
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Magne Johannes Erlandsen

Real-World Robot Learning
Framework for Compliant
Manipulation

Master’s thesis in Cybernetics and Robotics (MTTK)
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Akhil S. Anand
July 2023

Magne Johannes Erlandsen

Real-World Robot Learning Framework
for Compliant Manipulation

Master’s thesis in Cybernetics and Robotics (MTTK)
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Akhil S. Anand
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This report concludes my master’s thesis at the study Cybernetics and Robotics at the
Norwegian University of Science and Technology (NTNU). The work conducted during
this thesis is a continuation of my specialisation project (Erlandsen, 2023). For this reason,
the following parts of this report are based on Erlandsen (2023):

• Sections 2.1 – 2.4 from chapter 2

• Sections 3.1 – 3.4 from chapter 3

• Tables B.1 and B.2 from Appendix B

i

ii

Acknowledgements

I would like to take this opportunity to thank all the individuals that has been crucial in the
completion of this Master’s thesis.

First, I would like to thank my co-supervisor, Postdoctoral Fellow Akhil S. Anand, for
always taking his time and effort to give guidance and thorough follow-up when requested,
and for being supportive and solution-oriented throughout the semester.

I would also like to thank my supervisor, Professor Jan Tommy Gravdahl, for his avail-
ability and regular meetings every second week.

Furthermore, I want to thank my partner, for all her love and support. During both
the highs and lows of this journey, her presence has constantly reminded me of what truly
matters in life.

Finally, I want to thank my friends, for their great support and follow-up.

iii

iv

Abstract

This master’s thesis explores the development of a real-world robot learning framework
aimed at executing compliant robotic manipulation. Compliant manipulation is required in
situations where the robot interacts with the environment and can improve safety, dexterity,
flexibility, and energy efficiency. Variable impedance control (VIC) has emerged as a
promising approach for this purpose, where the dynamic relationship between the robot
and the environment is controlled at every time step.

In recent years, the stability analysis of VIC has advanced, enabling theoretical sta-
bility guarantees of such systems. Research has focused on learning how to vary the
impedances, as this is a challenging but necessary task to fully utilise the flexibility that
VIC offers. To address this problem, learning approaches like imitation learning, learn-
ing from demonstrations (LfD), or reinforcement learning (RL) have all been investigated
by the research community. However, these approaches have primarily been utilised on
simulated systems. Real-world robot systems have additional challenges related to com-
munication, real-time constraints, hardware, and measurement noise; all contributing to
conditions that are hard to resemble in simulators. To utilise learning approaches on real-
world robots, a reliable and fast robot learning control framework is needed. Furthermore,
the research conducted in this master’s thesis aims to facilitate the use of a real-world
robot variable impedance learning control (VILC) framework for the purpose of learning
compliant robotic manipulation tasks.

Together with the specialisation project, this thesis demonstrates a real-world robot
framework capable of learning and controlling the robot. A novel learning strategy in-
volving kinaesthetic teaching and imitation learning is proposed to learn impedance pro-
files that can be fed to a variable impedance controller. The learning algorithm involves
three steps: recording a desired end effector pose trajectory through kinaesthetic teaching,
executing the recorded trajectory using impedance control, and setting up a supervised
learning problem using a neural network to estimate the observed impedances from the
execution data. By leveraging real-world robot data collected during experiments, the
framework enhances learning for compliant robotic manipulation. The experiments are
performed on the Franka Emika Panda robot, a versatile manipulator with seven degrees
of freedom (DoF). These experiments using the robot learning framework demonstrate its
value in assembly tasks, showcasing its potential for practical application in compliant
manipulation scenarios. By contributing to the advancement of real-world robot learning
frameworks, this research enriches the existing body of knowledge in the field of robotic
control. The proposed methods and experimental findings provide valuable insights and
potential advancements for future research in the area of robotic manipulation and learn-
ing.

v

vi

Sammendrag

Denne masteroppgaven utforsker utviklingen av et læringsrammeverk for fysiske roboter
med mål om å utføre fleksibel robotmanipulasjon. Fleksibel manipulasjon kreves i situ-
asjoner hvor roboten interagerer med omgivelsene, og kan forbedre sikkerhet, fingerfer-
dighet, fleksibilitet og energieffektivitet. Variabel impedanskontroll (VIC) har dukket opp
som en lovende fremgangsmåte for dette formålet, hvor det dynamiske forholdet mellom
roboten og omgivelsene styres hvert tidssteg.

I senere år, har stabilitetsanalysen av VIC utviklet seg, noe som muligjør teoretiske sta-
bilitetsgarantier av slike systemer. Videre har forskningen fokusert på å lære hvordan man
varierer impedansene, da dette er en utfordrende, men nødvendig oppgave for å utnytte
fleksibiliteten som VIC tilbyr fullt ut. For å takle dette problemet har læringsmetoder som
imitasjonslæring, læring fra demonstrasjoner (LfD) eller forsterkende læring (RL) blitt
undersøkt av forskningsmiljøet.

Imidlertid har disse metodene hovedsakelig blitt brukt på simulerte systemer. Virkelige
robotsystemer har ekstra utfordringer knyttet til kommunikasjon, sanntidsbegrensninger,
maskinvare og målefeil, som alle bidrar til forhold som er vanskelige å etterligne i sim-
ulatorer. For å anvende læringsmetodene på virkelige roboter, trengs et pålitelig og raskt
læringsrammeverk for fysiske roboter. Forskningen som er gjennomført i denne mas-
teroppgaven, har som mål å legge til rette for bruk av et variabel impedans læringskontroll
(VILC) rammeverk for virkelige roboter med det overordnede formålet å lære samsvarende
robotmanipulasjonsoppgaver.

Sammen med fordypningsprosjektet demonstrerer denne oppgaven et rammeverk for
virkelige roboter som er i stand til læring og kontroll av roboten. En ny læringsstrategi som
involverer kinestetisk læring og imitasjonslæring, er foreslått for å lære impedansprofiler
som kan mates til en variabel impedanskontroller. Læringsalgoritmen innebærer tre steg:
opptak av en ønsket endeeffektorbane ved hjelp av kinestetisk læring, utførelse av den reg-
istrerte banen ved bruk av impedanskontroll, og oppsett av et overvåket læringsproblem
(eng. supervised learning problem) ved hjelp av et nevralt nettverk for å estimere de ob-
serverte impedansene fra utførelsesdataene. Ved å dra nytte av data fra virkelige roboter
samlet under eksperimenter, forbedrer rammeverket læring for samhandlende robotstyring.
Eksperimentene utføres på en Franka Emika Panda-robot, en allsidig manipulator med sju
frihetsgrader. Disse eksperimentene, som er utført ved hjelp av robotlæringsrammever-
ket, viser dets verdi i monteringsoppgaver og dets potensiale for praktisk anvendelse i
samhandlende manipulasjonsscenarioer. Ved å bidra til utviklingen av læringsrammev-
erk for virkelige roboter, beriker denne forskningen det eksisterende kunnskapsgrunnlaget
innen feltet robotkontroll. De foreslåtte metodene og eksperimentelle funnene gir verdi-
full innsikt og potensielle fremskritt for fremtidig forskning innen robotmanipulasjon og
læring.

vii

viii

Table of Contents

Preface i

Acknowledgements iii

Abstract v

Sammendrag vii

List of Tables xi

List of Algorithms xii

List of Figures xiv

List of Acronyms xv

Glossary xvi

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Contributions . 2
1.3 Scope and Delimitations . 2
1.4 Structure of the Report . 3

2 Background 5
2.1 Preliminaries . 5
2.2 Robot Dynamics . 7
2.3 Impedance Control . 7
2.4 Variable Impedance Control . 10
2.5 Variable Impedance Learning . 13
2.6 Challenges with Reinforcement Learning on Real-World Robots 14

ix

3 Hardware and software 15
3.1 Franka Emika Panda Robot . 15
3.2 Robot Operating System . 17
3.3 Franka Control Interface . 17
3.4 Franka-interface and FrankaPy . 18
3.5 Other Software . 19

4 Robot Learning Framework 21
4.1 Implementation of Impedance Controllers 21
4.2 Impedance Profile and Learning Strategy 22
4.3 Setting Up the Software Environments 25

5 Experiments 27
5.1 Learning Impedance Profiles for Assembly Task 27
5.2 Performance Evaluation and Metrics . 39

6 Discussion 43
6.1 Experimental Results . 43
6.2 Robot Learning Framework . 45
6.3 Limitations and Future Work . 47

7 Conclusion 49

Bibliography 51

Appendices 55

A Setting Up Franka-Interface 57

B Overview of Code Contributions within Franka-interface and FrankaPy 59

C Extra Figures from Experiments 63

x

List of Tables

3.1 The DH parameters for the Panda robot 16

5.1 This table summarises the experimental parameters used in the Duplo as-
sembly experiment. 30

5.2 The hyperparameters used to train each neural network model. 35
5.3 This table includes the final MSE loss from (4.3) for each model after

training for 100 epochs, whereas both training and validation losses are
shown. The values are based on the force errors, i.e., the difference be-
tween the control forces predicted from the impedance estimates, and the
actual control forces. 39

5.4 This table shows the MSE stiffness for each model after training for 100
epochs, whereas both training and validation losses are shown. The stiff-
ness error is the difference between the stiffness estimates K̂P and the true
stiffness KP . 41

5.5 This table shows 100 epoch training times for each model, both when us-
ing GPU and CPU. 41

B.1 Files added to the Franka-interface-FrankaPy framework. 60
B.2 Files modified in the Franka-interface-FrankaPy framework. 61

xi

List of Algorithms

1 Impedance Learning from Demonstration 23

xii

List of Figures

2.1 Block diagram of impedance control with desired acceleration and veloc-
ity set to zero. The figure is adapted from Abu-Dakka and Saveriano (2020). 9

2.2 Block diagram of variable impedance control (VIC) with desired acceler-
ation and velocity set to zero. The figure is adapted from Abu-Dakka and
Saveriano (2020). 12

2.3 Block diagram of variable impedance learning (VIL) with desired acceler-
ation and velocity set to zero. The figure is adapted from Abu-Dakka and
Saveriano (2020). 13

2.4 Block diagram of variable impedance learning control (VILC) with de-
sired acceleration and velocity set to zero. The figure is adapted from
Abu-Dakka and Saveriano (2020). 14

3.1 The Panda robot’s kinematic chain . 16
3.2 Schematic overview of the communication with the robot through FCI and

libfranka ((Franka Emika, a)) . 18
3.3 System Diagram for FrankaPy and Franka-interface 18

4.1 Zero-order-hold principle . 22
4.2 Fully Connected Neural Network with 18 inputs, 3 output, and two hidden

layers with 32 and 16 neurons, respectively. 24
4.3 Fully Connected Neural Network Architecture with 18 inputs, 3 output,

and three hidden layers with 256, 128 and 64 neurons, respectively. 24

5.1 This figure shows the experimental setup of the Panda robot for the Duplo
experiment. 28

5.2 This figure shows a picture of the Panda robot during impedance-controlled
trajectory execution of the Duplo experiment. 29

5.3 Pose validation . 32
5.4 Pose, 1 demonstration . 33
5.5 Pose, 9 demonstrations . 34
5.6 Impedance, 1 demonstration, (32× 16) training 36

xiii

5.7 Impedance, 1 demonstration, (32× 16) validation 36
5.8 Impedance, 9 demonstrations, (32× 16) training 37
5.9 Impedance, 9 demonstrations, (32× 16) validation 37
5.10 Force, 1 demonstration, (32× 16) training 38
5.11 Force, 1 demonstration, (32× 16) validation 38
5.12 Training progress, 1 demonstration, (32× 16) 40
5.13 Training progress, 3 demonstrations, (256× 128× 64) 40

