
ISBN 978-82-326-7176-2 (printed ver.)
ISBN 978-82-326-7175-5 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:238

Eirik Holm Fyhn

Green’s Function Approach to
Quantum Phenomena in
Heterostructures with Spin-
Polarization and Coherence

D
oc

to
ra

l t
he

si
s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

D
octoral theses at N

TN
U

, 2023:238
Eirik H

olm
 Fyhn





Thesis for the Degree of Philosophiae Doctor

Trondheim, August 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

Eirik Holm Fyhn

Green’s Function Approach to
Quantum Phenomena in
Heterostructures with Spin-
Polarization and Coherence



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Natural Sciences
Department of Physics

© Eirik Holm Fyhn

ISBN 978-82-326-7176-2 (printed ver.)
ISBN 978-82-326-7175-5 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:238

Printed by NTNU Grafisk senter



Abstract
Green’s functions are powerful tools in theoretical condensed matter
physics. They can be used to model a wide range of physical systems,
including complicated heterostructures consisting of multiple mate-
rials with different types of quantum order, such as magnetism and
superconductivity, and with various geometries in arbitrary external
electromagnetic fields. Such systems are of special interest because
when two different materials are combined in a mesoscopic structure,
new physics can arise that was not present in either material sepa-
rately. For example, putting a spin-singlet superconductor next to a
spin-polarized ferromagnet can spawn a spin-triplet superconducting
condensate that can carry spin-polarized currents with no resistance.
Although quasiclassical Green’s function theory can effectively model
a wide range of realistic heterostructures and reproduce experimental
measurements with high accuracy, there are still systems outside the
scope of the theory. For instance, the equations become difficult or
even unsolvable in time-dependent systems, and while ferromagnetic
systems can easily be incorporated into the quasiclassical theory for
normal metals, the same is not true for antiferromagnets.

In this thesis I give a thorough introduction to quasiclassical Green’s
function theory, starting from the very foundations of quantum me-
chanics. The main body of work consists of the 10 enclosed research
papers. These papers apply Green’s functions to study heterostruc-
tures, with an emphasis on systems with spin-polarization and co-
herent superconducting condensates. The work is focused on, but
not limited to, quasiclassical theory, and includes the development of
new theory, such as quasiclassical theory for antiferromagnetic sys-
tems and approaches to studying time-dependent phenomena using
quasiclassical Green’s functions.
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Preface
This thesis is submitted in partial fulfillment of the requirements for the
degree of philosophiae doctor at the Norwegian University of Science
and Technology (NTNU). The research presented herein was conducted
as part of a four-year graduate program in physics. The graduate
program also included coursework corresponding to 30 ECTS and one
year of teaching duties. My research has been supervised by Professor
Jacob Linder, and Professor Justin Wells was my co-supervisor. I
have used the template by Jabir Ali Ouassou, which is available at
gitlab.com/jabiro/babathesis, as a basis when preparing my thesis.
This template is in turn based on the KOMA-Script book class, and is
compiled using Lualatex.

It has been my intention to write the thesis as self-contained as
possible, starting from the mathematical foundations of quantum me-
chanics. It has been satisfying to construct a narrative connecting
the state-of-the-art quasiclassical Green’s function techniques to the
very foundations of quantum mechanics. My hope is that this can
prove useful to others trying to enter the field, or simply wanting to
learn quantum mechanics. While I have tried to include everything
necessary to give a self-contained picture, I have also placed special
emphasis on topics that I believe not to be widely known or discussed,
such as the subtle distinction between Hermitian (symmetric) and
self-adjoint operators, and the geometric connection between spin and
rotation. In this way, I hope that both experts and newcomers can find
something interesting to learn, or possibly relearn, within these pages.

In addition to the enclosed papers, I have also authored two other
publications [1, 2] during my time as a graduate student. However,
these are thematically unrelated and not part of this thesis.
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1Introduction

1.1 History of computers

A modern computer does essentially three things. It reads data, ma-
nipulates data, and performs calculations. We have had machines that
do the latter for a long time. From the simple abacus, dating back to
Mesopotamia more than 4000 years ago [3], to the much more com-
plicated difference engine [4]. The difference engine, a mechanical
machine named after the method of divided differences and conceived
in the 1820s by Charles Babbage, was designed to tabulate polynomial
functions.¹ At a time when the way to multiply large numbers was to
look up tables of logarithms, it was naturally desirable to be able to
compute logarithms and other functions that can be approximated as
polynomials through Taylor series.

While mechanical calculators are useful, the true utility of computers
is unlocked when the computer can read and manipulate data. A
system for data manipulation, such as the instruction set of a computer,
is said to be Turing-complete [5, 6] if it fulfills certain conditions, such
as the ability to perform conditional branching.² Unlike a mechanical
calculator, a Turing-complete machine is a general purpose machine
capable of executing an infinite number of different algorithms. It can
not only perform a predetermined algorithm using the input data, but
the input data can itself define the algorithm. This means that a Turing-
complete machine can be programmed to do more or less any task,
given enough time and memory. It would not be an overstatement to
say that this feature of computers has had a major impact on modern
society.

The first design for a Turing-complete machine was created before
Alan Turing was born. It was Charles Babbage’s successor to the

1. Despite much funding from the British government at the time, the difference
engine was not made until much later.

2. More precisely, a machine is Turing complete if it is computationally equivalent
to the automatic machine defined by Turing [5]. The automatic machine is a
simple theoretical machine that manipulates symbols on a strip of tape. Despite
its simplicity, it can implement any computer algorithm.
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difference engine, the analytical engine [4]. Although never built, it
would have been able to run computer programs written on punched
cards. In fact, such programs were written, making them the first
computer programs in history. A famous example is the program by
Ada Lovelace [7], which would have computed Bernoulli numbers on
the analytical engine.³ Punched cards were also used to input data in
the early computers, such as the EDSAC [8] produced by the University
of Cambridge in 1949.

The first generation of digital computers used vacuum tubes for
logic circuitry [9]. However, everything changed when computer man-
ufacturers instead began using MOSFET transistors. This was because
of what is known as Dennard scaling, which is the phenomenon that
the power use of MOSFET transistors is proportional to their area [10].
Dennard scaling means that even if you double the number of tran-
sistors, the required power stays the same as long as the area of each
transistor is halved. As transistors became smaller, the power reduction
from Dennard scaling allowed manufacturers to turn the transistors
on and off faster, thereby drastically increasing clock frequencies. Not
only have clock frequencies increased, but the number of transistors
in integrated circuits has since essentially doubled every two years,
in accordance with the so-called Moore’s law [11, 12]. As a result, we
have seen a vast improvement in both compactness and computational
power ever since the first commercial microprocessor was released
in 1971. This was the Intel 4004 [13]. It had 2300 transistors running
at 740 kHz. In comparison, Apple’s M1 Ultra chip from 2021 has 114
billion transistors running at 3.2GHz [14].

Unfortunately, this way of improving computers by making the
transistors smaller and faster cannot last forever. In fact, the method of
increasing clock speed stopped working around 2005. Intel’s Pentium
D 840 processor, released in 2005, had clock speeds up to 3.2GHz [15].
Although the M1 Ultra chip has about five hundred times more transis-
tors, the clock frequency has not improved compared to the 16 years
older Pentium D 840. The primary reason for this boils down to Joule
heating [16]. When electrons move they generally produce heat, ex-

3. Ada Lovelace is often considered to be the world’s first programmer because of
her idea that numbers in a computer could represent more than just numbers. It
is also argued that the first programmer was instead Charles Babbage since he
wrote the first programs for the analytical engine.
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cept if the medium happens to be a superconductor. Depending on the
temperature, transistors can become unstable. In some temperature
regimes, MOSFETs can enter so-called thermal runaways [17]. A ther-
mal runaway is a positive feedback loop in which the amount of Joule
heating increases with temperature. For example, the on-resistance of
MOSFETs increases with temperature. Therefore, a constant current
through a MOSFET in the on-state will produce more Joule heating
when the temperature is higher. This positive feedback loop limits
how fast the transistor can operate.

While Moore’s law has proven more resilient, this too cannot last
forever. With transistors currently on the order of nanometers in
size, we might be nearing the limit of what is physically, or at least
practically, possible. As a result, the cost for producers to fulfill Moore’s
law is ever-increasing. Moreover, even if Moore’s law could last forever,
or even if we are happy with the speed of computers today, we should
still seek alternative ways to manufacture computers. The reason
for this is that computers consume an unnecessarily large amount of
energy. This is not only because of the energy wasted through Joule
heating but also the additional energy needed to cool the computers
down in order to avoid the above-mentioned thermal runaway. The
recommended power supply for a personal computer with the latest
graphics cards and CPUs is currently as much as 1300W [18]. This is
more than many heaters. A state-of-the-art personal computer can
therefore produce enough heat to heat up an entire room.

It is perhaps not surprising then, that a sizable amount of the world’s
energy demand comes from information and communication technolo-
gies, and that this is only expected to increase [19]. This is not only
because there are small computers in almost literally everything today,
but also because of the growth of big data centers, not to mention the
use of computer graphic cards to mine cryptocurrency [20] or to train
large artificial neural networks such as in the currently ongoing explo-
sion of large language models like generative pre-trained transformers
(GPT). In a sense, the computers of today are like incandescent light
bulbs. The purpose of these light bulbs is to produce light, but they
waste around 95 % of the applied energy to heat. Just as incandescent
light bulbs have been replaced by much more efficient LED light bulbs,
the inefficient way computers work today should be replaced by more

3



energy-efficient technologies. There are a few contenders in the race
to find alternative ways to build computers. The most relevant to the
work presented here is called spintronics.

1.2 Spintronics

The idea behind spintronics is to utilize not just the electric charge
of electrons, like in conventional electronics, but also the electron
spin [21–24]. Every electron carries an intrinsic angular momentum
called spin, which origin is explained in section 2.5. Because total
angular momentum can be a conserved quantity (see section 2.5), it
is possible to use spin to store and manipulate information. Histori-
cally, spintronics has most successfully been used to store information,
but in theory it could also be used to manipulate data in an energy-
efficient way, making spintronics a contender for next-generation
energy-efficient computer technology.

What makes spintronics possible is that electrons effectively have
magnetic moments which are parallel to their spin [25]. This means
that one can rotate electron spin through applied magnetic fields. Al-
ternatively, since the theory of relativity implies that the electric field
observed by a static observer is equivalent to a magnetic field observed
by a moving observer (see section 2.6), the spin of moving electrons can
be influenced by electric fields. This effect is known as the spin-orbit
effect because it couples spin and orbital motion inside potentials.

The most prominent example of spintronics in modern computers
is possibly in hard disk drives [26]. Hard disk drives are a type of
non-volatile memory, meaning that they can hold information without
being actively powered. This is done by encoding information using
magnetic domains. By sandwiching a nonmagnetic material between
two ferromagnets, the electrical resistance will depend on the relative
angle between the magnetization directions of the ferromagnets [27–
29]. This spintronics effect is called either giant magnetoresistance [30,
31] or tunnel magnetoresistance [32, 33], depending on whether the
nonmagnetic material is conducting.⁴ Using this effect, the magneti-
zation orientation of ferromagnets can encode information [34]. The

4. The 2007 Nobel prize in physics was awarded to Albert Fert and Peter Grünberg
for the discovery of giant magnetoresistance [29].
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information can be read by measuring the resistance, and it can be
changed by applying an external magnetic field.

Being made of permanent magnets, the information is kept even
when the computer is turned off. This is in contrast to volatile mem-
ory, such as dynamic random-access memory (DRAM) [35], in which
information is stored through the electric charge. To store informa-
tion using electric charge, one can for instance use capacitors. If the
capacitor is charged, it may represent a 1, and if it is discharged it may
represent a 0. When power is turned off, the charge quickly disperses
and all information is lost. Equal charges repel, and for this reason,
long-term memory has often been stored either by physically altering
an object, like optical disks [36] or punched cards [37], or by using mag-
netic materials, such as magnetic tape [38], floppy disks [39] or hard
disk drives [26]. That being said, hard disk drives are currently being
superseded by solid-state drives (SSDs) [40], which work using electric
charge. The reason why the information does not need to be actively
sustained in solid-state drives is that the charge is surrounded by an
electrically insulating material in so-called floating gate MOSFETs [41].

There are also other examples of spintronics applications, such as in
spin organic light-emitting diodes (spin-OLED) [42], magnetoresistive
random-accessmemory (MRAM) [43] and theDatta-Das transistor [44].
However, common for all of these examples is that they rely on charge
transport. As a result, they produce waste heat in a similar way to
electronics-based computer components. The question therefore re-
mains: How can one store and manipulate information by utilizing
spin in a way that does not produce as much waste heat? Insight into
possible answers to this question can be found by considering the main
mechanism for heat production in computers, which is Joule heating.

As mentioned above, Joule heating refers to the heat produced by
electrons passing through a conductor with resistance. Therefore,
there are in essence two ways to eliminate this process. One can either
remove the passing of electrons, or one can remove the resistance of
the conductor. Two promising research directions within the field of
spintronics pursue these two different methods for eliminating Joule
heating. Spin insulatronics removes the passing of electrons by utilizing
spin waves in ferromagnetic and antiferromagnetic insulators, thereby
separating the charge and spin degrees of freedom. The resistance,

5



on the other hand, can be removed by using superconductors. To use
superconductors within the field of spintronics is the aspiration in the
field of superconducting spintronics, which is the main motivation of
most of the work presented in this thesis.

1.3 Superconducting spintronics

The term superconducting spintronics can sound like an oxymoron to
readers with some degree of familiarity with superconductors. Su-
perconductors [45], discovered in 1911 [46], are primarily associated
with two important effects. First is that electric currents can pass
through superconductors with zero resistance, which is what makes
superconductors especially useful when the aim is energy efficiency.
The second effect, which is often said to be more fundamental to su-
perconductivity, is the so-called Meissner effect [45, 47]. This is the
effect that superconductors expel magnetic fields from their interi-
ors. That is, superconductors are materials with perfect diamagnetism.
Superconductivity and magnetism are therefore competing types of
quantum order. In order to penetrate a conventional superconductor
with magnetic fields you have to destroy the superconductivity, ei-
ther completely or partially, by introducing so-called superconducting
vortices [45, 48].

On the other hand, spintronics is about manipulating the magnetic
properties of electrons. This would seem difficult in materials with
perfect diamagnetism. Nevertheless, Keizer et al. [49] showed exper-
imentally that a complete synergy between superconductivity and
magnetism is possible when they observed resistance-free current
through a half-metallic ferromagnet. Half-metals are strongly polar-
ized ferromagnets where all itinerant electrons have their spins aligned
in the same direction [50]. Therefore, the only way a resistance-free
current, or supercurrent, can pass through half-metals is through so-
called spin-triplet superconductivity [51].

Conventional superconductivity, meaning superconductivity de-
scribed by BCS-theory [52], occurs in materials with an effective at-
traction between electrons (see section 3.3). This can result in the
formation of Cooper pairs, named after Leon Cooper who, together
with John Bardeen and John Schrieffer, developed the above-mentioned
BCS theory [52], the first microscopic theory for superconductivity.

6



Being formed by two electrons, Cooper pairs are bosons, and this al-
lows them to condense into the same quantum state (see section 2.3).
This breaks the 𝑈 (1) symmetry of quantum electrodynamics, which
through the Higgs-mechanism makes the photon field massive inside
superconductors, resulting in the Meissner effect [53, 54].⁵

The Cooper pairs in conventional superconductors are spin-singlets,
meaning that they have zero net spin. Spin-singlet supercurrents there-
fore carry no spin, making such currents impractical in the context of
spintronics. However, as the experiments by Keizer et al. [49] prove,
it is possible to create supercurrent carried by spin-triplet supercon-
ductivity. Using such superconductors, it is possible to transfer spin
without any generation of waste heat. While there are examples of
materials that are both superconducting and ferromagnetic in certain
temperature regimes [55–62], a possibly more promising way to pro-
duce spin-triplet superconductivity with regards to future application
is through the proximity effect [63, 64]. The proximity effect refers
to how materials in close proximity to superconductors also show
superconducting properties.

By combining common ferromagnets with conventional supercon-
ductors, it is possible to create spin-carrying spin-triplet superconduc-
tivity [65]. This is also how Keizer et al. [49] produced spin-triplet
superconductivity inside half-metallic ferromagnets. Depending on
the mean free path, the spin-triplet superconductivity created in this
way is often odd-frequency [66]. While conventional even-frequency
superconductors are condensates of Cooper pairs, resulting in a non-
zero expectation value of the Cooper pair annihilation operator (see
section 2.3), this is not generally true for odd-frequency superconduc-
tors. In purely odd-frequency superconductors there is by definition
no standard Cooper pair annihilation operator⁶ with a non-zero expec-
tation value. Hence, these are not condensates of normal Cooper pairs

5. While the Higgs-mechanism is most famous for its role in the standard model, it
was first discovered in the context of superconductivity by Anderson [53]. It is
therefore also referred to as the Anderson-Higgs-mechanism.

6. By standard Cooper pair annihilation operator I mean operators like 𝑐𝜆𝑐𝜇, where
𝑐𝜆/𝜇 are electron annihilation operators. One could broaden this definition by
going to the Heisenberg picture and evaluate the electron operators at arbitrary
times, 𝑐𝜆(𝑡1)𝑐𝜇(𝑡2). In this definition, both even-frequency and odd-frequency
superconductors will have non-zero Cooper pair expectation values, depending
on 𝑡1 and 𝑡2.
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in the same way as conventional superconductors. Instead, they can in
some cases be characterized as condensates of composite bosons [67].

The creation of spin-triplet superconductivity, for instance in meso-
scopic heterostructures combining conventional spin-singlet supercon-
ductivity with either inhomogeneous ferromagnets [49, 65, 68–72] or
spin-orbit coupling [73–80] opens the possibility for using supercon-
ductivity to transport spin without any dissipation of energy. Currently
known superconductors require either very low temperatures, below
39K for conventional superconductors conforming to BCS theory [81,
82] or below 138K for unconventional high-temperature supercon-
ductors [82–84], or very high pressures of more than 100GPa [85–88].
These are not ideal conditions for everyday electronics such as per-
sonal computers. Nevertheless, they could be overcome in big data
centres [89, 90], which represent a substantial portion of the energy
consumption from information and communication technologies [19].
Hence, significant energy savings can be obtained from cryogenic com-
puters [89, 90], even if a satisfying solution to the hundred-year-old
problem of room-temperature superconductivity [91] is never found.

The field of superconducting spintronics has already spawned pro-
posals for practical applications [92], such as memory cells based on
heterostructures involving superconductors and ferromagnets [93–96],
which could work together with single-flux-quantum superconducting
logic devices [97–99]. Nevertheless, there is still much to explore in
terms of fundamental physics related to superconducting spintronics.
This is the focus of the work presented here. By expanding our un-
derstanding of the physics of mesoscopic systems, we can hopefully
facilitate the development of novel energy-efficient information and
communication technologies.

1.4 Outline

This thesis starts with a review of the mathematics of quantum me-
chanics in chapter 2. Starting from the definition of Hilbert spaces
and the subtleties between Hermitian and self-adjoint operators, I
introduce time-evolution, the quantum theory of many-particle sys-
tems, the origin of spin, the electron magnetic moment and spin-orbit
coupling, before I end the chapter with a discussion on quantum elec-
trodynamics. Having introduced the fundamental building blocks of
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the electron and photon quantum fields, I discuss the quantum theory
of solids in chapter 3. First, I show how the periodic potentials in
crystalline materials can be captured by lattice models, which is the
starting point for much of the theoretical modeling in the remainder
of the thesis. Then, I show how electric interactions combined with
fermionic statistics give rise to magnetism, and how the motion of the
crystal lattice can give rise to superconductivity. Finally, I complete
the description of crystalline materials by showing how to include the
effect of external electromagnetic fields.

Having shown how to model mesoscopic structures, the next three
chapters describe how to use these models to set up differential equa-
tions and compute observables. Chapter 4 introduces the concept of
Green’s functions, both in the mathematical sense and in how the term
is used in condensed matter physics. Chapter 5 shows how perturba-
tion techniques can be used to approximate Green’s functions when a
full solution is difficult to compute. This includes a derivation of the
Dyson equation based on the concepts introduced in chapter 4 and
a thorough derivation of perturbation theory based on time-ordered
Green’s functions, including an example from my work. I conclude the
chapter with examples of how these concepts can be used to include
dissipation and elastic impurity scattering, which are later used in the
next chapter as well as in my work more broadly.

Chapter 6 takes the theoretical foundations of Green’s functions pre-
sented in chapters 4 and 5 and derives quasiclassical Green’s function
theory, which is capable of modeling complex heterostructures with
impurities and a wide array of inhomogeneous effects, both in and
out of equilibrium. Quasiclassical theory has been an effective tool in
my work, and the derivation I present in chapter 6 is the most general
derivation I have seen to this date. It includes an arbitrary number of
energy-bands, which can describe a wide range of physical systems,
such as antiferromagnets, ferromagnets, Rashba-superconductors or
multi-orbital superconductors. I also allow the different energy bands
to cross the Fermi surface at different points, and with different gra-
dients, meaning that their densities of states are different, something
which is normally not included in quasiclassical theory. I also derive
a generalized normalization condition which is valid for this theory,
and show how the equations simplify in the diffusive limit. Finally, I
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derive boundary conditions for diffusive systems and how to compute
observables from quasiclassical Green’s functions.

Having shown how to set up differential equations to heterostruc-
tures, methods for solving these equations numerically are discussed in
chapter 7. This includes how to parametrize the quasiclassical Green’s
functions, different methods for discretizing the equations, how to
solve the resulting set of non-linear equations, and how to ensure that
the solution is self-consistent. Finally, chapter 8 reviews some research
highlights, and concluding remarks are given in chapter 9.
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2Quantum Mechanics
Quantum mechanics is arguably the most successful theory in the
history of physics. Many of its predictions have been verified to very
high accuracy, and most systems seem to be fundamentally described
by quantum mechanics. The only exception is possibly general rela-
tivity, although there are fascinating efforts to obtain spacetime from
a bare-bones version of quantum mechanics [100–103]. In certain
situations, for example when considering macroscopic systems, the
quantum theory can be well approximated by a classical theory. How-
ever, this is often not the case for mesoscopic heterostructures, so to
properly model nanophysics one must start from a quantum mechani-
cal description.

In this chapter, I review the important underlying concepts of quan-
tum mechanics that are necessary to model the physics of electrons in
crystalline solids. I start from the mathematical foundations of quan-
tum mechanics before I introduce time evolution and the quantum
theory of many particles. Next, I explain the physics of non-interacting
particles, which must still effectively interact through the rules of quan-
tum mechanics. Thereafter, I show how conservation laws originate
from symmetries, which introduces both the origin of spin and the
principle of least action. From the principle of least action, I start from
the fully relativistic Dirac Lagrangian and derive a non-relativistic
effective theory. This explains both the Zeeman effect and spin-orbit
coupling, both serving pivotal roles in spintronics. Again using the
principle of least action, I conclude the chapter by introducing the
electromagnetic field in quantum electrodynamics and deriving an ef-
fective theory of interacting electrons which serves as the foundation
for the quantum theory of solids in the next chapter.

2.1 The Mathematics of Quantum Mechanics

In quantum mechanics, the current state of a system is encoded in its
state vector, |𝜓 ⟩ [104]. The state vector is assumed to be the element
of a Hilbert space 𝒱, which means that the space is equipped with an
inner product and that the space is complete with respect to this inner
product [105]. In braket-notation, the inner product of |𝜓 ⟩ and |𝜑⟩ is
⟨𝜑|𝜓 ⟩ = ⟨𝜓 |𝜑⟩∗ and is a complex scalar. The inner product is conjugate
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linear in the left argument and linear in the right argument, meaning
that if |𝜓 ⟩ = 𝑎|𝜓1⟩ + 𝑏|𝜓2⟩, then

⟨𝜑|𝜓 ⟩ = 𝑎⟨𝜑|𝜓1⟩ + 𝑏⟨𝜑|𝜓2⟩, (2.1a)

⟨𝜓 |𝜑⟩ = 𝑎∗⟨𝜓1|𝜑⟩ + 𝑏∗⟨𝜓2|𝜑⟩. (2.1b)

Also, the inner product of a vector with itself is always real and non-
negative, meaning that ⟨𝜓 |𝜓 ⟩ ≥ 0. State vectors are often normalized
such that ⟨𝜓 |𝜓 ⟩ = 1. The completeness of Hilbert spaces comes from
the fact that every Cauchy sequence converges with respect to the
norm defined by the inner product [105]. However, for physicists, a
more important reason for why the space is assumed complete is that
it ensures the existence of an orthonormal basis. That is, there exists a
set of vectors, 𝐵, such that all |𝜓 ⟩ ∈ 𝒱 can be written

|𝜓 ⟩ = ∑
|𝑏⟩∈𝐵

|𝑏⟩ ⟨𝑏|𝜓⟩ . (2.2)

The convergence of this series follows from the completeness of 𝒱
because of the convergence of Cauchy sequences [105]. The dimension-
ality of the Hilbert space might be infinite, meaning that the cardinality
of 𝐵 can be infinite and even possibly uncountable. The basis 𝐵 is said
to be complete when it spans the whole space, and one can often see
equation (2.2) written in terms of the identity operator 1,

1 = ∑
|𝑏⟩∈𝐵

|𝑏⟩⟨𝑏|. (2.3)

This is often referred to as a completeness relation and ⟨𝑏| must be
understood as an operator mapping vectors |𝜓 ⟩ to scalars ⟨𝑏|𝜓 ⟩.

Observables are typically assumed to be represented by symmetric,
or Hermitian, operators.¹ This is partly because symmetric operators
can only have real expectation values [106]. However, the reverse is not
true. That is, operators can have real spectra without being Hermitian.
For example, in an important paper, Bender and Boettcher [107] showed
that the Hermiticity requirement could be replaced by symmetry under
the combined operator of parity (P) and time reversal (T). Operators

1. The word Hermitian is sometimes used to mean symmetric and sometimes used
to mean self-adjoint. Here, I use Hermitian to mean symmetric. The concepts of
self-adjoint and symmetric operators are related, as I discuss below.
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which are PT-symmetric are also interesting for other physical [108,
109] and mathematical [110, 111] reasons. Nevertheless, in this work, I
assume that operators representing observables are Hermitian.

The adjoint, 𝐴†, of an operator, 𝐴, is defined such that

⟨𝜑| (𝐴|𝜓 ⟩) = (⟨𝜑|𝐴†) |𝜓 ⟩ (2.4)

for all |𝜓 ⟩ in the domain of 𝐴, and the domain of 𝐴† is the set of all |𝜑⟩
for which equation (2.4) holds. The operator 𝐴† acts to the left on the
right-hand side of equation (2.4). An operator is called symmetric, or
Hermitian, if 𝐴|𝜓⟩ = 𝐴†|𝜓 ⟩ for all |𝜓 ⟩ in the domain of 𝐴. One can see
that this leads to real expectation values, ⟨𝜓 |𝐴|𝜓 ⟩, since

⟨𝜓 |𝐴|𝜓 ⟩∗ = ⟨𝜓 |𝐴†|𝜓 ⟩ = ⟨𝜓 |𝐴|𝜓 ⟩. (2.5)

To determine whether or not an operator is symmetric is not al-
ways trivial. For instance, consider a single scalar particle in a one-
dimensional system, such that the Hilbert space is 𝐿2(ℝ), consist-
ing of all square-integrable functions on the real line. The opera-
tors 𝐾 = −∂2/∂𝑥2 and 𝑉 = −𝑥4 are both symmetric, but their sum,
−∂2/∂𝑥2 − 𝑥4, is not. In fact, 𝐾 + 𝑉 has purely imaginary eigenval-
ues [104, 106]. This shows that a sum of Hermitian operators need not
be Hermitian. However, note that the operator𝐾+𝑉 is the Hamiltonian
operator corresponding to an unphysical situation with a potential
that is unbounded from below. In practice one often assumes that
operators corresponding to observables are Hermitian as long as they
reflect physically realizable systems.

A more strict operator requirement is that of self-adjoint operators.
In order for an operator 𝐴 to be self-adjoint, it must be symmetric and,
in addition, the domains of 𝐴 and 𝐴† must be the same. As an exam-
ple of a symmetric but not self-adjoint operator, take the momentum
operator 𝑃 = −𝑖∂/∂𝑥 acting on particles in an infinitely deep, one-
dimensional quantum well, meaning all square-integrable functions
on the domain [0, 1] with 𝜓(0) = 𝜓(1) = 0. This operator is symmetric,
but not self-adjoint. This is reflected in the fact that 𝑃 has no eigen-
functions. While the expectation value, ⟨𝜓 |𝑃 |𝜓 ⟩ = ∫10 d𝑥 𝜓 ∗(𝑥)𝑃𝜓(𝑥),
is always real for a symmetric operator, the existence of eigenfunc-
tions is only guaranteed for self-adjoint operators. For example, the
momentum operator 𝑃 = −𝑖∂/∂𝑥 acting on particles in a thin ring is
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self-adjoint. The space of particles in a thin ring is the set of all square-
integrable functions on [0, 1] with 𝜓(0) = 𝜓(1), and the eigenfunctions
are exp(2𝜋𝑖𝑘𝑥), where 𝑘 is in the set of integers.

In practice, it is sufficient for operators to be essentially self-adjoint,
meaning that their closures are self-adjoint [106]. Self-adjoint opera-
tors are of special interest because of the spectral theorem. In simple
terms, the spectral theorem essentially states that self-adjoint oper-
ators can be diagonalized [106]. That is, self-adjoint operators have
complete sets of eigenstates. However, this is only a simplification
and not strictly true. Because we are dealing with infinite-dimensional
Hilbert spaces, it is often not possible to properly diagonalize operators
in the conventional sense. That is, it is often not possible to find a
basis 𝐵 for which a self-adjoint operator, ℋ can be written

ℋ|𝜓⟩ = ∑
|𝑏⟩∈𝐵

ℋ|𝑏⟩ ⟨𝑏|𝜓⟩ = ∑
|𝑏⟩∈𝐵

|𝑏⟩ℎ(𝑏) ⟨𝑏|𝜓⟩ , (2.6)

for all |𝜓 ⟩, where ℎ(𝑏) is a scalar.
Take for instance the position operator 𝑋. Taking again 𝐿2(ℝ) as the

Hilbert space and applying 𝑋 to a function 𝜓 ∈ 𝐿2(ℝ) gives (𝑋𝜓)(𝑥) =
𝑥𝜓(𝑥), meaning that 𝑋 is a so-called multiplication operator [105]. This
operator is self-adjoint, but it has no eigenvectors, or eigenfunctions, in
𝐿2(ℝ). Instead, it has eigenvectors in a larger space, namely the space
of distributions. The 𝛿-distributions are eigenvectors since 𝑥𝛿(𝑥 −𝜆) =
𝜆𝛿(𝑥 −𝜆). However, the space of distributions is not a Hilbert space. As
a result, we may diagonalize 𝑋, but not in terms of proper eigenvectors.
We may diagonalize it in terms of generalized eigenvectors, so that

(𝑋𝜓)(𝑥) = ∫
ℝ
d𝑦 𝛿(𝑥 − 𝑦)𝑦 ∫

ℝ
d𝑧 𝛿(𝑦 − 𝑧)𝜓 (𝑧) (2.7)

If we identify |𝑦⟩ = 𝛿(𝑥 − 𝑦), we can write

𝑋|𝜓⟩ = ∫
ℝ
d𝑦 |𝑦⟩𝑦 ⟨𝑦 |𝜓⟩ , (2.8)

which is on the same form as equation (2.6). This notation is purely
formal, however, because ⟨𝑦 |𝜓⟩ is not an inner product in the sense
of the Hilbert space, it is a distribution acting on |𝜓 ⟩, and |𝑦⟩ is not
a member of the Hilbert space. The generalized eigenvectors are
normalized in the sense that ⟨𝑥|𝑦⟩ = 𝛿(𝑥 − 𝑦).
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The spectral theorem states that any self-adjoint operator is unitarily
equivalent to a multiplication operator [106]. This means that the
operator can be diagonalized in the sense of generalized eigenvectors,
even if the operator does not have any proper eigenvectors. Although
the generalized eigenvectors are not in the Hilbert space, they span the
space in the sense that any element of the Hilbert space can be written
in terms of generalized eigenvectors, as in equation (2.8). That is, one
can also refer to completeness relations for generalized eigenvectors,
which may be written in a formal notation as

1 = ∫
ℝ
d𝑥 |𝑥⟩⟨𝑥|. (2.9)

For example, all square-integrable functions can be written as a lin-
ear combination of plane waves, the generalized eigenvectors of the
momentum operator, even though plane waves themselves are not
square-integrable.

In physics literature, the word Hermitian is sometimes also used
to refer to self-adjoint operators. However, since the Hilbert space
under consideration typically is infinite-dimensional, symmetric oper-
ators need not be self-adjoint. This distinction is especially important
for the Hamiltonian, which is the total energy operator. The special
connection between the Hamiltonian and time-evolution in quantum
mechanics, discussed in section 2.2, requires the spectral theorem,
which is valid for self-adjoint operators but not symmetric operators.
The technical reason is that Stone’s theorem [106, 112], which relies on
the spectral theorem, establishes a one-to-one correspondence between
one-parameter families of strongly continuous unitary operators and
self-adjoint operators. It is important that the time-evolution opera-
tors are unitary since this preserves the normalization of state vectors,
and that they are continuous in one parameter, namely time. Self-
adjointness is also important when considering functions of operators,
such as the potential energy in the Hamiltonian being a function of
the position operator.

2.2 Time Evolution in Quantum Mechanics

In quantummechanics, one is typically first introduced to the Schrödinger
picture, in which the state vectors evolve in time according to the
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Schrödinger equation [25],

𝑖 ∂
∂𝑡
|𝜓𝑆(𝑡)⟩ = ℋ𝑆(𝑡)|𝜓𝑆(𝑡)⟩, (2.10)

where 𝑡 is time, ℋ𝑆(𝑡) is the Hamiltonian at time 𝑡 and the subscript 𝑆
reminds us that these objects are defined in the Schrödinger picture.
One can also define the time-evolution operator 𝑈 (𝑡, 𝑡0) as being the
operator which takes a state vector from time 𝑡0 to 𝑡, meaning that

|𝜓𝑆(𝑡)⟩ = 𝑈 (𝑡, 𝑡0)|𝜓𝑆(𝑡0)⟩. (2.11)

Since equation (2.10) must hold regardless of the choice of |𝜓𝑆(𝑡0)⟩, one
can see that

𝑖 ∂
∂𝑡
𝑈 (𝑡, 𝑡0) = ℋ𝑆(𝑡)𝑈 (𝑡, 𝑡0). (2.12)

From 𝑈 (𝑡0, 𝑡)𝑈 (𝑡, 𝑡0) = 1, one also gets

−𝑖 ∂
∂𝑡
𝑈 (𝑡0, 𝑡) = 𝑈 (𝑡, 𝑡0)ℋ𝑆(𝑡). (2.13)

In quantum mechanics, quantities define operators which act on
state vectors. The expectation value of an operator 𝐴𝑆(𝑡) for a system
in state |𝜓𝑆(𝑡)⟩ is defined as [25]

⟨𝐴⟩𝜓(𝑡) = ⟨𝜓𝑆(𝑡)|𝐴𝑆(𝑡)|𝜓𝑆(𝑡)⟩. (2.14)

However, one typically only has statistical knowledge of the state of a
system. If the probability of the system to be in state |𝜓𝑆⟩ is 𝑝𝜓, then
the expectation value is

⟨𝐴⟩(𝑡) = ∑
𝜓
⟨𝐴⟩𝜓(𝑡)𝑝𝜓, (2.15)

where the sum goes over a complete set of state vectors. For example,
in the grand canonical ensamble [113], which will be assumed here
unless otherwise specified, the probability for an eigenstate of the
Hamiltonian with eigenvalue 𝐸 − 𝜇𝑁 is

𝑝𝜓 =
1
𝑍
e−(𝐸−𝜇𝑁)𝛽, (2.16)

where 𝑍 is the partition function and 𝛽 is inverse temperature. Note
that I have defined the Hamiltonian to include the chemical potential 𝜇
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multiplied by the number of particles𝑁. The partition function ensures
that the probability distribution is normalized.

The Heisenberg picture is equivalent to the Schrödinger picture,
but the time-evolution is attached to the operators instead of the state
vectors [114]. This is done in such a way that all expectation values
are unchanged, meaning that

⟨𝐴⟩𝜓(𝑡) = ⟨𝜓𝑆(𝑡)|𝐴𝑆(𝑡)|𝜓𝑆(𝑡)⟩ = ⟨𝜓𝐻|𝐴𝐻(𝑡)|𝜓𝐻⟩, (2.17)

where the subscripts 𝐻 indicate that objects are defined in the Heisen-
berg picture. If |𝜓𝐻⟩ = |𝜓𝑆(𝑡0)⟩, one can see from

⟨𝐴⟩𝜓(𝑡) = ⟨𝜓𝑆(𝑡0)|𝑈 †(𝑡, 𝑡0)𝐴𝑆(𝑡)𝑈 (𝑡, 𝑡0)|𝜓𝑆(𝑡0)⟩

= ⟨𝜓𝐻|𝑈 (𝑡0, 𝑡)𝐴𝑆(𝑡)𝑈 (𝑡, 𝑡0)|𝜓𝐻⟩ (2.18)

that

𝐴𝐻(𝑡) = 𝑈 (𝑡0, 𝑡)𝐴𝑆(𝑡)𝑈 (𝑡, 𝑡0). (2.19)

Taking the derivative of this with respect to 𝑡 and using equations (2.12)
and (2.13), I get that operators in the Heisenberg picture must solve

𝑖
∂𝐴𝐻
∂𝑡

= − [ℋ𝐻(𝑡), 𝐴𝐻(𝑡)]− + 𝑈 (𝑡0, 𝑡)𝑖
∂𝐴𝑆
∂𝑡

𝑈 (𝑡, 𝑡0), (2.20)

which is known as the Heisenberg equation.
The correlation function of two operators, 𝐵(𝑡) and 𝐴(𝑡′), can in the

Schrödinger picture be computed through

⟨𝐵(𝑡)𝐴(𝑡′)⟩ = ∑
𝜓
⟨𝜓𝑆(𝑡)|𝐵𝑆(𝑡)𝑈 (𝑡, 𝑡′)𝐴𝑆(𝑡′)|𝜓𝑆(𝑡′)⟩𝑝𝜓. (2.21)

In the Heisenberg picture, this is simply

⟨𝐵(𝑡)𝐴(𝑡′)⟩ = ∑
𝜓
⟨𝜓𝐻|𝐵𝐻(𝑡)𝐴𝐻(𝑡′)|𝜓𝐻⟩𝑝𝜓. (2.22)

Correlation functions of more than two operators are defined in the
same way.

The fact that the Hamiltonian is the operator that generates time
evolution in quantum mechanics gives rise to a specific commutation
relation between position operators and their corresponding canonical
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momentum operators. From Hamiltonian mechanics [115], we know
that the time evolution of position 𝒓 and the corresponding canonical
momentum 𝒑 follows Hamilton’s equations,

∂𝒓
∂𝑡

= ∇𝑝ℋ, (2.23a)

∂𝒑
∂𝑡

= −∇𝑟ℋ, (2.23b)

where ∇𝑝ℋ = (∂ℋ/∂𝑝𝑥, ∂ℋ/∂𝑝𝑦, ∂ℋ/∂𝑝𝑧), and similarly for ∇𝑟ℋ.
Hamilton’s equations can be derived from the principle of least action,
which is further discussed in section 2.5, and must therefore also hold
as operator identities. But because the Hamiltonian ℋ generates time
evolution, we know from the Heisenberg equation that

∂𝒓
∂𝑡

= 𝑖[ℋ , 𝒓]−, (2.24a)

∂𝒑
∂𝑡

= 𝑖[ℋ , 𝒑]−, (2.24b)

where the Hamiltonian must be understood to be in the Heisenberg
picture of quantum mechanics. This means that [ℋ , 𝒓]− = −𝑖∇𝑝ℋ
and [ℋ , 𝒑]− = 𝑖∇𝑟ℋ, which is the case when [𝑟𝛼, 𝑝𝛽]− = 𝑖𝛿𝛼𝛽, where
𝛼, 𝛽 ∈ {𝑥, 𝑦 , 𝑧} and 𝛿𝛼𝛽 is the Kronecker delta. To see why, note that
one can prove that [𝑟𝛼, 𝑝𝛽]− = 𝑖𝛿𝛼𝛽 implies [(𝑟𝛼)𝑛, 𝑝𝛽]− = 𝑖𝑛(𝑟𝛼)𝑛−1𝛿𝛼𝛽
by induction. It holds for 𝑛 = 1 by construction, and if it holds for
𝑛 − 1, such that [(𝑟𝛼)𝑛−1, 𝑝𝛽]− = 𝑖(𝑛 − 1)(𝑟𝛼)𝑛−2𝛿𝛼𝛽, then

[(𝑟𝛼)𝑛, 𝑝𝛽]− = 𝑟𝛼[(𝑟𝛼)𝑛−1, 𝑝𝛽] + [𝑟𝛼, 𝑝𝛽](𝑟𝛼)𝑛−1 = 𝑖𝑛(𝑟𝛼)𝑛−1𝛿𝛼𝛽,
(2.25)

which concludes the proof.
From [(𝑟𝛼)𝑛, 𝑝𝛽]− = 𝑖𝑛(𝑟𝛼)𝑛−1𝛿𝛼𝛽 it follows that any operator, 𝐴,

which can be written in a power series of 𝑟𝛼, meaning that

𝐴 =
∞
∑
𝑛=0

𝑎𝑛(𝑟𝛼)𝑛, (2.26)

where 𝑎𝑛 is any operators such that [𝑎𝑛, 𝑝𝛼]− = 0, satisfies

[𝐴, 𝑝𝛼]− = 𝑖 ∂𝐴
∂𝑟𝛼

. (2.27)
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Assuming that 𝑝𝛽 commutes with 𝑝𝛼 for all 𝛼 and 𝑟𝛼 for all 𝛼 ≠ 𝛽,
all operators should be possible to write as a series expansion with
[𝑎𝑛, 𝑝𝛼]− = 0. As a result, setting 𝐴 = ℋ gives

[ℋ , 𝒑]− = 𝑖∇𝑟ℋ, (2.28)

as required. The same argument, but switching 𝒓 and 𝒑 shows that

[ℋ , 𝒓]− = −𝑖∇𝑝ℋ. (2.29)

Hence, [𝑟𝛼, 𝑝𝛽]− = 𝑖𝛿𝛼𝛽 gives the consistency between the Heisenberg
equation and Hamilton’s equations.

2.3 Many Particle Physics

The Hilbert space of a system of 𝑁 identical particles can be composed
of the tensor product of 𝑁 single-particle Hilbert spaces. However, for
a proper relativistic quantum field theory, interchanging two particles
is equivalent to rotating one particle by 2𝜋 [116]. In terms of the
annihilation operators to be defined below, 𝑣𝑢 = 𝑢𝑅(2𝜋)𝑣, where 𝑅(2𝜋)
rotates 𝑣 by 2𝜋. This means that for so-called integer spin fields, such
as scalar fields and vector fields, where 𝑅(2𝜋)𝑣 = 𝑣, the fields must
commute. On the other hand, spinor-fields, which satisfy 𝑅(2𝜋)𝜓 = −𝜓,
must anticommute. As a result, fields with integer spins are bosons and
fields with half-integer spins are fermions [116]. This is the famous spin-
statistics theorem [117]. To take this theorem into account, the tensor
product is made either symmetric or antisymmetric. The connection
between spin and statistics is further discussed in section 2.5.

When considering the most general case with an indefinite number
of identical particles, the Hilbert space of interest is called a Fock
space [114]. A Fock space is a direct sum of 𝑁-particle spaces for all 𝑁,
meaning that

𝒱 =
∞
⨁
𝑛=0

𝑆±𝒱 ⊗𝑛
1 = ℂ ⊕ 𝒱1 ⊕ 𝑆±(𝒱1 ⊗ 𝒱1)⋯ , (2.30)

where 𝑆+ and 𝑆− symmetrize and antisymmetrize, respectively, 𝒱1 is
the single particle Hilbert space and ℂ is the set of complex numbers.

A convenient basis for the Fock space, which is used throughout
this thesis, is known as the occupancy number representation [114].
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Given a basis {|𝜓𝑖⟩}𝑖 for 𝒱1, a basis for 𝒱 can be written

𝐵 = {|𝑛1, 𝑛2, … ⟩}𝑛1,𝑛2,… . (2.31)

Here, 𝑛1 is the number of particles in the |𝜓1⟩ state, 𝑛2 is the number
of particles in the |𝜓2⟩ state, and so on. For fermions, 𝑛𝑖 ∈ {0, 1} while
for bosons 𝑛𝑖 ∈ ℕ𝟘. In other words, for fermions,

|0, 0, 0, … ⟩ = |0⟩ ⊕ 0 ⊕ 0 ⊕ ⋯ , (2.32a)

|0, 1, 0, … ⟩ = 0 ⊕ |𝜓2⟩ ⊕ 0 ⊕ 0 ⊕ ⋯ , (2.32b)

|1, 1, 0, … ⟩ = 0 ⊕ 0 ⊕ 1
√2

(|𝜓1⟩ ⊗ |𝜓2⟩ − |𝜓2⟩ ⊗ |𝜓1⟩) ⊕ 0 ⊕ 0 ⊕ ⋯ ,

(2.32c)

and so on. Here, the zeros on the right-hand sides are the zero elements
of their respective vector spaces, and |0⟩ is a state of norm 1 known as
the vacuum state. The basis vectors in the occupancy number basis
have a definitive number of particles, but a general vector in the Fock
space is a superposition of these basis vectors and may therefore have
an indefinite number of particles.

The occupancy number representation is especially useful when
working with annihilation and creation operators [114]. These are
operators which either remove or add a particle of a given state. If we
again assume a single-particle basis {|𝜓𝑖⟩}𝑖, then 𝑏†𝑖 will add a particle
with state |𝜓𝑖⟩while 𝑏𝑖 will remove a particle with state |𝜓𝑖⟩. For instance,
if we are considering a bosonic system, then

𝑏†𝑖 |… , 𝑛𝑖, … ⟩ = √𝑛𝑖 + 1|… , 𝑛𝑖 + 1,… ⟩, (2.33a)

𝑏𝑖|… , 𝑛𝑖, … ⟩ = √𝑛𝑖|… , 𝑛𝑖 − 1,… ⟩. (2.33b)

Note that 𝑏𝑖|… , 𝑛𝑖, … ⟩ = 0, when 𝑛𝑖 = 0, and that 𝑛𝑗 is not changed for
𝑗 ≠ 𝑖. Note also that the creation operator is the adjoint of the annihila-
tion operator, which justifies the notation 𝑏†𝑖 . Moreover, it follows from
equation (2.33) that one can identify 𝑏†𝑖 𝑏𝑖 as the number operator, giving
the number of particles in state 𝑛𝑖, since 𝑏

†
𝑖 𝑏𝑖|… , 𝑛𝑖, … ⟩ = 𝑛𝑖|… , 𝑛𝑖, … ⟩.

Finally, the commutation relations

[𝑏𝑖, 𝑏𝑗]− = [𝑏†𝑖 , 𝑏
†
𝑗 ]− = 0, (2.34a)

[𝑏𝑖, 𝑏
†
𝑗 ]− = 𝛿𝑖𝑗, (2.34b)
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also follow from equation (2.33).
For a fermionic system, one must take into consideration the anti-

symmetry, so if {𝑐𝑖} is the set of annihilation operators and {𝑐†𝑖 } is the
set of creation operators, then

𝑐†𝑖 |… , 𝑛𝑖, … ⟩ = {
(−1)∑𝑗<𝑖 𝑛𝑗√𝑛𝑖 + 1|… , 𝑛𝑖 + 1,… ⟩ if 𝑛𝑖 = 0,
0 if 𝑛𝑖 = 1,

(2.35a)

𝑐𝑖|… , 𝑛𝑖, … ⟩ = {
0 if 𝑛𝑖 = 0,
(−1)∑𝑗<𝑖 𝑛𝑗√𝑛𝑖|… , 𝑛𝑖 − 1,… ⟩ if 𝑛𝑖 = 1.

(2.35b)

Again, we can identify 𝑐†𝑖 𝑐𝑖 as the number operators. In this case, one
can deduce the following anticommutation relations

[𝑐𝑖, 𝑐𝑗]+ = [𝑐†𝑖 , 𝑐
†
𝑗 ]+ = 0, (2.36a)

[𝑐𝑖, 𝑐
†
𝑗 ]+ = 𝛿𝑖𝑗. (2.36b)

Creation and annihilation operators are sometimes also defined in
terms of the generalized eigenvectors discussed above. That is, instead
of creating states in a proper basis, they create and annihilate general-
ized eigenvectors such as |𝑥⟩. For such operators, the Kronecker 𝛿 in
equations (2.34b) and (2.36b) is changed to Dirac 𝛿-distributions. The
creation and annihilation operators corresponding to the generalized
eigenvectors of the position operators are called field operators [114].
Using the formal notation introduced above, one can write the field
operators in terms of a normal basis 𝐵 and its creation and annihilation
operators, 𝑐†𝑖 and 𝑐𝑖, as

𝜓(𝒓) = ∑
𝑏∈𝐵

⟨𝑟 |𝑏⟩𝑐𝑏, (2.37a)

𝜓†(𝒓) = ∑
𝑏∈𝐵

⟨𝑏|𝑟⟩𝑐†𝑏 . (2.37b)

There can be multiple field operators corresponding to a single point
in space when there are multiple degrees of freedom in addition to
the spatial degrees. For instance, a spinor-valued field will have two
degrees of freedom per position, so there are two field operators per
position.
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2.4 Non-Interacting Particles

Identical particles, such as electrons, effectively interact in two ways.
First, by the nature of them being identical, they must obey the correct
fermionic or bosonic anticommutation or commutation rules. Second,
the quantum field interacts with other quantum fields, giving rise to
effective interactions between identical particles. For instance, the
electron field interacts with the photon field, giving rise to Coloumb
interactions between electrons. When referring to non-interacting
particles in the context of many-particle quantum mechanics, it means
that the Hamiltonian can be written as a sum of identical single-particle
Hamiltonians. This means that non-interacting particles, as I define
them, can still interact with other fields as long as the other fields are
not treated quantum mechanically, and they still interact effectively
through the commutation or anticommutation rules.

The Hamiltonian for a single fermion with mass 𝑚 can typically be
written

ℋ1 =
𝑝2

2𝑚
+ 𝑈 (𝒓, 𝒑), (2.38)

where 𝒓 is the position operator, 𝒑 is the momentum operator and 𝑈
may include the electric potential as well as other terms to be discussed
later. Hence, the Hamiltonian for 𝑁 identical, non-interacting particles
can be written

ℋ𝑁 =
𝑁
∑
𝑖=1

ℋ1(𝒓𝑖, 𝒑𝑖) =
𝑁
∑
𝑖=1

[
𝑝2𝑖
2𝑚

+ 𝑈 (𝒓𝑖, 𝒑𝑖)] , (2.39)

where the subscript 𝑖 means that the operator acts on particle 𝑖. For
instance, 𝒑2|𝜓1⟩ ⊗ |𝜓2⟩ ⊗ ⋯ = |𝜓1⟩ ⊗ 𝒑|𝜓2⟩ ⊗ ⋯ .

Equation (2.39) is more conveniently expressed by using the number
occupancy representation with the eigenstates of the single-particle
Hamiltonian ℋ1. Assuming ℋ1 is self-adjoint, these states, which
may be generalized eigenstates, span the whole space, as discussed
above. That is, any |𝜓 ⟩ ∈ 𝒱1 can be written |𝜓 ⟩ = ∑∞

𝑖 |𝑏𝑖⟩⟨𝑏𝑖|𝜓 ⟩, where
ℋ1|𝑏𝑖⟩ = 𝜀𝑖|𝑏𝑖⟩, with real 𝜀𝑖 and where the sum might be an integral.
The space of 𝑁-particle states is a subspace of Fock-space, so one may
write any state vector using the occupancy number representation
with the eigenstates of ℋ1. Using this basis, the occupancy number
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representation states are eigenstates of ℋ𝑁, with eigenvalues equal to
the sum of the energies of the occupied states,

ℋ𝑁|𝑛1, 𝑛2, … ⟩ = (
∞
∑
𝑖=1

𝜀𝑖𝑛𝑖) |𝑛1, 𝑛2, … ⟩. (2.40)

A general state will be a superposition of occupancy number states,
but we can write the Hamiltonian in the general case by switching the
occupancy number 𝑛𝑖 with the number operator 𝑐†𝑖 𝑐𝑖, so

ℋ𝑁 =
∞
∑
𝑖=1

𝜀𝑖𝑐
†
𝑖 𝑐𝑖. (2.41)

It is often also of interest to study systems with an indefinite number
of particles, meaning that state vectors can live in the whole Fock space.
In this case, one often considers the grand canonical ensemble and
the expectation value for the number of particles is determined by the
chemical potential, 𝜇. The chemical potential multiplied by the number
operator for the total number of particles is added to the Hamiltonian,
meaning that

ℋ =
∞
∑
𝑖=1

(𝜀𝑖 − 𝜇)𝑐†𝑖 𝑐𝑖. (2.42)

One can also express ℋ in terms of a basis that is not the set of
eigenstates of ℋ1. Generally, the creation and annihilation operators,
{𝑐𝑎}, for a basis𝐴 = {|𝑎⟩} and the annihilation operators, {𝑑𝑏}, for another
basis, 𝐵 = {|𝑏⟩}, are related through

𝑑𝑏 = ∑
𝑎∈𝐴

⟨𝑏|𝑎⟩𝑐𝑎, (2.43a)

𝑑†𝑏 = ∑
𝑎∈𝐴

⟨𝑎|𝑏⟩𝑐†𝑎 . (2.43b)

Hence,

ℋ = ∑
𝑚∈𝐴

∑
𝑛∈𝐴

𝑐†𝑚
∞
∑
𝑖=1

⟨𝑚|𝑏𝑖⟩(𝜀𝑖−𝜇)⟨𝑏𝑖|𝑛⟩𝑐𝑛 = ∑
𝑚∈𝐴

∑
𝑛∈𝐴

𝑐†𝑚𝑀𝑚𝑛𝑐𝑛, (2.44)

where

𝑀𝑚𝑛 =
∞
∑
𝑖=1

⟨𝑚|𝑏𝑖⟩(𝜀𝑖 − 𝜇)⟨𝑏𝑖|𝑛⟩. (2.45)
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If we use that ⟨𝑎|𝑐†𝑚𝑐𝑛|𝑏⟩ = 𝛿𝑎𝑚𝛿𝑏𝑛 when |𝑎⟩ and |𝑏⟩ are single particle
states, we can also express 𝑀𝑚𝑛 as

𝑀𝑚𝑛 = ⟨𝑚|ℋ |𝑛⟩. (2.46)

The choice of what basis to use depends on the problem at hand.
Often, it is desirable to work with the basis in which the Hamiltonian is
diagonal, meaning that it can be written in the form of equation (2.42).
However, often either the eigenvalues or the eigenstates of the Hamil-
tonian are not known, and it is more convenient to use a basis in
which one can express the Hamiltonian exactly. For instance, one may
use the generalized eigenstates of the position operator, such that the
Hamiltonian is expressed in terms of field operators. In this case, the
Hamiltonian takes a form more reminiscent of equation (2.39),

ℋ = ∫ d3𝑟 𝜓†(𝒓) [−∇
2

2𝑚
+ 𝑈 (𝒓, −𝑖∇) − 𝜇] 𝜓(𝒓), (2.47)

where the differential operators act on the field operator, 𝜓. The pres-
ence of the differential operators follows from the commutation re-
lation [𝑟𝛼, 𝑝𝛽] = 𝑖𝛿𝛼𝛽 derived in section 2.2. To see why, note that

⟨𝒓1|𝑟𝛼𝑝𝛼|𝒓2⟩ − ⟨𝒓1|𝑝𝛼𝑟𝛼|𝒓2⟩ = (𝑟𝛼1 − 𝑟𝛼2 )⟨𝒓1|𝑝𝛼|𝒓2⟩ = 𝑖⟨𝒓1|𝒓2⟩, (2.48)

where [𝑟𝛼, 𝑝𝛽] = 𝑖𝛿𝛼𝛽 was used in the last equality. Since ⟨𝒓1|𝒓2⟩ =
𝛿3(𝒓1 − 𝒓2) and 𝛿3(𝒓1 − 𝒓2) = (𝒓1 − 𝒓2) ⋅ ∇𝛿3(𝒓1 − 𝒓2) in the sense of
distributional derivatives, this means that ⟨𝒓1|𝒑|𝒓2⟩ = 𝑖 [∇𝛿3(𝒓1 − 𝒓2)]
in the sense of distributions. Therefore, for any single particle state
|𝜑⟩,

⟨𝒓|𝒑|𝜑⟩ = ∫
ℝ3

d3𝑥⟨𝒓|𝒑|𝒙⟩⟨𝒙|𝜑⟩ = ∫
ℝ3

d3𝑥 𝑖 [∇𝛿3(𝒓 − 𝒙)] ⟨𝒙|𝜑⟩

= −𝑖∇𝑟⟨𝒓|𝜑⟩. (2.49)

Setting |𝜑⟩ = |𝒑⟩ equal to a generalized eigenstate of the momentum
operator, I get

𝒑⟨𝒓|𝒑⟩ = −𝑖∇𝑟⟨𝒓|𝒑⟩, (2.50)
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where 𝒑 on the left-hand side is a vector and not an operator, so

⟨𝒓|𝒑⟩ = 𝐶e−𝑖𝒓⋅𝒑 (2.51)

for some constant 𝐶. The amplitude of 𝐶 can be determined to be |𝐶| =
1/√2𝜋 from the normalization condition ⟨𝒑|𝒒⟩ = 𝛿3(𝒑 − 𝒒). Inserting
into the expression for the kinetic energy 𝒑2/2𝑚, using equation (2.45),
I finally get

𝐾 = ∫
ℝ3

d3𝑟1 d3𝑟2 𝜓†(𝒓1) ∫
ℝ3

d3𝑝⟨𝒓1|𝒑⟩
𝒑2

2𝑚
⟨𝒑|𝒓2⟩𝜓 (𝒓2)

= ∫
ℝ3

d3𝑟1 d3𝑟2 𝜓†(𝒓1)
−∇2𝑟1
2𝑚 ∫

ℝ3
d3𝑝 1

2𝜋
e−𝑖𝒑⋅(𝒓1−𝒓2)𝜓(𝒓2)

= ∫
ℝ3

d3𝑟 𝜓†(𝒓)
−∇2𝑟
2𝑚

𝜓(𝒓). (2.52)

A multitude of physical effects in solids, such as magnetism and su-
perconductivity, comes about because electrons are interacting. They
interact with the quantum mechanical electromagnetic field, and this
interaction gives rise to various effective interactions between elec-
trons, as will be clear in the next chapter. Nevertheless, systems with
magnetic or superconducting properties can often be treated as effec-
tive systems of non-interacting quasiparticles. That is, they can often
be modeled with quadratic Hamiltonians in the form of equation (2.44).

2.5 Spin and Conservation Laws

Quantum fields, like classical fields, are generally not symmetric under
rotation in space. This is the origin of spin and can be understood
by considering that there are two ways to rotate fields. Take for
instance a vector field, 𝒗 ∶ 𝒙 ↦ 𝒗(𝒙). You can rotate by moving all the
spatial positions around an axis, 𝒗(𝒙) ↦ 𝒗(𝑅1𝒙), where 𝑅1 is a rotation
operator which can be represented using rotation matrices. On the
other hand, you can also rotate the vectors themselves, meaning that
𝒗(𝒙) ↦ 𝑅2𝒗(𝒙). Generally, the Lagrangian of a closed system is only
invariant under the combined transformation of both rotating spatial
positions and rotating the field values themselves, 𝒗(𝒙) ↦ 𝑅2𝒗(𝑅1𝒙),
for some combination of 𝑅1 and 𝑅2. This symmetry gives rise to a
conserved quantity 𝑱, through Noethers theorem [116, 118], as I show
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below. The symmetry is the combination of two transformations, and
each gives rise to its own term in the conserved quantity, 𝑱 = 𝑳 + 𝑺.
The term 𝑳 comes from the rotation of spatial positions, 𝒙 ↦ 𝑅𝒙, and
is called orbital angular momentum, while the term 𝑺 comes from the
rotation of the vector values of the field, 𝒗 ↦ 𝑅𝒗, and is called spin
angular momentum.

The term “spin” is also used to classify fields according to their rota-
tion properties. Different fields rotate according to different irreducible
representations of the three-dimensional rotation group, 𝑆𝑂(3) [116,
119]. A spin-𝑛 field rotates under the (2𝑛 + 1)-dimensional repre-
sentation of 𝑆𝑂(3), where 𝑛 can be integer, (1, 2, … ), or half-integer,
(1/2, 3/2, … ). How the field transforms under a full rotation is what
determines whether they are fermions or bosons, as explained in sec-
tion 2.3.

The electron field is a spinor field, which is a spin-1/2 field. This
means that the rotation of spinors can be represented by 2-dimensional
matrices. Accordingly, spinors can be represented using 2-tuples. If 𝜓
is a spinor, one can write

𝜓 = (
𝜓↑
𝜓↓
) , (2.53)

where the two components 𝜓↑ and 𝜓↓ depend on choice of the coordi-
nate system. When rotating an angle 𝜃 around and axis 𝒏, the spinor 𝜓
transforms as [119]

𝜓 ↦ exp (𝑖 𝜃
2
𝒏 ⋅ 𝝈) 𝜓 = cos ( 𝜃

2
) 𝜓 + 𝑖𝒏 ⋅ 𝝈 sin ( 𝜃

2
) 𝜓 , (2.54)

where 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧), is the vector of Pauli matrices,

𝜎𝑥 = (
0 1
1 0) , (2.55a)

𝜎𝑦 = (
0 −𝑖
𝑖 0 ) , (2.55b)

𝜎𝑧 = (
1 0
0 −1) . (2.55c)

Note that under 2𝜋 rotation, 𝜓 → −𝜓, which is why spinor fields are
fermionic.
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Before we can compute the spin density from the transformation
properties of the field, we first need the Lagrangian density. Since
the Hamiltonian is an operator, so too is the Lagrangian 𝐿, and con-
sequently also the action, 𝑆 = ∫∞−∞ d𝑡 𝐿(𝑡). To obtain the Hamiltonian
density, and thereby the Lagrangian density, I write

ℋ = ∫
ℝ3

d3𝑟 ℎ(𝒓). (2.56)

The Lagrangian density is then²

ℒ = 𝜋† ∂
∂𝑡
𝜓 + ( ∂

∂𝑡
𝜓†) 𝜋 − ℎ, (2.57)

where 𝜋† and 𝜋 are the conjugate momentum densities for 𝜓 and 𝜓†,
respectively. The notation 𝜋† is not literal. One does not have to
choose 𝜋† to be the adjoint of 𝜋. If we do not include coupling to other
fields, we can use equation (2.47), such that

ℎ(𝒓) = 𝜓†(𝒓) [−∇
2

2𝑚
+ 𝑈 (𝒓, −𝑖∇) − 𝜇] 𝜓(𝒓). (2.58)

In the principle of least action³ formulation of physics, the field
which is realized is that which extremizes the action,

𝑆 = ∫
∞

−∞
d𝑡 ∫

ℝ3
d3𝑟 ℒ(𝑡, 𝒓). (2.59)

One can find an equation for the field that extremizes the action by
taking the functional derivative of the action with respect to the field
and setting this to zero. If the Lagrange density, and thereby action, is
a function of a real scalar field 𝜑, the functional derivative, 𝛿𝑆/𝛿𝜑, is
defined to be the function that satisfies

∫
∞

−∞
d𝑡 ∫

ℝ3
d3𝑟 𝛿𝑆

𝛿𝜑
𝜌 = lim

𝜀→0

𝑆(𝜑 + 𝜀𝜌) − 𝑆(𝜑)
𝜀

, (2.60)

2. Note that while ℒ is the Lagrangian density and 𝐿 is the total Lagrangian, ℎ is
the Hamiltonian density and ℋ is the total Hamiltonian. The inconsistent use of
calligraphic font in relation to density is chosen because the two most important
quantities are ℋ and ℒ.

3. The action does not need to be minimal, so a better name is the stationary action
principle.
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for all real scalar fields 𝜌. When 𝜑 is a complex field, the Lagrangian
can be written in terms of two real fields, 𝜑 = 𝜑𝑅 + 𝑖𝜑𝐼, and the action
must be extremized with respect to both of the real fields, 𝜑𝑅 and 𝜑𝐼.
Equivalently, one can treat the field 𝜑 and its complex conjugate, 𝜑† as
two separate fields and extremize with respect to both. The electron
field is a spinor field, which means that it can be written in terms
of two complex fields, 𝜓↑ and 𝜓↓, as defined in equation (2.53). The

action must therefore be extremized with respect to 𝜓↑, 𝜓↓, 𝜓
†
↑ , and 𝜓†↓ ,

treating them all separately.
One can freely perform partial integrations in the expression for

action and I assume that surface terms vanish. As a result, the differ-
entiation operators can be moved around such that the Lagrangian
density is a function of only the four fields, 𝜓↑, 𝜓↓, 𝜓

†
↑ , and 𝜓†↓ , and their

first derivatives in time and space. When the Lagrangian density, ℒ,
can be written as a function of fields and their first derivatives, taking
the functional derivative of the action with respect to a field 𝜑 gives

𝛿𝑆
𝛿𝜑

= ∂ℒ
∂𝜑

− ∂
∂𝑡
[ ∂ℒ
∂(∂𝑡𝜑)

] − ∇ ⋅ [ ∂ℒ
∂(∇𝜑)

] , (2.61)

where ∂𝑡 = ∂/∂𝑡 is differentiation with respect to time. Setting equa-
tion (2.61) to zero is also known as the Euler-Lagrange equation [115,
116].

The Euler-Lagrange equations must reproduce the Heisenberg equa-
tion, and this fact can be used to determine the proper Lagrangian
density. If the Lagrangian density is

ℒ = 𝜓† [𝑖 ∂
∂𝑡

+ ∇2

2𝑚
− 𝑈 + 𝜇] 𝜓 , (2.62)

I get from equation (2.61) that

𝛿𝑆
𝛿𝜓†

= [𝑖 ∂
∂𝑡

+ ∇2

2𝑚
− 𝑈 + 𝜇] 𝜓 . (2.63)

Therefore, setting the functional derivative of the action equal to zero
reproduces the Heisenberg equation for 𝜓,

𝑖
∂𝜓
∂𝑡

= − [ℋ , 𝜓]− = [−∇
2

2𝑚
+ 𝑈 − 𝜇] 𝜓 . (2.64)
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One can also verify that the Heisenberg equation for 𝜓† is reproduced
by extremizing the action with respect to 𝜓. Note that this means that
any operator that can be written as a polynomial in the field operators
also satisfies the Heisenberg equation. This can be proved by induction,
using the fact that

∂
∂𝑡
(𝐴𝐵) = [ ∂

∂𝑡
𝐴] 𝐵+𝐴 [ ∂

∂𝑡
𝐵] = 𝑖[ℋ , 𝐴]𝐵+𝑖𝐴[ℋ , 𝐵]− = 𝑖[ℋ , 𝐴𝐵]−.

(2.65)

Thus the principle of least action is entirely equivalent to the formula-
tion of quantum mechanics presented in section 2.2.

Comparing with equation (2.57), we see that the conjugate momen-
tum densities are 𝜋† = 𝑖𝜓† and 𝜋 = 0. One could equivalently choose a
more symmetrical Lagrangian density with 𝜋† = 𝑖𝜓†/2 and 𝜋 = −𝑖𝜓/2.
The symmetric and asymmetric Lagrangians are equivalent as they
produce the same action. This can be seen by performing a partial
integration. In the symmetric case, 𝜋 and 𝜋† are adjoint operators,
which is more in line with what the notation suggests. Note that ℒ is
a non-relativistic Lagrangian. Relativity is considered in section 2.6.

One key advantage of the principle of least action formulation of
physics is that it allows for simple derivations of conservation laws. Let
𝜓 = (𝜓1, … , 𝜓𝑛)𝑇 be an 𝑛-tuple of fields and let 𝜃 be a single parameter
which characterizes a transformation of 𝜓. For instance, 𝜃 can be an
angle when the transformation is a rotation. Assume further that 𝜓
extremizes the action and that the Lagrangian density is a function
of 𝜓 and its first derivatives in time and space, ℒ(𝜓 , ∂𝑡𝜓 , ∇𝜓). Finally,
let ̃𝜓 (𝜃, 𝑡 , 𝒓) be the field after the transformation and ̃𝜓 (0, 𝑡 , 𝒓) = 𝜓(𝑡, 𝒓).
The derivative of theℒ( ̃𝜓 , ∂𝑡 ̃𝜓 , ∇ ̃𝜓 )with respect to 𝜃, evaluated at 𝜃 = 0,
is then

dℒ
d𝜃

=
𝑛
∑
𝑖=1

{∂ℒ
∂𝜓𝑖

∂ ̃𝜓𝑖
∂𝜃

+ ∂ℒ
∂(∂𝑡𝜓𝑖)

∂
∂𝑡
[
∂ ̃𝜓𝑖
∂𝜃

] + ∂ℒ
∂(∇𝜓𝑖)

⋅ ∇ [
∂ ̃𝜓𝑖
∂𝜃

]}

=
𝑛
∑
𝑖=1

{∂ℒ
∂𝜓𝑖

− ∂
∂𝑡
[ ∂ℒ
∂(∂𝑡𝜓𝑖)

] − ∇ ⋅ [ ∂ℒ
∂(∇𝜓𝑖)

]}
∂ ̃𝜓𝑖
∂𝜃

+
𝑛
∑
𝑖=1

{ ∂
∂𝑡
[ ∂ℒ
∂(∂𝑡𝜓𝑖)

∂ ̃𝜓𝑖
∂𝜃

] + ∇ ⋅ [ ∂ℒ
∂(∇𝜓𝑖)

∂ ̃𝜓𝑖
∂𝜃

]} . (2.66)
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The first term on the right-hand side is zero by assumption since 𝜓
extremizes the action. The transformation is called a symmetry if the
Lagrangian density is either invariant or changed by a gradient term,
meaning that

dℒ
d𝜃

=
∂𝑞0
∂𝑡

+ ∇ ⋅ 𝒒. (2.67)

When the transformation is a symmetry, equation (2.66) becomes a
conservation law,

∂𝜌
∂𝑡

+ ∇ ⋅ 𝒋 = 0, (2.68)

where the conserved “charge” density is

𝜌 = 𝑞0 −
𝑛
∑
𝑖=1

∂ℒ
∂(∂𝑡𝜓𝑖)

∂ ̃𝜓𝑖
∂𝜃

, (2.69)

and the conserved current is

𝒋 = 𝒒 −
𝑛
∑
𝑖=1

∂ℒ
∂(∇𝜓𝑖)

∂ ̃𝜓𝑖
∂𝜃

. (2.70)

The Lagrange density is not invariant under spatial rotations, 𝒙 ↦
𝑅1𝒙. Rather, as explained above, the Lagrangian is invariant under the
combined rotation of space and spinors, 𝜓(𝒙) ↦ 𝑅2𝜓(𝑅1𝒙), where 𝑅2
rotates the spinor and 𝑅1 rotates the spatial position. For a rotation
around an axis 𝒏, 𝑅2 is given by equation (2.54) and

𝑅1 = exp (𝜃𝒏 ⋅ 𝜦) , (2.71)

where

𝛬𝑥 = (
0 0 0
0 0 −1
0 1 0

) , (2.72a)

𝛬𝑦 = (
0 0 1
0 0 0
−1 0 0

) , (2.72b)

𝛬𝑧 = (
0 −1 0
1 0 0
0 0 0

) . (2.72c)
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For a small rotation by an angle 𝜃, the spinor field, therefore, transforms
as

𝜓(𝒙) ↦ (1 + 𝑖 𝜃
2
𝒏 ⋅ 𝝈) 𝜓(𝒙 + 𝜃𝒏 ⋅ 𝜦𝒙)

= 𝜓(𝒙) + 𝜃 [ 𝑖
2
𝒏 ⋅ 𝝈𝜓(𝒙) + (𝒏 ⋅ 𝜦)𝒙 ⋅ ∇𝜓(𝒙)] + 𝒪(𝜃2). (2.73)

So

∂ ̃𝜓
∂𝜃

= 𝑖
2
𝒏 ⋅ 𝝈𝜓(𝒙) + (𝒏 ⋅ 𝜦)𝒙 ⋅ ∇𝜓(𝒙) (2.74)

The field 𝜓† also transforms, but we can freely choose the asymmetric
form of the Lagrangian densitywith ∂ℒ/∂(∂𝑡𝜓†) = 0, such that ∂ ̃𝜓†/∂𝜃
does not enter in equation (2.69). When using this asymmetric form,
∂ℒ/∂(∂𝑡𝜓) = 𝜋 = 𝑖𝜓†, so the conserved charge density associated
with rotation is

𝜌(𝒙) = −𝑖𝜓†(𝒙) [ 𝑖
2
𝒏 ⋅ 𝝈𝜓(𝒙) + (𝒏 ⋅ 𝜦)𝒙 ⋅ ∇𝜓(𝒙)]

= 𝜓†(𝒙)1
2
𝒏 ⋅ 𝝈𝜓(𝒙) + 𝜓†(𝒙)(𝒏 × 𝒙) ⋅ (−𝑖∇)𝜓 (𝒙)

= 𝒏 ⋅ [𝑺(𝒙) + 𝑳(𝒙)], (2.75)

where we used that (𝒏 ⋅ 𝜦)𝒙 = (𝒏 × 𝒙) and defined the spin angu-
lar momentum density 𝑺 and orbital angular momentum density, 𝑳,
respectively as

𝑺(𝒙) = 1
2
𝜓†(𝒙)𝝈𝜓(𝒙), (2.76a)

𝑳(𝒙) = 𝜓†(𝒙)[𝒙 × (−𝑖∇)]𝜓 (𝒙). (2.76b)

Note that both the orbital and spin angular momentum can in principle
be nonzero even for a static field. This is not to say that 𝑺 and 𝑳 do not
represent rotation in the sense of flow around an axis.

It is difficult to see how the spin 𝑺makes intuitive sense as a measure
of dynamic rotation around an axis without a geometric understanding
of spinors. Luckily, it is possible to find a geometric understanding
of spinors in the fascinating field of geometric algebra [120, 121]. In
geometric algebra, spinors can be understood as rotors combined with
dilation. As the name suggests, a rotor defines a rotation. Using ge-
ometric algebra notation, a spinor 𝜓 transforms vectors according to

31



𝒗 ↦ 𝜓𝒗𝜓†, where the dagger is used to denote the geometric algebra
reverse operation. That is, while vectors define arrows with an ampli-
tude and a direction, spinors define rotations and dilations of vectors.
In the case of the electron field, the spinors define a rotation that de-
pends on the coordinate system one works with. One can think of
the electron as defining a rotation from your coordinate system to the
electron’s coordinate system. The 𝑧-axis of the electron’s coordinate
system is pointing in the direction defined of 𝜓†𝝈𝜓 with the notation
used here. Now, consider how the electron field changes in time, which
is given by equation (2.64). For simplicity, take the situation in which

𝑖
∂𝜓
∂𝑡

= 𝐸𝜓 ⟹ 𝜓(𝑡) = e−𝑖𝐸𝑡𝜓(𝑡). (2.77)

In this case, the spin 𝜓†𝝈𝜓 is constant. If we convert equation (2.77) to
the formulation of spinors as rotors in geometric algebra, multiplying
𝜓 by a factor exp(𝑖𝜑) is the same as rotating the electron coordinate
system in the 𝑥𝑦-plane. That is, the spinor defines a rotation to a
coordinate system that is rotating around the axis which points in the
direction given by 𝜓†𝝈𝜓. Hence, in the geometric picture, there is a
clear rotation around the spin axis.

As a side note, the geometric understanding of spinors also gives in-
sight into their special rotation properties, whichmakes them fermionic
through the spin-statistics theorem. The fact that spinors act on vec-
tors from both sides, 𝒗 ↦ 𝜓𝒗𝜓† is why they essentially rotate with
half the speed of vectors. It is why they transform according to the
2-dimensional representation of the rotation group, which is why they
acquire a minus sign under 2𝜋 rotation. This minus sign is why they
are fermionic.

