
Reparameterization of MoTBFs

A Reparameterization of Mixtures of Truncated Basis
Functions and its Applications

Antonio Salmerón antonio.salmeron@ual.es
Department of Mathematics and
Centre for the Development and Transfer of Mathematical Research to Industry (CDTIME)
University of Almeŕıa (Spain)
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Abstract

Mixtures of truncated basis functions (MoTBFs) are a popular tool within the context of
hybrid Bayesian networks, mainly because they are compatible with efficient probabilis-
tic inference schemes. However, their standard parameterization allows the presence of
negative mixture weights as well as non-normalized mixture terms, which prevents them
from benefiting from existing likelihood-based mixture estimation methods like the EM
algorithm. Furthermore, the standard parameterization does not facilitate the definition
of a Bayesian framework ideally allowing conjugate analysis. In this paper we show how
MoTBFs can be reparameterized applying a strategy already used in the literature for
Gaussian mixture models with negative terms. We exemplify how the new parameteriza-
tion is compatible with the EM algorithm and conjugate analysis.

Keywords: Mixtures of truncated basis functions ; hybrid Bayesian networks ; parameter
learning ; EM algorithm.

1. Introduction

Mixtures of truncated basis functions (MoTBFs) (Langseth et al., 2012a) provide a flexible
framework for handling hybrid Bayesian networks, i.e., Bayesian networks where discrete
and continuous variables coexist. MoTBFs generalize two other models previously proposed
within the context of hybrid Bayesian networks, namely the so-called mixtures of truncated
exponentials (MTEs) (Moral et al., 2001) and mixtures of polynomials (MoPs) (Shenoy and
West, 2011; López-Cruz et al., 2012).

MoTBFs admit hybrid Bayesian networks with no structural restrictions on the re-
lations between the continuous and discrete variables, unlike conditional Gaussian (CG)
models (Lauritzen, 1992), where discrete variables are not allowed to have continuous par-
ents. Furthermore, MoTBFs are closed under addition, multiplication, and integration,
which facilitates the use of exact probabilistic inference methods like the Shenoy-Shafer
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architecture (Shenoy and Shafer, 1990) or the variable elimination algorithm (Zhang and
Poole, 1996).

Methods for learning MoTBFs from data have previously been studied and cover algo-
rithms for learning both marginal (Langseth et al., 2012a) and conditional MoTBF densi-
ties (Langseth et al., 2009, 2014; Pérez-Bernabé et al., 2015). However, there are still some
limitations in relation to learning. For instance, given that MoTBFs can include negative
terms which are themselves not proper densities (they are not normalized), it is not possi-
ble to use popular mixture learning approaches based on optimizing the likelihood function,
remarkably the EM algorithm. Also, MoTBFs lack of a Bayesian formulation allowing the
definition of prior distributions on the parameters that could be updated when new data
arrived.

The presence of negative mixture terms has been successfully addressed in the case
of Gaussian mixture models by Zhang and Zhang (2005), who propose a reparameteriza-
tion of the mixture density compatible with an iterative EM algorithm. However, such
parameterization is not directly applicable to MoTBFs, because the latter contain mixture
terms that are not proper densities. In this paper, we define a similar reparameterization for
MoTBFs and illustrate that it can serve as a basis for developing an EM-inspired parameter
estimation algorithm, as well as a Bayesian formulation of the learning problem.

2. Preliminaries

The mixture of truncated basis functions framework (Langseth et al., 2012b) is based on
the abstract notion of real-valued basis function, which includes both polynomial and ex-
ponential functions as special cases. It is formally defined as follows.

Definition 1 Let X be a mixed n-dimensional random vector. Let Y = (Y1, . . . , Yd) and
Z = (Z1, . . . , Zc) be the discrete and continuous parts of X, respectively, with c + d = n.
Let Ψ = {ψi(·)}∞i=0 with ψi : R→ R define a collection of real basis functions. We say that
a function f : ΩX 7→ R+

0 is a mixture of truncated basis functions potential to level k wrt.
Ψ if one of the following two conditions holds:

• f can be written as

f(x) = f(y, z) =
k∑

i=0

c∏
j=1

θ
(j)
i,y ψi (zj) , (1)

where θ
(j)
i,y are real numbers.

