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Abstract

Computational epidemiology is a large field with many approaches and toolkits for modeling
pandemics. These approaches ranges from statistical analysis and differential equations, agent-
based modeling and even hybrid methods combining the aforementioned ones.

This thesis aims to expand the toolkit with a novel toolset that integrates graph theory and
agent-based methods. This allows one to explore a wide range of settings and environments that
changes the impact and development of pathogen activity in a given population. Depending
on the environment provided, the pathogen will attempt to optimize itself based performance
function weights provided as an input to the system through the use of a variation of the genetic
algorithm.

The flexible nature of the system gives rise to numerous different scenarios that can be tested.
The system variables range from the social structure of the population through different network
topologies, simulated immune responses with static and dynamic populations, sickness isolation
policy and more.
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Chapter 1

Introduction

Disease has always been an undesired, but unavoidable chapter, in the history book of humankind.
Be it the black plague in medieval times, the Spanish flu or most recently, Covid-19 it will always
be an ever looming potential threat to the human population. Epidemiology, the study of diseases
and how they interact with a population, has understandably had a surge of interest in the last
couple of years.

1.1 Background and Motivation

Covid-19 made it very clear the social, economic and health impact a world-wide epidemic could
have on society. It also made it very apparent how difficult it is to accurately predict the outcome
of an epidemic. The non-static nature of human behavior, and unpredictable evolution of disease
adds up to an extremely complex modeling task. Taking everything into account gives rise to
a computational problem we do not have the resources for, meaning we often have to reduce
problems into less resource intensive problems to solve.

We still have to, with a certain degree of accuracy, be able to model some of these human-
disease interactions. Disease requires carriers, a medium to be spread, but we want to be able
to structure the relationship between carriers in some manner. A natural way to portray social
relationships are networks, or graphs as often referred to within the field of mathematics. Graphs
allow us to tie together human interactions into direct social relationships. Modeling populations
using graph theory gives us a strong tool to be able to trace how diseases manage to traverse
from individual to individual, the drawback then being the large computational cost of managing
these relationships when they grow in order of magnitude to realistic proportions.

Agent based modeling has the advantage of being able to model behavior in closed systems
on a more granular level. Individual behavior and traits can drastically alter how pathogens
interact with a population. If a single individual contained data such as immune system traits,
social behavioral traits and a graph of their relationships, this could help to more realistically
reproduce pathogen behavior. This however, similarly with social graphs, comes at the cost of
computational complexity.

With today’s state of computation it is not possible to try and simulate every single individual in
a given population and all their traits, interactions and how they come together with the policies
of the society they live in. But there should still be interesting behavior to see by implementing
a choice few of these different approaches to modeling.

1



2 CHAPTER 1. INTRODUCTION

1.2 Goals and Research Questions

Goal Develop a tool leveraging a variation of network structures and low-level agent-based in-
teractions to synthesize complex epidemic events

Epidemiology is a broad field where networks have been used as a means to an end to model social
interactions. Many different efforts have been made to try and capture human social behavior
using different network topologies, equation based epidemic models with difference equations or
other agent based approaches.

The infection is often considered to be static where the variables changing are social policies of
the network or to some extent social behavior of nodes in the system. But creating a realistic
social contact network with a coexistent agent-based model with a synthetic population and a
pathogen able to exhibit agent-like behavior requires some work

Research question 1 How does an adaptable pathogen handle policies to mitigate spread and
damage?

Research question 2 How does the network topology of a social contact network affect the
impact of an agent-based pathogen?

Research question 3 How does population diversity affect affect evolution and impact of a
pathogen

1.3 Research Method

The methodology used is a hybrid approach reading up on literature within epidemiology, network
theory, behavioral psychology, artificial life and agent-based modeling. Based on initial findings
I will design a model for the different agents and their inherent mechanisms. This will then be
implemented in a system where its possible to run trials where parameters can be adjusted to
see how these change the outcome of the trials.



Chapter 2

Background Theory and
Motivation

2.1 Epidemiology

2.1.1 The SIR model

The SIR model is considered to be the start of mathematical epidemiology. SIR is an acronym
for Susceptible, Infected and Recovered, and is a differential equation model for the spread of
disease first introduced by Kermack and McKendrick in their 1927 publication Kermack and
McKendrick [1927]. This model is also commonly referred to as a compartmental model in the
sense that any individual in this model can only exist in one of the states at any point in time.
The constraints of the model is a homogeneous population where the population size remains
constant. The time-span of being disease-ridden is considerably smaller than that of the human
lifespan. It is also also only possible to be attacked once, where you then are moved to the
Infected state and then later permanently to Recovered which either implies death or recovery
with no chance of re-infection.

This model has a multitude of versions in which the mechanisms of state transitions and the
states available have been modified in some manner. Most modifications introduce new states
such as Exposed, implying infected but not aware (asymptomatic). Vaccinated and deceased
which could often be considered a replacement for the Recovered state which often is either dead
or recovered and cannot be re-infected.

2.2 Graph theory and networks

Network topologies largely depend on the context of their creation. In order to model the spread
of pathogens what is interesting will differ from delivery route optimization. In the case of
disease spread we want to find topologies which might apply to social relationships. Creating a
specific network topology means we need to describe the process of its creation with some type
of algorithm; a systematic way to create the relationships between nodes, where the underlying
structure can be associated with a trait we are interested in.

3



4 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.2.1 The random network

The most naive way to generate a network is by random attachment. We start with a single
node and then as long as we have not reached a desirable size for the given network we keep
adding nodes. Although it is hard to make use of the random network in the context of social
relationships, there are two properties of the random network which are worth taking note of.
The degree of clustering in a network is a way to describe whether or not nodes have a tendency
to group together. Another property is average path length. A path between two nodes is a
sequence of edges that connect the two nodes. The average path length of a network is found
by finding the shortest path between all unique node pairs and then taking the average value of
this.

The random network is often recognized by its tendency to have a low degree of clustering, there
is no inherent logic behind how nodes are connected so there is no reason for nodes to be grouped
for any other reason than random chance. The average path length in a random network tends
to be low, meaning that the number of ”jumps” we have to make from one node to another is
on average lower than most other network topologies.

