, the number
of regions within the dataset domain after 200 epochs appears to be less than in
Fig. 5.13, although the evolution appears fairly similar. The total number of regions
still increased similarly. The axes alignment is observed in all cases, although ℓ1
weight decay appears to enhance this.

Interestingly, the neuron boundaries were not pushed away from the origin as
quickly as previously observed. Training with the weaker ℓ2 weight decay was
almost indistinguishable from unregularised training. These results support the
findings of van Laarhoven, who showed that both batch and weight normalisation
counteract ℓ2 weight decay [242].

Dropout

Dropout layers were added to the first and second hidden layers. The small size of
the network meant that increasing the dropout rate above 0.4 resulted in training con-
vergence issues. Results for dropout rates 0.1 and 0.4 are shown in Fig. 5.15, with
and without weight-normalised layers. Again, we see that the neuron boundaries
quickly align with the axes.
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Figure 5.14: The number of linear regions after weight normalisation was applied to
the fully connected layers. ℓ1 and ℓ2 weight decay were applied with the same decay
parameters. As before, the regions are plotted on the domain [−10, 10]× [−10, 10].
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Figure 5.15: The effect of dropout layers on the linear regions of the network. The
small size of the network meant that increasing the dropout beyond roughly 0.4 resulted
in convergence issues during training. As before, the regions are plotted on the domain
[−10, 10]× [−10, 10].
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A common feature is a large cluster of horizontal boundaries, resulting in more
regions than in previous results. The dataset is linear in this direction (see Fig. 5.12),
suggesting that these neurons are highly redundant and can be replaced with a
single linear function.

Rotated dataset

A good model for this new dataset should have very similar neuron boundaries to the
models seen in Fig. 5.13, but rotated π/4 degrees. In this case, the “optimal” weights
will not be sparse, so the training objective and the weight decay regularisation
penalty are now in conflict. Fig. 5.16 shows that the evolution of the number of
regions and their size was similar to the results with the original dataset but slower.
For example, the same transition in region size is seen for ℓ1 weight decay, but
around 10000 iterations (40 epochs) later than in Fig. 5.13. Additionally, after
200 epochs, ℓ2 weight decay resulted in 100 more regions inside the data domain
relative to Fig. 5.13, an increase of 50%.

Overall the boundaries of the weight-decayed networks intersect more with each
other, exhibiting less collinearity than previous results. The number of regions
should therefore increase to the increased number of intersections. In contrast, the
network with dropout layers has a strikingly similar distribution of regions that
strongly resembles the corresponding result in Fig. 5.15, with a rotation of π/4.

5.2.3 Discussion

There is much to be learned from studying the piecewise linear structure of NNs.
This work has some important takeaways.

First, weight decay tends to push neuron boundaries away from the origin, indu-
cing dead or stable neurons with ReLU activations. This effect may be desirable
when the model is compressed or verified after training. The results show that ℓ1
regularisation is particularly effective at introducing neuron stability, while weight
normalisation was observed to slow down this effect significantly.

When weight decay is strong enough to induce weight sparsity (or near-sparsity),
this has the effect of aligning neuron boundaries with the axes of the input space.
This alignment yields networks with fewer linear regions due to fewer intersections
between neuron boundaries, which is desirable for robustness verification and model
compression. However, this was observed to cause slower training convergence on
data with curvature in other directions. Instead of inducing weight sparsity, it may
be interesting to induce collinearity in the connection weight matrix.

Dropout induced collinearity in the neuron boundaries and appeared invariant to
the dataset’s rotation, yielding a model with similar linear regions in both cases.
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Figure 5.16: The number, size, and visualisations of the linear regions of various networks
after training on the rotated dataset. As before, the regions are plotted on the domain
[−10, 10]× [−10, 10].
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However, it introduced significant redundancy by clustering parallel neuron bound-
aries, resulting in a network with significantly more linear regions than if weight
decay were used. The small distance between data points and neuron boundaries
may also cause robustness issues [240]. However, this effect was only observed in
the direction where the dataset was linear.

5.3 Approximating Piecewise Affine Neural Networks
Despite the apparent ability of regularisation to reduce the number of regions, the
decrease is insufficient to make NN verification methods practical. Instead, we may
make more progress by approximating the problem. The literature supports this, as
there are innumerable papers describing how NNs can be compressed effectively
without losing performance (see Marino et al. [243] for a recent survey). Indeed,
research shows that much of the performance of large NNs can be distilled down
to a much smaller sub-network [193]. This section has two contributions: (i) An
empirical investigation into the efficacy of ℓ1 regularisation and weight pruning
for reducing the number of linear regions. (ii) A novel method to approximately
decompose a neural network into a PWA function.

The problem can be formulated as follows: Given a neural network N (x) trained
on the dataset D with data (yk,xk) ∈ D, yk ∈ Rny , xk ∈ Rnx , compute a
PWA function that closely approximatesN (x) while maintaining a sufficiently low
number of regions.

5.3.1 Related work

Tøndel et al. [244] present a method to efficiently compute PWA functions as
regression trees with hyperplane splits, also known as oblique regression trees.
The early days of neural network research have produced many methods that
attempted to extract rules or decision trees from networks. A survey by Andrews et
al. [245] categorises the rule extraction methods as either decompositional (utilise
the internal structure of the network), pedagogical (treat the network as a black
box), or eclectic (a mixture of both). An example of a pedagogical approach is
ANN-DT [246], where a tree is grown by selectively sampling the output of a
neural network. CRED [247] is a decompositional approach proposed that applies
the regression tree method C4.5 [248] to a single hidden layer network, obtaining
intervals of possible values for each hidden neuron for a given output. Zilke et al.
extend the CRED approach to multilayer networks by constructing rules for each
layer based on the output of the previous layer [249]. These methods differ from the
exact decompositional methods in that they only allow a single variable to branch
at a time.
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Figure 5.17: Interpreting a neural network with ReLU activation functions as a tree by
branching once per neuron. Each node defines a convex set of points defined by the
constraints of its ancestors. Note that many infeasible branches can be pruned, e.g. a branch
with constraints x1 ≤ 1 and x1 ≥ 2.

5.3.2 Proposed method

Our method aims to construct a linear regression tree as shown in Fig. 5.17 that
approximates NNs with the PWA activation function given in Eq. (5.4). Recall from
Section 5.1.2 that σ(z) computes either a1z or a2z, depending on whether z > 0
or not. For a single input x, this results in a distinct activation for every neuron
in the network. The output of the neuron will transition between these states at
z = 0. We define this as the neuron boundary. For the ith neuron in the kth layer,
the corresponding neuron boundary is:

z
[k]
i = w

[k]
i f [k−1] + b

[k]
i = 0 (5.30)

If a neuron boundary intersects a region P, then it splits P into two new affine
pieces determined by the constraints z[k]i < 0 and z[k]i ≥ 0. If not, the neuron has a
purely affine output within P. Section 5.3.2 shows how Eq. (5.30) can be simplified
to:

h

[
x
−1

]
= 0 (5.31)

This makes it easy to determine whether to split a region. The core idea of the
algorithm is to build a tree of these splits by iterating through each neuron, determ-
ining which leaf nodes to split by computing Eq. (5.30) and assessing its feasibility
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Algorithm 5.4 PWA approximation
function APPROXIMATENET(initial region H0, network N )

Tree root T0 ← (Rd, ∅)
for neuron Nk ∈ N do
T0 ← SEARCH(T0, Nk, H0)

end for
return T0

end function

function SEARCH(Nk)
if TRUNCATED(Ti) then

Do nothing
else if STOPCRITERION(Ti) then

h← GETCONSTRAINT(Ti)
APPROXOUTPUT(Nk, N , H)

else if HASCHILDREN(Ti) then
L,R ← LEFT(Ti), RIGHT(Ti)
h← GETCONSTRAINT(Ti)
SEARCH(L, Nk, H ∩ h)
SEARCH(R, Nk, H ∩ −h)

else
h← NEURONBOUNDARY(Nk)
if ∃x s.t. H [ x

−1 ] ≤ 0 and h [ x
−1 ] = 0 then

SETCONSTRAINT(Ti, h)
LEFT(Ti)← new node
RIGHT(Ti)← new node

end if
end if

end function

w.r.t. the constraints of the current branch, and locally approximating N (x) when
a stopping criterion has been met. The procedure is summarised below, and the
pseudocode for the full procedure is presented in Algorithm 5.4. The method can
be summarised as follows:

1. Initialise the tree with a node T0 with an initial constraint set H0 [
x
−1 ] ≤ 0

that defines the domain of the dataset D.

2. Iterate through the neurons in each layer. For each neuron, Ni, traverse
the tree T0 and accumulate the node constraints on the current branch into
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the matrix H. At each leaf node Tj , compute the neuron boundary h. If
h ∩H is feasible, split Tj into two children with constraints h [ x

−1 ] < 0 and
h [ x

−1 ] ≥ 0. See Section 5.3.2.

3. The tree expansion can be truncated when a node meets some stopping
criterion. See Section 5.3.2.

4. After all neurons have been processed, the affine function computed at each
leaf node must be found, and the output for truncated nodes must be approx-
imated. See Section 5.3.2.

The algorithm was implemented using the MPT toolbox [222] for MATLAB© to
perform the polyhedral computations. MOSEK [250] was used as an optimisation
backend.

Checking branch feasibility

As the algorithm traverses the tree to the node Ti, it accumulates the constraints of
the parents into the matrix H. The feasibility of these constraints could be evaluated
by solving a phase I LP:

x∗ = min
x,z

1z

s.t.H [ x
−1 ]− z ≤ 0

(5.32)

with initial values x = 0 and z = H[0⊤1]⊤. If a solution z = 0 is found, the
constraint set H is feasible. Alternatively, the problem can be transformed via
Farka’s lemma. However, modern solvers are good at checking feasibility, and a
’dummy’ objective function of 0 can be used.

Stopping criteria

This work uses a stopping criterion based on the number of data samples within
the region P. If N = |D| and np = | {x | x ∈ D,H [ x

−1 ] ≤ 0} |, we define the
stopping criterion as:

np/N = rd < rmin
d (5.33)

where rmin
d is referred to as the data ratio. This metric has the advantage of

being relatively efficient to compute for a node Tj (check HX ≥ 0 for all data X
contained by parent node), and naturally adapts the resolution of the approximation
to match the relative amount of available data. A disadvantage is that it requires
access to the original training data of the network.
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What did not work The following alternative stopping criteria were considered:

1. Node reaches maximum depth dmax

2. Local region P has volume less than Vmin

3. Local region P has diameter less than Dmin

Criterion (1) is simple to implement and requires negligible computation. However,
it yielded a large spread in region sizes (in terms of volume and diameter), which
appeared to cause overfitting where there were small regions and underfitting where
there were large regions. Criteria (2) and (3) solve this by measuring the size
directly. However, despite recent work in this area (e.g. Emiris et al. [251]),
estimating these properties is extremely expensive for high-dimensional polytopes.
Another issue shared by (1),(2), and (3) is that they can yield regions containing no
elements of D, which can complicate the approximation step.

Approximation schemes

If a node has not been truncated, it represents one of the actual linear regions P
of N and the local affine function can be determined via Eq. (5.12). If the node
was truncated, the output must be approximated instead. The following approach
was chosen: sample some points xi ∈ P, compute the corresponding outputs
yi = N (xi), and perform a local linear regression via least squares:

min
A,a

∑

i

(Axi + a− yi)
2 (5.34)

The samples xi were taken directly from D, which worked well with the stopping
criterion and neatly avoided the problem of out-of-distribution sampling that occurs
with other methods (see “What did not work”). A drawback with this method is
that no approximation can be made if there is no data in some region. Because the
stopping criterion is based on the data ratio, this was never found to be a problem
during our experiments.

What did not work The following alternative sampling strategies were also con-
sidered.