• There is a partition Ω1
X, . . . ,Ω

m
X of ΩX for which the domain of the continuous vari-

ables, ΩZ, is divided into hyper-cubes and such that f is defined as

f(x) = f`(x) if x ∈ Ω`
X,

where each f`, ` = 1, . . . ,m can be written in the form of Eq. (1).
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An MoTBF potential is a density if
∑

y∈ΩY

∫
Ωz
f(y, z)dz = 1. Similarly, an MoTBF

f(y, z) is a conditional density for Z′ ⊆ Z and Y′ ⊆ Y given Z \ Z′ and Y \ Y′ if∑
y′∈ΩY′

∫
Ωz′

f(y′,y′′, z′, z′′)dz′ = 1, for all z′′ ∈ ΩZ\Z′ and y′′ ∈ ΩY\Y′ . Following Langseth

et al. (2012b) we furthermore assume that the influence a set of continuous parent variables
Z have on their child variable X is encoded only through the partitioning of ΩZ into hyper-
cubes, and not directly in the functional form of f(x|z) inside the hyper-cube Ωj

Z. That is,

for a partitioning P = {Ω1
Z , . . . ,Ω

m
Z} of ΩZ , the conditional MoTBF is defined for z ∈ Ωj

Z ,
1 ≤ j ≤ m, as

f
(j)
k (x|z ∈ Ωj

Z) =

k∑
i=0

θ
(j)
i ψ

(j)
i (x). (2)

In the remainder of this paper we shall assume that a conditional MoTBF density includes
only a single ‘head’ variable, i.e., |Z′ ∪Y′| = 1. Under this assumption, a hybrid Bayesian
network can be fully specified just using univariate MoTBF densities. In nodes with no
parents, a univariate MoTBF density would be specified. In nodes with parents, the condi-
tional density is specified by giving a univariate MoTBF for each partition of the parents,
as in Eq. (2). Thus, in this paper we will focus on univariate MoTBFs.

A remarkable particular case is obtained if we instantiate the basis functions as poly-
nomials (i.e., ψi(x) = xi, for i = 0, . . . , k), in which case the MoTBF model reduces to
an MoP (mixture of polynomials) model (Shenoy and West, 2011). Similarly, if we let
Ψ = {1, e−x, ex, e−2x, e2x, . . .}, the MoTBF model implements an MTE (mixture of trun-
cated exponentials) model (Moral et al., 2001).

Typically, a univariate MoTBF for a variable X does not rely on a partitioning of ΩX .
Furthermore, in this work we will assume that all MoTBFs are defined on the unit interval.
The next proposition shows the conditions under which an MoTBFs can be translated to
the unit interval without loss of information and keeping the same set of basis functions,
regardless of the domain in which it is initially defined.

Proposition 2 Let X be a continuous random variable with univariate MoTBF density

fX(x) =
k∑

i=0

θiψi(x), l < x < r,

and assume there exists a real function h(l, r) such that for all the basis functions it holds
that

ψi((r − l)x+ l) = h(l, r)ψi(x), i = 0, . . . , k. (3)

Then, the random variable Y =
X − l
r − l

has a univariate MoTBF density defined on the unit

interval as

fY (x) =

k∑
i=0

θi(r − l)h(l, r)ψi(x), 0 < x < 1. (4)

Proof Since X takes values on (l, r), it is clear that Y ∈ (0, 1). Now, let us denote by FX

and FY the cummulative distribution functions of X and Y , respectively. Then,

FY (x) = P (Y ≤ x) = P

(
X − l
r − l

≤ x
)

= P (X ≤ (r − l)x+ l) = FX((r − l)x+ l). (5)
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On the other hand, if we let ηi be a primitive function of ψi, i = 0, . . . , k, we can write

FX(x) = P (X ≤ x) =

∫ x

l
fX(t)dt =

∫ x

l

(
k∑

i=0

θiψi(t)

)
dt =

k∑
i=0

θi

∫ x

l
ψi(t)dt

=

k∑
i=0

θi[ηi(t)]
t=x
t=l =

k∑
i=0

θi(ηi(x)− ηi(l)), l ≤ x ≤ r.