2.2.2 Scale free networks

The scale free network is a topology that follows a a power-law distribution using a preferential-
attachment expansion algorithm. Preferential attachment is the process of determining which
node a new node will form a connection to. What are the preferences of a new node connecting
to an existing network? The proposed model follows a probability based on the number of
connections a node already has, where the probability of being chosen for a new connection
increases with the number of existing edges.

This results in a network with a high degree of clustering since nodes will favor nodes that are
already popular. This however often leads to a longer average path length because traversal from
one node to another will often require to use a highly interconnected node as an intermediary
step. Nodes that have a large portion of connections making up the entire network are also
referred to as hubs.

2.2.3 Small world networks

Watts and Strogatz Watts and Strogatz [1998] introduce the concept of small world networks.
They unified two extremes of network topologies from fully ordered to completely random, ar-
guing that social networks exhibited traits from both ends of the spectrum. What came to be
was the small world network which had high degree of clustering while also maintaining a low
average path length much like a randomly generated network.

The clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster
together. It is defined as the ratio of the number of edges that are present between the neighbors of
a node to the maximum number of edges that could potentially exist between them. This measure
can be used to assess the local connectivity of a node and its neighbors (the local clustering
coefficient), or the overall connectivity of the entire graph (the global clustering coefficient).
The concept of the clustering coefficient was introduced by Holland and Leinhard Holland and
Leinhardt [1971], and was further developed by Watts and Strogatz Watts and Strogatz [1998].
Newman YANG [2013] provides a more detailed treatment of the local and global clustering
coefficients and their applications.

Consider a network where nodes are spatially ordered in a ring, and each node is connected to
its immediate two neighbors. This forms a lattice network with a high degree of clustering but
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also a long average path length. Watts and Strogatz describes this as the polar opposite to the
random network which has a low degree of clustering but low average path length.
Social relationships are often forged within a given context which gives rise to varying degrees
of clustering. This is then a valuable metric when trying to generate a network that should have
some resemblance to a social network.
To create a small-world network, you start with a regular lattice of nodes, where each vertex
is connected to its neighboring nodes. This creates a highly clustered network with a relatively
long average distance between nodes. To create the ”small-world” effect, a few long-distance
connections, or ”shortcuts,” are added between randomly selected nodes. This reduces the
average distance between nodes and increases the network’s overall connectivity. The result is
a network that has a high degree of local clustering, like a regular lattice, but also has a few
long-distance connections that create a short average distance between nodes. This process can
be repeated multiple times to create networks with different levels of clustering and average
distances.

2.2.4 The strength of weak ties

Granovetter [1973] argues that weak ties (or casual acquaintances) play a crucial role in the
formation and maintenance of social networks. According to Granovetter, strong ties (such as
close friendships and family relationships) are important for providing emotional support and a
sense of belonging, but weak ties are equally important for providing access to new information
and opportunities.
Granovetter suggests that because weak ties are less emotionally intense, they are more likely to
connect individuals who are from different social groups or networks. This allows for the flow of
information and resources between different groups, which can be beneficial for all involved. For
example, a job opening at a company might be advertised through a weak tie (such as a friend
of a friend), allowing an individual who might not have otherwise heard about the opportunity
to apply and potentially get the job.
He also talks about the concept of triadic closure which is the tendency for people to become
connected through intermediaries. It’s based on the idea that people are more likely to form
connections with others who are already connected to their existing friends and acquaintances.
This can create a situation where three people who may not have otherwise been connected end
up becoming friends through the connections of others.
Overall, Granovetter’s ideas highlight the importance of both strong and weak ties in the con-
struction of social networks, and suggest that a balance of both is necessary for a healthy and
functional network.

2.2.5 The ego network

Freeman [1982] presents the concept of the ego network through centered networks. Zhou argues
that our social relationships are organized in a hierarchial structureZhou et al. [2005] taking
inspiration from the work of Dunbar and Dunbar’s number. Dunbar’s number is a concept that
is closely related to the social brain hypothesis [Citation needed]. It is a suggested cognitive
limit to the number of people with whom one can maintain stable social relationships. This
number is thought to be around 150, and it is based on the idea that the human brain has a
limited capacity for social connections. The social brain hypothesis suggests that the size and
complexity of the human brain evolved in part to support the cognitive demands of living in
a complex social environment, and Dunbar’s number provides a way to measure the extent to
which this is true.
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2.3 Genetic algorithm

The genetic algorithm is a search heuristic that draws inspiration from the evolutionary process
in nature. First introduced by Holland Holland [1975], it takes the concept of survival of the
fittest by randomly generating a pool of possible solutions. This pool, being the first generation is
scored based on some fitness function which determines how good of a solution it is relative to the
others. Subsequently, the best solutions (the ’fittest’) are selected to create offspring for the next
generation. This is typically achieved through the processes of crossover and mutation. Crossover
combines parts of two parent solutions to create new offspring, while mutation introduces random
changes. This evolution of the population ideally leads to the emergence of a solution that is
superior to the initial ones. Over successive generations, the algorithm navigates the search space,
progressively refining the population towards optimal or near-optimal solutions, depending on the
complexity of the problem and the fitness landscape. It’s this capability that has made genetic
algorithms a popular choice for tackling a wide range of optimization and search problems in
various fields.



Chapter 3

Related work

There is a lot of interesting work done in the world of epidemiology. This project touches a lot
of different subject areas which means that related work is spread across many interdisciplinary
fields. There is network theory and creating realistic social network topologies based on research
on human capacity for maintaining social relationships. Given its realistic nature those networks
can be used as a point of entry for contact based spread in an epidemic. How networks have been
applied in epidemic models vary greatly, but what they have in common is that they attempt to
encapsulate how disease manages to spread from person to person.