C.1 Pose, 3 demonstrations . 64
C.2 Impedance, 1 demonstration, (256× 128× 64) training 66
C.3 Impedance, 1 demonstration, (256× 128× 64) validation 66
C.4 Impedance, 3 demonstrations, (32× 16) training 67
C.5 Impedance, 3 demonstrations, (32× 16) validation 67
C.6 Impedance, 3 demonstrations, (256× 128× 64) training 68
C.7 Impedance, 3 demonstrations, (256× 128× 64) validation 68
C.8 Impedance, 9 demonstrations, (256× 128× 64) training 69
C.9 Impedance, 9 demonstrations, (256× 128× 64) validation 69
C.10 Force, 1 demonstration, (256× 128× 64) training 71
C.11 Force, 1 demonstration, (256× 128× 64) validation 71
C.12 Force, 3 demonstrations, (32× 16) training 72
C.13 Force, 3 demonstrations, (32× 16) validation 72
C.14 Force, 3 demonstrations, (256× 128× 64) training 73
C.15 Force, 3 demonstrations, (256× 128× 64) validation 73
C.16 Force, 9 demonstrations, (32× 16) training 74
C.17 Force, 9 demonstrations, (32× 16) validation 74
C.18 Force, 9 demonstrations, (256× 128× 64) training 75
C.19 Force, 9 demonstrations, (256× 128× 64) validation 75
C.20 Training progress, 1 demonstration, (256× 128× 64) 77
C.21 Training progress, 3 demonstrations, (32× 16) 77
C.22 Training progress, 9 demonstrations, (32× 16) 78
C.23 Training progress, 9 demonstration, (256× 128× 64) 78

xiv

List of Acronyms

CPU central processing unit. xi, 41, 46

CUDA Compute Unified Device Architecture. 57

DH Denavit-Hartenberg. 7, 15

DoF degrees of freedom. v, 6, 8, 15

FCI Franka Control Interface. xiii, 3, 15, 17, 18

GPU graphical processing unit. xi, 19, 25, 41, 46, 57

LfD learning from demonstration. 22

ML machine learning. 13

MSE mean squared error. xi, 25, 39, 41, 43

PC personal computer. xvi, 17–19, 25, 57

protobuf Protocol Buffers. 18, 21, 45, 57

RL reinforcement learning. v, vii, 14, 49

ROS Robot Operating System. 3, 15, 17, 19, 57

SPD symmetric and positive definite. 8, 10, 12

VIC variable impedance control. v, vii, 2, 3, 5, 11–13, 22, 23, 31, 47, 49

VIL variable impedance learning. 3, 13, 31, 47, 49

VILC variable impedance learning control. v, vii, 13, 49

ZOH zero-order-hold. 21, 22

xv

Glossary

Adam is a popular optimisation algorithm for training neural networks. 35

Control PC is the denotion of the realtime kernel computer connected by ethernet to the
Panda robot. 18, 25, 57

Franka-interface is the low-level control interface that together with FrankaPy makes up
a control framework for the Panda robot.. xi, xiii, xvi, 3, 15, 17–19, 21, 25, 45, 47,
57–61

FrankaPy is the high-level control interface, that together with Franka-interface makes
up a control framework for the Panda robot.. xi, xiii, xvi, 3, 15, 18, 19, 21, 25, 45,
47, 57, 59–61

FrankaPy PC is the denotion of the computer running FrankaPy. 18, 19, 25, 57

libfranka is a software library that provides a programming interface for controlling the
Panda robot. 18, 21

Panda robot is short for the Franka Emika Panda robot. xiii, xvi, 3, 15–18, 27, 47

Protocol Buffers is a free and open-source cross-platform data format used to serialise
structured data.. xv

PyTorch is a machine learning framework used for applications such as computer vision
and natural language processing. 19, 45, 46

zero-order-hold is to convert a discrete-time signal to a continuous-time signal by hold-
ing each sample value for one sample interval.. xv, 21, 22

xvi

1
Introduction

1.1 Problem Description and Motivation

Robotic manipulation tasks involving complex interactions with the environment pose a
significant challenge in the field of robotics. This thesis aims to address the problem of en-
abling robotic manipulators to learn such manipulation skills efficiently. The primary ob-
jective of this thesis is to develop a robot learning framework tailored for torque-controlled
robotic manipulators in real-world settings. The framework’s key focus is on enabling the
learning of manipulation skills directly from experiments conducted on real robotic ma-
nipulator systems, without having to rely on simulators.

The motivation behind using real-world robot data is to explore whether robots can
resemble humans in learning manipulation skills without having access to large amounts
of data. In simulations, experiments can be conducted faster than in real-time and in
parallel to generate large amounts of data in a very short time. Whereas real-world robot
data is expensive and challenging to obtain, therefore imposing limitations in terms of
sample efficiency and time in learning. However, this approach offers the advantage of
directly addressing potential modeling errors and discrepancies that arise due to the unique
dynamics of each robot.

Most existing research in robot learning focuses on learning control strategies from
simulations and subsequently transferring them to real robots. However, this approach
often requires additional re-learning to account for the reality gap between simulations and
real-world experiments. By exclusively utilising real-world robot data, this thesis aims to
eliminate the need for a simulation framework, thereby simplifying the overall learning
process.

It is important to emphasise that simulations have their own advantages and are widely
used in many contexts. This thesis does not undermine the value of simulation-based learn-
ing; rather, it aims to investigate the potential of real-world robot data-driven approaches.
Both simulation-based and real-world robot data-driven methods have their respective ad-
vantages and disadvantages, making it essential for the research community to explore and
compare both approaches.

1

1 Introduction 1.2 Contributions

Learning compliance control is motivated by the need to enable robots and autonomous
systems to interact safely and effectively with the dynamic and uncertain real world. Com-
pliance control refers to the ability of a robot or machine to modulate its impedance, allow-
ing it to adapt to varying environments and interact with objects and humans in a compliant
and gentle manner. The traditional approach to robot control often relies on precise and
rigid motions, which can be limiting when dealing with unstructured or changing environ-
ments. In contrast, compliance control enables robots to respond more gracefully to unex-
pected disturbances, uncertainties, and varying conditions. By acquiring compliance skills
through learning, robots can effectively navigate complex and dynamic environments.

The following research questions will guide the research in this thesis:

1. How can a real-world robot learning framework be developed to facilitate the exe-
cution of compliant manipulation tasks?

2. How can existing machine learning techniques, such as deep reinforcement learning
or imitation learning, be adapted and integrated into a real-world robot learning
framework?

3. What are the potential advantages and disadvantages of utilising real-world robot
data exclusively, as opposed to simulations, for learning compliant manipulation
tasks, and how do these approaches impact the overall learning process?

By addressing these research questions within the proposed robot learning framework,
this thesis seeks to contribute to the progress of robot learning research. The findings of
this study will encourage further investigation into simulation-based and real-world robot
data-driven approaches within the research community.

1.2 Contributions
The contributions of this thesis include

• Literature review exploring relevant topics within robotic control.

• Developing and testing a real-world robot framework that is suitable for learning
complex robotic manipulation tasks.

• A novel impedance estimation method from real-world robot data variable impedance
control (VIC).

• Experimental evaluation of the proposed framework and impedance estimation method
on a robotic assembly task.

1.3 Scope and Delimitations
In this master’s thesis, several delimitations have been established to define the boundaries
and scope of the study. Firstly, the research is exclusively based on real-world robot data,
and simulations are not considered. This ensures a focus on the practical applicability of

2

1 Introduction 1.4 Structure of the Report

learning frameworks in real-world robotic manipulation tasks. The study centers on the
Panda robot, assuming that the gained knowledge from this specific robotic arm extends
to similar torque-controlled robots. Secondly, the primary focus for learning algorithms
revolves around imitation learning and reinforcement learning. Other learning algorithms,
including those based on haptic feedback, adaptive control, and Gaussian processes, are
outside the scope of this thesis. Lastly, the analysis concentrates on various versions of
impedance control, excluding consideration of other control approaches such as direct
force control and position control. By clearly defining these delimitations, this thesis
ensures a well-defined and focused exploration of real-world robot data-driven approaches
and their applicability to specific robotic manipulation scenarios.

1.4 Structure of the Report
The structure of the report is presented to give an overview of the contents of this master’s
thesis. The report begins with a brief preface, acknowledgments, and abstract, the latter
written in both English and Norwegian. Lists of tables, algorithms, and figures follows,
providing a convenient reference for readers.

This chapter (Chapter 1) lays the foundation for the research by describing the problem
and motivation behind developing a robot learning framework. The chapter outlines the
contributions made in the thesis and defines the delimitations that set the scope of the
research.

Chapter 2 delves into the theoretical background of the research. It covers preliminary
concepts, robot dynamics, and the principles of impedance control. variable impedance
control (VIC) and variable impedance learning (VIL) is discussed, along with challenges
related to real-world robot learning.

Chapter 3 focuses on the specific hardware and software used in the experiments.
The Franka Emika Panda robot is introduced, along with Robot Operating System (ROS)
and Franka Control Interface (FCI). Details about the software environments, including
Franka-interface, FrankaPy, and other related tools, are also provided.

Chapter 4 elaborates on the practical implementation aspects of impedance controllers.
The development of the impedance profile and learning strategy is explained in detail,
along with the setup of software environments.

Chapter 5 presents the results and findings from learning the impedance profile for
robotic assembly tasks. Performance evaluation and metrics used to assess the learning
framework are discussed.

Chapter 6 analyses and discusses the experimental results and the robot learning frame-
work. Limitations of the research are addressed, and potential future work is proposed.

Chapter 7 provides a concise summary that concludes the key findings and contribu-
tions of this thesis.

Finally, appendices offer additional information, including details on code contribu-
tions and extra figures from experiments.

3

1 Introduction 1.4 Structure of the Report

4

2
Background

In this chapter, the theoretical background needed for the rest of the thesis is presented.
First, preliminaries and the robot dynamic equations are presented. Next, theory and lit-
erature reviews regarding impedance control and variable impedance control (VIC) are
showcased. Finally, the chapter presents strategies and challenges for learning impedance
profiles to effectively utilise VIC. The reader is reminded that Sections 2.1–2.4 is based
on Erlandsen (2023), however 2.3 and 2.4 are expanded with thorough literature reviews.

2.1 Preliminaries

This section presents the preliminaries which are useful for derivations presented later in
this chapter. First, the skew-symmetric operator is defined, which is useful for representing
cross products. Next, rotation matrices and other useful representations of orientation in
R3 will be presented.

Skew-symmetric operator

The skew symmetric operator S : R3 → R3×3 may be defined as follows

S

v1v2
v3

 =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (2.1)

which has the useful property S(u)v = u× v.

Orientation and rotation

The orientation of coordinate frame j with respect to coordinate frame i can be expressed
by denoting the basis vectors of frame j (xj , yj , zj) in frame i. The result is what is

5

2 Background 2.1 Preliminaries

known as the rotation matrix Ri
j = (xi

j , y
i
j , z

i
j). The components of Ri

j is computed as

Ri
j =

[
x̂i
j ŷi

j ẑi
j

]
=

xj · xi yj · xi zj · xi

xj · yi yj · yi zj · yi

xj · zi yj · zi zj · zi

 . (2.2)

It is worth noting that the rotation matrix Ri
j can be viewed both as an active rotation,

moving a body attached to frame i to the orientation of frame j or as a passive rotation,
changing basis of a vector expressed in frame j so that it instead is expressed in frame i.
Both perspectives are equivalent, but these two interpretations can often be a source of
confusion.

In addition to rotation matrices, orientations can be represented in several ways, in-
cluding Euler angles, Angle-axis and Quaternions. In many cases it is helpful to use a
more compact notation than rotation matrices, which consist of nine elements, as orienta-
tions in space only have three degrees of freedom (DoF). The Euler angle representation is
a minimal representation including only three parameters, however, issues may arise due
to its singularities – what is known as gimbal lock (Waldron and Schmiedeler, 2008). For
this reason, The Euler angle representation will not be used excessively in this report.

The Angle-Axis representation defines a rotation via an angle θ and a unit vector v
corresponding to the axis of rotation. Often such a representation is denoted compactly
as the product θ · v, which is called a rotation vector. Quaternions, that are based on the
Angle-Axis representation, are defined as

η = cos

(
θ

2

)
, ε = v sin

(
θ

2

)
, (2.3)

and is often denoted as a 4-vector:

q =

[
η
ε

]
. (2.4)

The quaternion product is defined as

r = q1 ⊗ q2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
, (2.5)

where S(·) is the skew-symmetric operator from Equation 2.1. The inverse of a quaternion
is given by

q−1 =

[
η
−ε

]
. (2.6)

The quaternion resulting from successive rotations can be computed via the quaternion
product as q12 = q1 ⊗ q2, meaning the resulting quaternion after applying the rotations
q1 followed by q2. Furthermore, the quaternion q−1 ⊗ q =

[
1 0 0 0

]T
corresponds

to no rotation (Downs, 2003).
Given two quaternions qi and qj , representing two orientations relative some common

base frame, the difference quaternion may be defined as

qji = q−1
i ⊗ qj =

[
ηiηj + εTi εj

ηiεj − ηjεi + S(−εi)εj)

]
. (2.7)

6

2 Background 2.2 Robot Dynamics

2.2 Robot Dynamics
The geometric jacobian of a robotic manipulator is defined as the relation between the
joint velocities q̇ ∈ Rn and the task-space end effector velocity in the following way

ve = Jq̇, (2.8)

where ve =

[
ṗe

ωe

]
, and ṗe is the translational velocity and ωe is the angular velocity. The

jacobian J is a 6 × n matrix, where n is the number of joints the manipulator has. The
jacobian is in general configuration dependent, i.e., a function of the joints J = J(q), and
can be derived from the robot forward kinematics.

The forward kinematics is in principle to compute the position and orientation of the
end effector given the joint angles (Waldron and Schmiedeler, 2008). The forward kine-
matics of the robot can be derived using the Denavit-Hartenberg (DH) convention.