(6)

Therefore, it follows from Eqs. (5) and (6) that

FY (x) = FX((r − l)x+ l) =
k∑

i=0

θi(ηi((r − l)x+ l)− ηi(l)), 0 ≤ x ≤ 1,

and thus

fY (x) =
∂

∂x
FY (x) =

k∑
i=0

θi(r − l)η′i((r − l)x+ l)

=
k∑

i=0

θi(r − l)ψi((r − l)x+ l) =
k∑

i=0

θi(r − l)h(l, r)ψi(x), 0 ≤ x ≤ 1.

(7)

It can be easily checked that for both MTEs and MoPs, it is possible to find the corre-
sponding function h(l, r).

3. A Reparameterization of MoTBFs

From the point of view of parameter estimation, mixtures with negative components are
difficult to handle, because they do not admit a straightforward application of the EM algo-
rithm, since the weights of the terms in the mixture can no longer be regarded as probability
values. There has been, however, a successful attempt to adapt the EM algorithm to Gaus-
sian mixture models with negative components, based on re-parameterizing the original
mixture density (Zhang and Zhang, 2005). This process assumes that the mixture compo-
nents are proper densities, meaning that each component is non-negative and integrates to
one and that each weight is non-negative. This is not the case for MoTBFs, for which the
basis functions ψi, i = 0, . . . , k are not necessarily densities (they are not normalized and
may not be positive over the full domain) and the weights θi, i = 0, . . . , k may violate the
positivity constraint.

In this section we adapt the reparameterization scheme introduced by Zhang and Zhang
(2005) to MoTBFs. The next theorem is the key result towards such reparameterization.

Theorem 3 Let f(x) =
∑k

i=0 θiψi(x) be an MoTBF density on the unit interval. Then,
there exist a real number a > 0 and two proper mixture densities p+(x) and p−(x) on the
unit interval such that f can be written as

f(x) = (1 + a)p+(x)− ap−(x), 0 < x < 1. (8)
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Proof For each i = 0, . . . , k, consider two positive real numbers θ+
i and θ−i such that

θi = θ+
i − θ

−
i . Now, we define

f+(x) =
k∑

i=0

θ+
i ψi(x)

and

f−(x) =
k∑

i=0

θ−i ψi(x),

so that f(x) can be written as f(x) = f+(x) − f−(x). Now let ci =
∫ 1

0 ψi(x)dx, i =
0, . . . , k. Then,

f+(x) =

k∑
i=0

θ+
i ci

1

ci
ψi(x)

and

f−(x) =
k∑

i=0

θ−i ci
1

ci
ψi(x).

By denoting a+
i = θ+

i ci and a−i = θ−i ci, we get

f+(x) =
k∑

i=0

a+
i

1

ci
ψi(x)

and

f−(x) =
k∑

i=0

a−i
1

ci
ψi(x).

Note that

1 =

∫ 1

0
f(x)dx =

∫ 1

0
(f+(x)− f−(x))dx

=

k∑
i=0

(
a+
i

∫ 1

0

1

ci
ψi(x)dx− a−i

∫ 1

0

1

ci
ψi(x)dx

)
=

k∑
i=0

(a+
i − a

−
i ).

If we denote a =
∑k

i=0 a
−
i , then 1 =

∑k
i=0 a

+
i − a⇒

∑k
i=0 a

+
i = (1 + a).

Let β+
i =

a+
i

1 + a
and β−i =

a−i
a

, i = 0, . . . , k. Then,

k∑
i=0

β+
i =

k∑
i=0

β−i = 1. (9)

If we define

p+(x) =

k∑
i=0

β+
i

1

ci
ψi(x),

p−(x) =
k∑

i=0

β−i
1

ci
ψi(x),
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then it holds that f+(x) = (1 + a)p+(x) and f−(x) = ap−(x). Hence, any MoTBF f can
be written as

f(x) = (1 + a)p+(x)− ap−(x),

where a > 0 and p+(x) and p−(x) are proper mixture densities, since the weights sum to 1
(see Eq. (9)) and 1

ci
ψi(x), i = 0, . . . , k are proper densities (they are non negative and their

integral on the unit interval is equal to one).

According to Theorem 3, instead of the initial parameters θi, i = 0, . . . , k, the new
parameters after the reparameterization are a, β+

i , β
−
i , ci, i = 0, . . . , k. However, notice that

ci is defined as ci =
∫ 1

0 ψi(x)dx. If the basis functions ψi are polynomials, it therefore holds
that ∫ 1

0
xidx =

1

i+ 1
⇒ ci = i+ 1.