3.1 Social networks

3.1.1 A model to represent human social relationships

Building on the concepts of the ego network Conti, Passarella and Pezzoni Marco Conti [2012]
describe an algorithm for creating an ego network consisting of locally connected ego networks
by creating a union of their single-ego model and a multi-ego model.
The single-ego model is from the perspective of a single individual, an ego. It then proceeds to
expand the network of this ego on the given premise that it has a finite number of relationships
it can establish. An important distinction is made when establishing relationships in an ego
network, and that is the type of relationship it is. We divide them into three different layers,
which are called ”support clique”, ”sympathy group” and ”active network”. Their respective
averages sizes are 4.6, 14.3 and 132.5. The ego network is expanded using density functions until
the target size/budget for a given layer is exceeded and the algorithm then moves on to an outer
layer.
The single-ego model does not provide a lot of utility when looking at a complete social graph
of a population. This motivates the design of the multi-ego model. The main difference between
the single- and multi-ego model is that the multi-ego model takes into consideration every single
ego in the network. When adding a link or another ego it takes into consideration both ends of
the connection. Every single ego in an ego-network is a part of another ego-network. When a
single ego’s social budget has been expended we can traverse the network and continue expanding
those networks recursively.
The expansion of these networks makes use of Granovetter’s Granovetter [1973] triadic closure
and weak social ties. Triadic closure can be used to expand the innermost social layer ”support
clique” whereas weaker ties of acquaintances to create bridges/expand an egos ”active network”
layer.

7
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3.1.2 Triadic closure drive scaling laws

Klimek and Thurner Klimek and Thurner [2013] consider triadic closure to be a driving force
behind formation of networks used for communication, trading and friendships. They use a
model to show patterns in a non-growing network that explain the scaling laws related to scaling
of the probability of a node acquiring a new link, the scaling of the probability of finding a node
with degree k and the scaling of the clustering coefficient as a function of node degree.
An interesting issue they bring up is that the the concept of preferential attachment which is used
in expansions of scale-free networks is that it requires global knowledge of the network which
is not realistic in ordinary social networks. Instead they use it as extensions of local network
formation rules. An integral part of this is triadic closure since the chance of closing a triad is
higher than forming a new connection between two arbitrary nodes.
The model begins with a static network of N nodes, each linked to a random node. It iteratively
picks a random node i, adds connections based on its current number of links and a probability
r, and occasionally removes a random node while introducing a new one. The new node connects
to m randomly selected nodes, thus continually altering the network’s structure.

Initialize a static network of N nodes with each node having one link to a random node.
while True do

Pick a random node i
if node i has less than two links then

Connect it to another random node j
Go to Step 7

else
Pick one of the node’s neighbors at random

end if
Given probability r
if r is True then

Create a link between j and another random neighbor of i
else

With probability 1 − r, pick its new link to be to some random node from the entire
network

end if
With a probability p, remove a random node from the network and sever all its links
Introduce a new node to the network connecting to m randomly chosen nodes, where m is

a chosen parameter
end while

They state that their findings show strong evidence that triadic closure plays a significant role
in the formation of social networks. It appears that three different scaling laws are influenced
by the properties of triadic closure. The model however shows some weakness because triadic
closure is not well suited for networks describing hostile sentiment. The enemy of my enemy is
in most cases not my friend.

3.2 Modern epidemic models

3.2.1 Epidemic spread in scale free networks

Scale free networks have been a way to model our highly interconnected computers on the
world wide web, where most communication travel through highly connected hubsPastor-Satorras
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and Vespignani [2001]. Making use of a SIS model where instead of moving from an infected
to a recovered state each node is simply vulnerable to being infected once again. Each node
is a computer connected to the network, and if infected transmits the virus to its connected
counterparts at a given rate. A comparison can be drawn to what has been coined superspreaders
in epidemics; individuals with a very large social circle and a high rate of contact with unique
individuals.
If a very interconnected computer in a network contracts a virus and spreads it to all other
connected computers implies a large security risk if such a hub is compromised. Interesting
things to consider here are targeted policies for very exposed computers that may pose a high
risk and also at what critical threshold the virus is self-reliant in the sense that it spreads at
a higher rate than the system cleanses itself. This way the virus may remain in the system
indefinitely in a type of equilibrium.

3.2.2 Epidemic spread in trajectory networks

Pechlivanoglou Pechlivanoglou et al. [2022] took an approach where they made use of GPS-
coordinate data and trajectory networks to model the spread of Covid-19. The goal was to be
able to capture individual variability based on their location data. A trajectory network is a
term of the aggregated structure of temporal networks, which again is an extension of a proximity
network. A proximity network is a structure in which the connection of nodes is inferred by their
proximity. The issue with the proximity network is their static nature, introducing discrete time
steps and movement patterns of individuals the resulting graph type is the temporal (or time-
varying) network. The collection of temporal networks for a given time span t ∈ [0, T ] is the
trajectory network.

3.2.3 Model infection with random graphs

Croccolo, Fabrizio and Eduardo introduce a network based epidemic model making use of per-
colation theory Croccolo and Roman [2020]. They constructed a two-dimensional square lattice
network, essentially a two-dimensional grid where each square is a node and is connected to each
neighboring square, nearest neighbor (NN). Each node has a state belonging to any compartment
in a SIRD model, where D is Dormant and is a group of people isolated from the population
with no way to interact with the population.
Their model sets four rules for the spread ”(1) The virus can cross a bond from an infected site
to a susceptible one; (2) no virus transmission occurs otherwise; (3) infected sites heal after H

days, becoming recovered sites, so that they can neither infect others nor become infected again
(immune sites); and (4) dormant sites do not participate in the spreading process”. Links are
also added between nodes (sites) dynamically to represent nodes moving around, which creates
an effect similar to ordinary social movement in a population. They found that the ability of
the infection to cross gaps between clusters of people, or lack thereof, simulates the effects of
lockdowns on disease transmission.

3.2.4 Covid-19 models using networks of social interactions

Herrmann and Schwartz Herrmann and Schwartz [2020] criticize the state of current (2020) mod-
els for Covid-19 due to their tendency to assume random diffusion without taking an underlying
social network into consideration when modeling the spread. They propose using a scale free
network stating that human social networks are known to be scale free.
They constructed a scale-free network of 10 000 nodes based on BarabÃ¡si and Albert’s algorithm.
Using a cutoff of n = 8 for node connections with the exception of hubs which had connections
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far greater than n. Nodes were initialized as a population of susceptible nodes according to a
SIR model. Patient zero was then a random node in the network. An infected node was sick
for two weeks with an infection rate depending on which day in the infection cycle the node was
in. The highest infection rate being 4 ≤ d ≥ 6. They use a classic SIR model in which the
recovered state is irreversible and no longer interacts with the infected or susceptible part of the
population.

As a type of containment policy they varied node to node interactions. First model being an
unrestrained scale-free model, the other completely containing all hubs and the last one limiting
hubs to only 8 of their existing links chosen at random, detaching all the others. They were
called scale-free, mitigation hub and mitigation random respectively.