The joint space robot dynamics are given by

H(q)q̈ +C(q, q̇)q̇ + g(q) = τc − τe, (2.9)

where H(q) ∈ Rn×n is the inertia matrix, C(q, q̇)q̇ is the vector of Coriolis and centrifu-
gal torques, g(q) is the vector of gravitational torques, τc is the vector of input control
torques, and τe is the vector of torques applied by the manipulator to the environment.

The Cartesian end effector velocity ve, is computed through the Jacobian as described
by Equation 2.8. In the case of n = 6, i.e., a non-redundant and non-singular manipulator,
the task space robot dynamics are given by

Λ(q)v̇e + Γ(q, q̇)ve + η(q) = hc − he, (2.10)

where Λ(q) = (JH(q)−1JT)−1 ∈ R6×6 is the task space inertia matrix, Γ(q, q̇) =
J−TC(q, q̇)J−1 −Λ(q)J̇J−1 ∈ R6×6 is the task space Coriolis and centrifugal matrix,
η(q) = J−Tg(q) ∈ R6 gravitational force, hc = J−T τc is the end effector wrench
corresponding to the input control torques τc, and he =

[
fT
e mT

e

]T
is the end effec-

tor wrench, i.e. the force and moment applied by the end effector to the environment.
The operator (·)−T means inverse transposed, i.e. ((·)−1)T . (Villani and Schutter, 2008,
p. 164)

2.3 Impedance Control
Controlling robotic manipulators in physical contact with the environment has posed a sig-
nificant challenge for researchers over many decades. This ongoing pursuit has resulted in
a wide range of control algorithms and specialised hardware designs. In contrast, control-
ling a manipulator without contact, referred to as motion control, is now mostly consid-
ered resolved, with current research focused on optimising established frameworks such
as inverse dynamics control, adaptive motion control, and independent joint PID control
(Slotine and Li, 1987).

However, the research on controlling robotic manipulators during physical contacts has
recently centered around a specific class of control methods, namely impedance control

7

2 Background 2.3 Impedance Control

(Hogan, 1985a). This class has emerged as a suitable control architecture for improving
the performance of robotic manipulation in situations where traditional control approaches
tend to fail. Examples include tasks involving uncertain pose estimation of manipulated
objects, physical contact, and tasks requiring appropriate responses to unexpected distur-
bances (Villani and Schutter, 2008).

Historically, there has been several attempts of developing control strategies aimed at
controlling robots in contact. An alternative approach called stiffness control (Salisbury,
1980) allowed task designers to specify a desired trajectory and corresponding stiffness
without explicit force control. By intentionally offsetting the reference trajectory inside
the object to be contacted, desired contact forces could be achieved. This technique did not
require separating the task space into orthogonal position- and force-controlled subspaces,
and could be implemented without a force sensor on torque-controlled robots (Villani and
Schutter, 2008, p. 167). Hogan expanded upon this concept and developed an impedance
model describing the relationship between physical effort (force) and flow (velocity) as
a second-order linear dynamical system parameterised by virtual inertia, damping, and
stiffness (Hogan, 1985a).

It is crucial to view impedance control not as a specific control implementation but as
a concept that can be implemented in various ways. Hogan’s proposed implementation
scheme (Hogan, 1985b) is applicable to torque-controlled manipulators. An alternative
approach known as admittance control reverses the causality of impedance by utilising
force measurements to simulate a trajectory based on the desired impedance model. This
trajectory can then be fed into a high-performance position controller. The implementation
with impedance causality offers better robustness in rigid contact, while the admittance
control scheme is more widely applicable and provides better nominal performance in free
motion (Ott et al., 2010). (Kronander, 2015, p. 11–13)

Given the task space robot dynamics in Equation 2.10, impedance control is obtained
via the control law

hc = Λ(q)α+ Γ(q, q̇)ve + η(q) + he, (2.11)

where α is to be determined. This control law results in the following dynamics

v̇e = α,

where the end effector acceleration v̇e is controlled directly. Given a desired acceleration
v̇d and a desired velocity vd, α is chosen as

α = v̇d +K−1
M (KD∆vde +KP∆xde − he), (2.12)

where KM , KD and KP are 6 × 6 symmetric and positive definite (SPD) matrices,
∆pde = pd − pe is the generalised position error, and ∆vde = vd − ve is the gener-
alised velocity error. The resulting closed-loop dynamics become

KM∆v̇de +KD∆vde +KP∆xde = he, (2.13)

i.e., the dynamic relationship between the robot and the environment is modelled as a
6-DoF mass-spring-damper system. (Anand et al., 2022)

A block diagram of impedance control with v̇d = vd = 0 is shown in Figure 2.1,
however, with slightly different notation. This diagram is adapted from Abu-Dakka and
Saveriano (2020).

8

2 Background 2.3 Impedance Control

Figure 2.1: Block diagram of impedance control with desired acceleration and velocity set to zero.
The figure is adapted from Abu-Dakka and Saveriano (2020).

Simplified impedance control scheme
The controller consisting of Equation 2.11 and Equation 2.12 includes what is called in-
ertia shaping, as this controller tries to control the apparent inertia KM of the interaction
between the robot and the environment. This inertia shaping is indicated in Equation 2.13
as in addition to the damping and stiffness matrices, KD and KP , also the apparent inertia
matrix KM can be chosen freely. A simplified version of this impedance controller, with-
out inertia shaping, can be obtained by setting the apparent inertia in Equation 2.12 equal
to the actual robot inertia, i.e., KM := Λ(q). If the resulting equation for α is substituted
into Equation 2.11 the control law becomes

hc = Λ(q)v̇d +KD∆vde +KP∆xde + Γ(q, q̇)ve + η(q), (2.14)

where the external wrench he is no longer needed in the control law, as opposed to the
inertia shaping controller. This simplified control scheme corresponds to stiffness control
(Villani and Schutter, 2008) with the inclusion of coriolis compensation.

The closed-loop dynamics of the impedance controller without inertia shaping become

Λ(q)∆v̇de +KD∆vde +KP∆xde = he, (2.15)

i.e., Equation 2.13 with KM = Λ(q).

Alternative approach for impedance control
Villani and Schutter (2008) describes an alternative implementation of impedance control,
where the end effector wrench error h∆ is determined more carefully to ensure a geomet-
rically consistent active stiffness (Villani and Schutter, 2008). This approach is included
for completeness, but is not utilised in this thesis. Furthermore, this control scheme de-
fines impedances in the end effector frame, while in the previous method impedances were
defined in the robot’s inertial base frame. This alternative implementation is obtained from
Equation 2.11, but with α chosen as

α = v̇d +K−1
M (KD∆vde + h∆ − he), (2.16)

9

2 Background 2.4 Variable Impedance Control

where the end effector wrench error h∆ is given by the equations

h∆ = h∆t + h∆o,

with h∆t =

[
f∆t

m∆t

]
=

[
K ′

Pt∆pde

K ′′
Pt∆pde

]
,

and h∆o =

[
03×1

m∆o

]
=

[
03×1

K ′
Poεde

]
,

(2.17)

where ∆pde = pd − pe ∈ R3×3 is the offset between the desired position and the current
end effector position, and εde ∈ R3×3 is the vector part of the difference quaternion
between qd and qe as described in Equation 2.7.

The gain-matrices K ′
Pt, K

′′
Pt, K

′
Po ∈ R3×3 are given by

K ′
Pt =

1

2
RdKPtR

T
d +

1

2
ReKPtR

T
e ,

K ′′
Pt =

1

2
S(∆pde)RdKPtR

T
d ,

K ′
Po = 2ET (ηde, εde)ReKPoR

T
e ,

(2.18)

with E(ηde, εde) = ηdeI −S(εde) where S(·) is the skew-symmetric operator as defined
in Equation 2.1. KPt and KPo are 3× 3 SPD matrices corresponding to translational and
rotational stiffness respectively (Villani and Schutter, 2008).

2.4 Variable Impedance Control

Impedance control with constant impedance parameters can be a suitable solution in cer-
tain cases. However, the ability to vary the impedance parameters during a task provides
greater flexibility and can have a significant impact on performance across a wide range
of tasks. Inserting a key into a keyhole is an example of a human task where varying
the impedance, in this case the muscular stiffness, is essential to complete the task suc-
cessfully. Initially, a person may hold the key with a relatively relaxed grip, allowing for
smooth insertion without excessive force. However, as the key enters the keyhole, they
need to adjust the impedance in their fingers and hand to provide enough resistance and
stability for accurate placement. As the key approaches the locking mechanism, the person
may need to exert more force and increase the muscular stiffness in their fingers, hand, and
wrist to overcome any resistance or misalignment. This adjustment allows them to turn the
key smoothly and engage the lock mechanism.

In the field of biological motor control, it is well-known that humans employ varying
impedance in a task-dependent manner (Burdet et al., 2001; Gomi and Osu, 1998). Ex-
tensive research efforts have focused on assigning varying impedance to achieve various
objectives, such as improved performance, enhanced safety, or reduced energy consump-
tion. However, the stability implications of allowing the impedance parameters to vary
have until recently been largely overlooked by the research community. Notably, Yang
et al. (2011) proposed a biologically inspired varying impedance controller and rigorously

10

2 Background 2.4 Variable Impedance Control

proved its stability. However, for the general case of time-varying impedance, the stan-
dard energy-based stability analysis is no longer valid when considering arbitrarily varying
stiffness matrices (Kronander, 2015, p. 81).

Despite overlooking stability challenges, variable impedance control has demonstrated
success in numerous applications, indicating that reasonable impedance variations are gen-
erally sufficiently small or slow for a wide range of tasks. However, these notions provide
limited guidance when designing varying impedance profiles since the required speed or
magnitude of variations cannot be determined before task execution.

Hannaford and Ryu (2002) and Ryu et al. (2004) utilised time-domain passivity, which
is based on online computation of energy quantities and injection of damping. The pas-
sivity layer (PL) approach introduced in Franken et al. (2011) also relies on time-domain
passivity to address interactivity and delay in bilateral telemanipulation. This approach
leverages the ability to precisely compute energy exchange between a robot and its en-
vironment, provided the robot exhibits impedance causality (velocity in, force out)1, as
demonstrated in Stramigioli et al. (2005).

Ferraguti et al. (2013) proposed a similar approach specifically for the case of varying
stiffness matrices in VIC. Their controller monitors the system’s energy online, but stabil-
isation is achieved by reverting to a constant stiffness component rather than introducing
additional damping.

While the aforementioned methods can theoretically stabilise a system under variable
impedance control with an arbitrary varying stiffness profile, they either introduce damp-
ing (Ryu et al., 2004) or modify the stiffness profile (Ferraguti et al., 2013) based on the
observed state trajectory during task execution. Consequently, it is impossible to deter-
mine the exact impedance profile that a robot will utilise prior to task execution. As a
result, even if a task-specific impedance profile is carefully designed, the robot may show
a completely different behaviour than intended during task execution. Kronander (2015)
introduced more general stability conditions for variable impedance control. As opposed
to previous stability conditions, these conditions are state-independent and may thus be
evaluated before task execution. (Kronander, 2015, p. 14–15)

The concept of imposing constraints on variable impedance matrices to ensure stability
prior to execution has been further developed by Sun et al. (2019), who introduced novel
constraints on variable impedance matrices. These constraints guarantees exponential sta-
bility while simultaneously ensuring boundedness of the robot’s position, velocity, and ac-
celeration. Later, Spyrakos-Papastavridis et al. (2020) proposed a Passivity-Preservation
Control (PPC) approach, which facilitates the implementation of stable VIC. Furthermore,
they presented both joint and Cartesian space variants of the PPC controller, allowing for
intuitive definition of interaction tasks. Finally, Park and Choi (2020) proposed sufficient
conditions for ensuring input-to-state stability (ISS) for VIC.

Going back to the mathematical description of impedance control from (2.11), (2.12)
and (2.13), VIC is obtained by varying the impedance matrices KP , KD, and, in the
case of inertia shaping, KM . For completeness Kronander’s sufficient stability conditions
(Kronander, 2015, p. 82–83) is summarised by the following theorem, which is rewritten
to match the notation in this thesis:

1This impedance causality matches the physical impedance described in Hogan (1985a).

11

2 Background 2.4 Variable Impedance Control

Figure 2.2: Block diagram of variable impedance control (VIC) with desired acceleration and ve-
locity set to zero. The figure is adapted from Abu-Dakka and Saveriano (2020).

Theorem 1 (Stability conditions under dynamic decoupling). Let KM be a constant, sym-
metric and positive definite (SPD) matrix. Let KP (t) and KD(t) be SPD and continuously
differentiable varying stiffness and damping profiles. Then, the system in eq. (2.13) with
he = 0 is globally uniformly stable if there exists an α > 0 such that ∀t ≥ 0:

1. αKM −KD(t) ≤ 0 (negative semi-definite)

2. K̇P (t) + αK̇D(t)− 2αKP (t) ≤ 0 (negative semi-definite)

If in 2) semi-definiteness is replaced with definiteness, the stability property is in addition
asymptotic.