On the other hand, if the basis functions are exponentials, we find that∫ 1

0
eixdx =

ei − 1

i
⇒ ci =

i

ei − 1
.

Therefore, for the particular cases of MTEs and MoPs, the ci are not really free parameters,
so the only parameters in the model are a, β+

i , β
−
i , i = 0, . . . , k.

The reparameterization in Theorem 3 has interesting potential applications both from
the point of view of modelling and parameter estimation. In the next sections we will discuss
both potential applications.

4. Iterative Parameter Estimation

The reparameterization in Theorem 3 paves the way to the definition of an iterative param-
eter estimation algorithm, inspired on the EM, which is aimed at optimizing the likelihood
function. We will restrict the discussion in this section to polynomial basis functions, i.e.
MoP densities, but similar arguments can be developed for MTEs.

The iterative procedure consists of the following steps:

1. Start with a random initialization of a, β+
i , β

−
i , i = 0, . . . , k.

2. Iterate until convergence (i.e. until the likelihood is no longer increased):

(a) Estimation of p+: Estimate β+
i with a and β−i fixed.

(b) Estimation of p−: Estimate β−i with a and β+
i fixed.

(c) Estimation of a: Estimate a with β−i and β+
i fixed.

Regarding the estimation of the parameters of p+, it is important to take into account
that p+ is a proper mixture, and therefore we can (potentially) estimate the weights (pa-
rameters) using the EM algorithm. However, in order to do that we need a sample drawn
from p+, which is not directly available (we are assuming that our data come from the
original distribution, whose density is f(x) rather than p+(x)). But note that

f(x) = (1 + a)p+(x)− ap−(x)⇒ p+(x) =
1

1 + a
f(x) +

a

1 + a
p−(x).
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Therefore, since we have shown that p+(x) is infact a mixture of f(x) and p−(x), we can
obtain a sample from p+ using the composition method (Rubinstein, 1981):

• Take the original sample (coming from f)

• Sample p− (whose parameters are known in this point) and add the items to the
original sample, so that the fraction of items from the original sample is 1/(1 + a)×
100% in the final sample.

Once we have the sample from p+(x), we can apply the following updating rules in
order to obtain the EM-estimates of the parameters β+

i . Note that the only parameters
to estimate are the mixture weights, since the polynomial term itself does not contain any
free parameter. Therefore, the updating rule is just the standard updating rule for the
mixture weights (Dempster et al., 1977). Let Zj be a hidden discrete random variable with
Zj = i meaning that the j-th item in the sample comes from the i-th component. The
updating rule from iteration t to iteration t + 1 (assuming polynomial basis functions) for
the parameters of p+ is

T
(t)
i,j = P (Zj = i|Xj = xj , β

+
i

(t)
) =

β+
i

(t)
(i+ 1)xij∑k

l=0 β
+
l

(t)
(l + 1)xlj

,

β+
i

(t+1)
=

∑n
j=1 T

(t)
i,j∑n

j=1

∑k
l=0 T

(t)
l,j

=
1

n

n∑
j=1

T
(t)
i,j ,

where xj denotes the j-th item in the sample drawn from p+ and n is the sample size.

The parameters of p− can be estimated in a similar way, as long as we have a sample
from p−, and taking into account the updated parameters of p+. To obtain the sample from
p−, we notice that

p−(x) =
1 + a

a
p+(x)− 1

a
f(x).

We can sample from p− using the instantiation of the acceptance-rejection method for
mixtures with negative terms defined by Bignami and De Matteis (1971):

• Sample an x from p+.

• Choose u ∼ U(0, 1).

• If u ≤

1 + a

a
p+(x)− 1

a
f(x)

1 + a

a
p+(x)

, accept x as an item drawn from p−.

These steps are repeated until the desired sample size is obtained. Notice that checking
the acceptance condition above requires the evaluation of f(x), which is unknown. We
propose to use the empirical density or a kernel estimation of it instead.

Finally, assuming p+ and p− fixed, we can apply again the EM algorithm taking into
account that
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p+(x) =
1

1 + a
f(x) +

a

1 + a
p−(x).