Their simulations showed that there could be some value in mitigating strategies, where node-to-
node interactions are limited in order to ”flatten the curve”. When hubs remain uninfected the
simulations showed that the infection died very early, or the peak of the infection was noticeably
delayed until a hub was infected.

3.2.5 Hybrid epidemic models

Bobashev et al. Bobashev et al. [2007] made use of a hybrid model in order to balance the
pros and cons of agent-based and equation-based modeling. The main benefit of the agent-based
model is its ability to capture high quality details if designed to. Individual behavioral patterns
of interaction based on scheduled events in local communities and personal preferences which
might more accurately reflect how we behave in a community are possible to implement. The
main problem is the raw computational demand of such models, requiring powerful machines to
run. On the other hand equation-models making use of difference equations to model infections
in a community are much less resource intensive and can be scaled up to much larger populations,
then again at the cost of losing high quality data that agent-based models offer.

Their model introduced a hybrid based mechanism that stems from the premise that when the
number of active agents reaches a certain threshold the laws of large numbers apply meaning we
can aggregate the behavior of the agents in the system using mean-field approximations. They
use a SEIR model in addition to a T denoting the total population. Only the interactions of
exposed and infected individuals are of consequence. This allows us to only consider these agents
at each individual time-step and keeping other agents inactive until they have made contact with
an infected agent. This reduces the number of agents we need to consider at the beginning of a
simulation.

The equation-based model consisted of a coupled system of 155 difference equations. They take
into consideration problems such as chance of spread on contact, chance of travel between cities
and the chance of starting an epidemic in a city when traveling.

The agent-based model uses five homogeneously mixed groups from the model used by Longini
et al. Longini et al. [2004]. Households, playgroups, school, work and social groups. They placed
age-based restrictions such that if an agent is too old they don’t go to school anymore but work
and vice versa.

At any point in time a certain part of the population of a given city has a chance to travel to
another city. An uninfected city only has inactive agents, but could then be visited by an infected
agent where there is a chance of contact and then contracting the pathogen. If so infected agents
in the city are activated and depending on the spread it may die out or induce a city-wide
epidemic.

Whether or not a city is using agent-based or equation-based modeling depends on whether or
not they have reached the threshold switch. Different cities can find themselves in different states
depending on the virus activity in the given city.
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They used this model with different switch thresholds to see how the hybrid model changes
depending on how it models its epidemic. The switch threshold would vary depending on the
size of the city, requiring a dynamic value for this threshold. This is set when a simulation-based
estimator of the transmission rate of the disease starts to stabilize.

The validity of the model is stated to require to be confirmed in further work.

3.2.6 SIR based epidemic model for Covid-19 in communities

Cooper et al. Cooper et al. [2020] discuss a traditional SIR model with the twist that the
population is not defined or kept constant and that susceptible individuals do not decline at a
monotonic rate. It can instead be increased in surges. Unlike traditional models that keep the
total population constant, their model allows the number of people susceptible to the disease to
change, better reflecting possible surges in susceptible individuals.

Their model was able to fit into published data of Covid-19 infection spread in different com-
munities ”reasonably well”, with the exception of China where the infection was contained more
than predicted but was thought to be due to successful implementation of policies by the Chinese
government.

3.2.7 Covasim

Kerr et al. Kerr et al. [2021] designed a Covid-19 agent-based simulation (Covasim) tool in order
to aid in exploration of intervention scenarios and estimation of resource needs.

Covasim incorporates country-specific demographic data, such as age structures and population
sizes, to model realistic transmission networks across various social groups and communities. The
system further integrates disease risk factors, dependent on the infected population’s attributes,
such as age-specific outcomes. Additionally, it provides an array of intervention measures to
explore their effects on different outcomes

The model is an agent-based system with discrete time steps where state changes of any given
agent are calculated through probabilistic means. It uses a modified SEIRD model where exposed
(E) has a nested structure where there can be different individual states. An exposed agent can
either be presymptomatic or asymptomatic. A presymptomatic agent then progresses into a
state of either mild, severe or critical. All three sub-states can transition into a deceased state
where only critical illness can possibly be fatal.

Their contact network design falls into three different types, a random network, SynthPop or
hybrid. The random network is generated with the premise that any individual can come in
contact with any person in the population. Each individual is designated daily contacts through a
Poisson distribution and this number can also be sampled randomly for each day for an individual.

SynthPop is an open source tooling for generating synthetic population networks which create
a high-resolution network that is able to capture age-specific distributions and then give indi-
viduals in the population context based social network layers for work, school, household and
communities.

The hybrids approach is a middle ground of the two where one does not have to comply with
the large input-data requirement of a pure SynthPop approach

The model also comes with intervention methods such as physical distancing, masks and hygiene,
testing and diagnosis, contact tracing, isolation of positives and contact quarantine or vaccines
and treatment.
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3.2.8 Interaction based based approach to computational epidemiology

Barret et al. Barrett et al. [2008] talks about the general concept of interaction-based multi-agent
approach towards epidemic modeling called Simdemics. The intent is that it should provide a
detailed model that should aid decision makers in evaluating available information and potential
outcomes of enforcing policies.
Simdemics borrows concepts such as multi-agent systems, social network analysis and Markov
decision processes. It also further makes use of dynamic social networks and disease diffusion
on such networks. The model is split into four distinct parts, first one being a way to create a
synthetic population of individuals. The nest step is to form a type of interaction mechanism
through a network in which this population may be in contact with each other. The third step
is to have a system for simulating an epidemic process given step one and two. Lastly a system
for applying and collecting data on intervention policies for a given simulation.
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Model architectures

The simulation architecture is built on leveraging a network graph to run experiments where
a pathogen attempts to infect the entities in the network structure. During the life cycle of
a pathogen during a simulation there are a number of different interactions which can either
be enabled, disabled or changed as will be outlined in this chapter. The main models of the
simulation engine are the individual and pathogen models and how they interact with each other.
Individuals are interconnected using weighted relationships. We connect together individuals
with specific network topologies where each individual is a node in the graph. A specific network
topology follows a specific algorithm. A graph of individuals is then a population. Individual and
node are used interchangeably in this thesis. In a single experiment we perform a search using a
genetic algorithm to explore how a pathogen attempts to adapt to changes in its environment.