The stability analysis of Theorem 1 can be drastically simplified under certain as-
sumptions. For example, in the case of diagonal inertia, damping and stiffness matrices,
and constant damping ratio, i.e. dx(t) := 2ζ

√
mxkx(t) , the stability conditions would

reduce to (in x-direction):

k̇x(t) <
2α

√
kx(t)

3√
kx(t) + ζα

√
mx

,

where ζ is the constant damping ratio, and mx and kx(t) are the inertia and stiffness
values in x-direction. The conditions would be likewise in y- and z-direction, included in
the rotational components.

A block diagram of variable impedance control (VIC) with v̇d = vd = 0 is shown
in Figure 2.2, again with slightly different notation. This diagram is adapted from Abu-
Dakka and Saveriano (2020).

12

2 Background 2.5 Variable Impedance Learning

Figure 2.3: Block diagram of variable impedance learning (VIL) with desired acceleration and
velocity set to zero. The figure is adapted from Abu-Dakka and Saveriano (2020).

2.5 Variable Impedance Learning
As specifying the impedances in VIC is difficult to do manually, it can be a suitable task
for a machine learning (ML) algorithm. Learning such impedance profiles is referred to as
variable impedance learning (VIL).

Abu-Dakka and Saveriano (2020) differs between VIL and variable impedance learn-
ing control (VILC). VIL focuses on learning algorithms used to encode variable impedance
gains for tasks requiring adaptable stiffness and damping in robots. The learning process
involves training data provided by an expert user, typically through kinaesthetic teaching,
to acquire parameterised impedance gains represented by a set of parameters. Using this
data, the learning algorithm approximates nonlinear mappings to obtain desired variable
stiffness and damping matrices based on measurements of position, velocity, and force.
During runtime, the learned model is used to retrieve the desired variable impedance gains,
which are then employed to achieve desired closed-loop properties in robot interactions.

A block diagram of VIL with v̇d = vd = 0 is shown in Figure 2.3. Again, the diagram
is adapted from Abu-Dakka and Saveriano (2020), and uses slightly different notation
compared to this thesis.

On the other hand, VILC extends beyond the scope of VIL by merging the learning
algorithm with the underlying control structure. This integration allows for a more intricate
impedance learning process, often involving iterative updates and robot self-exploration.
Unlike VIL, VILC’s data collection for learning impedance gains depends on the specific
control strategy being used, and both learning and control blocks are combined. VILC
also goes a step further by updating the target pose or reference trajectory alongside the
impedance gains, offering more complex impedance learning behaviours.

A block diagram of the variable impedance learning control with v̇d = vd = 0
is shown in Figure 2.4. Again, the diagram is adapted from Abu-Dakka and Saveriano
(2020), and uses slightly different notation compared to this thesis.

13

2 Background 2.6 Challenges with Reinforcement Learning on Real-World Robots

Figure 2.4: Block diagram of variable impedance learning control (VILC) with desired acceleration
and velocity set to zero. The figure is adapted from Abu-Dakka and Saveriano (2020).

2.6 Challenges with Reinforcement Learning on Real-World
Robots

Reinforcement learning (RL) holds promise for addressing complex robotic tasks, but its
application with real-world robots has been hindered by challenges and unreliability. In
Mahmood et al. (2018a), a learning task is developed with a UR5 robotic arm to high-
light the importance of task setup and its impact on learning performance. The research
emphasises that oversights in setup details can make learning, reproducibility, and fair
comparisons difficult, but offers mitigating steps to overcome these challenges. The study
demonstrates the potential for extensive RL research based on real-world robots by achiev-
ing highly reliable and repeatable experiments. Next, Mahmood et al. (2018b) addresses
the challenges of applying RL to physical robots and emphasises the need for benchmark
tasks and supporting source code. The paper highlights the importance of carefully set-
ting up the task interface and computations for successful RL implementation on physical
robots. It also discusses the sensitivity of modern learning algorithms to hyperparameters
and the need for task-specific tuning to achieve optimal performance. Finally, Dulac-
Arnold et al. (2021) identifies and formalises a series of independent challenges related to
RL, which are then analysed on state-of-the-art learning algorithms. The paper also intro-
duces a suite of continuous control environments called ”realworldrl-suite”, which serves
as an open-source benchmark for evaluating RL algorithms in real-world scenarios.

14

3
Hardware and software

In this chapter the relevant robot hardware and software will be presented. The hard-
ware used in this project is the Franka Emika Panda robot (hereafter referred to as the
Panda robot) – a robotic arm with seven degrees of freedom (DoF). The software con-
sists of two main modules; FrankaPy and Franka-interface; which are built upon Robot
Operating System (ROS) and Franka Control Interface (FCI). The reader is reminded that
Sections 3.1–3.4 are based on Erlandsen (2023).

3.1 Franka Emika Panda Robot
The Franka Emika Panda robot is, as mentioned, a 7-DoF robotic arm. It has seven revolute
joints, each attached with a torque sensor, which makes it able to sense the impact of any
external forces. The Panda robot is relatively cheap compared to other robots in its class.
In 2017 the team behind this robot was awarded the German Future Prize, because the
robot was ”cheap, affordable and easy to use” (Deutche Welle, 2017).

The Panda robot’s kinematic chain is indicated by Figure 3.1, and the corresponding
DH parameters are shown in Table 3.1 (Franka Emika, b). Without going into details, it can
be mentioned that these DH parameters follow Craig’s convention and not the classical DH
convention. This is equivalent to the classical convention, however, each frame is assigned
differently in Figure 3.1 compared to what would be the case when using the classical DH
convention.

The Panda robot is equipped with joint torque sensors but does not have an end effector
force-torque sensor.

15

3 Hardware and software 3.1 Franka Emika Panda Robot

Figure 3.1: The Panda robot’s kinematic chain

Joint θ (rad) d (m) a (rad) α (rad)

Joint 1 θ1 0.333 0 0

Joint 2 θ2 0 0 −π/2

Joint 3 θ3 0.316 0 π/2

Joint 4 θ4 0 0.0825 π/2

Joint 5 θ5 0.384 −0.0825 −π/2

Joint 6 θ6 0 0 π/2

Join 7 θ7 0 0.088 π/2

Flange 0 0.107 0 0

Franka Hand 0 0.1034 0 0

Table 3.1: The DH parameters for the Panda robot

16

3 Hardware and software 3.2 Robot Operating System

3.2 Robot Operating System
Robot Operating System (ROS) is an open source framework which provides tools to
help software developers create robot applications. The framework includes hardware
abstraction, device drivers, libraries, visualisers, message-passing, package management,
and more. In this project ROS Noetic is used, which is mainly made for Ubuntu 20.04
(Stanford Artificial Intelligence Laboratory et al.).

ROS is utilised in this thesis for various purposes. We use the rosbag tool for recording
data, message-passing for exchanging parameters, and the ROS clock for managing the
control frequency by incorporating appropriate sleep commands. Additionally, we rely on
the rospy package, which is a Python framework for ROS.

Saving Robot States with Rosbag
In the context of controlling the Panda robot an important aspect is the need to save robot
states efficiently. Initial attempts to save the data within the robot framework proved in-
adequate due to the real-time performance requirements. Consequently, a more efficient
approach was sought. Rosbag emerged as a promising solution as it allows saving all re-
quired data in a deserialised fashion, leveraging ROS messages. This capability enables
the recording of selected ROS topics. Once the recording is completed, the data is saved to
a ”.bag”-file. This file can be opened and transformed into more readable data structures
afterwards, such as converting serialised binary data into a Python dictionary.

3.3 Franka Control Interface
The Franka Control Interface (FCI) allows a fast and direct low-level bidirectional con-
nection to the Panda robot. It provides the current status of the robot and enables its direct
control with an external workstation PC connected via ethernet. By using the open source
C++ library libfranka, real-time communication at 1 kHz is possible. This communication
includes sending control commands, receiving measurements of joint position, velocities
and torques, receiving estimation of external forces and torques, and receiving the forward
kinematics and Jacobian matrix for all joints. In addition, franka ros connects the Panda
robot with the entire ROS ecosystem and integrates libfranka into ROS Control (Franka
Emika, 2017). However, franka ros is not used directly in this project, as Franka-interface
is used for ROS integration instead. A schematic overview of the communication with FCI
is shown in Figure 3.2.

The Franka Hand, a hand attachment for the Panda robot, operates in a non-real-time
manner, while the robot arm operates in real-time.

17

3 Hardware and software 3.4 Franka-interface and FrankaPy

Figure 3.2: Schematic overview of the communication with the robot through FCI and libfranka
((Franka Emika, a))

3.4 Franka-interface and FrankaPy

Franka-interface and FrankaPy make up a a modular robotic control stack that provides
a customisable and accessible interface to the Panda robot (Zhang et al., 2020). This
framework abstracts high-level robot control commands as skills, which are decomposed
into combinations of trajectory generators, feedback controllers, and termination handlers.
Low-level control is implemented in C++ and can run at 1kHz, and high-level commands
are exposed in Python. In addition, external sensor feedback, like estimated object poses,
can be streamed to the low-level controllers in real time.

Figure 3.3 shows how the different modules communicate. Franka-interface uses
libfranka so that real-time communication at 1kHz is still possible (Zhang et al., 2020).

FrankaPy relies on Google protobuf for communication between the different mod-
ules. It utilises the client-server model, where the server runs on the Control PC, and the
client, in this case, the FrankaPy PC, communicates with the server. The server publishes

Figure 3.3: System Diagram for FrankaPy and Franka-interface

18

3 Hardware and software 3.5 Other Software

states to FrankaPy, and FrankaPy uses these states for message-passing. The FrankaPy
PC sends control goals to the server via ROS, wrapped around standard ROS action server
goals, which contain the parameters for each skill. The Robot Planner, serving as the main
program, utilises the functionality provided by Franka-interface and FrankaPy. Franka-
interface and FrankaPy serves as a baseline for our learning framework.

3.5 Other Software
In addition to the aforementioned software components, several Python libraries are used
in this project. PyTorch is employed for various tasks including the use of Neural networks
with GPU support. The subprocess library allows terminal access and is utilised to start
the rosbag record command, mentioned in section 3.2. The bagpy library simplifies the
loading of data from bag files. Furthermore, other libraries such as numpy, tqdm, rospy,
and pickle are used for different functionalities throughout the project.

19

3 Hardware and software 3.5 Other Software

20

4
Robot Learning Framework

In this chapter a real-world robot learning framework for learning impedance profiles is
presented. The robot learning framework is adapted from the control framework consiting
of Franka-interface and FrankaPy Zhang et al. (2020).

4.1 Implementation of Impedance Controllers
Two different impedance controllers were implemented within the low level C++ frame-
work (Franka-interface) – one with inertia shaping and another without. The implemen-
tation of the controllers satisfies Equation 2.11 with Equation 2.12, and Equation 2.14,
respectively.

In the current implementation, both the desired acceleration (v̇d) and velocity (vd)
are set to zero. However, extending the implementation to incorporate non-zero values
for these variables is possible by modifying the protobuf messages. Furthermore, the low
level controller defined in Franka-interface must be updated to load and utilise these new
values.

Both impedance controllers are implemented to allow for varying impedances which,
just as the desired poses, are fed from FrankaPy. The impedance controllers include
coriolis- and gravity force compensation, corresponding to the terms Γ(q, q̇)ve and η(q)
in the Cartesian control law. The robot is commanded with torque commands at the joint
level, and the libfranka library automatically handles gravity compensation and provides
access to the joint space coriolis forces. This convenient functionality makes it easier to
implement coriolis and gravity compensation at the joint level, as opposed to comput-
ing these terms in task space and then compute the resulting control torques afterwards.
Furthermore, the controllers are in practise not continuous, but the control commands are
updated at every time interval that is given by the chosen control frequency. Then, the
control torques are applied in a zero-order-hold (ZOH) fashion. This means that during
the time window between two time steps, the joint motors are continuously controlled to-
wards the last received control torques. An illustration of the ZOH principle is shown in
Figure 4.1.

21

4 Robot Learning Framework 4.2 Impedance Profile and Learning Strategy

t

x(t)

Ts Ts Ts

Figure 4.1: This figure shows the zero-order-hold (ZOH) principle. The blue line shows the contin-
uous function that is being periodically evaluated. The red dotted line shows the piecewise constant
function after applying ZOH to these evaluations from the continuous function.

The joint level control torques are at each time step ultimately given as

τc = JThc = JT (Λ(q)α+ he) +C(q, q̇)q̇ + g(q). (4.1)

4.2 Impedance Profile and Learning Strategy
In order to utilise the VIC capabilities, an impedance profile to feed to the impedance
controller is needed. For simplicity, the rotational impedances are set to constant values,
as manipulation tasks where rotation is the key movement is not considered. Examples of
such manipulation task could be fastening a screw or turning a handle. The translational
stiffness estimate will be on the following form

K̂P,t = K̂P,t(xe,ve,he) =

k̂x(xe,ve,he) 0 0

0 k̂y(xe,ve,he) 0

0 0 k̂z(xe,ve,he)

 ,

(4.2)
where k̂x(·), k̂y(·) and k̂z(·) corresponds to the translational stiffness in x-, y- and z-
direction, respectively. For all experiments that utilises impedance control in this thesis,
the damping matrix is derived directly from the stiffness matrix to ensure a critical damped
system. This holds for impedance estimates as well as impedance parameters utilised by
the impedance controller during execution. Specifically the damping matrix is diagonal,
and each component is computed as dx,y,z = 2

√
kx,y,z . However, if desired, the damping

matrix elements can be estimated separately.
To learn such an impedance profile we suggest a learning strategy based on the learning

from demonstration (LfD) and imitation learning paradigms. The proposed robot learning
strategy is summarised in Algorithm 1.