2.6 The Electron Magnetic Moment and Spin-Orbit Coupling

The fact that angular momentum is a conserved quantity means that it
can be used to encode and send information. If you suddenly observe
an increased amount of angular momentum, you know that it must
have come from somewhere. When you send a specified amount of
upwards-pointing angular momentum down an insulated wire, you
can be certain that it will be received at the other end. If you and
the receiver have agreed that upwards-pointing angular momentum
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means 1, you have just sent a bit of information. This is in a sense, and
in overly simplified terms, the basis for spintronics.

However, in order for this to work, one needs a convenient way to
manipulate angular momentum. That is, while electronics work by us-
ing the electric field to manipulate the conserved scalar quantity called
electric charge, spintronics require an analogous way to manipulate
angular momentum. Fortunately, manipulation of angular momentum
is possible, both through the magnetic field and the electric field. In
particular, both the electric field and the magnetic field can be used to
manipulate the spin of electrons.

Understanding how the electron spin interacts not only with the
magnetic field, but also with the electric field, requires the theory of
relativity. In relativistic theories, one cannot meaningfully separate the
electric field and the magnetic field. Even if a stationary observer mea-
sures no magnetic field, another observer might measure a non-zero
magnetic field as a consequence of the fact that this observer is in mo-
tion relative to the first observer [122]. As a result, one should instead
consider a more fundamental field, (𝑉 , 𝑨), which is sometimes referred
to as the photon field [123] or the electromagnetic 4-potential [122].
The photon field is a 4-vector field because one must treat time and
space on the same footing in relativistic theories. The electric field, 𝑬,
and the magnetic field, 𝑩, are determined from the photon field and
can be calculated from

𝑬 = −∇𝑉 − ∂𝑨
∂𝑡

, (2.78a)

𝑩 = ∇ × 𝑨. (2.78b)

Fundamentally, the same interaction that allows electric charge to
be moved in electronic devices also allows spin to be manipulated in
spintronics devices. A single interaction between the electron field and
the photon field gives, in the non-relativistic limit, three different types
of interactions: the normal electromagnetic interaction responsible for
the Lorentz force, the interaction between the electron spin and the
magnetic field, and the spin-orbit interaction.

In this section, I derive the interaction between the electron spin
and the electromagnetic field. To do so, I start with the relativistic
description of electrons and take the non-relativistic limit. Taking the
non-relativistic limit means that we neglect terms with small operator
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norms on the subset of non-relativistic states. That is, I assume that
the system is well described by a subset of Hilbert space, 𝒱NR ⊂ 𝒱
where the energy is dominated by the rest mass energy. The operator
norm of an operator 𝑇 on 𝒱NR is defined as the smallest real number 𝑐
satisfying [105]

|⟨𝜓 |𝑇 |𝜓 ⟩| < 𝑐⟨𝜓 |𝜓 ⟩ (2.79)

for all |𝜓 ⟩ ∈ 𝒱NR. The aim is to write the Lagrangian as a series
expansion in operators with increasingly small operator norms on the
non-relativistic subset of the Hilbert space. In terms of the relativistic
corrections, I keep only the terms that couple spin to the magnetic
and electric fields, and only the lowest order in which they occur. For
a consistent description of electrons, one should keep all terms that
are of the same order. However, the aim here is not full consistency.
The potentials in real materials are often too complicated to evaluate
even the lowest order term exactly, so including higher order terms
are not necessary. The point is rather to determine the form of the
most important terms in the Hamiltonian, such that we know which
effects to add in an effective description of real systems, even if the
strengths of these effects must be determined empirically.

In the relativistic description of the electron field, the electron field
consists of two coupled spinor fields: 𝜓𝐿 and 𝜓𝑅. These are known as
the left-chiral and right-chiral Weyl spinors, respectively [116]. Both
transform in the same way under rotation, but they transform differ-
ently under Lorentz boosts. For a general rotation of angle 𝜃 around
the 𝒏 axis and a Lorentz boost 𝜂 in the 𝒗-direction, then

𝜓𝑅/𝐿 ↦ exp (𝑖 𝜃
2
𝒏 ⋅ 𝝈 ±

𝜂
2
𝒗 ⋅ 𝝈) 𝜓𝑅/𝐿. (2.80)

Let

𝜓 = (
𝜓𝐿
𝜓𝑅

) . (2.81)

The Lagrangian density, known as the Dirac Lagrangian [116, 124], is
then given by

ℒ = 𝜓† [𝑖 ( ∂
∂𝑡

+ 𝑖𝑞𝑉) + 𝑖𝛾0𝜸 ⋅ (∇ − 𝑖𝑞𝑨) − 𝛾0𝑚] 𝜓 , (2.82)
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where 𝑞 is the electric charge and (𝑉 , 𝑨) is the photon field and the
4 × 4 gamma matrices are

𝛾0 = (
0 1
1 0) , and 𝜸 = (

0 𝝈
−𝝈 0) . (2.83)

We are mainly interested in the conserved quantity associated with
rotation. Using that the Lagrangian is invariant under rotation and
the Weyl-spinors transform according to equation (2.80), the same
derivation as in section 2.5 shows that the spin density operator is

𝑺 = 𝜓† 1
2
(
𝝈 0
0 𝝈) 𝜓 . (2.84)

In order to obtain a non-relativistic description one must decouple
the bispinor field into two spinor fields by using the fact that the rest
mass 𝑚 is large compared to other energies in the non-relativistic limit.
This is difficult in the Weyl basis because the dominant mass term,
−𝜓†𝛾0𝑚𝜓, couples the left-chiral and right-chiral Weyl spinors. Instead,
it is more convenient to use the Dirac bispinor

𝜓𝐷 = 1
√2

(
1 1
1 −1) (

𝜓𝐿
𝜓𝑅

) = (
𝑢
𝑣) . (2.85)

Written in terms of the Dirac bispinor, the Lagrange density is

ℒ = 𝜓†𝐷 [(𝑖 ∂
∂𝑡

− 𝑞𝑉) − 𝜶 ⋅ (−𝑖∇ − 𝑞𝑨) − 𝛽𝑚] 𝜓𝐷, (2.86)

where

𝛽 = (
1 0
0 −1) , and 𝜶 = (

0 𝝈
𝝈 0) . (2.87)

One way to decouple the relativistic Dirac theory is to perform a
Foldy-Wouthuysen transformation [125–127]. This is done by iter-
atively transforming the bispinors through unitary transformations
and successively removing off-diagonal terms. A unitary transforma-
tion, by definition, is one which preserves inner products. Normally,
a Foldy-Wouthuysen transformation is performed by transforming
state vectors, |𝜓 ⟩ with well-defined inner products. Here, however, we
want to transform the bispinor operators, and inner products are not
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defined for the space of operators. Nevertheless, one can perform a
transformation that preserves an expression reminiscent of the inner
product in 𝐿2,

𝑁tot = ∫
ℝ3

d3𝑥 𝜓†𝐷𝜓𝐷. (2.88)

This expression is the operator for the total number of particles.
By ensuring that our two new decoupled spinor fields,⁴ 𝜓𝑒 and 𝜓𝑝,

also satisfy

𝑁tot = ∫
ℝ3

d3𝑥 (𝜓†𝑒 𝜓†𝑝 ) (
𝜓𝑒
𝜓𝑝
) , (2.89)

one ensures that 𝜓†𝑒 𝜓𝑒 and 𝜓†𝑝 𝜓𝑝 can still be used to count the number
of particles. Note however, that this does not mean that the equality
𝜓†𝐷(𝒙)𝜓𝐷(𝒙) = 𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)+𝜓

†
𝑝 (𝒙)𝜓𝑝(𝒙) holds locally, so 𝜓

†
𝑒 𝜓𝑒 and 𝜓

†
𝑝 𝜓𝑝

need not be density operators in the same sense as 𝜓†𝐷𝜓𝐷. Because I
consider quantum field theory rather than just a free Dirac particle, I
do not perform a Foldy-Wouthuysen transformation. Instead, I use the
Dirac equation to rewrite the Lagrangian in terms of two decoupled
spinor fields, 𝜓𝑒 and 𝜓𝑝, and then I ensure that the new fields can be
interpreted as matter fields by ensuring that equation (2.89) is satisfied
and that the total number operator is preserved for each of the two
new fields. The result is consistent with what one obtains from a
Foldy-Wouthuysen transformation [126].

In order to ensure that the total number operator is conserved, note
that the total number of 𝑒-particles is conserved if the Lagrangian
density has the form ℒ = ℒ𝑒 +ℒ𝑝 with

ℒ𝑒 = 𝜓†𝑒 𝑖
∂𝜓𝑒
∂𝑡

− ℎ𝑒, (2.90)

and similarly for ℒ𝑝. In this case, given that ℒ𝑒 and ℒ𝑝 are symmet-
ric under global 𝑈 (1)-transformations, 𝜓𝑒/𝑝 ↦ exp(𝑖𝜑)𝜓𝑒/𝑝, Noethers
theorem states that the conserved charge densities are

𝜌𝑒/𝑝 = −𝑖𝜓†𝑒/𝑝𝑖𝜓𝑒/𝑝 = 𝜓†𝑒/𝑝𝜓𝑒/𝑝. (2.91)

4. I use the subscripts 𝑒 and 𝑝 to indicate that 𝜓𝑒 is the electron field and 𝜓𝑝 is related
to the positron field. Note, however, that 𝜓𝑝 is not exactly the positron field. A
positron is defined as the absence of what I refer to as a 𝑝-particle. The positron
field would therefore be 𝜓 †

𝑝 .
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Therefore, the total charges

𝑁𝑒/𝑝 = ∫
ℝ3

d3𝑥 𝜌𝑒/𝑝 = ∫
ℝ3

d3𝑥 𝜓†𝑒/𝑝𝜓𝑒/𝑝 (2.92)

are conserved. We see that 𝑁𝑒/𝑝 can be identified as the total number
of 𝑒-particles and 𝑝-particles respectively. Note again that this does
not mean that 𝑞𝜓†𝑒 (𝒙)𝜓𝑒(𝒙) is the electric charge density of the 𝜓𝑒-field,
as we will see.

To motivate the definitions of 𝜓𝑒 and 𝜓𝑝, consider the Dirac equation,

which is obtained by extremizing the action with respect 𝜓†𝐷 ,

𝛿𝑆

𝛿𝜓†𝐷
= [(𝑖 ∂

∂𝑡
− 𝑞𝑉) − 𝜶 ⋅ (−𝑖∇ − 𝑞𝑨) − 𝛽𝑚] 𝜓𝐷 = 0. (2.93)

A general solution may be written as a sum of terms with positive
energies and terms with negative energies. These are related to particle
and antiparticle solutions, respectively, and I will use them to define
𝜓𝑒 and 𝜓𝑝. To write the Dirac equation in terms of energies, I Fourier
transform in time, such that

𝜓𝐷(𝐸) = ∫
∞

−∞
d𝑡 𝜓𝐷(𝑡)e𝑖𝐸𝑡. (2.94)

After a Fourier transformation in time equation (2.93) becomes

(𝐸 + 𝑖𝜶 ⋅ ∇ − 𝛽𝑚) 𝜓𝐷(𝐸)

= −𝑞 ∫
∞

−∞
d𝜀[𝑉 (𝜀) + 𝜶 ⋅ 𝑨(𝜀)]𝜓𝐷(𝐸 − 𝜀). (2.95)

If we assume that the right-hand side, as well as the term 𝜶 ⋅ ∇𝜓𝐸, are
both much smaller than 𝑚𝜓𝐷, we see that equation (2.95) only has non-
zero solutions when 𝐸 is close to ±𝑚. Moreover, in the non-relativistic
limit, 𝑉 (𝜀) + 𝜶 ⋅ 𝑨(𝜀) is negligible when |𝜀| ≈ 2𝑚, so the solutions close
to 𝜀 = 𝑚 and 𝜀 = −𝑚 do not couple. In other words, there is some
cutoff energy 𝐸𝑐 ≪ 𝑚 for which one can define

𝜓±(𝐸) = {
𝜓𝐷(𝐸 ± 𝑚) if |𝐸| < 𝐸𝑐,
0 otherwise,

(2.96)
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such that 𝜓𝐷(𝐸) = 𝜓+(𝐸 − 𝑚) + 𝜓−(𝐸 + 𝑚) and

(𝐸 + 𝑖𝜶 ⋅ ∇ − 𝛽𝑚) 𝜓±(𝐸 ∓ 𝑚)

= −𝑞 ∫
∞

−∞
d𝜀[𝑉 (𝜀) + 𝜶 ⋅ 𝑨(𝜀)]𝜓±(𝐸 ∓ 𝑚 − 𝜀). (2.97)

To avoid the convolution on the right-hand side, I inverse Fourier
transform back to time coordinates, such that

[(𝑖 ∂
∂𝑡

− 𝑞𝑉) − 𝜶 ⋅ (−𝑖∇ − 𝑞𝑨) − 𝛽𝑚 ± 𝑚] 𝜓± = 0. (2.98)

Inserting 𝜓𝐷(𝑡) = exp(−𝑖𝑚𝑡)𝜓+(𝑡) + exp(𝑖𝑚𝑡)𝜓−(𝑡) into the Dirac
Lagrangian (2.86), one gets cross-terms involving both 𝜓+ and 𝜓−.
However, these terms will also be proportional to exp(±2𝑖𝑚𝑡). Since
𝜓±(𝑡) and the photon field by assumption vary slowly in time compared
to exp(±2𝑖𝑚𝑡), these terms will have a negligible influence on the
action.⁵ It is the action,

𝑆 = ∫
∞

−∞
d𝑡 ∫

ℝ3
d3𝑥 ℒ(𝑡, 𝑥), (2.99)

that matters. Therefore, I assume that I can neglect the cross terms.
As a result, the Dirac Lagrangian becomes

ℒ = ℒ𝑒 +ℒ𝑝, (2.100)

where the electron Lagrangian and positron Lagrangian are

ℒ𝑒/𝑝 = 𝜓†± [(𝑖 ∂
∂𝑡

− 𝑞𝑉) − 𝜶 ⋅ (−𝑖∇ − 𝑞𝑨) − 𝛽𝑚 ± 𝑚] 𝜓±, (2.101)

respectively.
Equation (2.101) looks similar to equation (2.90), but it is written

in terms of bispinor fields rather than spinor fields. The next step is
therefore to extract proper spinor fields from 𝜓±. I will only consider

5. There can in principle be cross-terms in ℒ, like 𝜓 †
− (𝑡)𝑨(𝑡)𝜓+(𝑡), that are not

negligible if 𝑨 oscillates with frequency 2𝑚. In physical terms, a (+)-particle can
become a (−)-particle through an oscillation with frequency 2𝑚 in the photon
field. This could for example be the creation of an electron-positron pair through
the annihilation of a very energetic photon. I do not include such effects here,
since I assume that the photon field does not oscillate that rapidly.
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the electron Lagrangianℒ𝑒. The derivation of the positron Lagrangian,
ℒ𝑝, follows the same steps, but I don’t show this derivation because,
for the purposes of condensed matter physics, positrons are not of
much relevance. Despite the fact that matter, like electrons, and anti-
matter, like positrons, are on equal footing in the theoretical model, our
observable universe is made almost entirely of matter [128]. Therefore,
when studying the physics of condensed matter, the electron is the
main player.

Inserting 𝜓+ = (𝑢+, 𝑣+)𝑇 into equation (2.98) I get

(𝑖 ∂
∂𝑡

− 𝑞𝑉) 𝑢+ = 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑣+, (2.102a)

(𝑖 ∂
∂𝑡

− 𝑞𝑉 + 2𝑚) 𝑣+ = 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+. (2.102b)

To solve for 𝑣+ in terms of 𝑢+, I apply the operator

𝑃 =
∞
∑
𝑛=0

(−1)𝑛

(2𝑚)𝑛+1
(𝑖 ∂
∂𝑡

− 𝑞𝑉)
𝑛

(2.103)

to equation (2.102b) and use that

𝑃 (𝑖 ∂
∂𝑡

− 𝑞𝑉 + 2𝑚) 𝑣+ = −
∞
∑
𝑛=0

(−1)𝑛+1

(2𝑚)𝑛+1
(𝑖 ∂
∂𝑡

− 𝑞𝑉)
𝑛+1

𝑣+

+
∞
∑
𝑛=0

(−1)𝑛

(2𝑚)𝑛
(𝑖 ∂
∂𝑡

− 𝑞𝑉)
𝑛
𝑣+ = 𝑣+, (2.104)

which is true provided that the series converges. In the non-relativistic
limit |(𝑖∂/∂𝑡 − 𝑞𝑉)𝑛 𝑣+|/(2𝑚)𝑛 → 0, so the series does converge. As a
result,

𝑣+ = 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+. (2.105)

Inserting equation (2.105) into the electron Lagrangian, I get

ℒ𝑒 = 𝑢†+ (𝑖 ∂
∂𝑡

− 𝑞𝑉) 𝑢+ − 𝑢†+𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+

+ [𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+]
† (𝑖 ∂

∂𝑡
− 𝑞𝑉 + 2𝑚) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+

− [𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+]
† 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+. (2.106)
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Performing the partial integrations such that all differentiation opera-
tors act to the rightmost 𝑢+, I get that

ℒ𝑒 = 𝑢†+ (𝑖 ∂
∂𝑡

− 𝑞𝑉) 𝑢+ − 𝑢†+𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+

+ 𝑢†+𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑃 (𝑖 ∂
∂𝑡

− 𝑞𝑉 + 2𝑚) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+

− 𝑢†+𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+. (2.107)

From equation (2.104) one can see that the second and third terms
cancel, so

ℒ𝑒 = 𝑢†+ [𝑖 ∂
∂𝑡

− 𝑞𝑉 − 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨)] 𝑢+. (2.108)

We now have an expression for the electron Lagrangian in terms of
a spinor field 𝑢+, and one can get the effective electron Lagrangian
to a given order in 𝐸𝑐/𝑚, where 𝐸𝑐 is the largest energy scale below
𝑚, by terminating the series expression of 𝑃. However, 𝑢+ is not an
appropriate choice for the spinor electron field because it does not give
the correct total number of electrons. The total number of electrons is

𝑁𝑒 = ∫
ℝ3

d3𝑥 𝜓†+𝜓+ = ∫
ℝ3

d3𝑥{𝑢†+𝑢+

+ [𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+]
† 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨) 𝑢+}. (2.109)

Hence, we want a spinor electron field 𝜓𝑒 which is normalized such
that

∫
ℝ3

d3𝑥 𝜓†𝑒 𝜓𝑒 = 𝑁𝑒. (2.110)

In order to make the expansion in inverse mass more clear, I reinstate
SI units when comparing terms. To convert to SI-units, the kinetic
momentum operator, (−𝑖∇ − 𝑞𝑨), must be multiplied by the speed of
light, 𝑐, mass𝑚must bemultiplied by 𝑐2 and differentiationwith respect
to time and space must be multiplied by the reduced Planck constant,
ℏ. As discussed above, I only want the lowest order corrections, so I
consider a description valid to first order in 𝐸𝑐/𝑚𝑐2. To this order, the
number of electrons is

𝑁𝑒 = ∫
ℝ3

d3𝑥 𝑢†+ {1 + 𝑐2

4𝑚2𝑐4
[𝝈 ⋅ (−𝑖ℏ∇ − 𝑞𝑨)]2} 𝑢+. (2.111)
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Choosing

𝜓𝑒 = {1 + 1
8𝑚2𝑐2

[𝝈 ⋅ (−𝑖ℏ∇ − 𝑞𝑨)]2} 𝑢+, (2.112)

or, equivalently,

𝑢+ = {1 − 1
8𝑚2𝑐2

[𝝈 ⋅ (−𝑖ℏ∇ − 𝑞𝑨)]2} 𝜓𝑒, (2.113)

ensures that equation (2.110) is satisfied to first order. Inserting this
into equation (2.108), I get that to first order in 𝐸𝑐/𝑚𝑐2,

ℒ𝑒 = 𝜓†𝑒 (𝜀 − 𝛱 2

2𝑚
+ 𝛱 4

8𝑚3𝑐2
− 𝛱 2𝜀
8𝑚2𝑐2

− 𝜀𝛱 2

8𝑚2𝑐2
+ 𝛱𝜀𝛱
4𝑚2𝑐2

) 𝜓𝑒

(2.114)

where

𝜀 = 𝑖ℏ ∂
∂𝑡

− 𝑞𝑉 , (2.115a)

𝛱 = 𝝈 ⋅ (−𝑖ℏ∇ − 𝑞𝑨) . (2.115b)

From here I again go back to natural units, setting 𝑐 = 1 and ℏ = 1.
Consider first the second term in equation (2.114). Using the relation

that if 𝒂 and 𝒃 are two vectors, then

(𝒂 ⋅ 𝝈)(𝒃 ⋅ 𝝈) = 𝒂 ⋅ 𝒃 + 𝑖(𝒂 × 𝒃) ⋅ 𝝈 , (2.116)

I get that

𝛱 2𝜓𝑒 = [(−𝑖∇ − 𝑞𝑨)2 + 𝑖 (−𝑖∇ − 𝑞𝑨) × (−𝑖∇ − 𝑞𝑨) ⋅ 𝝈] 𝜓𝑒
= [(−𝑖∇ − 𝑞𝑨)2 + 𝑞 (∇ × 𝑨) ⋅ 𝝈] 𝜓𝑒

= [(−𝑖∇ − 𝑞𝑨)2 + 𝑞𝑩 ⋅ 𝝈] 𝜓𝑒, (2.117)

where I used that the magnetic field is 𝑩 = ∇ × 𝑨. From this one can
also evaluate the term proportional to 𝛱 4. One can see that this will
only give corrections to the kinetic energy and higher-order interac-
tions between spin and 𝑩. I am only interested in including the most
important interactions between spin and the electromagnetic field, so
I ignore the term proportional to 𝛱 4.
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Next, the three remaining terms can be evaluated using that

[𝜀, 𝛱]−𝜓𝑒 = [𝑖 ∂
∂𝑡

− 𝑞𝑉 , 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨)]
−
𝜓𝑒

= −𝑖 ([ ∂
∂𝑡
, 𝝈 ⋅ 𝑞𝑨]

−
− [𝑞𝑉 , 𝝈 ⋅ ∇]−) 𝜓𝑒

= 𝑖𝑞𝝈 ⋅ (−∂𝑨
∂𝑡

− ∇𝑉) 𝜓𝑒 = 𝑖𝑞𝝈 ⋅ 𝑬𝜓𝑒, (2.118)

where I used that the electric field is 𝑬 = −∂𝑨/∂𝑡 − ∇𝑉. Hence,

𝛱𝜀𝛱
4𝑚2 − 𝛱 2𝜀

8𝑚2 − 𝜀𝛱 2

8𝑚2 = 𝛱𝜀𝛱
4𝑚2 − 𝛱𝜀𝛱

8𝑚2 − 𝛱𝜀𝛱
8𝑚2

+
𝑖𝑞𝝈 ⋅ 𝑬𝛱
8𝑚2 −

𝛱𝑖𝑞𝝈 ⋅ 𝑬
8𝑚2 =

𝑖𝑞𝝈 ⋅ 𝑬𝛱
8𝑚2 −

𝛱𝑖𝑞𝝈 ⋅ 𝑬
8𝑚2 . (2.119)

This is again a product of Pauli matrices and therefore again an oppor-
tunity to use equation (2.116),

𝑖[𝝈 ⋅ 𝑬, 𝛱]−𝜓𝑒 = 𝑖 [𝝈 ⋅ 𝑬, 𝝈 ⋅ (−𝑖∇ − 𝑞𝑨)]− 𝜓𝑒
= {−(∇ ⋅ 𝑬) − 𝑖𝝈 ⋅ (∇ × 𝑬) − 2𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]}𝜓𝑒. (2.120)

The term proportional to ∇ ⋅ 𝑬 gives rise to a term in the Lagrangian
known as the Darwin term [126, 129] and does not provide any coupling
between spin and the electromagnetic field, so I ignore it here. Inserting
this result back into the Lagrangian, I finally get that the electron
Lagrangian density, written in terms of a single spinor field, is

ℒ𝑒 = 𝜓†𝑒 (𝑖
∂
∂𝑡

− 𝑞𝑉 −
(−𝑖∇ − 𝑞𝑨)2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩

−
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 −
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 )𝜓𝑒. (2.121)

One can also identify the Hamiltonian density, ℎ𝑒, from

ℒ𝑒 = 𝜋†
∂𝜓𝑒
∂𝑡

− ℎ𝑒, (2.122)
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where 𝜋 = 𝑖𝜓†𝑒 is the conjugate momentum density of 𝜓 and the Hamil-
tonian density is

ℎ𝑒 = 𝜓†𝑒 {𝑞𝑉 +
(−𝑖∇ − 𝑞𝑨)2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩 +
𝑞(∇ ⋅ 𝑬)
8𝑚2

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 }𝜓𝑒. (2.123)

Because of the form of equation (2.122) and the fact that the Lagrangian
is symmetric under global 𝑈 (1)-transformation, 𝜓𝑒 ↦ exp(𝑖𝜑)𝜓𝑒, one
can also see that the total number of electrons is conserved, as re-
quired. Because of the form of equation (2.122), we also know from
section 2.5 that the Lagrangian density is consistent with the Heisen-
berg equation and that the spin angular momentum density of the field
is 𝑺 = (1/2)𝜓†𝑒 𝝈𝜓𝑒.

The different terms in the Hamiltonian density have different physi-
cal interpretations. The first term is just the electric potential energy.
The second term is the non-relativistic limit of the kinetic energy
since the kinetic momentum operator is (−𝑖∇ − 𝑞𝑨). The third term
is the Zeeman energy [25]. The Zeeman energy is not a relativistic
correction, since it does not vanish in the limit 𝑚𝑐2 → ∞. It is respon-
sible for the coupling between the magnetic field 𝑩 and electron spin
𝑺 = (1/2)𝜓†𝑒 𝝈𝜓𝑒,

ℎ𝑍 = 𝜓†𝑒
𝑞𝝈
2𝑚

⋅ 𝑩𝜓𝑒 =
𝑞
𝑚
𝑺 ⋅ 𝑩. (2.124)

It also defines a magnetic moment associated with the spin and thereby
a 𝑔-factor [130]. The potential energy of a magnetic moment 𝝁 in a
magnetic field 𝑩 is

ℎ𝑧 = −𝝁 ⋅ 𝑩, (2.125)

and the relationship between the magnetic moment, the 𝑔-factor, 𝑔,
and the spin angular momentum is [130]

𝝁 = 𝑔
𝑞𝑺
2𝑚

. (2.126)

Hence, from equation (2.123), we see that the 𝑔-factor associated with
the spin at the level of operators is exactly 𝑔 = −2. Note, however,
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that to compute measured Zeeman energies one must evaluate the
expectation value of the Zeeman energy operator. Therefore, the
effective 𝑔-factor will be slightly different. This is because

⟨ℎ𝑍⟩ = ⟨
𝑞
𝑚
𝑺 ⋅ 𝑩⟩ ≠

𝑞
𝑚
⟨𝑺⟩ ⋅ ⟨𝑩⟩. (2.127)

The photon field (𝑉 , 𝑨) is also a quantum field. Taking the expectation
value requires taking into consideration the evolution of the photon
field, not to mention the coupling to all the other fields in the standard
model. To evaluate ⟨ℎ𝑍⟩ one can use the perturbative Green’s function
technique discussed in section 5.2 and treat the cubic interaction terms
as perturbations. This has been done to high accuracy and with excel-
lent agreement with experiments, and one gets an effective 𝑔-factor
which is slightly different from −2, 𝑔 = −2.00231930436 [130, 131].

The fourth and fifth terms of equation (2.123) together constitute
the spin-orbit interaction,

ℎSO = 𝜓†𝑒 (
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 )𝜓𝑒. (2.128)

With only static charges, such that ∂𝐵/∂𝑡 = 0, the electric field is curl-
free and the first term vanishes. The spin-orbit interaction couples the
electron spin, through the Pauli matrices 𝝈, to the electric field 𝑬, and
makes it possible to manipulate spin angular momentum using the
electric field. Since electric fields can be easier to localize in space [132,
133] compared to magnetic fields [134–136], it can be advantageous to
rely on the spin-orbit interaction rather than the Zeeman interaction
when designing spin-based technology.

2.7 Quantum Electrodynamics

The Hamiltonian derived in section 2.6,

ℋ = ∫
ℝ3

d3𝑥 𝜓†𝑒 {𝑞𝑉 +
(−𝑖∇ − 𝑞𝑨)2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 − 𝜇}𝜓𝑒, (2.129)

is not enough for a complete description of the electron field. It includes
terms that couple the electron field to the photon field (𝑉 , 𝑨). A
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complete model must also determine how this field evolves in time.
Moreover, for a proper quantummechanical treatment of electrons one
must treat the photon field quantum mechanically. This means that
the photon field is also a field of operators, and the temporal evolution
of these operators can be determined by extremizing the action. Note
that since the electric and magnetic fields should be observable, they
should be symmetric operators, meaning that 𝑬† = 𝑬 and 𝑩† = 𝑩.
This also means that 𝑉 and 𝑨 are symmetric, since 𝑬 = −∇𝑉 − ∂𝑨/∂𝑡
and 𝑩 = ∇ ×𝑨. Furthermore, the electromagnetic field is a vector field,
which implies that operators should commute by the spin-statistics
theorem [117].

The full Lagrangian density is

ℒ = ℒ𝑒 +ℒem +ℒrest = ℒ𝑒 +
1
2
(𝑬 ⋅ 𝑬 + 𝑩 ⋅ 𝑩) + ℒrest, (2.130)

where ℒ𝑒 is the electron Lagrangian density from before, ℒem =
(𝑬 ⋅ 𝑬 + 𝑩 ⋅ 𝑩)/2 is the Lagrangian for the photon field and ℒrest is the
Lagrangian density for the other, remaining fields. In the most funda-
mental description, the standard model, this would be for example the
quark fields and the other lepton fields. In a higher-level description,
ℒrest could include an effective proton field, or, at an even higher level,
it could be the Lagrangian describing the ions in a crystalline solid.
The coupling between the electron field and the photon field is simpler
if we use the Dirac Lagrangian,

ℒ𝑒 +ℒem = 𝜓†𝐷 [𝑖 ∂
∂𝑡

+ 𝑖𝜶 ⋅ ∇ − 𝛽𝑚] 𝜓𝐷 + 1
2
(𝑬 ⋅ 𝑬 + 𝑩 ⋅ 𝑩)

− 𝑞𝜓†𝐷𝑉𝜓𝐷 + 𝑞𝜓†𝐷𝜶 ⋅ 𝑨𝜓𝐷, (2.131)

where I isolated the interaction terms. This is the Lagrange density
of quantum electrodynamics [137]. One can get a theory with fewer
variables by first solving for the photon operators. That is, one can
write the photon operators as functions of the other field operators,
thereby getting a new effective Lagrangian that only depends on the
other fields.

To find the equations for the photon field, one can extremize the
action with respect to 𝑉 and 𝑨. Extremizing the action of the interac-
tion terms −𝑞𝜓†𝐷𝑉𝜓𝐷 and 𝑞𝜓†𝐷𝜶 ⋅ 𝑨𝜓𝐷 is easy because they are linear
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in 𝑉 and 𝑨. First, I extremize the action of ℒem with respect to 𝑉. The
magnetic field, 𝑩 = ∇ × 𝑨, does not depend on 𝑉, so we need only
consider the electric field, 𝑬 = −∇𝑉 − ∂𝑨/∂𝑡. The Lagrangian density
of the photon field only depends on ∇𝑉, and the relevant term in the
Euler-Lagrange equation (2.61) is

−∇ ⋅ [
∂ℒem

∂(∇𝑉 )
] = −∇ ⋅ [∇𝑉 + ∂𝑨

∂𝑡
] . (2.132)

Hence, if −𝜌rest is the functional derivative of the action of ℒrest with
respect to 𝑉, then

𝛿𝑆
𝛿𝑉

= −∇2𝑉 − ∇ ⋅ ∂𝑨
∂𝑡

− 𝑞𝜓†𝐷𝜓𝐷 − 𝜌rest = 0. (2.133)

By similarly extremizing the action with respect to 𝑨 one gets the set
of equations for the photon field given by

∇2𝑉 + ∂∇ ⋅ 𝑨
∂𝑡

= −𝑞𝜓†𝐷𝜓𝐷 − 𝜌rest, (2.134a)

∇2𝑨 − ∂2𝑨
∂𝑡2

− ∇ (∂𝑉
∂𝑡

+ ∇ ⋅ 𝑨) = −𝑞𝜓†𝐷𝜶𝜓𝐷 − 𝒋rest, (2.134b)

where 𝒋rest is the functional derivative of the action of ℒrest with
respect to 𝑨. One should interpret 𝜌rest and 𝒋rest as the electric charge
density and electric current density of the other fields, respectively.

Equation (2.134) can be solved such that the photon field operators
can be written as a function of the Dirac bispinors as well as 𝜌rest
and 𝒋rest. One way to do so is to utilize the gauge symmetry equa-
tion (2.131), which is the fact that the Lagrangian is invariant under
the transformation [116]

𝜓𝐷 ↦ e𝑖𝑞𝜆𝜓𝐷, (2.135a)

𝑉 ↦ 𝑉 − ∂𝜆
∂𝑡
, (2.135b)

𝑨 ↦ 𝑨 + ∇𝜆, (2.135c)

and similar transformations for the other fields, for any scalar-valued
operator function 𝜆(𝑡, 𝒓). Note that since we are still interpreting 𝜓𝐷,
𝑉, and 𝑨 as field operators, the act of changing gauge means that
the annihilation operator 𝜓𝐷(𝑡, 𝒓) not only acts on the Dirac field by
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annihilating an electron (or positron) but it also acts on the photon field.
However, 𝜓†𝐷𝜓𝐷 and 𝜓†𝐷𝜶𝜓𝐷 still act only on the Dirac field because the
effects on the photon field cancel.

Using the freedom to choose 𝜆, one can demand that

∂𝑉
∂𝑡

+ ∇ ⋅ 𝑨 = 0. (2.136)

This is called the Lorenz gauge condition and has the advantage of
decoupling the equations for 𝑉 and 𝑨, such that

( ∂2

∂𝑡2
− ∇2) 𝑉 = 𝑞𝜓†𝐷𝜓𝐷 + 𝜌rest, (2.137a)

( ∂2

∂𝑡2
− ∇2)𝑨 = 𝑞𝜓†𝐷𝜶𝜓𝐷 + 𝒋rest. (2.137b)

Equation (2.137) are solved by

𝑉 = 𝑉𝑒 + 𝑉rest + 𝑉ext, (2.138a)

𝑨 = 𝑨𝑒 + 𝑨rest + 𝑨ext, (2.138b)

where

𝑉𝑒(𝑡, 𝒙) =
𝑞
4𝜋 ∫

ℝ3
d3𝑦

𝜓†𝐷(𝑡ret, 𝒚)𝜓𝐷(𝑡ret, 𝒚)
|𝒙 − 𝒚|

, (2.139a)

𝑉rest(𝑡, 𝒙) =
1
4𝜋 ∫

ℝ3
d3𝑦

𝜌rest(𝑡ret, 𝒚)
|𝒙 − 𝒚|

, (2.139b)

𝑨𝑒(𝑡, 𝒙) =
𝑞
4𝜋 ∫

ℝ3
d3𝑦

𝜓†𝐷(𝑡ret, 𝒚)𝜶𝜓𝐷(𝑡ret, 𝒚)
|𝒙 − 𝒚|

, (2.139c)

𝑨rest(𝑡, 𝒙) =
1
4𝜋 ∫

ℝ3
d3𝑦

𝒋rest(𝑡ret, 𝒚)
|𝒙 − 𝒚|

, (2.139d)

are so-called Liénard–Wiechert potentials [138, 139]. Here, 𝑡ret =
𝑡−|𝒙−𝒚| is called the retarded time. I will just approximate 𝑡 = 𝑡ret since
the difference is small when speeds are small compared to the speed of
light. The external potentials 𝑉ext and 𝑨ext satisfy the homogeneous
solution,

( ∂2

∂𝑡2
− ∇2) 𝑉ext = 0, (2.140a)

( ∂2

∂𝑡2
− ∇2)𝑨ext = 0. (2.140b)
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When considering subsystems spanned by the field operators of only a
finite region in space, I will add the contributions from external sources
to the external potentials. Note that 𝑉ext and 𝑨ext cannot be chosen
entirely freely. Otherwise, one could set the photon field operators to
zero in the absence of charges, which is not true. Depending on the
ensemble of states under consideration, it might be a good approxima-
tion to set 𝑉ext and 𝑨ext to zero, but it is not something that is valid
in general. The point of this exercise is not to fully determine photon
operators in terms of electron operators. Instead, the point is to extract
how the photon field evolves in space and time as a function of the
other fields. By extracting this dependence, it becomes much simpler
to evaluate expectation values. Since the 𝑉ext and 𝑨ext do not couple
to 𝜓𝐷, ⟨𝑉ext𝜓

†
𝐷𝜓𝐷⟩ = ⟨𝑉ext⟩⟨𝜓

†
𝐷𝜓𝐷⟩, and similarly for expectation values

involving 𝑨ext.
Next, I would like to express the photon field in terms of the electron

spinor field, 𝜓𝑒, rather than the Dirac bispinors, 𝜓𝐷. This can be done by
simply inserting the expressions obtained in section 2.6, namely 𝜓 𝑇𝐷 =
(𝑢, 𝑃𝝈 ⋅ (−𝑖∇ − 𝑞𝑨)𝑢) and 𝑢 = {1 − 1

8𝑚2 [𝝈 ⋅ (−𝑖∇ − 𝑞𝑨)]2} 𝜓𝑒. However,
I am again only interested in relativistic corrections which couple spin
to the electric or magnetic field. As a result, it is simpler to take the
functional derivative of the non-relativistic action defined by using
equation (2.129). Doing this I find that the charge density operator is

𝜌𝑒 = 𝑞𝜓†𝐷𝜓𝐷 ≈ 𝑞𝜓†𝑒 𝜓𝑒 +
𝑞

4𝑚2∇ ⋅ [𝜓†𝑒 𝝈 × (−𝑖∇ − 𝑞𝑨)𝜓𝑒] . (2.141)

and the electric current density operator is

𝒋𝑒 = 𝑞𝜓†𝐷𝜶𝜓𝐷 ≈
𝑞
2𝑚

𝜓†𝑒 (−𝑖∇ − 𝑞𝑨)𝜓𝑒 +
𝑞
2𝑚

[(−𝑖∇ − 𝑞𝑨)𝜓𝑒]†𝜓𝑒

−
𝑞
2𝑚

∇ × (𝜓†𝑒 𝝈𝜓𝑒) +
𝑞

4𝑚2 𝜓
†
𝑒 𝑬 × 𝝈𝜓𝑒 −

∂
∂𝑡
[
𝑖𝑞
8𝑚2∇ × (𝜓†𝑒 𝝈𝜓𝑒)]

+ ∂
∂𝑡
[

𝑞
4𝑚2 𝜓

†
𝑒 𝝈 × (−𝑖∇ − 𝑞𝑨)𝜓𝑒] . (2.142)

The terms proportional to 1/𝑚2 are the relativistic corrections that
come from the spin-orbit coupling. Inserting equations (2.141) and (2.142)
as well as the charge and current densities from the other fields into
equation (2.139) and then inserting 𝑉 and 𝑨 into the final Lagrangian,
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we get a new theorywithout electron-photon coupling butwith electron-
electron coupling as well as coupling between the electron field and
all the other charged fields.

Note that even though bothℒem andℒrest depend on 𝜓𝑒 after insert-
ing the solutions of 𝑉 and 𝑨, extremizing the action with respect to 𝜓𝑒
still only requires the electron Lagrangian density ℒ𝑒. This is because
a version of the chain rule also works for functional derivatives [140].
Using this chain rule, taking the functional derivative of the action 𝑆
with respect to 𝜓𝑒 gives

𝛿𝑆
𝛿𝜓𝑒

= 𝛿𝑆
𝛿𝜓𝑒

|
𝑉 ,𝑨

+ 𝛿𝑆
𝛿𝑉

∂𝑉
∂𝜓𝑒

+ 𝛿𝑆
𝛿𝑨

⋅ ∂𝑨
∂𝜓𝑒

, (2.143)

where the subscript on the first term on the right-hand side means
that the functional derivative should be taken while keeping 𝑉 and 𝑨
constant. Since the action is already extremized with respect to 𝑉 and
𝑨, the last two terms on the right-hand side vanish, and

𝛿𝑆
𝛿𝜓𝑒

= 𝛿𝑆
𝛿𝜓𝑒

|
𝑉 ,𝑨

. (2.144)

When 𝑉 and 𝑨 are kept constant, the only part of the Lagrangian that
depends on 𝜓𝑒 is the electron Lagrangian. To specify the electron dy-
namics one therefore still only has to specify the electron Hamiltonian.
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3Quantum Theory of Solids
Building upon the foundation laid in the previous chapter, the aim of
this chapter is to derive models for crystalline solid states of matter.
In such materials, atoms are placed in an approximate lattice. The
distance between neighboring atoms is on the order of angstroms
(10−10 m) [141]. As a result, the electromagnetic field varies on a very
short length scale, and the real space Hamiltonian can be difficult to
work with. Instead, it is often better to use lattice models, which I
derive in section 3.1. One can apply lattice models to study a wide
range of the rich physics found in solid state systems, from topological
insulators [142, 143] to quantum spin liquids [144–146]. For the work
presented in this thesis, it is of special interest to use lattice models to
studymagnetic and superconductingmaterials. I show howmagnetism
and superconductivity are captured by lattice models in sections 3.2
and 3.3, respectively. Finally, in section 3.4 I show how to include the
effect of external fields.

3.1 Lattice Models

In crystalline solid states of matter, atoms are placed in an approximate
lattice [141]. That is, there is a periodic lattice of charged ions, but
the ions can move and there may be defects in the lattice. Both the
dynamics of the charged ions and the impurities are important for
the behavior of solid states of matter. These effects can be added
as corrections to an otherwise perfectly periodic lattice. I define a
lattice vector 𝑹𝑎 as being such that the lattice is invariant under the
translation of 𝑹𝑎, neglecting any impurities and dynamics in the lattice.
This means that there can in general be multiple ions associated with
each lattice site. The Hamiltonian for the electrons has been derived
in section 2.6 to be

ℋ = ∫
ℝ3

d3𝑥 𝜓†{𝑞𝑉 +
(−𝑖∇ − 𝑞𝑨)2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 − 𝜇}𝜓 . (3.1)
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As a reminder, the electron field 𝜓 = (𝜓↑, 𝜓↓)𝑇 is a 2-component spinor
field, 𝜇 is the chemical potential, 𝑚 is the electron mass, 𝑞 is electric
charge, 𝑉 is the electric potential, 𝑨 is the vector potential, 𝑬 = −∇𝑉 −
∂𝑨/∂𝑡 is the electric field and 𝑩 = ∇ × 𝑨 is the magnetic field. When
deriving equation (3.1) I neglected all relativistic corrections except for
the spin-orbit interaction. However, treating even only the spin-orbit
interaction consistently is no simple task, as it requires relativistic
corrections to the electron charge density and the electron charge
current density, given by equations (2.141) and (2.142), respectively.

If we collect the potentials from the other fields, such as the ions,
and from external sources as

𝑉env = 𝑉ext + 𝑉rest, (3.2a)

𝑨env = 𝑨ext + 𝑨rest, (3.2b)

where 𝑉rest, 𝑨rest is given by equation (2.139) and 𝑉ext and 𝑨ext are the
external potentials, we can write the Hamiltonian as

ℋ = ∑
𝜎1,𝜎2∈↑↓

∫
ℝ3

d3𝑥 𝜓†𝜎1(𝒙)𝑀𝜎1𝜎2(𝒙)𝜓𝜎2(𝒙)

+ ∑
𝜎1,𝜎2,𝜎3,𝜎4∈↑↓

∫
ℝ3

d3𝑥 ∫
ℝ3

d3𝑦 𝜓†𝜎1(𝒙)𝜓
†
𝜎2(𝒚)𝑁𝜎1𝜎2𝜎3𝜎4(𝒙, 𝒚)𝜓𝜎3(𝒚)𝜓𝜎4(𝒙),

(3.3)

where

𝑀 = 𝑞𝑉env +
(−𝑖∇ − 𝑞𝑨env)

2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩env

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬env)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬env × (−𝑖∇ − 𝑞𝑨env)]

4𝑚2 − 𝜇 (3.4)

and 𝑁 can be derived from combining equations (2.131) and (3.1) with
equations (2.139), (2.141) and (2.142). Both 𝑀 and 𝑁 involve differenti-
ation operators, but they do not include any electron field operators.
They do, however, include charge and current operators for the field
describing the ions.

The fact that the electromagnetic field associated with the ions varies
very rapidly in space makes equation (3.3) difficult to work with. In
order to derive a simpler effective model, one can use creation and
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annihilation operators associated with the eigenstates of a self-adjoint
operator different from the position operator. One observation that mo-
tivates another set of eigenstates is that close to an atom in the lattice,
the Hamiltonian is well approximated by an atomic Hamiltonian,

ℋ𝑎 = ∫
ℝ3

d3𝑥 𝜓†{𝑞𝑉𝑎 +
(−𝑖∇ − 𝑞𝑨𝑎)

2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩𝑎

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬𝑎)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬𝑎 × (−𝑖∇ − 𝑞𝑨𝑎)]

4𝑚2 − 𝜇}𝜓 , (3.5)

where 𝑉𝑎, 𝑨𝑎, 𝑬𝑎, and 𝑩𝑎 are the electromagnetic potentials and fields
associated with the atom. This Hamiltonian is self-adjoint, and so it
has a complete set of (possibly generalized) eigenstates. Some of these
eigenstates, called orbitals, might also be tightly localized around the
atom, such that they are good approximations for the eigenstates of
the full Hamiltonian as well. One possibly tempting approach is to
write states in terms of eigenstates of atomic Hamiltonians but shifted
in space such that they match the atoms in the lattice. However, there
is a problem with this.

Take for instance a crystalline material with a single atom in the unit
cell, and let {|𝑛⟩} be the eigenstates of the associated atomic Hamilto-
nian. In this case, a seemingly reasonable choice for basis is to use {|𝑛⟩},
but shifted in space, since this will well approximate the eigenstates of
the full Hamiltonian, at least the states in {|𝑛⟩} which are sufficiently
localized. That is, for a general state |𝜓 ⟩, one might want to write

|𝜓 ⟩ = ∑
𝑛,𝑚

𝑏𝑛𝑚|𝑛, 𝑹𝑚⟩, (3.6)

where |𝑛, 𝑹𝑚⟩ is orbital 𝑛 shifted in space to lattice site 𝑹𝑚, meaning
that ⟨𝒙|𝑛, 𝑹𝑚⟩ = ⟨𝒙 − 𝑹𝑚|𝑛⟩. However, this does not work because
the set {|𝑛, 𝑹𝑚⟩} is not an orthonormal basis. As a consequence, the
coefficients {𝑏𝑛𝑚} cannot be uniquely determined. This can be seen
easily from the fact that a single set of atomic orbitals, {|𝑛⟩}, spans all
of the single-particle Hilbert space. Thus, the coefficients {𝑏𝑛𝑚} can
be determined for any fixed choice of 𝑚. One alternative is to instead
approximate states by their projection onto the subspace spanned
by the few smallest orbitals from each atom. This can be a good
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approximation if the electrons are tightly bound around each lattice
site.

A choice for a proper complete orthonormal basis, which is similar
in nature to translated atomic orbitals, is to choose a set of so-called
Wannier states [147, 148]. These are also localized in space around the
lattice sites [148], and they can be motivated by Bloch’s theorem [141,
149]. Bloch’s theorem concerns the eigenstates of systems with peri-
odic potentials. The Hamiltonians of periodic systems commute with
the translation operator that shifts space according to a lattice vector.
The eigenstates of the lattice translation operator can be labeled by
reciprocal vectors, 𝒌, meaning they live in the space defined by the
Fourier transform of the lattice vectors. Furthermore, they can be
restricted to the first Brillouin zone [141]. This means that the eigen-
states of a periodic Hamiltonian also can be labeled by 𝒌. A general
eigenstate of a periodic Hamiltonian can therefore be written |𝜓𝑛𝒌⟩.
Bloch’s theorem states that [141]¹

⟨𝒙|𝜓𝑛𝒌⟩ = e−𝑖𝒌⋅𝑹𝑚⟨𝒙 + 𝑹𝑚|𝜓𝑛𝒌⟩. (3.7)

This is just an immediate consequence of the fact that |𝜓𝑛𝒌⟩ is an
eigenstate of the translation operator 𝑇𝑹𝑛 ∶ 𝒙 ↦ 𝒙+𝑹𝑛 with eigenvalue
exp(−𝑖𝒌 ⋅ 𝑹𝑛), so

⟨𝒙|𝜓𝑛𝒌⟩ = ⟨𝒙 + 𝑹𝑚|𝑇𝑹𝑚 |𝜓𝑛𝒌⟩ = e−𝑖𝒌⋅𝑹𝑚⟨𝒙 + 𝑹𝑚|𝜓𝑛𝒌⟩. (3.8)

The Wannier states are defined in terms of the eigenstates of the
periodic Hamiltonian as [148]

|𝜑𝑛𝑹𝑚⟩ =
1
√𝑁

∑
𝒌

e−𝑖𝒌⋅𝑹𝑚 |𝜓𝑛𝒌⟩, (3.9)

where the sum goes over the first Brillouin zone and 𝑁 is the number
of lattice points. Unlike the multiple sets of translated atomic orbitals
above, the set of Wannier states is orthonormal, since

⟨𝜑𝑛𝑹𝑎 |𝜑𝑚𝑹𝑏⟩ =
1
𝑁
∑
𝒌,𝒒

e𝑖𝒌⋅𝑹𝑎−𝑖𝒒⋅𝑹𝑏⟨𝜓𝑛𝒌|𝜓𝑚𝒒⟩

= 1
𝑁
∑
𝒌

e𝑖𝒌⋅(𝑹𝑎−𝑹𝑏)⟨𝜓𝑛𝒌|𝜓𝑚𝒒⟩𝛿𝑛𝑚 = 𝛿𝑹𝑎𝑹𝑏𝛿𝑛𝑚, (3.10)

1. There are really two eigenstates of the position operator at every point. Therefore,
|𝒙⟩ should also include a spin index, |𝒙, 𝜎⟩, which I omitted here for notational
brevity.
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where I used that the eigenstates of the Hamiltonian are assumed
orthonormal, so ⟨𝜓𝑛,𝒌|𝜓𝑚,𝒒⟩ = 𝛿𝑛,𝑚𝛿𝒌,𝒒.

To write the Hamiltonian in terms of creation and annihilation
operators for the Wannier states, one can relate the field operators in
equation (3.3) to the creation and annihilation operators, {𝑐†𝑛𝑹𝑚

} and
{𝑐𝑛𝑹𝑚}, using equation (2.37). There are two field operators per spatial
position, corresponding to two eigenstates of the position operators,
|𝒓 , ↑⟩ and |𝒓 , ↓⟩. Defining the Wannier functions 𝜑𝜎𝑛𝑹𝑚(𝒓) = ⟨𝒓, 𝜎 |𝜑𝑛𝑹𝑚⟩
and using that 𝜑𝜎𝑛𝑹𝑚(𝒓) = 𝜑𝜎𝑛(𝒓 − 𝑹𝑚), where I assumed there is a
lattice site at the origin and defined 𝜑𝜎𝑛 ≡ 𝜑𝜎𝑛0, equation (3.3) can be
written as

ℋ = ∑
𝑛,𝑚

∑
𝑹𝑎,𝑹𝑏

𝑀𝑛𝑹𝑎𝑚𝑹𝑏𝑐
†
𝑛𝑹𝑎

𝑐𝑚𝑹𝑏

+ ∑
𝑛,𝑚,𝑝,𝑞

∑
𝑹𝑎,𝑹𝑏,𝑹𝑐,𝑹𝑑

𝑁𝑛𝑹𝑎𝑚𝑹𝑏𝑝𝑹𝑐𝑞𝑹𝑑𝑐
†
𝑛𝑹𝑎

𝑐†𝑚𝑹𝑏
𝑐𝑝𝑹𝑐𝑐𝑞𝑹𝑑 , (3.11)

where the matrix elements are

𝑀𝑛𝑹𝑎𝑚𝑹𝑏 = ∑
𝜎1,𝜎2∈{↑,↓}

∫
ℝ3

d3𝑟 𝜑∗𝜎1𝑛(𝒙 − 𝑹𝑎)𝑀𝜎1𝜎2(𝒙)𝜑𝜎2𝑚(𝒙 − 𝑹𝑏)

(3.12)

and

𝑁𝑛𝑹𝑎𝑚𝑹𝑏𝑝𝑹𝑐𝑞𝑹𝑑 = ∑
𝜎1,𝜎2,𝜎3,𝜎4∈{↑,↓}

∫
ℝ3

d3𝑥 ∫
ℝ3

d3𝑦 𝜑∗𝜎1𝑛(𝒙 − 𝑹𝑎)

× 𝜑∗𝜎2𝑚(𝒚 − 𝑹𝑏)𝑁𝜎1𝜎2𝜎3𝜎4(𝒙, 𝒚)𝜑𝜎3𝑝(𝒚 − 𝑹𝑐)𝜑𝜎4𝑞(𝒙 − 𝑹𝑑). (3.13)

Wannier states can in principle be defined for any orthonormal set
of eigenstates for a periodic Hamiltonian. The full Hamiltonian is not
periodic, so one should use the eigenstates of the periodic Hamiltonian
that best approximates the full Hamiltonian. This is obtained by setting
the external potentials to zero and setting the ions in their equilib-
rium configurations with no impurities in the lattice. That being said,
determining the Wannier functions is often not feasible for realistic
systems. A popular simplifying approximation is to approximate the
Wannier functions by the orbitals from above. This is known as the
tight binding approximation [141].
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Another simplifying assumption is to assume that only one or a few
orbitals are relevant to the dynamics of the system. The orbitals of
an atom can be sorted into discrete energy levels. The orbitals with
lower energies are generally more tightly packed around the atom.
As the number of electrons in the system is increased, the orbitals
with the lowest energies will be filled first. Take an electron in one of
these states with energy 𝜀. In order to excite this electron to another
orbital, one would need to raise its energy by 𝐸unoccupied − 𝜀, where
𝐸unoccupied is the energy of the first unoccupied state. This is because
each electron state can only be occupied once, by virtue of electrons
being fermions. If 𝐸unoccupied − 𝜀 is larger than all the relevant energy
scales in the system, such as the temperature, the state with energy 𝜀
will simply remain fully occupied, not contributing to the dynamics
of the system. Similarly, unoccupied states with energies much larger
than 𝐸unoccupied will simply remain unoccupied.

Hence, a reasonable assumption is often that only a fixed number
of Wannier states contribute to the dynamics of the system. The
remaining states have energies that are either too large or too small,
so they remain either almost completely empty or almost completely
occupied at all times. In other words, we do not need to know how
operators such as the Hamiltonian act on all possible state vectors in
Fock space. It is sufficient to know how they act on states where the
majority of Wannier states are either fully occupied or fully empty. If
a Wannier state |𝜑𝑛𝑹𝑎⟩ is always fully empty, we can set 𝑐†𝑛𝑹𝑎

𝑐𝑛𝑹𝑎 = 0,
since this is true for all the states one needs to consider. Similarly, if
the state is always fully occupied, we can set 𝑐†𝑛𝑹𝑎

𝑐𝑛𝑹𝑎 = 1. Thus, some
of the quartic terms become quadratic terms, and some quadratic terms
become constants. In essence, it is equivalent to adding the spin and
electric charge associated with the occupied states when computing
𝑉env and 𝑨env. Considering only a subspace of Fock space defined by
the occupation of Wannier states is similar to considering a subspace
spanned by only a few orbitals at each ion, as discussed above. The
difference with considering a subspace of Wannier states rather than a
subspace of orbitals is that the Wannier states are orthonormal, so the
Wannier states also works as an orthonormal basis for the subspace,
allowing us to use creation and annihilation operators for the Wannier
states.
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Another observation that can be used to simplify the problem is that
the integrals in equations (3.12) and (3.13) are smaller when the lattice
sites are further apart from each other. For example, one possible
simplification is to set equation (3.13) to zero unless 𝑹𝑎 = 𝑹𝑏 = 𝑹𝑐 = 𝑹𝑑.
If there is only one atom per lattice site, and if one assumes that
only one active orbital per spin per lattice site, the model with these
simplifications become

ℋ = −∑
𝑖,𝑗

∑
𝜎1,𝜎2∈{↑,↓}

𝑐†𝑖𝜎1 𝑡
𝑖𝑗
𝜎1𝜎2𝑐𝑗𝜎2

+∑
𝑖

∑
𝜎1,𝜎2,𝜎2,𝜎4∈{↑,↓}

𝑈 𝑖
𝜎1𝜎2𝜎2𝜎4𝑐

†
𝑖𝜎1𝑐

†
𝑖𝜎2𝑐𝑖𝜎3𝑐𝑖𝜎4 , (3.14)

for some 𝑡 𝑖𝑗𝜎1𝜎2 and 𝑈 𝑖
𝜎1𝜎2𝜎2𝜎4 , where the sums goes over the lattice sites.

Since 𝑐𝑖𝜎𝑐𝑖𝜎 = 𝑐†𝑖𝜎𝑐
†
𝑖𝜎 = 0, the last sum is only nonzero when 𝜎3 ≠ 𝜎4 and

𝜎1 ≠ 𝜎2. Hence,

ℋ = −∑
𝑖,𝑗

∑
𝜎1,𝜎2∈{↑,↓}

𝑐†𝑖𝜎1 𝑡
𝑖𝑗
𝜎1𝜎2𝑐𝑗𝜎2 +∑

𝑖
𝑈 𝑖𝑛𝑖↑𝑛𝑖↓, (3.15)

where 𝑛𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎. This is known as the (single orbital) Hubbard
model [150, 151].

3.2 Magnetism

Different Wannier states have different spins, and from above we
know that there is a magnetic moment associated with each spin. In a
magnetic system, there is an effective interaction between the spins at
different lattice sites. This tends to either align the magnetic moments
in the same direction, in which case the material is called ferromag-
netic, or it tends to align the magnetic moments in opposite directions,
in which case the material is called either antiferromagnetic or fer-
rimagnetic [141]. The material is antiferromagnetic if the oppositely
aligned magnetic moments are of equal magnitude, giving a net zero
magnetic moment. Otherwise, the material is ferrimagnetic.

There does not need to be any intrinsic magnetic interactions in the
system for a material to be magnetic. In fact, even the simple single
orbital Hubbard model from above,

ℋ = −∑
𝑖,𝑗

∑
𝜎∈{↑,↓}

𝑡 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎 + 𝑈 ∑
𝑖
𝑛𝑖↑𝑛𝑖↓, (3.16)
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displays magnetic properties [151]. Here I have removed the vector
potential, the magnetic field, and the spin-orbit coupling potential from
the model, which means that the hopping term becomes 𝑡 𝑖𝑗𝜎1𝜎2 = 𝛿𝜎1𝜎2 𝑡

𝑖𝑗.
I also assumed for simplicity that the on-site potential 𝑈 is independent
of lattice site. To see why equation (3.16) displays magnetic properties,
note that by tracing back the definition of 𝑈 in the simplest case with
no relativistic corrections, it is equal to an integral of strictly positive
terms, meaning that 𝑈 is positive. As a result, the energy from 𝑈 is
minimized when there is at most one electron at every lattice site. On
the other hand, if 𝑡 𝑖𝑗 is positive, the term −𝑡 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎 favors states in which
site 𝑗 has an occupied state with spin 𝜎 while site 𝑖 does not.

If we assume a system with half-filling, meaning that there is on
average 1 electron on each site, the minimum energy is for a state
|𝜓 ⟩ where every site is occupied by exactly one electron, and the spin
alternates between neighboring sites.² The fact that there is only one
particle per site means that 𝑛𝑖↑𝑛𝑖↓|𝜓 ⟩ = 0 for all 𝑖, and the fact that
the spins alternate means that tunneling between neighboring sites is
still allowed, meaning that 𝑡 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎|𝜓 ⟩ ≠ 0 for neighboring 𝑖 and 𝑗. The
amplitude of 𝑡 𝑖𝑗 decreases with relative distance, so neighboring sites
are most important. Hence, the Hubbard model at half-filling is an
antiferromagnet, even if there are no magnetic fields in the Hamilto-
nian. At different filling fractions, the Hubbard model can also show
ferromagnetic properties [152].

When studying magnetic materials, one popular choice for an effec-
tive Hamiltonian is the so-called Heisenberg model [114, 150],

ℋ = ∑
𝑖𝑗
𝐽𝑖𝑗𝑺𝑖 ⋅ 𝑺𝑗, (3.17)

where 𝐽𝑖𝑗 is a constant and 𝑺𝑖 is the spin at lattice site 𝑖. This model
is also something I employ in my work (paper VI), so I will derive it
here from the half-filled Hubbard model. Because I restrict the filling
fraction to half-filling, I consider only the subspace of Fock-space with
𝑁 particles, where 2𝑁 is the total number of lattice sites. As a result, if

2. Note that this antiferromagnetic state is not an eigenstate of the Hamiltonian,
and therefore not the ground state. A proper quantum ground state is a bit more
complicated, but the qualitative feature of predominately alternating spins is the
same.
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we assume that 𝑡 𝑖𝑖 is independent of 𝑖, then

−∑
𝑖

∑
𝜎∈{↑,↓}

𝑡 𝑖𝑖𝑐†𝑖𝜎𝑐𝑗𝜎 = −𝑡 𝑖𝑖𝑁 (3.18)

is just a constant. We can remove this term by a constant energy shift,
so

ℋ = −∑
𝑖≠𝑗

∑
𝜎∈{↑,↓}

𝑡 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎 + 𝑈 ∑
𝑖
𝑛𝑖↑𝑛𝑖↓, (3.19)

where the first sum now goes over all pairs (𝑖, 𝑗) of lattice sites where
𝑖 ≠ 𝑗. Next, I want to treat the first sum as a perturbation. That is, I
assume that 𝑈 ≫ 𝑡 𝑖𝑗 for all 𝑖 and 𝑗.

Let

ℋ0 = 𝑈 ∑
𝑖
𝑛𝑖↑𝑛𝑖↓. (3.20)

Any state in which there is exactly one electron per site is an eigen-
state of ℋ0 with the minimum eigenvalue equal to 0. There are 2𝑁

orthogonal such states, spanning a space 𝒱0. Similarly, any state in
which there is exactly one site with two electrons will be an eigenstate
with eigenvalue 𝑈. The set of all such states spans 𝒱1 Let 𝑃𝑛 be the
projection operator which maps states onto their projection on 𝒱𝑛,
where 𝒱𝑛 is space spanned by all states with 𝑛 doubly occupied lattice
sites. The projection operators satisfy 𝑃𝑖𝑃𝑗 = 𝛿𝑖𝑗𝑃𝑖. Using the projection
operators, we can write

ℋ0 =
⌊𝑁/2⌋
∑
𝑛=0

𝑛𝑈𝑃𝑛. (3.21)

When 𝑈 is large, the lowest energy eigenstates ofℋmust have a large
projection onto 𝒱0. The aim when deriving an effective Hamiltonian
is to define a subspace in which all relevant states can be expected to
live in. That is, the probability for a state in the statistical ensemble
to be outside this space is vanishingly small. Then, one can neglect
all terms in the Hamiltonian which has a negligible operator norm
when acting on this subspace, as explained above. Since states in 𝒱𝑛
are multiplied by 𝑛𝑈 when acted upon by ℋ0, a first guess for such a
subspace might be 𝒱0. This is a good approximation to zeroth order
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in 𝑡 𝑖𝑗/𝑈. However, all states in 𝒱0 are degenerate to zeroth order, so
the zeroth order problem is trivial.

To go above zeroth order, one must consider states which are super-
positions of states in 𝒱0, 𝒱1, and so on. In order to identify a relevant
subspace, I define a similarity transformation on the projection opera-
tors,

̃𝑃𝑛 = 𝑆𝑃𝑛𝑆−1. (3.22)

If we can find 𝑆 such that

ℋ =
⌊𝑁/2⌋
∑
𝑛=0

̃𝑃𝑛ℋ ̃𝑃𝑛, (3.23)

it means that all states in the space defined by ̃𝑃𝑛 are only mapped by
ℋ to states in the same space. Let this space be ̃𝒱𝑛. In particular, all
eigenstates are in ̃𝒱𝑛 for some 𝑛, and the eigenstates in ̃𝒱𝑛 form a com-
plete basis for ̃𝒱𝑛. Since the Hamiltonian defines the time-evolution
operator, it means that if we start with a statistical ensemble of states
in the space defined by ̃𝑃𝑛, then they will remain in this space This
can be used to identify the subspace containing all the lowest energy
eigenstates, which enables us to do perturbation theory.

If we let 𝑆 be a function of the perturbation strength 𝑡 𝑖𝑗/𝑈, and
lim𝑡 𝑖𝑗/𝑈→0 𝑆 = 1, the lowest energy states should be in ̃𝒱0. We can
therefore use it as an effective Hamiltonian

ℋeff = ̃𝑃0ℋ ̃𝑃0. (3.24)

To derive ̃𝑃0, I introduce some notation for this section, which is in-
spired by the general theory of effective Hamiltonians by Soliverez
[153]. For an operator, 𝐴, I define the operation

⟨𝐴⟩ =
⌊𝑁/2⌋
∑
𝑛=0

𝑃𝑛𝐴𝑃𝑛 (3.25)

Clearly, ⟨ℋ0⟩ = ℋ0 but ⟨ℋ⟩ ≠ ℋ. I define also the operation

ℎ(𝐴) = ∑
𝑖≠𝑗

𝑃𝑖𝐴𝑃𝑗
(𝑖 − 𝑗)𝑈

. (3.26)
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Note, using equation (3.21), as well as 𝑃𝑖𝑃𝑗 = 𝛿𝑖𝑗 and ∑𝑛 𝑃𝑛 = 1, that

ℎ([ℋ0, 𝐴]−) = ℎ (
⌊𝑁/2⌋
∑
𝑛=0

𝑈𝑛[𝑃𝑛𝐴 − 𝐴𝑃𝑛])

= ∑
𝑖≠𝑗

⌊𝑁/2⌋
∑
𝑛=0

𝑈
𝑛𝑃𝑖𝑃𝑛𝐴𝑃𝑗 − 𝑃𝑖𝐴𝑃𝑛𝑃𝑗𝑛

(𝑖 − 𝑗)𝑈
= ∑

𝑖≠𝑗

𝑖𝑃𝑖𝐴𝑃𝑗 − 𝑃𝑖𝐴𝑃𝑗𝑗
(𝑖 − 𝑗)

= ∑
𝑖≠𝑗

𝑃𝑖𝐴𝑃𝑗 = ∑
𝑖𝑗
𝑃𝑖𝐴𝑃𝑗 −∑

𝑖
𝑃𝑖𝐴𝑃𝑖 = 𝐴 − ⟨𝐴⟩ (3.27)

Next, I define

ℋ𝑆 = 𝑆−1ℋ𝑆, (3.28)

as well as

𝑊𝑠 = ℋ𝑆 −ℋ0 and 𝑊 = ℋ −ℋ0. (3.29)

This means that 𝑊 is the perturbation. Since,

𝑆𝑊𝑠 = ℋ𝑆 − 𝑆ℋ0 and 𝑊𝑆 = ℋ𝑆 −ℋ0𝑆, (3.30)

we see that

[ℋ0, 𝑆]− = 𝑆𝑊𝑆 − 𝑊𝑆. (3.31)

From equations (3.22) and (3.23), we have that

ℋ𝑠 = 𝑆−1
⌊𝑁/2⌋
∑
𝑛=0

𝑆𝑃𝑛𝑆−1ℋ𝑆𝑃𝑛𝑆𝑆−1 = ⟨ℋ𝑠⟩, (3.32)

so

⟨𝑊𝑆⟩ = ⟨ℋ𝑆 −ℋ0⟩ = ⟨ℋ𝑆⟩ − ⟨ℋ0⟩ = ℋ𝑆 −ℋ0 = 𝑊𝑆. (3.33)

Thus,

0 = ⟨[ℋ0, 𝑆]−⟩ = ⟨𝑆⟩𝑊𝑆 − ⟨𝑊𝑆⟩, (3.34)

where I used that

⟨ℋ0𝐴⟩ =
⌊𝑁/2⌋
∑
𝑛,𝑚=0

𝑛𝑈𝑃𝑛𝑃𝑚𝐴𝑃𝑚 =
⌊𝑁/2⌋
∑
𝑚=0

𝑚𝑈𝑃𝑚𝐴𝑃𝑚 = ⟨𝐴ℋ0⟩, (3.35)
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for all 𝐴. Inserting equation (3.31) into equation (3.27), we also see that

𝑆 = ⟨𝑆⟩ + ℎ(𝑆𝑊𝑆 − 𝑊𝑆). (3.36)

Equations (3.34) and (3.36) are valid for any similarity transformation
such that equation (3.23) holds, and does not uniquely specify 𝑆. To
proceed we must provide additional restrictions on 𝑆 First, we want
lim𝑡 𝑖𝑗/𝑈→∞ 𝑆 = 1. That is, in the absence of the perturbation, ̃𝑃𝑛 =
𝑃𝑛. Another requirement I make is that ⟨𝑆⟩ = 1. This simplifies the
equations and means that if a state |𝜓 ⟩ is entirely in 𝒱𝑛, meaning
that 𝑃𝑖|𝜓 ⟩ = 𝛿𝑖𝑛|𝜓 ⟩, then the projection of 𝑆|𝜓 ⟩ onto 𝒱𝑛 is equal to |𝜓 ⟩.
Inserting this into equations (3.34) and (3.36), I get that

𝑆 = 1 + ℎ(𝑆𝑊𝑆 − 𝑊𝑆), (3.37a)

𝑊𝑆 = ⟨𝑊𝑆⟩. (3.37b)

One can use equation (3.37) to write 𝑆 as a perturbation expansion
in 𝑊, and then one can use that to obtain 𝑊𝑆, which gives ℋ𝑆 and in
turn ℋeff through equation (3.24).

ℋeff = 𝑆𝑃0𝑆−1ℋ𝑆𝑃0𝑆−1 = 𝑆𝑃0ℋ𝑆𝑃0𝑆−1. (3.38)

To zeroth order in𝑊, 𝑆 = 1, so to first order in𝑊, 𝑊𝑆 = ⟨𝑊⟩. However,

⟨𝑊 ⟩ = −∑
𝑖≠𝑗

∑
𝜎∈{↑,↓}

𝑡 𝑖𝑗⟨𝑐†𝑖𝜎𝑐𝑗𝜎⟩ = 0. (3.39)

Inserting this into equation (3.37a), 𝑆 = 1+ℎ(−𝑊), so𝑊𝑆 = ⟨𝑊ℎ(−𝑊)⟩.
We are interested in

ℋeff = 𝑆𝑃0ℋ𝑆𝑃0𝑆−1 = 𝑆𝑃0(ℋ0 + 𝑊𝑆)𝑃0𝑆−1. (3.40)

Since 𝑃𝑛ℋ0𝑃𝑛 = 𝑛𝑈𝑃𝑛, the first term is zero. To second order in 𝑊, the
second term is

𝑆𝑃0𝑊𝑆𝑃0𝑆−1 = −𝑃0𝑊ℎ(𝑊 )𝑃0

= −𝑃0∑
𝑖≠𝑗

∑
𝑎≠𝑏

∑
𝑐≠𝑑

∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

𝑡𝑎𝑏𝑡𝑐𝑑𝑐†𝑎𝜎1𝑐𝑏𝜎1
𝑃𝑖𝑐

†
𝑐𝜎2𝑐𝑑𝜎2𝑃𝑗
(𝑖 − 𝑗)𝑈

𝑃0

= −𝑃0∑
𝑖≠0

∑
𝑎≠𝑏

∑
𝑐≠𝑑

∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

𝑡𝑎𝑏𝑡𝑐𝑑𝑐†𝑎𝜎1𝑐𝑏𝜎1
𝑃𝑖𝑐

†
𝑐𝜎2𝑐𝑑𝜎2𝑃0
𝑖𝑈

(3.41)
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The only nonzero terms have 𝑖 = 1, since 𝑐†𝑐𝜎2𝑐𝑑𝜎2 creates a state in 𝒱1
when acting on a state in 𝒱0. For this reason, I can also remove 𝑃𝑖.
Hence,

𝑃0𝑊𝑆𝑃0 = −1
𝑈
∑
𝑎≠𝑏

∑
𝑐≠𝑑

∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

𝑡𝑎𝑏𝑡𝑐𝑑𝑃0𝑐
†
𝑎𝜎1𝑐𝑏𝜎1𝑐

†
𝑐𝜎2𝑐𝑑𝜎2𝑃0.

(3.42)

Because of the projection operators, only terms with 𝑎 = 𝑑 and 𝑏 = 𝑐
contribute. Since 𝑡𝑎𝑏 = (𝑡𝑏𝑎)∗ if one assumes that ℋ is Hermitian, this
means that, by also applying the fermionic commutation relations,

𝑃0𝑊𝑆𝑃0 = −1
𝑈
∑
𝑎≠𝑏

∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

|𝑡𝑎𝑏|2𝑃0𝑐
†
𝑎𝜎1𝑐𝑏𝜎1𝑐

†
𝑏𝜎2𝑐𝑎𝜎2𝑃0

= ∑
𝑖≠𝑗

∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

|𝑡 𝑖𝑗|2

𝑈
𝑃0𝑐

†
𝑖𝜎1𝑐𝑖𝜎2(𝑐

†
𝑗𝜎2𝑐𝑗𝜎1 − 𝛿𝜎1𝜎2)𝑃0. (3.43)

The second term in equation (3.43) is just a constant because the
sum of electrons is constant and equal to one on all lattice sites. One
can therefore remove this term through a constant shift in the chemical
potential. The first term can be written in terms of the spin operator.
The spin operator for lattice site 𝑖 is defined as

𝑺𝑖 = (𝑐†𝑖↑ 𝑐†𝑖↓)
𝝈
2
(
𝑐𝑖↑
𝑐𝑖↓
) = 1

2
(

𝑆+𝑖 + 𝑆−𝑖
−𝑖𝑆+𝑖 + 𝑖𝑆−𝑖
𝑛𝑖↑ − 𝑛𝑖↓

) , (3.44)

where 𝑆+𝑖 = 𝑐†𝑖↑𝑐𝑖↓, 𝑆
−
𝑖 = 𝑐†𝑖↓𝑐𝑖↑ and 𝑛𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎. Taking the dot product

of two spin operators, I get

2𝑺𝑖 ⋅ 𝑺𝑗 = 𝑆+𝑖 𝑆−𝑗 + 𝑆−𝑖 𝑆
+
𝑗 + 1

2
(𝑛𝑖↑𝑛𝑗↑ + 𝑛𝑖↓𝑛𝑗↓ − 𝑛𝑖↑𝑛𝑗↓ − 𝑛𝑖↓𝑛𝑗↑)

= 𝑆+𝑖 𝑆−𝑗 + 𝑆−𝑖 𝑆
+
𝑗 + 𝑛𝑖↑𝑛𝑗↑ + 𝑛𝑖↓𝑛𝑗↓ −

1
2
(𝑛𝑖↑ + 𝑛𝑖↓) (𝑛𝑗↑ + 𝑛𝑗↓)

= ∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

𝑐†𝑖𝜎1𝑐𝑖𝜎2𝑐
†
𝑗𝜎2𝑐𝑗𝜎1 −

1
2
(𝑛𝑖↑ + 𝑛𝑖↓) (𝑛𝑗↑ + 𝑛𝑗↓) . (3.45)

When projecting onto 𝒱0, where all lattice sites are occupied exactly
once, one can use that 𝑛𝑗↑ + 𝑛𝑗↓ = 1. Hence, the last term in equa-
tion (3.45) is just a constant when projected onto 𝒱0. Applying this to
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the last two terms in equation (3.45), I get that

2𝑃0𝑺𝑖 ⋅ 𝑺𝑗𝑃0 = 𝑃0 ∑
𝜎1∈{↑,↓}

∑
𝜎2∈{↑,↓}

𝑐†𝑖𝜎1𝑐𝑖𝜎2𝑐
†
𝑗𝜎2𝑐𝑗𝜎1𝑃0 (3.46)

which is exactly the expression in equation (3.43). Hence, to second
order in the perturbation,

ℋeff = 𝑃0∑
𝑖≠𝑗

2|𝑡 𝑖𝑗|2

𝑈
𝑺𝑖 ⋅ 𝑺𝑗𝑃0. (3.47)

In other words, the effective Hamiltonian for the half-filled Hubbard
model with strong on-site repulsion 𝑈 is effectively the same as the
Heisenberg model with 𝐽𝑖𝑗 = |𝑡 𝑖𝑗|2/𝑈, acting on the space of states with
one electron on each lattice site. The coupling 𝐽𝑖𝑗 is strictly positive.
Minimizing the energy associatedwith different lattice sites is therefore
done by aligning the spins such that 𝑺𝑖 ⋅ 𝑺𝑗 is negative, meaning that
the model is the antiferromagnetic Heisenberg model.

