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Abstract 

As part of the complete solution to deal with atmospheric in-flight 

icing on unmanned aerial vehicles (UAV), a path planner is a 

valuable tool for finding an optimal path for accomplishing UAV 

missions. When considering icing conditions, the planner manages 

areas with icing risk. Together with an electro-thermal ice protection 

system (IPS), the path planner can optimize energy consumption by 

comparing energy consumed flying through the cloud or around it, as 

the UAV can now more safely pass through the ice. The UAV’s 

aerodynamic stability is also considered by meeting lift requirements, 

producing enough thrust, and having battery capacity left. These are 

constraints in the planner to ensure that the UAV can complete its 

mission. Benchmark icing cases are constructed to validate that the 

path planner performs as intended. A particle swarm optimization 

(PSO) is used as a method in the planner due to its ability to handle 

highly nonlinear problems and to be able to explore the solution 

space effectively. Weather conditions are chosen following Federal 

Aviation Administration 14 CFR Part 25 Appendix C icing design 

envelopes required for certification. A cloud with ice is designed 

within a defined mission area. The constructed cloud will change size 

between simulations, where, by a specific cloud size, the PSO 

predicts that less energy is consumed flying through the iced area 

with an IPS than flying around it. With these icing cases, a baseline is 

set for future validation. The work performed in this paper will be 

used to validate the PSO algorithm. This paper can also benefit any 

UAV users that require a robust path planner by using the icing cases 

to identify any inconsistencies in their code. The results show that 

one version of the PSO handles most of these icing cases well. 

Inconsistencies were identified when using these icing cases, but this 

study makes an excellent example of how they can be used. 

Introduction 

In-flight atmospheric icing is a critical challenge that requires robust 

solutions to fully realize the potential of unmanned aerial vehicles 

(UAV) and urban air mobility (UAM) [1,2]. A climate report on icing 

risk in Norway shows 50% icing risk from October to February, 

meaning flight risks due to icing-related incidents is high [3,4]. Ice 

accretion leads to performance degradation due to changing the shape 

of vital aircraft surfaces, which leads to a decrease in lift, an increase 

in drag, and reducing the stall angle of the wings [5]. In the case of 

propellers, the production of thrust is reduced and can lead to 

instability [6]. Three main ice types can affect the wings and 

propeller. Glaze ice, which occurs at temperatures close to 0 °C, can 

have uneven surfaces and ice horns due to slow freezing. Rime ice 

occurs at lower temperatures, has a more streamlined shape, and has 

a “stickier” property. Mixed ice is a mix of these two [7].  

The different types of ice also affect the wings and propeller 

differently. In a previous work by the authors [8], it was shown that 

glaze ice is the worst for aerodynamic performance degradation on 

the wings due to a more significant degree of distortion of the airfoil 

shape. Rime ice is less severe, as rime ice forms streamwise ice 

shapes that lead to less aerodynamic degradation. It is the opposite 

case for the propeller due to its rotation at high speeds, as heat builds 

up due to aerodynamic friction, glaze ice melts, leading to negligible 

performance degradation. The heat build-up due to friction is 

insufficient for the rime ice case as the temperatures are too low. 

While ice shedding is possible, rime ice is more adhesive to the 

propeller surface, leading to delayed shedding and larger ice shapes, 

which results in higher performance degradation. At the same time, 

rime ice has less cohesion with itself, which can lead to outer ice 

layers shedding first, creating uneven ice shapes that deteriorate 

performance further. Different propeller parts also experience 

different amounts of centrifugal force, with the tips experiencing the 

highest forces. These higher forces can first break the ice at the 

propeller tips, resulting in an uneven surface and worse performance. 

The propeller degradation is also in a different time scale than the 

wings. While the wings see noticeable degradation in 20 minutes, the 

propeller sees noticeable degradation in under a minute [6,8]. Hence, 

ice increases power consumption, reducing the effective operating 

time of UAVs, or in the worst case, can lead the aircraft to crash [9].  

Unsettled icing topics were covered in the paper by Hann & Johansen 

[10]. Topics include developing a mature ice protection system (IPS), 

a better understanding of iced airfoil dynamics of wings and 

propellers, and path planning methods. UAVs require a path planner 

to manage ice-associated risks, such as performance degradation. It is 

possible in some cases to avoid clouds with ice conditions. However, 

days can occur where outright avoidance of ice is impossible. Hence, 

UAVs without an IPS are limited in what they can do, even with a 

path planner. With an IPS installed, the benefits of a path planner are 

twofold. The path planner can now ascertain whether flying through a 

cloud with ice or around it is more energy efficient. Additionally, the 

path planner can help optimize the use of the IPS. Since the electro-

thermal IPS is an energy-intensive component of the system, 

knowing when to switch the IPS on or off is vital for mission success 

[11].  