First, the robot is put into what we call guide mode, which corresponds to applying the
control law

τc = g(q).

22

4 Robot Learning Framework 4.2 Impedance Profile and Learning Strategy

Algorithm 1 Impedance Learning from Demonstration

1: Kinaesthetic Teaching Phase:

• Record N desired end effector pose trajectories from kinaesthetic teaching
demonstrations by a human operator.

• Control the robot in pure gravity-compensation mode, enabling free movement
by the operator.

2: Execution Phase with Impedance Control:

• Execute the recorded end effector trajectories using impedance control at a de-
sired control frequency.

• Save end effector poses, velocities, and forces periodically during execution –
typically at the same rate as the control frequency.

3: Neural Network Training:

• Set up a supervised learning problem using a neural network.

• Input sensory data from the execution phase (end effector poses, velocities, and
forces).

• Train the neural network to estimate impedances observed during execution.

In this mode the robot is only controlled to compensate the gravitational forces, so that
the robot can be moved freely and the task at hand can be demonstrated by a human
operator. While having the robot in guide mode for some period of time, the robot pose
is periodically saved at a constant frequency. These robot poses then make up the desired
trajectory for the task at hand. This demonstration process can be repeated an optional
number of times, so that several trajectories correspond to the same task.

The next step is to publish these trajectories to the robot, one at a time, by using
impedance control with a constant impedance. The data collected from the resulting robot
trajectories will be the basis for a supervised learning problem. This initial run is assumed
to be a satisfactory, but not perfect demonstration, and imitation learning can be used to
replicate its behaviour in a VIC framework.

Finally, the goal is to learn an impedance profile for a specific robot task. Given the end
effector pose, generalised velocity and external wrench, the estimator in (4.2) produces
suitable impedance values for the task at hand. Using a neural network structure is a
promising approach as the aim is to learn a general, but unknown relationship between
two sets of values: the generalised position (xe), velocity (ve), and external wrench (he)
on one side, and the corresponding impedance values KP,t on the other.

For an impedance controller without inertia shaping, there is coupling between trans-
lation and rotation in the closed-loop dynamics (see (2.15)). However, in terms of the
desired control wrench hc, there is no coupling between translation and rotation, given
that the stiffness and damping matrices are block diagonal. Moreover, if the impedance
matrices are diagonal, kx only affects the x-component of the control force fc, and equiv-
alently for the other impedance values. Hence, if only the translational impedances are
learned, there is no need to include the rotational terms in the loss function.

23

4 Robot Learning Framework 4.2 Impedance Profile and Learning Strategy

x1

x2

x3

x18

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
32

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
16

...

y1

y2

y3

...

input
layer

hidden layers output
layer

Figure 4.2: Fully Connected Neural Network with 18 inputs, 3 output, and two hidden layers with
32 and 16 neurons, respectively.

x1

x2

x3

x18

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
256

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
128

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
64

...

y1

y2

y3

...

input
layer

hidden layers output
layer

Figure 4.3: Fully Connected Neural Network Architecture with 18 inputs, 3 output, and three hidden
layers with 256, 128 and 64 neurons, respectively.

24

4 Robot Learning Framework 4.3 Setting Up the Software Environments

The loss function used to train this neural network consists of a mean squared error
(MSE) term and an L1-regularising term, and is defined as

L =
1

N

N−1∑
t=0

∥fc,t − f̂c,t∥
2
+ λL1

∑
i,j

∥wi,j∥, (4.3)

where N is the number of time steps, fc is the end effector control force, and f̂c is the
estimated control force corresponding to the translational impedance values K̂P,t.

If only impedance control is considered in the execution phase (step 2 of Algorithm 1),
then the loss function could technically have been defined as L = ∥KP,t − K̂P,t∥. How-
ever, we assume that the actual impedances KP,t are unknown, to avoid learning some-
thing already known. Furthermore, there are no restricting assumptions regarding the con-
trol law used for trajectory execution. Thus, it is possible to learn an impedance profile for
a type of impedance controller that is different to the controller used during trajectory ex-
ecution (step 2 of Alg. 1). One example would be to use a Cartesian impedance controller
without inertia shaping, and learn an impedance profile for an impedance controller with
inertia shaping that best matches the demonstrated behaviour. This alternative approach,
however, is not tested or analysed further in this thesis.

4.3 Setting Up the Software Environments
In this section, the process of setting up the software environments is briefly discussed,
however it is not explained in detail. Furthermore, the code contributions will be show-
cased briefly.

To utilise the robot learning framework, two computers set up with Ubuntu 20.04 are
necessary. One of the computers will run FrankaPy, while the other runs Franka-interface.
The computer running FrankaPy is referred to as the FrankaPy PC while the computer
running Franka-interface is referred to as the Control PC.

The Control PC needs to be set up with a real-time kernel, while the FrankaPy PC
preferably has a GPU for accelerated training of neural networks. A detailed guide on how
to install Franka-interface is provided in Appendix A. For the installation of FrankaPy, the
reader is referred to Zhang et al. (b).

The code utilised on the two computers throughout this thesis, is published on Github,
and may be viewed at https://github.com/magneje/franka-interface and
https://github.com/magneje/FrankaPy. The code is adapted directly from
Zhang et al. (a) and Zhang et al. (b), but also includes the contributions of this thesis.

A detailed overview of code files, indicating the contributions of this master’s thesis
and the preceding specialisation project, is included in Appendix B.

25

https://github.com/magneje/franka-interface
https://github.com/magneje/FrankaPy

4 Robot Learning Framework 4.3 Setting Up the Software Environments

26

5
Experiments

In this chapter, the results and findings from learning the impedance profile for a robotic
assembly task are presented. The assembly task to be considered is one that includes the
assembly of two Duplo bricks – one mounted to a table and the other one held by the Panda
robot’s end effector tool. The goal of the experiments is to test the robot learning frame-
work, and evaluate whether the framework is suitable for learning compliant and complex
robotic manipulation tasks. Each step of the conducted experiments will be thoroughly
explained. Finally, performance metrics used to assess the learning framework are pre-
sented. Figures and performance metrics presented in this chapter, are discussed in more
detail in chapter 6.

5.1 Learning Impedance Profiles for Assembly Task
This section provides an overview of the experimental setup and examines the three steps
of the learning algorithm (Alg. 1) employed in the Duplo experiment.

In order to test the learning framework data must be collected. The collection of data
is done at 100 Hz, i.e. at the same rate as the control frequency. For the purpose of
testing the learning framework, an assembly task is considered, where the objective is to
connect two Duplo bricks. One brick is held by the robot end effector, while the other one
is fixed on a table. This experimental setup, including the robot and the Duplo bricks, is
shown in Figure 5.1. Furthermore, a more close-up picture of the Duplo experiment during
impedance-controlled trajectory execution (step 2 of Alg. 1) is shown in Figure 5.2. Each
step of the learning algorithm (Alg. 1) utilised in the Duplo experiment will be thoroughly
explained in this section. The experimental parameters are summarised in Table 5.1.

27

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

Figure 5.1: This figure shows the experimental setup of the Panda robot for the Duplo experiment.

28

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

Figure 5.2: This figure shows a picture of the Panda robot during impedance-controlled trajectory
execution of the Duplo experiment.

29

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

Experimental parameter Value

Control frequency 100 [Hz]

Duplo width 0.04 [m]

Duration of demonstration 8.0 [s]

Total duration 10.0 [s]

Translational stiffness 800.0

Rotational stiffness 30.0

Table 5.1: This table summarises the experimental parameters used in the Duplo assembly experi-
ment.

Step 1: Trajectory Recording from Demonstrations
First, data is collected from demonstrations using kinaesthetic teaching. The end effector
pose is recorded at each time step for eight seconds, and these poses form the discrete-time
desired trajectory. As it is hard for a human to move the robot optimally, e.g. as straight or
as energy efficient as possible, the resulting desired trajectories typically became oscilla-
tory. To achieve a smoother trajectory, post-processing filters could be applied to minimise
the observed oscillations. Another approach that could improve the trajectory would be
to record essential key checkpoints instead of the entire trajectory. Subsequently, a tra-
jectory generator could be employed to interpolate between these checkpoints. The main
focus of the Duplo experiment is to learn something from the data and not to generate
an optimal trajectory. Thus, the desired trajectories are left without such post-processing.
For the assembly task at hand, non-zero forces are required to successfully complete the
brick insertion, due to friction and imprecise alignment of the bricks. Impedance control
has proved unsuccessful of converging to its desired pose when the external wrench is
non-zero (Villani and Schutter, 2008, p. 168). For this reason, the desired goal position
is intentionally displaced 3 cm below the actual goal position. As a result, the desired
trajectory is extended by two seconds compared to the eight second recorded trajectory,
resulting in a planned trajectory of ten seconds. Only the z-component of the desired po-
sition is displaced, whereas the x- and y-components and the desired orientation is left
unchanged. This displacement of the desired z-trajectory is observed in Figure 5.4, by
looking closely at the desired z-trajectory in the final two seconds. Since the displace-
ment is applied to make the end effector forces non-zero at the goal position, the causality
between effort (force) and flow (position or velocity) is reverted compared to impedance
control (Hogan, 1985a). Here, the input is the displaced target position while the output is
the resulting force, which resembles admittance control.

The desired velocities are intentionally set to zero. While better tracking performance
might be achieved by using suitable values for the desired velocity, it is not necessary for
the purpose of testing the robot learning framework. Given that the assembly task at hand
has a fixed goal pose, precise tracking is not essential far from this goal.

As the proposed learning algorithm (Alg. 1) suggests, a desired number of demonstra-
tions can be performed, whereas each demonstration can have a different starting poses.

30

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

One might suspect that several demonstrations will be advantageous for learning the stiff-
ness profile, and this statement will be investigated. For the Duplo experiment nine demon-
strations will be performed, plus an extra demonstration for validation. Furthermore, the
performance will be evaluated using only one, three, and all nine demonstrations, respec-
tively. The motivation for choosing these particular number of demonstrations, is to inves-
tigate the lower limit of necessary demonstrations for effective learning, but also explore
whether more demonstrations yield better performance. An upper limit is set to 10 demon-
strations, as each demonstration takes at least 10 seconds, and much more including setup
and resetting between demonstrations.

Step 2: Impedance-Controlled Trajectory Execution
Next, the desired trajectories recorded from demonstrations are executed using impedance
control without inertia shaping, i.e. following the control law in Equation 2.14 and with
diagonal impedance matrices. The translational stiffnesses are set to kx = ky = kz = 800
and the rotational stiffnesses are set to ko,x = ko,y = ko,z = 30. These values were chosen
based on tests, high enough to perform the assembly task, but low enough to be compliant
and not exert too high contact forces. Although not a necessity, the damping matrix is
adapted from the stiffness by critical damping, i.e. d = 2

√
k . To collect data from these

impedance-controlled executions, rosbag is utilised, as explained in section 3.2. This ap-
proach was chosen because fetching and saving data within the control framework proved
inadequate in meeting the real-time requirements, considering the control frequency of
100 Hz. Moreover, since the proposed learning strategy involves off-line learning, mean-
ing that the learning process occurs separately from the robot’s task execution, there is
no concern regarding the lack of immediate access to the data saved using rosbag. All
the data will be processed simultaneously, eliminating the need for immediate access to
the recorded information. Rosbag is, however, not suited for using variable impedance
learning (VIL) together with VIC online, as data cannot be easily fetched until the rosbag
recording has been stopped. Rosbag is suitable for saving data efficiently, but not for ac-
cessing new data quickly. In the bag-file, a variety of data is stored, however, only certain
parts of this data is needed, namely the generalised position xe, velocity ve and external
force he.

Plots of impedance-controlled trajectory executions of the validation trajectory, one
demonstration and nine demonstrations, following the desired trajectories obtained in Step
1, is shown in Figures 5.3, 5.4, and 5.5. All figures presented in this chapter will be
discussed more thoroughly in the discussion in chapter 6.