The single orbital Hubbard model was derived from a simple picture
of electrons only interacting through an electrostatic potential and
only one orbital per spin on each lattice site. Real materials are often
much more complicated. Even if we exclude the effect of spin-orbit
coupling and the Zeeman effect, real materials often consist of multiple
different types of atoms with different numbers of orbitals.

For a more realistic multi-orbital version of the Hubbard model,
consider a system with 𝑁 ions, possibly different types. I label the
ions with integers and let ion 𝑖 have 2𝑛𝑖 different Wannier states, not
counting those which are always either approximately occupied or
approximately unoccupied. I assume that the Wannier states are spin-
degenerate so that there are twoWannier states with opposite spins and
equal spatial profiles. I label the creation operators with ion number
𝑖 ∈ 1, … , 𝑁, Wannier state 𝑚 ∈ {1, 𝑛𝑖} and spin 𝜎 ∈ {↑, ↓}. I also assume
that there are only electrostatic forces, meaning no Zeeman effect and
no spin-orbit coupling. In this case, I derived in section 3.1 that the
Hamiltonian is

ℋ = ℋ𝑇 +ℋ𝑈 (3.48)

where

ℋ𝑇 = −
𝑁
∑
𝑖,𝑗=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑗
∑
𝑚2=1

∑
𝜎∈{↑,↓}

𝑡 𝑖𝑗𝑚1𝑚2𝑐
†
𝑖𝑚1𝜎𝑐𝑗𝑚2𝜎 (3.49)
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and

ℋ𝑈 =
𝑁
∑

𝑖,𝑗,𝑘,𝑙=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑗
∑
𝑚2=1

𝑛𝑘
∑
𝑚3=1

𝑛𝑙
∑
𝑚4=1

× ∑
𝜎1,𝜎2∈{↑,↓}

𝑈 𝑖𝑗𝑘𝑙
𝑚1𝑚2𝑚3𝑚4𝑐

†
𝑖𝑚1𝜎1𝑐

†
𝑗𝑚2𝜎2𝑐𝑘𝑚3𝜎2𝑐𝑙𝑚4𝜎1 . (3.50)

Here,

𝑡 𝑖𝑗𝑚1𝑚2 = ∫
ℝ3

d3𝑥 𝜑∗𝑖𝑚1
(𝒙) [ ∇

2

2𝑚
− 𝑞𝑉env(𝒙)] 𝜑𝑗𝑚2(𝒙), (3.51)

and

𝑈 𝑖𝑗𝑘𝑙
𝑚1𝑚2𝑚3𝑚4 = ∫

ℝ3
d3𝑥 ∫

ℝ3
d3𝑦

𝑞2𝜑∗𝑖𝑚1
(𝒙)𝜑∗𝑗𝑚2

(𝒚)𝜑𝑘𝑚3(𝒚)𝜑𝑙𝑚4(𝒙)

4𝜋|𝒙 − 𝒚|
,

(3.52)

where 𝑉env includes the contribution from the always occupied states
in the lowest orbitals and 𝜑𝑖𝑚1 is the Wannier function for Wannier
state 𝑚1 at ion 𝑖.

Next, I assume again that equation (3.52) is small unless 𝑖 = 𝑗 =
𝑘 = 𝑙. This amounts to assuming that the Wannier states have small
amplitudes at neighboring ions. The factor 1/|𝒙 − 𝒚| will favor the
contribution where 𝒙 ≈ 𝒚, and the terms in equation (3.50) in which all
four Wannier states have large amplitudes at approximately the same
position are the terms in which all four Wannier states are located
around the same ion. Restricting ℋ𝑈 to terms with 𝑖 = 𝑗 = 𝑘 = 𝑙 often
also means that we can assume that the Wannier functions enter in
pairs. This is because Wannier states are orthogonal. For instance,
the Wannier states are often assumed to resemble orbitals, which can
be written in terms of spherical harmonics of different degrees. For
instance, the relevant Wannier states might resemble 𝑠-orbitals and
𝑑-orbitals. The spatial symmetry of the 𝑑-orbitals means that only even
powers can give a non-zero result when integrating over space.

I define

𝑈 𝑖
𝑚1𝑚2 = ∫

ℝ3
d3𝑥 ∫

ℝ3
d3𝑦

𝑞2|𝜑𝑖𝑚1(𝒙)|
2|𝜑𝑖𝑚2(𝒚)|

2

4𝜋|𝒙 − 𝒚|
, (3.53a)

𝐽 𝑖𝑚1𝑚2 = ∫
ℝ3

d3𝑥 ∫
ℝ3

d3𝑦
𝑞2𝜑∗𝑖𝑚1

(𝒙)𝜑∗𝑖𝑚2
(𝒚)𝜑𝑖𝑚1(𝒚)𝜑𝑖𝑚2(𝒙)

4𝜋|𝒙 − 𝒚|
, (3.53b)
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such that

ℋ𝑈 =
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

𝑈 𝑖
𝑚1𝑚2𝑐

†
𝑖𝑚1𝜎1𝑐

†
𝑖𝑚2𝜎2𝑐𝑖𝑚2𝜎2𝑐𝑖𝑚1𝜎1

+
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑗
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

𝐽 𝑖𝑚1𝑚2𝑐
†
𝑖𝑚1𝜎1𝑐

†
𝑖𝑚2𝜎2𝑐𝑖𝑚1𝜎2𝑐𝑖𝑚2𝜎1 . (3.54)

Using the anticommutation relation for fermionic operators,

ℋ𝑈 =
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

∑
𝜎∈{↑,↓}

(𝐽 𝑖𝑚1𝑚1 − 𝑈 𝑖
𝑚1𝑚1) 𝑛𝑖𝑚1𝜎

+
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

𝑈 𝑖𝑗
𝑚1𝑚2𝑛𝑖𝑚1𝜎1𝑛𝑖𝑚2𝜎2

−
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

𝐽 𝑖𝑚1𝑚2𝑐
†
𝑖𝑚1𝜎1𝑐𝑖𝑚1𝜎2𝑐

†
𝑖𝑚2𝜎2𝑐𝑖𝑚2𝜎1 , (3.55)

where 𝑛𝑖𝑚1𝜎1 = 𝑐†𝑖𝑚1𝜎1𝑐𝑖𝑚1𝜎1 . I use equation (3.45) to rewrite equa-
tion (3.55) as

ℋ𝑈 =
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

∑
𝜎∈{↑,↓}

(𝐽 𝑖𝑚1𝑚1 − 𝑈 𝑖
𝑚1𝑚1) 𝑛𝑖𝑚1𝜎

−
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

2𝐽 𝑖𝑚1𝑚2𝑺𝑖𝑚1 ⋅ 𝑺𝑖𝑚2

+
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

(𝑈 𝑖
𝑚1𝑚2 −

1
2
𝐽 𝑖𝑚1𝑚2) 𝑛𝑖𝑚1𝜎1𝑛𝑖𝑚2𝜎2 . (3.56)

where 𝑺𝑖𝑚1 is the spin operator for the Wannier state 𝑚1 at ion 𝑖.
Next, let

𝑇 𝑖𝑗𝑚1𝑚2 = 𝑡 𝑖𝑗𝑚1𝑚2 + 𝛿𝑚1𝑚2𝛿𝑖𝑗 (𝐽
𝑖
𝑚1𝑚1 − 𝑈 𝑖

𝑚1𝑚1) , (3.57)

such that one can absorb the first term in equation (3.56) into the
hopping term. Hence the complete Hamiltonian in this lattice system
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is

ℋ = −
𝑁
∑
𝑖,𝑗=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑗
∑
𝑚2=1

∑
𝜎∈{↑,↓}

𝑇 𝑖𝑗𝑚1𝑚2𝑐
†
𝑖𝑚1𝜎𝑐𝑗𝑚2𝜎

−
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

2𝐽 𝑖𝑚1𝑚2𝑺𝑖𝑚1 ⋅ 𝑺𝑖𝑚2

+
𝑁
∑
𝑖=1

𝑛𝑖
∑
𝑚1=1

𝑛𝑖
∑
𝑚2=1

∑
𝜎1,𝜎2∈{↑,↓}

(𝑈 𝑖
𝑚1𝑚2 −

1
2
𝐽 𝑖𝑚1𝑚2) 𝑛𝑖𝑚1𝜎1𝑛𝑖𝑚2𝜎2 . (3.58)

The second term is a Heisenberg-like coupling between the spins of
different Wannier states at the same lattice site. It is called an exchange
coupling because it is a result of the exchange rules of identical parti-
cles [25, 150]. That is, despite our description containing no explicit
spin-coupling, the fact that the state vector must be antisymmetric
under the exchange of identical fermions gives rise to an effective spin
interaction. In short, the total state vector must be antisymmetric
under the exchange of both spatial and spin coordinates. If it is sym-
metric in the exchange of spins, for instance if the two spins are equal,
then it must be antisymmetric in the exchange of spatial coordinates.
An odd function must be zero at the origin. In the same way, a state
vector that is odd in the exchange of spatial coordinates 𝒓1 and 𝒓2
must be zero when 𝒓1 = 𝒓2. On the other hand, if the state vector is
antisymmetric under spin exchange, which can only happen when
the spins are opposite in a so-called spin-singlet state, the state vector
can be nonzero also for 𝒓1 = 𝒓2. In other words, when two electrons
have the same spin direction, their spatial overlap is different by virtue
of the fermionic symmetry properties, leading to different Coulomb
interactions. The difference in energy for the different exchange sym-
metries is equal to 𝐽 𝑖𝑚1𝑚2 , as calculated above. If 𝐽 𝑖𝑚1𝑚2 > 0, the term
−2𝐽 𝑖𝑚1𝑚2𝑺𝑖𝑚1 ⋅ 𝑺𝑖𝑚2 favors ferromagnetic alignment between the spin at
orbital 𝑚1 and 𝑚2.

For an example of a magnetic system that is also metallic, consider a
systemwhere there are 𝑛loc+1Wannier states at each of the𝑁 identical
ions in the system. Of these, the first 𝑛loc are localized tightly around
the ions, such that tunneling terms involving these states are small.
The last Wannier state extends more broadly in space and therefore
has larger tunneling terms associated with them. Consider the 𝑛loc

67



localized states. The on-site Coulomb repulsion, given by the term
proportional to 𝑈 𝑖

𝑚1𝑚2 − 𝐽 𝑖𝑚1𝑚2/2, will be strongest for 𝑚1 = 𝑚2 since
these have the largest spatial overlap. As a result, each of the localized
states will preferably be half-filled with one particle. This is the same
as for the single-orbital Hubbard model above. If we assume that all
the 𝑛loc localized states are half-filled, we can also ignore the last term
in equation (3.58). If 𝑚1 is one of the localized states, then summing
over spins returns a constant multiplied by the number of states in
𝑚2. This can just be absorbed into 𝑇 𝑖𝑖𝑚2𝑚2 . Similarly if 𝑚2 is one of
the localized states. The spins of the 𝑛loc localized states will interact
ferromagnetically through the exchange interaction, provided that
𝐽 𝑖𝑚1𝑚2 > 0, so we can assume that all the spins in the localized states
point in the same direction at each lattice site. Finally, the spins at
different lattice sites will interact through the weak tunneling. In
the above example of the single-orbital Hubbard model, we saw that
weak tunneling gave rise to an effective antiferromagnetic Heisenberg
coupling of the spins. Let

𝑺𝑖 =
𝑛loc
∑
𝑛=1

𝑺𝑖𝑛 (3.59)

be the total spin associated with the 𝑛loc localized states, let 𝑐𝑖𝜎 =
𝑐𝑖(𝑛loc+1)𝜎 be the annihilation operator associated with the delocalized
state at site 𝑖 with spin 𝜎 and

𝒔𝑖 = 𝑺𝑖(𝑛loc+1) (3.60)

be the spin operator associated with the delocalized state. One can
write the effective Hamiltonian as

ℋeff = −
𝑁
∑
𝑖,𝑗=1

𝑇 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎 +
𝑁
∑
𝑖,𝑗=1

𝐽 𝑖𝑗eff𝑺𝑖 ⋅ 𝑺𝑗 −
𝑁
∑
𝑖=1

2𝐽 𝑖int𝑺𝑖 ⋅ 𝒔𝑖, (3.61)

for some effective coupling between localized spins given by 𝐽 𝑖𝑗eff. Equa-
tion (3.61) is often referred to as an 𝑠-𝑑 model [154–157], because the
localized Wannier states are often the 𝑑-orbitals while the delocalized
itinerant electron states are often the 𝑠-orbitals.

Exchange coupling is a short-range effect. Here, I only included
exchange coupling between states at the same atom. More broadly,
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important magnetic effects can come from exchange coupling between
nearest neighbors, called direct exchange [158, 159], or longer-ranged
exchange effects, such as superexchange [53, 160] and double ex-
change [161, 162], which occur through intermediary atoms. If one
includes spin-orbit coupling, one can also get an effective antisymmet-
ric exchange effect, called the Dzyaloshinskii–Moriya interaction [163–
165]. Spins will also interact through magnetic effects, of course. From
equation (2.142) we know that the curl of the spin density gives rise to
an electric current density, and thereby a magnetic field. The magnetic
field, in turn, couples to the spin. The complete picture of magnetic
effects is therefore complicated, and which effects are more important
will depend on the atomic structure of the material. Some materi-
als will be ferromagnetically ordered, and others will be antiferro-
magnetic or ferrimagnetic ordered, or have no magnetic order at all.
Moreover, some materials display simple parallel magnetic alignment,
while others exhibit more complicated topological structures, such as
skyrmions [165, 166] arising from antisymmetric exchange interactions.

In the work presented in this thesis, it has often been important
with an effective quadratic model for the itinerant electrons because it
is assumed in the quasiclassical theory (see chapter 6). To obtain such
a model, one can approximate the spin operator for the localized spins
by their expectation value, such that

ℋeff = −
𝑁
∑
𝑖,𝑗=1

𝑇 𝑖𝑗𝑐†𝑖𝜎𝑐𝑗𝜎 −
𝑁
∑
𝑖=1

𝒉𝑖 ⋅ 𝒔𝑖, (3.62)

where 𝒉𝑖 = 2𝐽int⟨𝑺𝑖⟩. Note that ⟨𝑺𝑖⟩ can still depend on time, and
the temporal evolution can depend on the itinerant electrons. Equa-
tion (3.62) is reasonable if the relevant states in the ensemble have
localized spins not too different from the expectation values. In other
words, the energy of the system should increase rapidly as the spin
deviates from the expectation value, such that for energies up to the
thermal energy all states have localized spins that deviate negligibly
from the expectation values.

3.3 Superconductivity

So far we have treated the contribution to the photon field from the
ions as constant. However, the lattice is dynamic in real materials, and
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this can have important consequences. One consequence, which will
be further discussed in section 5.2.1, is that it leads to the dissipation
of energy. Another consequence, which is the focus of this section,
is that it can lead to superconductivity. Each ion is a complicated
combination of multiple protons, neutrons, and low-energy, localized,
electrons. On an even more fundamental level, each proton and neu-
tron consist of multiple quark and gluon fields. For our purposes, it
suffices with a more primitive effective description of ions as indepen-
dent, spinless particles. Each ion has a kinetic energy, which I take
to be non-relativistic. Additionally, since they are charged, they have
electric potential energy.

The quantum mechanical Lagrangian for 𝑁 spinless particles with
position operators {𝑹𝑖}, conjugate momentum operators {𝑷𝑖}, masses
{𝑀𝑖} and charges {𝑄𝑖} in a vector potential 𝑨 and an electric scalar
potential 𝑉 is given by

𝐿ions =
𝑁
∑
𝑖=1

{1
2
𝑷𝑖 ⋅

∂𝑹𝑖
∂𝑡

+ 1
2
∂𝑹𝑖
∂𝑡

⋅ 𝑷𝑖 −
[𝑷𝑖 − 𝑄𝑖𝑨(𝑹𝑖)]2

2𝑀𝑖
− 𝑄𝑖𝑉 (𝑹𝑖)}

(3.63)

since

ℋion =
𝑁
∑
𝑖=1

{
[𝑷𝑖 − 𝑄𝑖𝑨(𝑹𝑖)]2

2𝑀𝑖
+ 𝑄𝑖𝑉 (𝑹𝑖)} (3.64)

is the Hamiltonian. The conjugate momentum operators are 𝑷𝑖 =
𝑀𝑖∂𝑹𝑖/∂𝑡 + 𝑄𝑖𝑨(𝑹𝑖). This implies a commutation relation for 𝑹𝑖 and 𝑷𝑖.
Let 𝑅𝛼𝑖 denote component 𝛼 ∈ {𝑥, 𝑦 , 𝑧} of 𝑹𝑖, and similarly for 𝑷𝑖 and 𝑨.
We know from the Heisenberg equation that

∂𝑅𝛼𝑖
∂𝑡

= 𝑖[ℋion, 𝑅𝑖]. (3.65)
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If we assume that 𝑅𝛼𝑖 commutes with 𝑅𝛽𝑗 and 𝑃𝛽𝑗 , as long as 𝑖 ≠ 𝑗, I get
that

𝑀𝑖
∂𝑅𝛼𝑖
∂𝑡

= 𝑖
2

∑
𝛽∈{𝑥,𝑦 ,𝑧}

[𝑃𝛽𝑖 𝑃
𝛽
𝑖 𝑅

𝛼
𝑖 − 𝑃𝛽𝑖 𝑄𝑖𝐴𝛽(𝑹𝑖)𝑅𝛼𝑖 − 𝑄𝑖𝐴𝛽(𝑹𝑖)𝑃

𝛽
𝑖 𝑅

𝛼
𝑖

− 𝑅𝛼𝑖 𝑃
𝛽
𝑖 𝑃

𝛽
𝑖 + 𝑅𝛼𝑖 𝑃

𝛽
𝑖 𝑄𝑖𝐴𝛽(𝑹𝑖) + 𝑅𝛼𝑖 𝑄𝑖𝐴𝛽(𝑹𝑖)𝑃

𝛽
𝑖 ]

= − 𝑖
2

∑
𝛽∈{𝑥,𝑦 ,𝑧}

{[𝑅𝛼𝑖 , 𝑃
𝛽
𝑖 ]− [𝑃𝛽𝑖 − 𝑄𝑖𝐴𝛽(𝑹𝑖)]

+ [𝑃𝛽𝑖 − 𝑄𝑖𝐴𝛽(𝑹𝑖)] [𝑅𝛼𝑖 , 𝑃
𝛽
𝑖 ]−} = 𝑃𝛼𝑖 − 𝑄𝑖𝐴𝛼(𝑹𝑖). (3.66)

This is true if the position operator 𝑹𝑖 and the momentum operator 𝑷𝑖
must satisfy the commutation relation

[𝑅𝛼𝑖 , 𝑃
𝛽
𝑖 ]− = 𝑖𝛿𝛼𝛽. (3.67)

Including the electron field, the photon field, and the ions, the full
action is

𝑆 = ∫
∞

−∞
d𝑡 (𝐿ions + ∫

ℝ3
d3𝑟 [ℒ𝑒 +ℒem]) , (3.68)

where ℒ𝑒 and ℒem are the Lagrangian densities for the electron field
and the photon fields, respectively. Minimizing with respect to 𝑉 and
𝑨, I get

𝑉 (𝑡, 𝒙) = 1
4𝜋 ∫

ℝ3
d3𝑦

𝜌(𝑡ret, 𝒚)
|𝒙 − 𝒚|

+ 𝑉ext(𝑡, 𝒙), (3.69a)

𝑨(𝑡, 𝒙) = 1
4𝜋 ∫

ℝ3
d3𝑦

𝒋(𝑡ret, 𝒚)
|𝒙 − 𝒚|

+ 𝑨ext(𝑡, 𝒙), (3.69b)

as shown in section 2.7. Here,

𝜌(𝑡, 𝒓) = 𝜌𝑒(𝑡, 𝒓) +
𝑁
∑
𝑖=1

𝑄𝑖𝛿(𝒓 − 𝑹𝑖[𝑡]) (3.70a)

𝒋(𝑡, 𝒓) = 𝒋𝑒(𝑡, 𝒓) +
𝑁
∑
𝑖=1

𝑄𝑖
∂𝑹𝑖
∂𝑡

𝛿(𝒓 − 𝑹𝑖[𝑡]), (3.70b)

where 𝜌𝑒 and 𝒋𝑒 are the charge and current densities for the electron
field, which are given by equations (2.141) and (2.142). Assuming that
charges move slowly compared to the speed of light, I set 𝑡ret = 𝑡.
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We started with a theory involving the electron field, the photon
field, and ions. By inserting equation (3.69) into the action, we remove
the coupling to the photon field in favor of new couplings. The initial
theory involves coupling between the photon field and both the elec-
tron field and the ions, but not between electrons and ions. In the new
theory, we get electron-electron coupling through quartic terms, we
get ion-ion coupling and we get electron-ion coupling. We can do this
trick one more time and get a theory involving only the electron field.
To do so, we must minimize the action with respect to ion position
operators 𝑹𝑖. We do not need to include the dependence of the action
on 𝑹𝑖 through the photon field. This is because a version of the chain
rule also works with functional derivative, as explained in section 2.7.

Minimizing the action with respect to 𝑹𝑖, I get

∂
∂𝑡
[𝑷𝑖 − 𝑄𝑖𝑨(𝑹𝑖)] = 𝑄𝑖 {𝑬(𝑹𝑖) +

1
2
[
∂𝑹𝑖
∂𝑡

× 𝑩(𝑹𝑖) − 𝑩(𝑹𝑖) ×
∂𝑹𝑖
∂𝑡

]} ,

(3.71)

which, unsurprisingly, is similar to Newton’s second law for a charged
particle in an electromagnetic field. This equation can also be obtained
by using the Heisenberg equation. Assuming no external field, one can
separate 𝑬 into one contribution that comes from the ions, 𝑬ion and one
that comes from the electron field, 𝑬𝑒, and similarly for 𝑩 = 𝑩ion + 𝑩𝑒.
In the presence of an external field, one can include this into 𝑬𝑒 and 𝑩𝑒.

In general, an ion will be in a superposition of different eigenstates
of the velocity operator, ∂𝑹𝑖/∂𝑡. To determine 𝑬ion, consider a state in
which the 𝑖’th ion is in rest, meaning that ∂𝑹𝑖/∂𝑡 = 0. In this case, the
electric field generated from this ion is

𝑬𝑖,0(𝒓) =
(𝒓 − 𝑹𝑖) 𝑄𝑖
4𝜋 |𝒓 − 𝑹𝑖|

3 , (3.72)

and the magnetic field is 𝑩𝑖,0 = 𝟎, as can be derived from equa-
tions (3.69) and (3.70) together with 𝑬 = −∇𝑉 − ∂𝑨/∂𝑡 and 𝑩 = ∇ × 𝑨.
From this, one can derive the electric and magnetic field from the 𝑖’th
ion in any eigenstate of ∂𝑹𝑖/∂𝑡. Since ∂𝑹𝑖/∂𝑡 = 𝒗𝑖 is equivalent to a
multiplication of a constant in this state, we may perform a Lorentz
transformation to the rest frame in which we know that the electric
field is 𝑬𝑖,0 and the magnetic field is 𝑩𝑖,0 = 𝟎. This implies that the
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electromagnetic field in the “lab frame”, where the velocity of the 𝑖’th
ion is 𝒗𝑖, is

𝑬𝑖 = 𝛾𝑬𝑖,0 − (𝛾 − 1)
(𝑬 ⋅ 𝒗𝑖)𝒗𝑖
𝒗𝑖 ⋅ 𝒗𝑖

(3.73a)

𝑩𝑖 = 𝛾
𝒗𝑖 × 𝑬𝑖,0

𝑐2
, (3.73b)

where 𝛾 = √1 − 𝒗𝑖 ⋅ 𝒗𝑖/𝑐2. I reintroduced the speed of light 𝑐. We see
that when we are considering superpositions of states with |𝒗𝑖| ≪ 𝑐 we
can neglect the contribution from the magnetic field, since

|𝒗𝑖 × 𝑩| <
|𝒗𝑖 × (𝒗𝑖 × 𝑬𝑖,0)|

𝑐2
≪ |𝑬𝑖,0|. (3.74)

We can also approximate 𝑬𝑖 ≈ 𝑬𝑖,0, since 𝛾 = 1+𝒪(𝒗𝑖 ⋅ 𝒗𝑖/𝑐2), such that

𝑬ion =
𝑁
∑
𝑖=1

𝑬𝑖,0 (3.75)

and 𝑩ion = 𝟎. Finally, equation (3.73a) implies that the contribution
to the electric field coming from the vector potential, which is zero
in the rest frame, is negligible. That is, |∂𝑨𝑖/∂𝑡| ≪ |𝑬𝑖|. With these
simplifications, equation (3.71) becomes

∂𝑷𝑖
∂𝑡

= 𝑄𝑖{𝑬ion(𝑹𝑖) + (𝑬𝑒 +
∂𝑨𝑒
∂𝑡

) (𝑹𝑖)

+ 1
2
[
∂𝑹𝑖
∂𝑡

× 𝑩𝑒(𝑹𝑖) − 𝑩𝑒(𝑹𝑖) ×
∂𝑹𝑖
∂𝑡

]}, (3.76)

The next step is to linearize the equations. However, this requires
knowing how the electron field depends on the ion positions. Again
I categorize the electrons as being either itinerant, if they are free to
move from ion to ion, or localized, if they are mainly localized around
a single ion. Previously, I argued that the lowest energy Wannier
states are most localized, and that given sufficient energy gaps to the
unoccupied states, these are always approximately fully occupied. This
picture does not hold when taking into account ion movement. The
electric field from the ions changes significantly close to the ions when
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they move. Therefore, the energies of the states with large amplitudes
near the ion cores will also have energies that change significantly. As
a result one can no longer say that the smallest Wannier states will
forever remain approximately fully occupied. Instead, I assume that
the localized electrons, while no longer static, still stay localized in the
sense that they move with the ions. That is, I assume that the electrons
can be categorized into itinerant electrons and electrons that follow
the ions. Further, I assume that electrons that follow the ions do so
in perfect synchrony. This assumption is motivated by the fact that
electrons are much lighter than ions. Assuming that the ions move
sufficiently slowly, the localized electrons will configure themselves
in the instantaneous ground state orbitals. This effectively screens
the electric field coming from the ions, and I assume the dynamics of
the localized electrons can be captured by renormalizing the charges
of the ions. As the itinerant electrons are more delocalized in space,
they will be less sensitive to small movements in the ion placement.
Therefore, I assume that the linear response to the electric field from
the itinerant electrons, 𝑬𝑒, can be neglected in equation (3.78).

I define the equilibrium positions {𝑹eq
𝑖 } to be a solution of equa-

tion (3.71) with ∂𝑹𝑖/∂𝑡 = 0 and 𝑬 = 𝑬ion. This means that

∑
𝑗≠𝑖

𝑄𝑗
4𝜋

(𝑹eq
𝑖 − 𝑹eq

𝑗 )

|𝑹eq
𝑖 − 𝑹eq

𝑗 |
3 = 0 (3.77)

for all 𝑖, where 𝑄𝑗 is now the renormalized ion charge, taking into
account the localized electrons. Let 𝒖𝑖 = 𝑹𝑖 − 𝑹eq

𝑖 be the displacement
away from the equilibrium position. I assume that these displacements
are small compared to the distance between ions, such that I can
linearize 𝑬ion, which now includes the field from the localized electrons,
in 𝒖𝑖. I also keep only zeroth order terms in the coupling to the itinerant
electron field, meaning that the coupling to 𝑩𝑒 is assumed negligible.
From this, I obtain

∂𝑃𝛼𝑖
∂𝑡

=
𝑁
∑
𝑗=1

∑
𝛽∈{𝑥,𝑦 ,𝑧}

𝐹 𝛼𝛽𝑖𝑗 (𝑢𝛽𝑖 − 𝑢𝛽𝑗 ) + 𝑄𝑖 (𝐸𝛼𝑒 +
∂𝑨𝑒
∂𝑡

) (𝑹eq
𝑖 ), (3.78)

where 𝛼 ∈ {𝑥, 𝑦 , 𝑧}, 𝐹𝑖𝑖 = 0 and

𝐹 𝛼𝛽𝑖𝑗 =
𝑄𝑖𝑄𝑗
4𝜋

∂

∂(𝑅𝛽𝑖 − 𝑅𝛽𝑗 )
[
𝑅𝛼𝑖 − 𝑅𝛼𝑗
|𝑹𝑖 − 𝑹𝑗|3

]
(𝑹𝑖,𝑹𝑗)=(𝑹

eq
𝑖 ,𝑹eq

𝑗 )
, (3.79)
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when 𝑖 ≠ 𝑗.
If one assumes that all ions are identical with renormalized charges

equal to 𝑄ion and masses equal to 𝑀ion, then 𝐹 𝛼𝛽𝑖𝑗 depends only on the
relative distance 𝑹𝑖 − 𝑹𝑗. In this case, the equation can be linearized in
the positional degrees of freedom through a Fourier transformation. I
define

𝒖𝑘 =
𝑁
∑
𝑖=1

𝒖𝑖e−𝑖𝒌⋅𝑹
eq
𝑖 , (3.80a)

𝑷𝑘 =
𝑁
∑
𝑖=1

𝑷𝑖e−𝑖𝒌⋅𝑹
eq
𝑖 , (3.80b)

𝐹 𝛼𝛽𝑘 =
𝑁
∑
𝑖=1

𝐹 𝛼𝛽𝑖𝑗 e−𝑖𝒌⋅(𝑹
eq
𝑖 −𝑹eq

𝑗 ), (3.80c)

− (∇𝑉𝑒)𝑘 =
𝑁
∑
𝑖=1

(𝑬𝑒 +
∂𝑨𝑒
∂𝑡

) (𝑹eq
𝑖 )e−𝑖𝒌⋅𝑹

eq
𝑖 , (3.80d)

where the choice of 𝑗 is arbitrary in equation (3.80c) and −(∇𝑉𝑒)𝑘 is the
contribution to the electric field coming from the scalar potential 𝑉𝑒.
Inserting this into equation (3.78), I get that

∂𝑃𝛼𝑘
∂𝑡

= − ∑
𝛽∈{𝑥,𝑦 ,𝑧}

(𝐹 𝛼𝛽𝑘 − 𝐹 𝛼𝛽0 )𝑢𝛽𝑘 − 𝑄ion(∇𝑉𝑒)𝛼𝑘 , (3.81)

𝐹 𝛼𝛽𝑘 = 𝐹𝛽𝛼𝑘 , so I can diagonalize 𝐹 𝛼𝛽𝑘 −𝐹 𝛼𝛽0 = ∑𝛾 𝑆𝛼𝛾𝜆
𝛾
𝑘(𝑆

𝑇)𝛾𝛽, and define
̃𝑃𝛼𝑘 = ∑𝛾(𝑆𝑇)𝛼𝛾𝑃

𝛾
𝑘 , 𝑢̃

𝛼
𝑘 = ∑𝛾(𝑆𝑇)𝛼𝛾𝑢

𝛾
𝑘 and (∇𝑉̃𝑒)𝛼𝑘 = ∑𝛾(𝑆𝑇)𝛼𝛾(∇𝑉𝑒)

𝛾
𝑘, such

that

∂ ̃𝑃𝛼𝑘
∂𝑡

= −𝜆𝛼𝑘 𝑢̃
𝛼
𝑘 − 𝑄ion(∇𝑉̃𝑒)𝛼𝑘 . (3.82)

To decouple 𝒖̃𝑘 and ̃𝑷𝑘, one can introduce the phonon operators,

𝑎𝛼𝑘 =
√
𝑀ion𝜔𝛼

𝑘
2

(𝑢̃𝛼𝑘 +
𝑖

𝑀ion𝜔𝛼
𝑘

̃𝑃𝛼𝑘 ) , (3.83a)

(𝑎𝛼𝑘)
† =

√
𝑀ion𝜔𝛼

𝑘
2

(𝑢̃𝛼−𝑘 −
𝑖

𝑀ion𝜔𝛼
𝑘

̃𝑃𝛼−𝑘) , (3.83b)
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where𝜔𝛼
𝑘 = √𝑀ion/𝜆𝛼𝑘 . From the commutation relation, equation (3.67),

it follows that 𝑎𝛼𝑘 and (𝑎𝛼𝑘)
† satisfy the bosonic commutation relations,

[𝑎𝛼𝑘 , (𝑎
𝛽
𝑞 )†]− = 𝑁𝛿𝑘𝑞𝛿𝛼𝛽, [𝑎𝛼𝑘 , 𝑎

𝛽
𝑞 ]− = [(𝑎𝛽𝑞 )†, (𝑎

𝛽
𝑞 )†]− = 0. (3.84)

Combining equation (3.82) with 𝑀ion∂𝑢̃𝛼𝑘/∂𝑡 = ̃𝑃𝛼𝑘 − 𝑄ion𝐴̃𝛼
𝑒,𝑘, where

𝑨̃𝑒,𝑘 is the Fourier transform of the vector potential coming from the
itinerant electron field, and inserting equation (3.83), I get

∂𝑎𝛼𝑘
∂𝑡

= −𝑖𝜔𝛼
𝑘𝑎

𝛼
𝑘 − 𝑄ion

√

1
2𝑀ion𝜔𝛼

𝑘
(𝑖(∇𝑉̃𝑒)𝛼𝑘 + 𝜔𝛼

𝑘 𝐴̃
𝛼
𝑒,𝑘) , (3.85a)

∂(𝑎𝛼𝑘)
†

∂𝑡
= 𝑖𝜔𝛼

𝑘 (𝑎
𝛼
𝑘)

† + 𝑄ion
√

1
2𝑀ion𝜔𝛼

𝑘
(𝑖(∇𝑉̃𝑒)−𝑘 − 𝜔𝛼

𝑘 𝐴̃
𝛼
𝑒,−𝑘) .

(3.85b)

These equations are solved by

𝑎𝛼𝑘(𝑡) = 𝑏𝛼𝑘e
−𝑖𝜔𝛼

𝑘 (𝑡−𝑡0) −
𝑄ion

√2𝑀ion𝜔𝛼
𝑘
∫
𝑡

𝑡0
d𝜏 e−𝑖𝜔

𝛼
𝑘 (𝑡−𝜏) (𝑖(∇𝑉̃𝑒)𝛼𝑘 + 𝜔𝛼

𝑘 𝐴̃
𝛼
𝑒,𝑘) (𝜏),

(3.86a)

(𝑎𝛼𝑘)
†(𝑡) = (𝑏𝛼𝑘 )

†e𝑖𝜔
𝛼
𝑘 (𝑡−𝑡0) +

𝑄ion

√2𝑀ion𝜔𝛼
𝑘
∫
𝑡

𝑡0
d𝜏 e𝑖𝜔

𝛼
𝑘 (𝑡−𝜏) (𝑖(∇𝑉̃𝑒)𝛼−𝑘 − 𝜔𝛼

𝑘 𝐴̃
𝛼
𝑒,−𝑘) (𝜏),

(3.86b)

for some constant operators 𝑏𝛼𝑘 and (𝑏𝛼𝑘 )
†. One can rewrite equa-

tion (3.86) by using partial integration together with 𝜔𝛼
𝑘e

±𝑖𝜔𝛼
𝑘 (𝑡−𝜏) =

±𝑖∂[e±𝑖𝜔
𝛼
𝑘 (𝑡−𝜏)]/∂𝜏. Doing this, I get

𝑎𝛼𝑘(𝑡) = [𝑏𝛼𝑘 −
𝑖𝑄ion𝐴̃𝛼

𝑒,𝑘(𝑡0)

√2𝑀ion𝜔𝛼
𝑘
] e−𝑖𝜔

𝛼
𝑘 (𝑡−𝑡0)

+
𝑖𝑄ion

√2𝑀ion𝜔𝛼
𝑘
[𝐴̃𝛼

𝑒,𝑘(𝑡) + ∫
𝑡

𝑡0
d𝜏 e−𝑖𝜔

𝛼
𝑘 (𝑡−𝜏)𝐸̃𝛼𝑒,𝑘(𝜏 )] , (3.87a)

(𝑎𝛼𝑘)
†(𝑡) = [(𝑏𝛼𝑘 )

† +
𝑖𝑄ion𝐴̃𝛼

𝑒,−𝑘(𝑡0)

√2𝑀ion𝜔𝛼
𝑘

] e𝑖𝜔
𝛼
𝑘 (𝑡−𝑡0)

−
𝑖𝑄ion

√2𝑀ion𝜔𝛼
𝑘
[𝐴̃𝛼

𝑒,−𝑘(𝑡) + ∫
𝑡

𝑡0
d𝜏 e𝑖𝜔

𝛼
𝑘 (𝑡−𝜏)𝐸̃𝛼𝑒,−𝑘(𝜏 )] ,

(3.87b)
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where 𝐸̃𝛼𝑒,−𝑘 = −(∇𝑉̃𝑒)𝛼𝑘 −∂𝐴̃𝛼
𝑒,𝑘/∂𝑡 is the electric field from the electrons,

in addition to any external fields.
Using that𝜔−𝑘 = 𝜔𝑘 and inserting equation (3.86) into equation (3.83),

I get that the position operators become

𝑢̃𝛼𝑘 (𝑡) = 𝑢̃𝛼𝑘 (𝑡0) cos[𝜔
𝛼
𝑘 (𝑡−𝑡0)]+

[ ̃𝑃𝛼𝑘 (𝑡0) − 𝑄ion𝐴̃𝛼
𝑒,𝑘(𝑡0)]

𝑀ion𝜔𝛼
𝑘

sin[𝜔𝛼
𝑘 (𝑡−𝑡0)]

+
𝑄ion

𝑀ion𝜔𝛼
𝑘
∫
𝑡

𝑡0
d𝜏 sin[𝜔𝛼

𝑘 (𝑡 − 𝜏)]𝐸̃𝛼𝑒,𝑘(𝜏 ). (3.88)

Notice that the expectation value, ⟨𝑢̃𝛼𝑘 (𝑡)⟩, evolves in time like one
would expect from classical charged particles in an electric field ⟨𝑬𝑒(𝑡)⟩.
This is because I linearized the equation for 𝑢̃𝛼𝑘 (𝑡).

Inserting equation (3.88) back into the Lagrangian in terms such
as 𝑞𝜓†𝑒 𝑉𝜓𝑒 removes the coupling between the electron field and the
ions in favor of new electron-electron coupling. At first glance, the
qualitative features of this result look similar to what was obtained
when solving for the photon field operators. However, there is an
important difference. To see why, consider the term in the electron
Hamiltonian proportional to 𝑞𝜓†𝑒 𝑉𝜓𝑒. This term is often the strongest
interaction with the electromagnetic field. If we do not take into
account relativistic corrections, the charge density in the electron field
is 𝑞𝜓†𝑒 𝜓𝑒. Using equations (3.69) and (3.70) the energy is, not taking
into account the external field,

ℋ𝑈 =
𝑞2

4𝜋 ∫
ℝ3

d3𝑥 ∫
ℝ3

d3𝑦
𝜓†𝑒 (𝒙)𝜓

†
𝑒 (𝒚)𝜓𝑒(𝒚)𝜓𝑒(𝒙)
|𝒙 − 𝒚|

+
𝑞𝑄ion

4𝜋

𝑁
∑
𝑖=1

∫
ℝ3

d3𝑥
𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)
|𝒙 − 𝑹𝑖|

(3.89)

The first is a repulsive Coulomb interaction between equal charges,
𝑞2 = |𝑞|2, and the second term is an attractive Coulomb interaction
between opposite charges, 𝑞𝑄ion = −|𝑞𝑄ion|. The second term can be
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rewritten in terms of 𝒖𝑖,

𝑞𝑄ion

4𝜋

𝑁
∑
𝑖=1

∫
ℝ3

d3𝑥
𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)
|𝒙 − 𝑹𝑖|

=
𝑞𝑄ion

4𝜋

𝑁
∑
𝑖=1

∫
ℝ3

d3𝑥
𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)
|𝒙 − 𝑹eq

𝑖 |

+
𝑞𝑄ion

4𝜋

𝑁
∑
𝑖=1

∫
ℝ3

d3𝑥
𝜓†𝑒 (𝒙 + 𝒖𝑖)𝜓𝑒(𝒙 + 𝒖𝑖) − 𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)

|𝒙 − 𝑹eq
𝑖 |

. (3.90)

The latter term gives rise to the phonon-mediated electron-electron
interaction, while the first term is the coupling between electrons
and the equilibrium distribution of ions, which should be used when
defining the lattice model through Wannier states, as discussed in
section 3.1.

When inserting the creation and annihilation operators for the Wan-
nier states, both the interaction obtained directly from the electromag-
netic field and the phonon-mediated interaction produce terms on the
form

ℋ𝑈 = ∑
𝑖,𝑗,𝑘,𝑙

∑
𝜎1,𝜎2,𝜎2,𝜎4∈{↑,↓}

𝑈 𝑖𝑗𝑘𝑙
𝜎1𝜎2𝜎2𝜎4𝑐

†
𝑖𝜎1𝑐

†
𝑗𝜎2𝑐𝑘𝜎3𝑐𝑙𝜎4 . (3.91)

While the electrostatic part of the direct interaction gives rise to repul-
sive 𝑈 𝑖𝑗𝑘𝑙

𝜎1𝜎2𝜎2𝜎4 , since equal charges repel, the phonon-mediated interac-
tion can also produce attractive interactions through negative 𝑈 𝑖𝑗𝑘𝑙

𝜎1𝜎2𝜎2𝜎4 .
This is can give rise to superconductivity [45, 167]. Superconductiv-
ity can also arise from other sources of attractive interactions [167].
Another example is that attractive interactions between itinerant elec-
trons can be mediated through localized electrons. As we saw earlier,
the itinerant electrons can couple to the localized electrons through ex-
change interaction, and the localized electrons interact with each other.
Just like we have done for the ions, one can isolate the evolution of the
localized electron operators to obtain effective interactions between
itinerant electrons. The resulting, so-called magnon-mediated inter-
action can also be attractive and give rise to superconductivity [168–
171]. The interaction is called magnon-mediated because spin-wave
excitations are called magnons, just like lattice vibration excitations
are called phonons. In passing, I also note that the strength of the
exchange interaction between localized spins also depends on relative
distance. Therefore, the motion of the ions will result in magnon-
phonon coupling. However, here I only consider phonons.
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When only considering the subset of itinerant electrons states, it is
reasonable to assume that 𝜓𝑒 changes slowly on the length scale of 𝒖.
As a result, the second term on the right-hand side of equation (3.90)
can be approximated as

ℋ𝑆𝐶 =
𝑞𝑄ion

4𝜋

𝑁
∑
𝑖=1

∫
ℝ3

d3𝑥
𝒖𝑖 ⋅ ∇[𝜓

†
𝑒 (𝒙)𝜓𝑒(𝒙)]

|𝒙 − 𝑹eq
𝑖 |

= −
𝑁
∑
𝑖=1

𝑄ion𝒖𝑖 ⋅
𝑞
4𝜋

∇𝑹eq
𝑖 ∫

ℝ3
d3𝑥

𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)
|𝒙 − 𝑹eq

𝑖 |

=
𝑁
∑
𝑖=1

𝑄ion𝒖𝑖 ⋅ 𝑬𝑒(𝑹
eq
𝑖 ) = ∑

𝑘
∑

𝛼∈{𝑥,𝑦 ,𝑧}
𝑄ion𝑢̃𝛼𝑘 𝐸̃

𝛼
𝑒,−𝑘, (3.92)

where I assumed that the main contribution to the electric field comes
from the electric potential, so

𝑬𝑒(𝑹
eq
𝑖 ) = −

𝑞∇𝑹eq
𝑖

4𝜋 ∫
ℝ3

d3𝑥
𝜓†𝑒 (𝒙)𝜓𝑒(𝒙)
|𝒙 − 𝑹eq

𝑖 |

=
𝑁
∑
𝑗=1

∑
𝜎∈{↑,↓}

𝒃(𝑹eq
𝑖 − 𝑹eq

𝑗 )𝑐†𝑗𝜎𝑐𝑗𝜎, (3.93)

for some function 𝒃. For simplicity, I assume that there are only two
itinerant states per lattice site, one for each spin. One can also con-
sider more states, which can give so-called multi-orbital superconduc-
tors [172–174]. Fourier transforming and changing basis using the 𝑆𝑇

matrix from above, I get

𝐸̃𝛼𝑒,𝑘 = ∑
𝑘′

𝑏̃𝛼𝑘′
𝑁

∑
𝜎∈{↑,↓}

𝑐†𝑘′𝜎𝑐(𝑘′+𝑘)𝜎, (3.94)

where 𝒃𝑘 = ∑𝑁
𝑖=1 𝒃(𝑹

eq
𝑖 − 𝑹eq

𝑗 )e−𝑖𝒌⋅(𝑹
eq
𝑖 −𝑹eq

𝑗 ) and 𝑏̃𝛼𝑘 = ∑𝛾(𝑆𝑇)𝛼𝛾𝑏
𝛾
𝑘.

To evaluateℋ𝑆𝐶 we must next use equation (3.88). The ion displace-
ment depends non-locally in time on the electron field, which makes
it complicated. Consider the temporal evolution of 𝐸̃𝛼𝑒,𝑘. We can get an
estimate for this by looking at the full Hamiltonian for the itinerant
electrons,

ℋ = ∑
𝑘,𝜎

(𝜀𝑘 − 𝜇)𝑐†𝑘𝜎𝑐𝑘𝜎 + ∑
𝑘1,𝑘2,𝜎1𝜎2

𝑐†𝑘1𝜎1 𝑡
𝑘1𝑘2𝜎1𝜎2𝑐𝑘2𝜎2 +ℋ𝑆𝐶 (3.95)
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The time dependence of 𝑐𝑘𝜎(𝑡) can be found from the Heisenberg equa-
tion, which from the fermionic commutation relations can be written
as

∂𝑐𝑘𝜎
∂𝑡

= −𝑖(𝜀𝑘 − 𝜇)𝑐𝑘𝜎 − 𝑖 ∑
𝑘1,𝜎1

𝑡𝑘𝑘1𝜎𝜎1𝑐𝑘1𝜎1 + 𝑖[𝑐𝑘𝜎,ℋ𝑆𝐶]−. (3.96)

If we neglect the last term under the assumption that the electron-
phonon interaction is small, and diagonalize 𝑡𝑘𝑘1𝜎𝜎1𝑐𝑘1𝜎1 = ∑𝑘2𝜎2 𝑃

𝑘𝑘2𝜎𝜎2𝜆
𝑘2𝜎2(𝑃

−1)𝑘2𝑘1𝜎2𝜎1 ,
then the solution to equation (3.96) is

𝑐𝑘𝜎(𝑡) = e−𝑖(𝜀𝑘−𝜇)𝑡 [𝑐𝑘𝜎(0) + ∑
𝑘1𝑘2𝜎1𝜎2

𝑃𝑘𝑘2𝜎𝜎2 (e
−𝑖𝜆𝑘2𝜎2 𝑡 − 1) (𝑃−1)𝑘2𝑘1𝜎2𝜎1𝑐𝑘1𝜎1(0)] .

(3.97)

If the system varies in space, such as through an inhomogeneous
external field, then 𝑡𝑘𝑘1𝜎𝜎1 will have non-zero components with 𝑘 ≠ 𝑘1
and thereby couple electrons with different momenta. If the variation is
over a characteristic length-scale of 𝐿, then themaximal relevant values
of |𝒌 − 𝒌1| is around 1/𝐿. Hence, if the system varies slowly in space,
only momenta close to each other are coupled. If we were to include
the last term in equation (3.96), we would also get contributions from
𝑐†𝑘1𝜎1 , as we will see later. This does not affect the arguments below, so
the same results also hold if we were to include this term.

Inserting this into the expression for 𝐸̃𝛼𝑒,𝑘, and into equation (3.88),
the relevant terms are proportional to

∫
𝑡

𝑡0
d𝜏 sin[𝜔𝛼

𝑘 (𝑡 − 𝜏)]e𝑖𝛾 𝜏𝑐†𝑘1𝜎1(0)𝑐𝑘2𝜎2(0)

= 𝑖
2 ∫

𝑡

𝑡0
d𝜏 (e−𝑖𝜔

𝛼
𝑘 (𝑡−𝜏) − e𝑖𝜔

𝛼
𝑘 (𝑡−𝜏)) e𝑖𝛾 𝜏𝑐†𝑘1𝜎1(0)𝑐𝑘2𝜎2(0). (3.98)

The time 𝑡0 can be chosen freely. In particular, we can let 𝑡0 → −∞.
In this case, it is clear that equation (3.98) will be very small unless
𝛾 ≈ ±𝜔𝛼

𝑘 . Physically this means that the oscillations of the electrons
must match the natural frequency of the phonon mode. When they
match perfectly, such that 𝛾 = ±𝜔𝛼

𝑘 , it seems from equations (3.88)
and (3.98) that the amplitudes of the displacement vectors 𝒖𝑖 will grow
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to infinity. This clearly violates the assumption that |𝒖𝑖| is small for all 𝑖.
In practice, there will be some mechanism to stop the amplitudes from
growing too large. Nevertheless, it should be reasonable to assume
that the sum of terms on the form of equation (3.98) are dominated by
the terms with 𝛾 ≈ ±𝜔𝛼

𝑘 . This means that

∫
𝑡

𝑡0
d𝜏 sin[𝜔𝛼

𝑘 (𝑡−𝜏)]e
𝑖𝛾 𝜏𝑐†𝑘1𝜎1(0)𝑐𝑘2𝜎2(0) = 𝑉 (𝜔𝛼

𝑘 , 𝛾 )e
𝑖𝛾 𝑡𝑐†𝑘1𝜎1(0)𝑐𝑘2𝜎2(0),

(3.99)

where 𝑉 (𝜔𝛼
𝑘 , 𝛾 ) is a function which is peaked around 𝜔𝛼

𝑘 = ±𝛾.
From equation (3.97), we see that one can write

𝑐†𝑘1𝜎1(𝑡)𝑐𝑘2𝜎2(𝑡) = ∑
𝑘3𝑘4𝜎3𝜎4

e𝑖𝛾
𝑘3𝑘4𝜎3𝜎4 𝑡𝐴𝑘3𝑘4𝜎3𝜎4𝑐

†
𝑘3𝜎3(0)𝑐𝑘4𝜎4(0), (3.100)

for some 𝛾 𝑘3𝑘4𝜎3𝜎4 and 𝐴𝑘3𝑘4𝜎3𝜎4 , which also depend on 𝑘1, 𝑘2, 𝜎1 and 𝜎2.
If we assume that the variation in 𝑉 (𝜔𝛼

𝑘 , 𝛾
𝑘3𝑘4𝜎3𝜎4 ) is small, such that

𝑉 (𝜔𝛼
𝑘 , 𝛾

𝑘3𝑘4𝜎3𝜎4 ) ≈ 𝑉 (𝜔𝛼
𝑘 , 𝜀𝑘1 − 𝜀𝑘2) since only states which are close in

energy are coupled in time, we can use equation (3.99) to obtain

∫
𝑡

𝑡0
d𝜏 sin[𝜔𝛼

𝑘 (𝑡 − 𝜏)]𝑐†𝑘1𝜎1(𝜏 )𝑐𝑘2𝜎2(𝜏 ) = 𝑉 (𝜔𝛼
𝑘 , 𝜀𝑘1 − 𝜀𝑘2)𝑐

†
𝑘1𝜎1(𝑡)𝑐𝑘2𝜎2(𝑡).

(3.101)

Inserting equation (3.94) into equation (3.88) finally gives

𝑢̃𝛼𝑘 =
𝑄ion

𝑀ion𝜔𝛼
𝑘
∑
𝑘′

𝑏̃𝛼𝑘′
𝑁
𝑉 (𝜔𝛼

𝑘 , 𝜀𝑘′ − 𝜀𝑘+𝑘′) ∑
𝜎∈{↑,↓}

𝑐†𝑘′𝜎𝑐(𝑘′+𝑘)𝜎, (3.102)

This means that ℋ𝑆𝐶 can be computed from equation (3.92) as

ℋ𝑆𝐶 = ∑
𝑘𝑘1𝑘2

∑
𝜎1𝜎2

𝑉𝑘𝑘1𝑘2𝑐
†
𝑘1𝜎1𝑐(𝑘1+𝑘)𝜎1𝑐

†
𝑘2𝜎2𝑐(𝑘2−𝑘)𝜎2

= ∑
𝑘𝑘1𝑘2

∑
𝜎1𝜎2

𝑉𝑘𝑘1𝑘2𝑐
†
𝑘1𝜎1𝑐

†
𝑘2𝜎2𝑐(𝑘2−𝑘)𝜎2𝑐(𝑘1+𝑘)𝜎1 , (3.103)

where

𝑉𝑘𝑘1𝑘2 =
𝑄2
ion

𝑀ion
∑
𝛼

𝑏̃𝛼𝑘1 𝑏̃
𝛼
𝑘2

𝑁 2 𝑉 (𝜔𝛼
𝑘 , 𝜀𝑘1 − 𝜀𝑘+𝑘1). (3.104)
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To proceed, I again consider the relevant subspace of state vectors
the operator can act on. For a term in equation (3.103) to be non-zero,
the states with momenta 𝒌2 − 𝒌 and 𝒌1 + 𝒌 must be occupied while
the states with momenta 𝑘1 and 𝑘2 must be empty. The Fermi surface
is defined by all the 𝒌-values satisfying 𝜀𝑘 = 𝜇. When 𝑡𝑘1𝑘2𝜎1𝜎2 = 0,³
ℋ𝑆𝐶 = 0, and the temperature is absolute zero, then all states with
energy below the Fermi surface are fully occupied while all states
above the Fermi level are fully empty. Hence, in this case, the 𝒌1-state
with energy 𝜀𝑘1 must be below the Fermi level while the (𝒌1 + 𝒌)-state
with energy 𝜀𝑘+𝑘1 must be above the Fermi level. From equation (3.104),
we know that the terms are only significantly different from zero when
𝜀𝑘+𝑘1 − 𝜀𝑘1 ≈ 𝜔𝛼

𝑘 . Hence, only 𝒌1-states within a shell of width equal to
about 2𝜔𝛼

𝑘 around the Fermi surface will contribute at zero temperature

when 𝑡𝑘1𝑘2𝜎1𝜎2 = ℋ𝑆𝐶 = 0. Taking into account finite temperature and non-

zero ℋ𝑆𝐶 and 𝑡𝑘1𝑘2𝜎1𝜎2 , the separation between occupied and unoccupied
states in the ensemble is less abrupt. Some states in a shell of width
determined by the temperature and the magnitude of ℋ𝑆𝐶 and 𝑡𝑘1𝑘2𝜎1𝜎2
will be sometimes occupied and sometimes unoccupied. In this case,
one still only needs to consider terms where 𝒌1 is within a shell around
the Fermi level, except now the width of the shell is determined by 𝜔𝛼

𝑘 ,

the temperature, 𝑡𝑘1𝑘2𝜎1𝜎2 and ℋ𝑆𝐶.
The conditions we have for 𝑉𝑘𝑘1𝑘2𝑐

†
𝑘1𝜎1𝑐

†
𝑘2𝜎2𝑐(𝑘2−𝑘)𝜎2𝑐(𝑘1+𝑘)𝜎1 to be non-

zero are that 𝒌1 and 𝒌1 + 𝒌 must be around the Fermi level, 𝒌2 and 𝒌1
are empty states and 𝒌2 − 𝒌 and 𝒌1 + 𝒌 are filled states. The number
of 𝒌-values for which all these conditions are satisfied is maximized
when 𝒌2 = −𝒌1. This is because, given an inversion symmetric Fermi
surface, 𝒌2 − 𝒌 = −(𝒌1 + 𝒌) will automatically be inside the Fermi
surface if 𝒌1 + 𝒌 is inside the Fermi surface. This is often the case, so
for simplicity I only include these values of 𝒌2, then

ℋ𝑆𝐶 = ∑
𝑘1𝑘2

∑
𝜎1𝜎2

𝑉(𝑘2−𝑘1)𝑘1(−𝑘1)𝑐
†
𝑘1𝜎1𝑐

†
−𝑘1𝜎2𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 , (3.105)

This is essentially the famous BCS Hamiltonian, named after Bardeen,
Cooper and Schrieffer who discovered the first microscopic theory of
superconductivity [52]. The difference is that the conventional BCS

3. Note that 𝑡𝑘1𝑘2𝜎1𝜎2 does not include the diagonal terms 𝜀𝑘, as can be seen from
equation (3.95).
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Hamiltonian has 𝜎1 = −𝜎2. We have no good reason to set 𝜎1 = −𝜎2 at
this point, but we shall see that this happens naturally at the level of
mean-field theory.

As will become especially clear when discussing Green’s functions,
it is much easier to work with quadratic Hamiltonians. One way to
make ℋ𝑆𝐶 quadratic is through mean-field theory. The assumption
in the mean-field theory for superconductivity is that for all pairs of
relevant states, |𝜓 ⟩ and |𝜑⟩, ⟨𝜓 |𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 |𝜑⟩ ≈ ⟨𝜓 |⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1⟩|𝜑⟩. Hence,
we can treat 𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 − ⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1⟩ as a small parameter. Linearizing
equation (3.105) in this small parameter, it becomes

ℋ𝑆𝐶 = −1
2
∑
𝑘

∑
𝜎1𝜎2

[𝛥𝜎1𝜎2
𝑘 𝑐†𝑘𝜎1𝑐

†
−𝑘𝜎2 + (𝛥𝜎1𝜎2

𝑘 )∗𝑐−𝑘𝜎2𝑐𝑘𝜎1]

+ 1
2
∑
𝑘

∑
𝜎1𝜎2

𝛥𝜎1𝜎2
𝑘 ⟨𝑐†𝑘𝜎1𝑐

†
−𝑘𝜎2⟩ (3.106)

where

𝛥𝜎1𝜎2
𝑘1 = −2∑

𝑘2
𝑉(𝑘2−𝑘1)𝑘1(−𝑘1)⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1⟩. (3.107)

Again assuming that the Fermi surface is inversion symmetric, meaning
that 𝜀−𝑘 = 𝜀𝑘, it follows from equation (3.104) that 𝑉(𝑘2−𝑘1)𝑘1(−𝑘1) =
𝑉(−𝑘2−𝑘1)𝑘1(−𝑘1). Hence,

𝛥𝜎1𝜎2
𝑘1 = −∑

𝑘2
𝑉(𝑘2−𝑘1)𝑘1(−𝑘1)⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 − 𝑐−𝑘2𝜎1𝑐𝑘2𝜎2⟩, (3.108)

which means that 𝛥↑↑
𝑘 = 𝛥↓↓

𝑘 = 0 and 𝛥↑↓
𝑘 = −𝛥↓↑

𝑘 . Note, impor-
tantly, that this does not mean that ⟨𝑐−𝑘2↑𝑐𝑘2↑⟩ or ⟨𝑐−𝑘2↓𝑐𝑘2↓⟩ are zero.
Such correlations can be non-zero. They are especially important
for superconducting spintronics because they can carry dissipation-
less spin-currents [65]. The symmetry properties of the phonon-
mediated interaction mean that only the spin-singlet expectation val-
ues, ⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 − 𝑐−𝑘2𝜎1𝑐𝑘2𝜎2⟩, contribute to the Hamiltonian, but the
system can still carry spin-triplet correlation. One way this can happen
is if the superconductor is proximized by a ferromagnetic (paper I) or
antiferromagnetic material (papers IX and X).

The last term in equation (3.106) is a scalar. When 𝛥𝜎1𝜎2
𝑘 varies in

space or time, it can give a non-uniform shift to the free energy. How-
ever, I here assume that it can be safely ignored. The full Hamiltonian
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is therefore

ℋ = ∑
𝑘,𝜎

(𝜀𝑘 − 𝜇)𝑐†𝑘𝜎𝑐𝑘𝜎 + ∑
𝑘1,𝑘2,𝜎1𝜎2

𝑐†𝑘1𝜎1 𝑡
𝑘1𝑘2𝜎1𝜎2𝑐𝑘2𝜎2

−∑
𝑘
[𝛥↑↓

𝑘 𝑐†𝑘↑𝑐
†
−𝑘↓ + (𝛥↑↓

𝑘 )∗𝑐−𝑘↓𝑐𝑘↑] . (3.109)

The presence of 𝛥↑↓
𝑘 is what makes the system superconducting. As

mentioned in chapter 1, a superconducting system has a few char-
acteristic properties. The most famous is probably that it can carry
dissipationless current. This can be seen in papers I–V where current
flows through superconducting junctions despite no drop in electric
potentials. The other feature, which is often considered to be more
fundamental [45] is that it expels magnetic fields. This is the Meissner
effect [45, 47] and can be understood as a consequence of the fact that
the photon field effectively acquires mass in superconductors through
the Higgs mechanism [53, 54]. That is, if instead of deriving an effec-
tive theory for the electron field by solving for the photon field, as I
did above, one instead derives an effective theory for the photon field,
then the photon field would have an effective mass term as a result
superconductivity. This effective mass gives the photon field a short
range.

Conventional superconductors repel magnetic fields through the
Meissner effect, but a sufficiently strong magnetic field will be able
to penetrate through the superconductor. Superconductors can be
categorized based on how they respond to strong magnetic fields. So-
called type-I superconductors will repel all magnetic fields until the
field strength becomes more than some critical value [45]. When the
field strength reaches this value, the superconductivity breaks down,
and the material becomes a normal metal. Type-II superconductors,
on the other hand, will have an intermediate range of magnetic field
strengths in which superconductivity and magnetic fields can coexist
in the same material [45]. This is done through the proliferation of
vortices, which is central in papers I, II and VIII. Vortices are lines
where the superconductivity is suppressed and the magnetic field is
strong. Away from these lines, the strength of the superconductivity
recovers over a length scale given by the superconducting coherence
length, while the strength of the magnetic field is suppressed over a
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length scale given by the magnetic penetration depth. The ratio of the
superconducting penetration depth to the superconducting coherence
length determines whether a superconductor is type-I or type-II. How-
ever, all type-I superconductors can effectively be made into type-II
superconductors if they are made thin [175].

It is worth pointing out that when the system is superconducting
in the mean-field theory, such that ⟨𝑐−𝑘2𝜎2𝑐𝑘2𝜎1⟩ ≠ 0, then the states
describing the system do not have a definite number of particles. What
this means is that the state vectors |𝜓 ⟩ are superpositions of states with
different numbers of particles. To see why, consider the fact that if
|𝜓 ⟩ is a superposition of states with 𝑛 particles, then 𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 |𝜓 ⟩ is a
superposition of states with 𝑛 − 2 particles, all of which are therefore
orthogonal to all the states constituting |𝜓 ⟩, so ⟨𝜓 |𝑐−𝑘2𝜎2𝑐𝑘2𝜎1 |𝜓 ⟩ = 0. On
the other hand, the original Hamiltonian before the mean-field treat-
ment, equation (3.105), commutes with the number operator. Therefore
ground states of the original Hamiltonian are also eigenstates of the
number operator.

3.4 External Fields

In this section, I consider how to include external electric and mag-
netic fields into the quantum theory of solids. First, I summarize the
derivation so far. In section 2.6 I showed that the Hamiltonian for an
electron system can be written in terms of the field operators as

ℋ = ∫
ℝ3

d3𝑥 𝜓†{𝑞𝑉 +
(−𝑖∇ − 𝑞𝑨)2

2𝑚
+

𝑞𝝈
2𝑚

⋅ 𝑩

+
𝑖𝑞𝝈 ⋅ (∇ × 𝑬)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬 × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 − 𝜇}𝜓 . (3.110)

and in section 3.1 I explained that the rapidly oscillating fields from the
ions in solids mean that it is convenient to use lattice models where
𝜓 is written as a sum of annihilation operators for Wannier states. In
section 2.7 I showed how the photon field, (𝑉 , 𝑨), can be written as
a sum of various contributions: the contribution from electrons, the
contribution from other charge sources in the system and the contribu-
tion from external fields. The contribution from electrons gave rise to
electron-electron interactions in the model, and in section 3.2 I showed
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that this could give rise to magnetism through exchange interactions.
In solids, the most prominent source of charge, other than electrons, is
from the ions constituting the lattice. This is what motivated the use
of lattice models in the first place, and in section 3.3, we saw that the
dynamics of these charges can give rise to superconductivity. In this
section, I consider the third and final ingredient of the photon field
in solids, which is the field from external sources. I assume that the
external fields vary slowly in space compared to the distance between
ions.

As was discussed in section 2.7, what I have called the external
fields, 𝑉ext and 𝑨ext, are also operators and can generally not be set
to zero even in the absence of external sources. However, since the
dependency of the photon field on the charge distribution in the system
has been removed, there is no coupling between 𝜓 and (𝑉ext, 𝑨ext). As
a result, when it comes to the computation of observables, the only
necessary quantities to know are the expectation values of (𝑉ext, 𝑨ext),
such as ⟨𝑉ext⟩, ⟨𝑉 2

ext⟩, and so on. In the absence of charges, one can
choose ⟨𝑉ext⟩ = 0 and ⟨𝑨ext⟩ = 0.

3.4.1 Electrostatic Potential and the Zeeman Effect

For our purposes, there are four important effects of the external
electromagnetic field. Two that are simple to include in the lattice
models and two that are more difficult. The two simple effects are the
Zeeman effect and the energy shift from the electrostatic potential. In
terms of the field operators, these are

ℋ𝑉 +ℋ𝑍 = ∫
ℝ3

d3𝑥 𝜓† (𝑞𝑉ext +
𝑞𝝈
2𝑚

⋅ 𝑩ext) 𝜓 , (3.111)

where𝑩ext = ∇×𝑨ext. Like before, I label theWannier states depending
on their spin-projection. That is, if there are 2𝑁𝑠 Wannier states per
lattice site, one can write the field operators in terms of the annihilation
operators for Wannier states, {𝑐𝑛𝑚𝜎}, as

𝜓𝜎(𝒓) =
𝑁𝑠

∑
𝑛=1

𝑁𝑙

∑
𝑚=1

𝜑𝜎𝑛(𝒓 − 𝑹𝑚)𝑐𝑛𝑚𝜎, (3.112)

where 𝑁𝑙 is the number of lattice sites, and 𝜑𝜎𝑛(𝒓 − 𝑹𝑚) = ⟨𝒓, 𝜎 |𝜑𝑛𝜎𝑹𝑚⟩,
where |𝜑𝑛𝜎𝑹𝑚⟩ is the 𝑛th Wannier state with spin 𝜎 associated with the
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lattice site at 𝑹𝑚. In other words, I choose the Wannier states such
that they have uniform spin-projection in space, and ⟨𝒓, 𝜎1|𝜑𝑛𝜎2𝑹𝑚⟩ = 0
when 𝜎1 ≠ 𝜎2. Inserting this I get,

ℋ𝑉 +ℋ𝑍 = ∑
𝜎1,𝜎2

∑
𝑛1,𝑛2

∑
𝑚1,𝑚2

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2𝑐
†
𝑛1𝑚1𝜎1𝑐𝑛2𝑚2𝜎2 , (3.113)

where

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 = ∫
ℝ3

d3𝑥 𝜑∗𝜎1𝑛1(𝒙 − 𝑹𝑚1){𝛿𝜎1𝜎2𝑞𝑉ext(𝒙)

+ [
𝑞𝝈
2𝑚

⋅ 𝑩ext(𝒙)]
𝜎1𝜎2

}𝜑𝜎2𝑛2(𝒙 − 𝑹𝑚2). (3.114)

I write 𝑉ext(𝒓) = 𝑉ext(𝑹𝑚1) + 𝛥𝑉ext(𝒓) and 𝑩ext(𝒓) = 𝑩ext(𝑹𝑚1) +
𝛥𝑩ext(𝒓), where𝛥𝑉ext(𝒓) = 𝑉ext(𝒓)−𝑉ext(𝑹𝑚1) and𝛥𝑩ext(𝒓) = 𝑩ext(𝒓)−
𝑩ext(𝑹𝑚1). Since 𝑉ext and 𝑩ext are assumed to change slowly over the
length-scale of neighboring lattice sites, we have that |𝛥𝑉ext(𝒓)| ≪
|𝑉ext(𝑹𝑚1)| and |𝛥𝑩ext(𝒓)| ≪ |𝑩ext(𝑹𝑚1)| for all relevant values of 𝒓.
Consider first the dominant constant terms. Since Wannier states are
orthogonal, the constant electric potential contribution is

∫
ℝ3

d3𝑥 𝜑∗𝜎1𝑛1(𝒙−𝑹𝑚1)𝑞𝑉ext(𝑹𝑚1)𝜑𝜎1𝑛2(𝒙−𝑹𝑚2) = 𝛿𝑛1𝑛2𝛿𝑚1𝑚2𝑞𝑉ext(𝑹𝑚1).

(3.115)

I assume that two Wannier functions, 𝜑∗𝜎1𝑛1(𝒙 − 𝑹𝑚1) and 𝜑∗𝜎2𝑛2(𝒙 −
𝑹𝑚2), are orthogonal if 𝑛1 ≠ 𝑛2 or 𝑚1 ≠ 𝑚2. From the orthogonality
of the Wannier states, this assumption is true when 𝜎1 = 𝜎2. For
simplicity, I assume that the same is true when 𝜎1 ≠ 𝜎2. This means
that

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 = 𝛿𝑛1𝑛2𝛿𝑚1𝑚2{𝛿𝜎1𝜎2𝑞𝑉ext(𝑹𝑚1)

+ [
𝑞𝝈
2𝑚

⋅ 𝑩ext(𝑹𝑚1)]𝜎1𝜎2 ∫ℝ3
d3𝑥 𝜑∗𝜎1𝑛1(𝒙)𝜑𝜎2𝑛1(𝒙)}. (3.116)

If the Wannier states come in two spin-degenerate pairs, then the
integral in the last term is 1, and

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 = 𝛿𝑛1𝑛2𝛿𝑚1𝑚2{𝛿𝜎1𝜎2𝑞𝑉ext(𝑹𝑚1) + [
𝑞𝝈
2𝑚

⋅ 𝑩ext(𝑹𝑚1)]𝜎1𝜎2
},
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(3.117)

but in general, the spatial overlap between two different spin-states
can be different from 1. This can for instance be the case if there is
strong atomic spin-orbit coupling in the system. In this case, there
will be an effective, direction-dependent 𝑔-factor, such that

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 = 𝛿𝑛1𝑛2𝛿𝑚1𝑚2{𝛿𝜎1𝜎2𝑞𝑉ext(𝑹𝑚1)+𝑔𝜎1𝜎2 [
𝑞𝝈
4𝑚

⋅ 𝑩ext(𝑹𝑚1)]𝜎1𝜎2
}.

(3.118)

Some systems have strong, anisotropic 𝑔-factor [176, 177].
The contributions from 𝛥𝑉ext and 𝛥𝑩ext will give small contribu-

tions to 𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 also when 𝒎1 ≠ 𝒎2. Often, this contribution will be
negligible compared to the hopping term which comes from the kinetic
energy. However, in some circumstances, it might give rise to new
kinds of hopping which are not present in the absence of the external
field, such as hoppings that do not preserve orbital angular momentum.
This is in fact an important contributor to Rashba spin-orbit coupling,
as is explained below.

3.4.2 Peierls Substitution

The two more complicated effects from external fields are spin-orbit
coupling and the orbital effect. By the latter, I mean how the vector
potential enters the kinetic term,

ℋ𝐾 = ∫
ℝ3

d3𝑥 𝜓†[
(−𝑖∇ − 𝑞𝑨)2

2𝑚
]𝜓 . (3.119)

A popular approximation for including how a slowly varying external
vector potential affects the kinetic energy is called the Peierls substitu-
tion [178, 179]. The Peierls substitution amounts to giving the kinetic
hopping term a phase shift proportional to the strength of the external
vector potential and the distance between the hopping sites.

To see how the Peierls substitution can be justified, we can go
back to how the Wannier states are defined. The Wannier states are
defined through the eigenstates of a periodic Hamiltonian. That is, if
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{|𝜓𝑛𝒌⟩} is a complete set of eigenstates of a periodic Hamiltonian, the
corresponding Wannier states are given by

|𝜑𝑛𝑹𝑚⟩ =
1
√𝑁

∑
𝒌

e−𝑖𝒌⋅𝑹𝑚 |𝜓𝑛𝒌⟩, (3.120)

where 𝑁 is the number of lattice sites. The Bloch states {|𝜓𝑛𝒌⟩} can also
be written in terms of the Wannier states through an inverse Fourier
transform,

|𝜓𝑛𝒌⟩ =
1
√𝑁

∑
𝒌

e𝑖𝒌⋅𝑹𝑚 |𝜑𝑛𝑹𝑚⟩. (3.121)

The fact that one needs a periodic Hamiltonian to define the Bloch
states means that the Hamiltonian cannot include the external vector
potential. However, one can define a new set of orthonormal state
vectors that are related to the original Wannier states. Writing the
Hamiltonian first in terms of creation operators for these state vectors
gives a simple recipe for including external vector potentials in the
Hamiltonian with Wannier states.

Let the original, periodic, single-particle Hamiltonian be

ℋ1 =
(𝒑 − 𝑞𝑨ion)2

2𝑚
+ 𝑈 (𝒓, 𝒑 − 𝑞𝑨ion), (3.122)

where 𝑨ion is the periodic vector potential coming from the equilib-
rium distribution of ions and localized electrons and where 𝑈 (𝒓, 𝒑)
includes the electromagnetic field from the ions in their equilibrium
configuration, including the spin-orbit coupling from the electric field
generated by the ions. That is,

𝑈 (𝒓, 𝒑) = 𝑞𝑉 eq
ion(𝒓) +

𝑖𝑞𝒔 ⋅ (∇ × 𝑬eq
ion)

4𝑚2 +
𝑞𝒔 ⋅ (𝑬eq

ion × 𝒑)

2𝑚2 , (3.123)

where 𝒔 is the spin operator. If I include a vector potential 𝑨ext, the
single particle Hamiltonian becomes

ℋ̃1 =
(𝒑 − 𝑞𝑨)2

2𝑚
+ 𝑈 (𝒓, 𝒑 − 𝑞𝑨), (3.124)

where 𝑨 = 𝑨ion + 𝑨ext.
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If the eigenstates of the periodic Hamiltonian in equation (3.122)
are given by {|𝜓𝑛𝒌⟩}, and related to the Wannier states {|𝜓𝑛𝒌⟩} through
equation (3.121), I can define a new set of states as

| ̃𝜓𝑛𝒌⟩ =
1
√𝑁

∑
𝒌

e𝑖𝒌⋅𝑹𝑚 |𝜑̃𝑛𝑹𝑚⟩, (3.125)

where

⟨𝒓, 𝜎 |𝜑̃𝑛𝑹𝑚⟩ = exp [𝑖𝑞 ∫
𝒞(𝒓)

d𝛾 𝑨ext(𝒓′(𝛾 )) ⋅
∂𝒓′

∂𝛾
] ⟨𝒓, 𝜎 |𝜑𝑛𝑹𝑚⟩.

(3.126)

Here 𝒞(𝒓) is some path that starts at some 𝒓0 and ends in 𝒓. The path
is parametrized by 𝛾, so ∂𝒓′/∂𝛾 is the tangent vector to the path. Note
that {|𝜑̃𝑛𝑹𝑚⟩} is an orthonormal set, since

⟨𝜑̃𝑛1𝑹𝑚1
|𝜑̃𝑛1𝑹𝑚1

⟩ = ∑
𝜎
∫
ℝ3
⟨𝜑̃𝑛1𝑹𝑚1

|𝒓 , 𝜎⟩⟨𝒓, 𝜎 |𝜑̃𝑛1𝑹𝑚1
⟩ = ⟨𝜑𝑛1𝑹𝑚1

|𝜑𝑛1𝑹𝑚1
⟩.