1. Normally distributed xi around interior point x∗.

2. Boundary points of P were sampled via random raycasting from the interior
point x∗.
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Raycasting from x∗ is performed by solving:

xi = x∗ + riti (5.35)

where

ti =min
j
t

s.t.′t ≥ 0, t = −hj [
x
−1 ]

hj [
ri
0 ]

where hj is the jth row of H. Both approaches require an interior point x∗, found
by computing the Chebyshev centre after the feasibility check Eq. (5.32). Approach
2 only samples points on the boundary of Pk and was considered in an attempt
to minimise the boundary discontinuity between adjacent regions. Both of these
sampling methods were found to produce inferior results. We hypothesise that this
is because they rely on samples that may lie outside D’s data distribution.

5.3.3 Experiments

Algorithm 5.4 was tested on NNs trained on a nonlinear system identification bench-
mark based on the ground vibrations of an F-16 jet. The role of ℓ1 regularisation
and weight pruning on the number of regions was investigated using the approach
described by Xiao et al. [239]. Algorithm 5.4 was applied with no stopping criterion
in order to obtain the exact PWA representation where possible (a time budget of 1
hour was used). The best-performing model was approximated using Algorithm 5.4
with a range of values for rmin

d as a stopping criterion. The benchmark dataset was
generated by attaching a shaker under the aircraft’s right wing and measuring the
resulting vibrations at three different sites [252]. Accelerometer readings were
aggregated into three 400 Hz signals representing the acceleration at three distinct
points: the excitation site (a1), the wing surface (a2), and a payload (a3) shown in
Fig. 5.18. The only inputs were the shaker force (F ) and input voltage (V ). We
group the signals as uk = (F (k), V (k)) and yk = (a1(k), a2(k), a3(k)), where k
is the current timestep. The model performance was computed as the root mean
squared error ϵD:

ϵD =

√√√√ 1

N

N∑

k=1

∥ŷk − yk∥2 (5.36)

Each variable of the data was normalised and differenced. Stationarity was checked
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using the augmented Dickey-Fuller test [253] and the Kwiatkowski-Phillips-Schmidt-
Shin test [254]. Two regression datasets were constructed from the data:

• Dataset 1: Prediction variables; ∆ a1, ∆ a2, ∆ a3 Regression variables: uk−1,
yk−1 (5 variables)

• Dataset 2: Prediction variables; ∆ a1, ∆ a2, ∆ a3 Regression variables: uk−1,
uk−2, yk−1, yk−2 (10 variables)

Note that dataset 1 only includes first-order information, so we can expect the
models to perform poorly here. However, this separation allows us to assess the
effects of input dimension on the number of regions. Computing the exact PWA
representation for models with more inputs was intractable. A linear regression
model was fit to the data as a baseline. The chosen architecture had two hidden
layers with 20 and 10 neurons, respectively, with ReLU activations. This choice
was made to trade off sufficient model capacity and the tractability of computing the
exact PWA representation, limiting our quantitative analyses to small NNs. The NN
was trained using Tensorflow with the following loss function with ℓ1 regularisation
and the ADAM optimiser with default hyperparameters:

L(x) =
1

N

N∑

k=1

∥N (xk;θ)− yk∥22 + λ1

2∑

i=1

n(i)∑

j=1

∥∥∥w[i]
j

∥∥∥
1

(5.37)

where N = |D| is the number of data samples and n(i) is the number of neurons
in the ith layer. The weights wk,i,j were pruned by zeroing all weights below the
threshold: 1 · 10−3, as done by Xiao et al. [239].

5.3.4 Results

Table 5.1 and Table 5.2 show the results for datasets 1 and 2, respectively. The
models trained on dataset 1 did not perform well due to the limited first-order
inputs. They nonetheless demonstrate that ℓ1 regularisation can drastically reduce
the number of linear regions, although the effect on performance is unclear. For the
model trained on dataset 2, ℓ1 regularisation is observed to reduce the number of
regions to practical levels for λ1 > 10−4. However, it also significantly degrades the
performance of the NN. The computations were otherwise found to be intractable
due to a sharp jump in complexity from λ1 = 5 · 10−4 to λ1 = 10−4, which was
consistent across several runs. Pruning using the threshold reported by Xiao et
al. [239] appears to have little effect on both the performance and the number of
regions. These results show that aggressive ℓ1 regularisation only yields practical
numbers of regions when the performance is worse than the linear model.
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Figure 5.18: F-16 instrumentation and variables

Table 5.1: Comparison of models trained on Dataset 1. ’-’ entries did not finish within the
time budget.

Model Regions Compute (s) ϵD
(linear) 1 N/A 0.0785
(N ) λ1 = 0 152388 1640 0.0779

+ Pruned 0/330 152388 1640 0.0779
(N ) λ1 = 10−5 181083 1960 0.0780

+ Pruned 1/330 181083 1950 0.0780
(N ) λ1 = 5 · 10−5 126099 1370 0.0777

+ Pruned 19/330 126091 1370 0.0777
(N ) λ1 = 10−4 73740 787 0.0751

+ Pruned 53/330 73777 793 0.0751
(N ) λ1 = 5 · 10−4 4280 47.5 0.0757

+ Pruned 185/330 4288 41.3 0.0757
(N ) λ1 = 10−3 773 9.83 0.0777

+ Pruned 220/330 772 8.465 0.0777
(N ) λ1 = 5 · 10−3 8 1.25 0.0881

+ Pruned 300/330 8 0.852 0.0874
(N ) λ1 = 10−2 1 0.782 0.0759

+ Pruned 0/330 1 0.592 0.0759

Algorithm 5.4 was tested on the best-performing network on dataset 2, namely
the network trained with λ = 10−5. Table 5.3 shows the validation performance
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Table 5.2: Comparison of models trained on Dataset 2. ’-’ entries did not finish within the
time budget.

Model Regions Time (s) ϵD
(linear) 1 N/A 4.10 · 10−2

(N ) λ1 = 0 - - 2.17 · 10−2

+ Pruned 0/430 - - 2.17 · 10−2

(N ) λ1 = 10−5 - - 1.74 · 10−2

+ Pruned 21/430 - - 1.74 · 10−2

(N ) λ1 = 5 · 10−5 - - 1.91 · 10−2

+ Pruned 28/430 - - 1.92 · 10−2

(N ) λ1 = 10−4 - - 2.23 · 10−2

+ Pruned 53/430 - - 2.23 · 10−2

(N ) λ1 = 5 · 10−4 527 11.8 3.37 · 10−2

+ Pruned 296/430 526 10.2 3.37 · 10−2

(N ) λ1 = 10−3 18 1.55 4.08 · 10−2

+ Pruned 362/430 18 1.09 4.12 · 10−2

(N ) λ1 = 5 · 10−3 30 2.41 4.58 · 10−2

+ Pruned 371/430 14 0.993 5.94 · 10−2

(N ) λ1 = 10−2 4 1.12 6.44 · 10−2

+ Pruned 380/430 4 8.06 6.24 · 10−2

Table 5.3: Algorithm 5.4 was applied to the network that performed best on dataset 2 using
the data ratio as a stopping criterion.

rmin
d Regions Time (s) ϵN ϵD

10% 61 50.5 9.49 · 10−3 1.96 · 10−2

5% 87 56.4 8.93 · 10−3 1.95 · 10−2

1% 285 77.8 4.00 · 10−3 1.76 · 10−2

0.5% 516 92.1 2.23 · 10−3 1.75 · 10−2

0.1% 1501 149 7.24 · 10−4 1.74 · 10−2

N - - 0 1.74 · 10−2

of the resulting regression trees and the mean squared difference between the
approximating tree and the model, denoted as ϵN . The approximation closely
matches the network’s output while keeping the number of regions and computation
time practically low.

Fig. 5.19 compares the forecasting performance on dataset 2 of the linear regression
model and the neural network trained with λ1 = 10−5. The linear model quickly
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Figure 5.19: Forecast of the next 150 timesteps using linear regression and the neural
network model trained with λ1 = 10−5. The forecast starts after the red line. The linear
model quickly becomes unstable. The neural network appears to overshoot.

becomes unstable, while the neural network performs more consistently but tends to
overshoot when forecasting. Fig. 5.20 compares the same forecast for the network
and its PWA approximation computed using rmin

d = 0.1. Despite being the coarsest
approximation with only 61 regions, the approximation produces a similar forecast
for all accelerations for the first 50 timesteps, with predictions for a2 and a3 later
diverging slightly due to the accumulated error.

5.3.5 Discussion

A method for approximating NNs as a discontinuous PWA function p(x) was
presented. The method was derived by reinterpreting existing exact PWA decom-
position methods as a tree search that can be stopped early when an appropriate
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Figure 5.20: Forecast of the next 150 timesteps using the neural network model trained with
λ1 = 10−5 and the PWA approximation with 61 regions computed using Algorithm 5.4.
The forecast starts after the red line. The approximation is initially indistinguishable from
the original network.

criterion is met. A suitable stopping criterion was proposed that allows users to
control the trade-off between accuracy and model complexity via a single parameter
rmin
d , which determines the minimum ratio of the dataset that any single affine piece

of p(x) can enclose. As shown in Section 5.3.4, the approximation method is far
more practical than the exact decompositional method, even when aggressive ℓ1
regularisation and weight pruning are used during training. The proposed method
has limitations: (i) The original training data is required. (ii) The approximation
does not naturally extend to new data outside the identified linear regions. (iii) The
resulting approximation is discontinuous. (iv) The method is potentially challenging
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to scale to networks with many inputs due to the complexity of solving Eq. (5.32)
for high dimensional systems. Addressing these limitations would be an exciting
line of future research. It is expected that the resulting approximations will be used
to assist the analysis and interpretation of NNs and enable efficient control design
in nonlinear system identification tasks.



Chapter 6

Conclusion

This thesis has investigated the use of machine learning (ML) techniques within
three different contexts: (i) Control design, (ii) System identification, (iii) Verific-
ation. The following paragraphs summarise the findings and highlight potential
research directions.

Chapter 3 investigated the use of reinforcement learning in the context of maritime
vessels. Section 3.3 presents the work published in Paper A, where a Reinforcement
learning (RL) agent was first trained to complete the conflicting tasks of path
following and collision avoidance. Both tasks were described using hand-crafted
reward functions, and the total reward was a weighted sum of the task-specific
rewards using a trade-off parameter λ. However, choosing an optimal value of λ
proved challenging, and for low values of λ, the collision avoidance rate dropped
below 100%. To give the agent more “insight” into this tradeoff, λ was used as an
additional input, and random values of λ were used during training. This additional
insight into task priority allows the vessel’s behaviour to be modulated during
operation simply by varying λ, e.g. increasing the value when the vessel should
behave more conservatively. A natural extension to this line of work could be to
select a value of λ based on an estimate of the current collision risk. However,
the results have shown that it is still challenging to guarantee 100% collision
avoidance when using a RL agent. This difficulty should not discount the use of
RL; autonomous vehicles are still an active research area, and RL can help identify
effective control policies in complex scenarios or for challenging performance
requirements. Safe RL is an emerging field that aims to improve the safety of RL. A
promising framework for achieving this is the predictive safety filter, where a finite
horizon optimal control problem (OCP) is solved to find a minimum modification of
the input s.t. that the constraints are upheld. This auxiliary system can complement
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arbitrary controllers and is comparable to a mid-level collision avoidance (COLAV)
system. Section 3.4 presents a predictive safety filter designed for the milliAmpere
vessel, a small passenger ferry with two azimuthal thrusters. This contribution will
be published in Paper E. The system was tested with a simple Line-of-Sight (LOS)
controller for static and moving obstacles and was effective and efficient, running
in real-time on a consumer laptop. The next steps in this line of research would be
to make a robust safety filter with chance constraints and to test the system with
a RL agent. It is an open question whether a safety filter can negatively affect the
training of an RL agent. However, it seems likely that a safety filter can be used to
generate additional reward signals, similar to how an intervention from a driving
instructor can be a valuable lesson.