A path planner and ice detection system can help optimize IPS usage 

by improving efficiency and operation. As Wei et al. [12] reviewed, 

ice detection is possible through sensor technology or a combination 

of sensors and models [13–17]. The paper by Wei et al. applies to 

wind turbines, but the ice detection concepts can be adapted for 

UAVs. Research that investigates the combination of path planning, 

IPS, and icing effects is limited to the author’s knowledge. However, 

one paper proposed a decision-making tool for UAVs in icing 

conditions that obtains environmental measurements from sensors 

and changes in performance due to ice to determine IPS activation 
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and mission success rates [18]. Although path-planning-related work 

explicitly aimed at icing conditions is limited, work that deals with 

general weather conditions does exist [19–22]. With an IPS installed, 

more missions are available that were previously dangerous, meaning 

the path planner can explore more options. To calculate the optimal 

path, the path planner must process weather data over its mission 

area. Weather datasets can be significantly large with many variables; 

hence a path-planning method that can deal with many variables can 

be more effective. One such method is particle swarm optimization 

(PSO) [23].  

This paper proposes icing cases for validation for path planning tools. 

These validation cases are then used to test a pre-existing PSO path 

planner developed by Tiller [24], which was based on the work by 

Hovenburg [25] and Narum [26]. This is to showcase these icing 

cases and to investigate potential improvements in the PSO path 

planner. The paper focuses on fixed-wing UAVs; hence there will be 

no discussion on rotary-wing UAVs. Because of how the PSO works, 

it can be challenging to determine whether the planner behaves as 

designed. The path planning problem is also highly nonlinear due to 

the complex effect of terrain, clouds, icing, and IPS, which increases 

complexity further. A series of icing cases are developed to validate 

the planner’s performance and consistency and to showcase its 

capabilities. These cases are simple enough to determine whether the 

best path was chosen or not quickly. These icing cases create a 

baseline that can be used to test new features or other algorithms. The 

designed icing cases will benefit UAV users that aim to optimize 

UAV operational uptime, minimize risk, and enable testing of their 

path-planning algorithms with icing conditions.  

Methods 

This section presents the method for icing cases, the PSO, and the 

case study. The most important details of the PSO are given, and 

those curious about the full details are referred to the paper by Tiller 

[24]. The icing cases are presented in full. Lastly, the case study is 

presented similarly to previous work that quantified icing severity 

through performance degradation [8]. The wing performance curves 

simulated in [27], propeller performance curves calculated through 

simulation and experiments in [6], IPS energy consumption data in 

[11,28], and aircraft specifications in [29] are presented. The 

performance curves correspond to the airfoil, propeller, and IPS used 

on the Falk PX-31. Hence, the parameters used in the path planner 

correspond to PX-31’s capabilities.  

Icing cases 

The icing cases are designed so that it can be quickly determined 

whether a path planner would avoid or fly through an area with ice. 

The parameter of the “cloud” in the simulation is whether ice is 

present, a true or false value. For each case, the cloud parameters, 

which consist of cloud extent, air temperature, and icing condition, 

are artificially changed to test the PSO algorithm. These parameters 

are constant within the cloud. The icing conditions of the datasets are 

chosen per Federal Aviation Administration (FAA) icing design 

envelopes from CFR14, Appendix C [30]. Hence, this paper only 

investigates atmospheric in-cloud icing, not supercooled large 

droplets (SLD). The main case parameters are the different 

temperatures corresponding to the different ice types. −2 °C, −4 °C, 

and −15 °C correspond to glaze, mixed, and rime, respectively. Apart 

from temperature, liquid water content (LWC) is a primary factor in 

determining performance degradation. However, choosing an LWC 

must correspond with the LWC of different cloud types. The 

conditions adhere to the cloud extents for the continuous maximum 

case as specified in Appendix C [30]. For example, an increase in the 

horizontal area uses the LWC adjustment factor, as presented in 

Appendix C [30]. The lift and drag curves are also computed with 

Appendix C [30] in mind. The ice cases then follow the standards of 

the FAA design envelopes.  

Two cloud types are relevant according to the FAA design envelopes, 

stratiform clouds and cumuliform clouds, corresponding to 

continuous maximum and intermittent maximum, respectively [30]. 