4.1 Pathogen

The attributes of the pathogen and its mechanics are the main drivers during a simulation run
of a population. The pathogen model has five attributes, namely infection rate, death rate,
incubation time, infection time and attack vector. Infection and death rate are given as a value
0 ≤ r ≤ 1, whereas infection, and incubation time are given as integers 0 ≤ d. The attack
vector is a binary string used to emulate an immune-system response from its infected host.
This interaction is explained in more detail in section 4.4.
A pathogen is given a finite amount of points to spend on its own attributes, excluding the attack
vector. The number of points spent is the normalized with respect to a minimum and maximum
value for each field. Spending all points on a single attribute would result in that attribute being
maximized and all others receiving their minimum value. As an example, we have a pathogen
with minimum rates of 0.0 and maximum of 1.0. Minimum incubation and infection time is 0
and maximum 15. With a 100 points to spend an example of a skill-point distribution would be
as shown in table 4.1. A thing to note here is the 5 points spent into incubation time resulting
in 0. This by design so the pathogen cannot overspend its skill point allowance.

4.2 Individual

The individual acts as an entry point for the pathogen. An individual is connected to other
individuals through connections, representing its social contact area. All populations are undi-
rected weighted graphs. The weight of a connection is a value 0 < w ≤ 1 stating the probability
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Attribute Points Normalized value
Infection rate 31 0.31
Death rate 16 0.16
Incubation time 5 0
Infection time 48 4

Table 4.1: Pathogen skill point distribution example

of two connected individuals making contact when cycling through active pathogens during a
simulation loop. This is the encounter rate of the connection. The immune system attribute is a
10-length bit-string. The immune system is used to diminish the effect a pathogen has on a cer-
tain individual. This includes reducing its death and infection rate, depending on the overlap it
has with the attack vector the infecting pathogen. At any given moment an individual exists in a
state of either susceptible, infected, recovered or deceased. While infected there are two sub-states
where the pathogen is incubating or capable of infecting others. An individual is susceptible if
there is no active pathogen infecting it, and if previously infected the immunity duration has
expired. While infected an individual can infect others, but this state has two sub-states which
is the incubation period and infection period. These sub-states differ by the fact that during the
infection period the host has chance of dying.

4.3 Network topology strategies

The network is the attack surface of the pathogen. We use specific strategies to synthesize desired
network topologies.

Scale free network

The procedure begins by initializing the network by creating a connection between the first
two nodes in the collection it has accepted as input. To create the remaining connections, the
procedure employs a lottery-based approach. For each node in the collection, starting from the
third one, the procedure selects a random node from the existing network to establish a new
connection with. The selection is biased such that nodes with more existing connections have
a higher probability of being chosen. This reinforces the scale-free property of the network by
simulating a ”rich-get-richer” effect. Each time a connection is formed, the procedure updates
the total count of connections and the individual connection counts of the involved nodes. It
maintains a record of the number of connections each node has in a data structure akin to a
dictionary, using the node identifiers as keys.

Small world network

The procedure begins by constructing a ring lattice topology among the nodes. This is a cyclically
connected network in which each node is connected to its k nearest neighbors, where k is a user-
defined parameter. After forming the initial ring lattice, the procedure re-configures the network
to introduce the small-world property. It does this by traversing each connection and, with a
probability p, rewiring the connection to a randomly chosen node. p is another user-defined
parameter which controls the randomness in the network. During this rewiring process, the
procedure ensures that multiple connections between the same pair of nodes are avoided, and
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that no node connects to itself. This is done by repeatedly selecting a new random node until a
suitable one is found whenever the initially selected node is either the same as the source node
or already connected to it.

Clustered small world networks

As an extension of the small world network we have the clustered small world network meaning
that instead of having one large rewired ring lattice, we split them into smaller clusters of small
world networks representing smaller social communities where there are some nodes acting as
links between the communities.

Weighted networks

Weighted network versions follow the algorithms as described, but with a randomized encounter
rate used as the connection weight. The weight is set to 1.0 for all connections in the network if
it is not a weighted version.

4.4 Model interactions

Pathogen life cycle

The pathogen life cycle first determines whether or not it exists in a state where it can do anything
actionable. There are three different states to be aware of. The incubation period, where the
host can infect other individuals, but does not suffer from any symptoms. In this period the
host cannot die. When the incubation period is done, the pathogen transitions into the infection
period. While infectious the host can still transmit the pathogen, but at any given time-step the
host can also die depending on the death rate of the active pathogen. If the pathogen specifies a
number of immunity days, it delays self-termination until the total days of infection surpass the
combined sum of the incubation, infection, and immunity periods. Consequently, this leads to
a temporary period of immunity in the host. An undefined immunity period implies immunity
throughout the duration of the simulation.

Immune response

The immune response is the interaction between a pathogen and its host. During an iteration of
a simulation loop the pathogen will increment its state, and depending its internal state might
attempt to infect another individual or kill its host. The simulation will calculate a mitigation
factor 0 ≤ m ≤ 1 that is multiplied with the relevant rate. The mitigation factor is calculated
using a function based on overlapping binary values. The degree of overlap between the two
results in reducing the death and infection rate for this given pathogen-individual interaction,
by a factor as determined by the mitigation function. The mitigation function can either be a
step-wise function is to have clearer levels of immunity instead of a linear relationship between
the overlap and the mitigation factor or directly return the fraction of overlap as the factor.

4.5 Experiment design

The experiment requires bootstrapping the network topology and the first generation of pathogens.
The network structure is kept constant for all generations as to give the pathogen the same condi-
tions in all simulation cases. This means replicating the whole population, including connections
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between individuals and their respective weights. The topology is generated according to a
specific network strategy, this includes some degree of randomness. Specific network topologies
follow their own strategy for generating the relationship between nodes as described in 4.3

4.5.1 Patient zero

Patient zero is the first infected node in a simulation. There are three options to chose, worst-case,
best-case and random. The strategies are from the perspective of the pathogen, meaning that in
the best-case patient zero strategy we retrieve the node with the highest number of connections
in the network. In the worst-case scenario we do the opposite, we retrieve random node selected
among those with the smallest number of connections. A limitation in the implementation is
that we do not consider the chosen node’s distance from other highly-connected nodes. The less
available nodes with a high social contact area are, the harder it is for the pathogen to spread.