Chapter 4 looked at the use of neural networks (NNs) for modelling dynamical
systems of the form presented in Section 2.1, with a focus on how prior knowledge
can be utilised to enhance the generalisability of the models. Another significant
benefit is that the necessary size and capacity of the NNs are reduced, making it
easier to verify these models as discussed in Chapter 5. One way to include prior
knowledge is to engineer features that are expected to be relevant for the ML task,
which can be seen as using the outputs of existing models as additional input data.
However, excessive feature engineering can lead to overfitting to spurious patterns
in the data, reducing the generalisation capabilities of the model. To mitigate
this, Paper B proposed the physics-guided neural network (PGNN) architecture,
where features are injected into the intermediate layers of a NN (see Section 4.2).
Synthetic data were generated from 5 different dynamical systems, presented in
Examples 2.1.4 to 2.1.8, and PGNNs were trained to mimic the dynamics of these
systems. This change in architecture was found to reduce overfitting and improve the
models’ generalisation and long-term predictive capability. However, a drawback
of the method is that the injection layer is an additional hyperparameter that must
be selected, and the optimal layer was found to vary significantly between systems.
Prior knowledge in the form of data can be used to correct the error of an existing
model, referred to as the Corrective source term approach (CoSTA) in this thesis.
This approach is known as “boosting” in the ML literature. Boosting is useful
when the underlying assumptions of a physics-based modelling (PBM) model are
wrong or overly restrictive or if it is being adapted to a new domain. Section 4.3
applies this methodology to an ablated model of an aluminium electrolysis cell (see
Example 2.1.3); this work will be published in Paper C. CoSTA was compared to
a NN that was trained end-to-end on the same data, and the findings showed that
CoSTA generalised better and was significantly more stable when making long-term
predictions. While Data-driven modelling (DDM) models are reasonably good at
interpolating between data points, they perform poorly at extrapolation beyond
the dataset domain. If a NN follows a trajectory that leaves the dataset, undefined
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behaviour such as a blow-up can follow. Interestingly, it was found that this can be
alleviated somewhat by using ℓ1 weight decay. Following up on this observation,
Section 4.4 repeated the experiments on the aluminium electrolysis cell using NNs
with more complex architectures, different values of λ1 for weight decay, and for
datasets of different sizes. With statistical significance, combining skip-connections
and ℓ1 weight decay yielded models with significantly improved stability. Although
researchers have been experimenting with NNs to model dynamical systems for
decades, there is still little consensus on the best approach. Future work in this
direction should focus on such models’ possible failure modes (e.g. instability) and
what kinds of inductive bias can be introduced to remedy these issues. At the time
of writing, there is significant research interest in developing models that operate
on continuous time data, e.g. neural differential equations [13] or “liquid” NNs
[255, 256].

While Chapters 3 and 4 investigated various uses of ML methods and the resulting
issues related to safety and stability, Chapter 5 represents ongoing work towards the
verification of these systems by treating NNs as piecewise affine (PWA) systems.
This conversion is exact when the only nonlinearities present in the networks are
PWA functions, such that linear “piece” of the NN is associated with a region of
the input space and a specific “activation pattern” of the nonlinearities. Section 5.1
presents a general algorithm that can compute the linear pieces of NNs and presents
some runtime results. This work is available online as a preprint; see Paper F.
The main challenge that prevents direct use of this algorithm is that the number
of linear pieces grows exponentially with the input dimension and depth of the
network, making it computationally expensive to identify all of them and analyse
the resulting function. However, preliminary results showed that most networks
exhibit large amounts of redundancy, and many small pieces can, in principle, be
discarded without losing accuracy. This idea was investigated in Section 5.2 by
experimenting with different types of regularisation and visualising the effects
on the linear regions of a network trained to model a damped pendulum (see
Example 2.1.1). The findings showed that ℓ1 weight decay is particularly effective
at reducing the number of regions within the data domain; a simple mechanism
through which this can happen was proposed. Despite the encouraging results,
significant reductions in the number of regions also come at the cost of reduced
accuracy. Section 5.3.2 proposed a modification of the algorithm presented in
Section 5.1 by introducing an approximation based on the number of data points
present within each region. The approximate algorithm was then tested on a
nonlinear systems benchmark based on the nonlinear wing vibrations of an F-16
jet; see Paper D for the published work. An advantage of the approach is that it
is straightforward to implement, and the “resolution” of the approximation can
be adjusted using a single parameter. However, access to the original dataset is



174 Conclusion

required, which may not always be the case. Furthermore, the approximation
depends on the order in which the NN neurons are visited. Choosing an order that
minimises the number of linear pieces is an exciting line of future work. Existing
methods for verifying NNs are motivated by the existence of adversarial examples
and, therefore, primarily focused on achieving robustness certificates within the
context of image processing. Instead, the algorithms presented in this thesis allow
the analysis of NNs used to model controlled dynamical systems, e.g. by using
existing tools for PWA systems such as robustness certificates and reachability
analysis. This direction has substantial potential and will be the subject of future
work.

Recent advances in ML have enabled practitioners to solve problems unimaginable
just a few decades ago. This fact, coupled with the economic advantages and
apparent universality of ML, means this field will only grow in the coming years.
However, this does not mean existing theories and tools should be discarded in
favour of automatic self-learning systems. Instead, more research needs to be done
to ensure that these new tools are used correctly and safely in a provable manner.
This thesis is a small step towards that vision, a future where learning systems are
not the first (and last) resort but powerful tools that can be used to develop robust
and adaptive systems and improve our understanding of the world around us.



Bibliography

[1] Andrej Karpathy. ‘Software 2.0’. Medium. 2017.

[2] Karl Johan Åström and Richard M. Murray. ‘Feedback Systems: An Intro-
duction for Scientists and Engineers, Second Edition’. Princeton University
Press, Feb. 2021. ISBN: 978-0-691-19398-4.

[3] L. Lamport. ‘Proving the Correctness of Multiprocess Programs’. In: IEEE
Transactions on Software Engineering SE-3.2 (Mar. 1977), pp. 125–143.

[4] Lennart Ljung. ‘System Identification: Theory for the User’. Pearson, 1998.
ISBN: 978-0-13-656695-3.

[5] Jonas Sjöberg et al. ‘Nonlinear Black-Box Modeling in System Identifica-
tion: A Unified Overview’. In: Automatica 31.12 (1995), pp. 1691–1724.

[6] Tingwu Wang et al. ‘Benchmarking Model-Based Reinforcement Learning’.
July 2019. arXiv: arXiv:1907.02057.

[7] David Luenberger. ‘Observers for Multivariable Systems’. In: IEEE Trans-
actions on Automatic Control 11.2 (1966), pp. 190–197.

[8] R. E. Kalman. ‘A New Approach to Linear Filtering and Prediction Prob-
lems’. In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45.

[9] Emanuel Todorov. ‘General Duality between Optimal Control and Estima-
tion’. In: Proceedings of the Conference on Decision and Control. IEEE,
2008, pp. 4286–4292.

[10] R. E. Kalman and R. S. Bucy. ‘New Results in Linear Filtering and Predic-
tion Theory’. In: Journal of Basic Engineering 83.1 (Mar. 1961), pp. 95–
108.

175

https://karpathy.medium.com/software-2-0-a64152b37c35
https://dl.acm.org/doi/10.5555/1816978
https://dl.acm.org/doi/10.5555/1816978
http://dx.doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1002/047134608X.W1046.pub2
http://dx.doi.org/10.1016/0005-1098(95)00120-8
http://dx.doi.org/10.1016/0005-1098(95)00120-8
http://dx.doi.org/10.48550/arXiv.1907.02057
http://dx.doi.org/10.1109/TAC.1966.1098323
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/CDC.2008.4739438
http://dx.doi.org/10.1109/CDC.2008.4739438
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1115/1.3658902


176 BIBLIOGRAPHY

[11] E.A. Wan and R. Van Der Merwe. ‘The Unscented Kalman Filter for
Nonlinear Estimation’. In: Proceedings of the Adaptive Systems for Signal
Processing, Communications, and Control Symposium. IEEE, Oct. 2000,
pp. 153–158.

[12] G. E. Hinton and R. R. Salakhutdinov. ‘Reducing the Dimensionality of
Data with Neural Networks’. In: Science 313.5786 (2006), pp. 504–507.

[13] Tian Qi Chen et al. ‘Neural Ordinary Differential Equations’. In: Advances
in Neural Information Processing Systems. 2018, pp. 6571–6583.

[14] Danijar Hafner et al. ‘Mastering Atari with Discrete World Models’. In:
International Conference on Learning Representations. 2021.

[15] Danijar Hafner et al. ‘Mastering Diverse Domains through World Models’.
Jan. 2023. arXiv: arXiv:2301.04104.

[16] Edmund M. Clarke et al. ‘Handbook of Model Checking’. Vol. 10. Springer,
2018.

[17] Hassan K. Khalil. ‘Nonlinear Systems’. Third. Prentice-Hall. Pearson, 2002.
ISBN: 0-13-067389-7.

[18] Chi-Tsong Chen. ‘Linear System Theory and Design’. Oxford University
Press, 2013. ISBN: 978-0-19-996454-3.

[19] James Blake Rawlings and David Q. Mayne. ‘Model Predictive Control:
Theory, Computation, and Design’. Second. Nob Hill Publishing, 2009.
ISBN: 978-0-9759377-5-4.

[20] Stanley Bak, Hoang-Dung Tran and Taylor T. Johnson. ‘Numerical Verifica-
tion of Affine Systems with up to a Billion Dimensions’. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation
and Control. 2019, pp. 23–32.

[21] Matthias Althoff, Goran Frehse and Antoine Girard. ‘Set Propagation Tech-
niques for Reachability Analysis’. In: Annual Review of Control, Robotics,
and Autonomous Systems 4.1 (2021).

[22] Sophie A. Gruenbacher et al. ‘GoTube: Scalable Statistical Verification of
Continuous Depth Models’. In: Proceedings of the AAAI Conference on
Artificial Intelligence 36.6 (June 2022), pp. 6755–6764.

[23] Andrew D Selbst and Julia Powles. ‘Meaningful Information and the Right
to Explanation’. In: International Data Privacy Law 7.4 (Nov. 2017),
pp. 233–242.

[24] Gareth James et al. ‘An Introduction to Statistical Learning: With Ap-
plications in R’. Springer Publishing Company, Incorporated, 2014. ISBN:
1-4614-7137-0.

http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.5555/3327757.3327764
https://openreview.net/forum?id=0oabwyZbOu
http://dx.doi.org/10.48550/arXiv.2301.04104
https://dl.acm.org/doi/book/10.5555/3264692
https://www.pearson.ch/HigherEducation/Pearson/EAN/9780130673893/Nonlinear-Systems
https://global.oup.com/ukhe/product/linear-system-theory-and-design-9780199964543?cc=no&lang=en&
http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html
http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html
http://dx.doi.org/10.1145/3302504.3311792
http://dx.doi.org/10.1145/3302504.3311792
http://dx.doi.org/10.1146/annurev-control-071420-081941
http://dx.doi.org/10.1146/annurev-control-071420-081941
http://dx.doi.org/10.1609/aaai.v36i6.20631
http://dx.doi.org/10.1609/aaai.v36i6.20631
http://dx.doi.org/10.1093/idpl/ipx022
http://dx.doi.org/10.1093/idpl/ipx022
https://link.springer.com/book/10.1007/978-1-0716-1418-1
https://link.springer.com/book/10.1007/978-1-0716-1418-1


BIBLIOGRAPHY 177

[25] Tom Brown et al. ‘Language Models Are Few-Shot Learners’. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 1877–1901.

[26] Zachary C. Lipton. ‘The Mythos of Model Interpretability: In Machine
Learning, the Concept of Interpretability Is Both Important and Slippery.’
In: Queue 16.3 (June 2018), pp. 31–57.

[27] L. H. Gilpin et al. ‘Explaining Explanations: An Overview of Interpretability
of Machine Learning’. In: Proceedings of the 5th International Conference
on Data Science and Advanced Analytics. IEEE, Oct. 2018, pp. 80–89.