In this paper, only stratiform clouds are investigated, as stratiform 

clouds are the only cloud type with a possible horizontal extent 

relevant for the test purposes in this paper. Stratiform cloud LWC can 

range from 0.1–0.8 g/m3. The values in the design envelopes are 

statistical, and with a given value, there is a chance for all values up 

to the given value to occur rather than being constant. For example, if 

a value of 0.8 g/m3 is given, then all values from 0–0.8 g/m3 can 

occur in the cloud. However, the LWC is assumed constant in the 

simulation to make it easier to compare. Also, as temperature 

decreases, the ability of air to retain moisture drops [31]. Hence, 

glaze ice conditions generally have higher LWC values than rime ice 

conditions. Larger ice shapes can occur at shorter icing durations in 

glaze ice conditions. The cloud’s horizontal extent is also mentioned 

in the design envelopes. A cloud with a higher LWC generally has a 

lower horizontal extent, as a higher LWC can only come from its 

higher water concentration. Table 1 summarizes key parameters and 

icing cases that are explored. The designed icing cases choose only 

one MVD of 20 µm, as found in [8,27,28,32] to result in the highest 

degradation. Hence, we only simulate this MVD.   

This paper ignores wind and terrain elevation as the focus is on icing 

effects. This means that the path planner sets wind and elevation to 

zero. In actual conditions, a real cloud would move from the effects 

of wind. This paper investigates a static cloud since it would be 

difficult to compare otherwise, and computational resources are 

currently insufficient. Currently, the weather data resolution is at 2.5 

x 2.5 km. Simulating a moving cloud would require a resolution that 

depends on the wind speed. With a wind speed of 5 m/s, the 

resolution would subsequently need to upscale to capture this 

movement but will require an unreasonable amount of computational 

resources. The temperature is also constant within the cloud and does 

not vary with altitude. This ensures that results from different cases 

are comparable, and the cruising altitude is kept constant at 1800 

meters. This ensures that ice is the only consideration made when 

comparing energy consumption. During normal runs of the algorithm, 

the path planner can make altitude adjustments to take advantage of 

air density and wind [24]. Including wind and elevation would 

significantly affect the outcome making it difficult to compare, and 

this feature is therefore disabled. The barometric formula [33] is used 

to estimate air density at 1800 meters.   
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Table 1 Icing cases and parameters for nominal continuous maximum 
conditions in App C [30] 

Variable Glaze Mixed Rime 

Temperature −2 °C −4 °C −15 °C 

Liquid Water Content 0.60 g/m3 0.55 g/m3 0.33 g/m3 

Droplet Median 

Volume Diameter 
20 µm 

 Cloud nominal 

horizontal extent 

Stratiform: 32.2 km 

 

Cloud maximum 

vertical extent 

Stratiform: 2.0 km 

 

 

Figure 1 shows two elliptical clouds indicated by the shaded area, 

with the same horizontal extent at the longest dimension but with 

different orientations. It also shows the paths calculated by the PSO, 

which are discussed in the result section. The vertical extent of the 

cloud is assumed to extend to the ceiling of the mission space 

because the UAV operational limit is close to the cloud’s maximum 

vertical extent. As the cloud’s horizontal extent increases, the PSO, 

which tries to minimize energy consumption, will, at some point, 

decide it is more optimal to fly through the cloud. This is because 

flying around now consumes more energy than using the IPS. Clouds 

of different shapes and horizontal extents are also tested for a more 

thorough test. The profiles for the stratiform clouds include ellipses 

with different horizontal extents, either along the shortest path 

(expected to fly along the cloud) or rotated 90 degrees to block the 

path (expected to pass through the cloud). There are also circular 

clouds of different sizes. For stratiform clouds, the nominal cloud 

size is specified in Tab. 1. The path and energy consumption between 

these different clouds’ shapes and ice cases are systematically 

compared. The different icing cases are summarized in Tab. 2. The 

horizontal paths of key cases are presented, while energy 

consumption is presented in a table for all the cases specified in Tab. 

5.  

Table 2 Ice case descriptions 

Case 
Case 

description 
Shape 

Case 1 
8.00 km radius 

cloud 
Circular 

Case 2  
16.0 km radius 

cloud 
Circular 

Case 3 
22.5 km radius 

cloud 
Circular 

Case 4 
22.5 km radius 

cloud 

Elliptical, 90-deg to the 

path 

Case 5 22.5 km radius Elliptical, along the path 

Case 6 16.0 km radius Elliptical, 90-deg to path 

 

 

Figure 1.a. Case 4, 90 degree to the path, −2°C 

 

 

Figure 1.b. Case 5, Along the path, −4°C 

Figure 1 An example of a cloud from the icing cases and resulting path. 