4.5.2 Main infection loop

The main infection loop it the simulation logic that happens every time-step in a simulation.
For any given time-step, we retrieve all pathogens in the population and update their local state.
Updating the local state means we increase the counter for how many days it has been infecting
the host. After this we check if it capable of infecting others and if it can kill the host. If
applicable we retrieve the host’s connections and then if an encounter is triggered attempt to
infect the connection based on the infection rate and the mitigation factor as determined by the
immune response, if enabled. The main algorithm is outlined in the appendix ??

4.5.3 Experiment-level variables

An experiment-level variable is a variable/setting that is defined for all simulations run in that
specific experiment. These vary in type between being able to be turned on or off, or changing
its value.

Infection isolation

Infection isolation determines if an infected node self-isolates when experiencing symptoms. The
state of experiencing symptoms is defined as its infection phase, in which the host is susceptible
to death. If enabled the infection-period is less valuable to a pathogen, since it will stop it from
further spread.

Immune system response

Immune system response determines if the mitigation factor of a pathogen-individual interaction
should be taken into account. If enabled all attempts to either infect or terminate an individual
will include another calculation which will reduce the impact of the pathogen based on attack
vector and immune system string overlap

Mitigation factor function

If immune system response is enable we can also chose between two methods of calculating the
mitigation factor, one being a linear relationship between overlap of the two strings, and step-wise
requiring a minimum of overlap at discrete steps.
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Population heterogeneity

The immune system string can either be set to be the same for the whole population in an
experiment, giving a homogeneous population. The other option is randomly generating this
string for all individuals in the population, giving a heterogeneous population.

Immunity duration

The state of immunity means a host cannot be infected, this happens after both incubation and
infection periods have respectively passed. Immunity can either exist as an integer I ≥ 0, or be
undefined which implies infinite immunity. A host can never be re-infected. If defined, and the
number of days spent in immunity surpasses the immunity duration the population will count
it as a recovery event and the pathogen will self-terminate in the host. A recovery event is not
triggered if the host is given infinite immunity.

4.5.4 Genetic algorithm

We employ a variation of the genetic algorithm where each generation ranked by a specific
performance function and then either transferred without alterations (selection with elitism),
transferred with minor re-allocation of attributes or complete replacement.

Performance

Performance metrics are scored as a linear combination of deaths d, infections i and recoveries
r. Their weights are defined respectively as the variables wd, wi, wr. The value of each weight is
determined as an experiment-level variable.

f(d, i, r) = wdd+ wii+ wrr

Selection

There are two selection pools to be aware of, the elite sample which are the pathogens that are
unaltered and the breeding pool. If we have a pathogen pool P , elite sample E, breeding pool
B and remaining pool R we split them accordingly

P − E = B +R

The size of the breeding and remaining pool are equal B = R so we subtract the total pool with
the number of elite samples and divide this by two. All these splits are done on an ordered list of
pathogens ordered by the performance function as described in 4.5.4. This way we keep current
optimal solutions while exploring the solution space by altering existing solutions and generating
new ones.

Offspring and skill re-allocation

The process of skill re-allocation is performed on the pathogens in the breeding pool B. It
involves randomly choosing two traits or attributes of a pathogen. The process also involves
picking a random value from a predefined list of trait values (5, 10). If the first randomly chosen
trait has a value greater than this random value, the value is subtracted from the first trait
and added to the second trait. However, if the first trait’s value is less than the random value,
the process is reversed: the random value is added to the first trait and subtracted from the
second trait. The skill re-allocation process ensures that the total number of trait points remains
constant.
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4.6 Summary

The simulation model is highly dynamic, replete with numerous adjustable features. Our unique
system allows for modifications spanning from the fundamental network structure to detailed
interaction parameters, including the ability to define encounter rates with weighted networks,
and even simulate individual immune responses to pathogen interaction. This system’s flexibility
provides a comprehensive tool-set that affords complete control over epidemic modeling condi-
tions. Furthermore, it allows the users to set goals for the pathogen, which are evaluated based
on custom-weighted scoring criteria.
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Experiments and Results

The experimental model is flexible and can be finely tuned to suit a variety of scenarios. Several
variables can be adjusted or toggled on and off, providing substantial control over the simulation
conditions. In a single experiment, we define a range of variables. These include the population
size, which determines the number of nodes in the system, and the network topology, which
defines how these nodes are interconnected. The duration of the simulation is determined by
the number of time steps, while the size of each pathogen population and the number of these
populations - or generations - are also variables within our control. We can even adjust whether
or not to enable an immune response, which, if enabled, introduces a mitigation factor for all
interactions between pathogens and individuals. The overlap thresholds used when calculating
this mitigation factor, the duration of post-recovery immunity, and the minimum and maximum
thresholds for translating pathogen skill points, can all be tailored to the needs of the experiment.
Lastly, the model can also account for different scenarios for patient zero, ranging from best-case,
worst-case situations and random selection

5.1 Experimental Plan

The measurable component of an experiment is the pathogen performance score. The perfor-
mance score is determined by its performance function as explained in section 4.5.4. A key point
of interest is the impact of pathogen conditions on its performance. The weights within the per-
formance function identify the optimal attributes for maximizing its score, yet determining the
maximum attainable performance in each scenario is another compelling facet to examine. This
sequence of experiments will explore the effects of modifying these conditions and compare the
results across different scenarios. We will be looking at isolated settings, meaning that most of
the different mechanisms will be disabled in order to reduce the amount of noise in the resulting
data set.

5.2 Setup

All the experiments share a common set of base settings. Each experiment spans 50 time steps,
and each pathogen has 100 skill points available for allocation among four attributes: infection
rate, death rate, incubation time, and infection time. The infection and death rates are fractional
values ranging from a minimum of 0.0 to a maximum of 1.0, which translate to a probability
range of 0-100%. The time variables, incubation time and infection time, have a minimum value
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of 0 and a maximum of 15. Any additional variables that differ across experiments are not part of
these base settings. Such variables are individually detailed within the specific sections dedicated
to their respective experiments.