[28] Bernease Herman. ‘The Promise and Peril of Human Evaluation for Model
Interpretability’. Oct. 2019. arXiv: arXiv:1711.07414.

[29] Finale Doshi-Velez and Been Kim. ‘Towards A Rigorous Science of Inter-
pretable Machine Learning’. Mar. 2017. arXiv: arXiv:1702.08608.

[30] Eivind Meyer et al. ‘Taming an Autonomous Surface Vehicle for Path
Following and Collision Avoidance Using Deep Reinforcement Learning’.
In: IEEE Access 8 (2020), pp. 41466–41481.

[31] Haakon Robinson et al. ‘Physics Guided Neural Networks for Modelling of
Non-Linear Dynamics’. In: Neural Networks 154 (2022), pp. 333–345.

[32] Haakon Robinson et al. ‘Deep Learning Assisted Physics-Based Modeling
of Aluminum Extraction Process’. Conditional Acceptance: Engineering
Applications of Artificial Intelligence. 2023.

[33] Haakon Robinson. ‘Approximate Piecewise Affine Decomposition of Neural
Networks’. In: Proceedings of the 19th Symposium on System Identification
(SYSID). Vol. 54. 2021, pp. 541–546.

[34] Aksel Vaaler et al. ‘Safety Filter for Small Passenger Ferry’. Accepted:
42nd International Conference on Ocean, Offshore & Arctic Engineering.
2023.

[35] Haakon Robinson, Adil Rasheed and Omer San. ‘Dissecting Deep Neural
Networks’. Jan. 2020. arXiv: arXiv:1910.03879.

[36] Erlend Torje Berg Lundby et al. ‘Sparse Neural Networks with Skip-
Connections for Nonlinear System Identification’. Pending Review: CDC
2023. Jan. 2023. arXiv: arXiv:2301.00582.

[37] Thor Inge Fossen. ‘Handbook of Marine Craft Hydrodynamics and Motion
Control’. Second. Wiley, May 2021. ISBN: 978-1-119-99413-8.

[38] Anders Aglen Pedersen. ‘Optimization Based System Identification for the
milliAmpere Ferry’. MA thesis. NTNU, 2019.

https://dl.acm.org/doi/abs/10.5555/3495724.3495883
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1109/DSAA.2018.00018
http://dx.doi.org/10.1109/DSAA.2018.00018
http://dx.doi.org/10.48550/arXiv.1711.07414
http://dx.doi.org/10.48550/arXiv.1711.07414
http://dx.doi.org/10.48550/arXiv.1702.08608
http://dx.doi.org/10.48550/arXiv.1702.08608
http://dx.doi.org/10.1109/ACCESS.2020.2976586
http://dx.doi.org/10.1109/ACCESS.2020.2976586
http://dx.doi.org/10.1016/j.neunet.2022.07.023
http://dx.doi.org/10.1016/j.neunet.2022.07.023
http://dx.doi.org/10.48550/arXiv.2209.10861
http://dx.doi.org/10.48550/arXiv.2209.10861
http://dx.doi.org/10.1016/j.ifacol.2021.08.416
http://dx.doi.org/10.1016/j.ifacol.2021.08.416
http://dx.doi.org/10.48550/arXiv.1910.03879
http://dx.doi.org/10.48550/arXiv.1910.03879
http://dx.doi.org/10.48550/arXiv.2301.00582
http://dx.doi.org/10.48550/arXiv.2301.00582
http://dx.doi.org/10.1002/9781119994138
http://dx.doi.org/10.1002/9781119994138
http://hdl.handle.net/11250/2625699
http://hdl.handle.net/11250/2625699


178 BIBLIOGRAPHY

[39] Erlend Torje Berg Lundby et al. ‘Sparse Deep Neural Networks for Mod-
eling Aluminum Electrolysis Dynamics’. In: Applied Soft Computing 134
(Feb. 2023), p. 109989.

[40] Guy Bunin. ‘Ecological Communities with Lotka-Volterra Dynamics’. In:
Physical Review E 95.4 (2017), pp. 042414–042414.

[41] Behzad Ghanbari and Salih Djilali. ‘Mathematical Analysis of a Fractional-
Order Predator-Prey Model with Prey Social Behavior and Infection De-
veloped in Predator Population’. In: Chaos, Solitons & Fractals 138 (Sept.
2020), p. 109960.

[42] R. M. Goodwin. ‘A Growth Cycle’. In: Essays in Economic Dynamics.
Palgrave Macmillan UK, 1982, pp. 165–170. ISBN: 978-1-349-05504-3.

[43] Roberto Veneziani and Simon Mohun. ‘Structural Stability and Goodwin’s
Growth Cycle’. In: Structural Change and Economic Dynamics 17.4 (Dec.
2006), pp. 437–451.

[44] David Harvie, Mark Kelmanson and David Knapp. ‘A Dynamical Model of
Business-Cycle Asymmetries: Extending Goodwin’. In: Economic Issues
12 (Jan. 2007).

[45] Hamel. ‘Georg Duffing, Ingenieur: Erzwungene Schwingungen Bei Ver-
änderlicher Eigenfrequenz Und Ihre Technische Bedeutung. Sammlung
Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S’. In: Journal of Applied
Mathematics and Mechanics (ZAMM) 1.1 (1921), pp. 72–73.

[46] Steven H. Strogatz. ‘Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering’. Second. CRC Press, 2015.
ISBN: 978-0-429-49256-3.

[47] Wojciech Wawrzynski. ‘Bistability and Accompanying Phenomena in the
1-DOF Mathematical Model of Rolling’. In: Ocean Engineering 147 (2018),
pp. 565–579.

[48] B. Van der Pol. ‘A Theory of the Amplitude of Free and Forced Triode
Vibrations’. In: Radio Review 1.Selected Scientific Papers (1920), pp. 701–
710.

[49] Kevin Rompala, Richard Rand and Howard Howland. ‘Dynamics of Three
Coupled van Der Pol Oscillators with Application to Circadian Rhythms’.
In: Communications in Nonlinear Science and Numerical Simulation 12.5
(2007), pp. 794–803.

[50] Jorge C. Lucero and Jean Schoentgen. ‘Modeling Vocal Fold Asymmetries
with Coupled van Der Pol Oscillators’. In: Proceedings of Meetings on
Acoustics 19 (2013), p. 060165.

http://dx.doi.org/10.1016/j.asoc.2023.109989
http://dx.doi.org/10.1016/j.asoc.2023.109989
http://dx.doi.org/10.1103/PhysRevE.95.042414
http://dx.doi.org/10.1016/j.chaos.2020.109960
http://dx.doi.org/10.1016/j.chaos.2020.109960
http://dx.doi.org/10.1016/j.chaos.2020.109960
http://dx.doi.org/10.1007/978-1-349-05504-3_12
http://dx.doi.org/10.1016/j.strueco.2006.08.003
http://dx.doi.org/10.1016/j.strueco.2006.08.003
http://www.economicissues.org.uk/Files/107dHarvie.pdf
http://www.economicissues.org.uk/Files/107dHarvie.pdf
http://dx.doi.org/10.1002/zamm.19210010109
http://dx.doi.org/10.1002/zamm.19210010109
http://dx.doi.org/10.1002/zamm.19210010109
https://doi.org/10.1201/9780429492563
https://doi.org/10.1201/9780429492563
http://dx.doi.org/10.1016/j.oceaneng.2017.11.013
http://dx.doi.org/10.1016/j.oceaneng.2017.11.013
http://dx.doi.org/10.1016/j.cnsns.2005.08.002
http://dx.doi.org/10.1016/j.cnsns.2005.08.002
http://dx.doi.org/10.1121/1.4798467
http://dx.doi.org/10.1121/1.4798467


BIBLIOGRAPHY 179

[51] Gaetan Fautso Kuiate et al. ‘Autonomous Van Der Pol-Duffing Snap Os-
cillator: Analysis, Synchronization and Applications to Real-Time Image
Encryption’. In: International Journal of Dynamics and Control 6.3 (2018),
pp. 1008–1022.

[52] Edward N. Lorenz. ‘Deterministic Nonperiodic Flow’. In: Journal of the
Atmospheric Sciences 20.2 (1963), pp. 130–141.

[53] H. Haken. ‘Analogy between Higher Instabilities in Fluids and Lasers’. In:
Physics Letters A 53.1 (May 1975), pp. 77–78.

[54] David Ruelle. ‘The Lorenz Attractor and the Problem of Turbulence’. In:
Quantum Dynamics: Models and Mathematics. Springer, 1976, pp. 221–
239.

[55] Divakar Viswanath. ‘The Fractal Property of the Lorenz Attractor’. In:
Physica D: Nonlinear Phenomena 190.1 (Mar. 2004), pp. 115–128.

[56] Michel Henon and Carl Heiles. ‘The Applicability of the Third Integral of
Motion: Some Numerical Experiments’. In: The Astronomical Journal 69
(Feb. 1964), p. 73.

[57] Euaggelos E. Zotos. ‘Comparing the Escape Dynamics in Tidally Limited
Star Cluster Models’. In: Monthly Notices of the Royal Astronomical Society
452 (2015), pp. 193–209.

[58] Euaggelos E. Zotos. ‘Classifying Orbits in the Classical Hénon-Heiles
Hamiltonian System’. In: Nonlinear Dynamics 79.3 (Oct. 2014), pp. 1665–
1677.

[59] Euaggelos E. Zotos. ‘An Overview of the Escape Dynamics in the Hénon-
Heiles Hamiltonian System’. In: Meccanica 52.11-12 (Mar. 2017), pp. 2615–
2630.

[60] Ian Goodfellow, Aaron Courville and Yoshua Bengio. ‘Deep Learning’.
MIT Press, 2016. ISBN: 978-0-262-03561-3.

[61] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ‘ImageNet Clas-
sification with Deep Convolutional Neural Networks’. In: Advances in
Neural Information Processing Systems 25. Curran Associates, Inc., 2012,
pp. 1097–1105.

[62] Kaiming He et al. ‘Deep Residual Learning for Image Recognition’. In:
Proceedings of the Conference on Computer Vision and Pattern Recognition.
IEEE, 2016, pp. 770–778.

[63] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library’. Dec. 2019. arXiv: arXiv:1912.01703.

http://dx.doi.org/10.1007/s40435-017-0373-z
http://dx.doi.org/10.1007/s40435-017-0373-z
http://dx.doi.org/10.1007/s40435-017-0373-z
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
http://dx.doi.org/10.1016/0375-9601(75)90353-9
http://dx.doi.org/10.1007/978-3-7091-8473-8_14
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1093/mnras/stv1307
http://dx.doi.org/10.1093/mnras/stv1307
http://dx.doi.org/10.1007/s11071-014-1766-6
http://dx.doi.org/10.1007/s11071-014-1766-6
http://dx.doi.org/10.1007/s11012-017-0647-8
http://dx.doi.org/10.1007/s11012-017-0647-8
deeplearningbook.org
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703


180 BIBLIOGRAPHY

[64] Martin Abadi et al. ‘TensorFlow: A System for Large-Scale Machine Learn-
ing’. In: 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). 2016, pp. 265–283.

[65] Yoshua Bengio, Patrice Simard, Paolo Frasconi et al. ‘Learning Long-Term
Dependencies with Gradient Descent Is Difficult’. In: IEEE Transactions
on Neural Networks 5.2 (1994), pp. 157–166.

[66] Razvan Pascanu, Tomas Mikolov and Yoshua Bengio. ‘On the Difficulty
of Training Recurrent Neural Networks’. In: Proceedings of the 30th Inter-
national Conference on Machine Learning. PMLR, May 2013, pp. 1310–
1318.

[67] Andrew L Maas, Awni Y Hannun, Andrew Y Ng et al. ‘Rectifier Nonlin-
earities Improve Neural Network Acoustic Models’. In: ICML. Vol. 30.
Atlanta, Georgia, USA. 2013, p. 3.