Particle Swarm Optimization 

The path planner simulates realistic conditions to calculate the best 

path using PSO [24]. As the name suggests, the PSO method 

initializes a swarm of particles to explore the mission area. In the 

path planner, the start and end destination are user specified. Each 

particle contains weather data of the point in space it occupies, and 

UAV states such as position, velocity, acceleration, and orientation, 

which are updated from the previous UAV state. Weather data can be 

pulled from the Norwegian meteorological institute (MET). This 

paper replaces the MET data with the icing case data. During normal 

operation of the planner, ice condition is classified using relative 

humidity (larger than 0.99), air temperature (negative temperature), 

and LWC (larger than 0.01 g/m3). The icing cases use the data format 

from MET as a template. The dataset has limited resolution, and data 

between grid nodes must be interpolated, which can be inaccurate as 

weather conditions can be complex [31]. A higher resolution is 

available but will increase the runtime of the PSO. Variables such as 
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temperature and liquid water content (LWC) are vital in determining 

icing severity [34]. Generally, the higher the  

LWC, the more severe icing becomes. Figure 2 shows the general 

setup of the PSO algorithm. 

 

Figure 2 Unified modelling language (UML) diagram of the PSO algorithm, a common way to show relations between classes in an algorithm. The solid arrows 

represent association. For example, the simulator box contains references to each of the bottom three green classes. The striped arrow is an implementation. The arrows 
can be flipped to represent input/output. The bottom three green boxes can be seen as inputs to the simulator, with attributes sent as input into the simulator described in 

the boxes. The particle box can be seen as an input to the optimizer. The PSO box sends an optimization call with specified swarm size and iterations such that the 
particle box starts searching the space. Adapted from [24]. 

The objective can be user-specified to minimize energy consumption 

or time taken. The general constrained optimization formulations, as 

given in Tiller [24], are as follows: 

min
𝑝

𝑓(𝑝) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑝1,𝑖 ≤ 𝑝𝑖 ≤ 𝑝𝑢,𝑖 , 𝑖 = 1, … , 𝑛𝑝 

𝑐𝑖(𝑝) ≤ 0, 𝑖 = 1, … , 𝑛𝑐 

where the function f is the objective function to be minimized 

(energy or time). Input 𝑝 to the function are decision variables that 

change depending on what is being minimized. 𝑝1,𝑖 and 𝑝𝑢,𝑖 are the 

decision variables’ lower and upper bounds, respectively. 𝑛𝑝 and 𝑛𝑐 

are number of decision variables and constraints, respectively. Lastly, 

𝑐𝑖  are functions defining inequality constraints given the decision 

variable 𝑝 as an input. The PSO tries to minimize the objective 

function given these constraints. The constraints include battery 

capacity considerations; for example, the battery should not be empty 

before reaching the destination. Additionally, the UAV should never 

hit terrain; hence UAV altitude must be higher than the terrain 

elevation. Also, the flight path angle must not exceed some value 

between waypoints to ensure a flyable path, and ground speed must 

be positive to ensure progress. Lastly, the horizontal waypoint 

distance must be constrained so the path is realistic. These are the 

functions that the PSO tries to solve. For a more detailed problem 

description, consult Tiller’s paper [24]. 

Tuning parameters include the number of particles, number of 

iterations, and number of waypoints. The more particles, the more the 

mission space can be explored, but with a penalty on computational 

resources. A waypoint is a series of points a vehicle must pass 

through toward its destination. The number of waypoints determines 

the resolution of the path. The more waypoints were chosen, the 

smoother the path becomes, at the expense of computational time. In 

this paper, the number of waypoints is set to ten. The particles 

explore sequentially from waypoint to waypoint. The particle swarm 

finds the optimal route by calculating the power at a point in space 

from the previous waypoint and then places a new waypoint where 

this is the lowest. The planner tracks the individual and local best 

particles regarding energy consumption. The local particle then 

functions as an attractor for every other particle. This is repeated 

between iterations. This attraction principle is used because UAV 

maneuvering capabilities need to be satisfied. The individual best is 

tracked to maintain the velocity direction within an acceptable range 

[35]. 