31

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x
[m

]

Ca tesian position
Actual
Desi ed

0 2 4 6 8 10
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y
[m

]

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

z [
m

]

Actual
Desi ed

0 2 4 6 8 10
3π/4

π

5π/4

θ
⋅v

x [
 a

d]

O ientation (otation vecto)
Actual
Desi ed

0 2 4 6 8 10
−3π/4

−π/2

−π/4

0

π/4

π/2

3π/4

θ
⋅v

y [
 a

d]

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−π/4

0

π/4

π/2

θ
⋅v

z [
 a

d]

Actual
Desi ed

Figure 5.3: Pose validation

32

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x
[m

]

Ca tesian position
Actual
Desi ed

0 2 4 6 8 10
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y
[m

]

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

z [
m

]

Actual
Desi ed

0 2 4 6 8 10
3π/4

π

5π/4

θ
⋅v

x

O ientation (otation vecto s)
Actual
Desi ed

0 2 4 6 8 10
−3π/4

−π/2

−π/4

0

π/4

π/2

3π/4

θ
⋅v

y

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−π/4

0

π/4

π/2

θ
⋅v

z

Actual
Desi ed

Figure 5.4: Pose, 1 demonstration

33

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x
[m

]

Ca tesian position
Actual
Desi ed

0 2 4 6 8 10
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y
[m

]

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

z [
m

]

Actual
Desi ed

0 2 4 6 8 10
3π/4

π

5π/4

θ
⋅v

x

O ientation (otation vecto s)
Actual
Desi ed

0 2 4 6 8 10
−3π/4

−π/2

−π/4

0

π/4

π/2

3π/4

θ
⋅v

y

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−π/4

0

π/4

π/2

θ
⋅v

z

Actual
Desi ed

Figure 5.5: Pose, 9 demonstrations

34

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

Step 3: Learning Impedance Profile through Imitation Learning
The third step of the learning algorithm (Alg. 1) utilises the collected data to learn an
impedance profile that best matches the observed behaviour. In cases where multiple
demonstrations are utilised, the data is stacked in the time-direction. Specifically, the last
data point from the first demonstration is followed by the first data point from the second
demonstration, and so forth.

The learning procedure is repeated for two different neural network architectures, cor-
responding to Figure 4.2 and Figure 4.3 respectively. Furthermore, each architecture is
trained with data from only one, three and all nine demonstrations, resulting in a total of
six learned models. Each model is trained for 100 epochs using the Adam optimiser, and
with hyperparameters as given by Table 5.2.

Plots of selected impedance and force trajectories from the experiments are shown
here, while the rest are added to Appendix C for completeness. The plots shown here
include impedance and force from model 1. Impedance trajectories for one demonstration
are shown in 5.6 and 5.7, while impedance trajectories for nine demonstrations are shown
in 5.8 and 5.9. Force trajectories for one demonstration are shown in 5.10 and 5.11.

Hyperparameter Model 1
(32× 16)

Model 2
(256 ×
128× 64)

Number of epochs 100 100

Learning rate 1e−4 1e−4

kmin 0.1 0.1

kmax 1500 1500

Batch size 64 64

L1-gain (γL1) 5e−4 5e−5

Table 5.2: The hyperparameters used to train each neural network model.

35

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure 5.6: Impedance, 1 demonstration, (32× 16) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure 5.7: Impedance, 1 demonstration, (32× 16) validation

36

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure 5.8: Impedance, 9 demonstrations, (32× 16) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure 5.9: Impedance, 9 demonstrations, (32× 16) validation

37

5 Experiments 5.1 Learning Impedance Profiles for Assembly Task

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure 5.10: Force, 1 demonstration, (32× 16) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure 5.11: Force, 1 demonstration, (32× 16) validation

38

5 Experiments 5.2 Performance Evaluation and Metrics

5.2 Performance Evaluation and Metrics
This section includes metrics we will use to evaluate the performance of our neural net-
work models, impedance estimation capabilities, and the robot learning framework overall.
Results are briefly presented in this section, but are analysed and discussed thoroughly in
chapter 6.

The training progress per epoch of two of the six models are included here, while the
rest is included in Appendix C. In particular, the training progress of model 1 (32 × 16)
with data from one demonstration is shown in Figure 5.12, while the training progress of
model 2 (256× 128× 64) with data from three demonstrations is shown in Figure 5.13.

Next, the final mean squared error (MSE) loss for each model after training for 100 is
shown in Table 5.3, corresponding to the final values the training progress plots (5.12 and
5.13). Note that each of the 12 values in this table corresponds to a force trajectory that
is included either in this chapter or in Appendix C. Similarly, the final MSE stiffness is
shown in Table 5.4. Also here, each value has a corresponding impedance trajectory that
is included in this chapter or in Appendix C.

Finally, to include some evaluation metric for the real-world robot learning framework
itself, the training times for each model are shown in Table 5.5.

Model / Number of Model 1 (32× 16) Model 2 (256× 128× 64)

demonstrations (Training / Validation) (Training / Validation)

1 demo 0.57 0.62 0.34 0.47

3 demos 0.57 0.36 0.44 0.39

9 demos 0.57 0.31 0.52 0.43

Table 5.3: This table includes the final MSE loss from (4.3) for each model after training for 100
epochs, whereas both training and validation losses are shown. The values are based on the force
errors, i.e., the difference between the control forces predicted from the impedance estimates, and
the actual control forces.

39

5 Experiments 5.2 Performance Evaluation and Metrics

0 20 40 60 80 100
Epoch

0

2

4

6

8

10

12

Lo
ss

90 92 94 96 98 100
0.00
0.25
0.50
0.75
1.00

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure 5.12: Training progress, 1 demonstration, (32× 16)

0 20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure 5.13: Training progress, 3 demonstrations, (256× 128× 64)

40

5 Experiments 5.2 Performance Evaluation and Metrics

Model / Number of Model 1 (32× 16) Model 2 (256× 128× 64)

demonstrations (Training / Validation) (Training / Validation)

1 demo 8.4× 104 6.6× 104 1.1× 105 8.5× 104

3 demos 4.0× 103 3.5× 103 4.8× 103 5.0× 103

9 demos 3.4× 103 3.4× 103 3.5× 103 4.0× 103

Table 5.4: This table shows the MSE stiffness for each model after training for 100 epochs, whereas
both training and validation losses are shown. The stiffness error is the difference between the
stiffness estimates K̂P and the true stiffness KP .

Model / Number of Model 1 (32× 16) Model 2 (256× 128× 64)

demonstrations (GPU / CPU) (GPU / CPU)

1 demo 3.2 [s] 1.8 [s] 3.7 [s] 2.8 [s]

3 demos 9.1 [s] 5.2 [s] 10.7 [s] 7.7 [s]

9 demos 27.4 [s] 14.3 [s] 31.5 [s] 22.3 [s]

Table 5.5: This table shows 100 epoch training times for each model, both when using GPU and
CPU.

41

5 Experiments 5.2 Performance Evaluation and Metrics

42

6
Discussion

This chapter includes a detailed discussion on whether the overarching problem has been
resolved, namely, the implementation of a real-world robot learning framework suitable for
performing compliant manipulation tasks. First, the experimental results from chapter 5
are discussed, before discussing the robot learning framework itself. Finally, limitations of
the work conducted in this thesis are presented, together with suggestions for future work.

6.1 Experimental Results

In this section, the experiments presented in chapter 5 will be analysed and discussed.

Neural Network Performance Evaluation

We begin by evaluating the performance of our robot learning framework in the conducted
experiments. The final mean squared error (MSE) loss values from the neural network
training for each model architecture (32× 16 and 256× 128× 64) and different numbers
of demonstrations (1, 3, and 9) are presented in Table 5.3.

Regarding the neural network performance evaluation (see Table 5.3), we observe in-
teresting trends. Model 2 (256× 128× 64) performs better with only one demonstration,
while model 1 (32 × 16) outperforms as the number of demonstrations increases. This
finding is surprising as, intuitively, one might guess that larger neural networks require
more data for effective learning. However, the relationship between neural network size
and performance depends on numerous factors, including regularisation terms, hyperpa-
rameters, and activation functions, and is not sufficiently understood by the research com-
munity. For model 1, the validation loss consistently decreases with an increasing number
of demonstrations, while the training loss remains constant or slightly decreases. How-
ever, for model 2, the training loss increases with more demonstrations and only a slight
decrease is observed in validation. We hypothesise that model 2 may tend to overfit the
training data, whereas model 1 learns a more general impedance profile that leads to su-

43

6 Discussion 6.1 Experimental Results

perior results on validation data. Smaller networks like model 1 are typically less prone to
overfitting, contributing to their better generalisation capabilities.

Notably, the validation loss is often lower than the training loss, which is somewhat
obscure. This discrepancy could be caused by specific demonstrations being more ”ag-
gressive,” involving starting poses further from the goal pose and faster movements during
kinaesthetic teaching. These movements might be more prone to measurement errors and
time delays, influencing the loss values.

Impedance Learning
Moving on to the impedance learning aspect, we find that impedance estimation performs
worse compared to force estimation, as shown in Table 5.3 and Table 5.4. While the
neural network is aided by force estimates, and better force performance is expected, the
difference between the two estimations is larger than expected. This raises questions about
the suitability of the used loss function and prompts consideration of other alternatives that
might improve performance.

Choice of Loss Function
Next, we consider the choice of the loss function for impedance estimation. Given that
force estimation yields better results, we contemplate improvements for impedance esti-
mation. A straightforward improvement would involve including the coriolis force in the
loss function, as it is included in the actual controller used during impedance controlled
executions of demonstrated trajectories (step 2 of Alg. 1). The term was excluded due
to its limited accessibility in the robot framework. Comparing measured joint torques
with computed coriolis forces during tests indicated that the coriolis force was negligible.
However, without further testing, the impact of adding coriolis force remains uncertain.

Model Architectures
We compare the results for the two different neural network model architectures (32× 16
and 256 × 128 × 64) based on Tables 5.3, 5.4, and 5.5. Model 1 seems to have better
generalisation for the specific task, and the oscillations in the loss per epoch for model
2 (see Figure 5.13) suggest a certain level of instability. However, for more complex
tasks requiring more data, model 2 could be a viable alternative, though this hypothesis
is not investigated further in this thesis. Overall, both models manage to follow force
trajectories, which was the primary goal aiding the models. However, the overall objective
of accurately estimating impedances remains a different discussion.

Impact of Number of Demonstrations
We investigate the impact of the number of demonstrations on the learning process and
model performance indicated by Table 5.3. Generally, a higher number of demonstrations
positively influences performance. Going from one to three demonstrations leads to sig-
nificant improvement, while further increasing to nine demonstrations yields only slight
gains. Surprisingly, extending to nine demonstrations even results in worse outcomes

44

6 Discussion 6.2 Robot Learning Framework

for model 2 compared to using three demonstrations. This discrepancy could be caused
by demonstrations 4-9 being less representative, featuring more extreme movements not
sufficiently validated. Adding extra validation trajectories with similar ”extreme” charac-
teristics could provide insights into this observation. However, increasing the number of
demonstrations consistently gives better impedance performance, as shown in Table 5.4.

Training for one demonstration gives satisfactory force estimation performance, but
the impedance estimation is underwhelming. An example of this is shown in Figure 5.6,
where the y-component shows underwhelming performance compared to Figure 5.10. The
problem seem to arise when a component of the end effector control force is close to zero,
as the corresponding impedance value is less impactful in this case. In the case of perfect
position and velocity tracking, the impedance values are not affecting the control force at
all, which is clearly indicated by the control law used during the experiments (2.14).

Towards the end of each trajectory zero-velocity is expected, as the assembly task
considers a goal pose at rest. Zero position error is also expected given that the Duplo
brick is attached well to the table and cannot move. Duct tape was used to attach the
Duplo brick to the table, and this allowed the goal Duplo brick to move slightly. Looking
at Figure 5.5, slightly different goal poses are observed for each demonstration, indicating
the presence of such movements. Because impedance values does not affect the control
force when the position- and velocity errors are zero, a bad impedance estimate is from a
controller perspective not a significant problem in these cases. However, if the impedances
are quickly increased afterwards, this might cause instability (see Theorem 11). Anyhow,
the forces in x- and y-direction are expected to be close to zero during insertion, as the end
effector is guided towards the goal pose by the goal Duplo brick, making the control force
small and impedance less important.

6.2 Robot Learning Framework

Architecture of the Robot Learning Framework
The robot learning framework is based on Franka-interface and FrankaPy, which makes
up the control framework shown in Figure 3.3. Our developments as compared to this
baseline framework include:

• A Neural network module utilising PyTorch.

• Code for experiments utilising the proposed learning algorithm (Alg. 1)

• A new variable impedance controller in Franka-interface, supported with and with-
out inertia shaping2.

• New protobuf messages allowing the necessary input parameters to be fed to the
variable impedance controller.

1Note that the theorem considers an inertia shaping controller, while the simplified control scheme without
inertia shaping was used in experiments. Instability can still occur, but the specific conditions in Theorem 1 are
not be valid.

2This controller was included in Erlandsen (2023), but has been modified slightly in this thesis. However, the
inertia shaping controller showed unstable behaviour during experiments.