[68] Prajit Ramachandran, Barret Zoph and Quoc V. Le. ‘Searching for Activa-
tion Functions’. Oct. 2017. arXiv: arXiv:1710.05941.

[69] Richard S. Sutton and Andrew G. Barto. ‘Reinforcement Learning: An
Introduction’. Second. MIT Press, 2018. ISBN: 978-0-262-03924-6.

[70] Timothy P. Lillicrap et al. ‘Continuous Control with Deep Reinforcement
Learning’. July 2019. arXiv: arXiv:1509.02971.

[71] Dimitri P. Bertsekas. ‘Dynamic Programming and Optimal Control’. Fourth.
Vol. II. Athena Scientific, 2000. ISBN: 978-1-886529-44-1.

[72] Lei Tai et al. ‘A Survey of Deep Network Solutions for Learning Con-
trol in Robotics: From Reinforcement to Imitation’. Apr. 2018. arXiv:
arXiv:1612.07139.

[73] Richard S Sutton et al. ‘Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation’. In: Advances in Neural Information
Processing Systems. Vol. 12. MIT Press, 1999.

[74] Lex Weaver and Nigel Tao. ‘The Optimal Reward Baseline for Gradient-
Based Reinforcement Learning’. Jan. 2013. arXiv: arXiv:1301.2315.

[75] John Schulman et al. ‘High-Dimensional Continuous Control Using Gener-
alized Advantage Estimation’. Oct. 2018. arXiv: arXiv:1506.02438.

[76] Christopher M. Bishop. ‘Pattern Recognition and Machine Learning (In-
formation Science and Statistics)’. Springer-Verlag, 2006. ISBN: 978-0-387-
31073-2.

[77] Ronald J. Williams. ‘Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning’. In: Mach. Learn. 8 (May 1992),
pp. 229–256.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://dx.doi.org/10.48550/arXiv.1710.05941
http://dx.doi.org/10.48550/arXiv.1710.05941
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.48550/arXiv.1509.02971
http://athenasc.com/dpbook.html
http://dx.doi.org/10.48550/arXiv.1612.07139
http://dx.doi.org/10.48550/arXiv.1612.07139
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
http://dx.doi.org/10.48550/arXiv.1301.2315
http://dx.doi.org/10.48550/arXiv.1301.2315
http://dx.doi.org/10.48550/arXiv.1506.02438
http://dx.doi.org/10.48550/arXiv.1506.02438
https://dl.acm.org/doi/10.5555/1162264
https://dl.acm.org/doi/10.5555/1162264
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696


BIBLIOGRAPHY 181

[78] Sham Kakade and John Langford. ‘Approximately Optimal Approximate
Reinforcement Learning’. In: 19th International Conference on Machine
Learning (ICML). Morgan Kaufmann Publishers Inc., 2002, pp. 267–274.

[79] John Schulman. ‘Optimizing Expectations: From Deep Reinforcement
Learning to Stochastic Computation Graphs’. PhD thesis. UC Berkeley,
2016.

[80] John Schulman et al. ‘Trust Region Policy Optimization’. Apr. 2017. arXiv:
arXiv:1502.05477.

[81] John Schulman et al. ‘Proximal Policy Optimization Algorithms’. Aug.
2017. arXiv: arXiv:1707.06347.

[82] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic
Optimization’. Jan. 2017. arXiv: arXiv:1412.6980.

[83] A. Rupam Mahmood et al. ‘Benchmarking Reinforcement Learning Al-
gorithms on Real-World Robots’. In: Proceedings of The 2nd Conference
on Robot Learning. PMLR, Oct. 2018, pp. 561–591.

[84] Peter Henderson et al. ‘Deep Reinforcement Learning That Matters’. In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Feb.
2018, pp. 3207–3214.

[85] Greg Brockman et al. ‘OpenAI Gym’. June 2016. arXiv: arXiv:1606.01540.

[86] Antonin Raffin et al. ‘Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations’. In: Journal of Machine Learning Research 22.268
(2021), pp. 1–8.

[87] Prafulla Dhariwal et al. ‘OpenAI Baselines’. In: GitHub repository (2017).

[88] Amalie Heiberg et al. ‘Risk-Based Implementation of COLREGs for Autonom-
ous Surface Vehicles Using Deep Reinforcement Learning’. In: Neural
Networks 152 (Aug. 2022), pp. 17–33.

[89] Ben Tearle et al. ‘A Predictive Safety Filter for Learning-Based Racing
Control’. In: IEEE Robotics and Automation Letters 6.4 (2021), pp. 7635–
7642.

[90] Trym Tengesdal et al. ‘Ship Collision Avoidance and Anti Grounding
Using Parallelized Cost Evaluation in Probabilistic Scenario-Based Model
Predictive Control’. In: IEEE Access 10 (2022), pp. 111650–111664.

[91] David Silver et al. ‘Mastering the Game of Go with Deep Neural Networks
and Tree Search’. In: Nature 529.7587 (2016), pp. 484–503.

[92] David Silver et al. ‘A General Reinforcement Learning Algorithm That
Masters Chess, Shogi, and Go through Self-Play’. In: Science 362.6419
(Dec. 2018), pp. 1140–1144.

http://dl.acm.org/citation.cfm?id=645531.656005
http://dl.acm.org/citation.cfm?id=645531.656005
https://escholarship.org/uc/item/9z908523
https://escholarship.org/uc/item/9z908523
http://dx.doi.org/10.48550/arXiv.1502.05477
http://dx.doi.org/10.48550/arXiv.1707.06347
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
https://proceedings.mlr.press/v87/mahmood18a.html
https://proceedings.mlr.press/v87/mahmood18a.html
https://dl.acm.org/doi/abs/10.5555/3504035.3504427
http://dx.doi.org/10.48550/arXiv.1606.01540
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/openai/baselines
http://dx.doi.org/10.1016/j.neunet.2022.04.008
http://dx.doi.org/10.1016/j.neunet.2022.04.008
http://dx.doi.org/10.1109/LRA.2021.3097073
http://dx.doi.org/10.1109/LRA.2021.3097073
http://dx.doi.org/10.1109/ACCESS.2022.3215654
http://dx.doi.org/10.1109/ACCESS.2022.3215654
http://dx.doi.org/10.1109/ACCESS.2022.3215654
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1126/science.aar6404


182 BIBLIOGRAPHY

[93] Oriol Vinyals et al. ‘Grandmaster Level in StarCraft II Using Multi-Agent
Reinforcement Learning’. In: Nature 575.7782 (Nov. 2019), pp. 350–354.

[94] Øivind Aleksander G. Loe. ‘Collision Avoidance for Unmanned Surface
Vehicles’. MA thesis. Norwegian University of Science and Technology,
2008.

[95] Zheping Yan et al. ‘Obstacle Avoidance for Unmanned Undersea Vehicle
in Unknown Unstructured Environment’. In: Mathematical Problems in
Engineering 2013 (Nov. 2013), pp. 1–12.

[96] Y. Koren and J. Borenstein. ‘Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation’. In: Proceedings of the Inter-
national Conference on Robotics and Automation. Vol. 2. IEEE, 1991,
pp. 1398–1404.

[97] Yamin Huang et al. ‘Ship Collision Avoidance Methods: State-of-the-art’.
In: Safety Science 121 (Jan. 2020), pp. 451–473.

[98] Anete Vagale et al. ‘Path Planning and Collision Avoidance for Autonom-
ous Surface Vehicles I: A Review’. In: Journal of Marine Science and
Technology (2021).

[99] Jacoby Larson et al. ‘Advances in Autonomous Obstacle Avoidance for
Unmanned Surface Vehicles’. Tech. rep. ADA475547. Space and Naval
Warfare Systems Center, San Diego, CA, Jan. 2007.

[100] Giuseppe Casalino, Alessio Turetta and Enrico Simetti. ‘A Three-Layered
Architecture for Real Time Path Planning and Obstacle Avoidance for Sur-
veillance USVs Operating in Harbour Fields’. In: OCEANS 2009-EUROPE.
2009, pp. 1–8.

[101] Bjørn-Olav H. Eriksen et al. ‘Hybrid Collision Avoidance for ASVs Com-
pliant With COLREGs Rules 8 and 13-17’. In: Frontiers in Robotics and
AI 7 (2020).

[102] Randal W. Beard and Timothy W. McLain. ‘Small Unmanned Aircraft:
Theory and Practice’. Princeton, 2012. ISBN: 978-0-691-14921-9.

[103] A. Elfes. ‘Sonar-Based Real-World Mapping and Navigation’. In: IEEE
Journal on Robotics and Automation 3.3 (June 1987), pp. 249–265.

[104] Mauro Candeloro, Anastasios M. Lekkas and Asgeir J. Sørensen. ‘A
Voronoi-diagram-based Dynamic Path-Planning System for Underactu-
ated Marine Vessels’. In: Control Engineering Practice 61 (Apr. 2017),
pp. 41–54.

http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1038/s41586-019-1724-z
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/259696
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/259696
http://dx.doi.org/10.1155/2013/841376
http://dx.doi.org/10.1155/2013/841376
http://dx.doi.org/10.1109/ROBOT.1991.131810
http://dx.doi.org/10.1109/ROBOT.1991.131810
http://dx.doi.org/10.1016/j.ssci.2019.09.018
http://dx.doi.org/10.1007/s00773-020-00787-6
http://dx.doi.org/10.1007/s00773-020-00787-6
https://apps.dtic.mil/sti/citations/ADA475547
https://apps.dtic.mil/sti/citations/ADA475547
http://dx.doi.org/10.1109/OCEANSE.2009.5278104
http://dx.doi.org/10.1109/OCEANSE.2009.5278104
http://dx.doi.org/10.1109/OCEANSE.2009.5278104
http://dx.doi.org/10.3389/frobt.2020.00011
http://dx.doi.org/10.3389/frobt.2020.00011
https://press.princeton.edu/books/hardcover/9780691149219/small-unmanned-aircraft
https://press.princeton.edu/books/hardcover/9780691149219/small-unmanned-aircraft
http://dx.doi.org/10.1109/JRA.1987.1087096
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.1016/j.conengprac.2017.01.007


BIBLIOGRAPHY 183

[105] Mauro Candeloro et al. ‘Continuous Curvature Path Planning Using Voronoi
Diagrams and Fermat’s Spirals’. In: IFAC Proceedings Volumes 46.33
(2013), pp. 132–137.

[106] S. Garrido et al. ‘Path Planning for Mobile Robot Navigation Using Voronoi
Diagram and Fast Marching’. In: 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Oct. 2006, pp. 2376–2381.

[107] P. E. Hart, N. J. Nilsson and B. Raphael. ‘A Formal Basis for the Heuristic
Determination of Minimum Cost Paths’. In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107.

[108] Michael Schuster, Michael Blaich and Johannes Reuter. ‘Collision Avoid-
ance for Vessels Using a Low-Cost Radar Sensor’. In: IFAC Proceedings
Volumes. 19th IFAC World Congress 47.3 (Jan. 2014), pp. 9673–9678.

[109] Steven M. Lavalle. ‘Rapidly-Exploring Random Trees: A New Tool for
Path Planning’. Technical. Department of Computer Science, Iowa State
University, 1998.

[110] Lydia Kavraki et al. ‘Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces’. In: Robotics and Automation, IEEE
Transactions on 12 (Sept. 1996), pp. 566–580.

[111] Y. Chen, H. Peng and J. Grizzle. ‘Obstacle Avoidance for Low-Speed
Autonomous Vehicles With Barrier Function’. In: IEEE Transactions on
Control Systems Technology 26.1 (Jan. 2018), pp. 194–206.

[112] I. M. Mitchell, A. M. Bayen and C. J. Tomlin. ‘A Time-Dependent Hamilton-
Jacobi Formulation of Reachable Sets for Continuous Dynamic Games’. In:
IEEE Transactions on Automatic Control 50.7 (2005), pp. 947–957.