(3.127)

I will show that the kinetic energy term of equation (3.124) is simpli-
fied when using {|𝜑̃𝑛𝑹𝑚⟩}. However, before that, I note that one must
take care to define the family of paths {𝒞 (𝒓)}. The aim is to choose
{𝒞 (𝒓)} such that

⟨𝒓, 𝜎 |(𝒑 − 𝑞𝑨)|𝜑̃𝑛𝑹𝑚⟩ ≈ e𝑖𝜃(𝒓)⟨𝒓, 𝜎 |𝒑 − 𝑞𝑨ion|𝜑𝑛𝑹𝑚⟩, (3.128)

where

𝜃(𝒓) = 𝑞 ∫
𝒞(𝒓)

d𝛾 𝑨ext(𝒓′(𝛾 )) ⋅
∂𝒓′

∂𝛾
. (3.129)

The idea is that ∇𝜃 should cancel the term proportional to 𝑞𝑨ext. This
is easy in one dimension, but in multiple dimensions it turns out not
to be equally straightforward. The reason why it is more difficult in
multiple dimensions is that ∇𝜃 will depend on how the path changes
as a function of 𝒓. Therefore, taking a straight path from 𝒓0 to 𝒓, for
example, will result in the transverse components of ∇𝜃 depending on
𝑨ext at all points between 𝒓0 and 𝒓. I assume that 𝑨 changes slowly,
but I cannot assume that 𝑨 is constant in the whole material.
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Regardless of the family of paths, it is true that the kinetic energy
can be written

ℋ𝐾 = ∑
𝜎

∑
𝑛1,𝑛2

∑
𝑚1,𝑚2

𝑡𝑚1𝑚2𝑛1𝑛2 𝑐†𝑛1𝑚1𝜎𝑐𝑛2𝑚2𝜎

= ∑
𝜎

∑
𝑛1,𝑛2

∑
𝑚1,𝑚2

̃𝑡𝑚1𝑚2𝑛1𝑛2 ̃𝑐†𝑛1𝑚1𝜎 ̃𝑐𝑛2𝑚2𝜎, (3.130)

where {𝑐𝑛𝑚𝜎} is the set of annihilation operators for {|𝜑𝑛𝑹𝑚⟩}, { ̃𝑐𝑛𝑚𝜎} is
the set of annihilation operators for {|𝜑̃𝑛𝑹𝑚⟩},

𝑡𝑚1𝑚2𝑛1𝑛2 = ⟨𝜑𝑛1𝑹𝑚1
|
(𝒑 − 𝑞𝑨)2

2𝑚
|𝜑𝑛2𝑹𝑚2

⟩, (3.131)

and

̃𝑡𝑚1𝑚2𝑛1𝑛2 = ⟨𝜑̃𝑛1𝑹𝑚1
|
(𝒑 − 𝑞𝑨)2

2𝑚
|𝜑̃𝑛2𝑹𝑚2

⟩. (3.132)

In a tight-binding approximation, where all the relevant Wannier
states are localized around ions, one may approximate

̃𝑐𝑛1𝑚1𝜎 = ∑
𝑛2𝑚2

⟨𝜑̃𝑛1𝑹𝑚1
|𝜑𝑛2𝑹𝑚2

⟩𝑐𝑛2𝑚2𝜎 ≈ e−𝑖𝜃(𝑹𝑚1)𝑐𝑛1𝑚1𝜎. (3.133)

That is, I assume that I can neglect the coupling between different
Wannier states that comes from the spatial inhomogeneity of 𝜃. This is
valid under the assumption that the changes in 𝜃(𝒓) over the domains
of the Wannier functions are small compared to 1. When this is true, I
get from equation (3.130) that

𝑡𝑚1𝑚2𝑛1𝑛2 = e𝑖[𝜃(𝑹𝑚1)−𝜃(𝑹𝑚2)] ̃𝑡𝑚1𝑚2𝑛1𝑛2 . (3.134)

Next, I must choose a family of paths in order to compute ̃𝑡𝑚1𝑚2𝑛1𝑛2 . The
states {|𝜑̃𝑛𝑹𝑚⟩} are only used to help compute 𝑡𝑚1𝑚2𝑛1𝑛2 . I am therefore free
to choose the paths differently depending on which 𝑡𝑚1𝑚2𝑛1𝑛2 I want to
compute, as long as I am consistent with the prefactor e𝑖[𝜃(𝑹𝑚1)−𝜃(𝑹𝑚2)].
In order to compute all hopping parameters 𝑡𝑚1𝑚2𝑛1𝑛2 where 𝑹𝑚2 = 𝑹𝑖, I
choose the path 𝒞(𝒓) to go in a straight line from 𝒓0 to 𝑹𝑖, and then
in a straight line from 𝑹𝑖 to 𝒓. When I compute ∇𝜃(𝒓), the only part of
the path which depends on 𝒓 is the segment from 𝑹𝑖 to 𝒓. Therefore,

(𝒓 − 𝑹𝑖) ⋅ ∇𝜃 = 𝑞(𝒓 − 𝑹𝑖) ⋅ 𝑨ext(𝒓), (3.135)
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while

(𝒓 − 𝑹𝑖) × ∇𝜃 =
𝑞

|𝒓 − 𝑹𝑖| ∫
|𝒓−𝑹𝑖|

0
d𝛾(𝒓 − 𝑹𝑖) × 𝑨ext (𝑹𝑖 +

𝒓 − 𝑹𝑖
|𝒓 − 𝑹𝑖|

𝛾) .

(3.136)

Since I only need to evaluate ∇𝜃 when |𝒓 − 𝑹𝑖| is on the atomic length
scale, I can set 𝑨ext constant in the interval from 𝑹𝑖 to 𝒓, such that
∇𝜃(𝒓) = 𝑞𝑨ext(𝒓). Inserting this into the definition of ̃𝑡𝑚1𝑖𝑛1𝑛2 , I get that

̃𝑡𝑚1𝑖𝑛1𝑛2 = ⟨𝜑𝑛1𝑹𝑚1
|
(𝒑 − 𝑞𝑨 + 𝑞𝑨ext)

2

2𝑚
|𝜑𝑛2𝑹𝑖⟩, (3.137)

which is just the hopping amplitude in the absence of the external
vector potential. Since 𝑨ext is approximately constant between 𝑹𝑖 and
𝑹𝑚1 , 𝜃(𝑹𝑚1) − 𝜃(𝑹𝑖) = 𝑞(𝑹𝑚1 − 𝑹𝑖) ⋅ 𝑨ext(𝑹𝑖). Therefore,

𝑡𝑚1𝑖𝑛1𝑛2 = e𝑖𝑞(𝑹𝑚1−𝑹𝑖)⋅𝑨ext(𝑹𝑖)⟨𝜑𝑛1𝑹𝑚1
|
(𝒑 − 𝑞𝑨ion)

2

2𝑚
|𝜑𝑛2𝑹𝑖⟩. (3.138)

This is the Peierls substitution. The hopping amplitude in the presence
of a slowly changing external vector potential is equal to the hopping
amplitude in the absence of the external vector potential multiplied by
a phase factor exp[𝑖𝑞(𝑹𝑚1 − 𝑹𝑖) ⋅ 𝑨ext(𝑹𝑖)].

3.4.3 Rashba Spin-Orbit Coupling

The final effect of external fields to be discussed in this section is
the effect of spin-orbit coupling. The most obvious contribution to
spin-orbit coupling from an external electric field is the term

ℋSOC = ∫
ℝ3

d3𝑥 𝜓†{
𝑖𝑞𝝈 ⋅ (∇ × 𝑬ext)

8𝑚2 +
𝑞𝝈 ⋅ [𝑬ext × (−𝑖∇ − 𝑞𝑨)]

4𝑚2 }𝜓 .

(3.139)

If we ignore the first term, which is only non-zero with time-dependent
external fields because ∇×𝑬ext = −∂𝑩ext/∂𝑡, by using that that 𝝈 ⋅[𝑬ext×
(−𝑖∇ − 𝑞𝑨)] = 𝑬ext ⋅ [(−𝑖∇ − 𝑞𝑨) × 𝝈] and inserting the Wannier states,
I get

ℋSOC = ∑
𝜎1𝜎2

∑
𝑛1,𝑛2

∑
𝑚1,𝑚2

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2𝑐
†
𝑛1𝑚1𝜎1𝑐𝑛2𝑚2𝜎2 (3.140)
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where, if I assume that 𝑬ext is approximately constant between 𝑹𝑚1
and 𝑹𝑚2 ,

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 =
𝑞𝑬ext
4𝑚2 ⋅∫

ℝ3
d3𝑥 𝜑∗𝜎1𝑛1(𝒙−𝑹𝑚1)[(−𝑖∇−𝑞𝑨)×𝝈]𝜎1𝜎2𝜑𝜎2𝑛2(𝒙−𝑹𝑚2).

(3.141)

To simplify this expression, I can use that the Wannier states have the
largest overlap in space in the region between 𝑹𝑚1 and 𝑹𝑚2 , and if I
assume that the 𝜑𝜎2𝑛2 decay most quickly in the radial direction, then
the component of the gradient which is parallel to the displacement
vector 𝒅𝑚1𝑚2 = 𝑹𝑚1 − 𝑹𝑚2 will dominate. Therefore,

𝑡𝑚1𝑚2𝑛1𝑛2𝜎1𝜎2 = 𝜆𝑛1𝑛2(|𝒅𝑚1𝑚2 |)𝑬ext ⋅ [𝒅𝑚1𝑚2 × 𝝈]𝜎1𝜎2 (3.142)

for some function 𝜆𝑛1𝑛2(|𝒅𝑚1𝑚2 |). Spin-orbit coupling on the form of
equation (3.142) is called Rashba spin-orbit coupling [180]. There are
also other types, such as the Dresselhaus spin-orbit coupling [181].

Equation (3.142) is the correct form, but the experimental values for 𝜆
are often much larger than one would obtain from inserting reasonable
approximations for the Wannier states in equation (3.141) [182, 183].
This is because there can be other much stronger contributions to spin-
orbit coupling in real materials. In fact, we have already looked at one
important contribution. The electric potential from an external field,⁴
𝑞𝑉ext, can give rise to strong Rashba spin-orbit coupling in materials
with strong atomic spin-orbit coupling, 𝑞𝒔 ⋅ (𝑬eq

ion × 𝒑)/2𝑚
2.

To illustrate how this can happen, consider a system in which there
are some Wannier states corresponding to itinerant electrons at each
lattice site. If the material has strong atomic spin-orbit coupling, the
atomic spin-orbit coupling can give rise to a spin-splitting between the
Wannier states depending on their orbital angular momentum. This
is for instance the case if the Wannier states in question are similar
to 𝑝-orbitals. In other words, the atomic spin-orbit coupling leads to
an on-site coupling between orbital and spin angular momentum. In
the absence of an external electric field, the Wannier states at different

4. I use the term external field in a broad sense. It does not have to be applied exter-
nally in a lab, it is simply external to the field in the atomic Hamiltonian and the
field from the itinerant electrons. For example, it can come from the asymmetric
charge distribution associated with an interface between two materials.
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lattice sites mostly couple to each other if they have the same orbital
angular momentum due to symmetry [183]. However, an external
electric field can act as a symmetry-breaking field, allowing hopping
between states with different orbital angular momentum. This gives
rise to an effective spin-orbit coupling similar to equation (3.142).

To illustrate the physical picture, take an electron in some combina-
tion of orbital angular momentum, 𝑳1, and spin angular momentum,
𝑺1. Because of the external electric field, it can hop to another Wan-
nier state on a neighboring lattice site with another orbital angular
momentum, 𝑳2. However, due to the atomic spin-orbit coupling, the
particle can transition from (𝑳2, 𝑺1) to for example (𝑳1, 𝑺2). The end
result is a transition from one lattice site to another together with a
transition from one spin-state to another, just like equation (3.142).
The difference is that the magnitude of the transition amplitude can
be much stronger than the naive derivation of equation (3.142) would
suggest. The magnitude of 𝜆𝑛1𝑛2(|𝒅𝑚1𝑚2 |) depends on which orbitals
constitute the itinerant electrons and the strength of the atomic spin-
orbit coupling [183]. In practice, it is often more convenient to take
𝜆𝑛1𝑛2(|𝒅𝑚1𝑚2 |) as an unknown free parameter that can be determined
from experiments.
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4Green’s functions
The previous chapter was about how to write down the Hamiltonian
for various crystalline solid states of matter. This chapter is about how
to use the Hamiltonian to compute observables through Green’s func-
tions. The concept of Green’s functions has a precise mathematical
definition [184], but in theoretical condensed matter physics it is typi-
cally used to refer to correlation functions more broadly [185], where
the correlation functions may or may not be Green’s functions in the
mathematical sense. In this chapter, I start by defining Green’s func-
tions in the mathematical sense, which I use to motivate the Green’s
functions of condensed matter physics. I discuss how these Green’s
functions are related to observables, and how they can be computed
through differential equations. Next, I discuss how Green’s functions
simplify in thermal equilibrium and show examples of some key sys-
tems related to my work.

4.1 Definition of Green’s functions

Green’s functions are mathematically useful because they allow one
to easily solve a wide range of linear differential equations [184]. Let
𝑉 ⊆ ℂ𝑚 and 𝑢, 𝑓∶ ℝ𝑛 → 𝑉 be two vector-valued functions satisfying

ℒ𝑢 = 𝑓 , (4.1)

whereℒ is a linear differential operator, meaning that for two functions
𝑢 and 𝑣,ℒ(𝑢+𝑣) = ℒ𝑢+ℒ𝑣. AGreen’s function𝐺(𝑥, 𝑦) is by definition
a matrix-valued distribution which satisfies¹

(ℒ𝐺)𝑚𝑛(𝑥, 𝑦) = 𝛿𝑚𝑛𝛿(𝑥 − 𝑦), (4.2)

where 𝛿(𝑥 − 𝑦) is the Dirac delta distribution, 𝛿𝑚𝑛 is the Kronecker
delta and ℒ acts only on the 𝑥-dependence of 𝐺. Note that even if
ℒ contains differential operators, such that 𝑢 must be a continuously
differentiable function, when ℒ acts on 𝐺 these differential operators

1. In modern mathematical terminology, this is often referred to as a fundamental
solution, whereas the term “Green’s function” is instead reserved for a related
function which takes into account boundary conditions and the domain geome-
try [184].
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must be interpreted in the distributional sense [184]. Having found
the Green’s function, one can then use the linearity of ℒ to easily
construct the solution to equation (4.1) for any right-hand side as

𝑢(𝑥) = ∫
ℝ𝑛

d𝑦 𝐺(𝑥, 𝑦)𝑓 (𝑦). (4.3)

One can also derive an additional equation for 𝐺 in terms of the
adjoint operator ℒ†. Under the assumption that the domain of ℒ is a
complete Hilbert space, the uniqueness of ℒ† is guaranteed by Riez
representation theorem [105]. The adjoint is defined by

∫
ℝ𝑛

d𝑥 𝑣†(𝑥) (ℒ𝑢) (𝑥) = ∫
ℝ𝑛

d𝑥 (ℒ†𝑣)
†
(𝑥)𝑢(𝑥) (4.4)

for all square-integrable 𝑢 and 𝑣. Using this definition,

∫
ℝ𝑛

d𝑥 𝑣†(𝑥)𝑢(𝑥) = ∫
ℝ𝑛

d𝑥 d𝑦 𝑣†(𝑥)ℒ𝐺(𝑥, 𝑦)𝑢(𝑦)

= ∫
ℝ𝑛

d𝑥 d𝑦[ℒ†𝑣]†(𝑥)𝐺(𝑥, 𝑦)𝑢(𝑦)

= ∫
ℝ𝑛

d𝑥 d𝑦[𝐺†(𝑦 , 𝑥)ℒ†𝑣(𝑥)]†𝑢(𝑦). (4.5)

Hence,

𝐺†(𝑦 , 𝑥)ℒ† = 𝛿(𝑦 − 𝑥). (4.6)

This equation must again be interpreted in the distributional sense.
I use the convention that matrices are promoted to the correct size
through tensor products with the correct identity matrices. That is,
the right-hand side must be interpreted as 𝑚 × 𝑚 matrix with 𝛿(𝑦 − 𝑥)
along the diagonal.

In theoretical condensed matter physics, the main differential equa-
tion of interest is the Heisenberg equation (2.20), or, equivalently, the
Schrödinger equation (2.10). As shown in the previous chapters, we
often consider Hamiltonians written in terms of creation and annihila-
tion operators. As an example, consider a system that can be written
in terms of 𝑁 fermionic or bosonic annihilation operators {𝑐1, 𝑐2, … , 𝑐𝑁},
satisfying [𝑐𝜆, 𝑐

†
𝜇 ]± = 𝛿𝜆𝜇, when the operators are evaluated at the

same time. Here, the upper sign is for the fermionic system and the
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lower sign is for the bosonic system. If the Hamiltonian is quadratic,
the Hamiltonian can in the Heisenberg picture be written

ℋ(𝑡) =
𝑁
∑
𝜆,𝜇=1

𝑀𝜆𝜇(𝑡)𝑐
†
𝜆 (𝑡)𝑐𝜇(𝑡) = 𝑐†(𝑡)𝑀(𝑡)𝑐(𝑡), (4.7)

where 𝑐† = (𝑐†1 , … , 𝑐†𝑁) and 𝑀† = 𝑀. In this case equation (2.20) reads

(𝑖 ∂
∂𝑡

− 𝑀) 𝑐 = 0 (4.8)

Green’s functions are not necessarily unique, and for this equation
there are multiple. Written in terms of correlation functions, two
possible Green’s functions are

𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) = −𝑖𝜃(𝑡 − 𝑡′) ⟨[𝑐𝜆(𝑡), 𝑐
†
𝜇 (𝑡′)]±⟩ , (4.9a)

𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′) = +𝑖𝜃(𝑡′ − 𝑡) ⟨[𝑐𝜆(𝑡), 𝑐
†
𝜇 (𝑡′)]±⟩ . (4.9b)

These are known as the retarded and advanced Green’s functions,
respectively. That they satisfy equation (4.2) follows from the commu-
tation relation [𝑐𝜆(𝑡), 𝑐

†
𝜇 (𝑡)]± = 𝛿𝜆𝜇. For instance,

𝑖 ∂
∂𝑡
𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) = 𝛿(𝑡 − 𝑡′) ⟨[𝑐𝜆(𝑡), 𝑐
†
𝜇 (𝑡′)]±⟩ (4.10)

−𝑖𝜃(𝑡 − 𝑡′) ⟨[(𝑀𝑐)𝜆(𝑡), 𝑐
†
𝜇 (𝑡′)]±⟩ (4.11)

= 𝛿(𝑡 − 𝑡′)𝛿𝜆𝜇 + 𝑀(𝑡)𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′). (4.12)

In the sense of equation (4.4), the operator (𝑖∂/∂𝑡 − 𝑀) is self-adjoint.
As a result, one must have that [𝐺𝑅(𝑡′, 𝑡)]† is also a valid Green’s
function. Indeed, we can see from equation (4.9) that

[𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′)]
∗
= −𝑖𝜃(𝑡′ − 𝑡) ⟨[𝑐𝜇(𝑡′), 𝑐

†
𝜆 (𝑡)]±⟩ = 𝐺𝑅

𝜇𝜆(𝑡
′, 𝑡), (4.13)

so the advanced and retarded Green’s functions transform into each
other under Hermitian conjugation and interchange of temporal coor-
dinates.

One application of these Green’s functions is in linear response
theory [114]. Assume 𝑀(𝑡) = 𝑀0 + 𝑉 (𝑡) with 𝑉 (𝑡) = 0 for 𝑡 < 0, and
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let 𝑐 = 𝑐0 + 𝑑, where 𝑐0 = exp(−𝑖𝑀𝑡)𝑐(0). Assuming that both 𝑉 and 𝑑
are small, and neglecting the product 𝑉 𝑑, equation (4.8) becomes

(𝑖 ∂
∂𝑡

− 𝑀0) 𝑑 = 𝑉 𝑐0 (4.14)

This is on the form of equation (4.1), so the solution can read of from
equation (4.3) as

𝑑(𝑡) = ∫
𝑡

0
d𝑡′ 𝐺𝑅

0 (𝑡, 𝑡′)𝑉 (𝑡′)𝑐0(𝑡′), (4.15)

where the Green’s function 𝐺𝑅
0 is evaluated in the unperturbed system

with 𝑀 = 𝑀0. A related formula within linear response theory is
the Kubo formula [114, 186, 187], which relates expectation values of
observables to perturbations in a similar way.

That being said, the reason we are interested in 𝐺𝑅 and 𝐺𝐴 is not
primarily because they are Green’s functions. In condensed matter
physics, we are typically interested in them because they are correla-
tion functions. This is because a wide range of observables, such as
electron density, spin densities, and their associated currents, can be
expressed in terms of correlation functions evaluated at equal times.
That is, observables can often be written as

𝑂(𝑡) = ∑
𝜇𝜆

𝐵𝜆𝜇(𝑡) ⟨𝑐
†
𝜆 (𝑡)𝑐𝜇(𝑡)⟩ (4.16)

for some matrix 𝐵. In terms of the so-called lesser Green’s function,

𝐺<
𝜆𝜇(𝑡, 𝑡

′) = ±𝑖 ⟨𝑐†𝜇 (𝑡′)𝑐𝜆(𝑡)⟩ , (4.17)

where again the upper sign is for fermions and the lower sign is for
bosons, the observable can be written

𝑂(𝑡) = ∓𝑖Tr [𝐵(𝑡)𝐺<(𝑡, 𝑡)] . (4.18)

Unlike the retarded and advanced Green’s functions, the lesser Green’s
function is not a Green’s function in the mathematical sense. However,
it is common in many-body physics to use the term “Green’s function”
to refer to correlation functions like 𝐺<. For this reason, I will also
refer to these functions as Green’s functions.
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As an alternative to the lesser Green’s function, observables can
also be computed using the greater Green’s function,

𝐺>
𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩ . (4.19)

Because using 𝑐†𝜇 (𝑡)𝑐𝜆(𝑡) = ∓𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡) ± 𝛿𝜆𝜇,

𝑂(𝑡) = ∑
𝜇𝜆

𝐵𝜆𝜇(𝑡) ⟨𝑐
†
𝜆 (𝑡)𝑐𝜇(𝑡)⟩ = ±Tr[𝐵(𝑡)]∓∑

𝜆𝜇
𝐵𝜆𝜇(𝑡) ⟨𝑐𝜇(𝑡)𝑐

†
𝜆 (𝑡)⟩

= ±Tr[𝐵(𝑡)] ∓ 𝑖Tr [𝐵(𝑡)𝐺>(𝑡, 𝑡)] . (4.20)

Yet another alternative, which I have used in particular in relation to
the quasiclassical Green’s function formalism (see chapter 6), is to use
the Keldysh Green’s function,

𝐺𝐾 = 𝐺> + 𝐺<, (4.21)

since

𝑂(𝑡) = ∓ 𝑖
2
Tr [𝐵(𝑡)𝐺𝐾(𝑡, 𝑡)] ± 1

2
Tr[𝐵(𝑡)]. (4.22)

Another useful correlation function is the so-called anomalous re-
tarded Green’s function,

𝐹𝑅𝜆𝜇(𝑡, 𝑡
′) = −𝑖𝜃(𝑡 − 𝑡′) ⟨[𝑐𝜆(𝑡), 𝑐𝜇(𝑡′)]±⟩ . (4.23)

One can similarly define anomalous advanced, lesser, greater, and
Keldysh Green’s functions. With the anomalous Green’s function, one
can apply the Green’s function approach to more general systems with
Hamiltonians given by

ℋ(𝑡) = 1
2

𝑁
∑
𝜆,𝜇=1

(𝑀𝜆𝜇(𝑡)𝑐
†
𝜆 𝑐𝜇 + 𝑀∗

𝜆𝜇(𝑡)𝑐
†
𝜇 𝑐𝜆

+ 𝛥𝜆𝜇(𝑡)𝑐
†
𝜆 𝑐

†
𝜇 + 𝛥∗

𝜆𝜇(𝑡)𝑐𝜇𝑐𝜆). (4.24)

In this case, the Heisenberg equation becomes

[(
𝑖

−𝑖)
∂
∂𝑡

− (
𝑀 𝛥
𝛥∗ 𝑀∗)] (

𝑐
𝑐†
) = 0, (4.25)
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where 𝑐† must be interpreted as a column vector. In the fermionic case,
the commutation relation means that 𝛥𝜇𝜆 = −𝛥𝜆𝜇, while in the bosonic
case 𝛥𝜇𝜆 = 𝛥𝜆𝜇. Let 𝛼 = (𝑐, 𝑐†)𝑇. The associated Green’s functions can
then be written

𝐺̂𝑅
𝜆𝜇(𝑡, 𝑡

′) = −𝑖(𝜏𝑧)𝜆𝜆𝜃(𝑡 − 𝑡′) ⟨[𝛼𝜆(𝑡), 𝛼
†
𝜇 (𝑡′)]±⟩ , (4.26a)

𝐺̂𝐴
𝜆𝜇(𝑡, 𝑡

′) = +𝑖(𝜏𝑧)𝜆𝜆𝜃(𝑡′ − 𝑡) ⟨[𝛼𝜆(𝑡), 𝛼
†
𝜇 (𝑡′)]±⟩ , (4.26b)

where 𝜏𝑧 = diag(1, … , 1, −1, … , −1). The anomalous Green’s function
is especially useful in the context of superconductivity. As I showed in
section 3.3, the mean-field Hamiltonian of a superconducting system
is of the form given by equation (4.24).

The operator 𝑐𝜆 annihilates an electron state, but alternatively one
could say that it creates a hole state. Therefore, one could say that
the Green’s functions equation (4.26) are Green’s functions in particle-
hole space. Another name for this is that they are Green’s functions
in Nambu space [185].

4.2 Equilibrium Green’s functions

By “equilibrium”, I mean that the system is both stationary and in
thermal equilibrium. For our purposes, the latter means that the system
is in a canonical or grand canonical ensemble. In this case one can
compute the lesser Green’s function, and therefore observables, from
only the retarded or advanced Green’s function. To see why, note that
one can write

𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) − 𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′) = 𝐺>
𝜆𝜇(𝑡, 𝑡

′) − 𝐺<
𝜆𝜇(𝑡, 𝑡

′). (4.27)

In a stationary system the Hamiltonianℋ is time independent, so from
the Heisenberg equation (2.20), an operator 𝐴 evaluated at time 𝑡 is

𝐴(𝑡) = e𝑖ℋ 𝑡𝐴(0)e−𝑖ℋ 𝑡 = e𝑖ℋ 𝑡𝐴0e−𝑖ℋ 𝑡. (4.28)

Hence, if 𝑍 is the partition function, 𝛽 is inverse temperature, {|𝑛⟩} is
the complete set of eigenstates of ℋ and {𝜀𝑛} is the corresponding set
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of eigenvalues, then

⟨𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩ = 𝑍−1∑

𝑛
e−𝛽𝜀𝑛⟨𝑛|𝑐𝜆(𝑡)𝑐

†
𝜇 (𝑡′)|𝑛⟩ (4.29)

= 𝑍−1∑
𝑛,𝑚

e−𝛽𝜀𝑛e𝑖(𝜀𝑛−𝜀𝑚)(𝑡−𝑡
′)⟨𝑛|𝑐𝜆,0|𝑚⟩⟨𝑚|𝑐

†
𝜇,0|𝑛⟩.

(4.30)

Next, by Fourier transforming in relative time, I get

𝐺>
𝜆𝜇(𝜀) = −𝑖 ∫

∞

−∞
d(𝑡 − 𝑡′) ⟨𝑐𝜆(𝑡)𝑐

†
𝜇 (𝑡′)⟩ e𝑖𝜀(𝑡−𝑡

′)

= −𝑖𝑍−1∑
𝑛,𝑚

e−𝛽𝜀𝑛⟨𝑛|𝑐𝜆,0|𝑚⟩⟨𝑚|𝑐
†
𝜇,0|𝑛⟩2𝜋𝛿(𝜀 + 𝜀𝑛 − 𝜀𝑚)

= −𝑖𝑍−1∑
𝑛,𝑚

e−𝛽𝜀𝑚⟨𝑚|𝑐†𝜇,0|𝑛⟩⟨𝑛|𝑐𝜆,0|𝑚⟩2𝜋𝛿(𝜀 + 𝜀𝑛 − 𝜀𝑚)e𝛽(𝜀𝑚−𝜀𝑛)

= −𝑖e𝛽𝜀 ∫
∞

−∞
d(𝑡 − 𝑡′) ⟨𝑐†𝜇 (𝑡′)𝑐𝜆(𝑡)⟩ e𝑖𝜀(𝑡−𝑡

′) = ∓e𝛽𝜀𝐺<
𝜆𝜇(𝜀) (4.31)

Inserting this into equation (4.27), we see that

𝐺<
𝜆𝜇(𝜀) = −

𝐺𝑅
𝜆𝜇(𝜀) − 𝐺𝐴

𝜆𝜇(𝜀)

1 ± e𝛽𝜀
= 𝑖𝐴𝜆𝜇(𝜀)𝑓±(𝜀), (4.32)

where

𝑓±(𝜀) =
1

1 ± e𝛽𝜀
(4.33)

is the Fermi-Dirac distribution in the fermionic case and the Bose-
Einstein distribution in the bosonic case, and

𝐴𝜆𝜇 = 𝑖 (𝐺𝑅
𝜆𝜇 − 𝐺𝐴

𝜆𝜇) (4.34)

is the spectral function [114, 185]. Equation (4.32) is an example of
the fluctuation-dissipation theorem [188, 189]. Similarly, from equa-
tion (4.27) I get

𝐺>
𝜆𝜇(𝜀) =

𝐺𝑅
𝜆𝜇(𝜀) − 𝐺𝐴

𝜆𝜇(𝜀)

1 ± e−𝛽𝜀
= −𝑖𝐴𝜆𝜇(𝜀)[1 − 𝑓±(𝜀)]. (4.35)

The Fermi-Dirac (Bose-Einstein) distribution 𝑓+ (𝑓−) gives the av-
erage number of particles in states with energy 𝜀. On the other hand,
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−𝑖𝐺<
𝜆𝜆(𝑡, 𝑡) = ⟨𝑐†𝜆 (𝑡)𝑐𝜆(𝑡)⟩ is the number of particles in state 𝜆. By writ-

ing

−𝑖𝐺<
𝜆𝜆(𝑡, 𝑡) = ∫

∞

−∞

d𝜀 𝐴𝜆𝜆(𝜀)
2𝜋

𝑓±(𝜀), (4.36)

we see that one can interpret 𝐴𝜆𝜆(𝜀) d𝜀 /2𝜋 as being how much of
the state 𝜆 which is in the energy-interval (𝜀, 𝜀 + d𝜀). In order to
compute observables, one must in general know both the number
of states with the relevant properties and the occupancy of these
states. In thermal equilibrium, it is sufficient to determine the spectral
function since occupancy follows from the Fermi-Dirac and Bose-
Einstein distributions.

4.3 Example: Non-interacting systems

The Hamiltonian for a non-interacting system of particles can, as
shown in section 2.4, be written

ℋ =
∞
∑
𝜆=1

𝜉𝜆𝑐
†
𝜆 𝑐𝜆, (4.37)

where 𝜉𝜆 also includes the chemical potential. In this case 𝑀𝜆𝜇 = 𝜉𝜆𝛿𝜆𝜇.
Hence, the retarded and advanced Green’s functions solve

𝑖 ∂
∂𝑡
𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) − 𝜉𝜆𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) = 𝛿(𝑡 − 𝑡′)𝛿𝜆𝜇, (4.38)

where 𝑋 is either 𝑅 or 𝐴. Multiplying the equation by −𝑖e𝑖𝜉𝜆𝑡, using the
product rule of differentiation,² and integrating from 𝑡0 to 𝑡, I get that

𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) = e−𝑖𝜉𝜆(𝑡−𝑡0)𝐺𝑋
𝜆𝜇(𝑡0, 𝑡

′)−𝑖𝛿𝜆𝜇e−𝑖𝜉𝜆(𝑡−𝑡0)[𝜃(𝑡′−𝑡0)−𝜃(𝑡′−𝑡)].
(4.39)

The retarded Green’s function, 𝐺𝑅
𝜆𝜇(𝑡0, 𝑡

′), is zero when 𝑡′ > 𝑡0.
Choosing 𝑡′ > 𝑡0, such that 𝜃(𝑡′−𝑡0)− 𝜃(𝑡′−𝑡) = 1−𝜃(𝑡′−𝑡) = 𝜃(𝑡 − 𝑡′),
and setting 𝑋 = 𝑅, I get

𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) = −𝑖𝜃(𝑡 − 𝑡′)𝛿𝜆𝜇e−𝑖𝜉𝜆(𝑡−𝑡
′). (4.40)

2. The product rule of differentiation holds in the sense of distributional derivatives
when working with products of normal functions and distributions. Here, the
Green’s function is a distribution while e𝑖𝜉𝜆𝑡 is a smooth function. Note that
one can generally not multiply distributions, so there is no product rule for
differentiation for products of distributions.
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Similarly, the advanced Green’s function, 𝐺𝐴
𝜆𝜇(𝑡0, 𝑡

′), is zero when 𝑡′ <
𝑡0. Choosing 𝑡′ < 𝑡0, such that 𝜃(𝑡′ − 𝑡0) − 𝜃(𝑡′ − 𝑡) = −𝜃(𝑡′ − 𝑡), and
setting 𝑋 = 𝐴, I get

𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′) = 𝑖𝜃(𝑡′ − 𝑡)𝛿𝜆𝜇e−𝑖𝜉𝜆(𝑡−𝑡
′). (4.41)

These results could also have been obtained by inserting 𝑐𝜆(𝑡) =
e−𝜉𝜆𝑡𝑐𝜆(0) into the definitions of the Green’s functions in equation (4.9).

To find the spectral function, note that 𝑖[𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) − 𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′)] =
e−𝑖𝜉𝜆(𝑡−𝑡

′), so the spectral function is 𝐴𝜆𝜇(𝜀) = 2𝜋𝛿(𝜀 − 𝜉𝜆)𝛿𝜆𝜇. From
this, the equilibrium lesser Green’s function in Fourier space is𝐺<

𝜆𝜇(𝜀) =
2𝜋𝑖𝛿(𝜀 − 𝜉𝜆)𝛿𝜆𝜇𝑓±(𝜀), which means that

𝐺<
𝜆𝜇(𝑡, 𝑡

′) = ∫
∞

−∞

d𝜀
2𝜋

e−𝑖𝜀(𝑡−𝑡
′)𝐺<

𝜆𝜇(𝜀) = 𝑖𝛿𝜆𝜇𝑓±(𝜉𝜆)e−𝑖𝜉𝜆(𝑡−𝑡
′). (4.42)

Fourier transforming equations (4.40) and (4.41) in relative coordinates,
I get

𝐺𝑅/𝐴
𝜆𝜇 (𝜀) = ∫

∞

−∞
d(𝑡 − 𝑡′) 𝐺𝑅/𝐴

𝜆𝜇 (𝑡, 𝑡′) = lim
𝜂→0

𝛿𝜆𝜇
𝜀 − 𝜉𝜆 ± 𝑖𝜂

, (4.43)

where the infinitesimal 𝜂 is needed to make make the inverse Fourier
transforms converge. It is also needed to get the correct spectral
function. Note that the limit 𝜂 → 0 must be taken outside of the
integral in the inverse Fourier transform. Also, note that a non-zero
value of 𝜂 will make the Green’s function go to zero as |𝑡 − 𝑡′| → ∞.
Therefore, 𝜂 > 0 can be used to model systems with dissipation.

Knowing the Green’s function, we can compute observables. For
instance, the if the particles are electrons with charge 𝑞, the total elec-
tric charge is 𝑄 = 𝑞∑𝜆⟨𝑐

†
𝜆 𝑐𝜆⟩ = −𝑖𝑞 ∑𝜆 𝐺

<
𝜆𝜆(𝑡, 𝑡). Using equation (4.42),

the total electric charge is

𝑄 = −𝑖𝑞∑
𝜆
𝐺<
𝜆𝜆(𝑡, 𝑡) = 𝑞∑

𝜆
𝑓+(𝜉𝜆). (4.44)

That is, each state contributes 𝑞𝑓+(𝜉𝜆) to the charge. At zero temper-
ature, 𝑓+(𝜉𝜆) = 𝜃(−𝜉𝜆), so all states with negative energy, meaning
states below the Fermi level, adds 𝑞 to the total charge, as expected.
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From this example we also have a general formula to compute
Green’s function in quadratic systems with Hamiltonian

ℋ =
∞
∑
𝜆,𝜇=1

𝑀𝜆𝜇𝑐
†
𝜆 𝑐𝜇, (4.45)

where 𝑀 does not depend on time, such that

𝑖 ∂
∂𝑡
𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) −∑
𝛾
𝑀𝜆𝛾𝐺𝑋

𝛾𝜇(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′)𝛿𝜆𝜇. (4.46)

The first step is to diagonalize 𝑀𝜆𝜇 = ∑𝛾 𝑆𝜆𝛾𝜉𝛾𝑆−1𝛾𝜇 and define ̄𝐺𝑋 =
𝑆−1𝐺𝑋𝑆. Next, multiply equation (4.46) with 𝑆−1 from the left and 𝑆
from the right, such that

𝑖 ∂
∂𝑡

̄𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) − 𝜉𝜆 ̄𝐺𝑋
𝜆𝜇(𝑡, 𝑡

′) = 𝛿(𝑡 − 𝑡′)𝛿𝜆𝜇. (4.47)

This is solved by equations (4.40) and (4.41), so

𝐺𝑅
𝜆𝜇(𝑡, 𝑡

′) = −𝑖𝜃(𝑡 − 𝑡′)∑
𝛾
𝑆𝜆𝛾e−𝑖𝜉𝛾(𝑡−𝑡

′)𝑆−1𝛾𝜇 , (4.48a)

𝐺𝐴
𝜆𝜇(𝑡, 𝑡

′) = 𝑖𝜃(𝑡′ − 𝑡)∑
𝛾
𝑆𝜆𝛾e−𝑖𝜉𝛾(𝑡−𝑡

′)𝑆−1𝛾𝜇 . (4.48b)

In practice, it can be difficult to determine 𝑆, but it is significantly
easier in translationally invariant systems. For small systems, one can
alternatively diagonalize systems with spatial variation numerically.

4.3.1 Magnets

Consider the itinerant electrons in a magnet. It can be a ferromagnet
or an antiferromagnet. Assume that there are 𝑁 lattice sites and 2𝑁𝑠
orbitals, or Wannier states, per lattice site. That is 𝑁𝑠 states per spin.
Remember that each lattice site includes one whole unit cell, meaning
that there can be several atoms at each lattice site. Even if there is only
one Wannier state or orbital per spin at each atom, there can be more
than two Wannier states at each lattice site.

I assume that the spins of the localized electrons can be treated as
constant and that the exchange interaction with the localized electrons
is the same at each lattice site, but it might vary between Wannier

104



states. Let 𝑐𝑖𝑚𝜎 be the annihilation operator for Wannier state 𝑚 with
spin 𝜎 at lattice site 𝑖. I assume that the only spin dependence is in the
exchange coupling to the localized electrons or the Zeeman energy
from a uniform external field, which enters in the same way in the
Hamiltonian (see chapter 3). In this case, the Hamiltonian can be
written

ℋ =
𝑁
∑
𝑖,𝑗=1

𝑁𝑠

∑
𝑚,𝑛=1

∑
𝜎
𝑡𝑚𝑛𝑖𝑗 𝑐†𝑖𝑚𝜎𝑐𝑗𝑛𝜎 −

𝑁𝑠

∑
𝑚

𝑁
∑
𝑖=1

∑
𝜎1𝜎2

𝑐†𝑖𝑚𝜎1[𝒉
𝑚 ⋅ 𝝈]𝜎1𝜎2𝑐𝑖𝑚𝜎2 .

(4.49)

If the system is translationally invariant, then 𝑡𝑚𝑛𝑖𝑗 depend only on
the relative distance, meaning that 𝑡𝑚𝑛𝑖𝑗 = 𝑡𝑚𝑛(𝑖+𝑙)(𝑗+𝑙) for any 𝑙. In this
case, performing a discrete Fourier transform results in

ℋ = 1
𝑁

𝑁
∑
𝑘=1

𝑁𝑠

∑
𝑚,𝑛=1

∑
𝜎1𝜎2

𝑐†𝑘𝑚𝜎1𝑐𝑘𝑛𝜎2[𝛿𝜎1𝜎2 𝑡
𝑚𝑛
𝑘 − 𝛿𝑚𝑛(𝒉𝑚 ⋅ 𝝈)𝜎1𝜎2], (4.50)

where

𝑐𝑘𝑛𝜎2 =
𝑁
∑
𝑖=1

𝑐𝑖𝑛𝜎2e
−𝑖𝒌⋅𝑹𝑖 , (4.51a)

𝑐†𝑘𝑛𝜎2 =
𝑁
∑
𝑖=1

𝑐†𝑖𝑛𝜎2e
𝑖𝒌⋅𝑹𝑖 , (4.51b)

𝑡𝑚𝑛𝑘 =
𝑁
∑
𝑖=1

𝑡𝑚𝑛𝑖𝑗 e𝑖𝒌⋅(𝑹𝑖−𝑹𝑗). (4.51c)

For a simple, ferromagnetic system, where 𝑁𝑠 = 1, equation (4.50) is
already diagonal if we choose the 𝑧-axis to point along the direction of
𝒉1. In this case, the Green’s functions in the momentum basis are

𝐺𝑅/𝐴
𝑘1𝑘2↑↑(𝜀) = lim

𝜂→0

𝛿𝑘1𝑘2
𝜀 − 𝑡11𝑘 + ℎ1 ± 𝑖𝜂

, (4.52a)

𝐺𝑅/𝐴
𝑘1𝑘2↓↓(𝜀) = lim

𝜂→0

𝛿𝑘1𝑘2
𝜀 − 𝑡11𝑘 − ℎ1 ± 𝑖𝜂

, (4.52b)

𝐺𝑅/𝐴
𝑘1𝑘2↑↓ = 𝐺𝑅/𝐴

𝑘1𝑘2↓↑ = 0, (4.52c)
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where

𝐺𝑅
𝑘1𝑘2𝜎1𝜎2(𝑡, 𝑡

′) = −
𝑖𝜃(𝑡 − 𝑡′)

𝑁
⟨[𝑐𝑘11𝜎1(𝑡), 𝑐

†
𝑘21𝜎2(𝑡

′)]⟩ , (4.53)

and 𝐺𝐴
𝑘1𝑘2𝜎1𝜎2(𝑡, 𝑡

′) = [𝐺𝑅
𝑘2𝑘1𝜎2𝜎1(𝑡

′, 𝑡)]∗. The factor 1/𝑁 comes from how
I defined the Fourier transform.

From the Green’s function one can compute the magnetization from
the itinerant electrons in a ferromagnet. Each electron with spin up
has a magnetic moment equal to −𝑔𝜇𝐵/2 in the 𝑧-direction, where 𝑔
is the Landé 𝑔-factor and 𝜇𝐵 = 𝑒/2𝑚 is the Bohr magneton [25] (see
sections 2.6 and 3.4). Electrons with spin down have the samemagnetic
moment but in the opposite direction. Assuming isotropic 𝑔-factor,
the total magnetic moment is therefore

𝑴 =
𝑖𝑔𝜇𝐵
2

𝑁
∑
𝑘=1

∑
𝜎1𝜎2

𝝈𝜎1𝜎2𝐺
<
𝑘𝑘𝜎1𝜎2(𝑡, 𝑡). (4.54)

Equation (4.52c) means that𝑴 is parallel to 𝒉1. Using equations (4.52a)
and (4.52b), the magnetization in the 𝑧-direction is

𝑀𝑧 = −
𝑔𝜇𝐵
2

𝑁
∑
𝑘=1

[𝑓+(𝑡11𝑘 − ℎ1) − 𝑓+(𝑡11𝑘 + ℎ1)]. (4.55)

At low temperatures 𝑓+(𝑡11𝑘 ∓ ℎ1) ≈ 𝜃(−𝑡11𝑘 ± ℎ1). Therefore, the sum
in equation (4.55) counts the number of states with 𝑡11𝑘 ∈ (−ℎ1, ℎ1). We
can convert the sum to an integral. Let the density of states per spin
be³

𝑁(𝐸) = ∑
𝑘
𝛿(𝑡11𝑘 − 𝐸). (4.56)

Then,

∑
𝑘
𝑓 (𝑡11𝑘 ) = ∫

∞

−∞
d𝐸 𝑓 (𝐸)∑

𝑘
𝛿(𝑡11𝑘 − 𝐸) = ∫

∞

−∞
d𝐸 𝑓 (𝐸)𝑁 (𝐸).

(4.57)

Hence, the magnetization is

𝑀𝑧 = −
𝑔𝜇𝐵
2 ∫

∞

−∞
d𝐸 𝑁(𝐸)[𝑓+(𝐸 − ℎ1) − 𝑓+(𝐸 + ℎ1)]. (4.58)

3. Not to be confused with the number of lattice sites.
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If the density of states is approximately constant and equal to 𝑁(0) in
from 𝐸 = −ℎ1 to 𝐸 = ℎ1, then

𝑀𝑧 = −𝑔𝜇𝐵𝑁(0)ℎ1. (4.59)

The choice of 𝑧-axis was arbitrary. More generally,

𝑴 = −𝑔𝜇𝐵𝑁(0)𝒉1. (4.60)

For an antiferromagnetic system, on the other hand, we need to
choose a unit cell consisting of at least two orbitals in order for the
exchange coupling to be independent of lattice site. Let there be two
Wannier states per orbital per lattice site, such that ℎ1 = −ℎ2 = ℎ, and
let 𝑐†𝑘 = (𝑐†𝑘1↑, 𝑐

†
𝑘1↓, 𝑐

†
𝑘2↑, 𝑐

†
𝑘2↓) be the 4-tuple of creation operators with

crystal momentum 𝒌. Assuming that 𝑡11𝑘 = 𝑡22𝑘 = 𝑎𝑘 and 𝑡12𝑘 = 𝑡21𝑘 = 𝑏𝑘,
the Hamiltonian can be written

ℋ = 1
𝑁

𝑁
∑
𝑘=1

𝑐†𝑘

⎛
⎜
⎜
⎝

𝑎𝑘 − ℎ ⋅ 𝑏𝑘 ⋅
⋅ 𝑎𝑘 + ℎ ⋅ 𝑏𝑘
𝑏𝑘 ⋅ 𝑎𝑘 + ℎ ⋅
⋅ 𝑏𝑘 ⋅ 𝑎𝑘 − ℎ

⎞
⎟
⎟
⎠

𝑐𝑘 (4.61)

Diagonalizing this Hamiltonian can be done by defining

̄𝑐𝑘 =
1

√2𝜂𝑘
[(
−𝜎0 𝜎0
𝜎0 𝜎0

) ̄𝑠𝑘 − (
𝜎𝑧 𝜎𝑧
𝜎𝑧 −𝜎𝑧

)𝛥𝑠𝑘] 𝑐𝑘, (4.62)

where 𝜎0 is the 2 × 2 identity matrix, 𝜂𝑘 = √ℎ
2 + 𝑏2𝑘 , ̄𝑠𝑘 = (𝑠+𝑘 + 𝑠−𝑘 )/2

and 𝛥𝑠𝑘 = (𝑠+𝑘 − 𝑠−𝑘 )/2, where 𝑠±𝑘 = √𝜂𝑘 ± ℎ. Inserting this into equa-
tion (4.63), I get

ℋ = 1
𝑁

𝑁
∑
𝑘=1

̄𝑐†𝑘

⎛
⎜
⎜
⎝

𝑎𝑘 − 𝜂𝑘 ⋅ ⋅ ⋅
⋅ 𝑎𝑘 − 𝜂𝑘 ⋅ ⋅
⋅ ⋅ 𝑎𝑘 + 𝜂𝑘 ⋅
⋅ ⋅ ⋅ 𝑎𝑘 + 𝜂𝑘

⎞
⎟
⎟
⎠

̄𝑐𝑘. (4.63)

From this diagonal Hamiltonian, one can derive the Green’s functions.
Let 𝐺𝑅

𝑘1𝑘2(𝑡, 𝑡
′) = −𝑖𝜃(𝑡 − 𝑡′)⟨[𝑐𝑘1(𝑡) 𝑐

†
𝑘2(𝑡

′)]+⟩/𝑁 be a matrix of retarded

Green’s functions, where the commutator of 4-tuples 𝐴 and 𝐵† is
defined by ([𝐴 𝐵†]+)𝑖𝑗 = [𝐴𝑖 𝐵

†
𝑗 ]+. The advanced Green’s function
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matrix is similarly defined as 𝐺𝐴
𝑘1𝑘2(𝑡, 𝑡

′) = 𝑖𝜃(𝑡′ − 𝑡)⟨[𝑐𝑘1(𝑡) 𝑐
†
𝑘2(𝑡

′)]+⟩/𝑁.
In Fourier space, equations (4.62) and (4.63) implies that

𝐺𝑅/𝐴
𝑘1𝑘2 (𝜀) = lim

𝛿→0
1

(𝜀 ± 𝑖𝛿 − 𝑎𝑘)2 − 𝜂2𝑘

×
⎛
⎜
⎜
⎝

𝜀 ± 𝑖𝛿 − 𝑎𝑘 − ℎ ⋅ 𝑏𝑘 ⋅
⋅ 𝜀 ± 𝑖𝛿 − 𝑎𝑘 + ℎ ⋅ 𝑏𝑘
𝑏𝑘 ⋅ 𝜀 ± 𝑖𝛿 − 𝑎𝑘 + ℎ ⋅
⋅ 𝑏𝑘 ⋅ 𝜀 ± 𝑖𝛿 − 𝑎𝑘 − ℎ

⎞
⎟
⎟
⎠

.

(4.64)

4.3.2 Superconductors

In section 3.3, I derived the BCS Hamiltonian for superconductors,

ℋ = 1
𝑁
∑
𝑘,𝜎

𝜉𝑘𝑐
†
𝑘𝜎𝑐𝑘𝜎 +

1
𝑁

∑
𝑘1,𝑘2,𝜎1𝜎2

𝑐†𝑘1𝜎1 𝑡
𝑘1𝑘2𝜎1𝜎2𝑐𝑘2𝜎2

− 1
𝑁
∑
𝑘
[𝛥↑↓

𝑘 𝑐†𝑘↑𝑐
†
−𝑘↓ + (𝛥↑↓

𝑘 )∗𝑐−𝑘↓𝑐𝑘↑] . (4.65)

If the system is invariant under translation, 𝑡𝑘1𝑘2𝜎1𝜎2 ∝ 𝛿𝑘1𝑘2 . Furthermore,
if there is no spin-dependent hopping, which could come from spin-
orbit coupling, for instance, then 𝑡𝑘1𝑘2𝜎1𝜎2 = 𝑡𝑘1𝛿𝑘1𝑘2𝛿𝜎1𝜎2 . In this case,

we can therefore just absorb 𝑡𝑘 into 𝜉𝑘. Defining the 4-tuple⁴ 𝑐†𝑘 =
(𝑐†𝑘↑, 𝑐

†
𝑘↓, 𝑐−𝑘↓, −𝑐−𝑘↑), the Hamiltonian can be written

ℋ = 1
2𝑁

∑
𝑘
𝑐†𝑘

⎛
⎜
⎜
⎜
⎝

𝜉𝑘 ⋅ −𝛥↑↓
𝑘 ⋅

⋅ 𝜉𝑘 ⋅ −𝛥↑↓
−𝑘

−(𝛥↑↓
𝑘 )∗ ⋅ −𝜉𝑘 ⋅
⋅ −(𝛥↑↓

−𝑘)
∗ ⋅ −𝜉𝑘

⎞
⎟
⎟
⎟
⎠

𝑐𝑘, (4.66)

if one neglects the constant that comes from using the anticommu-
tation relation. For simplicity, assume 𝜀−𝑘 = 𝜀𝑘 and 𝛥↑↓

𝑘 = 𝛥↑↓
−𝑘. Let

4. There are two different conventions when defining the 4-tuples of creation and
annihilation operators in relation to superconductivity, and in my work I have
used both. The other alternative is 𝑐†𝑘 = (𝑐†𝑘↑, 𝑐

†
𝑘↓, 𝑐−𝑘↑, 𝑐−𝑘↓). The advantage of this

is that the 4-tuple looks more symmetric. On the other hand, the one I use in
the main text results in different and possibly more intuitive Green’s functions.
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𝜏𝑧 = diag(1, 1, −1, −1) be the third Pauli matrix in Nambu-space. The
retarded and advanced Green’s function matrices in the supercon-
ducting system, which includes the anomalous Green’s functions, are
defined as

𝐺̂𝑅
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜏𝑧𝜃(𝑡 − 𝑡′)⟨[𝑐𝑘1(𝑡) 𝑐

†
𝑘2(𝑡

′)]+⟩, (4.67a)

𝐺̂𝐴
𝑘1𝑘2(𝑡, 𝑡

′) = + 𝑖
𝑁
𝜏𝑧𝜃(𝑡′ − 𝑡)⟨[𝑐𝑘1(𝑡) 𝑐

†
𝑘2(𝑡

′)]+⟩. (4.67b)

Let 𝛥̂ = antidiag(𝛥↑↓
𝑘 𝜎0, −[𝛥

↑↓
𝑘 ]∗𝜎0), where 𝜎0 is the 2×2 identitymatrix.

From above, and as will be more explicitly shown in chapter 6, these
Green’s functions solve

𝑖𝜏𝑧
∂
∂𝑡
𝐺̂𝑅/𝐴
𝑘𝑘′ (𝑡, 𝑡′) − (𝜉𝑘 − 𝛥̂)𝐺̂𝑅/𝐴

𝑘𝑘′ (𝑡, 𝑡′) = 𝛿𝑘𝑘′𝛿(𝑡 − 𝑡′). (4.68)

Fourier transforming in relative time, the equation becomes

[𝜏𝑧(𝜀 ± 𝑖𝛿) − 𝜉𝑘 + 𝛥̂] 𝐺̂𝑅/𝐴
𝑘𝑘′ (𝜀) = 𝛿𝑘𝑘′ , (4.69)

where I have added the infinitesimal 𝛿, which is the same as 𝜂 above.
Hence,

𝐺̂𝑅/𝐴
𝑘𝑘′ (𝜀) = 𝛿𝑘𝑘′ [𝜏𝑧(𝜀 ± 𝑖𝛿) − 𝜉𝑘 + 𝛥̂]

−1

= 𝛿𝑘𝑘′
𝜏𝑧(𝜀 ± 𝑖𝛿) + 𝜉𝑘 + 𝛥̂

(𝜀 ± 𝑖𝛿)2 − 𝜉 2𝑘 − |𝛥↑↓
𝑘 |

2 . (4.70)

The full Green’s functions,

𝐺̂𝑅/𝐴
𝑘𝑘′ (𝜀) = (

𝐺𝑅/𝐴
𝑘𝑘′ (𝜀) 𝐹𝑅/𝐴𝑘𝑘′ (𝜀)

−[𝐹𝑅/𝐴𝑘𝑘′ (−𝜀)]∗ [𝐺𝑅/𝐴
𝑘𝑘′ (−𝜀)]∗

) , (4.71)

contain both the normal Green’s functions, 𝐺𝑅/𝐴
𝑘𝑘′ , and the anoma-

lous Green’s functions, 𝐹𝑅/𝐴𝑘𝑘′ . The anomalous Green’s function gives
a self-consistency equation for the gap parameter 𝛥↑↓

𝑘 , since, from
section 3.3,⁵

𝛥↑↓
𝑘 (𝑡) = −𝑁 ∑

𝑘2
𝑉(𝑘2−𝑘1)𝑘1(−𝑘1)⟨𝑐−𝑘2𝜎2(𝑡)𝑐𝑘2𝜎1(𝑡) − 𝑐−𝑘2𝜎1(𝑡)𝑐𝑘2𝜎2(𝑡)⟩

= 𝑖∑
𝑘2

𝑁 2𝑉(𝑘2−𝑘1)𝑘1(−𝑘1) Tr[𝐹
<
𝑘2𝑘2](𝑡, 𝑡). (4.72)

5. Compared to section 3.3, there is an extra factor of 𝑁 here. This is because of
how I defined the Hamiltonian here.
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To obtain the spectral function, and thereby the density of states, we
only need the normal Green’s function,

𝐺𝑅/𝐴
𝑘𝑘′ (𝜀) = 𝛿𝑘𝑘′𝜎0

𝜀 ± 𝑖𝛿 + 𝜉𝑘

(𝜀 ± 𝑖𝛿)2 − 𝜉 2𝑘 − |𝛥↑↓
𝑘 |

2 . (4.73)

The spectral function is

𝐴𝑘𝑘′(𝜀) = 𝑖[𝐺𝑅
𝑘𝑘′(𝜀) − 𝐺𝐴

𝑘𝑘′(𝜀)] =
2𝛿 [|𝛥↑↓

𝑘 |2 + (𝜀 + 𝜉𝑘)2 + 𝛿2]

4𝜀2𝛿2 + (𝜀2 − |𝛥↑↓
𝑘 |2 − 𝛿2 − 𝜉 2𝑘 )2

.

(4.74)

As explained above, 𝐴𝑘𝑘(𝜀)/2𝜋 is how much of the state with crystal
momentum 𝑘-state that has energy in the energy-interval (𝜀, 𝜀 + d𝜀).
Therefore, the density of states in the energy-interval (𝜀, 𝜀 + d𝜀) is

𝑁(𝜀) = ∑
𝑘

𝐴𝑘𝑘(𝜀)
2𝜋

= lim
𝛿→0∫

∞

−∞

d𝜉
𝜋
𝑁0(𝜉 )

[|𝛥↑↓
𝑘 |2 + (𝜀 + 𝜉 )2 + 𝛿2] 𝛿

4𝜀2𝛿2 + (𝜀2 − |𝛥↑↓
𝑘 |2 − 𝛿2 − 𝜉 2)2

(4.75)

where

𝑁0(𝐸) = ∑
𝑘
𝛿(𝜉𝑘 − 𝐸) (4.76)

is the normal state density of states. As 𝛿 → 0, the integrand in
equation (4.75) becomes zero at all points expect at 𝜉 2 = 𝜀2 − |𝛥↑↓

𝑘 |2,
where it blows up to infinity. When 𝜀2 − |𝛥↑↓

𝑘 |2 < 0, the integrand goes
to zero everywhere, so 𝑁(𝜀) = 0 when |𝜀| < |𝛥↑↓

𝑘 |. For |𝜀| > |𝛥↑↓
𝑘 |, we

can use that the integral of the Cauchy distribution is one. That is,

∫
∞

−∞

d𝑥
𝜋

𝛾
𝛾 2 + (𝑥 − 𝑥0)2

= 1, (4.77)

for arbitrary 𝛾 and 𝑥0, which define the width and center of the Cauchy
distribution, respectively. By splitting the integral into positive and
negative 𝜉 and define 𝑥 = 𝜉 2, one can write

𝑁(𝜀) = 𝐼+ + 𝐼−, (4.78)
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Figure 4.1: The density of states for a bulk superconductor, where

𝑁0 is evaluated at energy √𝜀
2 − |𝛥↑↓

𝑘 |2.

where

𝐼± = lim
𝛿→0∫

∞

0

d𝑥
2𝜋√𝑥

𝑁0(±√𝑥)
[|𝛥↑↓

𝑘 |2 + (𝜀 ± √𝑥)2] 𝛿

4𝜀2𝛿2 + [𝑥 − (𝜀2 − |𝛥↑↓
𝑘 |2)]2

(4.79)

As 𝛿 → 0, the integrand becomes increasingly more like a Cauchy
distribution with center at 𝑥0 = (𝜀2 − |𝛥↑↓

𝑘 |2) and width 2𝜀𝛿. Hence, we
can set 𝑥 = 𝑥0 everywhere except the denominator.

Using that |𝛥↑↓
𝑘 |2 + (𝜀 ± √𝑥0)2 = 2𝜀(𝜀 ± √𝑥0), I get that

𝐼± =
𝑁0(±√𝑥0)(𝜀 ± √𝑥0)

2√𝑥0
lim
𝛿→0∫

∞

0

d𝑥
𝜋

2𝜀𝛿
(2𝜀𝛿)2 + (𝑥 − 𝑥0)2

=
𝑁0(±√𝑥0)(𝜀 ± √𝑥0)

2√𝑥0
. (4.80)

If we assume that 𝑁0(−√𝑥0) = 𝑁0(√𝑥0), then, for |𝜀| > |𝛥↑↓
𝑘 |,

𝑁(𝜀) = 𝐼+ + 𝐼− = 𝑁0 (√𝜀
2 − |𝛥↑↓

𝑘 |2) 𝜀

√𝜀
2 − |𝛥↑↓

𝑘 |2
. (4.81)

Combining the results, the density of states in a superconductor is

𝑁(𝜀) = {
0 if |𝜀| < |𝛥↑↓

𝑘 |,

𝑁0 (√𝜀
2 − |𝛥↑↓

𝑘 |2) 𝜀

√𝜀
2−|𝛥↑↓

𝑘 |2
if |𝜀| > |𝛥↑↓

𝑘 |, (4.82)
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which is illustrated in figure 4.1. As we can see, there is a gap in the
spectrum equal to 2|𝛥↑↓

𝑘 |, which is why |𝛥↑↓
𝑘 | is often called the gap

parameter.
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5Green’s Function Perturbation Theory
For a system out of equilibrium, determining the lesser Green’s func-

tion is more difficult. However, one can often compute approximate
Green’s functions through perturbation theory. In this chapter, I show
some perturbation techniques that have been central in my work. I
also provide examples that are relevant to my work and to the next
chapter.

First, I consider a general approach that is applicable as long as
the Hamiltonian is quadratic. This approach is similar to the linear
response discussed above, but it is valid to all orders in the perturbation.
It relies on the fact that the retarded and advanced Green’s functions
are in fact Green’s functions in the mathematical sense. The end result
is the Dyson equations [114], and as an example of this perturbation
theory, I consider elastic impurity scattering.

Next, I consider another more general approach to perturbation
theory. This is based on the interaction picture of quantum mechanics
and is applicable to perturbations of any order, not only quadratic
perturbations. I used this approach in the project on spin-pumping
(paper VI), where the perturbation is linear in creation and annihilation
operators. As an example, I use this approach to consider dissipation
through interactions with an open environment. This leads to the
relaxation time approximation, which is heavily used in the projects
related to quasiclassical Green’s functions.

5.1 Quadratic Hamiltonians

Consider a system with an Hamiltonian which is quadratic in annihi-
lation operators,

ℋ(𝑡) = 1
2

𝑁
∑
𝜆,𝜇=1

(𝑀𝜆𝜇(𝑡)𝑐
†
𝜆 𝑐𝜇 ∓ 𝑀∗

𝜆𝜇(𝑡)𝑐𝜆𝑐
†
𝜇

+ 𝛥𝜆𝜇(𝑡)𝑐
†
𝜆 𝑐

†
𝜇 ∓ 𝛥∗

𝜆𝜇(𝑡)𝑐𝜆𝑐𝜇). (5.1)

In this case, we know from above that the vector of annihilation and
creation operators, 𝑐, satisfies

[𝑖𝜏𝑧
d
d𝑡

− 𝐴(𝑡)] 𝑐 = 0, (5.2)

113



where 𝜏𝑧 = diag(1, … , 1, −1, … , −1) and

𝐴 = (
𝑀 𝛥
𝛥∗ 𝑀∗) . (5.3)

The retarded and advancedGreen’s functions are also Green’s functions
in the mathematical sense, so they solve

[𝑖𝜏𝑧
d
d𝑡

− 𝐴(𝑡)] 𝐺̂𝑋(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′), (5.4)

where 𝑋 is either 𝑅 or 𝐴.
I define 𝐴0, 𝑉 and 𝑐0 such that

𝐴 = 𝐴0 + 𝑉 , (5.5)

and 𝑐0 is the solution to

[𝑖𝜏𝑧
∂
∂𝑡

− 𝐴0(𝑡)] 𝑐0 = 0. (5.6)

Let 𝐺̂𝑅
0 , 𝐺̂𝐴

0 and 𝐺̂<
0 be the corresponding Green’s functions. In appli-

cations, 𝐴0 might be time-independent or simple enough for 𝑐0 to be
analytically solvable, while 𝑉 might be a perturbation that is assumed
small. Let the tuple of annihilation and creation operators be 𝑐 = 𝑐0+𝑑.
By inserting this into equation (5.2), I get

[𝑖𝜏𝑧
∂
∂𝑡

− 𝐴(𝑡)] 𝑑(𝑡) = 𝑉 (𝑡)𝑐0(𝑡) (5.7)

Hence, using the mathematical Green’s function properties of 𝐺̂𝑅 and
𝐺̂𝐴,

𝑑(𝑡) = ∫
∞

−∞
d ̃𝑡 𝐺̂𝑅 (𝑡, ̃𝑡) 𝑉 ( ̃𝑡) 𝑐0 ( ̃𝑡) , (5.8a)

𝑑†(𝑡) = ∫
∞

−∞
d ̃𝑡 𝑐†0 ( ̃𝑡) 𝑉 ( ̃𝑡) 𝐺̂𝐴 ( ̃𝑡 , 𝑡) . (5.8b)

Inserting this into the definition of 𝐺̂<,

𝐺̂<
𝜆𝜇(𝑡, 𝑡

′) = ±𝑖 ⟨[𝑐†0 (𝑡′) + 𝑑†(𝑡′)]𝜇[𝑐0(𝑡) + 𝑑(𝑡)]𝜆⟩ , (5.9)
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one gets

𝐺̂<(𝑡, 𝑡′) = 𝐺̂<
0 (𝑡, 𝑡′) + ∫

∞

−∞
d ̃𝑡 𝐺̂𝑅(𝑡, ̃𝑡)𝑉 ( ̃𝑡)𝐺<

0 ( ̃𝑡 , 𝑡′)

+ ∫
∞

−∞
d ̃𝑡 𝐺̂<

0 (𝑡, ̃𝑡)𝑉 ( ̃𝑡)𝐺̂𝐴( ̃𝑡 , 𝑡′)

+ ∫
∞

−∞
d𝑡1 ∫

∞

−∞
d𝑡2 𝐺̂𝑅(𝑡, 𝑡1)𝑉 (𝑡1)𝐺̂<

0 (𝑡1, 𝑡2)𝑉 (𝑡2)𝐺̂𝐴(𝑡2, 𝑡′). (5.10)

This notation can be simplified by using the circle product,

(𝐴 ∘ 𝐵)(𝑡, 𝑡′) = ∫
∞

−∞
d ̃𝑡 𝐴(𝑡, ̃𝑡)𝐵( ̃𝑡 , 𝑡′), (5.11)

and defining 𝛴(𝑡, 𝑡′) = 𝑉 (𝑡)𝛿(𝑡 − 𝑡′), such that

𝐺̂< = 𝐺̂<
0 + 𝐺̂𝑅 ∘ 𝛴 ∘ 𝐺̂<

0 + 𝐺̂<
0 ∘ 𝛴 ∘ 𝐺̂𝐴 + 𝐺̂𝑅 ∘ 𝛴 ∘ 𝐺̂<

0 ∘ 𝛴 ∘ 𝐺̂𝐴. (5.12)

Hence, to first order in 𝑉 one can immediately see that

𝐺̂< = 𝐺̂<
0 + 𝐺̂𝑅

0 ∘ 𝛴 ∘ 𝐺̂<
0 + 𝐺̂<

0 ∘ 𝛴 ∘ 𝐺̂𝐴
0 . (5.13)

When 𝐺̂<
0 , 𝐺̂𝑅

0 and 𝐺̂𝐴
0 are all known, equation (5.13) gives a convenient

way to compute the first order correction to the lesser Green’s function
in the presence of a perturbation.

For the higher order components, one can derive similar relations
between 𝐺̂𝑅, 𝐺̂𝐴, 𝐺̂𝑅

0 and 𝐺̂𝐴
0 . This can be done using equation (4.6).

That is,

−
∂𝐺̂𝑋

0 (𝑡, 𝑡′)
∂𝑡′

𝑖𝜏𝑧 − 𝐺̂𝑋
0 (𝑡, 𝑡′)𝐴0(𝑡′) = 𝛿(𝑡 − 𝑡′), (5.14)

where 𝑋 ∈ {𝑅, 𝐴}. Hence, if 𝑌 ∈ {𝑅, 𝐴}, and 𝑡 ≠ 𝑡′

𝐺̂𝑋
0 (𝑡, 𝑡′) = ∫

∞

−∞
∂ ̃𝑡𝐺̂𝑋

0 (𝑡, ̃𝑡) [𝑖𝜏𝑧
∂
∂ ̃𝑡

− 𝐴 ( ̃𝑡)] 𝐺̂𝑌
0 ( ̃𝑡 , 𝑡′)

= [𝐺̂𝑋
0 (𝑡, ̃𝑡) 𝑖𝜏𝑧𝐺̂𝑌

0 ( ̃𝑡 , 𝑡′)]
∞
−∞

+∫
∞

−∞
∂ ̃𝑡 [−

∂𝐺̂𝑋
0 (𝑡, ̃𝑡)
∂ ̃𝑡

𝑖𝜏𝑧 − 𝐺̂𝑋
0 (𝑡, ̃𝑡) 𝐴0( ̃𝑡)] 𝐺̂𝑌

0 ( ̃𝑡 , 𝑡′)−[𝐺̂𝑋
0 ∘ 𝛴 ∘ 𝐺̂𝑌] (𝑡, 𝑡′)

= [𝐺̂𝑋
0 (𝑡, ̃𝑡) 𝑖𝜏𝑧𝐺̂𝑌

0 ( ̃𝑡 , 𝑡′)]
∞
−∞ + 𝐺̂𝑌(𝑡, 𝑡′) − [𝐺̂𝑋

0 ∘ 𝛴 ∘ 𝐺̂𝑌] (𝑡, 𝑡′).
(5.15)
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If 𝑋 = 𝑌, the first term on the right-hand side is zero because of the
step functions in the definitions of the retarded and advanced Green’s
functions. Hence,

𝐺̂𝑋 = 𝐺̂𝑋
0 + 𝐺̂𝑋

0 ∘ 𝛴 ∘ 𝐺̂𝑋. (5.16)

By symmetry, considering −𝑉 as a perturbation to 𝐴0 + 𝑉, or by doing
a similar derivation as above, one also gets

𝐺̂𝑋 = 𝐺̂𝑋
0 + 𝐺̂𝑋 ∘ 𝛴 ∘ 𝐺̂𝑋

0 . (5.17)

These equations are known as Dyson equations. One can insert these
equations recursively into the equation for 𝐺̂< to obtain

𝐺̂< =
∞
∑
𝑛,𝑚=0

(𝐺̂𝑅
0 ∘)

𝑛
𝐺̂<
0 (∘𝐺̂𝐴

0 )
𝑚
, (5.18)

where (𝐺̂𝑅
0 ∘)0 = (∘𝐺̂𝐴

0 )0 = 1. Note that this is the same series as one
would get by recursive insertion of the right-hand sides of

𝐺̂< = 𝐺̂<
0 + 𝐺̂𝑅

0 ∘ 𝛴 ∘ 𝐺̂< + 𝐺̂<
0 ∘ 𝛴 ∘ 𝐺̂𝐴, (5.19a)

𝐺̂< = 𝐺̂<
0 + 𝐺̂𝑅 ∘ 𝛴 ∘ 𝐺̂<

0 + 𝐺̂< ∘ 𝛴 ∘ 𝐺̂𝐴
0 . (5.19b)

Therefore, assuming that the series converges, equation (5.19) must
also hold. Equations (5.16), (5.17) and (5.19) can be combined by writing

(
𝐺̂𝑅 𝐺̂<

𝐺̂𝐴) = (
𝐺̂𝑅
0 𝐺̂<

0
𝐺̂𝐴
0
) + (

𝐺̂𝑅
0 𝐺̂<

0
𝐺̂𝐴
0
) ∘ 𝛴 ∘ (

𝐺̂𝑅 𝐺̂<

𝐺̂𝐴) , (5.20a)

(
𝐺̂𝑅 𝐺̂<

𝐺̂𝐴) = (
𝐺̂𝑅
0 𝐺̂<

0
𝐺̂𝐴
0
) + (

𝐺̂𝑅 𝐺̂<

𝐺̂𝐴) ∘ 𝛴 ∘ (
𝐺̂𝑅
0 𝐺̂<

0
𝐺̂𝐴
0
) . (5.20b)

With this one can calculate the Green’s functions and thereby calculate
observables in systems that are out of equilibrium. However, this
method only works if the Hamiltonian is quadratic in creation and
annihilation operators. This is not always the case. For instance,
in paper VI about spin-pumping in antiferromagnet/superconductor
bilayers, the external rotating magnetic field gives rise to a linear term
in the Hamiltonian. Moreover, as we have seen in previous chapters,
electron-electron interactions will give rise to quartic terms, which are
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also not covered by the method presented above. For such situations,
one can use a more versatile approach based on the interaction picture
of quantum mechanics.¹

The analogous derivation for 𝐺̂> gives the same result as equa-
tion (5.20), but with 𝐺̂> instead of 𝐺̂<. Therefore, one can also write
down the Dyson equations for the Keldysh Green’s function, 𝐺̂𝐾 =
𝐺̂< + 𝐺̂>. That is, if

̌𝐺 = (
𝐺̂𝑅 𝐺̂𝐾

𝐺̂𝐴) , (5.21)

it is also true that

̌𝐺 = ̌𝐺0 + ̌𝐺0 ∘ 𝛴 ∘ ̌𝐺, (5.22a)
̌𝐺 = ̌𝐺0 + ̌𝐺 ∘ 𝛴 ∘ ̌𝐺0. (5.22b)

Finally, note that the same derivation also works in the other direc-
tion. That is, if

[𝑖𝜏𝑧
∂
∂𝑡

− 𝐴0(𝑡)] ̌𝐺0(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′) (5.23)

and

̌𝐺 = ̌𝐺0 + ̌𝐺0 ∘ 𝛴 ∘ ̌𝐺, (5.24)

then inserting ̌𝐺0 = ̌𝐺 − ̌𝐺0 ∘ 𝛴 ∘ ̌𝐺 into equation (5.23) yields

[𝑖𝜏𝑧
∂
∂𝑡

− 𝐴0(𝑡)] ̌𝐺(𝑡, 𝑡′) − [𝛴 ∘ ̌𝐺] (𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′). (5.25)

That is, by identifying a self-energy through the Dyson equation, one
can derive a differential equation for the Green’s function. This is
especially useful in the context of impurity scattering (section 5.1.1),
where equation (5.25) allows us to get an equation for the impurity-
averaged Green’s function.