One problem with the PSO is that the particles used to explore the 

space require a seed for consistent comparison. Hence, the PSO must 

be more exhaustive in its search for an optimal global route. It can be 

exhaustive, but this incurs a heavy cost in computational power as 

more particles must be included. In most cases, the calculated route 

might only be a local optimum. However, the global best route is not 

always needed if the priority is mission completion. The PSO can 

optimize in terms of energy or time. However, for this paper, 

optimizing for time would not make sense if ice were the only 

consideration, as it would always take the fastest route without regard 
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to energy consumption. The PSO does not yet consider the flyability 

of the path, i.e., it does not consider the dynamics of the UAV. This 

is because of the resolution of the weather data. The spatial resolution 

is 2.5 km x 2.5 km. The UAV can follow any number of paths 

between waypoints that can satisfy its dynamics. After a path has 

been calculated, post-processing is possible to ensure a flyable path.  

For each particle’s candidate solution path, the power consumption to 

reach the next waypoint is calculated by calculating the required 

thrust to overcome the drag and IPS power if an icing condition is 

present. It is assumed that the required power depends on how much 

thrust the propeller needs to generate to maintain constant velocity 

and altitude. The lift, drag, and propeller efficiency determines the 

power requirement. As ice becomes more severe, the lift generation 

and propeller efficiency decrease and drag increases, making it more 

difficult to maintain steady flight. Propeller efficiency is complex as 

it can fluctuate due to the continuous accretion and shedding events, 

as the centrifugal forces can lead to ice shedding. A more detailed 

discussion can be found in [8]. However, since the desired outcome is 

determining if the PSO algorithm is making the right decisions, an 

IPS is used to prevent severe icing impact. Comparing the ice-free 

flight around an area with ice and flying straight through with an IPS 

can determine which is more energy efficient. The iced wing and IPS 

energy consumption data come from numerical modelling and icing 

wind tunnel tests (IWT) as described in various papers [9,11,36].  

An IPS can be operated in two modes, anti-icing and de-icing. Anti-

icing aims to prevent ice from forming, hence requiring higher 

energy consumption. De-icing allows some ice to form on the surface 

before it is periodically removed, leading to performance 

degradation. However, it needs to compensate with an increased heat 

flux delivered to the heating elements the longer this cycle becomes. 

In this paper, this de-icing cycle is set to 4 minutes, as it is concluded 

in [11] that 4 minutes is optimal. 

This paper assumes that the propeller always uses anti-icing mode 

during icing conditions. This is because of how fast propeller 

performance degrades and how detrimental the degradation is when it 

happens. In one minute, it is possible to lose up to 80% efficiency [6]. 

However, it is not easy to say whether this is enough for the UAV to 

become inoperable and crash since the high rotational rate of the 

propeller can lead to ice shedding [36]. For the wings, the 

degradation is less severe timewise. Hence, the de-icing mode is used 

for the wings. One important thing to note is that the PSO has quite a 

few simplifications to make it calculate a path fast enough, such as 

using a simple lift/drag model for the UAV. These simple models are 

lift and drag curves for a specific airfoil at different icing conditions. 

Ice accumulation is assumed to be linear with time. Lift and drag 

curves for unsimulated ice conditions are linearly interpolated from 

existing curves. For example, we interpolate using −4 °C and −10 °C 

curves if the temperature is −6 °C. LWC and MVD are also a factor. 

Hence, trilinear interpolation must be used.  

To specifically highlight the IPS model in the PSO, it is assumed that 

the IPS manages to shed ice perfectly, meaning that all ice gets 

cleared per cycle. This is not the case in real life due to run-back 

icing, as only part of the wing has heating elements. Heating loads 

are directly proportional to the area of the heated wing. One way to 

make IPS operations more efficient is to leverage aerodynamic forces 

by heating the leading edge with a parting strip IPS. This creates a 

gap that allows airflow access and hence apply aerodynamic forces to 

shed the ice. Full detail on this design is available in [32]. Run-back 

icing is the refreezing of droplets towards the wing’s trailing edge. 

Intercycle effects happen between turning the IPS on and off during 

de-icing mode covered in [32]. The important main effect in this 

paper is the performance degradation due to ice build-up on the wing 

for 4 minutes. The data relating to performance degradation, IPS, and 

general characteristics are now presented as a case study of the PX-

31 Falk in the next section. 

Case study: PX-31 Falk 

Maritime Robotics developed the PX-31 Falk and is a fixed-wing 

UAV with a propeller propulsion system. The airfoil is RG-15. Table 

3 summarizes key specifications. The iced wing and propeller curves 

are simulated through ANSYS FENSAP-ICE [6,27]. As a side note, 

the airspeed of the UAV affects water catch rates and needs to be 

specified. The performance curves are generated considering constant 

airspeed of 25 m/s, the same as the cruise speed of the Falk. The 

performance degradation is assumed to degrade linearly between the 

clean case and the degradation curve for a given meteorological 

condition. The propeller and wing profile used in the numerical 

simulation is the same as the Falks. Hence, the lift and drag curves 

for the RG-15 and propeller efficiency are mainly the data included 

in the PSO. The wing is simulated under Appendix C conditions, 

from −2 to −40 °C, for 15-50 µm MVD. This paper performs the 

simulations in ice conditions as presented in the icing case section. 