[113] Bjørn-Olav Eriksen et al. ‘The Branching-Course MPC Algorithm for
Maritime Collision Avoidance’. In: Journal of Field Robotics 36 (June
2019), pp. 1222–1249.

[114] I. B. Hagen et al. ‘MPC-based Collision Avoidance Strategy for Existing
Marine Vessel Guidance Systems’. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). May 2018, pp. 7618–7623.

[115] Glenn Bitar, Morten Breivik and Anastasios M. Lekkas. ‘Energy-Optimized
Path Planning for Autonomous Ferries’. In: IFAC-PapersOnLine 51.29
(2018), pp. 389–394.

[116] Glenn Bitar et al. ‘Energy-Optimized Hybrid Collision Avoidance for
ASVs’. In: 18th European Control Conference (ECC). June 2019, pp. 2522–
2529.

http://dx.doi.org/10.3182/20130918-4-JP-3022.00064
http://dx.doi.org/10.3182/20130918-4-JP-3022.00064
http://dx.doi.org/10.1109/IROS.2006.282649
http://dx.doi.org/10.1109/IROS.2006.282649
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01872
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01872
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/TCST.2017.2654063
http://dx.doi.org/10.1109/TCST.2017.2654063
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1002/rob.21900
http://dx.doi.org/10.1002/rob.21900
http://dx.doi.org/10.1109/ICRA.2018.8463182
http://dx.doi.org/10.1109/ICRA.2018.8463182
http://dx.doi.org/10.1016/j.ifacol.2018.09.456
http://dx.doi.org/10.1016/j.ifacol.2018.09.456
http://dx.doi.org/10.23919/ECC.2019.8795645
http://dx.doi.org/10.23919/ECC.2019.8795645


184 BIBLIOGRAPHY

[117] Trym Tengesdal, Tor A. Johansen and Edmund F. Brekke. ‘Ship Collision
Avoidance Utilizing the Cross-Entropy Method for Collision Risk Assess-
ment’. In: IEEE Transactions on Intelligent Transportation Systems 23.8
(2022), pp. 11148–11161.

[118] Oussama Khatib. ‘Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots’. In: The International Journal of Robotics Research 5.1
(Mar. 1986), pp. 90–98.

[119] Sang-Min Lee, Kyung-Yub Kwon and Joongseon Joh. ‘A Fuzzy Logic for
Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines’.
In: International Journal of Control, Automation, and Systems 2.2 (2004),
pp. 171–181.

[120] Johann Borenstein and Yoram Koren. ‘The Vector Field Histogram - Fast
Obstacle Avoidance For Mobile Robots’. In: Robotics and Automation,
IEEE Transactions on 7 (July 1991), pp. 278–288.

[121] Dimitra Panagou. ‘Motion Planning and Collision Avoidance Using Navig-
ation Vector Fields’. In: International Conference on Robotics and Automa-
tion (ICRA). IEEE, May 2014, pp. 2513–2518.

[122] D. Fox, W. Burgard and S. Thrun. ‘The Dynamic Window Approach to
Collision Avoidance’. In: IEEE Robotics Automation Magazine 4.1 (1997),
pp. 23–33.

[123] O. Brock and O. Khatib. ‘High-Speed Navigation Using the Global Dy-
namic Window Approach’. In: International Conference on Robotics and
Automation. Vol. 1. IEEE, May 1999, pp. 341–346.

[124] B. H. Eriksen et al. ‘A Modified Dynamic Window Algorithm for Horizontal
Collision Avoidance for AUVs’. In: Conference on Control Applications
(CCA). IEEE, 2016, pp. 499–506.

[125] Paolo Fiorini and Zvi Shiller. ‘Motion Planning in Dynamic Environments
Using Velocity Obstacles’. In: The International Journal of Robotics Re-
search 17.7 (July 1998), pp. 760–772.

[126] Yoshiaki Kuwata et al. ‘Safe Maritime Autonomous Navigation With
COLREGS, Using Velocity Obstacles’. In: IEEE Journal of Oceanic En-
gineering 39.1 (Jan. 2014), pp. 110–119.

[127] D. Kufoalor, Edmund Brekke and T. Johansen. ‘Proactive Collision Avoid-
ance for ASVs Using A Dynamic Reciprocal Velocity Obstacles Method’.
In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems. Oct. 2018, pp. 2402–2409.

http://dx.doi.org/10.1109/TITS.2021.3101007
http://dx.doi.org/10.1109/TITS.2021.3101007
http://dx.doi.org/10.1109/TITS.2021.3101007
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1177/027836498600500106
https://koreascience.kr/article/JAKO200411922338133.page
https://koreascience.kr/article/JAKO200411922338133.page
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/ICRA.2014.6907210
http://dx.doi.org/10.1109/ICRA.2014.6907210
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/ROBOT.1999.770002
http://dx.doi.org/10.1109/ROBOT.1999.770002
http://dx.doi.org/10.1109/CCA.2016.7587879
http://dx.doi.org/10.1109/CCA.2016.7587879
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/JOE.2013.2254214
http://dx.doi.org/10.1109/JOE.2013.2254214
http://dx.doi.org/10.1109/IROS.2018.8594382
http://dx.doi.org/10.1109/IROS.2018.8594382


BIBLIOGRAPHY 185

[128] John Canny and John Reif. ‘New Lower Bound Techniques for Robot Mo-
tion Planning Problems’. In: Proceedings of the 28th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society, 1987, pp. 49–
60.

[129] M. S. Wiig. ‘Collision Avoidance and Path Following for Underactuated
Marine Vehicles’. PhD thesis. Norwegian University of Science and Tech-
nology, 2019.

[130] Einvald Serigstad, Bjørn-Olav H. Eriksen and Morten Breivik. ‘Hybrid Col-
lision Avoidance for Autonomous Surface Vehicles’. In: IFAC-PapersOnLine
51.29 (2018), pp. 1–7.

[131] Society of Naval Architects, Marine Engineers (U. S.). Technical and
Research Committee. Hydrodynamics Subcommittee. ‘Nomenclature for
Treating the Motion of a Submerged Body Through a Fluid: Report of
the American Towing Tank Conference’. Society of Naval Architects and
Marine Engineers, 1950.

[132] Roger Skjetne, Øyvind Smogeli and Thor I. Fossen. ‘Modeling, Identifica-
tion, and Adaptive Maneuvering of CyberShip II: A Complete Design with
Experiments’. In: IFAC Proceedings Volumes 37.10 (2004), pp. 203–208.

[133] Pauli Virtanen et al. ‘SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python’. In: Nature Methods 17.3 (Mar. 2020), pp. 261–272.

[134] Morten Breivik and Thor I. Fossen. ‘Guidance Laws for Autonomous
Underwater Vehicles’. In: Underwater Vehicles. IntechOpen, 2009.

[135] Andreas Bell Martinsen. ‘End-to-End Training for Path Following and
Control of Marine Vehicles’. MA thesis. NTNU, 2018.

[136] E. Fehlberg. ‘Klassische Runge-Kutta-Formeln Vierter Und Niedrigerer
Ordnung Mit Schrittweiten-Kontrolle Und Ihre Anwendung Auf Wärmelei-
tungsprobleme’. In: Computing 6.1 (Mar. 1970), pp. 61–71.

[137] Yuhuai Wu et al. ‘Scalable Trust-Region Method for Deep Reinforce-
ment Learning Using Kronecker-factored Approximation’. In: Advances in
Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.,
2017.

[138] Volodymyr Mnih et al. ‘Asynchronous Methods for Deep Reinforcement
Learning’. In: Proceedings of The 33rd International Conference on Ma-
chine Learning. PMLR, June 2016, pp. 1928–1937.

[139] Kim Peter Wabersich and Melanie N. Zeilinger. ‘A Predictive Safety Filter
for Learning-Based Control of Constrained Nonlinear Dynamical Systems’.
In: Automatica 129 (2021), p. 109597.

http://dx.doi.org/10.1109/SFCS.1987.42
http://dx.doi.org/10.1109/SFCS.1987.42
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2597846
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2597846
http://dx.doi.org/10.1016/j.ifacol.2018.09.460
http://dx.doi.org/10.1016/j.ifacol.2018.09.460
https://books.google.no/books?id=VqNFGwAACAAJ
https://books.google.no/books?id=VqNFGwAACAAJ
https://books.google.no/books?id=VqNFGwAACAAJ
https://www.sciencedirect.com/science/article/pii/S1474667017317329
https://www.sciencedirect.com/science/article/pii/S1474667017317329
https://www.sciencedirect.com/science/article/pii/S1474667017317329
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.5772/6696
http://dx.doi.org/10.5772/6696
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2559484
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2559484
http://dx.doi.org/10.1007/BF02241732
http://dx.doi.org/10.1007/BF02241732
http://dx.doi.org/10.1007/BF02241732
https://proceedings.neurips.cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
http://dx.doi.org/10.1016/j.automatica.2021.109597
http://dx.doi.org/10.1016/j.automatica.2021.109597


186 BIBLIOGRAPHY

[140] Edmund F. Brekke et al. ‘milliAmpere: An Autonomous Ferry Prototype’.
In: Journal of Physics: Conference Series 2311.1 (July 2022), p. 012029.

[141] Glenn Bitar et al. ‘Two-Stage Optimized Trajectory Planning for ASVs
Under Polygonal Obstacle Constraints: Theory and Experiments’. In: IEEE
Access 8 (2020), pp. 199953–199969.

[142] Sean Gillies et al. ‘Shapely’. Github repository. Nov. 2022.

[143] Joel A. E. Andersson et al. ‘CasADi: A Software Framework for Nonlin-
ear Optimization and Optimal Control’. In: Mathematical Programming
Computation 11.1 (Mar. 2019), pp. 1–36.

[144] Andreas Wächter and Lorenz T. Biegler. ‘On the Implementation of an
Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Pro-
gramming’. In: Mathematical Programming 106.1 (Mar. 2006), pp. 25–
57.

[145] Simon Blindheim and Tor Arne Johansen. ‘Electronic Navigational Charts
for Visualization, Simulation, and Autonomous Ship Control’. In: IEEE
Access 10 (2022), pp. 3716–3737.

[146] International Maritime Organization. ‘Convention on the International Reg-
ulations for Preventing Collisions at Sea (COLREGs)’. 1972.

[147] Robin Verschueren et al. ‘Acados - a Modular Open-Source Framework for
Fast Embedded Optimal Control’. In: Mathematical Programming Compu-
tation 14 (Oct. 2021), pp. 147–183.

[148] Andrew W. Senior et al. ‘Improved Protein Structure Prediction Using
Potentials from Deep Learning’. In: Nature 577.7792 (Jan. 2020), pp. 706–
710.

[149] Priyabrata Saha, Saurabh Dash and Saibal Mukhopadhyay. ‘Physics-Incorporated
Convolutional Recurrent Neural Networks for Source Identification and
Forecasting of Dynamical Systems’. In: Elsevier Neural Networks (2021).

[150] Zeyuan Allen-Zhu, Yuanzhi Li and Zhao Song. ‘A Convergence Theory
for Deep Learning via Over-Parameterization’. In: Proceedings of the 36th
International Conference on Machine Learning. Vol. 97. 2019, pp. 242–
252.

[151] Nazatul Aini Abd Majid et al. ‘Multivariate Statistical Monitoring of the
Aluminium Smelting Process’. In: Journal of Computers & Chemical En-
gineering 35.11 (2011), pp. 2457–2468.

http://dx.doi.org/10.1088/1742-6596/2311/1/012029
http://dx.doi.org/10.1109/ACCESS.2020.3035256
http://dx.doi.org/10.1109/ACCESS.2020.3035256
https://github.com/shapely/shapely
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1109/ACCESS.2021.3139767
http://dx.doi.org/10.1109/ACCESS.2021.3139767
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx
http://dx.doi.org/10.1007/s12532-021-00208-8
http://dx.doi.org/10.1007/s12532-021-00208-8
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1016/j.neunet.2021.08.033
http://dx.doi.org/10.1016/j.neunet.2021.08.033
http://dx.doi.org/10.1016/j.neunet.2021.08.033
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v97/allen-zhu19a.html
http://dx.doi.org/10.1016/j.compchemeng.2011.03.001
http://dx.doi.org/10.1016/j.compchemeng.2011.03.001


BIBLIOGRAPHY 187

[152] Laura von Rueden et al. ‘Informed Machine Learning – A Taxonomy
and Survey of Integrating Prior Knowledge into Learning Systems’. In:
IEEE Transactions on Knowledge and Data Engineering 35.1 (Jan. 2023),
pp. 614–633.