5.2.1 Pathogen performance in varying topologies

A vital component for epidemics is to have a medium to infect through. A fully connected
network is more convenient than a ring lattice where each node is connected to only two other
nodes. A scale-free network has more high-value targets with highly connected central nodes
working that can heavily impact the spread of a pathogen. In small world and clustered small
world networks one can also find nodes that are more connected than the average node but this
is not to the extent as with scale free networks.

Experiment-setting Value
Population size 2000
Number of generations 20
Generation size 60
Patient zero Best-case
Weighted network False
Immunity duration Infinite
Isolate if sick False
Immune response False
Performance function death weight 4.0
Performance function infection weight 1.0
Performance function recovery weight -1.0

Table 5.1: Varying topologies settings

The variable we will be changing there is the underlying network structure. We will run three
simulations covering the three network structures covered in 4.3, namely scale free, small world
and clustered small world networks.

5.2.2 Population diversity

When enabling the immune response we add another interaction layer in the simulation. The
immune, from the perspective of the population acts as a line of defense that mitigates the impact
of a pathogen spreading through the population. An interesting scenario to then examine is
population diversity, meaning how a homogeneous population handles an epidemic in comparison
with a heterogeneous one.

A homogeneous population will mean that we will not dynamically create the immune system
string for each individual, but instead this will be a shared string. The heterogeneous population
will instead have a randomly generated string for each node. We chose the scale free network
topology using a best-case scenario. By initiating from the most connected node in a scale-free
network, we can more readily assess whether a diverse population exhibits greater resilience by
handling these starting conditions more effectively, especially considering these conditions are
heavily tilted in the pathogen’s favor.
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Experiment-setting Value
Network topology Scale free
Population size 1000
Number of generations 20
Generation size 30
Patient zero Best-case
Weighted network False
Immunity duration 5 days
Isolate if sick False
Immune response True
Mitigation factor function Step-wise
Performance function death weight 4.0
Performance function infection weight 1.0
Performance function recovery weight -1.0

Table 5.2: Population diversity settings

5.2.3 Weighted vs. unweighted network

Network weights are interpreted as chance of encounter or encounter rate. Imagine three nodes,
A, B and C. Connection AB has weight 0.9 and BC 0.2. If B is infected we will traverse all
its connections, in this case AB and BC. An encounter between A and B will then have a 90%
chance of being triggered. If triggered an infection event will start where transmission depends
on the infection rate of the pathogen.

Experiment-setting Value
Population size 1000
Generation size 40
Number of generations 15
Patient zero Best-case
Weighted network True
Immunity duration 5 days
Isolate if sick False
Immune response False
Performance function death weight 4.0
Performance function infection weight 1.0
Performance function recovery weight -1.0

Table 5.3: Weighted vs. unweighted networks settings

5.2.4 Isolate if sick

Sickness isolation puts more weight on the pathogen investing in its incubation period. The
difficult trade-off to be made here is when pathogen deadliness is the desirable metric. A pathogen
can only invoke its death-event in its infection period, but investing in this while maintaining a
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high death rate gives a poor prospect for doing well since it might easily kill off its host before
managing to spread to a significant number of other individuals.

Experiment-setting Value
Network topology Scale free
Population size 1000
Generation size 40
Number of generations 20
Patient zero Best-case
Immunity duration 5 days
Immune response False
Performance function death weight 4.0
Performance function infection weight 1.0
Performance function recovery weight -1.0

Table 5.4: Isolate if sick settings

Lethality vs. survival

A lethal pathogen does not really make sense from a evolutionary point of view. The performance
weights dictate the metrics an experiment looks at when evaluating what pathogen does well and
not. An interesting aspect to look at is how we can influence the skill distribution of a pathogen
based on adjusting its performance function weights.

Experiment-setting Value
Population size 1000
Network topology Clustered small world
Number of generations 15
Generation size 30
Patient zero Best case
Immunity duration 5

Table 5.5: Lethality vs. survival settings

In the experiments so far we encourage deadliness by scoring deaths with a weight of 4, infections
1 and recoveries 1. By adjusting these weights to -2, 2 and -1 respectively we punish deaths since
it reduces its ability to spread. A dead host has no value if the objective is to multiply.

5.3 Experimental Results

5.3.1 Network topologies

An analogy to network topology is a variation of social structures. Scale free structures are
more common when talking about client-server structures in computer networking, but can also
be used when considering super-spreaders. There is a clear performance difference between the
three different network topologies, as illustrated in figure 5.1. The more notable difference is
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Figure 5.1: Network topology plot

the poor pathogen performance in the small-world network, whereas the other two plots have a
larger degree of overlap.

The normalized skill point distribution of the pathogens provides some insight into the perfor-
mance. Both small world and clustered-small world have a near identical skill distribution, with
the small world network having a much higher infection rate. The performance function favors
lethality to infection by a ratio of 1:4, which could explain its poor performance.

Attribute Scale free Clustered Small world
Infection rate 0.32 0.32 0.56
Death rate 0.11 0.12 0.04
Incubation time 1 1 0
Infection time 4 3 4

Table 5.6: Network topology experiment skill distribution

5.3.2 Population diversity

Population diversity appears to have some impact on pathogen performance, but the difference
is not as large as could be expected. In a homogeneous population the pathogen can find a
combination of skill points and an attack vector that gives it a clear advantage since it will
experience no mitigation. This would then be applicable to every interaction in the whole
population. In comparison in a heterogeneous population this interaction will always differ from
one individual to another.
Despite their similar performance plots the skill point distribution is not the same for their
respective best performing pathogens. There is however a notable spike where the homogeneous
population reaches a global maximum. The plot is also more volatile than the heterogeneous
one. This helps substantiate the assumption that the heterogeneous population is more resilient.
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Figure 5.2: Population diversity plot

Attribute Heterogeneous Homogeneous
Infection rate 0.286 0.23
Death rate 0.114 0.18
Incubation time 2 0
Infection time 3 5

Table 5.7: Network topology experiment skill distribution
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Figure 5.3: Network weight plots

5.3.3 Encounter rate

Initially the performance is completely inverted from what one would expect. Unweighted net-
work is essentially a weighted network where the encounter rate is set to 100%. This could be
attributed to the initial generation being lucky with its initial set of parameters. This however
seems to switch as towards its final generation the pathogen performs the best in the unweighted
network.