1. Note that this also does not cover everything. Superconductivity comes from
an attractive electron-electron interaction manifesting as a quartic term in the
Hamiltonian. However, perturbative approaches such as those presented in
section 5.2 are incapable of reproducing the superconducting state because it is
separated from the normal state by a phase transition.
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5.1.1 Example: Impurity scattering

Consider a fermionic lattice model. On each lattice point, there might
be multiple degrees of freedom, such as spin or orbital degrees of
freedom. Assuming there are 𝑁 such degrees of freedom, I collect
them into a vector of creation and annihilation operators, such that
for lattice point 𝑖

𝑐†𝑖 = (𝑐†𝑖1 𝑐†𝑖2 ⋯ 𝑐†𝑖𝑁 𝑐𝑖1 𝑐𝑖2 ⋯ 𝑐𝑖𝑁) , (5.26)

where 𝑐𝑖𝜆 annihilates a state 𝜆 on lattice site 𝑖. A general quadratic
Hamiltonian can then be written

ℋ = 1
2
∑
𝑖𝑗
𝑐†𝑖 𝑀𝑖𝑗𝑐𝑗. (5.27)

I collect the degrees of freedom associated with each lattice point in
the Green’s functions, such that the retarded, advanced, and Keldysh
Green’s functions associated with lattice sites 𝑖 and 𝑗 are

𝐺̂𝑅
𝑖𝑗 (𝑡, 𝑡′) = −𝑖𝜃(𝑡 − 𝑡′) ⟨[𝑐𝑖(𝑡), 𝑐

†
𝑗 (𝑡′)]+⟩ (5.28a)

𝐺̂𝐴
𝑖𝑗 (𝑡, 𝑡′) = +𝑖𝜃(𝑡′ − 𝑡) ⟨[𝑐𝑖(𝑡), 𝑐

†
𝑗 (𝑡′)]+⟩ (5.28b)

𝐺̂𝐾
𝑖𝑗 (𝑡, 𝑡′) = −𝑖 ⟨[𝑐𝑖(𝑡), 𝑐

†
𝑗 (𝑡′)]−⟩ , (5.28c)

where the commutators of two vectors 𝐴 and 𝐵† is a matrix given by

([𝐴, 𝐵†]±)𝑖𝑗 = [𝐴𝑖, 𝐵
†
𝑗 ]± . (5.29)

Again, I also collect these in a larger 4𝑁 × 4𝑁 matrix,

̌𝐺𝑖𝑗 = (
𝐺̂𝑅
𝑖𝑗 𝐺̂𝐾

𝑖𝑗
𝐺̂𝐴
𝑖𝑗
) . (5.30)

This Green’s function solves the equation

𝑖𝜏𝑧
∂
∂𝑡

̌𝐺𝑖𝑗(𝑡, 𝑡′) −∑
𝑘
𝜏𝑧𝑀𝑖𝑘(𝑡) ̌𝐺𝑘𝑗(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′)𝛿𝑖𝑗, (5.31)

where I use the convention that the multiplication of two matrices of
different sizes means that the smaller is promoted to the size of the
larger through a tensor product with a unity matrix.
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Next, assume that there are 𝑁imp impurities, where impurity 𝑖 is
located on lattice site number 𝑟𝑖 and gives rise to an energy term in the
Hamiltonian equal to 𝑐†𝑖 𝑈𝑖𝑐𝑖, where 𝑈𝑖 is a matrix. This means that

𝜏𝑧𝑀(𝑡) = 𝜏𝑧𝑀0(𝑡) + 𝜏𝑧𝑉imp (5.32)

where

[𝜏𝑧𝑉imp]𝑖𝑗 = 𝛿𝑖𝑗
𝑁imp

∑
𝑘=1

(
𝑈𝑘

𝑈 ∗
𝑘
) 𝛿𝑖𝑟𝑘 . (5.33)

Computing the Green’s function for any single impurity configuration
is difficult because it depends on the specific location of each impurity.
However, computing this configuration-specific Green’s function is
often not necessary. Instead of estimating results for observables that
are specific to a given impurity configuration, we are instead inter-
ested in impurity-averaged observables. In fact, impurity averaging
can often be imposed by the physical properties of the system itself.
This is because of so-called self-averaging occurring due to inelastic
scattering [114]. Each inelastic scattering changes the electron phase
by a small random amount, giving rise to a finite coherence length
for the electrons. As a result, measuring observables is effectively like
measuring an incoherent average of subsystems with a size given by
the coherence length. Even if the system is smaller than the coherence
length, such that no self-averaging takes place, it is simpler and often
more desirable to solve for impurity-averaged quantities, as the pre-
cise impurity configuration of a sample is difficult to determine. An
exception is systems with engineered impurities.

I define the impurity-average as

⟨𝐴⟩imp = ∑
{𝑟𝑖}

∫ d{𝑈𝑖} 𝑝({𝑟𝑖, 𝑈𝑖})𝐴({𝑟𝑖, 𝑈𝑖}), (5.34)

where 𝑝({𝑟𝑖, 𝑈𝑖}) is the probability that the impurities are located at {𝑟𝑖}
with impurity strengths {𝑈𝑖}. Let 𝑂 be an observable. Of particular
interest are observables that are linear functionals of the Keldysh
Green’s function,

𝑂(𝑡) = ∑
𝑖𝑗

Tr[𝐵𝑖𝑗(𝑡)𝐺̂𝐾
𝑖𝑗 (𝑡, 𝑡)], (5.35)
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for some set of matrices 𝐵𝑖𝑗 that do not depend on the impurity config-
uration. The impurity-averaged observable can be computed from the
impurity averaged Green’s function,

⟨𝑂(𝑡)⟩imp = ⟨∑
𝑖𝑗

Tr [𝐵𝑖𝑗(𝑡)𝐺̂𝐾
𝑖𝑗 (𝑡, 𝑡)]⟩

imp

= ∑
𝑖𝑗

Tr [𝐵𝑖𝑗(𝑡) ⟨𝐺̂𝐾
𝑖𝑗 ⟩imp

(𝑡, 𝑡)] . (5.36)

In order to derive an equation for the impurity-averaged Green’s
function, I first relate the impurity-averaged Green’s function to the
Green’s function in the absence of impurities through the Dyson
equations. This will give an effective impurity self-energy term 𝛴imp
through

⟨ ̌𝐺⟩imp = ̌𝐺0 + ̌𝐺0 ∘ 𝛴imp ∘ ⟨ ̌𝐺⟩imp, (5.37)

where ̌𝐺0 is the Green’s function in the absence of impurities, solving

𝑖𝜏𝑧
∂
∂𝑡

̌𝐺0(𝑡, 𝑡′) − 𝜏𝑧𝑀0(𝑡) ̌𝐺0(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′). (5.38)

Using equation (5.25) then gives us that the impurity-averaged Green’s
function solves

𝑖𝜏𝑧
∂
∂𝑡
⟨ ̌𝐺⟩imp(𝑡, 𝑡′) − 𝜏𝑧𝑀0(𝑡)⟨ ̌𝐺⟩imp

− [𝛴imp ∘ ⟨ ̌𝐺⟩imp] (𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′). (5.39)

Let ̌𝐺0 be the Green’s function in the absence of impurities and let
𝛴(𝑡, 𝑡′) = 𝜏𝑧𝑉imp𝛿(𝑡 − 𝑡′). In this case, the Dyson equations become

̌𝐺 = ̌𝐺0 + ̌𝐺0 ∘ 𝛴 ∘ ̌𝐺, (5.40a)
̌𝐺 = ̌𝐺0 + ̌𝐺 ∘ 𝛴 ∘ ̌𝐺0. (5.40b)

Next, I take the impurity average of equation (5.40b), yielding

⟨ ̌𝐺⟩imp = ̌𝐺0 + ⟨ ̌𝐺 ∘ 𝛴⟩imp ∘ ̌𝐺0. (5.41)

Inserting equation (5.40a), I get

⟨ ̌𝐺⟩imp = ̌𝐺0 + ̌𝐺0 ∘ (⟨𝛴⟩imp + ⟨𝛴 ∘ ̌𝐺 ∘ 𝛴⟩imp) ∘ ̌𝐺0. (5.42)
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In order to arrive at equation (5.37), I must express the rightmost ̌𝐺0
in terms of ⟨ ̌𝐺⟩imp. This can be done by multiplying equation (5.41)
from the left with ∑∞

𝑛=0(−⟨ ̌𝐺 ∘ 𝛴⟩imp)𝑛∘ , where the power series must
be interpreted in the terms of the circle product, and using that

[
∞
∑
𝑛=0

(−⟨ ̌𝐺 ∘ 𝛴⟩imp)𝑛∘] ∘ [1∘ + ⟨ ̌𝐺 ∘ 𝛴⟩imp] = 1∘, (5.43)

where 1∘ is the circle product identity satisfying 1∘ ∘ 𝐴 = 𝐴 for all 𝐴.
That is, 1∘(𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′). Combining this with equation (5.41) I get

̌𝐺0 = [
∞
∑
𝑛=0

(−⟨ ̌𝐺 ∘ 𝛴⟩imp)𝑛∘] ∘ ⟨ ̌𝐺⟩imp. (5.44)

Inserting equation (5.44) into equation (5.42) I finally get

⟨ ̌𝐺⟩imp = ̌𝐺0 + ̌𝐺0 ∘ (⟨𝛴⟩imp + ⟨𝛴 ∘ ̌𝐺 ∘ 𝛴⟩imp)

∘ [
∞
∑
𝑛=0

(−⟨ ̌𝐺 ∘ 𝛴⟩imp)𝑛∘] ∘ ⟨ ̌𝐺⟩imp. (5.45)

Comparing with equation (5.37), the impurity self-energy can be iden-
tified as

𝛴imp = (⟨𝛴⟩imp + ⟨𝛴 ∘ ̌𝐺 ∘ 𝛴⟩imp) ∘ [
∞
∑
𝑛=0

(−⟨ ̌𝐺 ∘ 𝛴⟩imp)𝑛∘] . (5.46)

I am interested in the self-energy to second order in 𝛴, so I can use
that ̌𝐺 = ̌𝐺0 +𝒪(𝛴) = ⟨ ̌𝐺⟩imp +𝒪(𝛴). Therefore, to second order in 𝛴,

𝛴imp = ⟨𝛴⟩imp+⟨𝛴∘⟨ ̌𝐺⟩imp∘𝛴⟩imp−⟨𝛴⟩imp∘⟨ ̌𝐺⟩imp∘⟨𝛴⟩imp. (5.47)

This is known as the self-consistent Born approximation [190, 191].
Since 𝛴(𝑡, 𝑡′) = 𝜏𝑧𝑉imp𝛿(𝑡 − 𝑡′), the first order term is

⟨𝛴𝑖𝑗⟩imp(𝑡, 𝑡′) = ⟨𝛿𝑖𝑗
𝑁imp

∑
𝑘=1

(
𝑈𝑘

𝑈 ∗
𝑘
) 𝛿𝑖𝑟𝑘⟩

imp

𝛿(𝑡 − 𝑡′)

= 𝛿𝑖𝑗𝑛𝑖 (
⟨𝑈⟩imp

⟨𝑈⟩∗imp
) 𝛿(𝑡 − 𝑡′). (5.48)

where I assumed that all impurity locations are distributed equally in
space, such that the impurity density 𝑛𝑖 = 𝑁imp⟨𝛿𝑘𝑟𝑖⟩imp is independent
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of impurity number 𝑘. I also defined the average impurity potential as

⟨𝑈⟩imp = ∑
𝑁imp
𝑘=1 ⟨𝑈𝑘⟩imp/𝑁imp. I do not assume that the impurities have

the same distributions. For instance, the impurities can have different
matrix structures. They can be magnetic with different magnetiza-
tion orientations, or they can be located on different sublattices, for
instance.

I assume that the impurities are independent, such that ⟨𝑈𝑖𝑈𝑗⟩imp =
⟨𝑈𝑖⟩imp⟨𝑈𝑗⟩imp and ⟨𝛿𝑘𝑟𝑖𝛿𝑘𝑟𝑗⟩imp = ⟨𝛿𝑘𝑟𝑖⟩imp⟨𝛿𝑘𝑟𝑗⟩imp when 𝑖 ≠ 𝑗. This
simplifies the second-order term, since it means that

⟨(𝛴 ∘ ⟨ ̌𝐺⟩imp ∘ 𝛴)𝑖𝑗⟩imp

= ⟨
𝑁imp

∑
𝑛=1

𝑁imp

∑
𝑚=1

(
𝑈𝑛

𝑈 ∗
𝑛
) 𝛿𝑖𝑟𝑛⟨ ̌𝐺𝑖𝑗⟩imp (

𝑈𝑚
𝑈 ∗
𝑚
) 𝛿𝑗𝑟𝑚⟩

imp

= ⟨
𝑁imp

∑
𝑛=1

(
𝑈𝑛

𝑈 ∗
𝑛
) 𝛿𝑖𝑟𝑛⟩

imp

⟨ ̌𝐺𝑖𝑗⟩imp ⟨∑
𝑚≠𝑛

(
𝑈𝑚

𝑈 ∗
𝑚
) 𝛿𝑗𝑟𝑚⟩

imp

+ ⟨
𝑁imp

∑
𝑛=1

(
𝑈𝑛

𝑈 ∗
𝑛
) 𝛿𝑖𝑟𝑛⟨ ̌𝐺𝑖𝑗⟩imp (

𝑈𝑛
𝑈 ∗
𝑛
) 𝛿𝑗𝑟𝑛⟩

imp

. (5.49)

The first term on the right-hand side is almost equal to the last term in
equation (5.47). That is,

⟨(𝛴 ∘ ⟨ ̌𝐺⟩imp ∘ 𝛴)𝑖𝑗⟩imp
− (⟨𝛴⟩imp ∘ ⟨ ̌𝐺⟩imp ∘ ⟨𝛴⟩imp)𝑖𝑗

= ⟨
𝑁imp

∑
𝑛=1

(
𝑈𝑛

𝑈 ∗
𝑛
) 𝛿𝑖𝑟𝑛⟨ ̌𝐺𝑖𝑗⟩imp (

𝑈𝑛
𝑈 ∗
𝑛
) 𝛿𝑗𝑟𝑛⟩

imp

−
𝑁imp

∑
𝑛=1

⟨(
𝑈𝑛

𝑈 ∗
𝑛
) 𝛿𝑖𝑟𝑛⟩

imp
⟨ ̌𝐺𝑖𝑗⟩imp ⟨(

𝑈𝑛
𝑈 ∗
𝑛
) 𝛿𝑗𝑟𝑛⟩

imp

= 𝛿𝑖𝑗
𝑛𝑖

𝑁imp

𝑁imp

∑
𝑛=1

⟨(
𝑈𝑛

𝑈 ∗
𝑛
) ⟨ ̌𝐺𝑖𝑖⟩imp (

𝑈𝑛
𝑈 ∗
𝑛
)⟩

imp

−
𝑛𝑖𝑛𝑗
𝑁imp

(
⟨𝑈⟩imp

⟨𝑈⟩∗imp
) ⟨ ̌𝐺𝑖𝑗⟩imp (

⟨𝑈⟩imp
⟨𝑈⟩∗imp

) . (5.50)
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The last term can be neglected under the assumptions that 𝑛𝑖 ≪ 𝑁imp
and ⟨ ̌𝐺𝑖𝑗⟩imp decays sufficiently quickly as a function of the relative
distance between lattice points 𝑖 and 𝑗.

To proceed, one must define the type of impurities under consid-
eration. As a concrete example, consider non-magnetic impurities in
a system with a sublattice degree of freedom, as in the antiferromag-
netic systems considered in papers IX and X. In this case, half of the
impurities are located on sublattice 𝐴, such that 𝑈𝑛 = 𝜌𝐴𝑉𝑛, where 𝜌𝐴
is a diagonal matrix with ones for the elements corresponding to the
𝐴-lattice and zeroes for the remaining elements corresponding to the
𝐵-lattice. The strength of impurity 𝑛 is real and equal to 𝑉𝑛. Similarly,
if impurity 𝑛 is located on the 𝐵-lattice, we have 𝑈𝑛 = 𝜌𝐵𝑉𝑛. I assume
that 𝑉𝑛 is distributed equally for impurities on the 𝐴 and 𝐵 sublattices.
Note that ⟨𝑈⟩imp = ⟨𝑉𝑛⟩imp /2 is scalar since 𝜌𝐴 + 𝜌𝐵 = 1. If the last
term in equation (5.50) is neglected, I get that the impurity self-energy
is

(𝛴imp)𝑖𝑗 (𝑡, 𝑡
′) = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′)

𝑛𝑖 ⟨𝑉𝑛⟩imp

2

+ 𝛿𝑖𝑗
𝑛𝑖 ⟨𝑉 2

𝑛 ⟩imp

2
[𝜌𝐴⟨ ̌𝐺𝑖𝑗⟩imp(𝑡, 𝑡′)𝜌𝐴 + 𝜌𝐵⟨ ̌𝐺𝑖𝑗⟩imp(𝑡, 𝑡′)𝜌𝐵] . (5.51)

5.2 Interaction Picture and Time Ordering

The interaction picture is equivalent to the Heisenberg picture and
Schrödinger picture, but with the time dependence being partially on
the state vectors and partially on the operators. That is, the interaction
picture can be viewed as a hybrid between the Heisenberg picture and
the Schrödinger picture, which were described in section 2.2. As I will
show in this section, the interaction picture is particularly useful in
the context of perturbation theory.

Consider an expectation value in the Schrödinger picture,

⟨𝐴⟩𝜓(𝑡) = ⟨𝜓𝑆(𝑡)|𝐴𝑆(𝑡)|𝜓𝑆(𝑡)⟩, (5.52)

where |𝜓𝑆(𝑡)⟩ solves the Schrödinger equation (2.10). Next, let the
Hamiltonian in the Schrödinger picture be

ℋ𝑆(𝑡) = ℋ0,𝑆 + 𝒱𝑆(𝑡), (5.53)
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where I assume that ℋ0,𝑆 is time-independent, and define a time-
evolution operator 𝑈0 which solve

𝑖 ∂
∂𝑡
𝑈0(𝑡, 𝑡0) = ℋ0,𝑆𝑈0(𝑡, 𝑡0) (5.54)

with 𝑈0(𝑡, 𝑡) = 1. This would be the full time evolution operator if
𝒱𝑆 = 0. Inserting this into equation (5.52), I get

⟨𝐴⟩𝜓(𝑡) = ⟨𝜓𝑆(𝑡)|𝑈0(𝑡, 𝑡0)𝑈0(𝑡0, 𝑡)𝐴𝑆(𝑡)𝑈0(𝑡, 𝑡0)𝑈0(𝑡0, 𝑡)|𝜓𝑆(𝑡)⟩

= ⟨𝜓𝐼(𝑡)|𝐴𝐼(𝑡)|𝜓𝐼(𝑡)⟩, (5.55)

where

|𝜓𝐼(𝑡)⟩ = 𝑈0(𝑡0, 𝑡)|𝜓𝑆(𝑡)⟩, (5.56a)

𝐴𝐼(𝑡) = 𝑈0(𝑡0, 𝑡)𝐴𝑆(𝑡)𝑈0(𝑡, 𝑡0). (5.56b)

These are the state vector and the operator in the interaction picture,
respectively. That is, operators in the interaction picture are defined
the same as operators in the Heisenberg with ℋ = ℋ0. On the other
hand, the state vectors solve

𝑖 ∂
∂𝑡
|𝜓𝐼(𝑡)⟩ = [𝑖 ∂

∂𝑡
𝑈0(𝑡0, 𝑡)] |𝜓𝑆(𝑡)⟩ + 𝑈0(𝑡0, 𝑡) [𝑖

∂
∂𝑡
|𝜓𝑆(𝑡)⟩] ,

= −ℋ0,𝑆|𝜓𝐼(𝑡)⟩ + 𝑈0(𝑡0, 𝑡)ℋ𝑆(𝑡)𝑈0(𝑡, 𝑡0)|𝜓𝐼(𝑡)⟩ = 𝒱𝐼(𝑡)|𝜓𝐼(𝑡)⟩,
(5.57)

where I used that 𝑈0(𝑡0, 𝑡)ℋ𝑆,0𝑈0(𝑡, 𝑡0) = ℋ𝑆,0, and where

𝒱𝐼(𝑡) = 𝑈0(𝑡0, 𝑡)𝒱𝑆(𝑡)𝑈0(𝑡, 𝑡0), (5.58)

for some choice of 𝑡0. The operator𝒱𝐼 can be thought of as𝒱𝑆 evaluated
in the Heisenberg picture of the unperturbed system with ℋ𝑆 = ℋ0,𝑆.

It is convenient to choose 𝑡0 such that it is possible to determine a
relevant ensemble of states at this time. Typically, this is most easily
done if 𝒱𝑆(𝑡) is zero at times before 𝑡0. In practice, one often assumes
that lim𝑡→∞𝒱𝑆(𝑡) = 0 and let 𝑡0 → −∞, which is also what I do here. In
this case, the states lim𝑡→−∞{|𝜓𝐼(𝑡)⟩} can for example be assumed to be
occupied according to the grand canonical ensemble with ℋ𝑆 = ℋ0,𝑆
if one chooses lim𝑡→−∞|𝜓𝐼(𝑡)⟩ = |𝜓𝐻⟩ to be the state vector in the
Heisenberg picture.
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It is also useful to define the S-matrix as the time evolution operator
for state vectors in the interaction picture,

|𝜓𝐼(𝑡)⟩ = 𝑆(𝑡, 𝑡0)|𝜓𝐼(𝑡0)⟩. (5.59)

Let

⟨𝐴(𝑡)⟩0 = ⟨𝜓𝐻|𝐴𝐼(𝑡)|𝜓𝐻⟩, (5.60)

be the expectation value in the unperturbed system, meaning that it
is equal to the expectation value when 𝒱𝑆(𝑡) = 0 for all 𝑡. The full
expectation value can then be written in terms of the S-matrix and the
unperturbed expectation value as

⟨𝐴(𝑡)⟩ = ⟨𝑆(−∞, 𝑡)𝐴(𝑡)𝑆(𝑡, −∞)⟩0. (5.61)

Correlation functions in the interaction picture can be derived from
the Schrödinger picture definition,

⟨𝐵(𝑡)𝐴(𝑡′)⟩ = ⟨𝜓𝑆(𝑡)|𝐵𝑆(𝑡)𝑈 (𝑡, 𝑡′)𝐴𝑆(𝑡′)|𝜓𝑆(𝑡′)⟩
= ⟨𝜓𝐼(𝑡)|𝐵𝐼(𝑡)𝑈0(𝑡0, 𝑡)𝑈 (𝑡, 𝑡′)𝑈0(𝑡′, 𝑡0)𝐴𝐼(𝑡′)|𝜓𝐼(𝑡′)⟩, (5.62)

where 𝑈 is the full time evolution operator. To simplify this expression,
I first show that

𝑈0(𝑡0, 𝑡)𝑈 (𝑡, 𝑡′)𝑈0(𝑡′, 𝑡0) = 𝑆(𝑡, 𝑡′). (5.63)

From equation (2.12), we know that

𝑈 (𝑡 + 𝛥𝑡, 𝑡) = 1 − 𝑖ℋ0,𝑆 − 𝑖𝒱𝑆(𝑡) + 𝒪(𝛥𝑡2). (5.64)

Using that 𝑈0(𝑡0, 𝑡 + 𝛥𝑡)ℋ0,𝑆𝑈0(𝑡, 𝑡0) = ℋ0,𝑆 + 𝒪(𝛥𝑡), that 𝑈0(𝑡0, 𝑡 +
𝛥𝑡)𝒱𝑆(𝑡)𝑈0(𝑡, 𝑡0) = 𝒱𝐼(𝑡)+𝒪(𝛥𝑡) and, becauseℋ0,𝑆 is time-independent,

𝑈0(𝑡0, 𝑡 + 𝛥𝑡)𝑈0(𝑡, 𝑡0) = 𝑈0(𝑡, 𝑡0)𝑈0(𝑡0, 𝑡 + 𝛥𝑡) = 𝑈0(𝑡, 𝑡 + 𝛥𝑡)
= 1 + 𝑖ℋ0,𝑆𝛥𝑡 + 𝒪(𝛥𝑡2), (5.65)

we see that

𝑈0(𝑡0, 𝑡+𝛥𝑡)𝑈 (𝑡+𝛥𝑡, 𝑡)𝑈0(𝑡, 𝑡0) = 1+𝑖ℋ0,𝑆𝛥𝑡−𝑖ℋ0,𝑆−𝑖𝒱𝑆(𝑡)+𝒪(𝛥𝑡2)
= 𝑆(𝑡 + 𝛥𝑡, 𝑡) + 𝒪(𝛥𝑡2). (5.66)
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Moreover, if we let 𝛥𝑡 = (𝑡 − 𝑡′)/𝑁 we can write

𝑈0(𝑡0, 𝑡)𝑈 (𝑡, 𝑡′)𝑈0(𝑡′, 𝑡0)

=
𝑁
∏
𝑛=1

𝑈0(𝑡0, 𝑡′+𝑛𝛥𝑡)𝑈 (𝑡′+𝑛𝛥𝑡, 𝑡′+[𝑛−1]𝛥𝑡)𝑈0(𝑡′+[𝑛−1]𝛥𝑡, 𝑡0),

(5.67)

for any 𝑁. Let 𝐸 = 𝑈0(𝑡0, 𝑡 +𝛥𝑡)𝑈 (𝑡 +𝛥𝑡, 𝑡)𝑈0(𝑡, 𝑡0)−𝑆(𝑡 +𝛥𝑡, 𝑡) and note
that are 𝑁 terms in equation (5.67) that are linear in 𝐸. As each of these
is proportional to𝛥𝑡2 ∝ 1/𝑁 2, the sum of linear termswill vanish in the
limit𝑁 → ∞. Similarly, there are be (𝑁𝑘) = 𝑁(𝑁 −1)⋯ (𝑁 −𝑘+1)/𝑘! <
𝑁 𝑘 terms proportional to 𝐸𝑘 ∝ 1/𝑁 2𝑘. As a result, taking the limit
𝑁 → ∞ in equation (5.67), I get

𝑈0(𝑡0, 𝑡)𝑈 (𝑡, 𝑡′)𝑈0(𝑡′, 𝑡0) = lim
𝑁→∞

𝑁
∏
𝑛=1

𝑆(𝑡′ + 𝑛𝛥𝑡, 𝑡′ + [𝑛 − 1]𝛥𝑡)

= lim
𝑁→∞

𝑆(𝑡, 𝑡′) = 𝑆(𝑡, 𝑡′). (5.68)

Inserting this into the expression for correlation functions, I get

⟨𝐵(𝑡)𝐴(𝑡′)⟩ = ⟨𝜓𝐼(𝑡)|𝐵𝐼(𝑡)𝑆(𝑡, 𝑡′)𝐴𝐼(𝑡′)|𝜓𝐼(𝑡′)⟩. (5.69)

Next, I derive an expression for 𝑆 which can be used to obtain an
iterative procedure to approximate Green’s functions. Inserting equa-
tion (5.59) into equation (5.57) I get a differential equation for 𝑆, which
can be integrated to obtain

𝑆(𝑡, 𝑡0) = 1 − 𝑖 ∫
𝑡

𝑡0
d ̃𝑡 𝒱𝐼( ̃𝑡)𝑆( ̃𝑡 , 𝑡0). (5.70)

One can insert the right-hand side into 𝑆 recursively to obtain

𝑆(𝑡, 𝑡0) = 1 +
∞
∑
𝑛=1

(−𝑖)𝑛 ∫
𝑡

𝑡0
d𝑡1 ∫

𝑡1

𝑡0
d𝑡2 ⋯∫

𝑡𝑛−1

𝑡0
d𝑡𝑛

𝑛
∏
𝑗=1

𝒱𝐼(𝑡𝑗). (5.71)

Note that the order of 𝒱𝐼(𝑡1)𝒱𝐼(𝑡2)⋯𝒱 (𝑡𝑛), matters, since in general
one may have [𝒱𝐼(𝑡1), 𝒱𝐼(𝑡2)]− ≠ 0 when 𝑡1 ≠ 𝑡2. One can simplify this
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integral by using the time ordering symbol,² 𝒯, and time anti-ordering,
̄𝒯, defined as

𝒯 {𝐴1(𝑡1)𝐴2(𝑡2)⋯𝐴𝑛(𝑡𝑛)} = (∓1)𝑠(𝑝)𝐴𝑝1(𝑡𝑝1)⋯𝐴𝑝𝑛(𝑡𝑝𝑛) (5.72a)
̄𝒯 {𝐴1(𝑡1)𝐴2(𝑡2)⋯𝐴𝑛(𝑡𝑛)} = (∓1)𝑠(𝑞)𝐴𝑞1(𝑡𝑞1)⋯𝐴𝑞𝑛(𝑡𝑞𝑛) (5.72b)

where 𝑝 and 𝑞 are the permutations such that 𝑡𝑝𝑛 < 𝑡𝑝𝑛−1 and 𝑡𝑞𝑛 > 𝑡𝑞𝑛−1 ,
respectively. The upper and lower signs are for fermionic and bosonic
operators, respectively, and 𝑠(𝑝) and 𝑠(𝑞) are the number of inversions
required to perform the permutation. The latter means that (−1)𝑠(𝑝)

is the sign of permutation 𝑝. I assume that 𝒱𝐼 does not include terms
with an odd number of fermionic operators. In this case, if 𝑡 > 𝑡0,

∫
𝑡

𝑡0
d𝑡1 ∫

𝑡1

𝑡0
d𝑡2 ⋯∫

𝑡𝑛−1

𝑡0
d𝑡𝑛

𝑛
∏
𝑗=1

𝒱𝐼(𝑡𝑗)

= ∫
𝑡

𝑡0
d𝑡1 ∫

𝑡1

𝑡0
d𝑡2 ⋯∫

𝑡𝑛−1

𝑡0
d𝑡𝑛 𝒯{

𝑛
∏
𝑗=1

𝒱𝐼(𝑡𝑗)}

= 1
𝑛! ∫

𝑡

𝑡0
d𝑡1 ∫

𝑡

𝑡0
d𝑡2 ⋯∫

𝑡

𝑡0
d𝑡𝑛 𝒯{

𝑛
∏
𝑗=1

𝒱𝐼(𝑡𝑗)} , (5.73)

because of the symmetry of the integrand in the 𝑛! subregions of
the 𝑛-dimensional hypercube with lengths 𝑡 − 𝑡0. Next, I define the
time-ordered exponential as

𝒯 exp [−𝑖 ∫
𝑡

𝑡0
d ̃𝑡 𝒱𝐼 ( ̃𝑡)]

= 1 +
∞
∑
𝑛=1

(−𝑖)𝑛

𝑛! ∫
𝑡

𝑡0
d𝑡1 ∫

𝑡

𝑡0
d𝑡2 ⋯∫

𝑡

𝑡0
d𝑡𝑛 𝒯{

𝑛
∏
𝑗=1

𝒱𝐼(𝑡𝑗)} (5.74)

and similarly for the anti-time ordering. Comparing with the S-matrix,
one can see that

𝑆(𝑡, 𝑡0) = {
𝒯 exp [−𝑖 ∫𝑡𝑡0 d ̃𝑡 𝒱𝐼 ( ̃𝑡)] if 𝑡 > 𝑡0,
̄𝒯 exp [−𝑖 ∫𝑡𝑡0 d ̃𝑡 𝒱𝐼 ( ̃𝑡)] if 𝑡 < 𝑡0.

(5.75)

2. Despite not actually being an operator, it is often also referred to as the time
ordering operator.
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Because of the time orderings in equation (5.75), it is useful to define
a time-ordered Green’s function,

𝐺𝑇
𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨𝒯 𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩

= −𝑖𝜃(𝑡 − 𝑡′) ⟨𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩ ± 𝑖𝜃(𝑡′ − 𝑡) ⟨𝑐†𝜇 (𝑡′)𝑐𝜆(𝑡)⟩

= 𝜃(𝑡 − 𝑡′)𝐺>
𝜆𝜇(𝑡, 𝑡

′) + 𝜃(𝑡′ − 𝑡)𝐺<
𝜆𝜇(𝑡, 𝑡

′), (5.76)

and the time anti-ordered Green’s function,

𝐺 ̄𝑇
𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨ ̄𝒯 𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩

= 𝜃(𝑡 − 𝑡′)𝐺<
𝜆𝜇(𝑡, 𝑡

′) + 𝜃(𝑡′ − 𝑡)𝐺>
𝜆𝜇(𝑡, 𝑡

′). (5.77)

Differentiating 𝐺𝑇 and −𝐺 ̄𝑇, one can see that these are also Green’s
functions in the mathematical sense, just like 𝐺𝑅 and 𝐺𝐴. It is also
useful to note the relations

𝐺𝑅(𝑡, 𝑡′) = 𝜃(𝑡 − 𝑡′) [𝐺>(𝑡, 𝑡′) − 𝐺<(𝑡, 𝑡′)] (5.78a)

= 𝐺𝑇(𝑡, 𝑡′) − 𝐺<(𝑡, 𝑡′), (5.78b)

𝐺𝐴(𝑡, 𝑡′) = 𝜃(𝑡′ − 𝑡) [𝐺<(𝑡, 𝑡′) − 𝐺>(𝑡, 𝑡′)] (5.78c)

= 𝐺𝑇(𝑡, 𝑡′) − 𝐺>(𝑡, 𝑡′), (5.78d)

𝐺𝑇 + 𝐺 ̄𝑇 = 𝐺> + 𝐺<. (5.78e)

Defining 𝑡max = max(𝑡, 𝑡′), one can see from equation (5.61) that

𝐺𝑇
𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨𝑆(−∞, 𝑡max)𝒯 [𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)𝑆(𝑡max, −∞)]⟩

0

= −𝑖 ⟨𝑆(−∞,∞)𝒯 [𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)𝑆(∞, −∞)]⟩

0
. (5.79)

This expression is useful when considering systems at zero temperature
where the state vector can be assumed to be a non-degenerate ground
state of ℋ0 at 𝑡 = −∞. If the perturbation 𝒱𝐼 can be assumed to be
turned on adiabatically, such that the system always stays in the ground
state ofℋ0, the states |𝜓𝐼(−∞)⟩ and |𝜓𝐼(∞)⟩must both be ground states
of ℋ0. If this ground state can be assumed unique up to a phase, it
means that

⟨𝜓𝐼(∞)| = ⟨𝜓𝐼(−∞)|𝑆(−∞,∞) = e𝑖𝜑⟨𝜓𝐼(−∞)|, (5.80)
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so

𝐺𝑇
𝜆𝜇(𝑡, 𝑡

′) = −𝑖e𝑖𝜑 ⟨𝒯 [𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)𝑆(∞, −∞)]⟩

0
. (5.81)

From this, one can evaluate 𝐺𝑇 to any order in 𝒱𝐼 by expanding 𝑆 in
powers of 𝒱𝐼. This is made possible by combining the two different
S-matrices in equation (5.79), such that the Green’s function can be
expressed in terms of a single time-ordering symbol.

The reason why it is important to have a common time-ordering
for the whole expectation value is that it allows the expression to be
conveniently reduced to products of time-ordered Green’s functions
by the use of Wick’s theorem. Assuming ℋ0 is quadratic, Wick’s
theorem allows time-ordered expectation values of 2𝑁 creation and
annihilation operators to be written in terms of products of 𝑁 time-
ordered expectation values of 2 operators. This means that each term
in the exponential expansion of equation (5.81) can be written in terms
of products of the, presumably known, unperturbed Green’s functions,
𝐺𝑇
0,𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨𝒯 [𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)]⟩0.

Deriving Wick’s theorem is not too difficult if the unperturbed
Hamiltonian is time-independent in the Schrödinger picture and can
be diagonalized such that

ℋ0 =
𝑁
∑
𝜆=1

𝜀𝜆𝑐
†
𝜆 𝑐𝜆, (5.82)

which I assume to be the case. I also assume that the unperturbed
system was in thermal equilibrium, such that occupation follows a
Boltzmann distribution, for example because the states are in a grand
canonical ensemble. From the first assumption, the Heisenberg equa-
tion immediately gives that in the interaction picture,

𝑐𝜆(𝑡) = e−𝑖𝜀𝜆(𝑡−𝑡0)𝑐𝜆(𝑡0), 𝑐†𝜆 (𝑡) = e𝑖𝜀𝜆(𝑡−𝑡0)𝑐†𝜆 (𝑡0), (5.83)

because operators in the interaction picture evolve in time according
to the unperturbed Hamiltonian. Hence,

[𝑐𝜆(𝑡), 𝑐
†
𝜇 (𝑡′)]± = 𝛿𝜆𝜇e−𝑖𝜀𝜆(𝑡−𝑡

′), [𝑐𝜆(𝑡), 𝑐𝜇(𝑡′)]± = 0. (5.84)

Let 𝛼𝜆 denote either 𝑐𝜆 when 𝜆 ∈ {1, … , 𝑁 } or 𝑐†𝜆 when 𝜆 ∈ {𝑁 +
1,… , 2𝑁 }, and define 𝑠𝜆 to be −1 if 𝛼𝜆 = 𝑐𝜆 and 1 if 𝛼𝜆 = 𝑐†𝜆 . From
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equation (5.83) one can see that

⟨𝛼𝜆(𝑡)𝛼𝜇(𝑡′)⟩0 = [𝛼𝜆(𝑡), 𝛼𝜇(𝑡′)]± (1 ± e𝑠𝜆𝜀𝜆𝛽) , (5.85)

where the upper and lower signs are for fermions and bosons, respec-
tively, and where 𝛽 is the inverse temperature. The next ingredient
needed to derive Wick’s theorem is that, for any operator 𝐴,

⟨𝛼𝜆(𝑡1)𝐴(𝑡2, 𝑡3… , 𝑡𝑛)⟩0 = 𝑍−1∑
𝑛

e−𝛽𝜀𝑛⟨𝑛|𝛼𝜆(𝑡1)𝐴(𝑡2, 𝑡3… , 𝑡𝑛)|𝑛⟩

= 𝑍−1∑
𝑛𝑚

e−𝛽𝜀𝑛⟨𝑛|𝛼𝜆(𝑡1)|𝑚⟩⟨𝑚|𝐴(𝑡2, 𝑡3… , 𝑡𝑛)|𝑛⟩

= 𝑍−1∑
𝑛𝑚

e−𝛽(𝜀𝑚+𝑠𝜆𝜀𝜆)⟨𝑚|𝐴(𝑡2, 𝑡3… , 𝑡𝑛)|𝑛⟩⟨𝑛|𝛼𝜆(𝑡1)|𝑚⟩

= ⟨𝐴(𝑡2, 𝑡3… , 𝑡𝑛)𝛼𝜆(𝑡1)⟩0 e−𝛽𝑠𝜆𝜀𝜆 , (5.86)

where the sum goes over a complete set of states, and where in the
third equality I used that |𝑛⟩ must differ from |𝑚⟩ by an excitation with
energy 𝑠𝜆𝜀𝜆. By using that 𝛼𝜆(𝑡1)𝛼𝜇(𝑡2) = [𝛼𝜆(𝑡1), 𝛼𝜇(𝑡2)]± ∓𝛼𝜇(𝑡2)𝛼𝜆(𝑡1)
on can also see that

𝛼𝜆1(𝑡1)𝛼𝜆2(𝑡2)⋯ 𝛼𝜆𝑛(𝑡𝑛) = [𝛼𝜆(𝑡1), 𝛼𝜆2(𝑡2)]±𝛼𝜆3(𝑡3)⋯ 𝛼𝜆𝑛(𝑡𝑛)
∓ 𝛼𝜆2(𝑡2)𝛼𝜆1(𝑡1)𝛼𝜆3(𝑡3)⋯ 𝛼𝜆𝑛(𝑡𝑛)

=
𝑛
∑
𝑘=2

(∓1)𝑘[𝛼𝜆1(𝑡1), 𝛼𝜆𝑘(𝑡𝑘)]±𝛼𝜆2(𝑡2)⋯ 𝛼𝜆𝑖(𝑡𝑖)⋯ 𝛼𝜆𝑛(𝑡𝑛)

+ (∓1)𝑛+1𝛼𝜆2(𝑡2)⋯ 𝛼𝜆𝑛(𝑡𝑛)𝛼𝜆1(𝑡1), (5.87)

where 𝛼𝜆𝑖(𝑡𝑖) means that this factor should be excluded. Hence, if 𝑛
is even, taking the expectation value of equation (5.87), moving the
last term to the left-hand side, using equations (5.85) and (5.86) and
dividing by (1 ± e𝑠𝜆𝜀𝜆𝛽), I get

⟨𝛼𝜆1(𝑡1)𝛼𝜆2(𝑡2)⋯ 𝛼𝜆𝑛(𝑡𝑛)⟩

=
𝑛
∑
𝑘=2

(∓1)𝑘 ⟨𝛼𝜆1(𝑡1)𝛼𝜆𝑘(𝑡𝑘)⟩ ⟨𝛼𝜆2(𝑡2)⋯ 𝛼𝜆𝑘(𝑡𝑘)⋯ 𝛼𝜆𝑛(𝑡𝑛)⟩ . (5.88)

This formula also works when using a basis that does not diagonalize
the Hamiltonian. For a general quadratic Hamiltonian,

ℋ = 𝜓†𝑀𝜓, (5.89)
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where 𝜓† = (𝑑†1 , 𝑑
†
2 , … , 𝑑†𝑁, 𝑑1, … , 𝑑𝑁) is a vector of creation and anni-

hilation operators and 𝑀 is a 2𝑁 × 2𝑁 matrix, one can relate 𝜓 to a
diagonal basis through a linear transformation 𝜓𝜆 = ∑𝜇 𝑃𝜆𝜇𝛼𝜇. Hence,
by summing over repeated indices,

⟨𝜓𝜆1(𝑡1)𝜓𝜆2(𝑡2)⋯ 𝜓𝜆𝑛(𝑡𝑛)⟩ = 𝑃𝜆1𝜇1 ⋯𝑃𝜆𝑛𝜇𝑛 ⟨𝛼𝜇1(𝑡1)⋯ 𝛼𝜇𝑛(𝑡𝑛)⟩

=
𝑛
∑
𝑘=2

(∓1)𝑘 ⟨𝑃𝜆1𝜇1𝛼𝜇1(𝑡1)𝑃𝜆𝑘𝜇𝑘𝛼𝜇𝑘(𝑡𝑘)⟩

× ⟨𝑃𝜆2𝜇2𝛼𝜇2(𝑡2)⋯
̂𝑃𝜆𝑘𝜇𝑘𝛼𝜇𝑘(𝑡𝑘)⋯ 𝑃𝜆𝑛𝜇𝑛𝛼𝜇𝑛(𝑡𝑛)⟩

=
𝑛
∑
𝑘=2

(∓1)𝑘 ⟨𝜓𝜆1(𝑡1)𝜓𝜆𝑘(𝑡𝑘)⟩ ⟨𝜓𝜆2(𝑡2)⋯ 𝜓𝜆𝑘(𝑡𝑘)⋯ 𝜓𝜆𝑛(𝑡𝑛)⟩ . (5.90)

This is an example of Wick’s theorem [192, 193]
Applying equation (5.90) formula recursively, one ends up with

products of only expectation values of two operators when the total
number of operators is even. Note that equation (5.90) also applies to
an odd number of operators. This means that when ⟨𝜓𝜆(𝑡)⟩ = 0 for all
𝜆 and 𝑡, which is often the case for fermionic 𝜓𝜆, then all expectation
values of odd number of operators are zero.

Note that the relative order between operators within each expec-
tation value stays the same, meaning that the expectation value of a
time-ordered set of operators can be written in terms of products of
time-ordered Green’s functions. This is the important part that makes
Wick’s theorem especially useful for time-ordered Green’s functions.
Moreover, the sign is equal to the sign of the permutation. This means
that for instance, the first order correction to a quadratic perturbation
with 𝒱𝐼(𝑡) = 𝑉 (𝑡)𝑐𝜂(𝑡)𝑐

†
𝛾 (𝑡) is, using equation (5.81),

e−𝑖𝜑𝐺𝑇
𝜆𝜇(𝑡, 𝑡

′) = −𝑖 ⟨𝒯 𝑐𝜆(𝑡)𝑐
†
𝜇 (𝑡′)⟩0

− ⟨𝒯 ∫
∞

−∞
d ̃𝑡 𝑉 ( ̃𝑡)𝑐𝜆(𝑡)𝑐

†
𝜇 (𝑡′)𝑐𝜂( ̃𝑡)𝑐

†
𝛾 ( ̃𝑡)⟩

0

= 𝐺𝑇
0,𝜆𝜇(𝑡, 𝑡

′) + ∫
∞

−∞
d ̃𝑡 𝑉 ( ̃𝑡)[𝐺𝑇

0,𝜆𝜇(𝑡, 𝑡
′)𝐺𝑇

0,𝜂𝛾( ̃𝑡 , ̃𝑡)

− 𝐺𝑇
0,𝜆𝛾(𝑡, ̃𝑡)𝐺

𝑇
0,𝜂𝜇( ̃𝑡 , 𝑡′)], (5.91)

where I have assumed for simplicity that the anomalous Green’s func-
tion is zero.
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𝑡
−𝑡0 + 𝑖𝜀 𝒞 𝑡0 + 𝑖𝜀

𝑡0 − 𝑖𝜀−𝑡0 − 𝑖𝜀

Figure 5.1: A sketch of the Schwinger-Keldysh contour.

However, equation (5.81) does not work at finite temperatures, be-
cause then the system does not occupy a single non-degenerate state
satisfying equation (5.80). To study systems at finite temperatures, one
can use the Schwinger-Keldysh contour and contour-ordered Green’s
functions [185]. The Schwinger-Keldysh contour, 𝒞, is illustrated in
figure 5.1. It starts 𝑡 = −𝑡0 + 𝑖𝜀, follows parallel to the real line to 𝑡0 + 𝑖𝜀,
crosses the real line down to 𝑡0 − 𝑖𝜀 and then follows the real line back
to −𝑡0 − 𝑖𝜀. One then takes 𝑡0 → ∞ and 𝜀 → 0+. To make clear that I
am working with complex times defined on the Schwinger-Keldysh
contour, I use 𝜏 instead of 𝑡. Contour-ordering, 𝒯𝒞, is defined in the
same way as time-ordering. The contour-ordered Green’s function is
therefore, in the limit 𝜀 → 0+,

𝐺𝑐(𝜏1, 𝜏2) →

⎧
⎪

⎨
⎪
⎩

𝐺𝑇[Re(𝜏1),Re(𝜏2)] if Im(𝜏1) > 0, Im(𝜏2) > 0
𝐺<[Re(𝜏1),Re(𝜏2)] if Im(𝜏1) > 0, Im(𝜏2) < 0
𝐺>[Re(𝜏1),Re(𝜏2)] if Im(𝜏1) < 0, Im(𝜏2) > 0
𝐺 ̄𝑇[Re(𝜏1),Re(𝜏2)] if Im(𝜏1) < 0, Im(𝜏2) < 0

(5.92)

The relationship between Wick’s theorem and time-ordered Green’s
functions works equivalently for contour-ordered Green’s functions.
Therefore, if 𝑆𝑐 denote

𝑆𝑐 = 𝒯𝒞 exp [−𝑖 ∫
𝒞
d𝜏 𝒱𝐼 (𝜏)] , (5.93)

such that the contour-ordered Green’s function becomes

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) = −𝑖 ⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)]⟩ = −𝑖 ⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)𝑆𝑐]⟩0 ,

(5.94)

one can again expand the exponential in 𝑆𝑐 and apply Wick’s theorem
to get a series expansion of 𝐺𝑐 in terms of the unperturbed contour-
ordered Green’s function.
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As an example, consider how this can be applied to find the lowest
order correction to a linear perturbation of a bosonic system, which is
how it is used to study spin-pumping in paper VI. Let

ℋ0 = ∑
𝜆𝜇

𝑀𝜆𝜇𝑐
†
𝜆 𝑐𝜇 (5.95)

and

𝒱𝐼(𝑡) = ∑
𝜆
[ℎ∗𝜆(𝑡)𝑐𝜆(𝑡) + ℎ𝜆(𝑡)𝑐

†
𝜆 (𝑡)] . (5.96)

The first-order correction is zero because it is odd in creation and
annihilation operators. To second order, the correction to the contour-
ordered Green’s function is

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) − 𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2) =
𝑖
2 ∫𝒞

d𝜏3 ∫
𝒞
d𝜏4 ∑

𝛾 ,𝜈
⟨𝒯𝒞{𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)

× [ℎ∗𝛾 (𝜏3)𝑐𝛾(𝜏3) + ℎ𝛾(𝜏3)𝑐
†
𝛾 (𝜏3)] [ℎ∗𝜈 (𝜏4)𝑐𝜈(𝜏4) + ℎ𝜈(𝜏4)𝑐

†
𝜈 (𝜏4)]}⟩

0

= 𝑖∫
𝒞
d𝜏3 ∫

𝒞
d𝜏4 ∑

𝛾 ,𝜈
⟨𝒯𝒞[𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)ℎ∗𝛾 (𝜏3)ℎ𝜈(𝜏4)𝑐𝛾(𝜏3)𝑐

†
𝜈 (𝜏4)]⟩

0
(5.97)

Applying Wick’s theorem, I get

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) − 𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2)

= −𝑖 ∫
𝒞
d𝜏3 ∫

𝒞
d𝜏4 ∑

𝛾 ,𝜈
ℎ∗𝛾 (𝜏3)ℎ𝜈(𝜏4){𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2)𝐺
𝑐
0,𝛾 𝜈(𝜏3, 𝜏4)

+ 𝐺𝑐
0,𝜆𝜈(𝜏1, 𝜏4)𝐺

𝑐
0,𝛾𝜇(𝜏3, 𝜏2)}. (5.98)

The first term is zero, since

− 𝑖∫
𝒞
d𝜏3 ∫

𝒞
d𝜏4 ∑

𝛾 ,𝜈
ℎ𝜈(𝜏4)ℎ∗𝛾 (𝜏3)𝐺𝑐

0,𝛾 𝜈(𝜏3, 𝜏4)

= (∫
∞

−∞
d𝑡4 +∫

−∞

∞
d𝑡4) (𝛴 •𝒞 𝐺𝑐)𝜈𝜈(𝑡, 𝑡) = 0, (5.99)
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where 𝛴𝜆𝜇(𝑡1, 𝑡2) = −𝑖ℎ𝜆(𝑡1)ℎ∗𝜇(𝑡2) and the contour bullet product is

(𝐴 •𝒞 𝐵)𝜆𝜇(𝜏1, 𝜏2) = ∑
𝛾
∫
𝒞
d𝜏3 𝐴𝜆𝛾(𝜏1, 𝜏3)𝐵𝛾𝜇(𝜏3, 𝜏2). (5.100)

Hence,

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) − 𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2)

= −∑
𝛾 ,𝜈

𝑖 ∫
𝒞
d𝜏4 𝐺𝑐

0,𝜆𝜈(𝜏1, 𝜏4) ∫
𝒞
d𝜏3 ℎ𝜈(𝜏4)ℎ∗𝛾 (𝜏3)𝐺𝑐

0,𝛾𝜇(𝜏3, 𝜏2).

(5.101)

The form of the right-hand side is

𝐷 = 𝐴 •𝒞 𝐵 •𝒞 𝐶, (5.102)

Splitting up the integral and using equation (5.92), one can write the
integral in terms of real-time variables. For example, the lesser function
can be obtained by keeping 𝜏1 on the upper branch in the Schwinger-
Keldysh contour and 𝜏2 on the lower branch in the contour, giving

(𝐴 •𝒞 𝐵)<𝜆𝜇(𝑡1, 𝑡2) = ∑
𝛾
∫
∞

−∞
d𝑡3 [𝐴𝑇

𝜆𝛾(𝑡1, 𝑡3)𝐵
<
𝛾𝜇(𝑡3, 𝑡2)

− 𝐴<
𝜆𝛾(𝑡1, 𝑡3)𝐵

̄𝑇
𝛾𝜇(𝑡3, 𝑡2)]. (5.103)

Using equation (5.78), one can also write this as

(𝐴 •𝒞 𝐵)<𝜆𝜇(𝑡1, 𝑡2) = ∑
𝛾
∫
∞

−∞
d𝑡3 [𝐴𝑅

𝜆𝛾(𝑡1, 𝑡3)𝐵
<
𝛾𝜇(𝑡3, 𝑡2)

+ 𝐴<
𝜆𝛾(𝑡1, 𝑡3)𝐵

𝐴
𝛾𝜇(𝑡3, 𝑡2)]. (5.104)

This is a special case of the Langreth rules [185, 194]. More generally,
if

𝐶(𝜏1, 𝜏2) = (𝐴 • 𝐵)(𝜏1, 𝜏2), (5.105a)

𝐷(𝜏1, 𝜏2) = (𝐴 • 𝐵 • 𝐶)(𝜏1, 𝜏2), (5.105b)
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where 𝐴 and 𝐵 are contour-ordered functions, then the corresponding
advanced, retarded, and lesser Green’s functions satisfy [185]

𝐶</> = 𝐴𝑅 ∘ 𝐵</> + 𝐴</> ∘ 𝐵𝐴, (5.106a)

𝐶𝑅/𝐴 = 𝐴𝑅/𝐴 ∘ 𝐵𝑅/𝐴, (5.106b)

𝐷</> = 𝐴𝑅 ∘ 𝐵𝑅 ∘ 𝐶</> + 𝐴𝑅 ∘ 𝐵</> ∘ 𝐶𝐴

+ 𝐴</> ∘ 𝐵𝐴 ∘ 𝐶𝐴, (5.106c)

𝐷𝑅/𝐴 = 𝐴𝑅/𝐴 ∘ 𝐵𝑅/𝐴 ∘ 𝐶𝑅/𝐴, (5.106d)

As a result, if we again write 𝛴𝜆𝜇(𝑡1, 𝑡2) = −𝑖ℎ𝜆(𝑡1)ℎ∗𝜇(𝑡2),

𝐺< = 𝐺<
0 + 𝐺𝑅

0 ∘ 𝛴 ∘ 𝐺<
0 + 𝐺<

0 ∘ 𝛴 ∘ 𝐺𝐴
0 , (5.107)

which is on the same form as the first-order correction obtained from
the Dyson equation (5.19).

5.2.1 Example: Dissipation

Real physical systems are never perfectly closed, and there is generally
some degree of interaction with the environment. As a result, a good
model should in principle include a Hamiltonian which describes the
environment, not just the small subsystem that may be of interest in
the lab. In other words, one should generally consider a Hamiltonian

ℋ = ℋ𝑠 +ℋ𝑒 +ℋ𝑠𝑒, (5.108)

where ℋ𝑠 is the system Hamiltonian, ℋ𝑒 is the Hamiltonian for the
environment and ℋ𝑠𝑒 is the interaction between the system and envi-
ronment. For a perfectly isolated system,ℋ𝑠𝑒 = 0. Otherwise,ℋ𝑠𝑒 ≠ 0,
and its treatment will generally depend on the nature of the interaction.
Often, the interaction can be assumed to be weak, and one can apply
the perturbation techniques discussed above.

As an example, consider a fermionic system where there are interac-
tions with fermionic degrees of freedom in the environment. Let {𝑐𝜆}
be the annihilation operators of the system, let {𝑑𝜆} be the annihilation
operators of the environment, and let the interaction be

ℋ𝑠𝑒 = ∑
𝜇𝜆

(𝛤𝜇𝜆𝑐
†
𝜇 𝑑𝜆 + 𝛤∗

𝜇𝜆𝑑
†
𝜆 𝑐𝜇) . (5.109)
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This interaction could for instance come from interaction with a sub-
strate or the localized electron states when studying a system of itin-
erant electrons. To reduce the number of terms, I assume that the
anomalous Green’s function is zero.

In order to evaluate

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) = −𝑖 ⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)]⟩ , (5.110)

one can use the interaction picture approach detailed above. As with
the impurity scattering example, the goal is to determine a self-energy
term 𝛴 such that

𝐺𝑐 = 𝐺𝑐
0 + 𝐺𝑐

0 •𝒞 𝛴 •𝒞 𝐺𝑐, (5.111)

where 𝐺𝑐
0 is the Green’s function evaluated in the absence of dissi-

pation. If ℋ𝑠 is quadratic, one can from this derive an equation of
motion for the Green’s function which includes dissipation, in a sim-
ilar way as was done for impurities in section 5.1.1. If ℋ𝑠, ℋ𝑒 and
ℋ𝑠𝑒 are all quadratic, we could of course use an approach similar to
what was done in section 5.1.1. However, with the approach based
on the interaction picture, we do not need to make such a restrictive
assumption onℋ𝑒, and the same approach works for more complicated
ℋ𝑠𝑒. For instance, electron-phonon coupling is an important source of
dissipation in many systems, and this comes from a cubic interaction
term coupling fermionic and bosonic degrees of freedom, as can be
seen from section 3.3. Because ℋ𝑒 is not assumed quadratic in 𝑑𝜆, the
derivation presented above for Wick’s theorem is no longer valid in
general when evaluating expectation values of 𝑑𝜆 operators. However,
this is not a problem here because I only consider expectation values
up to second order in 𝑑𝜆, and the derivation of Wick’s theorem is valid
for the 𝑐𝜆 operators.

From section 5.2, we know that

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) = −𝑖 ⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)𝑆𝑐]⟩0 = 𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2)

−∑
𝛾 𝜈

∫
𝒞
d𝜏 ⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)] [𝛤𝛾 𝜈𝑐

†
𝛾 (𝜏 )𝑑𝜈(𝜏 ) + 𝛤∗

𝛾𝜈𝑑
†
𝜈 (𝜏 )𝑐𝛾(𝜏 )]⟩0

+ ⋯ (5.112)
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The second term on the right-hand side is zero because ⟨𝑐𝜆(𝜏1)𝑐
†
𝜇 (𝜏2)𝑐𝛾(𝜏 )⟩0 =

0 is odd in 𝑐𝜆-operators. The lowest order correction to the Green’s
function is therefore quadratic in the coupling constants 𝛤𝜆𝜇. This
second order correction is

𝐺𝑐
𝜆𝜇(𝜏1, 𝜏2) − 𝐺𝑐

0,𝜆𝜇(𝜏1, 𝜏2)

= −𝑖
(−𝑖)2

2
∑
𝛾 𝜈

∑
𝑚𝑛

∫
𝒞
d𝜏 ∫

𝒞
d𝜏⟨𝒯𝒞 [𝑐𝜆(𝜏1)𝑐

†
𝜇 (𝜏2)]

× [𝛤𝛾 𝜈𝑐
†
𝛾 (𝜏 )𝑑𝜈(𝜏 ) + 𝛤∗

𝛾𝜈𝑑
†
𝜈 (𝜏 )𝑐𝛾(𝜏 )]

× [𝛤𝑚𝑛𝑐
†
𝑚(𝜏 ′)𝑑𝑛(𝜏 ′) + 𝛤∗

𝑚𝑛𝑑
†
𝑛 (𝜏 ′)𝑐𝑚(𝜏 ′)]⟩

0
. (5.113)

Using Wick’s theorem, the term proportional to 𝐺𝑐
0,𝜆𝜇(𝜏1, 𝜏2) on the

right-hand side is zero for the same reason as the first term on the
right-hand side of equation (5.98). The last two terms are identical
after renaming the summation variables and time coordinates, so

𝐺𝑐 = 𝐺𝑐
0 + 𝐺𝑐

0 •𝒞 𝛤𝐺𝑐
𝑒𝛤† •𝒞 𝐺𝑐

0. (5.114)

where 𝐺𝑐
𝑒,𝜆𝜇(𝜏1, 𝜏2) = −𝑖 ⟨𝒯𝒞 [𝑑𝜆(𝜏1)𝑑

†
𝜇 (𝜏2)]⟩0 Also to second order in

𝛤, one can write

𝐺𝑐 = 𝐺𝑐
0 + 𝐺𝑐

0 •𝒞 𝛤𝐺𝑐
𝑒𝛤† •𝒞 𝐺𝑐. (5.115)

Hence, the self-energy which correctly captures dissipation through
this interaction with the environment to second order in 𝛤 is

𝛴inel = 𝛤𝐺𝑐
𝑒𝛤†. (5.116)

Using the Langreth rules, one can express the self-energy for the
matrix of retarded, advanced, and Keldysh Green’s functions as

̌𝛴inel = (
𝛤𝐺𝑅

𝑒 𝛤† 𝛤𝐺𝐾
𝑒 𝛤†

𝛤𝐺𝐴
𝑒 𝛤†) . (5.117)

To proceed, I must make some simplifying assumptions regarding
the environment. One such assumption is that the coupling to the
environment is local, such that 𝛤𝐺𝑅

𝑒 𝛤† is proportional to the identity
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matrix. I also assume that 𝐺𝑅
𝑒 (𝑡1, 𝑡2) does not depend on the center-of-

mass time (𝑡1 + 𝑡2)/2.
Next, let 𝛤𝐺𝑅

𝑒 (𝜀)𝛤† = 𝑟(𝜀) − 𝑖𝛿(𝜀), where 𝐺𝑅
𝑒 (𝜀) is obtained from

𝐺𝑅
𝑒 (𝑡1, 𝑡2) by a Fourier transform in relative time. The real part, 𝑟(𝜀),

can be neglected in the differential equation for the Green’s function
compared to the other real energies in the system. This is because
the interaction with the environment is assumed to be weak. The
imaginary part, on the other hand, cannot be neglected unless there
are other, larger imaginary terms in the equation of motion for the
Green’s function. This is often not the case because the Hamiltonian is
assumed Hermitian. A possible exception is the impurity self-energy
that comes from impurity-averaging, as shown in section 5.1.1.

Next, I assume that the environment is at thermal equilibrium. Using
the results from section 4.2 this implies that

𝛤𝐺𝐾
𝑒 (𝜀)𝛤† = −2𝑖𝛿(𝜀) tanh(𝛽𝑒𝜀/2), (5.118)

since 𝐺𝐴
𝑒 (𝜀) = [𝐺𝑅

𝑒 (𝜀)]†. Here, 𝛽𝑒 is the inverse temperature of the
fermions in the environment, which are annihilated by the 𝑑𝜆-operators.
Hence, the self-energy is

̌𝛴inel(𝜀) = (
−𝑖𝛿(𝜀) −2𝑖𝛿(𝜀) tanh(𝛽𝑒𝜀/2)

𝑖𝛿(𝜀) ) . (5.119)

Another simplification that is often useful, is to assume that 𝛿(𝜀) is
independent of 𝜀 as long as |𝜀| is less than all the relevant energies of
the system under consideration. This is sometimes referred to as the
relaxation time approximation [195].

Another relevant source of dissipation is electron-phonon scatter-
ings. In this case ℋ𝑠𝑒 is cubic, as explained above. The derivation
is therefore more complicated and involves more terms than the one
presented here, but the general procedure is the same. The end re-
sult is also the same for our purposes [185], except that the inverse
temperature 𝛽𝑒 is now the inverse temperature of the phonons.
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6Quasiclassical Keldysh Theory
One of the most striking features of our physical world, possibly only
rivaled by the extraordinary effectiveness of symmetry arguments
in physics, is the efficacy of effective theories. It is often possible to
model a system with great precision without knowing the details of the
underlying constituents. One can model the movement of a tsunami
without knowing where there are fish or rocks that obstruct the flow of
water [196, 197], one can model the flow of water around rocks without
knowing how the water molecules bounce around [198, 199], and one
can model the motion of ions without knowing about the quark and
gluon constituents. The history of physics has largely been about
going from large scales, like fluids, to increasingly smaller scales, like
molecules, atoms, electrons, and eventually quarks. This would not
have been possible if one needed to know about the detailed motion of
atoms in order to predict the behavior of fluids. Hence, the efficacy of
effective theories is arguably the reason why humanity has been able
to study physics in the first place.

Effective theories can emerge when there is a hierarchy of scales,
but this need not always be the case. If one tries to model atmospheric
convection using the Lorenz equation [200], even an arbitrarily small
perturbation in the initial condition will often lead to wildly different
predictions [201]. This is an example of a chaotic system [202], which
is a system where approximate knowledge of initial conditions does
not give approximate predictions for the future. As a result, any long
time-scale or length-scale prediction in chaotic systems is impossible
without knowing the exact details of the microscopic initial condition.

Luckily, the behavior of electrons in crystalline solids is generally
not chaotic. Therefore, if there is a hierarchy of scales it can be possible
to derive effective theories. An example is the quasiclassical Keldysh
Green’s function formalism [203, 204], which is the topic of this chap-
ter and the main tool in many of the articles presented in this thesis.
The quasiclassical Keldysh formalism separates the quantum effects
occurring at length scales comparable to the Fermi wavelength from
other length scales. This is useful because, while quantum mechan-
ics can be reasonably manageable when systems are translationally
invariant, the equations become considerably more difficult to solve
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when systems include inhomogeneous external fields or multiple mate-
rials. Quasiclassical Keldysh theory allows efficient treatment of such
systems, as I will show in this chapter.

In this chapter, I will derive quasiclassical Keldysh theory in the gen-
eral case, based on the theory from the previous chapters. I have also
done so in detail in paper IX for the special case of antiferromagnetic
metals. Antiferromagnetic metals are extra challenging compared to
normal metals because one must consider two sublattices, while in
conventional derivations of quasiclassical theory one often starts from
continuous models. Here, I will take a more general approach and
do the derivation in a different way compared to the derivation in
paper IX. For instance, I will not derive the equations for two ma-
terials simultaneously, which was done in paper IX in order to also
derive boundary conditions. Instead, I will be much more general
when it comes to material properties and end up with equations that
are applicable to many systems. Additionally, I will also derive the
normalization condition.

6.1 Green’s functions in Wigner coordinates

I consider again systems that can be modeled with a quadratic Hamil-
tonian. As we have seen, this includes superconductors, ferromagnets,
antiferromagnets, spin-orbit coupling, impurities, and various external
fields. As before, let 2𝑁𝑠 be the number of Wannier states per lattice
site, and remember that each lattice site contains one unit cell that
may include more than one atom. There are 𝑁𝑠 Wannier states per
spin, and the states need not be spin-degenerate. Let the annihilation
operator for Wannier state 𝑚 with spin 𝜎 and crystal momentum 𝑘 be
𝑐𝑘𝑚𝜎. The most general quadratic Hamiltonian for such a system can
be written

ℋ = ∑
𝑘,𝑚1,𝑚2

∑
𝜎1,𝜎2

𝑡𝑚1𝑚2
𝑘𝜎1𝜎2
𝑁

𝑐†𝑘𝑚1𝜎1𝑐𝑘𝑚2𝜎2+ ∑
𝑘1,𝑘2,𝑚1,𝑚2

∑
𝜎1,𝜎2

𝑉𝑚1𝑚2
𝑘1𝑘2𝜎1𝜎2
𝑁

𝑐†𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2

+ 1
2𝑁

∑
𝑘1,𝑘2,𝑚1,𝑚2

∑
𝜎1,𝜎2

[𝛥𝑚1𝑚2
𝑘1𝑘2𝜎1𝜎2𝑐

†
𝑘1𝑚1𝜎1𝑐

†
−𝑘2𝑚2𝜎2 + (𝛥𝑚2𝑚1

𝑘2𝑘1𝜎2𝜎1)
∗𝑐−𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2] .

(6.1)
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I define the Green’s functions in terms of the 4𝑁𝑠-tuple of creation
and annihilation operators,

𝑐†𝑘 = (𝑐†𝑘1↑ 𝑐†𝑘1↓ 𝑐†𝑘2↑ ⋯ 𝑐†𝑘𝑁𝑠↓ 𝑐−𝑘1↓ −𝑐−𝑘1↑ ⋯ −𝑐−𝑘𝑁𝑠↑) ,
(6.2)

such that

𝐺̂𝑅
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜃(𝑡 − 𝑡′)𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
+
⟩ , (6.3a)

𝐺̂𝐴
𝑘1𝑘2(𝑡, 𝑡

′) = + 𝑖
𝑁
𝜃(𝑡′ − 𝑡)𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
+
⟩ , (6.3b)

𝐺̂𝐾
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
−
⟩ , (6.3c)

where 𝜏𝑧 = diag(1, 1, … , 1, −1, −1, … , −1) is again the third Pauli matrix
in Nambu space. The Green’s functions can be combined into a larger
Green’s function,

̌𝐺𝑘1𝑘2(𝑡, 𝑡
′) = (

𝐺̂𝑅
𝑘1𝑘2(𝑡, 𝑡

′) 𝐺̂𝐾
𝑘1𝑘2(𝑡, 𝑡

′)
𝐺̂𝐴
𝑘1𝑘2(𝑡, 𝑡

′)
) . (6.4)

The differential equation for these Green’s functions can again be
found from the Heisenberg equation for 𝑐†𝑘 ,

𝑖
∂𝑐†𝑘
∂𝑡

𝜏𝑧 + [ℋ , 𝑐†𝑘 ]−𝜏𝑧 = 0, (6.5)

where the commutator must be taken element-wise.
From [𝐴𝐵, 𝐶]− = 𝐴[𝐵, 𝐶]+ − [𝐴, 𝐶]+𝐵 together with the anti-

commutation relations for fermionic operators, [𝑐𝑘2𝑚2𝜎2 , 𝑐𝑘1𝑚1𝜎1]+ =

[𝑐†𝑘2𝑚2𝜎2 , 𝑐
†
𝑘1𝑚1𝜎1]+ = 0 and

[𝑐𝑘2𝑚2𝜎2 , 𝑐
†
𝑘1𝑚1𝜎1]+ = ∑

𝑖,𝑗
e−𝑖𝒌2⋅𝑹𝑖e𝑖𝒌1⋅𝑹𝑗 [𝑐𝑖𝑚2𝜎2 , 𝑐

†
𝑗𝑚1𝜎1]+

= 𝛿𝜎1𝜎2𝛿𝑚1𝑚2 ∑
𝑖

e𝑖(𝒌1−𝒌2)⋅𝑹𝑖 = 𝑁𝛿𝜎1𝜎2𝛿𝑚1𝑚2𝛿𝑘1𝑘2 , (6.6)
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where 𝑁 is the number of lattice sites, I get that

[𝑐†𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2 , 𝑐𝑘3𝑚3𝜎3]+ = − 𝑁𝑐𝑘2𝑚2𝜎2𝛿𝑘1𝑘3𝛿𝑚1𝑚3𝛿𝜎1𝜎3 , (6.7a)

[𝑐†𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2 , 𝑐
†
𝑘3𝑚3𝜎3]+ =𝑁𝑐†𝑘1𝑚1𝜎1𝛿𝑘2𝑘3𝛿𝑚2𝑚3𝛿𝜎2𝜎3 , (6.7b)

[𝑐†𝑘1𝑚1𝜎1𝑐
†
−𝑘2𝑚2𝜎2 , 𝑐𝑘3𝑚3𝜎3]+ =𝑁𝑐†𝑘1𝑚1𝜎1𝛿−𝑘2𝑘3𝛿𝑚2𝑚3𝛿𝜎2𝜎3

− 𝑁𝑐†−𝑘2𝑚2𝜎2𝛿𝑘1𝑘3𝛿𝑚1𝑚3𝛿𝜎1𝜎3 , (6.7c)

[𝑐−𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2 , 𝑐
†
𝑘3𝑚3𝜎3]+ =𝑁𝑐−𝑘1𝑚1𝜎1𝛿𝑘2𝑘3𝛿𝑚2𝑚3𝛿𝜎2𝜎3

− 𝑁𝑐𝑘2𝑚2𝜎2𝛿−𝑘1𝑘3𝛿𝑚1𝑚3𝛿𝜎1𝜎3 , (6.7d)

[𝑐†𝑘1𝑚1𝜎1𝑐
†
−𝑘2𝑚2𝜎2 , 𝑐

†
𝑘3𝑚3𝜎3] = [𝑐−𝑘1𝑚1𝜎1𝑐𝑘2𝑚2𝜎2 , 𝑐𝑘3𝑚3𝜎3]+ = 0. (6.7e)

Therefore,

[ℋ , 𝑐𝑘3𝑚3𝜎3]− = −∑
𝑚2

∑
𝜎2

𝑡𝑚3𝑚2
𝑘3𝜎3𝜎2𝑐𝑘3𝑚2𝜎2 − ∑

𝑘2,𝑚2,𝜎2
𝑉𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2𝑐𝑘2𝑚2𝜎2

− ∑
𝑘2,𝑚2,𝜎2

𝛥𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2𝑐

†
−𝑘2𝑚2𝜎2 . (6.8)

Moreover, since [ℋ , 𝑐†𝑘3𝑚3𝜎3]− = −([ℋ , 𝑐𝑘3𝑚3𝜎3]−)
†,

[ℋ , 𝑐†𝑘3𝑚3𝜎3]− = ∑
𝑚2

∑
𝜎2
(𝑡𝑚3𝑚2
𝑘3𝜎3𝜎2)

∗𝑐†𝑘3𝑚2𝜎2 + ∑
𝑘2,𝑚2,𝜎2

(𝑉𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2)

∗𝑐†𝑘2𝑚2𝜎2

+ ∑
𝑘2,𝑚2,𝜎2

(𝛥𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2)

∗𝑐−𝑘2𝑚2𝜎2 . (6.9)

Combining equations (6.8) and (6.9) the equation for 𝑐𝑘 becomes

𝑖
∂𝑐†𝑘
∂𝑡

𝜏𝑧 + 𝑐†𝑘 𝐻0,𝑘 +∑
𝑘′

𝑐†𝑘′𝑉𝑘′𝑘 = 0, (6.10)

where

𝐻0,𝑘 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑡11𝑘↑↑ ⋯ 𝑡1𝑁𝑠
𝑘↑↓ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑡𝑁𝑠1
𝑘↓↑ ⋯ 𝑡𝑁𝑠𝑁𝑠

𝑘↓↓ 0 ⋯ 0
0 ⋯ 0 (𝑡11−𝑘↓↓)

∗ ⋯ −(𝑡1𝑁𝑠
−𝑘↓↑)

∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 −(𝑡𝑁𝑠1

−𝑘↑↓)
∗ ⋯ (𝑡𝑁𝑠𝑁𝑠

−𝑘↑↑)
∗

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (6.11)
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and

𝑉𝑘′𝑘 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑉 11
𝑘′𝑘↑↑ ⋯ 𝑉 1𝑁𝑠

𝑘′𝑘↑↓ −𝛥11
𝑘′𝑘↑↓ ⋯ 𝛥1𝑁𝑠

𝑘′𝑘↑↑
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑉𝑁𝑠1
𝑘′𝑘↓↑ ⋯ 𝑉𝑁𝑠𝑁𝑠

𝑘′𝑘↓↓ −𝛥𝑁𝑠1
𝑘′𝑘↓↓ ⋯ 𝛥𝑁𝑠𝑁𝑠

𝑘′𝑘↓↑
−(𝛥11

−𝑘′−𝑘↓↑)
∗ ⋯ −(𝛥1𝑁𝑠

−𝑘′−𝑘↓↓)
∗ (𝑉 11

−𝑘′−𝑘↓↓)
∗ ⋯ −(𝑉 1𝑁𝑠

−𝑘′−𝑘↓↑)
∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
(𝛥𝑁𝑠1

−𝑘′−𝑘↑↑)
∗ ⋯ (𝛥𝑁𝑠𝑁𝑠

−𝑘′−𝑘↑↓)
∗ −(𝑉𝑁𝑠1

−𝑘′−𝑘↑↓)
∗ ⋯ (𝑉𝑁𝑠𝑁𝑠

−𝑘′−𝑘↑↑)
∗

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

(6.12)

where I used that (𝑡𝑚3𝑚2
𝑘3𝜎3𝜎2)

∗ = 𝑡𝑚2𝑚3
𝑘3𝜎2𝜎3 , (𝑉

𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2)

∗ = 𝑉𝑚2𝑚3
𝑘2𝑘3𝜎2𝜎3 and𝛥

𝑚3𝑚2
𝑘3𝑘2𝜎3𝜎2 =

−𝛥𝑚2𝑚3
−𝑘2−𝑘3𝜎2𝜎3 , which follows from the Hermiticity of the Hamiltonian.

Using these relations, it also follows from taking the complex conjugate
of equation (6.10) that

−𝑖𝜏𝑧
∂𝑐𝑘
∂𝑡

+∑
𝑘′

𝜏𝑧[𝐻0,𝑘𝛿𝑘𝑘′ + 𝑉𝑘𝑘′]𝜏𝑧𝑐𝑘′ = 0. (6.13)

Differentiating the retarded and advanced Green’s functions with
respect to 𝑡′ and using equation (6.10), I get

𝑖
∂𝐺̂𝑅/𝐴

𝑘1𝑘2 (𝑡, 𝑡
′)

∂𝑡′
𝜏𝑧 = −𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2

−∑
𝑘′

𝐺̂𝑅/𝐴
𝑘1𝑘′ (𝑡, 𝑡

′) [𝛿𝑘′𝑘2𝐻0,𝑘2(𝑡
′) + 𝑉𝑘′𝑘2(𝑡

′)] . (6.14)

Similarly,

𝑖
∂𝐺̂𝐾

𝑘1𝑘2(𝑡, 𝑡
′)

∂𝑡′
𝜏𝑧 = −∑

𝑘′
𝐺̂𝐾
𝑘1𝑘′(𝑡, 𝑡

′) [𝛿𝑘′𝑘2𝐻0,𝑘2(𝑡
′) + 𝑉𝑘′𝑘2(𝑡

′)] .