[153] Christopher Rackauckas and Qing Nie. ‘DifferentialEquations.Jl – A Per-
formant and Feature-Rich Ecosystem for Solving Differential Equations in
Julia’. In: Journal of Open Research Software 5.1 (May 2017), p. 15.

[154] Luis Pineda et al. ‘Theseus: A Library for Differentiable Nonlinear Optim-
ization’. Jan. 2023. arXiv: arXiv:2207.09442.

[155] Jared Willard et al. ‘Integrating Scientific Knowledge with Machine Learn-
ing for Engineering and Environmental Systems’. In: ACM Computing
Surveys 55.4 (Nov. 2022), 66:1–66:37.

[156] Omer San, Adil Rasheed and Trond Kvamsdal. ‘Hybrid Analysis and Mod-
eling, Eclecticism, and Multifidelity Computing toward Digital Twin Re-
volution’. In: GAMM-Mitteilungen 44.2 (2021), e202100007.

[157] Brandon Amos and J. Zico Kolter. ‘OptNet: Differentiable Optimization
as a Layer in Neural Networks’. In: International Conference on Machine
Learning. PMLR, 2017, pp. 136–145.

[158] Filipe de Avila Belbute-Peres et al. ‘End-to-End Differentiable Physics for
Learning and Control’. In: Advances in Neural Information Processing
Systems. Vol. 31. 2018.

[159] Yang Yu, Houpu Yao and Yongming Liu. ‘Structural Dynamics Simulation
Using a Novel Physics-Guided Machine Learning Method’. In: Engineering
Applications of Artificial Intelligence 96 (2020), p. 103947.

[160] Alfio Quarteroni and Gianluigi Rozza. ‘Reduced Order Methods for Model-
ing and Computational Reduction’. Vol. 9. Springer, New York, 2014. ISBN:
978-3-319-02090-7.

[161] Shady E. Ahmed et al. ‘On Closures for Reduced Order Models—A Spec-
trum of First-Principle to Machine-Learned Avenues’. In: Physics of Fluids
33.9 (Sept. 2021), p. 091301.

[162] Eivind Fonn et al. ‘Fast Divergence-Conforming Reduced Basis Meth-
ods for Steady Navier-Stokes Flow’. In: Computer Methods in Applied
Mechanics and Engineering 346 (2019), pp. 486–512.

[163] S. Pawar et al. ‘A Deep Learning Enabler for Nonintrusive Reduced Or-
der Modeling of Fluid Flows’. In: Physics of Fluids 31.8 (Aug. 2019),
p. 085101.

http://dx.doi.org/10.1109/TKDE.2021.3079836
http://dx.doi.org/10.1109/TKDE.2021.3079836
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.48550/arXiv.2207.09442
http://dx.doi.org/10.48550/arXiv.2207.09442
http://dx.doi.org/10.1145/3514228
http://dx.doi.org/10.1145/3514228
http://dx.doi.org/10.1002/gamm.202100007
http://dx.doi.org/10.1002/gamm.202100007
http://dx.doi.org/10.1002/gamm.202100007
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
http://dx.doi.org/10.1016/j.engappai.2020.103947
http://dx.doi.org/10.1016/j.engappai.2020.103947
http://dx.doi.org/10.1063/5.0061577
http://dx.doi.org/10.1063/5.0061577
http://dx.doi.org/10.1016/j.cma.2018.11.038
http://dx.doi.org/10.1016/j.cma.2018.11.038
http://dx.doi.org/10.1063/1.5113494
http://dx.doi.org/10.1063/1.5113494


188 BIBLIOGRAPHY

[164] Suraj Pawar et al. ‘Data-Driven Recovery of Hidden Physics in Reduced
Order Modeling of Fluid Flows’. In: Physics of Fluids 32.3 (Mar. 2020),
p. 036602.

[165] Maziar Raissi, Paris Perdikaris and George Em Karniadakis. ‘Physics-
Informed Neural Networks: A Deep Learning Framework for Solving
Forward and Inverse Problems Involving Nonlinear Partial Differential
Equations’. In: Journal of Computational Physics 378.C (Nov. 2018).

[166] Navid Zobeiry and Keith D. Humfeld. ‘A Physics-Informed Machine Learn-
ing Approach for Solving Heat Transfer Equation in Advanced Manufac-
turing and Engineering Applications’. In: Engineering Applications of
Artificial Intelligence 101 (May 2021), p. 104232.

[167] Florian Arnold and Rudibert King. ‘State-Space Modeling for Control
Based on Physics-Informed Neural Networks’. In: Engineering Applica-
tions of Artificial Intelligence 101 (2021), p. 104195.

[168] Sheng Shen et al. ‘A Physics-Informed Deep Learning Approach for Bear-
ing Fault Detection’. In: Engineering Applications of Artificial Intelligence
103 (2021), p. 104295.

[169] Aditi Krishnapriyan et al. ‘Characterizing Possible Failure Modes in Physics-
Informed Neural Networks’. In: Advances in Neural Information Processing
Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 26548–26560.

[170] Harsha Vaddireddy et al. ‘Feature Engineering and Symbolic Regression
Methods for Detecting Hidden Physics from Sparse Sensors’. In: Physics
of Fluids, Editor’s pick 32 (2020), p. 015113.

[171] Joseph Bakarji and Daniel M. Tartakovsky. ‘Data-Driven Discovery of
Coarse-Grained Equations’. In: Journal of Computational Physics 434
(2021), p. 110219.

[172] Kathleen Champion et al. ‘Data-Driven Discovery of Coordinates and
Governing Equations’. In: Proceedings of the National Academy of Sciences
116.45 (2019), pp. 22445–22451.

[173] Silviu-Marian Udrescu et al. ‘AI Feynman 2.0: Pareto-optimal Symbolic Re-
gression Exploiting Graph Modularity’. In: Advances in Neural Information
Processing Systems. Vol. 33. 2020, pp. 4860–4871.

[174] Steven L. Brunton, Joshua L. Proctor and J. Nathan Kutz. ‘Discovering
Governing Equations from Data by Sparse Identification of Nonlinear
Dynamical Systems’. In: Proceedings of the National Academy of Sciences
113.15 (2016), pp. 3932–3937.

http://dx.doi.org/10.1063/5.0002051
http://dx.doi.org/10.1063/5.0002051
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.engappai.2021.104232
http://dx.doi.org/10.1016/j.engappai.2021.104232
http://dx.doi.org/10.1016/j.engappai.2021.104232
http://dx.doi.org/10.1016/j.engappai.2021.104195
http://dx.doi.org/10.1016/j.engappai.2021.104195
http://dx.doi.org/10.1016/j.engappai.2021.104295
http://dx.doi.org/10.1016/j.engappai.2021.104295
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
http://dx.doi.org/10.1063/1.5136351
http://dx.doi.org/10.1063/1.5136351
http://dx.doi.org/10.1016/j.jcp.2021.110219
http://dx.doi.org/10.1016/j.jcp.2021.110219
http://dx.doi.org/10.1073/pnas.1906995116
http://dx.doi.org/10.1073/pnas.1906995116
https://proceedings.neurips.cc/paper/2020/hash/33a854e247155d590883b93bca53848a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/33a854e247155d590883b93bca53848a-Abstract.html
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1073/pnas.1517384113


BIBLIOGRAPHY 189

[175] Samuel Kim et al. ‘Integration of Neural Network-Based Symbolic Regres-
sion in Deep Learning for Scientific Discovery’. In: IEEE Transactions on
Neural Networks and Learning Systems 32.9 (2021), pp. 4166–4177.

[176] Hao Xu, Dongxiao Zhang and Nanzhe Wang. ‘Deep-Learning Based Dis-
covery of Partial Differential Equations in Integral Form from Sparse and
Noisy Data’. In: Journal of Computational Physics 445 (2021), p. 110592.

[177] Suraj Pawar et al. ‘Physics Guided Machine Learning Using Simplified
Theories’. In: Physics of Fluids 33.1 (Jan. 2021), p. 011701.

[178] Suraj Pawar et al. ‘Model Fusion with Physics-Guided Machine Learning:
Projection-based Reduced-Order Modeling’. In: Physics of Fluids 33.6
(June 2021), p. 067123.

[179] Sindre Stenen Blakseth et al. ‘Deep Neural Network Enabled Corrective
Source Term Approach to Hybrid Analysis and Modeling’. In: Neural Netw.
146.C (Feb. 2022), pp. 181–199.

[180] R. Maulik et al. ‘Subgrid Modelling for Two-Dimensional Turbulence Using
Neural Networks’. In: Journal of Fluid Mechanics 858 (2018), pp. 122–144.

[181] Suraj Pawar et al. ‘A Priori Analysis on Deep Learning of Subgrid-Scale
Parameterizations for Kraichnan Turbulence’. In: Theoretical and Compu-
tational Fluid Dynamics 34.4 (Aug. 2020), pp. 429–455.

[182] Rahul Rai and Chandan K. Sahu. ‘Driven by Data or Derived Through Phys-
ics? A Review of Hybrid Physics Guided Machine Learning Techniques
With Cyber-Physical System (CPS) Focus’. In: IEEE Access 8 (2020),
pp. 71050–71073.

[183] Laura von Rueden et al. ‘Combining Machine Learning and Simulation to a
Hybrid Modelling Approach: Current and Future Directions’. In: Advances
in Intelligent Data Analysis XVIII. Lecture Notes in Computer Science.
Springer International Publishing, 2020, pp. 548–560. ISBN: 978-3-030-
44584-3.

[184] M. Chao et al. ‘Fusing Physics-Based and Deep Learning Models for
Prognostics’. In: Reliability Engineering and System Safety 217 (2022).

[185] William Bradley et al. ‘Perspectives on the Integration between First-
Principles and Data-Driven Modeling’. In: Computers & Chemical En-
gineering (2022), p. 107898.

[186] Erlend Torje Berg Lundby et al. ‘A Novel Hybrid Analysis and Model-
ing Approach Applied to Aluminum Electrolysis Process’. In: Journal of
Process Control 105 (2021), pp. 62–77.

http://dx.doi.org/10.1109/TNNLS.2020.3017010
http://dx.doi.org/10.1109/TNNLS.2020.3017010
http://dx.doi.org/10.1016/j.jcp.2021.110592
http://dx.doi.org/10.1016/j.jcp.2021.110592
http://dx.doi.org/10.1016/j.jcp.2021.110592
http://dx.doi.org/10.1063/5.0038929
http://dx.doi.org/10.1063/5.0038929
http://dx.doi.org/10.1063/5.0053349
http://dx.doi.org/10.1063/5.0053349
http://dx.doi.org/10.1016/j.neunet.2021.11.021
http://dx.doi.org/10.1016/j.neunet.2021.11.021
http://dx.doi.org/10.1017/jfm.2018.770
http://dx.doi.org/10.1017/jfm.2018.770
http://dx.doi.org/10.1007/s00162-019-00512-z
http://dx.doi.org/10.1007/s00162-019-00512-z
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1007/978-3-030-44584-3_43
http://dx.doi.org/10.1007/978-3-030-44584-3_43
http://dx.doi.org/10.1016/j.ress.2021.107961
http://dx.doi.org/10.1016/j.ress.2021.107961
http://dx.doi.org/10.1016/j.compchemeng.2022.107898
http://dx.doi.org/10.1016/j.compchemeng.2022.107898
http://dx.doi.org/10.1016/j.jprocont.2021.06.005
http://dx.doi.org/10.1016/j.jprocont.2021.06.005


190 BIBLIOGRAPHY

[187] Sindre Stenen Blakseth et al. ‘Combining Physics-Based and Data-Driven
Techniques for Reliable Hybrid Analysis and Modeling Using the Cor-
rective Source Term Approach’. In: Applied Soft Computing 128 (2022),
p. 109533.