45

6 Discussion 6.2 Robot Learning Framework

• Functionality for efficient data collection from experiments

The neural network module contains two classes – one for force estimation and one for
impedance estimation. The force estimation is computed from the impedance estimation
and introduces no extra learnable parameters. The idea is that parameters from the trained
force estimator can be loaded onto the impedance estimator for inference.

Code used for the Duplo experiment, which utilises Algorithm 1, is split into two
main files. The first file, ”duplo demonstrate.py”, corresponds to the first two steps of
the learning strategy, which concerns interaction with the physical robot. The second
file, ”duplo train model.py”, corresponds to step 3 of the learning strategy, where offline
learning from data is performed. The reader is referred to Appendix B for an overview of
the exact files added or modified in the framework.

Training Efficiency
Training efficiency is satisfactory for the learning approaches tested in this thesis. The
training times for each neural network model are shown in Table 5.5, where hyperparam-
eters from Table 5.2 are used. Training the neural networks was primarily done utilising a
GPU. In this case, the training times between the models are roughly equal. The training
is only slightly slower for the larger 256× 128× 64 model, indicating that the framework
scales well regarding neural network size. PyTorch is expected to work well for training
much larger and deeper networks than in this thesis, still, the relative difference in training
times between the models is surprisingly small. The training times scale roughly linearly
to the number of demonstrations, each demonstration adding 3 to 4 seconds, which makes
sense as more demonstrations results in more training data. For completeness and per-
formance measurements, the training procedures were repeated with CPU. Utilising CPU
instead of GPU consistently gave faster training times, as shown in Table 5.5. This ini-
tially surprising result, may be caused by several factors, including the size of the neural
network, the amount of data fed to the neural network, and the hardware specifications.
The hardware used was a Nvidia GTX1070 GPU and an Intel Core i7-7820HK CPU, re-
spectively. Improving the data loading procedure or optimising the batch size and other
hyperparameters may be suggested for improving training performance. However, opti-
mising the training efficiency is outside the scope of this thesis, and will not be investigated
further.

Inference Time
The inference time of a neural network is the time needed for a single forward propagation,
i.e., the time to make a single prediction on new data. Our neural network architecture
implemented with PyTorch, proved unsuccessful in Our learned impedance profile was
unsuccessful of holding a control frequency of 100 Hz when utilised online. Measurements
for each neural network resulted in inference times of over 100ms, indicating that a control
frequency of even 10 Hz is not possible. While it may have been possible to test lower
control frequencies, doing so would have been counterproductive to the overall goal of
an efficient robot learning framework capable of executing complex manipulation tasks.
Executing such complex tasks requires a sufficiently high control frequency, which is why

46

6 Discussion 6.3 Limitations and Future Work

the control frequency was set to 100 Hz. Hence, we reach the conclusion that our robot
learning framework requires further improvements to be effectively utilised online.

6.3 Limitations and Future Work
While the developed robot learning framework shows promise for impedance estimation
and control in certain scenarios, it also exhibits several limitations that must be acknowl-
edged. First, the loss function used for learning impedance profiles does not perfectly
correlate with the impedance performance, leading to cases where the impedance estima-
tion is inaccurate despite a low loss value. This discrepancy could be caused by certain
assumptions in the loss function, such as neglecting the coriolis effect, or other unidentified
factors. Furthermore, this discrepancy was typically worse for small control forces. Fu-
ture researchers are encouraged to search for a loss function that improves the correlation
between force- and impedance performance.

Additionally, certain hardware limitations pose challenges to achieving optimal perfor-
mance for the variable impedance controller. The absence of a force/torque end effector
sensor limits the system’s ability to gather essential force feedback during interactions.
Although the Panda robot has torque sensors, which can be used to estimate end effector
forces, a force/torque sensor is expected to give more accurate estimates. Furthermore,
p. 168 in Villani and Schutter (2008) indicates that a force/torque sensor is required for
impedance control with inertia shaping. This motivates future researchers to focus on im-
proving external force/torque estimates – either by using a mounted force/torque sensor,
or by improving the force/torque estimates from raw joint torque sensor data.

The framework’s inability to effectively combine variable impedance control and vari-
able impedance learning into a functional robot learning control framework represents
another limitation. While each component demonstrates independent functionality, the
integration of the two remains unresolved. Suggestions for future improvements include
minimising the neural network inference times and possibly minimising the fetching time
for reading sensor data. It is worth noting that the latter aspect requires further investiga-
tion and only applies to fetching times in FrankaPy, as fetching in Franka-interface has
already proven successful.

Finally, the decision to exclusively utilise real-world robot data was established early
during the research conducted for this thesis. However, the absence of simulations raises
concerns regarding the generalisability of the experimental results, as the arguments against
employing simulations lack supporting evidence. To reinforce the case for using real-
world robot data exclusively, it would be beneficial to compare our experimental results
with a simulation-based baseline or conduct a more comprehensive literature review on
simulation-based learning frameworks.

47

6 Discussion 6.3 Limitations and Future Work

48

7
Conclusion

This thesis aimed to develop and utilise a real-world robot learning framework, specifically
a VILC framework suitable for learning compliant manipulation tasks. It also intended to
explore the integration of existing machine learning approaches like RL and imitation
learning into the framework. The contributions of the thesis included conducting a lit-
erature review, presenting a real-world robot learning framework, sharing experimental
results from a Duplo assembly task, and proposing a novel method for variable impedance
learning (VIL).

The main objectives of the thesis were partially achieved. The thesis demonstrated
a robot learning framework capable of efficient communication with the robot and intro-
duced a new approach for learning an impedance profile. However, it did not investigate
the use of RL approaches, and the learned impedance profiles cannot be currently utilised
online within the existing version of the learning framework. A real-world robot frame-
work capable of VIC and VIL was demonstrated, but these approaches were not success-
fully combined into a VILC framework capable of learning compliant manipulation tasks.

Overall, the thesis successfully showcased advancements in the field of robotic ma-
nipulation using real-world robot data and offered valuable insights into learning-based
approaches for control tasks. However, further work may be needed to fully achieve all
the initial objectives outlined in the thesis.

49

7 Conclusion

50

Bibliography

Abu-Dakka, F.J., Saveriano, M., 2020. Variable impedance control and
learning – a review. Frontiers in Robotics and AI 7. URL: https:
//www.frontiersin.org/articles/10.3389/frobt.2020.590681,
doi:10.3389/frobt.2020.590681.

Anand, A.S., Abu-Dakka, F.J., Gravdahl, J.T., 2022. Deep Model Predictive Variable
Impedance Control. arXiv preprint arXiv:2209.09614 .

Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M., 2001. The central nervous
system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–
9. doi:10.1038/35106566.

Deutche Welle, 2017. Affordable and sensitive robot
panda wins prize. https://www.dw.com/en/
everyman-robot-panda-wins-german-presidents-future-prize/
a-41591774. [Online; accessed January 16th 2023].

Downs, L., 2003. Using quaternions to represent rotation. https://personal.
utdallas.edu/˜sxb027100/dock/quaternion.html. [Online; accessed;
January 16th 2023].

Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S.,
Hester, T., 2021. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning 110, 2419–2468. doi:10.1007/
s10994-021-05961-4.

Erlandsen, M.J., 2023. Specialization project: ”control framework for compliant robotic
manipulation” .

Ferraguti, F., Secchi, C., Fantuzzi, C., 2013. A tank-based approach to impedance con-
trol with variable stiffness, in: 2013 IEEE International Conference on Robotics and
Automation, pp. 4948–4953. doi:10.1109/ICRA.2013.6631284.

Franka Emika, a. libfranka. https://frankaemika.github.io/docs/
libfranka.html. [Online; accessed January 16th 2023].

51

https://www.frontiersin.org/articles/10.3389/frobt.2020.590681
https://www.frontiersin.org/articles/10.3389/frobt.2020.590681
http://dx.doi.org/10.3389/frobt.2020.590681
http://dx.doi.org/10.1038/35106566
https://www.dw.com/en/everyman-robot-panda-wins-german-presidents-future-prize/a-41591774
https://www.dw.com/en/everyman-robot-panda-wins-german-presidents-future-prize/a-41591774
https://www.dw.com/en/everyman-robot-panda-wins-german-presidents-future-prize/a-41591774
https://personal.utdallas.edu/~sxb027100/dock/quaternion.html
https://personal.utdallas.edu/~sxb027100/dock/quaternion.html
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1109/ICRA.2013.6631284
https://frankaemika.github.io/docs/libfranka.html
https://frankaemika.github.io/docs/libfranka.html

Franka Emika, b. Robot interface and specifications. https://frankaemika.
github.io/docs/control_parameters.html. [Online; accessed January
16th 2023].

Franka Emika, 2017. Overview of franka control interface (fci). https://
frankaemika.github.io/docs/overview.html. [Online; accessed January
16th 2023].

Franken, M., Stramigioli, S., Misra, S., Secchi, C., Macchelli, A., 2011. Bilateral tele-
manipulation with time delays: A two-layer approach combining passivity and trans-
parency. IEEE Transactions on Robotics 27, 741–756. doi:10.1109/TRO.2011.
2142430.

Gomi, H., Osu, R., 1998. Task-dependent viscoelasticity of human multijoint arm and its
spatial characteristics for interaction with environments. The Journal of neuroscience
: the official journal of the Society for Neuroscience 18, 8965–78. doi:10.1523/
JNEUROSCI.18-21-08965.1998.

Hannaford, B., Ryu, J.H., 2002. Time-domain passivity control of haptic interfaces. IEEE
Transactions on Robotics and Automation 18, 1–10. doi:10.1109/70.988969.

Hogan, N., 1985a. Impedance Control: An Approach to Manipulation: Part I – theory.
ASME Transactions Journal of Dynamic Systems and Measurement Control B 107:1-7
.

Hogan, N., 1985b. Impedance Control: An Approach to Manipulation: part II: implemen-
tation. Journal of Dynamic Systems, Measurement and Control B 107:8-16 .

Kronander, K., 2015. Phd thesis: Control and learning of compliant manipulation skills.
Ph.D thsis 6717.

Mahmood, A.R., Korenkevych, D., Komer, B.J., Bergstra, J., 2018a. Setting up a rein-
forcement learning task with a real-world robot. arXiv:1803.07067.

Mahmood, A.R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J., 2018b. Benchmark-
ing reinforcement learning algorithms on real-world robots, in: Billard, A., Dragan, A.,
Peters, J., Morimoto, J. (Eds.), Proceedings of The 2nd Conference on Robot Learn-
ing, PMLR. pp. 561–591. URL: https://proceedings.mlr.press/v87/
mahmood18a.html.

Ott, C., Mukherjee, R., Nakamura, Y., 2010. Unified Impedance and Admittance Control,
in: 2010 IEEE International Conference on Robotics and Automation, pp. 554–561.
doi:10.1109/ROBOT.2010.5509861.

Park, J., Choi, Y., 2020. Input-to-state stability of variable impedance control for
robotic manipulator. Applied Sciences 10. URL: https://www.mdpi.com/
2076-3417/10/4/1271, doi:10.3390/app10041271.

Ryu, J.H., Kwon, D.S., Hannaford, B., 2004. Stability guaranteed control: time domain
passivity approach. IEEE Transactions on Control Systems Technology 12, 860–868.
doi:10.1109/TCST.2004.833648.

52

https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/overview.html
https://frankaemika.github.io/docs/overview.html
http://dx.doi.org/10.1109/TRO.2011.2142430
http://dx.doi.org/10.1109/TRO.2011.2142430
http://dx.doi.org/10.1523/JNEUROSCI.18-21-08965.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-21-08965.1998
http://dx.doi.org/10.1109/70.988969
http://arxiv.org/abs/1803.07067
https://proceedings.mlr.press/v87/mahmood18a.html
https://proceedings.mlr.press/v87/mahmood18a.html
http://dx.doi.org/10.1109/ROBOT.2010.5509861
https://www.mdpi.com/2076-3417/10/4/1271
https://www.mdpi.com/2076-3417/10/4/1271
http://dx.doi.org/10.3390/app10041271
http://dx.doi.org/10.1109/TCST.2004.833648

Salisbury, J.K., 1980. Active stiffness control of a manipulator in cartesian coordinates,
in: 1980 19th IEEE Conference on Decision and Control including the Symposium on
Adaptive Processes, pp. 95–100. doi:10.1109/CDC.1980.272026.

Slotine, J.J.E., Li, W., 1987. On the Adaptive Control of Robot Manipulators. The
International Journal of Robotics Research 6, 49–59. URL: https://doi.org/
10.1177/027836498700600303, doi:10.1177/027836498700600303,
arXiv:https://doi.org/10.1177/027836498700600303.

Spyrakos-Papastavridis, E., Childs, P.R.N., Dai, J.S., 2020. Passivity preservation for
variable impedance control of compliant robots. IEEE/ASME Transactions on Mecha-
tronics 25, 2342–2353. doi:10.1109/TMECH.2019.2961478.

Stanford Artificial Intelligence Laboratory et al., . Ros wiki. https://wiki.ros.
org. [Online; accessed January 16th 2023].