Therefore, we can draw a sample from p+ and use the EM to estimate the weights in
the mixture above, i.e. 1

1+a and a
1+a . In fact, we only need to estimate one of them as both

of them can be obtained by subtracting the other to 1. Once the weight is estimated, we
can finally obtain a.

In order to formulate the updating rules, we define Yj = 0 if the j-th element of the
sample comes from f (first term in the mixture) and Yj = 1 if it comes from p− (second
term in the mixture). We also define

s(t) =
1

1 + a(t)

and Y
(t)
i,j = P (Yj = i|Xj = xj , s

(t)), i = 0, 1. The updating rule for a is given by

Y
(t)

0,j =
s(t)f(xj)

s(t)f(xj) + (1− s(t))p−(xj)
,

s(t+1) =

∑n
j=1 Y

(t)
0,j∑n

j=1(Y
(t)

0,j Y
(t)

1,j )
=

1

n

n∑
j=1

Y
(t)

0,j ,

a(t+1) =
1

s(t+1)
− 1 =

n∑n
j=1 Y

(t)
0,j

− 1.

A problem of the updating rule above is that it does not guarantee that the resulting
estimation of f will be a valid density. In fact, it may happen that the resulting density
becomes negative in some parts of the unit interval. In order to avoid that, a restriction on
a must be imposed. Note that

f(x) = (1 + a)p+(x)− ap−(x) ≥ 0⇒ p+(x) + a(p+(x)− p−(x)) ≥ 0.

If p+(x)−p−(x) < 0 then, in order to guarantee non-negativity, the value of a must be such
that

a ≤ p+(x)

p−(x)− p+(x)
∀x ∈ (0, 1). (10)

4.1 Examples

As a proof of concept of the iterative procedure described above, we have conducted four
simple experiments. In the first two experiments we used samples drawn from MoPs with
degree 4 (example 1) and 6 (example 2). Then we used the iterative procedure to estimate a
MoP with the same number of parameters. In the other two experiments, we used samples
drawn from Beta distributions, more precisely Be(0.5, 0.5) (example 3) and Be(5, 5) (exam-
ple 4). In all the experiments, the sample size was set to 500 and the number of iterations
of the procedure to 1000. The initial parameters were initialized in order to start from a
uniform distribution on the unit interval. In each example, we also learnt a MoP with the
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same number of parameters, but using the least squares algorithm introduced by Langseth
et al. (2014), using the implementation available in the MoTBFs R package (Pérez-Bernabé
et al., 2020).

The estimated densities are displayed in Fig. 1. As a proof of concept, the examples
seem to indicate that the iterative algorithm is able to find solutions with fairly high log-
likelihood (see Table 1) even though the results are not as good as the ones obtained by
the least squares method implemented in the MoTBFs R package. In any case, the goal of
this experiment was to show that the reparameterization in Theorem 3 is potentially useful
for developing an EM-inspired parameter estimation algorithm for MoTBFs, rather than
developing such an algorithm.

Figure 1: Histograms of the samples used in the examples, with the estimated MoPs over-
laid. The upper row corresponds to examples 1 (left) and 2 (right), and the lower
row to examples 3 (left) and 4 (right). The blue lines represent the MoPs esti-
mated with the iterative EM-inspired procedure described in Section 4, and the
red lines represent the MoPs estimated by least squares.

Example 1 Example 2 Example 3 Example 4

Least squares 54.21318 74.55039 27.5904 198.0074
EM-inspired 58.91136 62.57779 18.65739 155.9439

Table 1: Log-likelihood of the models learnt in the examples.
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5. A Bayesian Approach to Parameter Estimation

The estimation procedure outlined in Section 4 is based on optimizing the likelihood. How-
ever, adopting the parameterization in Theorem 3 it is also possible to define a Bayesian
estimation scheme, where prior distributions on the parameters are specified and the esti-
mation procedure consists of computing their posterior distribution given the data. From
a practical point of view, the advantage of Bayesian inference with respect to a scheme
based on the EM algorithm is that the former is usually much faster, specially if the prior
distribution and the likelihood are conjugate, in which case the posterior distribution given
the data can be typically computed in closed form.

Using the standard parameterization of MoTBFs in Eq. (1), it is difficult to define a
Bayesian scheme where the parameters are considered as random variables. The reason
is that the parameters can take any real value, while after the reparameterization, they
take values on the unit interval. Furthermore, as we are considering all the MoTBFs to be
defined on the unit interval, it is guaranteed that the posterior will also be defined in the
same support, thus yielding always valid values for the parameters.