The propeller is simulated from −2 to −15 °C.    

Experiments show that IPS power consumption for rime ice is eight 

times higher than glaze ice, as shown in Tab 4. Table 4 shows the IPS 

power requirements for the propeller and wings. The difference 

between the power requirements between anti-icing and de-icing can 

be observed. Although it has been mentioned earlier that icing rates 

depend on LWC, the IPS power requirements depend only on 

temperature. This is because an electro-thermal IPS functions by 

melting the interface between the ice and the aircraft surface. Once 

the interface has melted and a liquid film is created, the ice can then 

slide off and shed due to aerodynamic forces, irrespective of the 

amount of ice accreted. In theory, a thicker ice layer would result in a 

higher applied aerodynamic force on the ice, leading to quicker 

shedding but is not considered in the study [9]. Hence, IPS power 

requirements only depend on the power needed to heat the aircraft 

surface to a temperature above zero, which only depends on the 

ambient temperature [11]. 

For the propeller IPS, the power requirement is calculated typically 

on a per-second basis. The power requirement for the wing IPS de-

icing mode is averaged based on the 4-minute de-icing cycle. The IPS 

is usually only on for a short period. Meaning in those 4 minutes, the 

IPS consumes some energy. The power is then calculated by dividing 

the energy consumed by 4 minutes to get an average power 

consumption. The data presented here are used in the PSO for path 

optimization and to validate its behavior. 

Table 3 PX-31 Falk Specifications [29] 

Aircraft mass (max take-off weight) 25 kg 

Standard operating weight 18 kg  

Cruise speed 25 m/s  

Max speed 40 m/s  

Wing surface area 0.6 m2  

Wingspan 3.2 m 

Engine efficiency 0.8 

Clean propeller efficiency 0.68 

Operational ceiling 2300 m 
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Table 4 IPS power requirements at different temperatures for propellers and 
wings  

Variable Glaze Mixed Rime 

Temperature −2 °C −4 °C −15 °C 

Propeller anti-icing 

IPS power [6] 
50 W 83 W 400 W 

Wing de-icing IPS 

power [11] 
12 W 29 W 69 W 

 

In the next section, the results are presented and discussed. The main 

results with circular-shaped clouds are presented in their entirety. The 

elliptically shaped cloud cases are available to the interested reader in 

the appendix. 

Results and Discussion 

This section presents the calculated horizontal profile for cases 1–3, 

for −2 °C, −4 °C, and −15 °C in that order. The energy consumed for 

cases 1–6 is shown in Tab. 5 for comparison purposes. The interested 

reader can find the horizontal profile for cases 4–6 in the appendix.   

 

Figure 3 Case 1 for −2 °C 

 

 

Figure 4 Case 2 for −2 °C 

 

 

Figure 5 Case 3 for −2 °C 

Figure 3–5 shows the paths for −2 °C. For cases 1–2, the computed 

paths are as expected, flying around the cloud. This is due to the 

small cloud extent. For case 3, the computed path passes through the 

cloud, as flying around the cloud would cost more energy. Why the 

horizontal paths are not entirely the same, although the cloud size is 

the same for the same cases, but with different parameters, is due to 

how the particles search the space stochastically. It leads to similar, 

but not identical, paths. The Figs. 6–11 showing cases 1–2 for the 

other temperatures give similar results of flying around. However, for 

case 3, the calculated path shows that the best path is flying around 

the cloud. This might be because the IPS power requirements are 

significantly higher for the −15 °C case, as the propeller IPS power 

quadruples and more than doubles for the wing IPS compared to the 

−4 °C case. This makes the path planner consider the way around the 

optimal route in terms of energy optimization. 
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Figure 6 Case 1 for −4 °C 

There are still some issues when looking at Figures 8 and 11, as the 

path sometimes intersects the cloud. This is a known problem that is 

discussed in [24]. The path between waypoints has constant 

conditions. For example, when considering one waypoint, the 

conditions at that waypoint and path are fixed until the next 

waypoint. However, when comparing Figures 8 and 11, it is possible 

to observe that the path planner could be better and has limits to its 

search capabilities given the PSO parameters specified in the 

methods section. In Fig. 11, one waypoint is set within the cloud, 

which is not consistent when compared with Fig. 8. The condition in 

Fig. 8 has a lower IPS power requirement than the conditions in Fig. 