(6.15)

Differentiating with respect to 𝑡 and using equation (6.13), I get

𝑖𝜏𝑧
∂𝐺̂𝑅/𝐴

𝑘1𝑘2 (𝑡, 𝑡
′)

∂𝑡
= 𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2

+∑
𝑘′

[𝐻0,𝑘1(𝑡
′)𝛿𝑘1𝑘′ + 𝑉𝑘1𝑘′(𝑡

′)] 𝐺̂𝑅/𝐴
𝑘′𝑘2 (𝑡, 𝑡

′), (6.16)
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and

𝑖𝜏𝑧
∂𝐺̂𝐾

𝑘1𝑘2(𝑡, 𝑡
′)

∂𝑡
= +∑

𝑘′
[𝐻0,𝑘1(𝑡

′)𝛿𝑘1𝑘′ + 𝑉𝑘1𝑘′(𝑡
′)] 𝐺̂𝐾

𝑘′𝑘2(𝑡, 𝑡
′). (6.17)

combining these results,

𝑖𝜏𝑧
∂ ̌𝐺𝑘1𝑘2(𝑡, 𝑡

′)
∂𝑡

−∑
𝑘′
[𝐻0,𝑘1(𝑡

′)𝛿𝑘1𝑘′ + 𝑉𝑘1𝑘′(𝑡
′)] ̌𝐺𝑘′𝑘2(𝑡, 𝑡

′)

= 𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 , (6.18a)

𝑖
∂ ̌𝐺𝑘1𝑘2(𝑡, 𝑡

′)
∂𝑡′

𝜏𝑧 +∑
𝑘′

̌𝐺𝑘1𝑘′(𝑡, 𝑡
′)[𝛿𝑘′𝑘2𝐻0,𝑘2(𝑡

′) + 𝑉𝑘′𝑘2(𝑡
′)]

= −𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 . (6.18b)

In section 5.1.1, I showed that one can convert the equations for the
full Green’s function into equations for impurity-averaged Green’s
functions by replacing the impurity-potential in 𝑉𝑘1𝑘2 with the impurity
self-energy, ̌𝛴imp, which depend on the type of impurity as well as
̌𝐺𝑘1𝑘2 . Moreover, in section 5.2.1, I showed that we can include the effect

of dissipation to the environment by including a self-energy term ̌𝛴inel.
Both ̌𝛴imp and ̌𝛴inel are special in that they are non-diagonal in Keldysh
space, meaning that they include a Keldysh component in addition to
the usual retarded and advanced components. Including these effects,
the equations for the Green’s functions become

𝑖𝜏𝑧
∂ ̌𝐺𝑘1𝑘2(𝑡, 𝑡

′)
∂𝑡

−∑
𝑘′
( ̌𝛴𝑘1𝑘′ ∘ ̌𝐺𝑘′𝑘2)(𝑡, 𝑡

′) = 𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 , (6.19a)

𝑖
∂ ̌𝐺𝑘1𝑘2(𝑡, 𝑡

′)
∂𝑡′

𝜏𝑧 +∑
𝑘′
( ̌𝐺𝑘1𝑘 ∘ ̌𝛴𝑘′𝑘2)(𝑡, 𝑡′) = −𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 , (6.19b)

where the circle-product is an integral over the internal time coordi-
nate,

(𝐴 ∘ 𝐵)(𝑡1, 𝑡2) = ∫
∞

−∞
d𝑡′ 𝐴(𝑡1, 𝑡′)𝐵(𝑡′, 𝑡2), (6.20)

and

̌𝛴𝑘1𝑘2(𝑡, 𝑡
′) = [𝐻0,𝑘1𝛿𝑘1𝑘2 + 𝑉𝑘1𝑘2(𝑡)] 𝛿(𝑡 − 𝑡′) + ̌𝛴imp,𝑘1𝑘2 + ̌𝛴inel,𝑘1𝑘2 .
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(6.21)

A central assumption in quasiclassical theory is that 𝐻0,𝑘 is assumed
to be invariant under spatial and temporal translations. This is impor-
tant because the quantum mechanical short-range physics, which we
ultimately want to separate from the long-range effects, is assumed to
be determined by 𝐻0,𝑘. It is therefore useful to diagonalize 𝐻0,𝑘. The
matrix 𝐻0,𝑘 can include all parts of the Hamiltonian which is invariant
under spatial and temporal translation except terms that give rise to
energy gaps at the Fermi level. Hence, 𝐻0,𝑘 should not include super-
conductivity. Which terms can be included in 𝐻0,𝑘 may depend on
the Fermi level, which is defined below. If one considers an antifer-
romagnet with Fermi level in the gap, 𝐻0,𝑘 should also not include
the exchange coupling to the localized electrons, even if the exchange
coupling is constant in space and time. As I will show, this sets a limit
to how strong the exchange coupling can be in this case. On the other
hand, if one considers an antiferromagnetic metal with Fermi level
deep inside one of the conduction bands, the exchange coupling can
be included in 𝐻0,𝑘, and the strength of the exchange coupling can
be arbitrarily large. Finally, note that some spatially or temporally
inhomogeneous terms can be made homogeneous by locally trans-
forming the 4𝑁𝑠-tuple of creation and annihilation operators. In this
way, one can for example include nonuniform magnetic textures in
antiferromagnets, as shown in paper IX.

Since 𝐻0,𝑘 is a Hermitian matrix, it has real eigenvalues and can be
diagonalized by unitary matrices. Moreover, the two blocks of 𝐻0,𝑘 are
related by complex conjugation, a similarity transformation, and an
inversion of crystal momentum. Therefore,

𝐻0,𝑘 = 𝑆𝑘𝐷𝑘𝑆
†
𝑘 = 𝑆𝑘

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜉1,𝑘
⋱

𝜉2𝑁𝑠,𝑘
𝜉1,−𝑘

⋱
𝜉2𝑁𝑠,−𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝑆†𝑘 .

(6.22)

If hopping is invariant under inversion, meaning that hopping from
site 𝑖 to site 𝑗 is the same as hopping from site 𝑗 to site 𝑖, then 𝜉𝑖,−𝑘 = 𝜉𝑖,𝑘.
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However, this is not always the case. To include the possibility of
𝜉𝑗,𝑘 ≠ 𝜉𝑗,−𝑘, I write

𝐷𝑘 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜉1,𝑘
⋱

𝜉2𝑁𝑠,𝑘
𝜉2𝑁𝑠+1,𝑘

⋱
𝜉4𝑁𝑠,𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (6.23)

where 𝜉2𝑁𝑠+𝑖,𝑘 = 𝜉𝑖,−𝑘.
The similarity transformation defined by 𝑆𝑘 transforms into the basis

of the different energy bands in the system. There are 2𝑁𝑠 different,
possibly degenerate, energy bands, and the Fermi surface is defined
to be the set of crystal momenta for which 𝜉𝑖,𝑘 = 0 for at least one
𝑖 ∈ {1, … , 2𝑁𝑠}. The Fermi surface need in principle not be a single
continuous surface, and the different bands can cross the Fermi level,
meaning that 𝜉𝑖,𝑘 = 0, at different values of 𝑘. I transform onto the en-

ergy band basis by defining ̌𝐺′
𝑘1𝑘2 = 𝑆𝑘1 ̌𝐺𝑘1𝑘2𝑆

†
𝑘2 , and

̌𝛴′
𝑘1𝑘2 = 𝑆𝑘1 ̌𝛴𝑘1𝑘2𝑆

†
𝑘2 .

Performing a similarity transformation on equation (6.19), I get

𝑖𝜏𝑧
∂ ̌𝐺′

𝑘1𝑘2
∂𝑡

−∑
𝑘′

̌𝛴′
𝑘1𝑘′ ∘

̌𝐺′
𝑘′𝑘2 = 𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 , (6.24a)

𝑖
∂ ̌𝐺′

𝑘1𝑘2
∂𝑡′

𝜏𝑧 +∑
𝑘′

̌𝐺′
𝑘1𝑘 ∘

̌𝛴′
𝑘′𝑘2 = −𝛿(𝑡 − 𝑡′)𝛿𝑘1𝑘2 . (6.24b)

The idea of quasiclassical theory is that the variation is slow in the
center of mass (COM) position compared to the Fermi wavelength.
This means that we should write the Green’s functions as functions of
COM position and COM time. The set of COM coordinates, (𝑹, 𝒌, 𝑇 , 𝜀),
where 𝑹 is COM position, 𝑇 is COM time, 𝒌 is crystal momentum and
𝜀 is energy, is also known as Wigner coordinates [185]. Consider first
the time coordinate. Let ℱ𝑡 denote Fourier transform in relative time,
such that

̌𝐺′
𝑘1𝑘(𝑇 , 𝜀) = ℱ𝑡{ ̌𝐺′

𝑘1𝑘}(𝑇 , 𝜀) = ∫
∞

−∞
d𝑡 ̌𝐺′

𝑘1𝑘(𝑇+𝑡/2, 𝑇−𝑡/2)e
𝑖𝜀𝑡. (6.25)

146



Consider

ℱ𝑡{𝐴 ∘ 𝐵}(𝑇 , 𝜀) = ∫
∞

−∞
d𝑡 (𝐴 ∘ 𝐵)(𝑇 + 𝑡/2, 𝑇 − 𝑡/2)e𝑖𝜀𝑡. (6.26)

Let 𝑎(𝑇 , 𝑡) = 𝐴(𝑇 + 𝑡/2, 𝑇 − 𝑡/2) and 𝑏(𝑇 , 𝑡) = 𝐵(𝑇 + 𝑡/2, 𝑇 − 𝑡/2), such
that

(𝐴∘𝐵)(𝑇+𝑡/2, 𝑇−𝑡/2) = ∫
∞

−∞
d𝑡′ 𝑎(𝑇+𝑡′/2, 𝑡−𝑡′)𝑏(𝑇−[𝑡−𝑡′]/2, 𝑡′).

(6.27)

Taylor expanding 𝑎(𝑇 + 𝑡′/2, 𝑡 − 𝑡′) around 𝑎(𝑇 , 𝑡 − 𝑡′) and 𝑏(𝑇 − [𝑡 −
𝑡′]/2, 𝑡′) around 𝑏(𝑇 , 𝑡′), I get that

(𝐴∘𝐵)(𝑇 +𝑡/2, 𝑇 −𝑡/2) =
∞
∑
𝑛,𝑚=0

1
𝑛!𝑚!

[(− 𝑡
2
)
𝑚 ∂𝑛𝑎
∂𝑇 𝑛

]∗[( 𝑡
2
)
𝑛 ∂𝑚𝑏
∂𝑇𝑚

] ,

(6.28)

where ∗ denotes regular convolution in the relative time variable.
The Fourier transform of a convolution is the product of the Fourier
transforms, and ℱ𝑡{(±𝑡/2)𝑛𝑓 } = [∓(𝑖/2)∂/∂𝜀]𝑛ℱ𝑡{𝑓 }, so

ℱ𝑡{𝐴∘𝐵} =
∞
∑
𝑛,𝑚=0

1
𝑛!𝑚!

( 𝑖
2
)
𝑚
(− 𝑖

2
)
𝑛
[ ∂

𝑚

∂𝜀𝑚
∂𝑛

∂𝑇 𝑛
ℱ𝑡{𝐴}] [

∂𝑛

∂𝜀𝑛
∂𝑚

∂𝑇𝑚
ℱ𝑡{𝐵}] .

(6.29)

This is often written more compactly as

ℱ𝑡{𝐴 ∘ 𝐵} = exp ( 𝑖
2
∂𝐴𝜀 ∂𝐵𝑇 −

𝑖
2
∂𝐵𝜀 ∂𝐴𝑇 )𝐴𝐵, (6.30)

where it is understood that 𝐴 and 𝐵 are written as functions of 𝜀 and 𝑇
on the right-hand side, and where the superscripts on the differential
operators indicate which functions they act on. I use the circle product
to also denote the product

𝐴 ∘ 𝐵 = exp ( 𝑖
2
∂𝐴𝜀 ∂𝐵𝑇 −

𝑖
2
∂𝐵𝜀 ∂𝐴𝑇 )𝐴𝐵 (6.31)

when 𝐴 and 𝐵 are functions of 𝜀 and 𝑇. Fourier transforming equa-
tion (6.24) in relative temporal coordinates, I get

𝜀𝜏𝑧 ∘ ̌𝐺′
𝑘1𝑘2 −∑

𝑘′
̌𝛴′
𝑘1𝑘′ ∘

̌𝐺′
𝑘′𝑘2 = 𝛿𝑘1𝑘2 , (6.32a)

̌𝐺′
𝑘1𝑘2 ∘ 𝜀𝜏𝑧 −∑

𝑘′
̌𝐺′
𝑘1𝑘 ∘

̌𝛴′
𝑘′𝑘2 = 𝛿𝑘1𝑘2 . (6.32b)
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Quasiclassical theory is often derived from continuous models [203–
207], but real materials are often better described by lattice models.
Since I here consider a lattice model with a finite number of lattice
sites, the crystal momenta takes discrete values. As a result, we must
take care when defining the COM spatial positions. For instance, one
cannot easily use the symmetric definition in terms of ̌𝐺(𝑘+𝑝/2)(𝑘−𝑝/2)
because we cannot evaluate ̌𝐺(𝑘+𝑝/2)(𝑘−𝑝/2) for all 𝑝. I define

̌𝐺′
𝑅𝑘 = ∑

𝑝
̌𝐺′
(𝑘+𝑝)𝑘e

𝑖𝒑⋅𝑹 (6.33)

and

̌𝛴′
𝑅𝑘(𝑇 , 𝜀) = ∑

𝑝
̌𝛴′
(𝑘+𝑝)𝑘(𝑇 , 𝜀)e

𝑖𝒑⋅𝑹

= 𝐷𝑘 + 𝑉 ′
𝑅𝑘(𝑇 ) + ̌𝛴′

imp,𝑅𝑘(𝑇 , 𝜀) + ̌𝛴′
inel,𝑅𝑘(𝑇 , 𝜀). (6.34)

To rewrite equation (6.24) in terms of COM coordinates, one must
evaluate the sum over internal momenta,∑𝑘′ ̌𝛴′

𝑘1𝑘′ ∘
̌𝐺′
𝑘′𝑘2 as a function

of COM coordinates. This can be done in the discrete case by using
the Newton Forward differences formula, like was done in paper IX.
However, here I instead define continuous variables to simplify this
step.

In order to define functions of continuous momentum and position
coordinates, I assume that the variation in ̌𝐺′

𝑅𝑘 and ̌𝛴′
𝑅𝑘 between neigh-

boring positions 𝑹 and momenta 𝒌 is small. More precisely, I assume
that there exist 𝜆𝑅 and 𝜆𝑘 which are larger than the distance between
neighboring lattice sites and neighboring momenta, respectively, such
that

| ̌𝐺′
(𝑅+𝑟)(𝑘+𝑝) − ̌𝐺′

𝑅𝑘| ≪ | ̌𝐺′
𝑅𝑘| (6.35)

as long as |𝒓 |< 𝜆𝑅 and |𝒑|< 𝜆𝑝, where the norm is an appropriate Matrix
norm, such as the Frobenius norm.

In the absence of impurity scattering or dissipation, it is not clear that
this assumption is valid. For instance, if ̌𝛴′

𝑘1𝑘2 = 𝐷𝑘𝛿𝑘1𝑘2 , then ̌𝐺′
𝑘1𝑘2 =

𝛿𝑘1𝑘2[𝜏𝑧𝜀 − 𝐷𝑘1]
−1, so ̌𝐺′

𝑅𝑘 = [𝜏𝑧𝜀 − 𝐷𝑘]−1 which diverges at 𝜀 = 𝜉𝑖,±𝑘 for
all 𝑖 ∈ {1, … , 2𝑁𝑠}. Close to these energies it is therefore not true that
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̌𝐺′
𝑅𝑘 varies slowly with 𝑘. On the other hand, if we include dissipation

and impurity scattering, this will remove the divergence. For instance,
if we use the relaxation time approximationwhen including dissipation,
we effectively add an imaginary constant to the energy, 𝜀 → 𝜀 + 𝑖𝛿,
thereby shifting the divergence away from the real axis. To get an
order of magnitude estimate for when the assumption of slow variation
is 𝒌-space is valid, consider the case when the retarded part of the self-
energy is ̌𝛴′

𝑘1𝑘2 = 𝐷𝑘𝛿𝑘1𝑘2 + 𝑖𝛿𝜏𝑧. In this case, the retarded and advanced

Green’s functions are ̌𝐺′
𝑅𝑘 = [𝜏𝑧(𝜀 + 𝑖𝛿) − 𝐷𝑘]−1. The Green’s function

is strongly peaked at 𝜉𝑖,±𝑘 = 𝜀. Consider one of the energy bands which
crosses 𝜉𝑖,±𝑘 = 𝜀, and let 𝒌1 be such that 𝜉𝑖,𝑘1 = 𝜀 and 𝒌2 be in the
neighborhood such that 𝜉𝑖,𝑘2 ≈ 𝜉𝑖,𝑘1 + 𝛥𝒌 ⋅ ∇𝑘𝜉𝑖,𝑘1 , where 𝛥𝒌 = 𝒌2 − 𝒌1.
I find that

| ̌𝐺′
𝑅𝑘2 −

̌𝐺′
𝑅𝑘1 |

| ̌𝐺′
𝑅𝑘1 |

≲
|𝛥𝒌 ⋅ ∇𝑘𝜉𝑖,𝑘1 |

𝛿
. (6.36)

In quasiclassical theory, ∇𝑘𝜉𝑖,𝑘1 will be on the order of the Fermi velocity,
𝑣𝐹. On the other hand, neighboring momenta differ by 2𝜋/𝐿, where 𝐿
is the length of the system. Therefore,

| ̌𝐺′
𝑅𝑘2 −

̌𝐺′
𝑅𝑘1(𝑇 , 𝜀)|

| ̌𝐺′
𝑅𝑘1 |

≲
2𝜋(1/𝛿)𝑣𝐹

𝐿
= 2𝜋

𝑙inel
𝐿

, (6.37)

where inelastic 𝑙inel is the inelastic mean free path, since 1/𝛿 is the
inelastic scattering rate. Therefore, the assumption of slow variation in
𝒌-space is justified when the inelastic mean free path is much shorter
than the system size 𝐿. This is not always the case, as the inelastic
mean free path can be several centimeters (see paper VIII). Note that
elastic impurity scattering has similar effects because it also gives rise
to an imaginary self-energy term, and the elastic mean free path is
often much smaller than the inelastic mean free path. Therefore, it can
be sufficient that the system is much shorter than the elastic mean free
path. When the assumption of slow variation is not valid in 𝒌-space,
one can do the derivation using a lattice model, like in paper IX.

With the assumption of slow variation on the scale of nearest neigh-
bor COM position and momentum, I define the continuous Green’s
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function as

̌𝐺′(𝑹, 𝒌, 𝑇 , 𝜀) = ∑
𝑖
∑
𝑝

̌𝐺′
𝑅𝑖𝑝

𝐶𝑅(𝑹)𝐶𝑘(𝒌)
e−(𝑹𝑖−𝑹)2/𝜆2𝑅e−(𝒑−𝒌)

2/𝜆2𝑘 , (6.38)

where 𝜆𝑅 and 𝜆𝑘 is larger than the nearest neighbor distances in po-
sition and momentum space, respectively, and such that the relative
variation in ̌𝐺′

𝑅𝑖𝑝 over this scale is negligible. In order for the con-
tinuous Green’s function to satisfy ̌𝐺′(𝑹, 𝒌, 𝑇 , 𝜀) ≈ ̌𝐺′

𝑅𝑘(𝑇 , 𝜀), I choose

𝐶𝑅(𝑹) = ∑
𝑖

e−(𝑹𝑖−𝑹)2/𝜆2𝑅 , (6.39a)

𝐶𝑘(𝒌) = ∑
𝑝

e−(𝒑−𝒌)
2/𝜆2𝑘 . (6.39b)

From equation (6.38), one can compute ∑𝑘′ ̌𝛴′
𝑘1𝑘′ ∘

̌𝐺′
𝑘′𝑘2 in Wigner

coordinates. In COM coordinates, this sum becomes

∑
𝑝
∑
𝑘′

̌𝛴′
(𝑘+𝑝)𝑘′ ∘ ̌𝐺′

𝑘′𝑘e
𝑖𝒑⋅𝑹 = ∑

𝑝′
∑
𝑘′

̌𝛴′
(𝑘′+𝑝′)𝑘′e

𝑖𝒑′⋅𝑹 ∘ ̌𝐺′
𝑘′𝑘e

𝑖(𝒌′−𝒌)⋅𝑹

= ∑
𝑘′

̌𝛴′
𝑅𝑘′ ∘ ̌𝐺′

𝑘′𝑘e
𝑖(𝒌′−𝒌)⋅𝑹 = ∑

𝑘̃

̌𝛴′
𝑅(𝑘+𝑘̃) ∘

̌𝐺′
(𝑘+𝑘̃)𝑘e

𝑖𝒌̃⋅𝑹

≈ ∑
𝑘̃

̌𝛴′(𝑹, 𝒌 + 𝒌̃) ̌𝐺′
(𝑘+𝑘̃)𝑘e

𝑖𝒌̃⋅𝑹

= ∑
𝛼

∇𝛼𝑘 ̌𝛴′(𝑹, 𝒌)
𝛼!

∘∑
𝑘̃

(𝒌̃)
𝛼 ̌𝐺′

(𝑘+𝑘̃)𝑘e
𝑖𝒌̃⋅𝑹

= ∑
𝛼

∇𝛼𝑘 ̌𝛴′(𝑹, 𝒌)
𝛼!

(−𝑖∇𝑅)
𝛼 ∘∑

𝑘̃

̌𝐺′
(𝑘+𝑘̃)𝑘e

𝑖𝒌̃⋅𝑹

≈ ∑
𝛼

(−𝑖)|𝛼 |

𝛼!
∇𝛼𝑘 ̌𝛴′(𝑹, 𝒌) ∘ ∇𝛼𝑅 ̌𝐺′(𝑹, 𝒌), (6.40)

where the sum over 𝛼 goes over multi-indices. That is, 𝛼 = (𝛼1, 𝛼2, 𝛼3)
is a multi-index, where 𝛼𝑖 is an integer and goes from 0 to ∞ for
all 𝑖 ∈ {1, 2, 3}. If 𝒌 = (𝑘1, 𝑘2, 𝑘3) is a vector, then (𝒌)𝛼 = 𝑘𝛼11 𝑘𝛼22 𝑘𝛼33 .
The same applies to the vectors of differential operators, ∇𝑘 and ∇𝑅.
Moreover, 𝛼! = 𝛼1!𝛼2!𝛼3! and |𝛼 | = 𝛼1+𝛼2+𝛼3. I use the bullet operator,
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•, to denote

( ̌𝛴′ • ̌𝐺′)(𝑹, 𝒌) = ∑
𝛼

(−𝑖)|𝛼 |

𝛼!
∇𝛼𝑘 ̌𝛴′(𝑹, 𝒌) ∘ ∇𝛼𝑅 ̌𝐺′(𝑹, 𝒌). (6.41)

Sometimes this notation is shortened to [204]

̌𝛴′ • ̌𝐺′ = exp (−𝑖∇ ̌𝛴′

𝑘 ∇ ̌𝐺′

𝑅 ) ̌𝛴′ ∘ ̌𝐺′, (6.42)

although one should keep in mind that the series expansion of the
exponential must go over all multi-indices. This form of the bullet
product is also known as the gradient expansion [185, 204], since it
is a series expansion in differential operators. With this notation, the
equations for the Green’s functions in the Wigner coordinates become

𝜀𝜏𝑧 ∘ ̌𝐺′ − ̌𝛴′ • ̌𝐺′ = 1, (6.43a)
̌𝐺′ ∘ 𝜀𝜏𝑧 − ̌𝐺′ • ̌𝛴′ = 1. (6.43b)

6.2 The Quasiclassical Green’s Function and the Eilenberger
Equation

While equation (6.43) is written in compact notation, solving it is very
difficult. Equation (6.43) involves an infinite series of differential oper-
ators of increasing order. Since ̌𝐺′ is strongly peaked in momentum-
space close to the Fermi level, it is also not always true that one can
truncate the series expansions of the exponential operators to obtain
a set of partial differential equations of reasonable order. Even if we
could truncate the series expansions, solving it for all possible mo-
menta, positions, energies and time would be computationally difficult.
Luckily, we can define a so-called quasiclassical Green’s function as
an integral over momenta close to the peaks, thereby truncating the
gradient expansion and removing the radial part of the momentum
from the problem.

The quasiclassical Green’s function is defined as an integral over
momenta close to the Fermi level. However, in the general treatment
considered here, we can have more than one energy band crossing
the Fermi level. In simple normal metals or antiferromagnetic metals,
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𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂

𝒞 𝐸
𝑖𝑗 (𝒌̂)

−𝐸𝑐 𝐸𝑐

Figure 6.1: A sketch of the Eilenberger contour [205].

there are two spin-degenerate bands crossing the Fermi level at the
same place. In strongly polarized ferromagnets, on the other hand, the
spin bands are shifted with respect to each other, giving two different
regions in 𝒌-space where the energy bands cross the Fermi level [208,
209]. More generally, there might be multiple energy bands that cross
the Fermi level, and some energy bands may cross the Fermi level in
only some 𝒌-directions. For a general description that includes the
possibility of multiple conduction bands which crosses the Fermi level
at various places, we must integrate over multiple sets of momenta.
To do this, I generalize the Eilenberger contour, first introduced by
Eilenberger [205].

I assume that the energy bands are continuous. This means that
we can define continuous surfaces in momentum space where 𝜉𝑖,𝒑 are
constant. If we take into account the periodicity of crystal momentum
and apply periodic boundaries to the first Brillouin zone the isosur-
faces of constant 𝜉𝑖,𝒑 must be closed due to the continuity of 𝜉𝑖,𝒑. I
define a Fermi surface of the 𝑖’th energy band to be a closed surface in
momentum space such that 𝜉𝑖,𝒑 = 0 at all points in this surface. The
requirement of a closed Fermi surface is only true in the general case
when one takes into consideration the periodic boundary conditions in
momentum space. An energy band might have multiple Fermi surfaces,
only one Fermi surface, or no Fermi surface.

Let 𝜉𝑖,𝒑 be an energy band with at least one Fermi surface. We can

label these Fermi surfaces from 1 to 𝑛𝐹 ,𝑖. Let 𝒌
𝑖𝑗
0 be a crystal momentum
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in the volume enclosed by Fermi surface 𝑗. I assume for that 𝒌𝑖𝑗0 is cho-
sen such that for each unit vector 𝒌̂, 𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂ crosses the Fermi surface
for exactly one 𝑝, if we take into account the periodic boundaries. I
denote the value 𝑝 for which this happens as 𝑝𝑖𝑗𝐹 (𝒌̂). Next, I define
the Eilenberger contour 𝒞 𝐸

𝑖𝑗 (𝒌̂) to be the set of two closed semicir-
cular paths in the complex plane, as sketched in figure 6.1. That is,
𝒞 𝐸
𝑖𝑗 (𝒌̂) consists of two paths, each following the real 𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂-line from

𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂ = −𝐸𝑐 to 𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂ = 𝐸𝑐, where they split into two semicircular
arcs in the upper and lower parts of the complex plane, before the
paths close at 𝜉𝑖,𝒌𝑖𝑗0+𝑝𝒌̂ = −𝐸𝑐. The arc must be sufficiently far from all

the zeroes of 𝐷 so that ̌𝛴′ ≈ 𝐷.
This is a key assumption of the quasiclassical theory. The distance

to the extrema of the energy band must be at least 𝐸𝑐 by definition,
and in order for ̌𝛴′ ≈ 𝐷, 𝐸𝑐 must be much larger than all the other
energies in ̌𝛴′. That is, if ̌𝛴′ = 𝐷 + 𝛺̌, then 𝐸𝑐 ≫ |𝛺̌|. This also gives
a restriction to other Fermi surfaces in the system. Take any energy
band, 𝜉𝑛,𝒑, where 𝑛 ≠ 𝑖. If a root of this energy band is inside 𝒞 𝐸

𝑖𝑗 (𝒌̂),
then it must be relatively close to 𝒌𝑖𝑗0 + 𝑝𝑖𝑗𝐹 𝒌̂, such that 𝜉𝑛,𝒌𝑖𝑗0+𝒌̂𝑝𝑖𝑗𝐹(𝒌̂) ≪
𝐸𝑐. This will be more clear in the derivation that follows, but it has
an important consequence for how we can define the quasiclassical
Green’s functions.

Since ̌𝛴′ ≈ 𝐷 at the arcs, and 𝐷 is independent of COM time 𝑇 and
COMposition𝑹, equation (6.43) is solved by ̌𝐺′ = (𝜀𝜏𝑧−𝐷)−1 at the arcs.
Quasiclassical theory only applies to |𝜀| ≪ 𝐸𝑐, so ̌𝐺′ = −𝐷−1 at the arcs.
This means that larger |𝜀| must be treated separately when computing
observables, as shown in section 6.6. The usefulness of quasiclassical
theory is that it separates the expressions for observables into one
part containing the so-called quasiclassical Green’s function, which
depends on the full self-energy ̌𝛴′, but which is easier to compute than
the full Green’s function ̌𝐺′, and another part away from the Fermi
surface where the full Green’s function is easier to compute.

The fact that zeroes of different energy bands must be either close
in momentum space or far away, means that we cannot have two
different Fermi surfaces which are close to each other in some region
of momentum space and far away in another. If two Fermi surfaces are
close in some regions, then they must be close everywhere. This means
that we can collect sets of Fermi surfaces by proximity, as illustrated in
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1

23
3

3

3

𝑘𝑥

𝑘𝑦

Figure 6.2: A sketch of 4 Fermi surfaces in a 2D plane in the
first Brillouin zone. The Fermi surfaces can be collected in three
groups (𝑁𝑞 = 3) by proximity, labeled 1, 2 and 3 in the figure. The
Fermi surfaces in the same group must be close compared to the
distances to the edges of the energy bands, while Fermi surfaces in
different groups must be far away from each other.

figure 6.2. Let the number of different collections of Fermi surfaces be
𝑁𝑞, and let 𝛯𝑖 = {𝜉𝑖1 , 𝜉𝑖2 , … } be the set of energy bands that have a Fermi
surface in collection 𝑖, where 𝑖 ∈ {1, … , 𝑁𝑞}. For each collection of Fermi
surfaces, we must choose one energy band to define the quasiclassical
Green’s function, which I choose to be 𝜉𝑖1 . For notational simplicity, I
define 𝜂𝑖(𝑝) = 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ and 𝒞 𝐸

𝑖 = 𝒞 𝐸
𝑖𝑖1 . I define the 𝑖’th quasiclassical

Green’s function to be¹

̌𝑔𝑖(𝑹, 𝒌̂, 𝑇 , 𝜀) =
𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 ̌𝐺′(𝑹, 𝒌𝑖𝑖10 + 𝑝𝒌̂, 𝑇 , 𝜀), (6.44)

where 𝑖 ∈ {1, … , 𝑁𝑞}. I assume that the energy bands that cross the
Fermi level in 𝒞 𝐸

𝑖 are monotonously increasing or decreasing, which
means that they only cross the Fermi level once inside this region.
However, different bands may cross at different points and have differ-
ent slopes.

1. The prefactor 𝑖/2𝜋 is often replaced with 1/𝜋 in the literature. The reason for
the extra factor 1/2 in this work is that the Eilenberger contour is the sum of
two paths, so the integral goes over the real line twice.
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The quasiclassical equations of motion are obtained by integrating
equation (6.43) over 𝒞 𝐸

𝑖 . Since 𝒞 𝐸
𝑖 is the sum of two closed paths, one

can use the residue theorem to evaluate the integral. The path in the
upper half of the complex plane is positively oriented while the path
in the lower half plane is negatively oriented. Therefore, the integral
of a function 𝑓 (𝜂𝑖) becomes

𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝑓 (𝜂𝑖) = −∑
𝜂𝑟𝑖

Im(𝜂𝑟𝑖)Res(𝑓 , 𝜂
𝑟
𝑖), (6.45)

where the sum goes over all the poles of 𝑓 inside the contours and
Res(𝑓 , 𝜂𝑟𝑖) is the residue of 𝑓 at 𝜂

𝑟
𝑖 . The right-hand sides of equation (6.43)

have no poles and the first terms on the left-hand sides only depend
on momentum through ̌𝐺′. Therefore,

𝜀𝜏𝑧 ∘ ̌𝑔𝑖 −
𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 ̌𝛴′ • ̌𝐺′ = 0, (6.46a)

̌𝑔𝑖 ∘ 𝜀𝜏𝑧 −
𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 ̌𝐺′ • ̌𝛴′ = 0. (6.46b)

Let ̌𝛴′ = 𝐷 + 𝛺̌. To evaluate the second terms on the left-hand sides
of equations (6.46a) and (6.46b), I will use that if 𝑓 (𝜂𝑖) has no poles
inside the contours and are approximately the same on all the poles of
̌𝐺′, then

𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝑓 (𝜂𝑖) ̌𝐺′(𝒌𝑖𝑖10 + 𝑝𝒌̂) = −∑
𝜂𝑟𝑖

Im(𝜂𝑟𝑖)𝑓 (𝜂
𝑟
𝑖)Res( ̌𝐺′, 𝜂𝑟𝑖)

= 𝑓 (0) ̌𝑔𝑖 + 𝒪(𝑎∂𝜂𝑖𝑓 ̌𝑔𝑖), (6.47)

where 𝑎 is an order of estimate for the distances between the poles
of ̌𝐺′. If |𝑎∂𝜂𝑖𝑓𝑖𝑗| ≪ |𝑓𝑖𝑗(0)| for all matrix elements 𝑓𝑖𝑗 of 𝑓, then we can
ignore the second term compared to the first, such that

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝑓 (𝜂𝑖) ̌𝐺′(𝜉𝑗,𝑝𝒌̂) ≈ 𝑓 (0) ̌𝑔𝑖. (6.48)

This approximation is not valid when 𝑓 = 𝐷, since elements of 𝐷 go
through zero close to the poles. For this reason, we have no way to
evaluate

𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝐷 ̌𝐺′ and 𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 ̌𝐺′𝐷. (6.49)
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The trick to obtaining quasiclassical equations of motion is to re-
move this term by essentially subtracting equation (6.46b) from equa-
tion (6.46a). In a simple normal metal where 𝐷 is proportional to the
identity matrix, this is straightforward. In an antiferromagnet or other
systems with multiple energy bands, not all energy bands cross the
Fermi surface, as in paper IX, which makes it slightly more complicated.
In this even more general case presented here, where the energy bands
can also have different slopes as they cross the Fermi surface, and
where they can cross at different momenta, the procedure becomes
even more difficult.

From before, 𝛯𝑖, is the set of the bands which crosses the Fermi level
in the region specified by 𝒞 𝐸

𝑖 . I define the diagonal matrix 𝐷0 such
that 𝐷0,𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and

𝐷0,𝑛𝑛 = {
𝜉𝑛,𝒌𝑖𝑖10 +𝑝𝒌̂ if 𝜉𝑛 ∈ 𝛯𝑖,

𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ otherwise.
(6.50)

Since |𝑎∂𝜂𝑖(𝐷 − 𝐷0)𝑖𝑗| ≪ |(𝐷 − 𝐷0)𝑖𝑗(0)| whenever (𝐷 − 𝐷0)𝑖𝑗 is not
identically equal to zero,

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 (𝐷 − 𝐷0) ̌𝐺′ = (𝐷 − 𝐷0)(0) ̌𝑔𝑖(𝒌̂), (6.51)

and similarly for the integral of ̌𝐺′(𝐷 −𝐷0). The non-zero components
of 𝐷−𝐷0 correspond to the energy bands which do not cross the Fermi
level in the part of momentum space under consideration This means
that the elements are larger than 𝐸𝑐 in magnitude, and therefore much
larger than the elements of 𝛺̌ and 𝐷0, which are on the order 𝑎 ≪ 𝐸𝑐. It
follows from equation (6.51) and the similar equation from the integral
of ̌𝐺′(𝐷 − 𝐷0) that ( ̌𝑔𝑖)𝑛𝑚 = 𝒪(𝑎/𝐸𝑐) unless both 𝑛 and 𝑚 correspond
to one of the energy bands going through the Fermi level in 𝒞 𝐸

𝑖 .
Above I defined the Fermimomentum 𝑝𝑖𝑖1𝐹 (𝒌̂), such that 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝑖𝑖1𝐹 (𝒌̂)𝒌̂ =

0. I assume that at all the roots, the energy bands that cross the Fermi
level, 𝜉𝑛 ∈ 𝛯𝑖, are well approximated by

𝜉𝑛,𝒌𝑖𝑖10 +𝑝𝒌̂ ≈ 𝜉𝑛,𝑝𝑖𝑖1𝐹 (𝒌̂)𝒌̂ + (𝒌̂ ⋅ 𝒗 𝑖𝑛𝐹 ) [𝑝 − 𝑝𝑖𝑖1𝐹 (𝒌̂)] (6.52)

where 𝒌̂⋅𝒗 𝑖𝑛𝐹 = ∂𝜉𝑛,𝒌𝑖𝑖10 +𝑝𝒌̂/∂𝑝|𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂). This assumption is valid provided
that the gradient of 𝜉𝑛 is approximately constant on all the poles, which
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means that the relative change is small. When the functional form of
𝜉𝑛 is known, such as in paper IX, this assumption can be related to the
parameters of the system, such as the chemical potential. With this,

𝐷0 = 𝐷0|𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂)+ (𝒌̂ ⋅ ∇𝑘𝐷0)|𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂) [𝑝 − 𝑝𝑖𝑖1𝐹 (𝒌̂)] (6.53)

at all the poles.
We can remove the difficult terms in equation (6.46) if we multiply

equations (6.46a) and (6.46b) by (𝒌̂ ⋅ 𝒗 𝑖𝑖1𝐹 ) (𝒌̂ ⋅ ∇𝑘𝐷0)|
−1
𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂) from the

left and right, respectively, and take the difference. I define

𝐹𝑖(𝒌̂) = (𝒌̂ ⋅ 𝒗 𝑖𝑖1𝐹 ) (𝒌̂ ⋅ ∇𝑘𝐷0)|
−1
𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂) (6.54)

The terms in question then become

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 (𝐹𝑖𝐷 ̌𝐺′ − ̌𝐺′𝐷𝐹𝑖) = [𝐹𝑖 (𝐷 − 𝐷0)|𝑝𝑖𝑖1𝐹
+ 𝐹𝑖𝐷0|𝑝𝑖𝑖1𝐹

, ̌𝑔𝑖]−

= [𝐹𝑖𝐷|𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]−

. (6.55)

The diagonal matrix 𝐹𝑖 can be understood as a flatness factor since
the terms are determined by the slopes of the bands. Matrix elements
corresponding to bands that are flatter than 𝜉𝑖1 have magnitudes larger
than 1, while sharper bands have magnitudes less than 1. Note that
the matrix elements can also be negative, if the bands have slopes of
different signs, such as in weak antiferromagnets close to where the
two energy bands cross (see paper IX). The flatness is also related to
the density of states, so one could also think of 𝐹𝑖 as correcting for the
difference in the density of states for the different bands.

Since we have assumed that the gradient of 𝐷0 is approximately
constant at the poles, and since ∇𝑅𝐷 = 0, we can also evaluate the next
terms in the Gradient expansion.

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 (−𝑖𝐹𝑖∇𝑘𝐷 ⋅ ∇𝑅 ̌𝐺′ + 𝑖∇𝑘 ̌𝐺′ ⋅ ∇𝑅𝐷𝐹𝑖) = −𝑖𝐹𝑖∇𝑘𝐷 ⋅ ∇𝑅 ̌𝑔𝑖.

(6.56)

It is not necessary that the gradient of 𝐷 is approximately constant.
The terms in 𝐷 not corresponding to an energy band that crosses the
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Fermi level in 𝒞 𝐸
𝑖 are large. In particular, they are larger than 𝐸𝑐. As a

result, the relative variation in these terms can be assumed small, so the
gradient expansion can be truncated at the lowest order, in contrast to
the gradient expansion of 𝐷0. Additionally, the elements of the Green’s
function corresponding to these terms are negligible because of the
magnitude of 𝐷 for these elements, since ( ̌𝑔𝑖)𝑛𝑚 = 𝒪(𝑎/𝐸𝑐) unless both
𝑛 and 𝑚 correspond to one of the energy bands going through the
Fermi level in 𝒞 𝐸

𝑖 . Hence, one can replace ∇𝑘𝐷 with ∇𝑘𝐷0.
It also follows from the fact that ∇𝑘𝐷0 is approximately constant

at the poles, together with the fact that the Green’s function changes
slowly as a function of COM position, that we can neglect the higher
order terms in the gradient expansion. I define the characteristic length
𝐿 as the smallest scalar satisfying

|∇𝑅 ̌𝑔𝑖| <
| ̌𝑔𝑖|
𝐿
. (6.57)

The scalar 𝐿 should also satisfy |∇2𝑅 ̌𝑔𝑖| <
|∇𝑅 ̌𝑔𝑖|
𝐿 and similar for higher

order derivatives. The fact that the gradient of 𝐷0 is approximately
constant on the poles means that |∂2𝜉𝑖/∂𝑝2| ≪ |∂𝜉𝑖/∂𝑝|𝑝=𝑝𝑖𝑖1𝐹

|/|𝑝 − 𝑝𝑖𝑖1𝐹 |.
Assuming that the second order derivatives of 𝜉𝑖 in all directions are
similar in magnitude, the next order in the gradient expansion satisfies

|∇2𝑘𝐷∇
2
𝑅 ̌𝑔𝑖| ≪

∇𝑘𝐷 ⋅ ∇𝑅 ̌𝑔𝑖
|𝑝 − 𝑝𝐹 ,𝑗|𝐿

. (6.58)

Hence, the higher order terms are negligible as long as |𝑝 − 𝑝𝑖𝑖1𝐹 |𝐿 is
not negligible compared to 1. The distance between poles is on the
order 𝑎, as explained above. This means 𝑝 −𝑝𝑖𝑖1𝐹 = 𝒪(𝑎/𝑣 𝑖𝑖1𝐹 ), where 𝑣 𝑖𝑖1𝐹
is the amplitude of the Fermi velocity of the band used to define the
quasiclassical Green’s function. Hence, (𝑝 − 𝑝𝑖𝑖1𝐹 )𝐿 = 𝒪(𝑎𝐿/𝑣 𝑖𝑖1𝐹 ). The
inverse energy 1/𝑎 defines a time scale. For instance, if the dominant
energy in the system is the elastic scattering rate, then 1/𝑎 is maximally
on the order of the time between scatterings and 𝑣 𝑖𝑖1𝐹 /𝑎 is the mean free
path for particles at the Fermi level 𝑖 in energy band 𝑖1. The statement
that (𝑝 − 𝑝𝑖𝑖1𝐹 )𝐿 = 𝒪(𝐿/[𝑣 𝑖𝑖1𝐹 /𝑎]) is not too small in this case means that
𝐿 should not be negligible compared to the mean free path. Note that
𝐿 can be on the order of the mean free path with no issue. Under this
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assumption,

𝑖
2𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 (𝐹𝑖𝐷 • ̌𝐺′ − ̌𝐺′ • 𝐷𝐹𝑖) = [𝐹𝑖𝐷|𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]−

− 𝑖𝐹𝑖∇𝑘𝐷0 ⋅ ∇𝑅 ̌𝑔𝑖.

(6.59)

To complete the derivation of the quasiclassical equation of motion,
we only need to evaluate

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 (𝐹𝑖𝛺̌ • ̌𝐺′ − ̌𝐺′ • 𝛺̌𝐹𝑖) . (6.60)

I assume that 𝛺̌ is approximately constant on all the poles. This means
that |∂2𝛺̌/∂𝑝2| ≪ |∂𝛺̌/∂𝑝|𝑝=𝑝𝑖𝑖1𝐹

|/|𝑝 − 𝑝𝑖𝑖1𝐹 |. For the same reason as with
the gradient of 𝐷0 above, this means that higher order terms in the
gradient expansion of 𝛺̌ • ̌𝐺′ are negligible after integration, so

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝐹𝑖𝛺̌ • ̌𝐺′ ≈ 𝐹𝑖𝛺̌ ∘ ̌𝑔𝑖. (6.61)

When evaluating the higher order terms in the gradient expansion
of ̌𝐺′ • 𝛺̌𝐹𝑖, we can use the fact that ∂𝑝𝜉𝑖1 is approximately constant
combined with the fact that the contour integral of a total derivative
is always zero, which implies that

∮
𝒞 𝐸
𝑖

d𝜂𝑖 𝐴(𝒌̂ ⋅ ∇𝑘)𝐵 = ∮
𝒞 𝐸
𝑖

d𝜂𝑖 𝐴(𝒌̂ ⋅ ∇𝑘𝜂𝑗)
∂𝐵
∂𝜂𝑖

= ∮
𝒞 𝐸
𝑖

d𝜂𝑖
∂
∂𝜂𝑖

(𝐴𝒌̂ ⋅ ∇𝑘𝜂𝑖) 𝐵 ≈ ∮
𝒞 𝐸
𝑖

d𝜂𝑖 [(𝒌̂ ⋅ ∇𝑘)𝐴] 𝐵. (6.62)

With this trick, the momentum derivative of ̌𝐺′, which is strongly
peaked in momentum space, can be moved over to 𝛺̌. Since 𝛺̌ should
change as slowly in space as ̌𝑔𝑖, the same arguments as above imply
that we can neglect the higher order terms in the gradient expansion
of ̌𝐺′ • 𝛺̌𝐹𝑖 as well. Hence, the full equations for the quasiclassical
Green’s function become

𝑖𝐹𝑖(∇𝑘𝐷0)⋅∇𝑅 ̌𝑔𝑖+[𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]

∘

−
−𝐹𝑖𝛺̌ ∘ ̌𝑔𝑖+ ̌𝑔𝑖 ∘𝛺̌𝐹𝑖 = 0, (6.63)

which can be seen as a generalization of the Eilenberger equation [205].
Each collection of proximized Fermi surfaces gives a quasiclassical
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Green’s function, and the number of such Green’s functions is𝑁𝑞. Note
that the different Green’s functions can couple, but only through 𝛺̌.
For instance, the impurity term in 𝛺̌ or the superconducting term can
couple the different quasiclassical Green’s functions and quasiclassical
Green’s functions at different momentum directions. In particular,
impurity scattering will couple all momentum directions, typically
making the quasiclassical Green’s function more isotropic in space.

With the general framework presented here, there can be multiple
sets of Fermi surfaces at different points in momentum space, and
the same energy band can cross the Fermi level multiple times. This
means that the theory can be applied to for instance normal metal,
weak ferromagnets, strongly polarized ferromagnets [208], including
half-metals (paper I), antiferromagnetic metals (paper IX), systems
with antiferromagnetic insulators [210], Rashba superconductors [211]
and systems with spin-density waves [212]. Additionally, because I
have included the possibility of different flatness for different bands
as they cross the Fermi surfaces, the quasiclassical theory takes into
account the different density of states of different bands, making it
capable of modeling for instance flatband superconductors [213].

6.3 Normalization Condition

The different components of the quasiclassical Green’s functions are
not independent. This is partly because the definition of 𝐺̂𝑅/𝐴/𝐾

𝑘1𝑘2 in-
cludes two copies of the normal and anomalous Green’s functions, not
tomention the fact that 𝐺̂𝑅

𝑘1𝑘2 and 𝐺̂
𝐴
𝑘1𝑘2 are related through 𝐺̂𝐴

𝑘1𝑘2(𝑡1, 𝑡2) =
𝜏𝑧[𝐺̂𝑅

𝑘2𝑘1(𝑡2, 𝑡1)]
†𝜏𝑧. In addition to this, the components are related

through a normalization condition, which is what I will show in this
section. To do so, I will in part follow Shelankov’s method [206], but
I will generalize it to work with how I defined the more generalized
quasiclassical Green’s function in the previous section. Additionally,
I will change some key steps and make some important changes to
various definitions, for instance in order to make mathematical limits
well-defined. For example, unlike how I defined quasiclassical Green’s
functions above, Shelankov did not use the Eilenberger contour. Us-
ing the Eilenberger contour to define quasiclassical Green’s functions,
rather than the divergent definition in Ref. [206], and changing the
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definition of the trajectory Green’s functions, I find that the proof
simplifies.

Consider a collection of Fermi surfaces number 𝑖. Let 𝒗𝑛𝐹 = ∇𝑘𝜉𝑛,𝒑|𝒑=𝒌𝑖𝑖10 +𝑝𝑖𝑖1𝐹 𝒌̂
when 𝜉𝑛 ∈ 𝛯𝑖 and 𝒗𝑛𝐹 = ∇𝑘𝜉𝑖1,𝒑|𝒑=𝒌𝑖𝑖10 +𝑝𝑖𝑖1𝐹 𝒌̂ otherwise, where 𝜉𝑖1 is the
energy band used to define the quasiclassical Green’s function ̌𝑔𝑖. Next,
let the trajectory Green’s function be

̌𝑔 𝑡𝑖,𝑚𝑛(𝑦1, 𝑦2, 𝑹, 𝒌̂) =
𝑖
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 )

× ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂) (6.64)

where 𝒞𝑖(𝑦1 − 𝑦2) is one of the two semi-circles in the definition of the
quasiclassical Green’s function. In particular, 𝒞𝑖(𝑦1 − 𝑦2) is the path
which goes first from 𝜂𝑖 = 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ = −𝐸𝑐 to 𝜂𝑖 = 𝐸𝑐 along the real

line. Then, if (𝑦1 − 𝑦2)/(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) > 0, the path goes up into the upper
part of the complex plane and follows a semicircular path, closing the
contour at 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ = −𝐸𝑐. Otherwise, if (𝑦1 − 𝑦2)/(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) < 0, the
path goes down into the lower part of the complex plane and follows
a semicircular path, closing the contour at 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ = −𝐸𝑐. Because
we are again working with closed contours, we can use the residue
theorem to evaluate the trajectory Green’s function.

By definition of 𝒞𝑖(𝑦1 − 𝑦2), the contours only contain poles with
Re[𝑖𝜉𝑖1(𝑦1 − 𝑦2)/(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )] < 0. As a result,

lim
𝑦2→±∞

̌𝑔 𝑡𝑖,𝑚𝑛(𝑦1, 𝑦2, 𝑹, 𝒌̂) = 0. (6.65)

Moreover, by comparing the trajectory Green’s function to the quasi-
classical Green’s function, it is clear that

lim
𝑦→0+

[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂) + ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)]

= 𝑖
2𝜋

(∫
𝒞𝑖(𝑦)

d𝜂𝑖 +∫
𝒞𝑖(−𝑦)

d𝜂𝑖) ̌𝐺′ (𝑹, 𝒌𝑖𝑖10 + 𝑝𝒌̂)

= 𝑖
2𝜋 ∫

𝒞 𝐸
𝑖

d𝜂𝑖 ̌𝐺′ (𝑹, 𝒌𝑖𝑖10 + 𝑝𝒌̂) = ̌𝑔𝑖(𝑹, 𝒌̂), (6.66)

where 𝒞 𝐸
𝑖 is the Eilenberger contour from before.
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Next, consider the difference, lim𝑦→0+[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂) − ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)]
The part of the contours following the real line cancel because they are
the same for 𝒞𝑖(𝑦) and 𝒞𝑖(−𝑦). The remaining parts of the contours
combine into one large circular path with a diameter equal to 2𝐸𝑐. That
is,

lim
𝑦→0+

[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂)− ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)] =
𝑖
2𝜋 ∫

𝒞 𝑐
𝑖

d𝜂𝑖 ̌𝐺′ (𝑹, 𝒌𝑖𝑖10 + 𝑝𝒌̂) ,

(6.67)

where 𝒞 𝑐
𝑖 starts from −𝐸𝑐 and then goes for a full circular path in an

either clockwise or counterclockwise direction, depending on the sign
of 𝒌̂ ⋅ 𝒗 𝑖1𝐹 . If 𝒌̂ ⋅ 𝒗 𝑖1𝐹 > 0 the path is counterclockwise, meaning that it
has a positive orientation. On the other hand, if 𝒌̂ ⋅ 𝒗 𝑖1𝐹 < 0, the path is
clockwise and therefore has a negative orientation. Since the entirety
of the path is a distance 𝐸𝑐 from the poles, we can set ̌𝐺′ = −𝐷−1 in the
integrand. This makes it easy to evaluate the integral, since 1/𝜉𝑛,𝒌𝑖𝑖10 +𝑝𝒌̂
has exactly zero or one simple pole inside the contour. The energy
bands which cross the Fermi level are the only ones with a pole inside
the contour, so lim𝑦→0+[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂) − ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)]𝑚𝑛 = 0 if 𝜉𝑚 ∉ 𝛯𝑖
or if 𝑚 ≠ 𝑛. One can freely deform the contour as long as one does
cross any poles. Hence, I can deform the contour close to the poles
and use equation (6.53) to evaluate the integral for 𝜉𝑚 ∈ 𝛯𝑖. With this,

lim
𝑦→0+

[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂) − ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)]𝑚𝑛 = − 𝑖
2𝜋 ∫

𝒞 𝑐
𝑖

d𝜂𝑖 [𝐷−1]𝑚𝑛

= 𝛿𝑚𝑛 {
sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )𝐹𝑖,𝑚𝑚(𝒌̂) if 𝜉𝑚,𝑝𝒌̂ ∈ 𝛯𝑖,

0 if 𝜉𝑚,𝑝𝒌̂ ∉ 𝛯𝑖,
(6.68)

where 𝐹𝑖 is given by equation (6.54) and sign(𝑥) = 𝜃(𝑥) − 𝜃(−𝑥) is the
sign function. To write this more compactly, I define the diagonal
matrix 𝐾𝑖 as

𝐾𝑖,𝑚𝑛 = 𝛿𝑚𝑛 {
1 if 𝜉𝑚 ∈ 𝛯𝑖,
0 if 𝜉𝑚 ∉ 𝛯𝑖,

(6.69)

such that

lim
𝑦→0+

[ ̌𝑔 𝑡𝑖(0, −𝑦, 𝑹, 𝒌̂) − ̌𝑔 𝑡𝑖(0, 𝑦 , 𝑹, 𝒌̂)] = sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )𝐾𝑖𝐹𝑖(𝒌̂). (6.70)
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One can also generalize this to

lim
𝑦→0+

[ ̌𝑔 𝑡𝑖(𝑥, 𝑥 − 𝑦, 𝑹, 𝒌̂) − ̌𝑔 𝑡𝑖(𝑥, 𝑥 + 𝑦, 𝑹, 𝒌̂)] = sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )𝐾𝑖𝐹𝑖(𝒌̂),

(6.71)

which follows from the definition of the trajectory Green’s function
and the fact that 𝐷 is independent of the COM position.

Next, we need differential equations for the trajectory Green’s func-
tion. Differentiating the trajectory Green’s function with respect to 𝑦1
and assuming 𝑦1 ≠ 𝑦2, I get

𝑖(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂ ̌𝑔 𝑡𝑖,𝑚𝑛
∂𝑦1

= 𝑖
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 )

× [−𝜂𝑖 ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝐹 ,𝑚
𝒌̂ ⋅ 𝒗𝐹 ,𝑚

, 𝒌𝑖𝑖10 + 𝑝𝒌̂)

+
𝒌̂ ⋅ 𝒗 𝑖1𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

𝑖(𝒗𝑚𝐹 ⋅ ∇𝑅) ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂)]. (6.72)

Next, note that 𝒌̂ ⋅ 𝒗 𝑖1𝐹 /𝒌̂ ⋅ 𝒗𝑚𝐹 = 𝐹𝑖,𝑚𝑚(𝒌̂) and

𝜂𝑖 = 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ = 𝐹𝑖𝐷0 − 𝐹𝐷0|𝑝=𝑝𝑖𝑖1𝐹
, (6.73)

at all the relevant poles by assumption. Hence,

𝑖 (𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂ ̌𝑔 𝑡𝑖,𝑚𝑛
∂𝑦1

= 𝑖(𝐹𝑖∇𝑘𝐷0)𝑚𝑚 ⋅ ∇𝑅 ̌𝑔 𝑡𝑖,𝑚𝑛

+ (𝐹𝑖𝐷0|𝑝=𝑝𝑖𝑖1𝐹
)𝑚𝑚 ̌𝑔 𝑡𝑖,𝑚𝑛 −

𝑖𝐹𝑖,𝑚𝑚
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 )

× 𝐷0,𝑚𝑚 ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂) (6.74)

Combining this with equation (6.43a), which can be written

𝐹𝑖𝜀𝜏𝑧 ∘ ̌𝐺′ − 𝐹𝑖𝐷0 • ̌𝐺′ − 𝐹(𝐷 − 𝐷0) • ̌𝐺′ − 𝐹𝑖𝛺̌ • ̌𝐺′ = 1, (6.75)

gives a differential equation for the trajectory Green’s function. Be-
cause of the contour integral, one can also truncate the gradient ex-
pansion by the same reasoning as presented in the above section. That
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is, after integrating over the contour I can truncate the contribution
from 𝐷0 • ̌𝐺′ at first order and I can truncate the contributions from
𝛺̌ • ̌𝐺′ and (𝐷 − 𝐷0) • ̌𝐺′ at zeroth order. That is,

(𝐹𝑖𝜀𝜏𝑧)𝑚𝑚 ∘ ̌𝑔 𝑡𝑖,𝑚𝑛 + 𝑖(𝐹𝑖∇𝑘𝐷0)𝑚𝑚 ⋅ ∇𝑅 ̌𝑔 𝑡𝑖,𝑚𝑛

−
𝑖𝐹𝑖,𝑚𝑚
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 )𝐷0,𝑚𝑚 ̌𝐺′

𝑚𝑛 (𝑹 +
𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂)

= [𝐹𝑖(𝐷 − 𝐷0)]𝑚𝑚 ̌𝑔 𝑡𝑖,𝑚𝑛 +∑
𝑙
(𝐹𝑖𝛺̌)𝑚𝑙 ∘ ̌𝑔 𝑡𝑖,𝑙𝑛. (6.76)

Combining this with equation (6.74), I get

𝑖 (𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂ ̌𝑔 𝑡𝑖
∂𝑦1

= −𝐹𝑖𝜀𝜏𝑧 ∘ ̌𝑔 𝑡𝑖 +𝐹𝑖𝐷|𝑝=𝑝𝑖𝑖1𝐹
̌𝑔 𝑡𝑖 +𝐹𝛺̌ ∘ ̌𝑔 𝑡𝑖 . = 𝐹𝑖𝐻̌ ∘ ̌𝑔 𝑡𝑖 , (6.77)

where

𝐻̌ = −𝜀𝜏𝑧 + 𝐷|𝑝=𝑝𝑖𝑖1𝐹
+ 𝛺̌. (6.78)

Similarly, differentiating the trajectory Green’s function with respect
to 𝑦2 and assuming 𝑦1 ≠ 𝑦2 such that the contours do not change, I get

𝑖 (𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂ ̌𝑔 𝑡𝑖,𝑚𝑛
∂𝑦2

= 𝑖
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 )

× ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂) 𝜂𝑖

= − ̌𝑔 𝑡𝑖,𝑚𝑛(𝐹𝑖𝐷0|𝑝=𝑝𝑖𝑖1𝐹
)𝑛𝑛 +

𝑖
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜉𝑗,𝑝𝒌̂ e𝑖𝜉𝑗,𝑝𝒌̂(𝑦1−𝑦2)/(𝒌̂⋅𝒗𝐹 ,𝑗)

× ̌𝐺′
𝑚𝑛 (𝑹 +

𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂)𝐷0,𝑛𝑛𝐹𝑖,𝑛𝑛, (6.79)

which can be combined with

− 𝑖
2𝜋 ∫

𝒞𝑖(𝑦1−𝑦2)
d𝜂𝑖 e𝑖𝜂𝑖(𝑦1−𝑦2)/(𝒌̂⋅𝒗

𝑖1
𝐹 ) ̌𝐺′

𝑚𝑛 (𝑹 +
𝑦1𝒗𝑚𝐹
𝒌̂ ⋅ 𝒗𝑚𝐹

, 𝒌𝑖𝑖10 + 𝑝𝒌̂)𝐷0,𝑛𝑛𝐹𝑖,𝑛𝑛

= − ̌𝑔 𝑡𝑖,𝑚𝑛 ∘ (𝜀𝜏𝑧𝐹𝑖)𝑛𝑛 + ̌𝑔 𝑡𝑖,𝑚𝑛[𝐹𝑖(𝐷 − 𝐷0)]𝑛𝑛 +∑
𝑙

̌𝑔 𝑡𝑖,𝑚𝑛 ∘ (𝛺̌𝐹𝑖)𝑙𝑛.

(6.80)

164



to obtain

𝑖 (𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂ ̌𝑔 𝑡𝑖
∂𝑦2

= − ̌𝑔 𝑡𝑖 ∘ 𝐻̌ 𝐹𝑖. (6.81)

Next, consider the quantity

𝐴(𝑦1, 𝑦2, 𝑦3) = [ ̌𝑔 𝑡𝑖(𝑦1, 𝑦2)𝐹−1𝑖 ]∘ ̌𝑔 𝑡𝑖(𝑦2, 𝑦3) = ̌𝑔 𝑡𝑖(𝑦1, 𝑦2)∘[𝐹−1𝑖 ̌𝑔 𝑡𝑖(𝑦2, 𝑦3)] .
(6.82)

Differentiating with respect to 𝑦2, assuming 𝑦1 ≠ 𝑦2 and 𝑦2 ≠ 𝑦3 and
using equations (6.77) and (6.81), I get

𝑖 (𝒌̂ ⋅ 𝒗 𝑖1𝐹 )
∂𝐴
∂𝑦2

= − ̌𝑔 𝑡𝑖(𝑦1, 𝑦2) ∘ 𝐻 ∘ ̌𝑔 𝑡𝑖(𝑦2, 𝑦3)

+ ̌𝑔 𝑡𝑖(𝑦1, 𝑦2) ∘ 𝐻 ∘ ̌𝑔 𝑡𝑖(𝑦2, 𝑦3) = 0. (6.83)

For any combination of 𝑦1 and 𝑦3 there are up to three regions of
different 𝑦2 values, and 𝐴must be constant within each region because
of equation (6.83). One can determine the value of 𝐴 in all possible
regions with equations (6.65) and (6.71), and then use this to determine
the normalization condition.

Consider first 𝑦1 > 𝑦3. If 𝑦1 > 𝑦3 > 𝑦2, one can take the limit
𝑦2 → −∞ and use equation (6.65), which implies that 𝐴 = 0 in this
region. To find 𝐴 when 𝑦1 > 𝑦2 > 𝑦3, let 𝑦3 = 𝑦2 − 𝛿, such that

𝐴(𝑦1, 𝑦2, 𝑦2 − 𝛿) = [ ̌𝑔 𝑡𝑖(𝑦1, 𝑦2)𝐹−1𝑖 ] ∘ ̌𝑔 𝑡𝑖(𝑦2, 𝑦2 − 𝛿). (6.84)

Equation (6.71) then implies that

lim
𝛿→0+

𝐴(𝑦1, 𝑦2, 𝑦2 − 𝛿) = ̌𝑔 𝑡𝑖(𝑦1, 𝑦2)𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ), (6.85)

so

𝐴(𝑦1, 𝑦2, 𝑦3) = ̌𝑔 𝑡𝑖(𝑦1, 𝑦3)𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ), (6.86)

when 𝑦1 > 𝑦2 > 𝑦3. Finally, to find 𝐴 when 𝑦2 > 𝑦1 > 𝑦3, let 𝑦2 + 𝑦1 + 𝛿.
Again, using equation (6.71),

lim
𝛿→0+

𝐴(𝑦1, 𝑦1 + 𝛿, 𝑦3) = ̌𝑔 𝑡𝑖(𝑦1, 𝑦3)𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )

− 𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) ̌𝑔 𝑡𝑖(𝑦1, 𝑦3) = 0, (6.87)
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because [ ̌𝑔 𝑡𝑖 , 𝐾]− = 0 within quasiclassical theory. This is because the
only non-zero elements of [ ̌𝑔 𝑡𝑖 , 𝐾𝑖]− are the elements that correspond to
the energy bands that do not cross the Fermi level. These are 𝒪(𝑎/𝐸𝑐),
as previously discussed, and therefore negligible.

Next, consider 𝑦3 > 𝑦1. First, if 𝑦3 > 𝑦1 > 𝑦2, then 𝐴 = 0 again since
one can let 𝑦2 → −∞ and use equation (6.65). If 𝑦3 > 𝑦2 > 𝑦1, one can
let 𝑦2 = 𝑦1 + 𝛿. Equation (6.71) then implies that

lim
𝛿→0+

𝐴(𝑦1, 𝑦1 + 𝛿, 𝑦3) = −𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) ̌𝑔 𝑡𝑖(𝑦1, 𝑦3), (6.88)

and if 𝑦2 > 𝑦3 > 𝑦1, setting 𝑦3 = 𝑦2 − 𝛿, using equation (6.71) and again
letting 𝛿 → 0+ again reveals that 𝐴 = 0. Combining these results,

𝐴(𝑦1, 𝑦2, 𝑦3) =
⎧

⎨
⎩

𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) ̌𝑔 𝑡𝑖(𝑦1, 𝑦3) if 𝑦1 > 𝑦2 > 𝑦3,
−𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) ̌𝑔 𝑡𝑖(𝑦1, 𝑦3) if 𝑦3 > 𝑦2 > 𝑦1,
0 otherwise.

(6.89)

We are now ready to derive the normalization condition. Let

̌𝑔±𝑖 (𝑹, 𝒌̂) = lim
𝑦→0+

̌𝑔 𝑡𝑖(0, ±𝑦, 𝑹, 𝒌̂). (6.90)

We already know from equation (6.66) that the quasiclassical Green’s
function is

̌𝑔𝑖 = ̌𝑔+𝑖 + ̌𝑔−𝑖 , (6.91)

and from equation (6.70), we know that

̌𝑔−𝑖 − ̌𝑔+𝑖 = 𝐾𝑖𝐹𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ). (6.92)

Setting 𝑦1 = 0, using that lim𝑦→0+ ̌𝑔 𝑡𝑖(0, ±𝑦) = lim𝑦→0+ ̌𝑔 𝑡𝑖(∓𝑦, 0), and
taking the limits 𝑦2 → 0 and 𝑦3 → 0 in the different regions, equa-
tion (6.89) gives

̌𝑔±𝑖 ∘ [𝐹−1𝑖 ̌𝑔±𝑖 ] = ∓𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ) ̌𝑔±𝑖 , (6.93a)

̌𝑔±𝑖 ∘ [𝐹−1𝑖 ̌𝑔∓𝑖 ] = 0. (6.93b)
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Hence,

̌𝑔𝑖∘[𝐹−1𝑖 ̌𝑔𝑖] = ̌𝑔+𝑖 ∘[𝐹−1𝑖 ̌𝑔+𝑖 ]+ ̌𝑔+𝑖 ∘[𝐹−1𝑖 ̌𝑔−𝑖 ]+ ̌𝑔−𝑖 ∘[𝐹−1𝑖 ̌𝑔+𝑖 ]+ ̌𝑔−𝑖 ∘[𝐹−1𝑖 ̌𝑔−𝑖 ]

= 𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )( ̌𝑔−𝑖 − ̌𝑔+𝑖 ) = 𝐾𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 )𝐾𝑖𝐹𝑖 sign(𝒌̂ ⋅ 𝒗 𝑖1𝐹 ).
(6.94)

Thus, the generalized normalization condition for the quasiclassical
Green’s function is

̌𝑔𝑖 ∘ [𝐹−1𝑖 ̌𝑔𝑖] = [ ̌𝑔𝑖𝐹−1𝑖 ] ∘ ̌𝑔𝑖 = 𝐾𝑖𝐹𝑖. (6.95)

For a normal metal with only two spin-degenerate bands, this reduces
to thewell-known ̌𝑔∘ ̌𝑔 = 1. If it is more preferable with a normalization
equal to unity, for instance because it could be advantageous in terms
of parametrization, it is possible to scale the Green’s function. Defining
̌𝑔𝐹𝑖 = 𝐹−1/2𝑖 ̌𝑔𝑖𝐹

−1/2
𝑖 and removing all the zero elements, the generalized

normalization condition becomes ̌𝑔𝐹𝑖 ∘ ̌𝑔𝐹𝑖 = 1.

6.4 The Dirty Limit

When the impurity self-energy is dominant over other self-energy
terms, except for 𝐻0, it can be possible to simplify the equations for
the quasiclassical Green’s function. This is known as the dirty limit,
which has been assumed in much of my work. Since real materials
often can have relatively short mean free paths, the diffusive equations
can give excellent agreement with observations, as in paper VIII. To
derive these equations, we must first look at the impurity self-energy.

In section 5.1.1, I showed that the impurity self-energy is

̌𝛴imp,𝑖𝑗(𝑡1, 𝑡2) = 𝛿𝑖𝑗𝑛𝑖 ⟨𝑈⟩imp 𝛿(𝑡 − 𝑡′)

+ 𝛿𝑖𝑗
𝑛𝑖

𝑁imp

𝑁imp

∑
𝑛=1

⟨𝑈𝑛 ̌𝐺𝑖𝑖(𝑡1, 𝑡2)𝑈𝑛⟩imp , (6.96)

where the matrix 𝑈𝑛 is the impurity potential associated with the 𝑛’th
impurity, which has the same matrix structure as𝐻0,0 in equation (6.11),
𝑁imp is the number of impurities, 𝑛𝑖 is the impurity density, ⟨⋅⟩imp de-
notes impurity-averaging, which is defined in section 5.1.1, ̌𝐺𝑖𝑖 is the
impurity-averaged Green’s function, and ⟨𝑈⟩imp = ∑

𝑁imp
𝑘=1 ⟨𝑈𝑘⟩imp/𝑁imp
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is the average impurity-averaged impurity potential. Note that differ-
ent impurities can have different potentials, even if all impurities are
nonmagnetic. For instance, if one unit cell includes more than one
atom, 𝑈𝑛 can depend on which atom has the impurity. This is the case
in antiferromagnets, for instance.

To relate this to the quasiclassical theory, we must write the self-
energy in the basis of the energy bands and transform it to Wigner co-
ordinates. Because of how I defined the Green’s functions in section 6.1,
the relationship between the self-energies and Green’s functions in
real space and those in momentum space is

̌𝛴𝑘1𝑘2 =
1
𝑁
∑
𝑖𝑗

e−𝑖𝒌1𝑹𝑖 ̌𝛴𝑖𝑗e𝑖𝒌2𝑹𝑗 , (6.97a)

̌𝐺𝑘1𝑘2 =
1
𝑁
∑
𝑖𝑗

e−𝑖𝒌1𝑹𝑖 ̌𝐺𝑖𝑗e𝑖𝒌2𝑹𝑗 . (6.97b)

Equation (6.97a) means that, if ̌𝛴𝑖𝑗 is proportional to 𝛿𝑖𝑗, then ̌𝛴(𝑘+𝑝)𝑘 =
∑𝑖 ̌𝛴𝑖𝑖 exp(−𝑖𝒑 ⋅ 𝑹𝑖)/𝑁, so

̌𝛴𝑅𝑖𝑘 = ∑
𝑝

̌𝛴(𝑘+𝑝)𝑘e𝑖𝒑⋅𝑹 = ̌𝛴𝑖𝑖. (6.98)

The first-order term in the impurity self-energy is simple. It is
invariant under spatial and temporal translation, so it can be included
in 𝐻0. If not, one can use that in Wigner coordinates the term becomes

̌𝛴imp1,𝑅𝑘(𝑇 , 𝜀) = 𝑛𝑖 ⟨𝑈⟩imp (6.99)

which is a constant matrix. Writing in the basis of the energy bands
defined by 𝐻0 amounts to taking the bullet product with 𝑆𝑘 from the
left and 𝑆†𝑘 from the right, which in this case is simply

̌𝛴′
imp1,𝑅𝑘(𝑇 , 𝜀) = 𝑛𝑖𝑆𝑘 ⟨𝑈⟩imp 𝑆

†
𝑘 . (6.100)

The second-order term involves more work, as one must first rewrite
̌𝐺𝑖𝑖 in terms of the quasiclassical Green’s function. This is because we

ultimately want equations that only involve the quasiclassical Green’s
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function. By Fourier transforming, I find that

̌𝐺𝑖𝑖 =
1
𝑁
∑
𝑘1𝑘2

̌𝐺𝑘1𝑘2e
𝑖𝑹𝑖⋅(𝒌1−𝒌2) = 1

𝑁 2 ∑
𝑅

∑
𝑘1𝑘2

̌𝐺𝑅𝑘2e
𝑖𝑹𝑖⋅(𝒌1−𝒌2)e−𝑖𝑹⋅(𝒌1−𝒌2)

= 1
𝑁
∑
𝑘2

̌𝐺𝑅𝑖𝑘2 (6.101)

I define 𝑆(𝒌) as a continuous function with 𝑆(𝒌) ≈ 𝑆𝑘 similar to how
I defined the continuous Green’s functions and self-energies above.
Then, ̌𝐺(𝑹, 𝒌) and ̌𝐺′(𝑹, 𝒌) is related through

̌𝐺′ = 𝑆 • ̌𝐺 • 𝑆†, (6.102)

and 𝑆† • 𝑆 = 𝑆†𝑆 = 1, where the bullet product is defined through
equation (6.41). Since 𝑆 only depends on momentum and not position,
̌𝐺 • 𝑆† = ̌𝐺𝑆†. Moreover, assuming that 𝑆 changes slowly with 𝒌

compared to the characteristic length scale, 𝐿, meaning that |∇𝑘𝑆|𝐿 ≪
|𝑆|, one can neglect the higher order terms in the gradient expansion
of 𝑆 • ̌𝐺, since the gradient expansion only in this case only involves
differentiation of ̌𝐺 with respect to position. This means that

̌𝐺′(𝑹, 𝒌) = 𝑆(𝒌) ̌𝐺𝑅𝑘(𝑹, 𝒌)𝑆†(𝒌). (6.103)

Similarly,

̌𝛴′
imp(𝑹, 𝒌) = 𝑆(𝒌) ̌𝛴imp(𝑹, 𝒌)𝑆†(𝒌). (6.104)

Therefore, the second-order self-energy term is

̌𝛴′
imp2(𝑹, 𝒌) =

𝑛𝑖
𝑁imp

𝑁imp

∑
𝑛=1

1
𝑁
∑
𝑝
⟨𝑆(𝒌)𝑈𝑛𝑆†(𝒑)

× ̌𝐺′(𝑹, 𝒑)𝑆(𝒑)𝑈𝑛𝑆†(𝒌)⟩
imp

, (6.105)

The momentum sum can be approximated as an integral, since the
variation is small between nearest neighbor momenta by assumption.
Using that 1/𝑁 = 𝑉𝑒 d

3𝑝 /(2𝜋)3, where 𝑉𝑒 is the volume of a single
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unit cell,

̌𝛴′
imp2(𝑹, 𝒌) =

𝑉𝑒𝑛𝑖
𝑁imp

𝑁imp

∑
𝑛=1

∫
d3𝑝
(2𝜋)3

⟨𝑆(𝒌)𝑈𝑛𝑆†(𝒑)

× ̌𝐺′(𝑹, 𝒑)𝑆(𝒑)𝑈𝑛𝑆†(𝒌)⟩
imp

, (6.106)

Next, the integral over all momenta can be separated into integrals
over momenta close to the 𝑁𝑞 collections of Fermi surfaces and a re-
mainder. The radial part can then be split into the Eilenberger contours
and a remainder. The momentum integrals over the Eilenberger can be
rewritten as integrals over the energies 𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂ by the introduction
of

𝑁𝑖(𝒌̂, 𝑝) =
𝑝2

2𝜋2(∂𝜂𝑖/∂𝑝)
=

𝑝2

2𝜋2(∂𝜉𝑖1,𝒌𝑖𝑖10 +𝑝𝒌̂/∂𝑝)
. (6.107)

That is, ̌𝐺𝑖𝑖 can be written

̌𝐺𝑖𝑖 = ∫
d3𝑝
(2𝜋)3

𝑆†(𝒑) ̌𝐺′(𝑹𝑖, 𝒑)𝑆(𝒑)

= ∫
𝒞0

d3𝑝
(2𝜋)3

𝑆†(𝒑) ̌𝐺′(𝑹𝑖, 𝒑)𝑆(𝒑)

−𝑖𝜋 ∫
d𝛺𝑘
4𝜋

∑
𝑖

𝑖
𝜋 ∮

𝒞 𝐸
𝑖

d𝜂𝑖 𝑁𝑖(𝒌̂, 𝑝)𝑆†(𝒌
𝑖𝑖1
0 +𝑝𝒌̂) ̌𝐺′(𝑹𝑖, 𝒌

𝑖𝑖1
0 +𝑝𝒌̂)𝑆(𝒌𝑖𝑖10 +𝑝𝒌̂),

(6.108)

where d𝛺𝑘 is the differential solid angle in momentum space and𝒞0 the
domain left after removing all of the Eilenberger contours. The quantity
𝑁𝑖(𝒌̂, 𝑝) is similar to the normal state density of states, except that it
only includes the states close to the 𝑖’th collection of Fermi surfaces. I
have already assumed that 𝑁𝑖 and 𝑆 are approximately constant at all
the poles of the Green’s function for any given Eilenberger contour, so

̌𝐺𝑖𝑖 = ∫
𝒞0

d3𝑝
(2𝜋)3

𝑆†(𝒑) ̌𝐺′(𝑹𝑖, 𝒑)𝑆(𝒑)

− 𝑖𝜋 ∑
𝑖
∫

d𝛺𝑘
4𝜋

𝑁𝑖(𝒌̂, 𝑝
𝑖𝑖1
𝐹 )𝑆†(𝒌𝑖𝑖10 + 𝑝𝑖𝑖1𝐹 𝒌̂) ̌𝑔𝑖(𝑹𝑖, 𝒌̂)𝑆(𝒌

𝑖𝑖1
0 + 𝑝𝑖𝑖1𝐹 𝒌̂).