Stramigioli, S., Secchi, C., van der Schaft, A., Fantuzzi, C., 2005. Sampled data systems
passivity and discrete port-hamiltonian systems. IEEE Transactions on Robotics 21,
574–587. doi:10.1109/TRO.2004.842330.

Sun, T., Peng, L., Cheng, L., Hou, Z.G., Pan, Y., 2019. Stability-guaranteed variable
impedance control of robots based on approximate dynamic inversion. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems 51, 4193–4200. doi:10.1109/
TSMC.2019.2930582.

Villani, L., Schutter, J.D., 2008. Force control, Chapter in Handbook of Robotics,
Springer-Verlag, pp. 161–170.

Waldron, K., Schmiedeler, J., 2008. Kinematics, Chapter in Handbook of Robotics.
Springer-Verlag.

Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., Burdet, E., 2011.
Human-like adaptation of force and impedance in stable and unstable interactions. IEEE
Transactions on Robotics 27, 918–930. doi:10.1109/TRO.2011.2158251.

Zhang, K., Sharma, M., Liang, J., Kroemer, O., a. Franka-interface documenta-
tion. https://iamlab-cmu.github.io/franka-interface/. [Online;
accessed November 1st 2022].

Zhang, K., Sharma, M., Liang, J., Kroemer, O., b. Frankapy documentation. https://
iamlab-cmu.github.io/frankapy/. [Online; accessed November 1st 2022].

Zhang, K., Sharma, M., Liang, J., Kroemer, O., 2020. A modular robotic arm control stack
for research: Franka-interface and frankapy. arXiv preprint arXiv:2011.02398 .

53

http://dx.doi.org/10.1109/CDC.1980.272026
https://doi.org/10.1177/027836498700600303
https://doi.org/10.1177/027836498700600303
http://dx.doi.org/10.1177/027836498700600303
http://arxiv.org/abs/https://doi.org/10.1177/027836498700600303
http://dx.doi.org/10.1109/TMECH.2019.2961478
https://wiki.ros.org
https://wiki.ros.org
http://dx.doi.org/10.1109/TRO.2004.842330
http://dx.doi.org/10.1109/TSMC.2019.2930582
http://dx.doi.org/10.1109/TSMC.2019.2930582
http://dx.doi.org/10.1109/TRO.2011.2158251
https://iamlab-cmu.github.io/franka-interface/
https://iamlab-cmu.github.io/frankapy/
https://iamlab-cmu.github.io/frankapy/

54

Appendices

55

Appendix A
Setting Up Franka-Interface

The goal of this section is to serve as a guide for setting up Franka-interface on the Control
PC from scratch. It is necessary to have a computer running Ubuntu 20.04, which is set
up with a real-time kernel. The other computer should have a GPU if CUDA is to be used.
These computers are referred to as the Control PC and the FrankaPy PC, respectively.
To actually utilise Franka-interface, FrankaPy must be set up on a second computer with
Ubuntu 20.04. However, the installation of FrankaPy will not be included in this appendix.

Setting up the environment and the network configuration consists of the following
main steps:

1. Install Franka-interface on ”server PC” (Ubuntu 20.04 with real-time kernel)

2. Install FrankaPy on client PC (Ubuntu 20.04)

3. Establish a proper connection between the two, and test the framework.

4. Install extra (Python) libraries on top of FrankaPy

The installation of Franka-interface will closely follow Zhang et al. (a), which will be
referenced throughout this guide. The first step is to install ROS Noetic, which provides a
robust framework for developing robotic applications. This involves following the instal-
lation instructions provided by ROS for Ubuntu 20.04. Next, Google’s protobuf library is
installed, and a virtual environment is made. This can be done exactly as under ”Proto-
buf” and ”Virtual Environment” in Zhang et al. (a). Furthermore, one should verify that a
real-time kernel is correctly installed with Ubuntu. In that case, the terminal command

cat / sys / ke rne l / r ea l t ime

should output ”1”. In the special case that a new user has been created on a Ubuntu system
with a real-time kernel already installed, all that has to be done is to execute the following
command in terminal:

sudo usermod −a −G rea l t ime $ (whoami)

57

The proceeding instructions are adapted directly from Zhang et al. (a), the only differ-
ence being that the code is obtained from a Github-project that includes the contributions
of this thesis.

1. Next, go to the ’Documents’ folder. In order to include the contributions of this
thesis clone the Franka-interface repository and its submodules as follows:

g i t c l one −−r ecur se−submodules https : // github . com/magneje/ franka−
i n t e r f a c e

cd franka−i n t e r f a c e

2. Install libfranka and franka ros:

sudo apt i n s t a l l ros−noet i c−l i b f r a nka ros−noet i c−franka−ro s

3. Clone libfranka corresponding to robot version. For example if the firmware is 4.x:

bash . / b a s h s c r i p t s / c l o n e l i b f r a n k a . sh 4

4. Build libfranka:

bash . / b a s h s c r i p t s /make l ib f ranka . sh

5. Build Franka-interface:

bash . / b a s h s c r i p t s /make f r anka in t e r f a c e . sh

6. Enter the franka virtual environment and run commands:

source f r a nka v i r t u a l e nv /bin / a c t i v a t e
pip i n s t a l l catk in−t o o l s empy
bash . / b a s h s c r i p t s /make catkin . sh

7. Source catkin ws:

source catk in ws / deve l / setup . bash

8. Add the following to the end of the /.bashrc file (make sure to replace ”path/to” by
the absolute path):

source /path/ to / f r a nka v i r t u a l e nv / franka /bin / a c t i v a t e
source /path/ to / franka−i n t e r f a c e / catk in ws / deve l / setup . bash −−

extend

58

Appendix B
Overview of Code Contributions
within Franka-interface and
FrankaPy

In this section, an overview of the code files that I have added or modified in Franka-
interface and FrankaPy is presented. Some of these changes were made in the specialisa-
tion project (Erlandsen, 2023). As a result Table B.1 and Table B.2 below, are extensions
of similar tables from Section 4.1 of Erlandsen (2023). All code including these modifica-
tions is available online at https://github.com/magneje/franka-interface
(which based on Zhang et al. (a)) and https://github.com/magneje/FrankaPy
(which is based on Zhang et al. (b)).

59

https://github.com/magneje/franka-interface
https://github.com/magneje/FrankaPy

Folder location Filename

Franka-interface:

franka-interface/include/franka-
interface/feedback controller/

cartesian variable impedance feedback
controller.h

franka-interface/src/feedback controller/ cartesian variable impedance feedback
controller.cpp

FrankaPy:

examples/ run vic.py

examples/ duplo demonstration.py

examples/ duplo train model.py

examples/ duplo plot.py

examples/ test popen.py

examples/ test pytorch.py

examples/ test pytorch inference.py

examples/ test rosbag.py

frankapy/ nn.py

Table B.1: Files added to the Franka-interface-FrankaPy framework.

60

Folder location Filename

Franka-Interface:

franka-interface-common/include/franka-
interface-common/

definitions.h

franka-interface/ CMakeLists.txt

franka-interface/proto/ feedback controller params msg.proto

franka-interface/proto/ sensor msg.proto

franka-interface/src/ feedback controller factory.cpp

franka-interface/src/termination handler/ termination handler.cpp

FrankaPy:

bash scripts/ start control pc.sh

frankapy/ franka arm.py

frankapy/ franka constants.py

frankapy/ franka interface common definitions.py

frankapy/proto/ feedback controller params msg.proto

frankapy/proto/ sensor msg.proto

frankapy/ skill list.py

frankapy/ utils.py

Table B.2: Files modified in the Franka-interface-FrankaPy framework.

61

62

Appendix C
Extra Figures from Experiments

This section includes figures not included in chapter 5, where experimental results from a
Duplo experiment was presented. In particular, the figures that will be presented include
end effector trajectories, stiffness estimates, force estimates and neural network training
progress for different number of demonstrations and network architectures No new models
or concepts are introduced in this section, and the reader is referred to chapter 5 for details
regarding the experiments.

This appendix includes all figures that are basis for the numerical results from Ta-
ble 5.4 and Table 5.3, and that are are included in chapter 5. Furthermore, it includes pose
trajectories from three demonstrations, and training progress of the models not included in
chapter 5.

First, the pose trajectories form three demonstrations are shown in Figure C.1.

63

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x
[m

]

Ca tesian position
Actual
Desi ed

0 2 4 6 8 10
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y
[m

]

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

z [
m

]

Actual
Desi ed

0 2 4 6 8 10
3π/4

π

5π/4

θ
⋅v

x

O ientation (otation vecto s)
Actual
Desi ed

0 2 4 6 8 10
−3π/4

−π/2

−π/4

0

π/4

π/2

3π/4

θ
⋅v

y

Actual
Desi ed

0 2 4 6 8 10
Time [s]

−π/4

0

π/4

π/2

θ
⋅v

z

Actual
Desi ed

Figure C.1: Pose, 3 demonstrations

64

Impedance Estimates
The following section includes the impedance estimates for each model that are not in-
cluded in chapter 5.

65

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.2: Impedance, 1 demonstration, (256× 128× 64) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.3: Impedance, 1 demonstration, (256× 128× 64) validation

66

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.4: Impedance, 3 demonstrations, (32× 16) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.5: Impedance, 3 demonstrations, (32× 16) validation

67

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.6: Impedance, 3 demonstrations, (256× 128× 64) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.7: Impedance, 3 demonstrations, (256× 128× 64) validation

68

0 2 4 6 8 10
0

500

1000

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

500

1000

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

500

1000

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.8: Impedance, 9 demonstrations, (256× 128× 64) training

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k x

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
0

250

500

750

1000

1250

1500

k y

Predicted stiffness
Target stiffness
Stiffness limits

0 2 4 6 8 10
Time [s]

0

250

500

750

1000

1250

1500

k z

Predicted stiffness
Target stiffness
Stiffness limits

Figure C.9: Impedance, 9 demonstrations, (256× 128× 64) validation

69

Force Estimates
The following section includes the force estimates for each model that are not included in
chapter 5.

70

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.10: Force, 1 demonstration, (256× 128× 64) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.11: Force, 1 demonstration, (256× 128× 64) validation

71

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.12: Force, 3 demonstrations, (32× 16) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.13: Force, 3 demonstrations, (32× 16) validation

72

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.14: Force, 3 demonstrations, (256× 128× 64) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.15: Force, 3 demonstrations, (256× 128× 64) validation

73

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.16: Force, 9 demonstrations, (32× 16) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.17: Force, 9 demonstrations, (32× 16) validation

74

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.18: Force, 9 demonstrations, (256× 128× 64) training

0 2 4 6 8 10
−20

−10

0

10

20

30

40

f x

Predicted force
Measured force

0 2 4 6 8 10
−20

−10

0

10

20

f y

Predicted force
Measured force

0 2 4 6 8 10
Time [s]

−30

−20

−10

0

10

20

f z

Predicted force
Measured force

Figure C.19: Force, 9 demonstrations, (256× 128× 64) validation

75

Training Progress of Neural Network Models
The following section includes figures of each model’s training progress per epoch. Only
results from the models not included in chapter 5 are included.

76

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

30

35

40

Lo
ss

90 92 94 96 98 100
0.00
0.25
0.50
0.75
1.00

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure C.20: Training progress, 1 demonstration, (256× 128× 64)

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

30

Lo
ss

90 92 94 96 98 100
0.00
0.25
0.50
0.75
1.00

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure C.21: Training progress, 3 demonstrations, (32× 16)

77

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

30

Lo
ss

90 92 94 96 98 100
0.00
0.25
0.50
0.75
1.00

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure C.22: Training progress, 9 demonstrations, (32× 16)

0 20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Training loss (including L1)
Training loss (without L1)
Validation loss (including L1)
Validation loss (without L1)
Regularisation loss (L1)

Figure C.23: Training progress, 9 demonstration, (256× 128× 64)

78

	Preface
	Acknowledgements
	Abstract
	Sammendrag
	List of Tables
	List of Algorithms
	List of Figures
	List of Acronyms
	Glossary
	Introduction
	Problem Description and Motivation
	Contributions
	Scope and Delimitations
	Structure of the Report

	Background
	Preliminaries
	Robot Dynamics
	Impedance Control
	Variable Impedance Control
	Variable Impedance Learning
	Challenges with Reinforcement Learning on Real-World Robots

	Hardware and software
	Franka Emika Panda Robot
	Robot Operating System
	Franka Control Interface
	Franka-interface and FrankaPy
	Other Software

	Robot Learning Framework
	Implementation of Impedance Controllers
	Impedance Profile and Learning Strategy
	Setting Up the Software Environments

	Experiments
	Learning Impedance Profiles for Assembly Task
	Performance Evaluation and Metrics

	Discussion
	Experimental Results
	Robot Learning Framework
	Limitations and Future Work

	Conclusion
	Bibliography
	Appendices
	Setting Up Franka-Interface
	Overview of Code Contributions within Franka-interface and FrankaPy
	Extra Figures from Experiments