5.3.4 Sickness isolation

Sickness isolation has a clear impact on pathogen performance. The isolation plot also appears
to exhibit a similar resilience as the heterogeneous population shown in figure 5.2. The difficulty
for the pathogen comes from the fact that when isolating in order to achieve any significant level
of lethality it has to be able to spread enough in its incubation phase, and then either have a
very high death rate or enough infection days that compensates for a lower death rate. All this
while having a satisfactory infection rate. Since this used a scale free network topology with the
best-case patient zero strategy it could probably compensate for a lower infection rate, but in
the isolation case it did not seem like this managed to change anything.

5.3.5 Performance score

The performance function is what dictates how the pathogen attempts to optimize itself. By
changing this to heavily favor reproduction over lethality it appeared to affect the skill point
distribution of the top-performing pathogens, as seen in table 5.8
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Figure 5.4: Sick isolation plot

Attribute Lethal Infectious
Infection rate points 32 58
Death rate points 20 12
Incubation time points 10 20
Infection time points 37 10

Table 5.8: Lethality vs. infectious skill point distribution
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Discussion and Final Remarks

The experimental design is intended to showcase the flexibility and range of the simulation
toolkit. We cover a sequence of different variables to test and explore the capabilities of the
system and in this chapter we discuss the findings in more detail, as well as limitations to the
experimental approach and improvements we could make to the system in future work.

6.1 Discussion

As one would expect, how readily available susceptible hosts are is an important part of a
pathogens ability to spread itself in a given population. A more surprising aspect of the results
is the fact that the clustered small world network is closer to the scale free model than the
small world network in terms of performance. The resemblance between the network structures
is greater when comparing the small world network and its clustered variant. One could argue
that the clustered variant is closer to having a super-spreader as the highly connected nodes in
the scale free model has, whereas in the small world network its most notable attribute is that
the rewiring process reduces the average path length of the graph. In the clustered small world
we have a series of small world networks that are interconnected, meaning that when infiltrating
these smaller communities available susceptible hosts notably increase. Giving a similar super-
spreader effect as with the scale free network.

Population diversity allows us to observe emergent behavior of a low-level interaction between
the pathogen and a host agent. Although the difference in the score itself was less than expected,
the difference in volatility could imply some effect on the resiliency of a population. A problem
with the design of this mechanism is that it introduces noise for the genetic algorithm that is
difficult to take into account. When this feature is enabled the system now has to optimize the
attack vector, as well as exploring the solution space space with its skill point distribution. There
also is no mechanism for it to mutate this value either.

The encounter rate is a very under-utilized feature, mostly due to its binary implementation.
The data from its experiment is not very conclusive either. The most probable reason for this is
the fact that the weighted implementation of a network does not really have a logical structure
to it. In these trials we simply have two scale free networks, where one of them for every edge
has a random value between 0 and 1. The network structure in the unweighted graph is also not
re-used for the weighted network. They only use the same algorithm to synthesize the network.
The fundamental building block itself however is very powerful. It enabled us to construct net-
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works with multiple levels of complexity, the structure could reflect social structures that account
for the frequency of encounters in relationships between individuals.

Sickness isolation is something we would coin a policy-level interaction. By this we mean a
specific targeted behavior, like isolating one-self when feeling sick. In the resulting performance
plot for the isolation experiment there is a clear spike in the ninth generation for the experiment
without an isolation policy. The other plot seems to be very stable and the pathogen did not
manage to find an obvious solution during its search.

The different performance weights is what aids the pathogen in adapting. Changes in these
weights balance between lethality of the pathogen and its ability to infect, two goals which are
difficult to attain especially when operating with limited resources. The experiment managed to
develop pathogens with different skill-distributions, but it begs the question. Is the skill point
system too one-dimensional? There is not much complexity in how the distribution system works.

6.2 Main issues

A recurring problem with the implementation of the model is the one mentioned when discussing
the encounter rate. There is no way to systematically re-use generated network topologies, they
are always re-generated for each trial run. The only experiment which does not suffer from this
is 5.2.1 which uses topology as its main variable. The rest of the trials fail to truly keep this
experimental variable static throughout trials for a given experiment. An important thing to
note is also the scale of the experiments run. At most the trials had 2000 nodes, generation
size of 60 and 20 generations. The trials showcase the flexibility of the system, but never really
attempts to run any of them a larger scale. When we use a genetic algorithm approach, it is pos-
sible that the provided parameters did not throw a large enough net to explore optimal solutions.

The skill point system is an interesting approach but it proved difficult to implement meaningful
mutation mechanisms for the genetic algorithm. Using a binary representation of the normalized
values was considered, where a mutation would be a simple inversion of a binary value along this
string. This however was not compatible with the restrictive skill point system because it could
translate to a total skill point total that exceeded its skill point allowance.

The patient zero strategy has a very shallow implementation. Worst-cases and best-cases are not
linear relationships with the number of edges a node has. In a scale free model, the worst case
is the node with the fewest other connections and is the furthest away from a highly connected
node.
In general the system design suffers from a lack of scope. Although it manages to implement many
different mechanisms and allow these to interact with each other, many of them feel unpolished.

6.3 Future work

Amending the scope of the system is by no means a trivial task, but it is modular by design which
makes it easier to work on. The network structure is the foundation, and should be extended to
allow for re-use of existing network structures between experiments. It would also be interesting
to design weighted network strategies that draws inspiration from real life social structures to
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greater extent. This could perhaps lead to more meaningful results when there is a clear intent
behind the structure of the network. The ego network as mentioned in section 2.2.5 would be an
interesting network to implement and see the effect of.

The sickness isolation feature could also be extended to more general intervention tactics, instead
of complete isolation an individual could restrict itself to a maximum number of other individu-
als. This could also be extended to be based on connection weight, where a higher weight implies
a stronger emotional connection.

The scale of the system is on a community level. One could implement parallel communities
which are connected together. Connection between communities could be restricted based on
actionable policies or infection levels in communities. This pulls the epidemic from a local scale
to a more global macro-level, a proper pandemic.

The main focus of the design was with the mechanisms of the pathogen and its traits. Other
parts of the simulation feel more static, the only varying attribute in the individual is its immune
system and connections. It would be interesting to add more detailed mechanisms, an example
would be a happiness level that decreases as a function of active policies. An active policy
could be restricting the number of social interactions, or travel that extends outside of the local
community.
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