11, which should indicate that the path planner would make sure to 

avoid the cloud even more. However, the opposite happens, which 

might indicate that the stochastic nature of the planner can give sub-

optimal paths, even when a better path exists in proximity when 

comparing these two figures. However, it is not confirmed that the 

algorithm’s stochastic nature leads to this issue; it is only a 

hypothesis.  

In contrast to what is stated in the PSO section on constraints, it is 

possible to observe waypoints that are close to each other in many 

figures. Given that the constraints are defined trying to make the 

waypoints’ horizontal distance as evenly distributed as possible, this 

closeness between waypoints is inconsistent and should be 

investigated further. Another area for improvement can be observed 

in several figures, such as Figs. 8, 11, and 12, where detours are taken 

once the cloud is circumvented, rather than taking the shortest path 

towards the destination. It may be the stochastic nature of the PSO, or 

some heuristics are required, such as the shortest path being taken. In 

any case, it is something that should be investigated.  

 

Figure 7 Case 2 for −4 °C 

 

 

Figure 8 Case 3 for −4 °C 

 

Although the calculated paths from the PSO are not entirely as 

expected, it highlights that the design cases are working as intended. 

The icing cases are simple enough to spot inconsistencies. When 

making these icing cases, there were a few inconsistencies in the 

results, which led to identifying some underlying issues in the PSO 

path planner code. This resulted in discovering some problems that 

needs to be handled and that would otherwise not have been detected. 

The statement that these problems would not have been detected is 

because of the magnitude of weather data. The weather dataset must 

be painstakingly searched and compared to the path to find 

inconsistencies. This would have been time-consuming and not the 

most effective way to identify problems. With the icing cases, 

identifying potential issues is now easier.  

The elliptical paths in Fig. 1 and all the along-path elliptical clouds in 

the appendix do not choose to fly along the cloud, but at some point, 

they even fly through it, with waypoints set in the cloud. This 

requires further investigation. One major issue is that in some cases, 

even when the PSO has a waypoint in the middle of the cloud, the 

icing condition is not registered. Since this is critical in determining 
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the path, it is crucial to solve this issue. It is, at this moment, 

unknown why this occurs, but it is hypothesized to be a discretization 

issue. The way the cloud is coded in the PSO is a Boolean value, true 

or false. The PSO interpolates values between the nodes, which can 

mean that when interpolating Boolean values might result in wrong 

cloud values. However, this problem occurs sporadically and is not 

uniform across different conditions, as shown in figures in the 

appendix, such as Figs. 16 and 18. In these two figures, ice condition 

is only registered once or twice, which leads to a path that 

unnecessarily prolongs ice exposure. It is possible to observe that it 

depends on the cloud’s shape and size. The computed paths where the 

cloud is avoided do not have this issue. There may be an issue with 

how waypoints are set and how icing condition is registered. Icing 

conditions are registered in an array the same size as the number of 

waypoints. The waypoints and array then correspond to each other. 

However, there might be some issues with how this is handled in the 

algorithm. Hence, further investigation is required. 

 

Figure 9 Case 1 for −15 °C 

 

 

Figure 10 Case 2 for −15 °C 

 

 

Figure 11 Case 3 for −15 °C 

Table 5 compares the energy consumption for the different cases. For 

cases 1 and 2, the energy consumed is mostly the same for all 

temperatures, which is a good indication that the planner is working 

as intended for these cases. The −15 °C cases consume more energy 

when flying through a cloud due to its much higher IPS power 

requirements. The −4 °C cases also consume more energy than the −2 

°C cases. Otherwise, the minor differences are due to PSO variations 

in cases where the PSO calculates paths that avoid ice altogether.  

Table 6 compares the energy consumed when flying through and 

around the cloud for the −4 °C and −15 °C, and Figs. 12 and 13 show 

the paths. The table shows for these cases that flying around is 

optimal for minimizing energy consumption. This shows the 

importance of optimizing the IPS power consumption, as it is an 

energy-intensive part of the system. If a mission is time-sensitive, 

flying through a cloud might be the fastest route. If the IPS consumes 

as much power as indicated in Tab. 3, mission success rates would 

inevitably drop due to insufficient battery capacity. Lastly, the 

placement of waypoints is irregular, and one would expect them to be 

more evenly spaced. However, this might be because the PSO 

calculates a path requiring a smoother path at some points, and two 

waypoints are put close together. To include more waypoints in the 

simulation and get a more accurate path is planned for future work. 