(6.109)
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The first term on the right-hand side of equation (6.109) is not neces-
sarily negligible compared to the contributions from the quasiclassical
Green’s functions. This is because ̌𝐺′ ≈ −𝐷−1 for 𝒑 ∈ 𝒞0. However,
similar to the first order term 𝛴imp1, the first term on the right-hand
side of equation (6.109) is a constant matrix that only depends on 𝐻0
and the impurity potentials. In principle, it can therefore be absorbed
into 𝐻0, effectively renormalizing 𝐻0. Alternatively, it can in princi-
ple introduce important effects depending on the matrix structure of
𝑆 and 𝑈𝑛, especially in the dirty limit where the impurity scattering
time is assumed small. However, here, I assume that both this and the
first-order term can be safely ignored, for example by absorbing them
into 𝐻0, such that the impurity self-energy becomes

̌𝛴′
imp(𝑹, 𝒌) = −∑

𝑖
∫

d𝛺𝑘
4𝜋

𝑖𝜋𝑉𝑒𝑛𝑖𝑁𝑖(𝒌̂, 𝑝
𝑖𝑖1
𝐹 )

𝑁imp

×
𝑁imp

∑
𝑛=1

⟨𝑆(𝒌)𝑈𝑛𝑆†(𝒌
𝑖𝑖1
0 + 𝑝𝑖𝑖1𝐹 𝒌̂) ̌𝑔𝑖(𝑹𝑖, 𝒌̂)𝑆(𝒌

𝑖𝑖1
0 + 𝑝𝑖𝑖1𝐹 𝒌̂)𝑈𝑛𝑆†(𝒌)⟩

imp
.

(6.110)

I assume that the impurities included in ̌𝛴′
imp are nonmagnetic, and

any magnetic impurities are included in a separate self-energy term.
This does not mean that 𝑈𝑛 is proportional to the identity matrix,
however. If the unit cell at each lattice contains multiple atoms, 𝑈𝑛 will
not be proportional to the identity matrix. In addition to the matrix
structure of 𝑈𝑛, ̌𝛴′

imp will also depend on the momentum dependence
of 𝑆. In a simple normal metal with only two degenerate energy bands
crossing the Fermi level, a constant density of states, 𝑁0 at the Fermi
level, 𝑆 = 1, and only one atom per lattice site, such that non-magnetic
impurities all have 𝑈𝑛 proportional to the identity matrix, the impurity
self-energy becomes

̌𝛴′
imp(𝑹, 𝒌) = − 𝑖

2𝜏imp
∫

d𝛺𝑘
4𝜋

̌𝑔(𝑹, ̂𝒑) = − 𝑖
2𝜏imp

⟨ ̌𝑔⟩𝑘(𝑹), (6.111)

where

𝜏imp = (2𝜋𝑉𝑒𝑛𝑖𝑁0 ⟨𝑈 2
𝑛 ⟩imp)

−1
(6.112)
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is the impurity scattering time, and where I defined the angular average
in momentum space as ⟨⋅⟩𝑘. In an antiferromagnet, I have previously
derived both 𝑆 and 𝑈𝑛 in sections 4.3.1 and 5.1.1, respectively. If one
considers an antiferromagnetic metal, where only one of the two spin-
degenerate bands crosses the Fermi level, I find that

̌𝛴′
imp = − 𝑖

2𝜏imp
(⟨ ̌𝑔⟩𝑝 +

ℎ2

𝜂2𝑘𝐹
𝜏𝑧𝜎𝑧⟨ ̌𝑔⟩𝑘𝜏𝑧𝜎𝑧) , (6.113)

where 𝜏imp = (𝜋𝑉𝑒𝑛𝑖𝑁0 ⟨𝑉 2
𝑛 ⟩imp)

−1
and 𝑉𝑛 is the strength of the impu-

rities. A detailed derivation of this result is presented in paper IX.

|ψ↓(r)|

A B A B

Figure 6.3: Exaggerated sketch of the spatial distribution of the
conduction electron state with spin down. The overlap is larger
with the B-sublattice than with the A-sublattice. As a result, the
conduction band electrons with spin-down will be affected more
strongly by non-magnetic impurities on the B-sublattice than by
non-magnetic impurities on the A-sublattice.

To understand the physical origin of the fact that the non-magnetic
impurity self-energy becomes spin-dependent in antiferromagnets,
consider figure 6.3, which is taken from paper X. Figure 6.3 shows an
exaggerated sketch of the spatial distribution of an electron state in
the spin-down conduction band of an antiferromagnet. The amplitude
of conduction band electrons is larger on one sublattice compared to
the other, depending on the spin. For example, figure 6.3 in the wave
function corresponds to a particle with spin down and the amplitude
is larger on the B lattice compared to the A lattice. On the other hand,
the wave function corresponding to a particle with spin up will have a
larger amplitude on the A lattice compared to the B lattice. As a result,
if a non-magnetic impurity is located on the B lattice, it will affect
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spin-down particles more strongly than spin-up particles. In other
words, the effect on conduction band electrons from non-magnetic
impurities on sublattice A (B) act like superpositions of non-magnetic
impurities and impurities with magnetization in the +𝑧(−𝑧)-direction.

Another situation can be found in materials with strong spin-orbit
coupling, such as Rashba superconductors [211], where 𝑆(𝒑) will de-
pend on the direction of 𝒑, and as a result, the impurity self-energy
will depend on the 𝑝-wave part of the quasiclassical Green’s function,
⟨𝒌̂ ̌𝑔⟩𝑘. In general, the impurity self-energy can be written

̌𝛴′
imp = −

𝑁𝑞

∑
𝑗=1

𝑖
2𝜏imp,𝑗

(⟨ ̌𝑔𝑗⟩𝑘 + ̌𝑋𝑗) , (6.114)

for some {𝜏imp,𝑗} and { ̌𝑋𝑗} which depend on the system. The special
cases mentioned above can be reproduced by setting𝑁𝑞 = 1 and ̌𝑋𝑗 = 0,
̌𝑋𝑗 =

ℎ2
𝜂2𝑘𝐹

𝜏𝑧𝜎𝑧⟨ ̌𝑔𝑗⟩𝑝𝜏𝑧𝜎𝑧 or 𝑋𝑗 ∝ ⟨𝒌̂ ̌𝑔⟩𝑘.

From section 6.2, the equation for the 𝑖’th quasiclassical Green’s
function is

𝑖𝐹𝑖(∇𝑘𝐷0)⋅∇𝑅 ̌𝑔𝑖+[𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]

∘

−
−𝐹𝑖𝛺̌∘ ̌𝑔𝑖+ ̌𝑔𝑖∘𝛺̌𝐹𝑖 = 0, (6.115)

As all the Fermi surfaces associated with Green’s function ̌𝑔𝑖 must be
close in momentum space everywhere, it is reasonable to assume that
the gradients of the energy bands are approximately parallel. This
is because the gradient ∇𝑘𝜉𝑛 is orthogonal to the surface defined by
𝜉𝑛 = 0. Similar surfaces must have similar normal vectors. I therefore
assume that the Fermi velocities for the bands crossing the Fermi level
inside 𝒞 𝐸

𝑖 are parallel, meaning that ∇𝐾𝐷0 = 𝐶𝒗 𝑖𝑖1𝐹 for some matrix 𝐶.
They can still be different in amplitude and point in opposite directions,
but they must be parallel, so I still include the possibility of different
densities of states. Using equation (6.54), this implies that

𝐹𝑖(𝒌̂)∇𝐾𝐷0 = (𝒌̂ ⋅ 𝒗 𝑖𝑖1𝐹 ) (𝒌̂ ⋅ ∇𝑘𝐷0)|
−1
𝑝=𝑝𝑖𝑖1𝐹 (𝒌̂) ∇𝐾𝐷0 = 𝒗 𝑖𝑖1𝐹 (6.116)

Hence, the equation for the quasiclassical Green’s function becomes

𝑖𝒗 𝑖𝑖1𝐹 ⋅ ∇𝑅 ̌𝑔𝑖 + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]

∘

−
− 𝐹𝑖𝛺̌0 ∘ ̌𝑔𝑖 + ̌𝑔𝑖 ∘ 𝛺̌0𝐹𝑖

− 𝐹𝑖 ̌𝛴′
imp ∘ ̌𝑔𝑖 + ̌𝑔𝑖 ∘ ̌𝛴′

imp𝐹𝑖 = 0, (6.117)
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where I defined 𝛺̌0 = 𝛺̌ − ̌𝛴′
imp.

Next, I assume that 𝛺̌0 can be decomposed into one 𝑠-wave com-
ponent, 𝛺̌𝑠

0 = ⟨𝛺̌0⟩𝑘 and one 𝑝-wave component, 𝒗 𝑖𝑖1𝐹 ⋅ 𝜴̌𝑝
0 , where

𝜴̌𝑝
0 = ⟨𝒗 𝑖𝑖1𝐹 𝜴̌0/(𝒗

𝑖𝑖1
𝐹 ⋅ 𝒗 𝑖𝑖1𝐹 )⟩𝑘. The 𝑝-wave component will come from

terms in the Hamiltonian that involve more than one lattice site. It
can for instance come from an external vector potential, giving rise to
a position-dependent correction to the hopping amplitude through the
Peierls substitution, as shown in section 3.4.2. Since this correction is
not invariant under translation, it cannot be included in 𝐻0 and must
instead be included in 𝛺̌0. A 𝑝-wave component in 𝛺̌0 can also come
from Rasbha spin-orbit coupling, which also involves more than one
lattice site, as shown in section 3.4.3. There can also be other sources
depending on the system. For instance, in paper IX it is shown that a
spatially inhomogeneous magnetic order in an antiferromagnetic metal
will give rise to a 𝑝-wave component in the self-energy. In principle,
there can also be higher spherical harmonics, but I assume that these
are negligible. For simplicity, I also assume that the flatness factor is
constant along the Fermi surface, such that 𝐹𝑖(𝒌̂) = 𝐹 𝑠𝑖 = ⟨𝐹𝑖⟩𝑘. Finally,
I also assume that 𝐷|𝑝𝑖𝑖1𝐹

can be written as a sum of 𝑠-wave and 𝑝-wave
contributions, as

𝐷|𝑝𝑖𝑖1𝐹
= 𝐷|𝑠

𝑝𝑖𝑖1𝐹
+ 𝒗 𝑖𝑖1𝐹 ⋅ 𝑫|𝑝

𝑝𝑖𝑖1𝐹
. (6.118)

From the 𝑝-wave components of 𝛺̌0 and 𝐷|𝑝𝑖𝑖1𝐹
, I define the covariant

derivative,

∇̃ ∘ ̌𝑔𝑖 = ∇𝑅 ̌𝑔𝑖 + 𝑖𝐹𝑖 (𝜴̌
𝑝
0 + 𝑫|𝑝

𝑝𝑖𝑖1𝐹
) ∘ ̌𝑔𝑖 − 𝑖 ̌𝑔𝑖 ∘ (𝜴̌

𝑝
0 + 𝑫|𝑝

𝑝𝑖𝑖1𝐹
) 𝐹𝑖, (6.119)

such that

𝑖𝒗 𝑖𝑖1𝐹 ⋅ ∇̃ ∘ ̌𝑔𝑖 + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹
, ̌𝑔𝑖]

∘

−
− 𝐹𝑖𝛺̌𝑠

0 ∘ ̌𝑔𝑖 + ̌𝑔𝑖 ∘ 𝛺̌𝑠
0𝐹𝑖

− 𝐹𝑖 ̌𝛴′
imp ∘ ̌𝑔𝑖 + ̌𝑔𝑖 ∘ ̌𝛴′

imp𝐹𝑖 = 0. (6.120)

Moreover, I define the matrix current

̌𝒋𝑖 = ⟨𝒗 𝑖𝑖1𝐹 ̌𝑔𝑖⟩𝑘 (6.121)

and the isotropic, 𝑠-wave part of the quasiclassical Green’s function,
̌𝑔𝑠𝑖 = ⟨ ̌𝑔𝑖⟩𝑘.
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Many observables depend only on the 𝑠-wave component or the
𝑝-wave component of the Green’s function. For example, if a particle
contributes the same to an observable regardless of its momentum, such
as when the observable is a density like electric charge density or spin
density, then the observable depends only on the 𝑠-wave component.
Similarly, if the observable is a vector quantity, then it is often only
the matrix current that is necessary. The advantage of the dirty limit
is that it allows us to get closed equations for the isotropic Green’s
function and the matrix current by taking angular averages of the
Eilenberger equation (6.120).

Taking the angular average of equation (6.120), I get

𝑖∇̃ ∘ ̌𝒋𝑖 + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹
, ̌𝑔𝑠𝑖 ]

∘

−
− 𝐹𝑖𝛺̌𝑠

0 ∘ ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 ∘ 𝛺̌
𝑠
0𝐹𝑖

− 𝐹𝑖 ̌𝛴′
imp ∘ ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 ∘ ̌𝛴′

imp𝐹𝑖 = 0. (6.122)

We need another equation to determine 𝒋𝑖, which can be obtained by
assuming that

𝜏imp,𝑖∇ ⋅ (⟨𝒗 𝑖𝑖1𝐹 ⊗ 𝒗 𝑖𝑖1𝐹 ̌𝑔𝑖⟩𝑘) ≈ 𝜏imp,𝑖∇ ⋅ (⟨𝒗 𝑖𝑖1𝐹 ⊗ 𝒗 𝑖𝑖1𝐹 ⟩𝑘) ̌𝑔𝑠𝑖 = ∇ ⋅ (𝐷𝑖 ̌𝑔𝑠𝑖 ),
(6.123)

where 𝐷𝑖 = 𝜏imp,𝑖⟨𝒗
𝑖𝑖1
𝐹 ⊗ 𝒗 𝑖𝑖1𝐹 ⟩𝑘 is the diffusion tensor, and where ⊗

denotes tensor product. For a spherically symmetric Fermi surface,
the diffusion tensor is simply 𝐷𝑖 = diag(1, 1, 1) × 𝜏imp,𝑖|𝒗

𝑖𝑖1
𝐹 |2/3. This

assumption means that the variation 𝑑-wave component is small com-
pared to the variation in the 𝑠-wave component. The consistency of
this assumption should be checked with the normalization condition as
well as the Eilenberger equation. For example, if there are large 𝑑-wave
terms in the Eilenberger equation, which I have assumed not to be the
case, then equation (6.123) would not hold. Also, if the quasiclassical
Green’s function varies on the scale of the mean free path, then it is
also possible that equation (6.123) does not hold. This can in principle
happen for some components depending on the form of the impurity
self-energy. However, when this happens the impurity-self energy
will also tend to strongly suppress the offending components, making
them negligible in the dirty limit. Therefore, the equations can be
simplified by using the fact that these components vanish, and it is still

175



valid to use equation (6.123) in this case. We show this explicitly in
paper IX, but it should also hold more generally. Using equation (6.123)
and multiplying equation (6.120) with 𝒗 𝑖𝑖1𝐹 before taking the angular
average, I get

𝑖
𝜏imp,𝑖

∇̃ ∘ (𝐷𝑖 ̌𝑔𝑠𝑖 ) + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹
, ̌𝒋𝑖]

∘

−
− 𝐹𝑖𝛺̌𝑠

0 ∘ ̌𝒋𝑖 + ̌𝒋𝑖 ∘ 𝛺̌𝑠
0𝐹𝑖

− 𝐹𝑖 ̌𝛴′
imp ∘ ̌𝒋𝑖 + ̌𝒋𝑖 ∘ ̌𝛴′

imp𝐹𝑖 = 0, (6.124)

As mentioned, the consistency of equation (6.123) should be tested
from the normalization condition. Assuming that the Green’s function
depends on 𝒌̂ through the Fermi velocity 𝒗 𝑖𝑖1𝐹 , one can in general write ̌𝑔𝑖
as a multipole expansion in 𝒗 𝑖𝑖1𝐹 . Let ̂𝒗 𝑖𝑖1𝐹 = (sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃)
be the unit vector in the direction of 𝒗 𝑖𝑖1𝐹 . The multipole expansion of
̌𝑔𝑖 is then

̌𝑔𝑖 =
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

̌𝐶𝑚𝑙 𝑌
𝑚
𝑙 (𝜃, 𝜑), (6.125)

where 𝐶𝑚𝑙 are matrix-valued coefficients that do not depend on 𝒗 𝑖𝑖1𝐹 and
𝑌𝑚𝑙 (𝜃, 𝜑) are the spherical harmonics. The monopole, or 𝑠-wave, term
is

̌𝐶00𝑌 00 = ̌𝑔𝑠𝑖 , (6.126)

while the 𝑝-wave, or dipole, term is

̌𝑔𝑝𝑖 =
1
∑
𝑚=−1

̌𝐶𝑚1 𝑌𝑚1 (𝜃, 𝜑) =
̂𝒗 𝑖𝑖1𝐹 ⋅ ̌𝒋𝑖

√⟨|𝒗
𝑖𝑖1
𝐹 |2⟩𝑘

, (6.127)

under the assumptions that ⟨𝒗 𝑖𝑖1𝐹 ⟩𝑘 = 0 and ⟨(𝒗 𝑖𝑖1𝐹 )𝛼(𝒗
𝑖𝑖1
𝐹 )𝛽⟩𝑘 = 𝛿𝛼𝛽⟨(𝒗

𝑖𝑖1
𝐹 )2𝛼⟩𝑘,

where (𝒗 𝑖𝑖1𝐹 )𝛼 is component 𝛼 of 𝒗 𝑖𝑖1𝐹 . Conventionally, the spherical har-
monics are normalized such that the integral over all solids angles of
(𝑌𝑚𝑙 )∗𝑌𝑚𝑙 is one. This means that, for instance, ̌𝐶00 = √4𝜋 ̌𝑔𝑠𝑖 .

The spherical harmonics form an orthonormal basis set, so all func-
tions of spherical angles can be written as multipole expansion. In
particular, the product of two spherical harmonics, 𝑌𝑚1

𝑙1 and 𝑌𝑚2
𝑙2 , can
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be written as a sum of spherical harmonics using so-called Clebsch-
Gordan coefficients [214, 215], {𝑐𝐿𝑀𝑙1𝑚1𝑙2𝑚2

},

𝑌𝑚1
𝑙1 𝑌𝑚2

𝑙2 =
𝑙1+𝑙2
∑

𝐿=|𝑙1−𝑙2|√

(2𝑙1 + 1)(2𝑙2 + 1)
4𝜋(2𝐿 + 1)

𝑐𝐿0𝑙10𝑙20𝑐
𝐿(𝑚1+𝑚2)
𝑙1𝑚1𝑙2𝑚2

𝑌𝑚1+𝑚2
𝐿 .

(6.128)

The normalization condition for ̌𝑔𝑖 can be written

̌𝑔𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑖) =
∞
∑
𝑙1=0

𝑙1
∑

𝑚1=−𝑙1

∞
∑
𝑙2=0

𝑙2
∑

𝑚2=−𝑙2

̌𝐶𝑚1
𝑙1 ∘ (𝐹−1𝑖 ̌𝐶𝑚1

𝑙1 ) 𝑌𝑚1
𝑙1 𝑌𝑚2

𝑙2 = 𝐾𝑖𝐹𝑖.

(6.129)

Using equation (6.128) together with the orthogonality of the spher-
ical harmonics, one can equate the different spherical harmonics on
each side. The right-hand side only contains an 𝑠-wave component,
since I have assumed that 𝐹𝑖 is independent of 𝒌̂. The Clebsch-Gordan
coefficients can be read of from tables [215], but here we only need the
first few terms, as we assume that everything above 𝑝-wave is negligi-
ble. Products with 𝑠-wave spherical harmonics are trivial, as these are
isotropic. The first non-trivial products are therefore products of two
𝑝-waves. Using the Clebsch-Gordan coefficients, these are

𝑌 01 𝑌 01 = 1
√4𝜋

𝑌 00 + 1
√5𝜋

𝑌 02 , (6.130a)

𝑌 11 𝑌−11 = − 1
√4𝜋

𝑌 00 + 1
√20𝜋

𝑌 02 , (6.130b)

𝑌±11 𝑌 01 =
√

3
20𝜋

𝑌±12 , (6.130c)

𝑌±11 𝑌±11 =
√

3
10𝜋

𝑌±22 . (6.130d)

In other words, the product of two 𝑝-wave spherical harmonics is a
sum of an 𝑠-wave and a 𝑑-wave (𝑙 = 2).

Let ̌𝑔𝑖 = ̌𝑔𝑠𝑖 + ̌𝑔𝑝𝑖 + ̌𝑔𝑑𝑖 + ⋯ , where ̌𝑔𝑑𝑖 is the 𝑑-wave part of the
quasiclassical Green’s function, and let ⟨⋅⟩𝑠/𝑝/𝑑 denote projection onto 𝑠-
wave 𝑝-wave and 𝑑-wave spherical harmonics, respectively. Including
up to 𝑑-wave, the different components of the normalization condition
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reads

̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 ) + ⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑠 + ⟨ ̌𝑔𝑑𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑑𝑖 )⟩𝑠 = 𝐾𝑖𝐹𝑖, (6.131a)

̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 ) + ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 )

+ ⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑑𝑖 )⟩𝑝 + ⟨ ̌𝑔𝑑𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑝 = 0, (6.131b)

⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑑 + ̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑑𝑖 )

+ ̌𝑔𝑑𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 ) + ⟨ ̌𝑔𝑑𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑑𝑖 )⟩𝑑 = 0. (6.131c)

If the assumption of isotropic 𝐹𝑖 is relaxed, one would get values dif-
ferent from 0 on the right-hand sides of the second and third equa-
tions. The assumption needed to derive equation (6.124) was that ̌𝑔𝑑𝑖
is negligible compared to ̌𝑔𝑠𝑖 . From equation (6.131c), we see that if
̌𝑔𝑠𝑖 = 𝒪(𝐹𝑖), then ̌𝑔𝑑𝑖 = 𝒪 (⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑑). Hence, consistency re-

quires that | ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )| ≪ 1, which means that the square amplitude
of the matrix current, | ̌𝑗𝑖|2, is much less than the average of the square
amplitude of the Fermi velocity, ⟨|𝒗 𝑖𝑖1𝐹 |2⟩𝑘.

From equation (6.130) we also see that ⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑑 and ⟨ ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 )⟩𝑠
are similar in magnitude. Therefore, keeping only up to first order in
̌𝑔𝑝𝑖 , the normalization conditions become

̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 ) = 𝐾𝑖𝐹𝑖, (6.132a)

̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑝𝑖 ) + ̌𝑔𝑝𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 ) = 0. (6.132b)

Equation (6.132b) means that

̌𝑔𝑠𝑖 ∘ (𝐹−1𝑖 ̌𝒋𝑖) + ̌𝒋𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑠𝑖 ) = 0. (6.133)

The problem of finding ̌𝑔𝑖(𝑹, 𝒌̂, 𝑇 , 𝜀) for all possible momentum di-
rections 𝒌̂ has been reduced to finding just the isotropic part ̌𝑔𝑠𝑖 (𝑹, 𝑇 , 𝜀)
and the matrix current ̌𝒋𝑖(𝑹, 𝑇 , 𝜀). This is already a significant simplifi-
cation. We went from infinitely many coupled matrix equations, one
for each direction of 𝒌̂, to a maximum of 4, depending on the number
of spatial dimensions and thereby the number of components of ̌𝒋𝑖.

So far, this is in principle valid for any value of elastic scattering
time, 𝜏imp,𝑖, but it assumes that the square of the 𝑑-wave component of
the quasiclassical Green’s function is small. Physically, one can expect
this when the impurity scattering time is small. When considering the
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diffusive limit, where one assumes that 1/𝜏imp,𝑖 is not much larger than
all other energy scales except 𝐸𝑐, equation (6.124) can be simplified
further. Multiplying the equation by 𝜏imp,𝑖, and assuming that the terms
proportional to 𝜏imp,𝑖𝜀, 𝜏imp,𝑖𝛺̌0 and 𝜏imp,𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹

are negligible compared

to the terms proportional to 𝜏imp,𝑖 ∘ ̌𝛴imp, I get

𝑖∇̃ ∘ (𝐷𝑖 ̌𝑔𝑠𝑖 ) + 𝜏imp,𝑖 ̌𝒋𝑖 ∘ ̌𝛴′
imp𝐹𝑖 − 𝜏imp,𝑖𝐹𝑖 ̌𝛴′

imp ∘ ̌𝒋𝑖 = 0. (6.134)

Inserting equation (6.114), I get

𝑁𝑞

∑
𝑗=1

𝜏imp,𝑖

2𝜏imp,𝑗
(𝐹𝑖 ̌𝑔𝑠𝑗 ∘ ̌𝒋𝑖 − ̌𝒋𝑖 ∘ ̌𝑔𝑠𝑗 𝐹𝑖)

= −∇̃ ∘ (𝐷𝑖 ̌𝑔𝑠𝑖 ) −
𝑁𝑞

∑
𝑗=1

𝜏imp,𝑖

2𝜏imp,𝑗
(𝐹𝑖 ̌𝑋𝑗 ∘ ̌𝒋𝑖 − ̌𝒋𝑖 ∘ ̌𝑋𝑗𝐹𝑖) . (6.135)

By using the normalization condition, equation (6.132a), I get a
recursive equation for ̌𝒋𝑖,

̌𝒋𝑖 = −2𝐹−1𝑖 ̌𝑔𝑠𝑖 ∘ [𝐹−2𝑖 ∇̃ ∘ (𝐷𝑖 ̌𝑔𝑠𝑖 )] + 2𝐹−1𝑖 ̌𝑔𝑠𝑖 ∘ [𝐹−2𝑖 ̌𝒋𝑖 ∘ ̌𝑔𝑠𝑖 𝐹𝑖]

− 2𝐹−1𝑖 ̌𝑔𝑠𝑖 ∘ [𝐹−2𝑖

𝑁𝑞

∑
𝑗=1

𝜏imp,𝑖

2𝜏imp,𝑗
(𝐹𝑖 ̌𝑋𝑗 ∘ ̌𝒋𝑖 − ̌𝒋𝑖 ∘ ̌𝑋𝑗𝐹𝑖)]

− 𝐹−1𝑖 ̌𝑔𝑠𝑖 ∘ [𝐹−2𝑖 ∑
𝑗≠𝑖

𝜏imp,𝑖

𝜏imp,𝑗
(𝐹𝑖 ̌𝑔𝑠𝑗 ∘ ̌𝒋𝑖 − ̌𝒋𝑖 ∘ ̌𝑔𝑠𝑗 𝐹𝑖)] (6.136)

where I used that 𝐾𝑖 ̌𝒋𝑖 = ̌𝒋𝑖. Solving equations (6.122), (6.132a), (6.133)
and (6.136) simultaneously can be done for any system where the
impurity scattering time can be assumed small and | ̌𝒋𝑖|2 ≪ ⟨|𝒗 𝑖𝑖1𝐹 |2⟩𝑘.
Depending on ̌𝑋𝑗, one should also verify that the components which
vary on a length scale on the order of the mean free path become
negligible, such that it is valid to use equation (6.123). Numerical
algorithms for how to solve these equations are presented in chapter 7.

To end this section, I show how the equations simplify in the special
cases that are more commonly found in the literature, where 𝐹 = 1
and 𝑁𝑞 = 1. Let ̌𝑔𝑠 = ̌𝑔𝑠1 and ̌𝒋 = ̌𝒋1. Taking the second term on the
right-hand side of equation (6.136) over to the left-hand side, using
equation (6.133) and dividing by 2, the equation becomes

̌𝒋 = − ̌𝑔𝑠 ∘ ∇̃ ∘ (𝐷 ̌𝑔𝑠) −
̌𝑔𝑠𝑖
2
∘ [ ̌𝑋 , ̌𝒋]

∘
− . (6.137)
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Setting ̌𝑋 = 𝜏𝑧𝜎𝑧 ̌𝑔𝑠𝜏𝑧𝜎𝑧ℎ2/𝜂2𝑘𝐹 reproduces the result for antiferromag-
netic metals, presented in paper IX. On the other hand, setting ̌𝑋 = 0
reproduces the well-known result for diffusive normal metals, ̌𝒋 =
− ̌𝑔𝑠 ∘ ∇̃ ∘ (𝐷 ̌𝑔𝑠). Removing unnecessary indices and inserting 𝐹 = 1 and
̌𝛴imp = −𝑖( ̌𝑔𝑠 + ̌𝑋)/2𝜏imp into the other equation (6.122), it becomes

𝑖∇̃ ∘ ̌𝒋 + [𝜀𝜏𝑧 − 𝐷|𝑠𝑝𝐹 − 𝛺̌𝑠
0 +

𝑖
2𝜏imp

̌𝑋 , ̌𝑔𝑠]
∘

−
= 0. (6.138)

Again, setting ̌𝑋 = 𝜏𝑧𝜎𝑧 ̌𝑔𝑠𝜏𝑧𝜎𝑧ℎ2/𝜂2𝑘𝐹 and
̌𝑋 = 0 reproduces the results

for diffusive antiferromagnetic metals and normal metals, respectively.
That is, the equations reduce to the Usadel equation [216] for normal
metals when ̌𝑋 = 0.

6.5 Boundary conditions

We are often interested in applying quasiclassical theory to mesoscopic
heterostructures. The boundary between two different materials in
such heterostructures represents regions in which there is rapid spatial
variation. Even if the number of atoms in the unit cell happens to be
the same in both materials, the energy bands, defined by 𝐻0, will typi-
cally differ. It was an underlying assumption behind the quasiclassical
theory that 𝐻0 is invariant under spatial translation. This renders the
quasiclassical equations invalid in systems that involve multiple mate-
rials. To remedy this, one must perform the quasiclassical treatment
in each material independently, and connect the solutions through
boundary conditions.

The validity of the diffusive equations rests on the assumption that
the matrix current is small compared to the Fermi velocity. This must
also be true close to the boundaries. The different components of
the matrix current can be used to calculate quantities such as the
electric current or spin currents. Therefore, the assumption that the
matrix current is small also implies that physical currents are small
compared to some measures. This, in turn, means that the currents
across interfaces between neighboring materials should also be small.

I believe it is instructive to first consider a single system with no
neighboring materials, meaning that all boundaries have vacuum on
the other side. There is a rapid variation at the edges associated with
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the fact that the unit cells at the edges do not have the same number
of neighbors as those in the interior, in addition to the fact that the
unit cells themselves might include fewer atoms. This means that 𝐻0
looks different at the boundary atoms.

In order to regain the spatial invariance of 𝐻0, I extend the lattice to
infinity in all directions. The electrons should not propagate beyond
the physical lattice, so I add a spin-independent potential, 𝑅, which is
zero inside the material but quickly grows to infinity at the physical
boundary. Since this potential means that no states are occupied
beyond the physical boundary, we can freely choose 𝐻0 to be the same
also at all lattice sites.

To extend the description to include multiple materials, one can treat
each material separately by similarly extending the lattice through
their physical boundaries and impose potentials that keep all particles
confined to the physical lattice, giving a physically identical descrip-
tion. Because materials are now in spatial proximity, two additional
effects must be taken into consideration. First, the fields from one
material can propagate into the other. For instance, if one material is
magnetic, the neighboring material can feel a magnetic field that is
strongly localized at the interface. This can effectively give a magnetic
component to the potential 𝑅. Second, there can be hopping between
states at neighboring lattice sites across the interface. That is, particles
can hop from one lattice site to another, even if the two participating
lattice sites belong to different materials. This intermaterial hopping
will typically be much weaker than intramaterial hopping, but it can
lead to interesting effects, such as leakage of superconductivity into
neighboring materials, known as the superconductive proximity ef-
fect [217]. Hence, such hopping must be included in the boundary
condition.

Formally, the essence of how I carry out the derivation of the
boundary condition is that I integrate the Usadel-type equation, equa-
tion (6.122), which is

𝑖∇̃ ∘ ̌𝒋𝑖 + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹
, ̌𝑔𝑠𝑖 ]

∘

−
− 𝐹𝑖𝛺̌𝑠

0 ∘ ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 ∘ 𝛺̌
𝑠
0𝐹𝑖

− 𝐹𝑖 ̌𝛴imp ∘ ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 ∘ ̌𝛴imp𝐹𝑖 = 0, (6.139)

over a small volume enclosing a part of the interface. The effects
discussed above manifest as a strongly localized self-energy term at
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the boundary, 𝛺̌𝑠
0 = 𝐴̌ + ̌𝐵𝛿(𝑥 − 𝑥0), where 𝑥0 is the location of the

boundary. Using the divergence theorem to evaluate the gradient of the
matrix current, ̌𝒋𝑖, together with the fact that the matrix current must
be zero outside the material, and letting the volume of the integration
domain go to zero, one is left with

𝒏̂ ⋅ ̌𝒋𝑖 = 𝑖(𝐹𝑖 ̌𝐵 ∘ ̌𝑔𝑠𝑖 − ̌𝑔𝑠𝑖 ∘ ̌𝐵𝐹𝑖), (6.140)

where 𝒏̂ is the outwards pointing unit vector. With a vacuum or
insulator on the other side of the boundary, ̌𝐵 will come from the
potential 𝑅, but in the more general case it can include tunneling to
the other material.

The derivation sketched above is notmathematically justified. Under
the assumptions used to derive equation (6.139), one cannot include po-
tentials that are rapidly varying on the atomic length scale. Moreover,
even though ̌𝒋𝑖 is mathematically well-defined outside of the material
because we extended the lattice, it, together with ̌𝑔𝑠𝑖 , quickly goes to
zero as the center of mass position leaves the material. Therefore, a
proper derivation should start from the more general equation (6.24).
That is, a proper derivation must take into account the discrete nature
of the lattice and evaluate terms like 𝐷 • ̌𝐺 explicitly.

Starting from the full microscopic description, I performed the
derivation of boundary conditions in antiferromagnetic metals in pa-
per IX. As can be seen in paper IX, a discrete lattice gives rise to finite
differences in the equations for the quasiclassical Green’s functions,
rather than the continuous derivatives that can be obtained when the
Green’s function is approximated as a continuous function that can be
assumed to vary slowly in space. The derivation in the more general
formalism presented here is not substantially changed compared to
the derivation presented in paper IX. I therefore refer to paper IX for
the more detailed calculations. Here, I simply derive the self-energy
term ̌𝐵.

To derive ̌𝐵, I start from a description of 𝑁𝑚 materials. In each
material, labeled 𝛼, there is some self-energy, 𝛺̌𝛼, together with a
geometric term𝑅𝛼, which is large outside of thematerial and zero inside
the material, as discussed above. Additionally, there is a tunneling
term, 𝑇 𝛼𝛽, between every pair of materials. The tunneling term 𝑇 𝛼𝛽

only has nonzero components if materials 𝛼 and 𝛽 shares a boundary.
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For a multimaterial system, the Green’s functions are defined as

𝐺̂𝛼𝛽,𝑅
𝑘1𝑘2 (𝑡, 𝑡

′) = − 𝑖
𝑁
𝜃(𝑡 − 𝑡′)𝜏𝑧 ⟨[𝑐𝛼,𝑘1(𝑡), 𝑐

†
𝛽,𝑘2(𝑡

′)]
+
⟩ , (6.141a)

𝐺̂𝛼𝛽,𝐴
𝑘1𝑘2 (𝑡, 𝑡′) = + 𝑖

𝑁
𝜃(𝑡′ − 𝑡)𝜏𝑧 ⟨[𝑐𝛼,𝑘1(𝑡), 𝑐

†
𝛽,𝑘2(𝑡

′)]
+
⟩ , (6.141b)

𝐺̂𝛼𝛽,𝐾
𝑘1𝑘2 (𝑡, 𝑡

′) = − 𝑖
𝑁
𝜏𝑧 ⟨[𝑐𝛼,𝑘1(𝑡), 𝑐

†
𝛽,𝑘2(𝑡

′)]
−
⟩ , (6.141c)

where 𝑐𝛼,𝑘1 is the tuple of creation and annihilation operators for crystal
momentum 𝑘1 in material 𝛼. Note that the number of operators in 𝑐𝛼,𝑘1
can depend on 𝛼, so intermaterial Green’s functions are not necessarily
square. From equation (6.24), the equations for the Green’s function
̌𝐺𝛼𝛽, reads

𝑖𝜏𝑧
∂ ̌𝐺𝛼𝛽

∂𝑡
− (𝛺̌𝛼 + 𝑅𝛼) • ̌𝐺𝛼𝛽 −∑

𝛾
𝑇 𝛼𝛾 • ̌𝐺𝛾𝛽 = 𝛿(𝑡 − 𝑡′)𝛿𝛼𝛽,

(6.142a)

𝑖 ∂
̌𝐺𝛼𝛽

∂𝑡′
𝜏𝑧 + ̌𝐺𝛼𝛽 • (𝛺̌𝛽 + 𝑅𝛽) +∑

𝛾
̌𝐺𝛼𝛾 • 𝑇 𝛾𝛽 = −𝛿(𝑡 − 𝑡′)𝛿𝛼𝛽.

(6.142b)

The sum goes over all the 𝑁𝑚 materials, and the bullet products, •,
also include sums over internal momenta.

The next step is to remove the intermaterial Green’s functions, which
can be done through the Dyson equation, derived in chapter 5. Treating
the tunneling amplitude as a perturbation, the Dyson equation implies
that (see paper IX)

𝑖𝜏𝑧
∂ ̌𝐺𝛼𝛼

∂𝑡
− (𝛺̌𝛼 + 𝑅𝛼 +∑

𝛾
𝑇 𝛼𝛾 • ̌𝐺𝛾 𝛾

0 • 𝑇 𝛾𝛼) • ̌𝐺𝛼𝛼 = 𝛿(𝑡 − 𝑡′),

(6.143a)

𝑖 ∂
̌𝐺𝛼𝛼

∂𝑡′
𝜏𝑧 + ̌𝐺𝛼𝛼 • (𝛺̌𝛼 + 𝑅𝛼 +∑

𝛾
𝑇 𝛼𝛾 • ̌𝐺𝛾 𝛾

0 • 𝑇 𝛾𝛼) = −𝛿(𝑡 − 𝑡′),

(6.143b)

where ̌𝐺𝛼𝛼
0 is the Green’s function obtained by setting 𝑇 𝛽𝛾 = 0 for

all pairs (𝛽, 𝛾 ). Note that this does not mean that ̌𝐺𝛼𝛼
0 is the Green’s

function in the absence of tunneling. That is, ̌𝐺𝛼𝛼
0 can still depend

183



on ̌𝐺𝛽𝛽 for 𝛽 ≠ 𝛼. For example, if 𝛼 is a superconductor and 𝛽 is a
neighboring normal metal, ̌𝐺𝛽𝛽

0 can still have superconducting correla-
tions by virtue of the proximity effect. This is because the impurity
self-energy is present in 𝛺̌𝛽, and ̌𝐺𝛽𝛽

0 depend on 𝛺̌𝛽. Since the impurity
self energy depends on ̌𝐺𝛽𝛽, and ̌𝐺𝛽𝛽 depend on the tunneling term,
this means that ̌𝐺𝛽𝛽

0 also depend on the neighboring materials.
Using the above-mentioned approach of deriving boundary condi-

tions, with calculations similar to those performed in paper IX, the
boundary self-energy for the interface between material 𝛼 and 𝛽, ̌𝐵𝛼𝛽,
can be identified as

̌𝐵𝛼𝛽 = 𝑅𝛼 − 𝑖∑
𝑗
𝒯 𝛼𝛽 ̌𝑔𝑠,𝛽𝛽0,𝑗 𝒯 𝛽𝛼, (6.144)

where ̌𝑔𝑠,𝛽𝛽0,𝑗 is the isotropic part of the 𝑗’th quasiclassical Green’s func-
tion in material 𝛽 with tunneling amplitudes set to zero, and 𝒯 𝛼𝛽 are
renormalized tunneling amplitudes. Hence, the boundary condition
for the 𝑖’th quasiclassical Green’s function in material 𝛼 at the interface
with material 𝛽 is

𝒏̂ ⋅ ̌𝒋𝑖 = 𝐹𝑖 (∑
𝑗
𝒯 𝛼𝛽 ̌𝑔𝑠,𝛽𝛽0,𝑗 𝒯 𝛽𝛼 + 𝑖𝑅𝛼) ∘ ̌𝑔𝑠𝑖

− ̌𝑔𝑠𝑖 ∘ (∑
𝑗
𝒯 𝛼𝛽 ̌𝑔𝑠,𝛽𝛽0,𝑗 𝒯 𝛽𝛼 + 𝑖𝑅𝛼) 𝐹𝑖. (6.145)

To second order in tunneling amplitudes, equation (6.145) becomes

𝒏̂ ⋅ ̌𝒋𝑖 = 𝐹𝑖 (∑
𝑗
𝒯 𝛼𝛽 ̌𝑔𝑠,𝛽𝛽𝑗 𝒯 𝛽𝛼 + 𝑖𝑅𝛼) ∘ ̌𝑔𝑠𝑖

− ̌𝑔𝑠𝑖 ∘ (∑
𝑗
𝒯 𝛼𝛽 ̌𝑔𝑠,𝛽𝛽𝑗 𝒯 𝛽𝛼 + 𝑖𝑅𝛼) 𝐹𝑖, (6.146)

which reduces to the Kupriyanov-Lukichev boundary condition for
normal metals [218], its generalization to spin-active boundaries [209],
or its generalization to antiferromagnetic systems (paper IX), when
there is only one quasiclassical Green’s function in each material and
there are only two energy bands with the same density of states near
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the Fermi level, meaning that 𝐹𝑖 is proportional to the identity matrix.
One can also use the Dyson equation to write ̌𝑔𝑠,𝛽𝛽0,𝑗 as a series expan-

sion in ̌𝑔𝑠,𝛽𝛽𝑗 , thereby producing boundary conditions that are valid to
higher order in tunneling amplitudes. This should in principle provide
generalizations to the Nazarov boundary condition [219, 220].

6.6 Observables in quasiclassical theory

In order to apply quasiclassical theory to make predictions about real
physical systems, one must know how to compute observables. From
chapter 4 we know that observables can be written as linear combi-
nations of the Keldysh Green’s function. This can be related to the
quasiclassical Green’s function, although the full expression also in-
volves high-energy components. I derived a general expression for
observables in the quasiclassical theory for antiferromagnetic metals
in paper IX. The generalization to the quasiclassical theory presented
here is relatively straightforward. Therefore, I outline the main steps
and refer to paper IX for the more detailed calculations.

We are interested in observables that can be written as linear com-
binations of the expectation values of pairs of fermionic operators.
Using the 4𝑁𝑠-tuples defined in equation (6.2) and the commutation
relation for fermionic operators, all such observables can be written

𝑄(𝑡) = 𝐶(𝑡)+ 1
𝑁 2 ∑

𝑘1𝑘2
(⟨𝑐†𝑘1(𝑡)𝐵𝑘1𝑘2(𝑡)𝑐𝑘2(𝑡)⟩ − ⟨𝑐𝑇𝑘2(𝑡)𝐵

𝑇
𝑘1𝑘2(𝑡)(𝑐

†
𝑘1)

𝑇(𝑡)⟩) ,

(6.147)

for some real scalar 𝐶(𝑡) and some set of 4𝑁𝑠 × 4𝑁𝑠 matrices 𝐵𝑘1𝑘2(𝑡).
One can relate this to the Keldysh Green’s function,

𝐺̂𝐾
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
−
⟩ , (6.148)

such that

𝑄(𝑡) = 𝐶(𝑡) − 𝑖𝑁−1 ∑
𝑘1𝑘2

Tr [𝐵𝑘1𝑘2(𝑡)𝜏𝑧𝐺̂
𝐾
𝑘2𝑘1(𝑡, 𝑡)] . (6.149)

Like before, we can relate this Green’s function to the energy ba-
sis Green’s function through a similarity transformation, 𝐺̂

′𝐾
𝑘1𝑘2 =
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𝑆𝑘1𝐺̂
𝐾
𝑘1𝑘2𝑆

†
𝑘2 . Defining 𝐵′𝑘1𝑘2 = 𝑆𝑘1𝐵𝑘1𝑘2𝑆

†
𝑘2 , the expression for the ob-

servable 𝑄 becomes

𝑄(𝑡) = 𝐶(𝑡) − 𝑖𝑁−1 ∑
𝑘1𝑘2

Tr [𝐵′𝑘1𝑘2(𝑡)𝜏𝑧𝐺̂
′𝐾
𝑘2𝑘1(𝑡, 𝑡)] . (6.150)

Fourier transforming, writing in terms of Wigner coordinates and
assuming that the spatial variation in 𝐺̂

′𝐾 is small, such that it is
sufficient to keep the lowest order in the gradient expansion, I get that

𝑄(𝑡) = 𝐶(𝑡) − 𝑖𝑁−1∑
𝑅𝑘

∫
∞

−∞

d𝜀
2𝜋

Tr [𝐵′(𝑹, 𝒌, 𝑡)𝜏𝑧𝐺̂
′𝐾(𝑹, 𝒌, 𝑡 , 𝜀)] .

(6.151)

Typically, one is interested in local densities, such as charge density,
spin densities or various current densities. Quantities like total elec-
trical charge can then be computed by integrating the density over a
volume. Letting the density of 𝑄(𝑡) be 𝑞(𝑹, 𝑡), we can get an expression
for 𝑞(𝑹, 𝑡) by writing 𝐵′(𝑹, 𝒌) = 𝐴(𝑹, 𝒌)/𝑉𝑒, where 𝑉𝑒 is the volume
associated with each lattice site. With this, the density becomes

𝑞(𝑹, 𝑡) = 𝑐(𝑹, 𝑡) − 𝑖 𝑁
𝑉𝑒

∑
𝑘
∫
∞

−∞

d𝜀
2𝜋

Tr [𝐴(𝑹, 𝒌, 𝑡)𝜏𝑧𝐺̂
′𝐾(𝑹, 𝒌, 𝑡 , 𝜀)] ,

(6.152)

where 𝑐 is the density of 𝐶. Like in section 6.4, we can write the sum
over momenta as an integral, using that 1/𝑁 = 𝑉𝑒 d

3𝑘 /(2𝜋)3, such
that

𝑞(𝑹, 𝑡) = 𝑐(𝑹, 𝑡) − 𝑖 ∫
∞

−∞

d𝜀
2𝜋 ∫

d3𝑘
(2𝜋)3

Tr [𝐴(𝑹, 𝒌, 𝑡)𝜏𝑧𝐺̂
′𝐾(𝑹, 𝒌, 𝑡 , 𝜀)] .

(6.153)

The next step is to split up the energy integral. This is necessary
because quasiclassical theory is only applicable to energies 𝜀 that are
small compared to the Fermi energy. When working in the diffusive
limit, it is only advantageous to restrict 𝜀 to be well below the impurity
scattering rate, as this can simplify the equations (see section 6.4). Let
𝑎 be a cutoff energy that is such that the quasiclassical Green’s function
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can be obtained for energies satisfying |𝜀| < 𝑎, and consider first the
contributions from energies |𝜀| < 𝑎. Let

𝑞𝑞𝑐 = −𝑖∫
𝑎

−𝑎

d𝜀
2𝜋 ∫

d3𝑘
(2𝜋)3

Tr [𝐴(𝑹, 𝒌, 𝑡)𝜏𝑧𝐺̂
′𝐾(𝑹, 𝒌, 𝑡 , 𝜀)] . (6.154)

As in section 6.4, one can split the integral over momenta into one
contribution from the quasiclassical Green’s functions and one rest
component,

𝑞𝑞𝑐 = −𝑖∫
𝑎

−𝑎

d𝜀
2𝜋 ∫

𝒞0

d3𝑘
(2𝜋)3

Tr [𝐴(𝑹, 𝒌, 𝑡)𝜏𝑧𝐺̂
′𝐾(𝑹, 𝒌, 𝑡 , 𝜀)]

+∫
𝑎

−𝑎

d𝜀
2𝜋

𝑁𝑞

∑
𝑖=1

𝜋 ∫
d𝛺𝑘
4𝜋

𝑁𝑖(𝒌̂)Tr [𝐴(𝑹, 𝒌
𝑖𝑖1
0 + 𝑝𝑖𝑖1𝐹 𝒌̂, 𝑡)𝜏𝑧𝑔̂𝐾𝑖 (𝑹, 𝒌̂, 𝑡 , 𝜀)] ,

(6.155)

where the sum goes over all the 𝑁𝑞 quasiclassical Green’s functions
and 𝒞0 is the integral over all the remaining parts of the momentum
space. The quantity 𝑁𝑖 can, as before, be thought of as the normal
state density of states for the first energy band in the 𝑖’th collection
of Fermi levels. The integral over 𝒞0 can be neglected because only
the Keldysh Green’s function is involved. This is justified by the fact
that the Keldysh Green’s function goes to zero as ∼ 1/𝜉 2, where 𝜉 is
energy. Hence,

𝑞𝑞𝑐 = ∫
𝑎

−𝑎
d𝜀

𝑁𝑞

∑
𝑖=1

⟨
𝑁𝑖(𝒌̂)
2

Tr [𝐴(𝑹, 𝒌𝑖𝑖10 + 𝑝𝑖𝑖1𝐹 𝒌̂, 𝑡)𝜏𝑧𝑔̂𝐾𝑖 (𝑹, 𝒌̂, 𝑡 , 𝜀)]⟩ .

(6.156)

The remaining part of the integral can be simplified because only
energies |𝜀| > 𝑎 are considered. Assuming that 𝑎 is sufficiently large
compared to the thermal energy, all states at these energies are either
fully occupied or fully empty, meaning that the Keldysh Green’s func-
tion is fully determined by the spectral function. In addition, choosing
𝑎much larger than the superconducting gap, it is reasonable to neglect
the effect of superconductivity on the spectral function. This makes
it possible to evaluate the integral over momenta and energies |𝜀| > 𝑎.
The detailed calculations are shown in paper IX, but in essence, the
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idea is the following. The integral over momenta and energies |𝜀| > 𝑎
counts the number of states with energies in the intervals (−∞, −𝑎) and
(𝑎, ∞). This number can be changed by changes in the retarded part of
the self-energy, 𝛺̂𝑅. For example, an increase in the electrochemical
potential, such as by an applied electric potential, will shift the whole
spectrum, giving fewer states in the region (−∞, −𝑎) and more states
in the region (𝑎, ∞). For the bands which cross the Fermi level, this
means that fewer high-energy states are occupied.² Assuming that the
density of states is approximately constant in the region (−𝑎, 𝑎), the
contribution from high-energy states to the observable, neglecting a
constant that can be absorbed into 𝑐, is equal to

−
𝑁𝑞

∑
𝑖=1

⟨𝑁𝑖(𝒌̂)Tr[𝐴(𝑹, 𝒌
𝑖𝑖1
0 + 𝑝𝑖𝑖1𝐹 𝒌̂, 𝑡)𝜏𝑧𝐾𝑖(𝛺̂𝑅(𝑹, 𝒌𝑖𝑖10 + 𝑝𝑖𝑖1𝐹 𝒌̂, 𝑡)

+ [𝛺̂𝑅(𝑹, 𝒌𝑖𝑖10 + 𝑝𝑖𝑖1𝐹 𝒌̂, 𝑡)]†)𝐾𝑖]⟩, (6.157)

where the factors 𝐾𝑖 comes from the fact that it is only some of the
energy bands that cross the Fermi level at the different locations in
momentum space. Combining the results and removing the arguments
for notational simplicity, the final, general expression for observables
in quasiclassical theory is

𝑞 = 𝑐 + ∫
𝑎

−𝑎
d𝜀

𝑁𝑞

∑
𝑖=1

⟨
𝑁𝑖
2

Tr [𝐴𝜏𝑧𝑔̂𝐾𝑖 ]⟩

−
𝑁𝑞

∑
𝑖=1

⟨𝑁𝑖 Tr [𝐴𝜏𝑧𝐾𝑖 (𝛺̂𝑅 + [𝛺̂𝑅]†) 𝐾𝑖]⟩ (6.158)

For not only the detailed steps in the last calculations but also a few
examples of specific observables, such as charge and spin density, I
refer to section XIV in paper IX. Finally, note that the last term in
equation (6.158) is needed to make observables gauge invariant.

2. This is not to say that the total number of occupied states is necessarily changed.
There are fewer occupied states with energies (−∞, −𝑎) ∪ (𝑎, ∞), but there can
be more occupied states with energies (−𝑎, 𝑎).
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7Numerics
In the previous chapters I showed, starting from the fundamentals
of quantum mechanics, how to model mesoscopic condensed matter
systems. The end results were partial differential equations. Solving
these equations, one can obtain the quasiclassical Green’s function,
which in turn can be used to compute quantities such as charge and
spin densities or charge and spin currents. This chapter is dedicated
to how to solve these equations numerically. The equations in ques-
tion, equations (6.122), (6.132a), (6.133) and (6.136), together with the
boundary conditions presented in section 6.5, constitute a coupled set
of non-linear matrix differential equations. An analytical solution to
these equations can only be found under certain ideal conditions, and
even when analytical expressions can be found, numerical integration
techniques might be required to present the solutions graphically. In
addition to the above-mentioned equations, a complete theoretical
model might require solving additional equations for parameters that
enter the equations.

The two most common examples of such parameters are the su-
perconducting gap parameter and the electromagnetic potentials. As
derived in section 3.3, superconductivity can be treated in a mean-field
approach. This results in a self-energy term in equation (6.122) that
depends on the quasiclassical Green’s function. As a result, one gets
an additional equation that must be solved simultaneously in order to
ensure consistency between the quasiclassical Green’s function and
parameters used to compute the quasiclassical Green’s function. As
we saw in section 3.4.2, an external electromagnetic vector potential
will also contribute to the Hamiltonian. As this term gives a correction
to the kinetic hopping term, it will be included in the covariant deriva-
tive in equations (6.122) and (6.136). The external vector potential
should involve all the non-equilibrium contributions, so it should also
involve the contributions from the current and charge distributions
associated with the itinerant electrons. Hence, the electromagnetic
vector and scalar potentials must be consistent with the electric charge
density and charge current through the Maxwell equations. The elec-
tric charge density and the electric charge current can be computed
from the quasiclassical Green’s function. An example of where the
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quasiclassical equation, gap equation, and Maxwell’s equations are
solved self-consistently can be found in paper VIII. The aim of this
section is to provide the tools necessary to perform such calculations.

In this chapter, I will consider only time-independent systems, which
means that circle-products reduce to normal matrix products, 𝐴 ∘ 𝐵 =
𝐴𝐵. The equations become much harder to solve in the general case
in time-dependent systems. In the general time-dependent case, one
must use equation (6.31), which means that the equations are partial
differential equations of infinite order in time and energy. I consider
how to solve the equations in time-dependent systems in paper V.

7.1 Parametrization

The equations are partial differential equations of matrices. However,
not all of the matrix components are independent. This is because of
certain symmetries in the definition of the Green’s functions. Hence,
one does not have to solve for all the matrix elements separately. More-
over, by choosing a clever parametrization scheme one can ensure that
the normalization condition is automatically satisfied. This simul-
taneously removes this equation from the problem and gives fewer
unknown parameters to solve for. Such a parametrization scheme is
therefore advantageous compared to solving for the different matrix
elements of the Green’s function directly.

The symmetries of the Green’s function, and therefore also the form
of the parametrization, depends on the convention used for defining
the Green’s function. As previously shown, the Green’s functions are
defined as

𝐺̂𝑅
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜃(𝑡 − 𝑡′)𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
+
⟩ , (7.1a)

𝐺̂𝐴
𝑘1𝑘2(𝑡, 𝑡

′) = + 𝑖
𝑁
𝜃(𝑡′ − 𝑡)𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
+
⟩ , (7.1b)

𝐺̂𝐾
𝑘1𝑘2(𝑡, 𝑡

′) = − 𝑖
𝑁
𝜏𝑧 ⟨[𝑐𝑘1(𝑡), 𝑐

†
𝑘2(𝑡

′)]
−
⟩ , (7.1c)

and the difference between the different conventions is determined by
how the tuple of creation and annihilation operators are chosen. The
two most common choices are

𝑐†𝑘 = (𝑐†𝑘1↑ 𝑐†𝑘1↓ 𝑐†𝑘2↑ ⋯ 𝑐†𝑘𝑁𝑠↓ 𝑐−𝑘1↓ −𝑐−𝑘1↑ ⋯ −𝑐−𝑘𝑁𝑠↑) ,
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(7.2)

and

𝑐†𝑘 = (𝑐†𝑘1↑ 𝑐†𝑘1↓ 𝑐†𝑘2↑ ⋯ 𝑐†𝑘𝑁𝑠↓ 𝑐−𝑘1↑ 𝑐−𝑘1↓ ⋯ 𝑐−𝑘𝑁𝑠↓) ,
(7.3)

where 2𝑁𝑠 is the number of Wannier states associated with each unit
cell. In chapter 6 I chose the equation (7.2), but in my work I have used
both. Using that

⟨[𝑐𝑘1,𝑖(𝑡), 𝑐
†
𝑘2,𝑗(𝑡

′)]
±
⟩
∗
= ⟨[(𝑐𝑘2,𝑗)

†(𝑡′), (𝑐𝑘1,𝑖)
†(𝑡)]±⟩

= ± ⟨[(𝑐𝑘1,𝑖)
†(𝑡), (𝑐𝑘2,𝑗)

†(𝑡′)]±⟩ , (7.4)

one can deduce symmetries for the Green’s functions. For instance,
one gets that when using equation (7.3) that, after transforming to
Wigner coordinates,

𝐺̂𝑅/𝐴
𝑅𝑘 (𝑡, 𝑡′) = (

𝐺𝑅/𝐴
𝑅𝑘 (𝑡, 𝑡′) 𝐹𝑅/𝐴𝑅𝑘 (𝑡, 𝑡′)

[𝐹𝑅/𝐴𝑅(−𝑘)(𝑡, 𝑡
′)]∗ [𝐺𝑅/𝐴

𝑅(−𝑘)(𝑡, 𝑡
′)]∗

) , (7.5)

and

𝐺̂𝐾
𝑅𝑘(𝑡, 𝑡

′) = (
𝐺𝐾
𝑅𝑘(𝑡, 𝑡

′) 𝐹𝐾𝑅𝑘(𝑡, 𝑡
′)

−[𝐹𝐾𝑅(−𝑘)(𝑡, 𝑡
′)]∗ −[𝐺𝐾

𝑅(−𝑘)(𝑡, 𝑡
′)]∗) . (7.6)

When using the convention of equation (7.2), the symmetries can be
obtained from equations (7.5) and (7.6), since the Green’s functions in
the different are related through a similarity transformation.

If ̌𝐺𝑅,𝑘 = ̌𝐺𝑅,−𝑘, I get from integrating over an Eilenberger contour,
𝒞 𝐸
𝑖 , that the quasiclassical Green’s function satisfies

𝑔̂𝑅/𝐴𝑖 (𝜀) = (
𝑔𝑅/𝐴𝑖 (𝜀) 𝑓 𝑅/𝐴𝑖 (𝜀)

−[𝑓 𝑅/𝐴𝑖 (−𝜀)]∗ −[𝑔𝑅/𝐴𝑖 (−𝜀)]∗
) , (7.7)

and

𝑔̂𝐾𝑖 (𝜀) = (
𝑔𝐾𝑖 (𝜀) 𝑓 𝐾𝑖 (𝜀)

[𝑓 𝑅/𝐴𝑖 (−𝜀)]∗ [𝑔𝑅/𝐴𝑖 (−𝜀)]∗
) , (7.8)
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where I used that there is an extra imaginary factor 𝑖 in the definition
of the quasiclassical Green’s function and that the Fourier transform,
ℱ𝑡 satisfies ℱ𝑡{𝐴∗}(𝜀) = [ℱ𝑡{𝐴}(−𝜀)]∗. Written in terms the Pauli
matrices in Nambu space, {𝜏𝑥, 𝜏𝑦, 𝜏𝑥}, these identities can be written
𝑔̂𝑅/𝐴(𝜀) = −𝜏𝑥[𝑔̂𝑅/𝐴(−𝜀)]∗𝜏𝑥 and 𝑔̂𝐾(𝜀) = 𝜏𝑥[𝑔̂𝐾(−𝜀)]∗𝜏𝑥.

While this special case of ̌𝐺𝑅,𝑘 = ̌𝐺𝑅,−𝑘 is often assumed, it is not
assumed in my derivation presented in chapter 6. Therefore, these
symmetries do not follow in the general case. In the general case, the
symmetries depend on the structure of the Fermi surfaces in momen-
tum space. For simplicity, I assume here that ̌𝐺𝑅,𝑘 = ̌𝐺𝑅,−𝑘. In this case,
one can similarly deduce from equation (7.1) that

𝑔̂𝐴𝑖 (𝜀) = −𝜏𝑧[𝑔̂𝑅𝑖 (𝜀)]†𝜏𝑧. (7.9)

A parameterization of the quasiclassical Green’s function should
take into account the symmetries as well as the normalization condition

̌𝑔𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝑖) = 𝐾𝑖𝐹𝑖. (7.10)

The Keldysh part of this equation,

̌𝑔𝑅𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝐾𝑖 ) + ̌𝑔𝐾𝑖 ∘ (𝐹−1𝑖 ̌𝑔𝐴𝑖 ) = 0, (7.11)

is automatically satisfied if we write

̌𝑔𝐾𝑖 = ̌𝑔𝑅𝑖 ∘ (𝐹−1/2𝑖 ℎ𝑖𝐹
1/2
𝑖 ) − (𝐹 1/2𝑖 ℎ𝑖𝐹

−1/2
𝑖 ) ∘ ̌𝑔𝐴𝑖 . (7.12)

for any ℎ𝑖, as long as the retarded and advanced parts of the normal-
ization condition are satisfied. Here, ℎ𝑖 is known as the distribution
function, and in thermal equilibrium it is simply ℎ𝑖(𝜀) = tanh(𝛽𝜀/2),
where 𝛽 is inverse temperature, as shown in section 4.2. From equa-
tion (7.8), there are certain symmetries the distribution function must
satisfy, and the distribution function can in turn be parametrized.

The two most common parametrization schemes used for the re-
tarded and advanced quasiclassical Green’s functions are the Ricatti
parametrization [221, 222] and the 𝜃-parametrization [223]. In my
work I have exclusively chosen the former. As shown in section 6.3,
the quasiclassical Green’s function can always be transformed such
that

̌𝑔𝑠𝑖 ̌𝑔𝑠𝑖 = ̌𝑔𝑠𝑖 ∘ ̌𝑔𝑠𝑖 = 1, (7.13)
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where I used the assumption of time independence in the first equal-
ity. In the Ricatti-parametrization, the retarded quasiclassical Green’s
function is written

𝑔̂𝑅𝑖 = (
𝑁𝑖 0
0 𝑁̃𝑖

) (
1 + 𝛾𝑖 ̃𝛾𝑖 2𝛾𝑖
−2 ̃𝛾𝑖 −(1 + ̃𝛾𝑖𝛾𝑖)

) (7.14)

when using the equation (7.3) convention. Here, the ∼-operator is
defined as ̃𝛾𝑖(𝜀) = 𝛾∗𝑖 (−𝜀) and 𝑁𝑖 = (1 − 𝛾𝑖 ̃𝛾𝑖)−1. How the Ricatti
parametrization will look when using the equation (7.3) conventionwill
generally depend on which spin bands are present in the quasiclassical
Green’s function 𝑔̂𝑅𝑖 . In the normal case where 𝛾𝑖 includes one of each
spin band, then

𝑔̂𝑅𝑖 = (
𝑁𝑖 0
0 𝑖𝜎𝑦𝑁̃𝑖

) (
1 + 𝛾𝑖 ̃𝛾𝑖 −2𝛾𝑖𝑖𝜎𝑦
−2 ̃𝛾𝑖 (1 + ̃𝛾𝑖𝛾𝑖)𝑖𝜎𝑦

) . (7.15)

7.2 Discretization

When the quasiclassical Green’s functions have been parametrized, the
result is a set of coupled non-linear partial differential equations for
complex scalar parameters. The next step when solving the equations
numerically is then to discretize the equations. The word discretize
typically means to to approximate something continuous by discrete
values, but here I use the word to refer specifically to the process of
turning a coupled set of partial differential equations into a larger set
of algebraic equations or ordinary differential equations. In my work I
have mainly transformed partial differential equations into algebraic
equations when solving the equations numerically. When solving the
time-dependent equations, as in papers V and VII, it could be beneficial
to not discretize in the time dimension, such that the end product is
a set of coupled ordinary differential equations. This is because one
often only has one boundary condition in the time-dimension. The
two main discretization schemes I have utilized in my work have been
the finite element method and collocation methods.

7.2.1 The Finite Element Method

A general set of 𝑁 partial differential equations can be formulated

𝑅(𝑢1, 𝑢2, … , 𝑢𝑁) = 0, (7.16)
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where 𝑅 is some operator that takes as input the 𝑁 unknown functions
𝑢1 to 𝑢𝑁 and returns a tuple of 𝑁 functions. The aim is then to deter-
mine {𝑢1, … , 𝑢𝑁} such that all the 𝑁 functions are identically equal to
zero. Equation (7.16) is typically accompanied by a set of boundary
conditions. Sometimes, these can be incorporated by looking for so-
lutions in a vector space of functions where the boundary conditions
are satisfied, but more generally one must additionally solve a set of
equations

𝐵(𝑢1, 𝑢2, … , 𝑢𝑁)|𝒓∈∂𝛺 = 0, (7.17)

where 𝛺 is the domain of the functions and ∂𝛺 is the boundary of 𝛺.
One way to think about why the problem of analytically solving

a partial differential equation is difficult, is that the difficulty comes
from the fact that the relevant vector spaces of functions are nor-
mally infinite-dimensional. For any choice of basis functions {𝜑𝑖}, the
functions in {𝑢1, … , 𝑢𝑁} can be written

𝑢𝑗 =
∞
∑
𝑖=1

𝑎𝑖𝑗𝜑𝑖. (7.18)

Inserting this into equation (7.16) converts the problem into an algebraic
problem for the scalar coefficients {𝑎𝑖𝑗}. This is what we want, since
there are numerical techniques for solving coupled sets of algebraic
equations. Unfortunately, the number of these equations scales with
the dimensionality of the vector space. The infinite dimensionality
of function spaces means that one must solve a set of infinitely many
algebraic equations, which is not feasible to do numerically.

A natural approach to make the equations solvable is to write {𝑢𝑗} as
a linear combination of a finite number of basis functions, {𝜑1, … , 𝜑𝑛}.
That is, instead of looking for solutions in the whole space of func-
tions, one instead looks for solutions in a finite-dimensional subspace
of functions. This is the main idea behind a wide class of numerical
methods for solving differential equations, including spectral meth-
ods [224], pseudo-spectral methods [225] and finite-element meth-
ods [226, 227]. However, the chance of finding the exact solution in a
finite-dimensional subspace is vanishingly small. Inserting

𝑢𝑗 =
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝜑𝑖 (7.19)
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into equation (7.16) will in typically yield products such as 𝜑𝑖𝜑𝑗 which
may not lie in the finite-dimensional subspace. Thus, one cannot hope
to solve equations (7.16) and (7.17) exactly with this approach. Instead,
the best one can hope for is an approximate solution.

To find such an approximate solution, {𝑢̃𝑗}, one must turn equa-
tions (7.16) and (7.17) into 𝑛 × 𝑁 algebraic equations which can be used
to uniquely determine {𝑎̃𝑖𝑗}. The idea is that if {𝑎̃𝑖𝑗} can be chosen to
such that

𝑢̃𝑗 =
𝑛
∑
𝑖=1

𝑎̃𝑖𝑗𝜑𝑖 (7.20)

minimizes 𝑅 in the finite-dimensional subspace, then, as long as 𝑅 is
sufficiently nice, the difference between {𝑢𝑗} and {𝑢̃𝑗} should also be
small.

In the finite element method, the way of turning equations (7.16)
and (7.17) into algebraic equations is to take the inner product of each
of the components of 𝑅 with each of the basis functions. That is,

∫
𝛺
d𝑥 𝜑∗𝑘 (𝑥) [𝑅𝑗 (

𝑛
∑
𝑖=1

𝑎̃𝑖1𝜑𝑖, … ,
𝑛
∑
𝑖=1

𝑎̃𝑖𝑁𝜑𝑖)] (𝑥) = 0, (7.21)

for all 𝑘 ∈ {1, … , 𝑛} and 𝑗 ∈ {1, … , 𝑁 }. This gives the appropriate
number of equations. Equation (7.21) is closely related to what is called
the weak formulation of equation (7.16). In the weak formulation,
{𝑢1, … , 𝑢𝑁} must solve

∫
𝛺
d𝑥 𝑣∗(𝑥) [𝑅𝑗 (𝑢1, … , 𝑢𝑁)] (𝑥) = 0, (7.22)

for all functions 𝑣 in the space of test functions [184], meaning in-
finitely differential functions with compact support. Equation (7.22)
is known as the weak formulation because if the set {𝑢1, … , 𝑢𝑁} solves
equation (7.16), then it must also solve equation (7.22), but the reverse is
not true. That is, one can in some cases find solutions to equation (7.22)
that are not solutions to equation (7.16). In particular equation (7.22) can
have solutions in the space of distributions even when equation (7.16)
has no solutions. This happens for instance in systems with shocks,
and examples can be found in my work on the two-layer shallow water
equations [1, 2]. Equation (7.21) can be viewed as an approximation to
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the weak formulation where both the test functions and the solution
is restricted to a finite-dimensional subspace of functions.

The equations should also incorporate the boundary conditions.
Certain boundary conditions, such as periodic boundaries or boundary
conditions where either the value or the derivative is set to zero, can
be incorporated by choosing the set of basis functions such that all
linear combinations satisfy the boundary conditions. Otherwise, it can
be possible to rewrite equation (7.21) using partial integration such
that it incorporates the boundary conditions.

For a concrete example, take the diffusive differential equations from
quasiclassical theory, as derived in section 6.4. In the most general,
but time-independent case, these were

𝑖∇̃ ⋅ ̌𝒋𝑖 + [𝐹𝑖𝜀𝜏𝑧 − 𝐹𝑖𝐷|𝑠𝑝𝑖𝑖1𝐹
, ̌𝑔𝑠𝑖 ]

−
− 𝐹𝑖𝛺̌𝑠

0 ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 𝛺̌
𝑠
0𝐹𝑖

− 𝐹𝑖 ̌𝛴′
imp ̌𝑔𝑠𝑖 + ̌𝑔𝑠𝑖 ̌𝛴′

imp𝐹𝑖 = 0, (7.23)

and

̌𝒋𝑖 = −2𝐹−1𝑖 ̌𝑔𝑠𝑖 [𝐹−2𝑖 ∇̃ (𝐷𝑖 ̌𝑔𝑠𝑖 )] + 2𝐹−1𝑖 ̌𝑔𝑠𝑖 [𝐹−2𝑖 ̌𝒋𝑖 ̌𝑔𝑠𝑖 𝐹𝑖]

− 2𝐹−1𝑖 ̌𝑔𝑠𝑖 [𝐹−2𝑖

𝑁𝑞

∑
𝑗=1

𝜏imp,𝑖

2𝜏imp,𝑗
(𝐹𝑖 ̌𝑋𝑗 ̌𝒋𝑖 − ̌𝒋𝑖 ̌𝑋𝑗𝐹𝑖)]

− 𝐹−1𝑖 ̌𝑔𝑠𝑖 [𝐹−2𝑖 ∑
𝑗≠𝑖

𝜏imp,𝑖

𝜏imp,𝑗
(𝐹𝑖 ̌𝑔𝑠𝑗 ̌𝒋𝑖 − ̌𝒋𝑖 ̌𝑔𝑠𝑗 𝐹𝑖)] . (7.24)

Choosing a parametrization scheme for ̌𝑔𝑖, with parameters {𝑢1, … , 𝑢𝑁},
and extracting an appropriate amount of matrix elements of the equa-
tions, the equations can be more compactly written

∇ ⋅ 𝒋 + 𝑓 (𝑢1, … , 𝑢𝑁, 𝒋) = 0, (7.25a)

𝒋(𝑢1, … , 𝑢𝑁) = 𝒈(𝑢1, … , 𝑢𝑁, 𝒋), (7.25b)

where 𝒋 is a tuple of 𝑁 vectors, and 𝑓 and 𝒈 are some functions that
can be determined form equations (7.23) and (7.24). The divergence
of 𝒋 should be taken element-wise, meaning that one should take
the divergence of each of the 𝑁-vectors. When there is only one
quasiclassical Green’s function, 𝒋 can for example be chosen to be
𝑁 different components of the matrix current ̌𝒋1. When there are
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multiple quasiclassical Green’s functions, 𝒋 will contain elements from
all matrix currents, ̌𝒋1, … , ̌𝒋𝑁𝑞 , and the set of parameters, {𝑢1, … , 𝑢𝑁},
must parametrize all the isotropic Green’s functions, ̌𝑔𝑠1, … , ̌𝑔𝑠𝑁𝑞

. From
section 6.5 we also know that the boundary condition is

𝒏̂ ⋅ 𝒋|𝒓∈∂𝛺 = 𝑏(𝑢1, … , 𝑢𝑁), (7.26)

for some function 𝑏.
The first step to solving equation (7.25) numerically using the finite

element method is to choose a set of basis functions, {𝜑1, … , 𝜑𝑛}, and
write

𝑢𝑗 =
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝜑𝑖. (7.27)

Next, multiply the 𝑖’th element of equation (7.25a) with 𝜑∗𝑙 , where
𝑙 ∈ {1, … , 𝑛} and integrate over the domain 𝛺 to obtain

∫
𝛺
d𝑑𝑥 𝜑∗𝑙 (𝒙) [∇ ⋅ 𝒋𝑖(𝒙) + 𝑓𝑖(𝒙)] = 0, (7.28)

where 𝑑 is the number of spatial dimensions of 𝛺. Performing a partial
integration of the first term and using equation (7.26) together with
the divergence theorem, I get

∫
∂𝛺

d𝑑−1𝑥 𝜑𝑙(𝒙)𝑏𝑖(𝒙) + ∫
𝛺
d𝑑𝑥 {𝜑∗𝑙 (𝒙)𝑓𝑖(𝒙) − [𝒋𝑖(𝒙) ⋅ ∇] 𝜑∗𝑙 (𝒙)} = 0.

(7.29)

After performing the integrations, one is left with 𝑁 × 𝑛 algebraic
equations that can be solved for the unknown coefficients. In practice,
the integrations are performed numerically using collocation methods
discussed in section 7.2.2.

Because the equations are non-linear, finding the solutions must
typically be done iteratively, and the integrations might be necessary
at each step. How this step is performed in practice is presented in
section 7.3. With the general quasiclassical theory presented here,
this also involves solving equation (7.25b) to obtain the matrix current
at each point. From the coefficients, one can compute the Green’s
function, and then one can in turn compute the superconducting gap
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parameter or observables like densities and currents. In general, one
might then have to insert these values into Maxwell’s equations to
obtain updated values for the electromagnetic potentials, and then one
should solve equation (7.29) again with the updated parameters. This
should be repeated until there is consistency between the parameters
used in equation (7.29) and the values obtained from the solution of
equation (7.29) (see section 7.5).

The recipe presented above is the same for finite element methods
and spectral methods. The difference is just in the choice of basis
functions. In spectral methods the basis functions are chosen to be
global, meaning they are generally non-zero on the whole domain.
A popular choice of basis functions is the Fourier basis, {exp(𝑖𝑘𝑥)}.
On the other hand, the basis functions in finite element methods are
local, being only non-zero on small, finite elements. While the basis
functions of spectral methods are typically smooth and of high order,
the basis functions of finite element methods are typically polynomials
of low degrees with discontinuous derivatives. The strength of spectral
methods is that they have excellent convergence properties when the
solution is smooth. On the other hand, the local basis functions of
finite element methods give these methods great versatility. Even
very complex geometries can be divided into small elements, while
global basis functions on such domains can be difficult to define. It
is possible to combine the strengths of spectral methods and finite
element methods in so-called spectral element methods [228].

The finite element method has been used in papers I–IV. The domain
was divided into cells, and a number of basis functions were defined
for each cell. The basis functions were nonzero only in the nearest
cells, and they were polynomials of a small degree. Exactly how the
cells and basis functions were defined depended on the dimensionality.
For example, for two-dimensional systems I typically chose square
cells with 9 second-order polynomials at each cell.