[188] Anders Krogh and John Hertz. ‘A Simple Weight Decay Can Improve
Generalization’. In: Advances in Neural Information Processing Systems.
Vol. 4. Morgan Kaufmann Publishers Inc., 1991.

[189] Nitish Srivastava et al. ‘Dropout: A Simple Way to Prevent Neural Networks
from Overfitting’. In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958.

[190] Sergey Ioffe and Christian Szegedy. ‘Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift’. In: Proceed-
ings of the 32nd International Conference on Machine Learning. Vol. 37.
PMLR, 2015, pp. 448–456.

[191] Torsten Hoefler et al. ‘Sparsity in Deep Learning: Pruning and Growth for
Efficient Inference and Training in Neural Networks’. In: The Journal of
Machine Learning Research 22.1 (Jan. 2021), 241:10882–241:11005.

[192] Mark Sandler et al. ‘MobileNetV2: Inverted Residuals and Linear Bottle-
necks’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4510–4520.

[193] Jonathan Frankle and Michael Carbin. ‘The Lottery Ticket Hypothesis: Find-
ing Sparse, Trainable Neural Networks’. Mar. 2019. arXiv: arXiv:1803.03635.

[194] E. J. Candes and T. Tao. ‘Decoding by Linear Programming’. In: IEEE
Transactions on Information Theory 51.12 (Dec. 2005), pp. 4203–4215.

[195] B. K. Natarajan. ‘Sparse Approximate Solutions to Linear Systems’. In:
SIAM Journal on Computing 24.2 (Apr. 1995), pp. 227–234.

[196] Serge Gale et al. ‘RBF Network Pruning Techniques for Adaptive Learning
Controllers’. In: 9th International Workshop on Robot Motion and Control.
July 2013, pp. 246–251.

[197] Suraj Pawar et al. ‘Multi-Fidelity Information Fusion with Concatenated
Neural Networks’. In: Scientific Reports 12.1 (Apr. 2022), p. 5900.

[198] Pantelis R. Vlachas et al. ‘Data-Driven Forecasting of High-Dimensional
Chaotic Systems with Long Short-Term Memory Networks’. In: Proceed-
ings of the Royal Society A 474.2213 (2018), p. 20170844.

[199] Jaideep Pathak et al. ‘Model-Free Prediction of Large Spatiotemporally
Chaotic Systems from Data: A Reservoir Computing Approach’. In: Phys-
ical Review Letters 120.2 (Jan. 2018), p. 024102.

http://dx.doi.org/10.1016/j.asoc.2022.109533
http://dx.doi.org/10.1016/j.asoc.2022.109533
http://dx.doi.org/10.1016/j.asoc.2022.109533
https://papers.nips.cc/paper/1991/hash/8eefcfdf5990e441f0fb6f3fad709e21-Abstract.html
https://papers.nips.cc/paper/1991/hash/8eefcfdf5990e441f0fb6f3fad709e21-Abstract.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://dl.acm.org/doi/abs/10.5555/3546258.3546499
https://dl.acm.org/doi/abs/10.5555/3546258.3546499
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://dx.doi.org/10.48550/arXiv.1803.03635
http://dx.doi.org/10.48550/arXiv.1803.03635
http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1109/RoMoCo.2013.6614616
http://dx.doi.org/10.1109/RoMoCo.2013.6614616
http://dx.doi.org/10.1038/s41598-022-09938-8
http://dx.doi.org/10.1038/s41598-022-09938-8
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevLett.120.024102


BIBLIOGRAPHY 191

[200] J.R. Dormand and P.J. Prince. ‘A Family of Embedded Runge-Kutta For-
mulae’. In: Journal of Computational and Applied Mathematics 6.1 (1980),
pp. 19–26.

[201] Grégoire Montavon et al. ‘Layer-Wise Relevance Propagation: An Over-
view’. In: Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning. Lecture Notes in Computer Science. Springer International Pub-
lishing, 2019, pp. 193–209. ISBN: 978-3-030-28954-6.

[202] R. M. Isherwood. ‘Wind Resistance of Merchant Ships’. In: The Royal
Institution of Naval Architects 115 (1972), pp. 327–338.

[203] Werner Blendermann. ‘Parameter Identification of Wind Loads on Ships’.
In: Journal of Wind Engineering and Industrial Aerodynamics 51.3 (1994),
pp. 339–351.

[204] Changliu Liu et al. ‘Algorithms for Verifying Deep Neural Networks’. In:
Foundations and Trends in Optimization. Vol. 4. 2021, pp. 244–404.

[205] Randall J. LeVeque. ‘Finite Volume Methods for Hyperbolic Problems’.
Cambridge Texts in Applied Mathematics. Cambridge University Press,
2002. ISBN: 978-0-521-00924-9.

[206] Cheuk-Yi Cheung et al. ‘Spatial Temperature Profiles in an Aluminum
Reduction Cell under Different Anode Current Distributions’. In: AIChE
Journal 59.5 (2013), pp. 1544–1556.

[207] Floris Takens. ‘Detecting Strange Attractors in Turbulence’. In: Dynamical
Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics.
Springer, 1981, pp. 366–381. ISBN: 978-3-540-38945-3.

[208] Oliver Nelles. ‘Nonlinear System Identification: From Classical Approaches
to Neural Networks, Fuzzy Models, and Gaussian Processes’. Springer
International Publishing, 2020. ISBN: 978-3-030-47438-6.

[209] M. Winter and C. Breitsamter. ‘Nonlinear Identification via Connected
Neural Networks for Unsteady Aerodynamic Analysis’. In: Aerospace
Science and Technology 77 (2018), pp. 802–818.

[210] Hao Li et al. ‘Visualizing the Loss Landscape of Neural Nets’. In: Advances
in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc.,
2018.

[211] Gao Huang et al. ‘Densely Connected Convolutional Networks’. Jan. 2018.
arXiv: arXiv:1608.06993.

[212] Jiawei Su, Danilo Vasconcellos Vargas and Kouichi Sakurai. ‘One Pixel
Attack for Fooling Deep Neural Networks’. In: IEEE Transactions on
Evolutionary Computation 23.5 (Oct. 2019), pp. 828–841.

http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1007/978-3-030-28954-6_10
http://dx.doi.org/10.1007/978-3-030-28954-6_10
https://www.scopus.com/inward/record.uri?eid=2-s2.0-13744265307&partnerID=40&md5=e2422ef43e0a467878977358300b200a
http://dx.doi.org/10.1016/0167-6105(94)90067-1
https://www.doi.org/10.1561/2400000035
http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1002/aic.13942
http://dx.doi.org/10.1002/aic.13942
http://dx.doi.org/10.1007/BFb0091924
http://dx.doi.org/10.1007/978-3-030-47439-3
http://dx.doi.org/10.1007/978-3-030-47439-3
http://dx.doi.org/10.1016/j.ast.2018.03.034
http://dx.doi.org/10.1016/j.ast.2018.03.034
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
http://dx.doi.org/10.48550/arXiv.1608.06993
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1109/TEVC.2019.2890858


192 BIBLIOGRAPHY

[213] A.L. Cervantes, O.E. Agamennoni and J.L. Figueroa. ‘A Nonlinear Model
Predictive Control System Based on Wiener Piecewise Linear Models’. In:
Journal of Process Control 13.7 (2003), pp. 655–666.

[214] D. Mignone, G. Ferrari-Trecate and M. Morari. ‘Stability and Stabilization
of Piecewise Affine and Hybrid Systems: An LMI Approach’. In: Proceed-
ings of the 39th IEEE Conference on Decision and Control. Vol. 1. Dec.
2000, pp. 504–509.

[215] H. Benlaoukli et al. ‘On the Construction of Invariant Sets for Piecewise
Affine Systems Using the Transition Graph’. In: 2009 IEEE International
Conference on Control and Automation. Dec. 2009, pp. 122–127.

[216] Matteo Fischetti and Jason Jo. ‘Deep Neural Networks as 0-1 Mixed Integer
Linear Programs: A Feasibility Study’. Dec. 2017. arXiv: arXiv:1712.06174.

[217] Matteo Fischetti and Jason Jo. ‘Deep Neural Networks and Mixed Integer
Linear Optimization’. In: Constraints 23.3 (July 2018), pp. 296–309.

[218] Thiago Serra, Christian Tjandraatmadja and Srikumar Ramalingam. ‘Bound-
ing and Counting Linear Regions of Deep Neural Networks’. In: Proceed-
ings of the 35th International Conference on Machine Learning. PMLR,
July 2018, pp. 4558–4566.

[219] Guy Katz et al. ‘Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks’. In: Computer Aided Verification. Lecture Notes in Com-
puter Science. Springer International Publishing, 2017, pp. 97–117. ISBN:
978-3-319-63387-9.

[220] Abhinav Kumar, Thiago Serra and Srikumar Ramalingam. ‘Equivalent and
Approximate Transformations of Deep Neural Networks’. May 2019. arXiv:
arXiv:1905.11428.

[221] Thiago Serra, Abhinav Kumar and Srikumar Ramalingam. ‘Lossless Com-
pression of Deep Neural Networks’. In: Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Lecture Notes in
Computer Science. Springer International Publishing, 2020, pp. 417–430.
ISBN: 978-3-030-58942-4.

[222] Martin Herceg et al. ‘Multi-Parametric Toolbox 3.0’. In: 2013 European
Control Conference (ECC). July 2013, pp. 502–510.

[223] Ronen Eldan and Ohad Shamir. ‘The Power of Depth for Feedforward
Neural Networks’. In: Conference on Learning Theory. PMLR, June 2016,
pp. 907–940.

http://dx.doi.org/10.1016/S0959-1524(02)00121-X
http://dx.doi.org/10.1016/S0959-1524(02)00121-X
http://dx.doi.org/10.1109/CDC.2000.912814
http://dx.doi.org/10.1109/CDC.2000.912814
http://dx.doi.org/10.1109/ICCA.2009.5410557
http://dx.doi.org/10.1109/ICCA.2009.5410557
http://dx.doi.org/10.48550/arXiv.1712.06174
http://dx.doi.org/10.48550/arXiv.1712.06174
http://dx.doi.org/10.1007/s10601-018-9285-6
http://dx.doi.org/10.1007/s10601-018-9285-6
https://proceedings.mlr.press/v80/serra18b.html
https://proceedings.mlr.press/v80/serra18b.html
http://dx.doi.org/10.1007/978-3-319-63387-9_5
http://dx.doi.org/10.1007/978-3-319-63387-9_5
http://dx.doi.org/10.48550/arXiv.1905.11428
http://dx.doi.org/10.48550/arXiv.1905.11428
http://dx.doi.org/10.1007/978-3-030-58942-4_27
http://dx.doi.org/10.1007/978-3-030-58942-4_27
http://dx.doi.org/10.23919/ECC.2013.6669862
https://proceedings.mlr.press/v49/eldan16.html
https://proceedings.mlr.press/v49/eldan16.html


BIBLIOGRAPHY 193

[224] Razvan Pascanu, Guido Montufar and Yoshua Bengio. ‘On the Number of
Response Regions of Deep Feed Forward Networks with Piece-Wise Linear
Activations’. Feb. 2014. arXiv: arXiv:1312.6098.

[225] Guido F Montufar et al. ‘On the Number of Linear Regions of Deep Neural
Networks’. In: Advances in Neural Information Processing Systems. Vol. 27.
Curran Associates, Inc., 2014.

[226] Komei Fukuda et al. ‘Frequently Asked Questions in Polyhedral Computa-
tion’. Technical. Swiss Federal Institute of Technology, 2004.
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