The icing cases have then been shown to help identify issues in the 

underlying PSO code and has helped in improving the algorithm. 

These cases can be used in the future when expanding the code.  

Table 5 Summary of energy consumption for the different cases and 
temperatures 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

−2 

°C 
2.31Ah 2.42Ah 3.01Ah 3.03Ah 2.57Ah 2.61Ah 

−4 

°C 
2.31Ah 2.42Ah 3.45Ah 3.43Ah 2.73Ah 2.65Ah 

−15 

°C 
2.33Ah 2.42Ah 6.48Ah 4.38Ah 3.80Ah 3.63Ah 
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Figure 12 Horizontal path through the cloud for case 3 for −4 °C 

 

 
Figure 13 Horizontal path through the cloud for case 3 for −15 °C 

 

Table 6 Comparison between flying around and through the cloud for case 3 
for meteorological conditions specified in the table below. 

 Flying through cloud Flying around cloud 

-4 °C 3.75 Ah 3.45 Ah 

-15 °C 7.01 Ah 6.48 Ah 

 

 

Conclusions 

In this paper, we presented icing cases, and a PSO path planner and 

used model data from the PX-31 Falk UAV as a case study for path 

planning validation. The developed icing cases aim to be as simple as 

possible to be able to quickly identify if the path calculated is what is 

reasonably expected. Clouds of different sizes and shapes were 

constructed to achieve this. One would expect the path planner to 

calculate a path around the smaller clouds while flying through the 

cloud when it gets big enough. The threshold of flying through vs. 

flying around is when the energy consumption of flying around the 

cloud exceeds flying through the cloud. Three ambient temperatures 

representing the three ice types of glaze, mixed and rime ice, were 

tested for six cases. Each case represents a cloud of different sizes, 

shapes, and orientations. These icing cases and the PX-31 Falk data 

were input to the PSO to generate paths. It was shown that flying 

around the cloud would be more energy efficient for the two lower 

temperatures when the cloud is at its longest extent because of how 

high the IPS power consumption becomes at lower temperatures. 

This shows the need to make electro-thermal IPS more efficient. That 

flying around is correct is also validated by comparing the energy 

consumed. By using these icing cases, some inconsistencies in the 

code were identified and further investigated. This shows that the 

icing cases are fulfilling their purpose. This can benefit UAV users 

that require robust path planners and can be used as a tool to validate 

their algorithms. 

Future Work 

For future work, the identified issues will be dealt with, as presented 

in the results when using icing cases. The icing cases must also be 

tested with wind and altitude changes to gain more insight into how 

the PSO path planner behaves. The PSO also needs to be modified to 

account for altitude change better, as energy considerations due to 

altitude are currently not accurate enough. Additionally, some 

heuristics should be introduced to deal with some detours the PSO 

simulates. The straight path is optimal if there are no obstacles to the 

destination. Lastly, modifications dealing with the correct registration 

of icing conditions and the number of waypoints and particles must 

be investigated. Up-to-date propeller data will also be implemented. 

For new implementations, as the UAV periodically flies through 

icing conditions, it becomes increasingly uncertain how much ice the 

IPS removes since the IPS does not manage to remove all ice 

perfectly. An accumulative penalty should be applied for each 

encounter with ice to account for this imperfect ice shedding. 

Additionally, aircraft elevator data will be implemented to implement 

a stability criterion in the path planner. The implementation of 

dynamics in the planner is planned, as static and dynamic stability as 

a constraint is of interest. The usage of higher-resolution data is 

planned to compare computational performance. Lastly, decision-

making theory will be implemented in the path planner to allow the 

UAV to decide the course of action when the uncertainty of icing 

conditions becomes too high during flight. 
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Appendix 

 

 

Figure 14 90-degree to path, Case 6, −2°C 

 

Figure 15 90-degree to the path, Case 6, −4°C 

 

Figure 16 90-degree to the path, Case 6, −15°C 

 

Figure 17 90-degree to the path, Case 4, −15°C 
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Figure 18 90-degree to the path, Case 4, -4°C 

 

Figure 19 Along the path, Case 5, -2°C 

 

Figure 20 Along the path, Case 5, -15°C 

 

 