As an example of Bayesian formulation for MoTBFs, consider a random variable X with
a degree 1 MoP as likelihood, given by

f(x|β+
1 ) = (1 + a)p+(x)− ap−(x), 0 < x < 1, (11)

with p+(x) = β+
0 +β+

1 x and p−(x) = β−0 +β−1 x. Let us assume that the values of parameters
a, β−0 and β−1 are known, which means that we only have one unknown parameter, say β+

1 ,
because the other one, β+

0 is a function of β+
1 .

Assume we set a prior on β+
1 which is also a MoP of degree 1, with initial parameters

α+
0 and α+

1 , i.e.
π(β+

1 ) = α+
0 + α+

1 β
+
1 , 0 < β+

1 < 1. (12)

The posterior on β+
1 given a data point x is

π(β+
1 |x) ∝ f(x|β+

1 )π(β+
1 ) = ((1 + a)(β+

0 + β+
1 x)− ap−(x))(α+

0 + α+
1 β

+
1 )

= (β+
0 + β+

1 x+ aβ+
0 + aβ+

1 x− ap
−(x))(α+

0 + α+
1 β

+
1 )

= β+
0 α

+
0 + β+

0 α
+
1 β

+
1 + β+

1 α
+
0 x+ α+

1 β
+
1

2
x

+ aβ+
0 α

+
0 + aβ+

0 α
+
1 β

+
1 + aα+

0 β
+
1 + aα+

1 β
+
1

2
x

− ap−(x)α+
0 − ap

−(x)α+
1 β

+
1

= β+
0 α

+
0 + aβ+

0 α
+
0 − ap

−(x)α+
0

+ β+
0 α

+
1 β

+
1 + xα+

0 β
+
1 + aβ+

0 α
+
1 β

+
1 + aα+

0 β
+
1 − ap

−(x)α+
1 β

+
1

+ α+
1 β

+
1

2
+ aα+

1 xβ
+
1

2

= θ+
0 + θ+

1 β
+
1 + θ+

2 β
+
1

2
,

(13)

where

θ+
0 = β+

0 α
+
0 + aβ+

0 α
+
0 − ap

−(x)α+
0 ,

θ+
1 = β+

0 α
+
1 + xα+

0 + aβ+
0 α

+
1 + aα+

0 − ap
−(x)α+

1 ,

θ+
2 = α+

1 + aα+
1 x.

(14)
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Therefore, the posterior on β+
1 is again (up to a normalization constant) a MoP, in this

case of second degree, whose parameters, θ+
0 , θ

+
1 and θ+

2 , can be obtained in closed form.
However, note that the number of parameters is increased by one with respect to the prior
distribution. Therefore, if we use the obtained posterior as new prior when new data arrives,
the complexity of the posterior grows linearly with the amount of data.

6. Conclusions

We have introduced a reparameterization of MoTBFs in Theorem 3 that potentially paves
the way to methodological advances in hybrid Bayesian networks. First, we illustrated how
it facilitates the definition of an incremental EM algorithm (Neal and Hinton, 1998) for
estimating the new parameters. The examples reported in this paper just served as proof
of concept, and there is still work to do before it is shaped as a competitive parameter
estimation algorithm for MoTBFs. For instance, in the examples run in this work, we
have tested the restriction in Eq. (10) only in some points in the domain. A way to include
such restrictions in the updating equations of the EM would likely improve the performance.
Also, a way to avoid terms with very little weight, possibly by including some regularization
term, is a promising way to improve our proposal. Note that the parameterization in
Theorem 3 can also be formulated for multivariate MoTBFs, which is also another possibility
to extend the work in this paper.

The application of the reparameterization to the definition of a Bayesian framework for
parameter estimation also looks promising. However, the complexity issue that arises from
the increase in the number of parameters of the posterior as new data arrives, is indeed
challenging. One way to face it could be to carry out approximations when the complexity
is too high. Similarly to the so-called semi parametric Bayesian networks (Atienza et al.,
2022), where some conditionals are represented as Gaussians while some other are repre-
sented as kernel densities, we could consider fixed-complexity MoTBFs and seek the best
approximation to the posterior within a given number of parameters when the complexity
grows.
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