In this section, I have not discussed the problem of error estimation.
That is, how large is the difference between the exact solution of equa-
tion (7.16) and the solution of equation (7.21). I have only presented
how to determine the finite element solution, but a proper introduction
to the finite element method should also show that the approximate so-
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lution converges to the exact solution as the number of basis functions
increases. Such analysis can be found in textbooks such as [227].

7.2.2 Collocation Methods

Collocation methods are similar to finite element methods in the sense
that one approximates functions by elements of finite-dimensional
subspaces of functions. In fact, finite element methods typically use
collocation methods to determine the basis functions. Collocation
methods refer to the general idea of using an equation on a specific
collection of points, so-called collocation points, in order to determine
the appropriate element from the subspace of functions [229]. The
basis functions of finite element methods, for example, are typically
chosen to be in the set of polynomials up to a certain degree such that
they are equal to 1 or 0 on the different nodes in the cells. However, in
the finite element approach, one uses an inner product of the equation
and the basis functions in order to convert the continuous partial
differential equation into a discrete set of algebraic equations. The
collocation method approach to this step would have been to instead
demand that the equations are satisfied on a set of collocation points
rather than the whole domain.

For another way to use collocation methods to discretize the equa-
tions, consider the one-dimensional version of the quasiclassical equa-
tions,

∂𝑗
∂𝑥

+ 𝑓 (𝑢1, … , 𝑢𝑁, 𝒋) = 0, (7.30a)

𝒋(𝑢1, … , 𝑢𝑁) = 𝑔(𝑢1, … , 𝑢𝑁, 𝒋), (7.30b)

where 𝑥 ∈ (𝑥𝐿, 𝑥𝑅), with boundary condition

𝑗(𝑥𝐿) = 𝑏𝐿(𝑢1, … , 𝑢𝑁), (7.31a)

𝑗(𝑥𝑅) = 𝑏𝑅(𝑢1, … , 𝑢𝑁), (7.31b)

Integrating equation (7.30a) from 𝑥 = 𝑎 to 𝑥 = 𝑏 gives

𝑗(𝑏) − 𝑗(𝑎) + ∫
𝑏

𝑎
d𝑥 𝑓 (𝑥) = 0. (7.32)

The integral can be approximated by collocation methods. Let 𝐿
be a function in the space of polynomials of degree 𝑝 − 1. In order to
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choose 𝐿 such that it approximates 𝑓, take 𝑝 different 𝑥-values in the
interval (𝑎, 𝑏), {𝑥1, … , 𝑥𝑝}, and choose 𝐿 such that

𝐿(𝑥𝑖) = 𝑓 (𝑥𝑖) (7.33)

for all 𝑖 ∈ {1, … , 𝑝}. This determines 𝐿 uniquely, and 𝐿 can be written
in terms of Lagrange polynomials [229]. Let

𝑙𝑖(𝑥) = ∏
𝑗≠𝑖

𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

. (7.34)

Then,

𝐿(𝑥) =
𝑝
∑
𝑖=1

𝑓 (𝑥𝑖)𝑙𝑖(𝑥), (7.35)

so

∫
𝑏

𝑎
d𝑥 𝑓 (𝑥) ≈ ∫

𝑏

𝑎
d𝑥 𝐿(𝑥) =

𝑝
∑
𝑖=1

𝑓 (𝑥𝑖) ∫
𝑏

𝑎
d𝑥 𝑙𝑖(𝑥) =

𝑝
∑
𝑖=1

𝑓 (𝑥𝑖)𝑤𝑖,

(7.36)

where 𝑤𝑖 = ∫𝑏𝑎 d𝑥 𝑙𝑖(𝑥). Hence, one can approximate

𝑗(𝑏) − 𝑗(𝑎) +
𝑝
∑
𝑖=1

𝑤𝑖𝑓 (𝑥𝑖) = 0. (7.37)

With this approximation, one can convert the set of partial differen-
tial equations into a finite set of algebraic equations. Let {𝑥𝐿, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑅}
be a set of 𝑛 points on the interval (𝑥𝐿, 𝑥𝑅). Take a set of 𝑛 differ-
ent 2-tuples from this set of points, {(𝑎1, 𝑏1), … , (𝑎𝑛, 𝑏𝑛)}, where 𝑎𝑖 ∈
{𝑥𝐿, 𝑥2, … , 𝑥𝑛−1} and 𝑏𝑖 ∈ {𝑥2, … , 𝑥𝑛−1, 𝑥𝑅} for all 𝑛. Integrating over
the interval (𝑎𝑖, 𝑏𝑖) and using the above approximation with Lagrange
polynomials gives

𝑗(𝑏𝑖) − 𝑗(𝑎𝑖) +∑
𝑗
𝑤 𝑖
𝑗𝑓 (𝑥𝑗) = 0, (7.38)

where the sum goes from 𝑥𝑗 = 𝑎𝑖 to 𝑥𝑗 = 𝑏𝑖 and the weights are

𝑤 𝑖
𝑗 = ∫

𝑏𝑖

𝑎𝑖
d𝑥 ∏

𝑘≠𝑗

𝑥 − 𝑥𝑘
𝑥𝑗 − 𝑥𝑘

, (7.39)
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where the product also goes from 𝑥𝑘 = 𝑎𝑖 to 𝑥𝑘 = 𝑏𝑖, not including
𝑥𝑘 = 𝑥𝑗. When 𝑎𝑖 = 𝑥𝐿 or 𝑏𝑖 = 𝑥𝑅, one should use the boundary
condition in equation (7.31) to evaluate 𝑗.

Performing this integration for all 𝑛 intervals gives 𝑛 × 𝑁 equations.
However, the number of unknown variables are 2𝑛𝑁, since to evalu-
ate 𝒋 and 𝑓 at all 𝑁 points, one must know not only the parameters
{𝑢1, … , 𝑢𝑁}, but also their derivatives, {∂𝑥𝑢1, … , ∂𝑥𝑢𝑁}. To get the same
amount of equations as unknowns, one can convert the set of second-
order partial differential equations to a set of twice as many first-order
differential equations. Let 𝑣𝑖 = ∂𝑥𝑢𝑖,

𝑗ext =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑗1
⋮
𝑗𝑁
𝑢1
⋮
𝑢𝑁

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝑓ext =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑓1
⋮
𝑓𝑁
−𝑣1
⋮

−𝑣𝑁

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (7.40)

Since, ∂𝑥𝑗ext + 𝑓ext = 0, we have that

𝑗ext(𝑏𝑖) − 𝑗ext(𝑎𝑖) +∑
𝑗
𝑤 𝑖
𝑗𝑓ext(𝑥𝑗) = 0, (7.41)

which gives the correct number of equations. Assuming the distances
between points are small, the differences between 𝑓 and the polynomi-
als used to determine 𝑤 𝑖

𝑗 are small.
To determine the value of the of the parameters, {𝑢1, … , 𝑢𝑁}, and their

derivatives, {∂𝑥𝑢1, … , ∂𝑥𝑢𝑁}, at a collection of 𝑛 points, {𝑥𝐿, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑅},
define a set of 𝑛 intervals, compute the corresponding weights through
equation (7.39) and solve equation (7.41), where the boundary condi-
tions are used to determine 𝑗 at the boundaries and equation (7.31b)
is used to determine the matrix current. Assuming that the differ-
ential equation is well-behaved, the difference between the solution
to equation (7.41) and the solution to equations (7.30) and (7.31) will
also be small. More precisely, if one defines a sequence of increas-
ingly large sets of points, such that the limit is dense in (𝑥𝐿, 𝑥𝑅), and
a sequence of functions that interpolates the solution found with the
above-mentioned method. Assuming this limit of functions converges,
the limit solves the differential equation.
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I have used this approach in papers VIII and X, where I have chosen
the points to be unilaterally spaced, and with most of the intervals
having lengths corresponding to 5 points. The weights, 𝑤 𝑖

𝑗 , are in this
case the same as for Boole’s quadrature rule [230]. There are not 𝑛
different intervals of length 5 in a set of 𝑛 points. To get the appropriate
number of intervals I also used additional smaller intervals near the
boundaries.

7.3 Solving Nonlinear equations

Having converted the partial differential equation to a large set of
nonlinear algebraic equations, the next step is to solve this set numeri-
cally. One method to achieve this is known as the Newton-Rhapson
method [231]. This method is conceptually simple, but requires a good
initial guess for the solution. Any general set of 𝑀 algebraic equations
of 𝑀 unknown complex parameters, 𝑢1, … , 𝑢𝑀 can be written

𝑅𝑖(𝑢1, … , 𝑢𝑀) = 0, (7.42)

where 𝑖 goes from 1 to 𝑀. More compactly, one can write

𝑅(𝑢) = 0, (7.43)

where 𝑅 = (𝑅1, … , 𝑅𝑀) and 𝑢 = (𝑢1, … , 𝑢𝑀).¹ Assuming that 𝑢̃ solves
equation (7.43) and that 𝑅 is at least once continuously differentiable in
all variables at 𝑢 = 𝑢̃, Taylor’s theorem for multivariate functions [232]
states that

𝑅𝑖(𝑢̃) = 𝑅𝑖(𝑢) +
𝑀
∑
𝑗=1

∂𝑅𝑖
∂𝑢𝑗

|
𝑢
(𝑢̃𝑗 − 𝑢𝑗) + ℎ(𝑢) = 0 (7.44)

where lim𝑢→𝑢̃ ℎ(𝑢)/|𝑢 − 𝑢̃| = 0. Under the assumption that 𝑢0 is close
to 𝑢̃, one can neglect ℎ(𝑢0) since it is at least second order in |𝑢0 − 𝑢̃|.
Hence, multiplying equation (7.44) by 𝐽−1(𝑢̃), where

𝐽𝑖𝑗(𝑎) =
∂𝑅𝑖
∂𝑢𝑗

|
𝑢=𝑎

(7.45)

1. In order to be consistent, I do not use bold font to denote tuples of numbers
unless they are geometric vectors in the standard physical sense.
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is Jacobian at 𝑢 = 𝑎, I get

𝑢̃ ≈ 𝑢0 − 𝐽−1(𝑢0)𝑅(𝑢0). (7.46)

In general, 𝑢1 = 𝑢0 − 𝐽−1(𝑢0)𝑅(𝑢0) will not be a solution to equa-
tion (7.43), but often it is a better guess than 𝑢0. An even better guess
can in turn be expected from redoing the same calculation with 𝑢1
instead of 𝑢0, that is, letting 𝑢2 = 𝑢1−𝐽−1(𝑢1)𝑅(𝑢1). This is the essence
of the Newton-Rhapson method. Let 𝑢0 be an initial guess and define

𝑢𝑛+1 = 𝑢𝑛 − 𝐽−1(𝑢𝑛)𝑅(𝑢𝑛), (7.47)

for 𝑛 ≥ 0. Under the assumption that this sequence converges and
lim𝑛→∞ 𝐽−1(𝑢𝑛) ≠ 0, the limit 𝑢 = lim𝑛→∞ 𝑢𝑛 is a solution to equa-
tion (7.43).

The convergence of thismethod is covered by theNewton-Kantorovich
theorem [233–235]. The theorem states that the Newton-Rhapson
method with initial guess 𝑢0 will converge to a solution 𝑢̃ if the Jaco-
bian is Lipschitz continuous on a ball of radius |𝑢0 − 𝑢̃| around 𝑢̃ and
if the inverse of the Jacobian, 𝐽−1 is bounded from above in the same
domain. To illustrate how, let

‖𝐽 ‖𝐹 =
√

𝑀
∑
𝑖,𝑗=1

|𝐽𝑖𝑗|2 (7.48)

be the Frobenius norm and let 𝐵𝑢̃(|𝑢0 − 𝑢̃|) be the ball of radius |𝑢0 − 𝑢̃|
around 𝑢̃. The Jacobian is Lipschitz continuous on 𝐵𝑢̃(|𝑢0 − 𝑢̃|) if there
exists a positive real number 𝐿 such that

‖𝐽 (𝑎) − 𝐽 (𝑏)‖𝐹 < 𝐿|𝑎 − 𝑏|, (7.49)

for all 𝑎, 𝑏 in 𝐵𝑢̃(|𝑢0 − 𝑢̃|). Moreover, 𝐽−1 is bounded from above on
𝐵𝑢̃(|𝑢0 − 𝑢̃|) if there exists a positive real number 𝜌 such that

‖𝐽−1(𝑎)‖𝐹 < 𝜌, (7.50)

for all 𝑎 in 𝐵𝑢̃(|𝑢0 − 𝑢̃|).
From the fundamental theorem of calculus,

𝑅(𝑎) − 𝑅(𝑏) = ∫
1

0
d𝑡 d

d𝑡
𝑅[𝑏 + 𝑡(𝑎 − 𝑏)]

= ∫
1

0
d𝑡 𝐽 [𝑏 + 𝑡(𝑎 − 𝑏)](𝑎 − 𝑏). (7.51)
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Setting 𝑎 = 𝑢̃, 𝑏 = 𝑢𝑛, using that 𝑅(𝑢̃) = 0, multiplying with 𝐽−1(𝑢𝑛)
from the left and using that 𝐽−1(𝑢𝑛)𝑅(𝑢𝑛) = 𝑢𝑛 − 𝑢𝑛+1, I get

𝑢𝑛−1 − 𝑢𝑛 = 𝐽−1(𝑢𝑛) ∫
1

0
d𝑡 𝐽 [𝑢𝑛 + 𝑡(𝑢̃ − 𝑢𝑛)](𝑢̃ − 𝑢𝑛). (7.52)

Subtracting 𝑢̃ − 𝑢𝑛 = 𝐽−1(𝑢𝑛)𝐽 (𝑢𝑛)(𝑢̃ − 𝑢𝑛) from both sides of the
equation, taking the norm and using equations (7.49) and (7.50), I
get

|𝑢̃ − 𝑢𝑛−1| = |𝐽−1(𝑢𝑛) ∫
1

0
d𝑡 {𝐽 [𝑢𝑛 + 𝑡(𝑢̃ − 𝑢𝑛)] − 𝐽 (𝑢𝑛)}(𝑢̃ − 𝑢𝑛)|

< 𝜌𝐿|𝑢̃ − 𝑢𝑛|2 ∫
1

0
d𝑡 𝑡 =

𝜌𝐿|𝑢̃ − 𝑢𝑛|2

2
. (7.53)

Hence, the Newton-Rhapson method is quadratically convergent.
From equation (7.53) one can see that whether or not 𝑢𝑛+1 will

be a better estimate for the solution 𝑢̃ compared to 𝑢𝑛 depends on
the magnitude of |𝑢̃ − 𝑢𝑛| as well as the magnitudes of the Lipschitz
constant 𝐿 and the upper bound 𝜌. In particular, the method is only
guaranteed to converge from an initial guess 𝑢0 if 𝜌𝐿|𝑢̃ − 𝑢0|/2 <
1. As a result, an important aspect of using the Newton-Rhapson
method is to ensure that the initial guess is close to a solution. In the
quasiclassical Green’s function formalism, one possible initial guess
is to use the known results for bulk systems. Under the assumption
that the effects from neighboring materials or boundaries are small,
this can be a good estimate for the solution. A better estimate can be
obtained by taking advantage of the fact that onemust usually solve the
equations for many different energies in order to compute observables.
At large energies, the influence of the various self-energies in the
system, such as the superconducting gap, becomes less important,
and a good estimate can be found by simply setting them to zero.
This typically means setting the matrix current and the quasiclassical
Green’s function equal to a bulk homogeneous solution. In the general
framework with flatness factor 𝐹𝑖, the Eilenberger equation (6.63),
the normalization condition (6.95) and the symmetry-requirements
discussed in section 7.1 are solved by 𝑔̂𝑅𝑖 = 𝐾𝑖𝐹𝑖𝜏𝑧.² One way to get

2. Actually, 𝑔̂𝑅
𝑖 = 𝐾𝑖𝐹𝑖𝜏𝑧 is not a unique solution to these equations. To determine

that 𝑔̂𝑅
𝑖 = 𝐾𝑖𝐹𝑖𝜏𝑧 is correct, one should start from the known full Green’s func-
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good convergence is therefore to start by solving the equations at
large energies, where this initial guess is particularly good, and then
progressively use the solution at larger energies as initial guesses
for the smaller energies. This works under the assumption that the
solution changes only by a small amount between consecutive energies.
Choosing an initial guess using this method requires that one knows
where in energy space the quasiclassical Green’s function changes
rapidly, which is not always trivial. In particular, this method is not
guaranteed to work well if the set of energies is chosen adaptively.

7.4 Forward-Mode Automatic Differentiation

A central part of the Newton-Rhapson method is to evaluate the Jaco-
bian. This involves differentiating all of the equations with respect to
all of the parameters. In this section, I briefly explain forward-mode
automatic differentiation [236], which is how I have determined Jaco-
bians in my work. The idea behind automatic differentiation is that
functions are often composed of elementary functions, such as poly-
nomials and exponentials, for which the derivatives are well-known.
Therefore, it is possible to differentiate through the chain rule.

Forward-mode automatic differentiation can be implemented rather
elegantly by defining objects called dual numbers [237, 238]. Much
like complex numbers, dual numbers contain two parts; one normal
part and one dual part. The normal part is often called the real part,
but to avoid confusion with complex numbers I use the term “normal
part”. Similar to how the unit imaginary number is denoted 𝑖, the unit
dual part is denoted 𝜀. An arbitrary dual number, 𝑢, can therefore be
written

𝑢 = 𝑎 + 𝑏𝜀. (7.54)

Here, 𝑎 and 𝑏 are the normal and dual parts of 𝑢, respectively, and 𝑎
and 𝑏 can in general be complex numbers. Continuing the analogy
with complex numbers, instead of 𝑖2 = −1, the unit dual part satisfies
𝜀2 = 0. In other words, 𝜀 can be thought of as an infinitesimal, and this
makes dual numbers especially useful in the context of differentiation.

tions obtained by setting 𝑉𝑘1𝑘2 = 0 in equation (6.18) an integrating using the
Eilenberger contour.
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Let 𝑓 (𝑥) be an analytic function of either real or complex numbers.
Because 𝑓 is analytic, one can write 𝑓 as

𝑓 (𝑥 + 𝑦) =
∞
∑
𝑛=0

𝑓 (𝑛)(𝑥)
𝑛!

𝑦𝑛, (7.55)

where 𝑓 (𝑛)(𝑥) is the 𝑛’th derivative of 𝑓 evaluated at 𝑥. Evaluating
𝑓 (𝑥 + 𝜀) using the Taylor series of 𝑓, one can see that

𝑓 (𝑥 + 𝜀) = 𝑓 (𝑥) + 𝑓 ′(𝑥)𝜀. (7.56)

Therefore, evaluating a function at 𝑥 + 𝜀 and taking the dual part of
the results produces the derivative of 𝑓 at 𝑥, 𝑓 ′(𝑥). Interpreting the
dual part as the derivative is consistent with the product rule, since

[𝑓 (𝑥) + 𝑓 ′(𝑥)𝜀][𝑔(𝑥) + 𝑔′(𝑥)𝜀] = 𝑓 (𝑥)𝑔(𝑥)
+ [𝑓 (𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓 ′(𝑥)]𝜀, (7.57)

and the chain rule, since equation (7.55) also implies that

𝑓 [𝑔(𝑥 + 𝜀)] = 𝑓 [𝑔(𝑥)+𝑔′(𝑥)𝜀] = 𝑓 [𝑔(𝑥)]+ 𝑓 ′[𝑔(𝑥)]𝑔′(𝑥)𝜀. (7.58)

In order to use dual numbers to compute derivatives numerically,
one must define the dual number as a data type and define addition,
subtraction, multiplication, and division between dual numbers. These
operators follow from the property that 𝜀2 = 0 and 𝑎𝜀 + 𝑏𝜀 = (𝑎 + 𝑏)𝜀.
Simply evaluating the function at 𝑥 + 𝜀 will then return the derivative
at 𝑥. This works also if the function is defined in terms of if-statements
or for-loops. To speed up the computation, one can also overload com-
mon analytic functions, such as trigonometric functions, exponentials,
logarithms, and polynomials.

7.5 Fixed-Point Acceleration

What makes solving the quasiclassical equations particularly difficult
to solve in some situations, is that the parameters of the equations
can depend on the solution integrated over all energies. In particular,
the gap depends on the energy integral of the anomalous Green’s
function, and the electromagnetic potentials depend on the electric
charge density and charge current, which in turn depends on the
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energy integral of the isotropic quasiclassical green’s function and the
matrix current.

In general, there are various parameters that define the system,
some will depend on the quasiclassical Green’s function and others are
externally fixed, like the size of the system or external spin-splitting
fields. Let 𝑃 = (𝑃1, … , 𝑃𝑛) be the collection of parameters that depend
on the quasiclassical Green’s function. In general, 𝑃 must solve

𝑃 = 𝑓 (𝑃) (7.59)

for some function 𝑓. The function 𝑓 involves solving the quasiclassical
equations many times for different energies and integrating the results.
Evaluating 𝑓 (𝑃) is therefore computationally costly.

The conceptually simplest method of ensuring that equation (7.59)
is satisfied is to first make an initial guess 𝑃0 and perform fixed-point
iterations

𝑃𝑛+1 = 𝑓 (𝑃𝑛). (7.60)

However, this procedure can be extremely inefficient, requiring pos-
sibly hundreds of evaluations of the computationally costly function
𝑓. For a more effective algorithm, one can write the problem as a
root-finding problem,

𝑔(𝑃) = 𝑓 (𝑃) − 𝑃 = 0. (7.61)

From section 7.3we know that this problem can be solvedwith quadratic
convergence through the Newton-Rhapson method,

𝑃𝑛+1 = 𝑃𝑛 − 𝐽−1(𝑃𝑛)𝑔(𝑃𝑛), (7.62)

where 𝐽 is the Jacobian. The Newton-Rhapson method has better
convergence, but it requires determining the Jacobian. Since 𝑓, and by
extension 𝑔, is a computationally complex function, involving solving
the quasiclassical equations and numerically integrating the results
over all energies, differentiating 𝑔 analytically is not feasible. Instead,
a crude estimate for the derivative can sometimes be obtained by using
finite differences combined with equation (7.60).

For simplicity, consider the case of a single parameter 𝑃. Let 𝑃𝑛
be some estimate for the parameter. The slow fixed-point iteration
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defined by equation (7.60) is performed for at least two steps, such that

𝑃𝑛+1 = 𝑓 (𝑃𝑛), (7.63a)

𝑃𝑛+2 = 𝑓 (𝑃𝑛+1). (7.63b)

To estimate the derivative, one can then use forward differences, such
that

𝐽 (𝑃𝑛) =
∂𝑔
∂𝑃

|
𝑃=𝑃𝑛

≈
𝑔𝑖(𝑃𝑛+1) − 𝑔𝑖(𝑃𝑛)

𝑃𝑛+1 − 𝑃𝑛
= −

𝑃𝑛+2 − 2𝑃𝑛+1 + 𝑃𝑛
𝑃𝑛+1 − 𝑃𝑛

.

(7.64)

Inserting this into equation (7.62), the updated estimate for the param-
eter can be evaluated as

𝑃𝑛+3 = 𝑃𝑛 −
(𝑃𝑛+1 − 𝑃𝑛)2

𝑃𝑛+2 − 2𝑃𝑛+1 + 𝑃𝑛
. (7.65)

This procedure of using finite differences as estimates for the deriva-
tive in theNewton-Rhapsonmethod is known as Steffensen’smethod [239].
One can accelerate the convergence by letting every 𝑘’th iteration be
given by equation (7.65) rather than equation (7.60), where 𝑘 is some
suitable integer. In theory it has quadratic convergence, but in practice
it requires consecutive steps in equation (7.60) to be sufficiently small
such that the finite difference estimate is a good approximation to the
derivative. Unfortunately, the number of parameters that depend on
the quasiclassical Greens function is almost never 1. Even if the only
unknown parameter is the superconducting gap parameter, solving
the equations requires knowing the superconducting gap parameter
at every point. Therefore, the number of unknown parameters, if
different from 0, is typically very large. Using Steffensen’s method
to evaluate the Jacobian properly in this case requires differentiating
the expression for the gap parameter at every point with respect to
changes in the gap parameter at every other point. This would be
much less efficient than simply using equation (7.60).

One approach is to treat the parameters as single parameters mean-
ing that the acceleration step is

𝑃𝑛+3,𝑖 = 𝑃𝑛,𝑖 −
(𝑃𝑛+1,𝑖 − 𝑃𝑛,𝑖)2

𝑃𝑛+2,𝑖 − 2𝑃𝑛+1,𝑖 + 𝑃𝑛,𝑖
. (7.66)
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for all 𝑖. In my experience, this has worked in some cases as long as the
acceleration step is not performed too often. However, it should not be
expected to work when changing one parameter strongly affects the
remaining parameters. That is, one should not expect this to work well
when the off-diagonal elements of the Jacobian are significant. For
instance, if the phases of the superconducting gap parameter change
between different iterations, the naive implementation of the Stef-
fensen acceleration method for the multivariate problem is less reliable.
For better convergence in the general case, one should use a method
that takes into account the multivariate nature of the problem, such
as the Anderson acceleration method [240] or another quasi-Newton
method [241].³ The quasi-Newton methods update not only the esti-
mate for the root but also the estimate for the Jacobian. For example,
Broyden’s method [241, 242] for solving 𝑔(𝑃) = 0 updates the solution
and the Jacobian according to

𝑃𝑛+1 = 𝑃𝑛 − 𝐽−1𝑛 𝑔(𝑃𝑛), (7.67a)

𝐽𝑛+1 = 𝐽𝑛 +
[𝑔(𝑃𝑛+1) − 𝑔(𝑃𝑛) − 𝐽𝑛(𝑃𝑛+1 − 𝑃𝑛)] (𝑃𝑛+1 − 𝑃𝑛)𝑇

(𝑃𝑛+1 − 𝑃𝑛)𝑇(𝑃𝑛+1 − 𝑃𝑛)
.

(7.67b)

There are also quasi-Newton methods that update the inverse Jacobian
𝐽−1 directly, such that one does not need to invert the Jacobian when
computing 𝑃𝑛+1 [241].

3. Fang, Saad [241] showed that the Anderson acceleration method can be inter-
preted as a quasi-Newton method.
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8Research Highlights
While considerable work has gone into the preparation of this thesis,
the bulk of my work is contained in the papers presented at the end of
the thesis. Since these are presented in their entirety, and since I have
already discussed the contents of many of them above, I have decided
not to review each paper individually. Instead, I give a short summary
of some highlights and overarching themes.

The projects contained in the appended papers can be separated into
two categories. First are the projects that apply existing theory, either
to uncover the physics of previously unexplored systems or reproduce
experimental results. The latter can be found in paper VIII, where,
despite few free parameters, the quasiclassical theory was able to re-
produce experimental scanning tunneling spectroscopy measurements
to an astonishing level of accuracy.

One common theme in this first category of projects is the study
of vortices. Vortices are topological defects in superconducting con-
densates that may come from applied magnetic fields. These vortices
are important to the physics of superconductors [243]. For exam-
ple, vortices, being topological in nature, cannot suddenly vanish and
can therefore be used as information carriers. They can move in re-
sponse to electric currents, and their movement is a source of electrical
resistance in the otherwise excellently conducting superconductors.
Vortices are associated with a few important characteristics. First, the
superconducting condensate is completely suppressed in the center of
a vortex, and there is a phase winding in the gap parameter around
the vortex. There are also circulating supercurrents around the vortex.

One question we studied in relation to vortices was regarding the
existence of vortices in pure odd-frequency spin-triplet superconduct-
ing condensates. This was done in paper I, where we theoretically
applyied a uniform magnetic field to a superconducting condensate
in a dirty half-metal in a superconductor/half-metal/superconductor
junction, illustrated in figure 8.1. Conduction electrons in half-metals
all have the same spin, so only spin-triplet superconducting correla-
tions are possible in such systems. Moreover, in diffusive half-metals
only odd-frequency spin-triplet correlations are possible.
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Figure 8.1: Taken from paper I. Illustration of a superconduc-
tor/half-metal/superconductor junction with an applied magnetic
field corresponding to two flux quanta, 𝜋ℏ/𝑒, where 𝑒 is the
electron charge. A plot of the local density of states is shown on
top of the half-metal. The blue dots are regions with density of
states equal to that of the normal state, and can be identified as
two vortex cores. The different symbols are explained in paper I.

After solving the equations, it is straightforward to study the directly
observable aspects of vortices. That is, by computing the local density
of states and electric current, it is straightforward to identify locations
with circulating supercurrents and cores where the local density of
states is equal to that of a normal metal. One of our results was that, al-
though spin-triplet odd-frequency condensates have different magnetic
properties compared to spin-singlet superconducting condensates, they
also show normal-state cores with circulating, resistance-free electrical
current in the presence of magnetic fields. What was less clear was
how these vortices are related to the superconducting order parameter.

In conventional superconductors, the expectation value of the Cooper
pair annihilation operator, ⟨𝑐𝑘↑𝑐−𝑘↓⟩, is often used as an order param-
eter¹ and vortices are topological defects in this parameter. I have
omitted the sum over momentum for simplicity. On the other hand,
there is no non-zero (equal-time) expectation value of Cooper pair
annihilation operators in purely odd-frequency condensates in the
same way. Instead, one can go to the Heisenberg picture and con-

1. While the term order parameter is often used, it should be noted that expectation
value of the Cooper pair annihilation operator is not gauge invariant.
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sider the more general correlation function ⟨𝑐𝑘↑(𝑡1)𝑐−𝑘↑(𝑡2)⟩.² One can
characterize odd-frequency superconducting condensates by non-zero
values of ⟨𝑐𝑘↑(𝑡1)𝑐−𝑘↑(𝑡2)⟩ for 𝑡1 ≠ 𝑡2, but it is not immediately clear
which choice of 𝑡1 and 𝑡2 to use or how this relates to vortices.

Different choices of 𝑡1 and 𝑡2 are used when defining order param-
eters from ⟨𝑐𝑘↑(𝑡1)𝑐−𝑘↑(𝑡2)⟩ in different contexts. What we found was
that not all choices lead to topological defects in the gap parameter that
corresponded to vortices as characterized by the observable normal
state density of states and circulating supercurrents. The best choice
in relation to vortices seems to be

𝛹2(𝑡) = lim
𝑡′→𝑡

∂
∂𝑡′

⟨𝑐𝑘↑(𝑡′)𝑐−𝑘↑(𝑡)⟩. (8.1)

In my experience, topological defects in this quantity always corre-
spond to physical vortices. On the other hand, other choices of 𝑡1 and
𝑡2 can give rise to topological defects in the order parameter that do
not correspond to physical vortices, as seen in figure 8.2. This quan-
tity can, at least in some cases, be considered the expectation value
of the annihilation operator for a composite boson. When viewing
odd-frequency superconductors as condensates of composite bosons,
𝛹2 is the natural choice for an order parameter. This is because the
Heisenberg equation tells us that

𝛹2 = 𝑖 ⟨[ℋ(𝑡), 𝑐𝑘↑(𝑡)]−𝑐−𝑘↑(𝑡)⟩ . (8.2)

Writing out the Hamiltonian and using the fermionic anticommutation
relation, one is left with the expectation value of products of annihila-
tion and creation operators. Depending on the terms in ℋ responsible
for the odd-frequency superconductivity, this can for example be the
expectation value for a composite boson consisting of a Cooper pair
and a magnon [67]. In our case, where the odd-frequency supercon-
ductivity comes from the proximity to a conventional even-frequency
spin-singlet superconductor, the picture with composite bosons is less
clear. Nevertheless, we found that 𝛹2 is still the optimal choice for an
order parameter, at least when it comes to vortices.

2. One can also call this a Cooper pair that is non-local in time. While one can talk
about temporally non-local Cooper pairs, their connection to superconducting
condensates is not the same as it is for standard Cooper pairs. It should also
be noted that conventional even-frequency superconductors also have these
temporally non-local Cooper pairs.
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Figure 8.2: Taken from paper I. The top right figure shows the
electric current circulating 4 vortices. The positions corresponds
to the topological defects in 𝛹2, as shown in the top left figures,
which show the amplitude and phase of 𝛹2. The bottom right
figure shows the electric current in a system with two vortices,
and the six plots to the left shows essentially ⟨𝑐𝑘↑(𝑡)𝑐−𝑘↑(0)⟩ for
different choices of 𝑡. In this case, different values of 𝑡 can give
additional topological defects which do not correspond to physical
vortices. See paper I for more details.
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The second category consists of the projects where we either de-
veloped new theory or used our newly developed theory to study
new systems. Part of my main motivation going into my Ph.D. have
been projects of this kind. In particular, I wanted to contribute to the
difficult problem of solving the Usadel equation in time-dependent
systems. The reason why this problem is so challenging is that the
Usadel equation, as derived above, involves circle products defined as

𝐴 ∘ 𝐵 = exp ( 𝑖
2
∂𝐴𝜀 ∂𝐵𝑇 −

𝑖
2
∂𝐵𝜀 ∂𝐴𝑇 )𝐴𝐵. (8.3)

In other words, the equations are complicated differential equations of
infinite order. As such, it is much simpler to consider time-invariant
systems where equation (8.3) reduces to 𝐴 ∘ 𝐵 = 𝐴𝐵.

If we want the systems we study to be used in real computers, where
voltages and currents change rapidly, and often not periodically in
time, it is important to know how the systems evolve in time under
such conditions. Unfortunately, the presence of circle products means
that no general algorithm exists for solving the equations in general
time-dependent cases. While there were known ways to solve the
equations when the temporal variation is slow or periodic, there was
no way to find transient solutions to sudden changes. In paper V, we
found a way to solve the equations with arbitrary time-dependence.
The catch is that it only works if the proximity effect is weak. However,
the regime of weak proximity effect is often a reasonable assumption,
and one typically has to assume this in order to solve the equations
analytically.

We applied the methodology to a superconductor/normal metal/su-
perconductor (S/N/S) junction with a sudden applied magnetic field. It
is well-known that an applied magnetic field to an S/N/S junction will
strongly suppress the superconductivity. It was therefore surprising
when we found that there was a certain period of time where the
applied magnetic field had the complete opposite effect. Instead of sup-
pressing the superconductivity, it strongly enhanced it (see figure 8.3).
This effect can be understood from the process which mediates su-
perconductivity to the normal metal. This process is called Andreev
reflection [244], and what happens is that the applied magnetic field
shifts the energies of the electrons such that the largest density of
states and the largest Andreev reflection probabilities overlap, giving a
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substantial increase in the superconductivity. After a time determined
by the rate of inelastic scattering, the electrons fall down to the low-
est unoccupied energy states, and the superconductivity is strongly
suppressed as expected.
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Figure 8.3: Taken from paper V. The supercurrent (left column)
and superconducting pair correlation function (right column)
in a S/N/S junction with a suddenly applied magnetic field,
sketched in the top light panel. Notice the strong enhancement
of superconductivity when strength of the Zeeman splitting 𝑚0 is
approximately equal to the magnitude of the gap, 𝛥. (c)-(f) shows
the temporal evolution with different parameters, where 𝑇 is time
after the magnetic field is applied.

Another application of this methodology can be found in paper VII,
where we used the time-dependent Usadel equation to ask the ques-
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tion of whether an effect similar to spin-pumping [245, 246] (see also
paper VI) can be achieved using electric fields. Spin-pumping is a pop-
ular way to generate spin from rotating magnetic fields. It would be
interesting if a similar effect was possible with electric fields, as there
are certain important advantages when using electric fields rather than
magnetic fields, such as the fact that electric fields can be easier to
localize than magnetic fields [132–136]. Using the newly developed
methodology, we found that this is indeed possible and that it should
be observable with currently known materials (see figure 8.4).

L

E
ωT

x

y

z

Beff

Imp

e

Gates Detector
Polarized
interface

V

0 1 2 3 4 5
0

10

20

30

α (10−12 eVm)

f
(G

H
z)

0

20

40

µz (µV)

Figure 8.4: Taken from paper VII. Top: sketch of a nanowire in
a rotating electric field with angular frequency 𝜔. The figure
show how the effective magnetic field for a moving electron, 𝑩eff,
changes due to collisions with impurities. Bottom: spin-voltage as
a function of frequency 𝑓 = 𝜔/2𝜋 and Rashba paramater 𝛼.
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Another big project that falls under the category of new theory
development has led to paper IX. In this paper, we developed a quasi-
classical theory that is applicable to antiferromagnetic metals. Unlike
ferromagnets, antiferromagnets are not covered by the standard qua-
siclassical theory for normal metals because the magnetic moments
oscillate on the atomic length scale. One approach that has previously
been used to model antiferromagnetic metals is to just treat them as
normal metals, using the justification that the magnetic field is com-
pensated on the length scale of the superconducting coherence length.
While this sounds reasonable, it is not capable of explaining why the
critical temperature in superconductor/antiferromagnetic metal struc-
tures is strongly suppressed and almost constant when the length of
the antiferromagnet is more than about the mean free path [247–249].
To explain this observation, one needs a proper theory for supercon-
ducting antiferromagnetic metals. Many of the key insights that lead
to paper IX are also what allowed me to derive the more general the-
ory presented in chapter 6. Armed with the quasiclassical theory for
antiferromagnetic metals, we studied superconductor/antiferromag-
netic metal bilayers in paper X (see figure 8.5), which provided a neat
physical explanation for the above-mentioned observations of critical
temperatures in such structures.
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Figure 8.5: Taken from paper X. The critical temperature in
superconductor/antiferromagnet (S/AF) bilayers as a function of
AF thickness, 𝐿𝐴𝐹. The critical temperature decreases faster as the
strength of the AF exchange coupling, 𝐽, increases.
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9Conclusion and Outlook
Starting from the foundations of quantum mechanics as symmetric,
and sometimes self-adjoint, operators acting on state vectors in an
abstract Hilbert space, I have shown the origin of spin, and how other
conservation laws arise in quantum field theories. By starting from
fully relativistic quantum electrodynamics, I also showed how the
coupling between spin and the electromagnetic field emerges. Ad-
ditionally, I showed how quantum field theories give rise to lattice
models in crystalline states of matter. Furthermore, I discussed how
the effective interactions between electrons, either mediated directly
through the electromagnetic field or through a combination of both
the electromagnetic field and the movement of ions, can give rise to
magnetism and superconductivity. Then, I showed how to turn these
models into solvable equations through Green’s function techniques,
and derived a general quasiclassical framework that can model het-
erostructures where each material have multiple Fermi surfaces and
different density of states associated with different energy bands. To
complete the picture of how to study mesoscopic systems, I showed
how the equations can be solved using numerical techniques and sum-
marized some of my work. While I am happy with everything I have
learned and achieved during my time as a graduate student, there still
remains much I would have liked to explore further. Here, I conclude
my thesis by discussing possible future research directions.

In particular, as much of my time has been spent on deriving new
theory, I would have liked more time to explore applications. For ex-
ample, there are likely interesting, unexplored physics in the realm of
transient phenomena in mesoscopic heterostructures. As such systems
have long been unfeasible to study with quasiclassical Keldysh theory,
much remains unexplored in this domain. In the simple example of a
superconductor/normal metal/superconductor Josephson junction, we
found a surprising and interesting sudden increase in superconductiv-
ity after an applied magnetic field. There are likely further fascinating
physics to discover in more complicated systems. For example, how
do different Josephson junctions react to sudden applied voltages, or
how do the vortices in two-dimensional Josephson junctions form and
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find their equilibrium positions after an application of an out-of-plane
magnetic field?

Superconductor/antiferromagnet structures are much less explored
than superconductor/ferromagnet structures, which was an impor-
tant motivation for the derivation of quasiclassical theory capable of
modeling such systems. We explored equilibrium superconductor/an-
tiferromagnet bilayers in paper X, but it could be interesting to explore
trilayers and nonequilibrium, or even time-dependent physics in such
structures. Although we showed that spin-singlet superconducting
correlations are short-ranged in diffusive metallic antiferromagnets, we
also showed that some spin-triplet correlations are long-ranged. This
is analogous to the situation in ferromagnets and means that metal-
lic antiferromagnets can be useful in the context of superconducting
spintronics.

In this thesis, I also derived a more general quasiclassical theory that
can also be used in systems with multiple energy bands with different
flatness. It could for example be interesting to apply this to flatband
superconductors. Clean flatband superconductors have theoretically
been shown to exhibit extraordinary magnetic resilience, surviving
magnetic fields beyond the Chandrasekhar-Clogston limit [213]. With
the theory presented in chapter 6, one could explore whether this
prediction survives in the presence of impurities, and one could model
more complex structures involving flatband superconductors in various
heterostructures and with various geometries.
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When the impurity mean free path is short, only spin-polarized Cooper pairs which are nonlocally and

antisymmetrically correlated in time may exist in a half-metallic ferromagnet. As a consequence, the half-metal

acts as an odd-frequency superconducting condensate. We demonstrate both analytically and numerically that

quantum vortices can emerge in half-metals despite the complete absence of conventional superconducting

correlations. Because these metals are conducting in only one spin band, we show that a circulating spin

supercurrent accompanies these vortices. Moreover, we demonstrate that magnetic disorder at the interfaces

with the superconductor inuences the position at which the vortices nucleate. This insight can be used to help

determine the effective interfacial misalignment angles for the magnetization in hybrid structures since the vortex

position is experimentally observable via scanning tunneling microscopy measurements. We also give a brief

discussion regarding which superconducting order parameter to use for odd-frequency triplet Cooper pairs in the

quasiclassical theory.

DOI: 10.1103/PhysRevB.100.224508

I. INTRODUCTION

New physical phenomena can emerge at the interface

between materials with different quantum orders. One such

example is in systems combining ferromagnetism and super-

conductivity, where it is possible to generate Cooper pairs

that are both spin polarized and correlated nonlocally in time.

This has become the basis for the eld of superconducting

spintronics [1], which has as one of its goals enabling new

types of devices utilizing spin-polarized supercurrents [2]. On

a more fundamental level, it is of interest to consider the

interplay between different types of spontaneous symmetry

breaking in such hybrid structures since symmetry breaking

governs a wide range of physical phenomena, including mass

differences of elementary particles and phase transitions.

Half-metallic ferromagnets are 100% spin polarized,

meaning that only one spin band is conducting. Any super-

current owing through such a material, as has been observed

experimentally [3], is therefore necessarily spin polarized.

This makes half-metals especially interesting to study in

order to understand how superconductivity adapts to a fully

polarized environment. Much experimental and theoretical

work was recently conducted in order to understand hybrid

structures involving superconductors (S) and half-metals (H)

[3–15].

One hitherto unsolved problem is whether superconducting

quantum vortices can form in half-metallic materials. This is

an unusual physical situation since the electrons are correlated

exclusively nonlocally in time such that the half-metal, in

fact, mimics a purely odd-frequency [16] superconducting

state. Vortices have nonsuperconducting cores and a phase

winding of an integer multiple of 2π in the superconducting

order parameter, leading to circulating supercurrents [17]. In

addition to being interesting from a fundamental physics point

of view, understanding the behavior of vortices is useful on a

practical level. Their motion is a source of nonzero electrical

resistance [18], and recently, it was proposed that vortices can

be used as a means for long-range spin transport [19].

It is known that vortices can form also inside normal

metals that are in proximity to a superconductor [20–23].

Cooper pairs can then leak into the normal metal through the

process of Andreev reection [24]. This is the key mechanism

behind the proximity effect, which consists of weak super-

conductivity observed in a material placed in contact with a

superconductor.

The proximity effect in half-metals is more complicated

because it requires a mechanism which converts the spinless

(singlet) Cooper pairs to spin-polarized (triplet) pairs. The

theorized mechanism to produce such correlations involves

spin mixing and spin-ip scattering at the interface [8]. Spin

mixing introduces triplet correlations on the superconducting

side, and spin-ip scattering mediates these correlations to the

half-metallic side.

What allows us to investigate SH heterostructures in the

presence of an external magnetic eld is the recent derivation

of general spin-active boundary conditions for the quasiclassi-

cal theory applied to diffusive systems [9,10]. This means that

we can apply the quasiclassical Usadel theory in such a way

that the Cooper pair conversion mechanism described above

is included.

Here we apply this theory both analytically and numer-

ically to a two-dimensional SHS junction as depicted in

Fig. 1 under a constant perpendicular magnetic eld. The con-

stant magnetic eld will, in general, have contributions both

from the uniform magnetization in the half-metal and from

a uniform applied eld. We nd that vortices indeed form

in the purely triplet odd-frequency superconducting conden-

sate existing in the half-metallic ferromagnet. Their location

depends not only on the superconducting phase difference

but also on the effective interfacial magnetization directions

characterizing either magnetic disorder or articially inserted

thin ferromagnetic layers [5].

2469-9950/2019/100(22)/224508(9) 224508-1 ©2019 American Physical Society
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FIG. 1. Sketch of a SHS junction. The half-metal has a uniform

magnetization direction m. The interfaces with the left and right

superconductors have effective magnetization directions ml and mr ,

respectively. These may come from, for instance, articially inserted

thin ferromagnetic layers or interfacial magnetic disorder. θl and θr
are the associated polar angles, and αl and αr are the associated

azimuthal angles. L andW are the length and width of the half-metal,

respectively. The blue regions show the vortex cores where the DOS

equals its normal-state value. Away from the cores, the DOS deviates

from its normal-state value due to the superconducting proximity

effect.

II. METHODOLOGY

In this section we discuss the quasiclassical Usadel theory

and how it may be used to analyze the SHS junction depicted

in Fig. 1. We rst present the mathematical tools and end with

the numerical implementation.

A. Quasiclassical theory

The SHS junction depicted in Fig. 1 can be treated in the

quasiclassical formalism under the assumption that the Fermi

wavelength is much shorter than all other relevant length

scales. This assumption is seemingly broken in the half-metal,

where the exchange eld is so large that the associated energy

is not negligible compared to the Fermi energy [25]. The re-

demption comes from the realization that the spin splitting in

such system is so severe that there is effectively no interaction

between different spin bands. We can then continue to use the

quasiclassical theory if we, instead of including an exchange

eld, treat the spin bands as noninteracting. If, in addition,

the system is diffusive, meaning that the scattering time is

small, the isotropic part of the quasiclassical Green’s function

dominates and solves the Usadel equation [26–29],

D∇̄ · (ǧ∇̄ǧ)+ i[ερ̂3 + ̂ , ǧ] = 0. (1)

Here D is a diffusion constant, ρ̂3 = diag(1, 1,−1,−1), and

̂ = antidiag(+,−,+∗,−∗), where  is the super-

conducting gap parameter. In the superconductors D is a

scalar, while in the half-metal it is diag(D, 0), assuming that

the conducting band is spin up. The covariant derivative is

∇̄ǧ= ∇ǧ− ie[ρ̂3A , ǧ], where A is the vector potential and

ǧ=



ĝR ĝK

0 ĝA



(2)

is the quasiclassical impurity-averaged Green’s function. ǧ is

normalized such that ǧǧ= 1. We use the convention that when

two matrices of different dimensionalities are multiplied, the

smaller matrix is elevated to the dimensionality of the larger

matrix by the tensor product of an identity matrix of the

appropriate size. In equilibrium, the components of the 8×

8 Green’s function in Eq. (2) are related by the identities

ĝK = (ĝR − ĝA) tanh(εβ/2) and ĝA = −ρ̂3ĝ
R†ρ̂3, which means

that in this case it is sufcient to solve for the retarded

component ĝR.

The Usadel equation can be made dimensionless by in-

troducing the Thouless energy, εT := D/L2, and measuring

length scales relative to L and energies relative to εT.

In general, the Usadel equation has to be solved together

with the Maxwell equation in a self-consistent manner. How-

ever, we are interested here in the case where the width W

is smaller than the Josephson penetration depth. In this case

one can ignore the screening of the magnetic eld by the

Josephson currents, and the magnetic eld is equal to the

external one [30].

To simplify the numerical and analytical calculations we

assume that the magnetic eld is zero inside the supercon-

ductors. This assumption is widely used [20,21] and has

been shown to give good agreement with experimental results

[31]. Reference [32] found that including the vector poten-

tial in the superconductors leads to corrections proportional

to λs/L, where λs is the effective penetration depth in the

superconductors and L is the length of the junction. Assuming

λs/L is small, we neglect the corrections from the vector

potential to the Green’s function in the superconductors. We

use the vector potential eA = −nπy/W [θ (x)− θ (x − L)]ex,

where n = /0 is the number of ux quanta penetrating the

half-metal and ex is the unit vector in the x direction.

B. Boundary conditions

The quasiclassical formalism is not applicable across

boundaries because the associated length scale is too short.

The Usadel equation must therefore be solved in the half-

metal and superconductors separately, and the solutions must

be connected through boundary conditions. These can be

written

GiLien ·


ĝRi ∇̄ĝRi


= Î


ĝRi , ĝ
R

j



, (3)

where en is the outward-pointing normal vector for region i,

Gi is the bulk conductance of material i, and Li is the length of

material i in the direction of en. Î (ĝ
R
i , ĝ

R
j ) is the matrix current

from material i to material j.

The matrix current for general spin-active boundaries be-

tween diffusive materials was found in 2015 by Eschrig et al.

[9]. The expression to second order in spin-mixing angles

and transmission probabilities was simplied in 2017 by

Ouassou et al. [10], making them easier to implement and

more efcient to compute. This is the expression we will use

here, and it reads

Î =
Gi

0

2
[ĝi , F (ĝ j )]−

iGi
φ

2
[ĝi , m̂i]+

Gi
2

8
F (ĝ j )ĝiF (ĝ j )

+
Gi

φ2

8
[ĝi , m̂iĝim̂i]+

iGi
χ

8
[ĝi , F (ĝ j )ĝim̂i + m̂iĝiF (ĝ j )]

+
iG

j
χ

8
[ĝi , F (ĝ j m̂ j ĝ j − m̂ j )], (4)
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where, for a half-metallic ferromagnet, F (v̂) = v̂ + {v̂ , m̂} +

m̂v̂m̂ and m̂k = diag(mk · σ,mk · σ
∗). Here σ = (σi, σ2, σ3)

ᵀ

is the vector of Pauli matrices, and mk is a unit vector in the

direction of the magnetization experienced by a particle being

reected in material k. Similarly, m̂ = diag(m · σ,m · σ∗),
wherem is the unit vector in the direction of the magnetization

being felt by a particle which is transmitted. The interface

conductances are [10]

Gi
0 = Gq

N
∑

n=1

T i
n , Gi

φ = 2Gq

N
∑

n=1

φi
n,

Gi
2 = Gq

N
∑

n=1



T i
n

2
, Gi

χ = Gq

N
∑

n=1

T i
nφ

i
n,

Gi
φ2 = 2Gq

N
∑

n=1



φi
n

2
,

(5)

where T i
n and φ

i
n are, respectively, the transmission probability

and spin mixing angle for tunneling channel n from material

i to material j. For boundaries interfacing vacuum at y =

±W/2, the matrix current is Î = 0.

C. Riccati parametrization

In the Riccati parametrization [33] of ĝR, the parameter is

the 2× 2 matrix γ and the retarded Green’s function is written

ĝR =



N 0

0 −Ñ



1+ γ γ̃ 2γ

2γ̃ 1+ γ̃ γ



, (6)

where N := (1− γ γ̃ )−1 and tilde conjugation is γ̃ (ε) =

γ ∗(−ε).

There is only one conducting spin band in a half-metal, and

as a result γ has only one nonzero element,

γHM =



a 0

0 0



. (7)

Substituting this into Eq. (1), we nd that a solves the equation

∇2a+
2ã∇a ·∇a

1− aã
=

4(1+ aã)eA · (aeA+ i∇a)

1− aã
− 2iεa.

(8)

In Sec. III A we will show that the Green’s function in

the superconductors can be taken to be the bulk Green’s

function. Thus, the Riccati parameter can be written as γSc =

antidiag(b,−b), where b is a function of ε and the supercon-

ducting gap parameter . Inserting this and Eqs. (4) and (7)

into Eq. (3), we get

GHMen ·∇a = 4GHM

0 BCa− GHM

2 B2C2a(aã+ 3)

+ 2iGSC

χ BC2 sin θ (be−iα − b̃eiαa2)

+ 2iGHMaen · Ae, (9)

where B = bb̃− 1, C = 1/(1+ bb̃), and θ and α are the an-

gles for the magnetization directions on the superconducting

side, as shown in Fig. 1. The corresponding equations for ã

and en ·∇ã are found by tilde conjugating Eqs. (8) and (9).

From Eq. (9) it can be seen that in order to have a

nonzero solution for a it is necessary that either sin θl = 0 or

sin θr = 0. This means that having the effective magnetization

angles at the interface not parallel to the uniform magneti-

zation of the half-metal is necessary for the occurrence of

superconducting triplet correlations in the half-metal. This

is because the creation of a long-range spin triplet requires

spin mixing and spin rotation [1,8]. When spin-singlet Cooper

pairs in a superconductors encounter an interface with effec-

tive magnetization direction ml , the spin-active boundary will

produce spin triplets with zero spin along ml . If ml is not

parallel to the magnetization of the half-metal m, then the

triplet with zero spin along ml will have a nonzero projection

onto the spin-triplet state with spin 1 along m. Hence, if the

interfacial magnetization angles are not parallel to m, the

spin-active boundaries will produce equal spin triplets.

D. Observables

As mentioned initially, a vortex is accompanied by a

normal-state density of states and a circulating supercurrent.

This can be extracted from the quasiclassical Green’s func-

tion. In the following it will be useful to write

ĝR =

(

g f

− f̃ −g̃

)

. (10)

In the half-metal, f has only one nonzero component, f↑.

1. Local density of states

The local density of states for spin band σ at energy ε and

location r can be written

Nσ (ε, r) = N0Re{gσσ (ε, r)}, (11)

where N0 is the normal-state density of states at the Fermi

surface. In the half-metal we can write Eq. (11) in terms of a,

N (ε, r) := N↑(ε, r) = N0

1+ aã

1− aã
. (12)

2. Supercurrent

Written in terms of the quasiclassical Green’s function, the

current density is [26]

j =
N0eD

4

∫ ∞

−∞
Tr(ρ̂3[ǧ∇̄ǧ]K)dε. (13)

Inserting Eq. (10), using the relations ĝA = −ρ̂3ĝ
R†ρ̂3, ĝ

K =

(ĝR − ĝA) tanh(εβ/2), Eq. (13) can be rewritten

j =
N0eD

2

∫ ∞

−∞
tanh



βε

2



Tr(Re[ f̃ †∇ f † − f∇ f̃ ]

+ 2eA Im[ f f̃ − f̃ † f †])dε. (14)

The spin current can be found by multiplying the matrix in

the integrand of Eq. (13) by the Pauli matrix corresponding

to the appropriate spin direction before taking the trace. For

a half-metal magnetized in the z direction, the z component

of the spin supercurrent polarization is proportional to the

electric current while the remaining spin current components

vanish.
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3. Cooper pair correlation function

The study of vortices in diffusive half-metals naturally

raises the question of how to dene the superconducting order

parameter. In a normal superconductor, the order parameter is

ψ↑(r, 0)ψ↓(r, 0), where ψσ (r, t ) is the eld operator which

destroys an electron with spin σ at position r and time t .

The same order parameter is used in a normal metal, but the

analogous quantity for the half-metal, ψ↑(r, 0)ψ↑(r, 0), is
always zero because of the Pauli exclusion principle. That is,

the Cooper pair correlation function in a diffusive half-metal

must vanish at equal times and is thus temporally nonlocal

[16].

One approach of dening an order parameter in odd-

frequency superconducting condensates, which is often used

in the Bogoliubov–de Gennes formalism [34], is to keep the

relative time coordinate t nite between the eld operators,

that is,

1(r, t ) := ψ↑(r, t )ψ↑(r, 0)

=
−iN0

2

∫ ∞

−∞
f↑(r, ε) tanh(εβ/2) sin(εt )dε. (15)

Another frequently used strategy [35] is to make the order

parameter even in time by differentiation. This yields

2(r) :=
∂1

∂t

∣

∣

∣

∣

t=0

=
−iN0

2

∫ ∞

−∞
ε f↑(r, ε) tanh(εβ/2)dε.

(16)

Below, we shall compare these two possible choices for the or-

der parameter describing the odd-frequency superconducting

condensate to see which of them correctly captures the vortex

behavior.

E. Numerics

The Usadel equation was solved numerically using a nite-

element scheme. See, for instance, [36] to see how to set up

and solve the nonlinear Usadel equations in a nite-element

scheme using the Newton-Raphson method. The program

was written in JULIA [37], we used quadratic quadrilateral

elements, and JUAFEM.JL [38] was used to iterate through the

cells. Gauss-Legendre quadrature rules of the fourth order

were used to integrate through the cells, and Romberg integra-

tion was used to integrate over energy. See, for instance, [39].

Finally, forward-mode automatic differentiation [40] was used

to calculate the Jacobian.

III. RESULTS AND DISCUSSION

Here we present rst an analytical solution of the Usadel

equation in the weak proximity effect regime; then we show

numerically that the ndings are present also in the full

proximity effect regime. Dimensionless quantities are used in

the analytics, with length being measured relative to the length

of the half-metal L and energies being measures relative to the

Thouless energy εT = D/L2, whereD is the diffusion constant

in the half-metal.

A. Analytics

In order to justify Eq. (9) we will show that it sufces to

use the bulk solution

ĝBCS =

[

θ (ε2 − ||2)


ε2 − ||2
sgn(ε)− θ (||2 − ε2)



||2 − ε2
i

]

(ερ̂3 + ̂)

(17)

in the superconductors when a certain condition is fullled.

Let λ (to be dened quantitatively below) be the length scale

over which the Green’s function recovers its bulk value in the

superconductor. The criterion for neglecting the inverse prox-

imity effect in the superconductors is then that the normal-

state conductance of the superconductors for a sample of

length λ is much larger than the interface conductance and

that the length of each superconductor is not small compared

to λ. We now proceed to prove this.

First, let

ĝ= ĝBCS + δĝ (18)

be the solution of the dimensionful Usadel equation,

DSC∇ · (ĝ∇ĝ)+ i[ερ̂3 + ̂ , ĝ] = 0, (19)

in the superconductor at x < 0. This gives an equation for δĝ,

DSC∇ · ([ĝBCS + δĝ]∇δĝ)+ i[ερ̂3 + ̂ , δĝ] = 0, (20)

where we have used the fact that ĝBCS solves the Eq. (19)

for a bulk superconductor and assumed that the variations of

the gap parameter from the bulk value are negligible. Next,

we assume the inverse proximity effect to be weak, such that

δĝ ĝBCS. Using ĝBCSĝBCS = 1, this yields

DSC∇2δĝ+ iĝBCS[ερ̂3 + ̂ , δĝ] = 0. (21)

ĝBCS + δĝ must also satisfy the normalization condition ĝ2 =

1, so

(ĝBCS + δĝ)2 = 1 ⇒ {ĝBCS , δĝ} = 0. (22)

Hence, using [ερ̂3 + ̂ , ĝBCS] = 0,

ĝBCS[ερ̂3 + ̂ , δĝ] = (ερ̂3 + ̂)ĝBCSδĝ+ δĝ(ερ̂3 + ̂)ĝBCS

= {δĝ , (ερ̂3 + ̂)ĝBCS}. (23)

Finally, from

(ερ̂3 + ̂)2 = ε2 −2 (24)

we nd that δĝ is an eigenfunction of the Laplacian,

∇2δĝ= λ−2δĝ, (25)

where

λ−2 = − 2i

DSC

[sgn(ε)

√

ε2 − ||2θ (ε2 − ||2)

+ i

√

||2 − ε2θ (||2 − ε2)]. (26)

We can choose the sign of λ to be such that Re(λ) > 0.

Using the boundary condition

∇δĝ|r∈ = 0, (27)
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where  is the boundary not interfacing with the half-metal,

we get

δĝ(ε, x, y) = C[e−|x|/λ + e(|x|−2LSC)/λ], (28)

where C is some function of y and ε to be determined by

the nal boundary condition. If the matrix current across this

boundary is ÎSC, then

C =
ĝBCS ÎSC

(1− e−2LSC/λ)GSCLSC/λ
. (29)

From Eq. (28) we see that Re(λ) can be interpreted as the

penetration depth of δg. Note that Re(λ) is bounded by

including the effect of inelastic scattering, which is done by

the substitution ε → ε + iδ for some positive scattering rate

δ [41]. This ensures that 1/(1− e−2LSC/λ) remains nite as

ε → . From the denition of λ in Eq. (26) we see that

Re(λ) = λ when ε < || and Re(λ) = |λ|/
√
2 otherwise.

GSC is the conductance over the whole length LSC of the

superconductor and is therefore proportional to 1/LSC. Hence,

GSCLSC/Re(λ) is the normal-state conductance of a supercon-

ductor of length Re(λ). From the denition of Î in Eq. (4) we

see that C, and therefore δg, becomes negligible when

max


GSC

0 ,GSC

φ ,GSC

2 ,GSC

φ2,G
SC
χ ,GHM

χ



GSCLSC/Re(λ)
 1, (30)

provided that the length of the superconductor LSC is not small

compared to the maximal penetration depth max[Re(λ)]. A

similar calculation shows that we can use ĝBCS also in the

superconductor at x > L.

Taking the superconducting coherence length ξ as a mea-

sure of the inverse proximity effect penetration depth Re(λ),

we see that the criterion (30) is indeed experimentally feasi-

ble. The equation is fullled for a low-transparency interface

and for a superconductor that is larger than the coherence

length.

Next, we turn to the solution of the Usadel equation in

the half-metal, Eq. (8), together with the boundary condition

(9). In order to solve these equations we must make some

simplifying assumptions. If we assume the proximity is weak,

we can keep only terms which are linear in a and ã and their

gradients. In this case the dimensionless Usadel equation (8)

decouples:

∇2a = 4A · (aA+ i∇a)− 2iεa, (31a)

∇2ã = 4A · (ãA− i∇ã)− 2iεã. (31b)

and so do the boundary conditions,

en ·∇a =

{

4
GHM

0

GHM
BC − 3

GHM

2

GHM
B2C2 + 2ien · Ae

}

a

+ 2i
GSC

χ

GHM
BC2|b| sin θei(φ−α), (32a)

en ·∇ã =

{

4
GHM

0

GHM
BC − 3

GHM

2

GHM
B2C2 − 2ien · Ae

}

ã

− 2i
GSC

χ

GHM
BC2|b̃| sin θe−i(φ−α). (32b)

Equation (31) can be further simplied in the so-called

wide junction limit, where n/W  1. If A = 0, the solution

of Eq. (31) is constant in the y direction. Assuming this is

approximately true also for small A, we neglect the term ∂2y a.

Equation (31) can now be solved exactly, as it is a second-

order ordinary differential equation with constant coefcients.

The solution of Eq. (31a) is

a = C1e
(u+k)x +C2e

(u−k)x, (33)

where u = −2π iny/W , k =
√−2iε, and C1 and C2 are inde-

pendent of x.

Determining C1 and C2 requires the boundary conditions,

which can be written

∂a

∂x

∣

∣

∣

∣

x=0

= −c sin θl e
i(φl−αl ) − (d − u)a, (34a)

∂a

∂x

∣

∣

∣

∣

x=1

= c sin θre
i(φr−αr ) + (d + u)a, (34b)

where

c = 2i
GSC

χ

GHM
BC2|b|, d = 4

GHM

0

GHM
BC − 3

GHM

2

GHM
B2C2. (35)

After some algebra, we nd that the solution can be written

a =
cei(φl−αl )+ux

(k − d )2ek − (k + d )2e−k
{(k − d )(sin θl e

−k(1−x)

+ sin θre
iδφ−ue−kx )+ (k + d )(sin θl e

k(1−x)

+ sin θre
iδφ−uekx )}, (36)

where

δφ = φr − αr − φl + αl . (37)

Note that the wide junction approximation is not applicable

at small energies. This is because the solution will be slowly

varying in the x direction, and therefore, ∂2y a is no longer

negligible compared to ∂2x a.

When sin θl = sin θr , a vanishes at x = 1/2, and

y

W
=

1

n



1

2
+ N − φr − αr − φl + αl

2π



, (38)

where N is any integer. This means that f↑ and hence also

the order parameters 1 and 2 vanish at these points. From

Eq. (12) we see that the density of states is equal to the

normal-state density of states at these points, indicating that

these are indeed vortices. By Taylor expanding a to rst order

around a root located at (1/2, ỹ) we nd

a ∼ B1 cos(θ + α1)+ iB2 cos(θ + α2), (39)

where x − 1/2 ∼ cos θ and y− ỹ ∼ sin θ , B2
1 = 5|k|2/4−

|k|d + 2d2, B2
2 = |k|2/4+ d2, α1 = tan−1[(|k|/2+ d )/(|k|−

d )], and α2 = tan−1(|k|/2d ). Hence, these roots have a phase

winding of 2π , which is characteristic for vortices. These

approximately n roots are the only ones for 2, but for 1

there are relative times t for which additional roots exist.

Since each vortex is associated with a quantum of magnetic

ux 0, there should be, at most, n vortices when the ux is

n0. This suggests that 1 is less suited for nding vortices

than 2 if we identify vortices by the roots of the order

parameter. Using2 suggests that when sin θl = sin θr and the

magnetic ux is n0, there will, in the wide-junction limit, be

n vortices whose location is determined by the difference in

the superconducting phases and the magnetization angles.
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×10 ×10 ×10

×10×10×10

FIG. 2. The normalized difference between the local density of

states and the normal-state density of states, (N − N0)/N0, for various

energies. Red contour lines are added at ±0.01× S, where S is the

number at the top of the respective color bars. Here n = 2, φr = αr =

0, and sin θr = 1.

The situation is more complicated when sin θl = sin θr . In

this case the roots of Eq. (36) depend on ε, and we will leave

the discussion for how this affects the order parameter of the

numerical investigation. However, some insight can still be

had from the analysis. Scaling sin θ in the boundary condition

(32) is equivalent to scaling the conductance GSC
χ . That is, if

sin θr < sin θl , the proximity effect should be weaker on the

right side, meaning that the vortices should be pushed to the

right. This is indeed what we nd numerically.

B. Numerics

We now proceed to show numerical results in the full (non-

linear) proximity effect regime. We have set the parameters

|| = 4εT, GHM = 3GHM

0 , GSC
χ = 0.01GHM

0 , GHM

2 = 0.002GHM

0 ,

and φl = αl = 0 common for all the numerical calculations.

We obtain qualitatively similar results for other choices of

the conductance parameters GHM/SC
i . We include the effect

of inelastic scattering by doing the substitution ε → ε + iδ,

where δ = 0.001|| in order to avoid the divergence of ĝBCS

at ε = || [41].

1. Local density of states

In the symmetric case (sin θr = 1.0), we suspect from the

analysis above that for all energies, the local density of states

is equal to that of the normal state in n points along the line

x = 0.5, where n is the number of magnetic ux quanta. This

is also what we nd numerically, as shown in Fig. 2. Figure 2

shows the local density of states at various energies for the

symmetric case with n = 2, with red lines close to where it is

equal to the normal-state density of states. We see that there

are indeed two locations where the difference between the

local density of states and the normal-state density of states

vanishes for all energies and that the locations of these points

are exactly those predicted by the analysis.

×10 ×10 ×10

×10×10×10

FIG. 3. The normalized difference between the local density of

states and the normal-state density of states, (N − N0)/N0, for various

energies. Red contour lines are added at ±0.01× S, where S is the

number at the top of the respective color bars. Here n = 2, φr = αr =

0, and sin θr = 0.5.

The situation is slightly different for the asymmetric case

(sin θr = 1), as can be seen in Fig. 3. There is no longer a

single point where N = N0 for all energies. Instead, there

are points where N is equal to or almost equal to N0 for

all energies, as can be seen in Fig. 3. In Secs. III B 2 and

III B 3 we will see that these points also are associated with

vortices. Qualitatively, the points where N stays close to N0

are different in the asymmetric case. In the symmetric case the

points at x = 1/2 are mostly isolated, but in the asymmetric

case the point is part of a line where N = N0 which stretches

towards the side where sin θ is smaller. For n = 2, as can be

seen in Fig. 3, the location where N is close to or equal to N0

for all energies occurs at y = ±W/4, which is also the y values

where the vortices are in the symmetric case.

Note that the energy dependence on the position where

N = N0 is not unique for the special case of a SHS junc-

tion. The same phenomenon occurs in superconductor-normal

metal-superconductor junctions if the conductances at the

interfaces are unequal. As mentioned above, changing sin θ

is the same as changing the conductance GSC
χ .

2. Supercurrent

Figure 4 shows the current amplitude and direction for the

same two cases that were discussed in Sec. III B 1. In both

cases there are exactly two points where the supercurrents

vanish and where the supercurrent circles around. This indi-

cates the existence of two superconducting vortices, which is

in accordance with the analysis, local density of states, and

the fact that the system experiences two quanta of magnetic

ux. We underline that the supercurrents accompanying the

vortices induced in the half-metal are fully spin polarized

and carried by triplet Cooper pairs. This is different from

the nonpolarized charge supercurrents circulating vortices in

previously studied hybrid structures [20–22].
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×10×10

FIG. 4. Amplitude and direction of the fully spin polarized su-

percurrent j for the symmetric case (sin θr = 1) and the asymmetric

case (sin θr = 1). Here n = 2, and φr = αr = 0. The values are given

for the dimensionless supercurrent j × (L/N0eDεT).

The y value of the points with circulating supercurrents

is the same as what is expected from the analysis, given

by Eq. (38). In the symmetric case these points are midway

between the superconductors, i.e., at x = L/2, while in the

asymmetric case they are moved slightly toward the side

where sin θ is smaller. Hence, the vortex locations as given by

the supercurrents agree with the analysis as well as the results

from the local density of states.

One feature of the asymmetric case worth noting is that the

supercurrent is suppressed to the right of the vortex, which is

towards the side where sin θ is smaller. This is in agreement

with the fact that this region had a local density of states which

was closer to the normal-state value, as shown in Sec. III B 1.

3. Cooper pair correlation function

Investigating vortices in odd-frequency superconductors

gives rise to the problem of choosing what order parameter to

use. The Cooper pair correlation function which is normally

used is not applicable as it is identically equal to zero. The two

most obvious remaining choices are

1(r, t ) := ψ↑(r, t )ψ↑(r, 0) (40)

and

2(r) :=
∂ψ↑(r, t )ψ↑(r, 0)

∂t

∣

∣

∣

∣

t=0

, (41)

as mentioned above. From looking at the local density of

states and the supercurrent we already know that we expect

vortices and that their location should have a y value given by

Eq. (38) and should be at x = L/2 in the symmetric case and

closer to the side where sin θ is smaller in the asymmetric

case. Comparing the position of the roots of 1 and 2

with the position of the vortices, as predicted by the local

density of states and the supercurrent, can be used to give an

indication of how good the order parameters are as means to

nd vortices.

Figures 5 and 6 show 1 with various values of t for the

same two cases that were shown in Secs. III B 1 and III B 2.

FIG. 5. Plots of ln[|1(r, t )| × 2/N0εT] for various values of t in

the symmetric case (sin θr = 1) with n = 2 and φr = αr = 0.

Figure 5 shows the symmetric case with n = 2, φr = αr = 0,

and sin θr = 1, while Fig. 6 shows the asymmetric case with

n = 2, φr = αr = 0, and sin θr = 0.5.2(r) looks identical to

1(r, 0.01/εT), which is shown in the gures, but is a factor

of 100 larger in magnitude. 2 is therefore not shown. In both

cases, there are exactly two roots in 2 and 1 for small t ,

and the positions are the same as those given for the vortices

by the local density of states and supercurrent. Around these

two roots are a phase winding of 2π .

For larger values of t , 1(r, t ) seems to be less suited

for nding vortices. In the symmetric case there are addi-

tional roots which appear. These additional roots also have

a corresponding phase winding of 2π but do not correspond

to vortices when compared to the local density of states or

supercurrent. The situation is even worse for large t in the

asymmetric case. In addition to having extra roots, the original

FIG. 6. Plots of ln[|1(r, t )| × 2/N0εT] for various values of t in

the symmetric case (sin θr = 1) with n = 2 and φr = αr = 0.
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×10

FIG. 7. Amplitude and phase of the order parameter 2 and

amplitude and direction of the fully spin polarized supercurrent j.

Here n = 4, φr = αr = 0, and sin θr = 1.

roots which correspond to vortices are either moved or not

present. This is also the case for other choices of n, φr , αr ,

and sin θr .

Thus, we conclude that using 2 seems best suited as an

order parameter for the numerical investigation of quantum

vortices in a purely odd frequency superconducting conden-

sate. Alternatively, one could use1 with εTt  1, which will

give the same result since 1 ∼ 2t as t → 0.

Figures 7 and 8 show the phase of 2, in addition to the

supercurrent and amplitude of 2, for a magnetic ux of 40

and with sin θr = 1, φr = αr = 0 and sin θr = 0.5, φr − αr =

π/2, respectively. Note that there is indeed a phase winding

of 2π around the vortices, as mentioned above.

4. Vortex position

So far we have looked only at the case with φr = αr =

0. Choosing a nonzero value for φr − αr moves the vor-

tices along the y axis, and the locations correspond to those

predicted by the analysis and given in Eq. (38). Figures 7

and 8 show the amplitude and phase of 2 as well as the

supercurrent j for a wide junction subjected to a magnetic ux

of 40, with sin θr = 1, φr − αr = 0 and sin θr = 0.5, φr −
αr = π/2, respectively. In Fig. 8 the vortices are shiftedW/16

down along the y axis, which is exactly what is predicted by

Eq. (38). Note also that the vortices are moved towards the

side where sin θ is smaller in Fig. 8.

The dependence of the vortex position on both α and

θ suggests an experimental method to determine the effec-

tive magnetization angles describing disorder in the form of

interfacial misaligned moments or articially inserted mis-

aligned magnetic layers in half-metallic hybrid structures. For

a xed value of the magnetic ux and phase difference φr − φl

(which is tunable by the applied current), the y coordinates

of the vortices give information about the azimuthal angles

×10

FIG. 8. Amplitude and phase of the order parameter 2 and

amplitude and direction of the fully spin polarized supercurrent j.

Here n = 4, φr − αr = π/2, and sin θr = 0.5.

αl and αr , while the x coordinates give information about

the polar angles θl and θr . This approach could possibly

be easier than trying to measure the magnetization angles

directly, especially if the noncollinear magnetization angle

at the interface is produced by the natural misalignment of

magnetic dipoles arising from the conjunction of different

atomic structures at the interface.

IV. CONCLUSION

Using the quasiclassical Usadel theory, we have found both

analytically and numerically that superconducting vortices oc-

cur also in purely odd frequency superconducting condensates

that exist in proximized half-metallic ferromagnets. Because

half-metals have only one conducting spin band, the vortex

cores are circulated by fully polarized spin supercurrents. An

additional feature of vortex structures in half-metals compared

to a normal metal is that the vortex position depends on the

magnetization angles. We suggest that this insight can be used

to help determine these angles in hybrid structures.

The study of vortices in odd-frequency superconducting

condensates naturally raises the question of how to dene

the superconducting order parameter. Comparing the roots

of the superconducting order parameter to the location vor-

tices, we have found that the order parameter that works

best is that which is made even in time by differentiation,
∂
∂t
ψ↑(r, t )ψ↑(r, 0)|t=0.
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Superconducting vortex loops have so far avoided experimental detection despite being the focus of much

theoretical work. We here propose a method of creating controllable vortex loops in the superconducting

condensate arising in a normal metal through the proximity effect. We demonstrate both analytically and

numerically that superconducting vortex loops emerge when the junction is pierced by a current-carrying

insulated wire and give an analytical expression for their radii. The vortex loops can readily be tuned big enough

to hit the sample surface, making them directly observable through scanning tunneling microscopy.

DOI: 10.1103/PhysRevB.100.214503

I. INTRODUCTION

Many key properties of physical systems are determined

by topological defects, such as dislocations in solids, domain

walls in ferroics, vortices in superuids, magnetic skyrmions

in condensed-matter systems, and cosmic strings in quantum

eld theories. In superconductors, the topological entities

are vortex lines of quantized magnetic ux. The topological

nature of these vortices makes them stable, which is important

for potential applications, such as superconducting qubits

[1–3], digital memory, and long-range spin transport [4].

Vortices have nonsuperconducting cores and a phase winding

of an integer multiple of 2π in the superconducting order

parameter, leading to circulating supercurrents [5].

The formation of superconducting vortex loops is topolog-

ically allowed and has theoretically been predicted to form

around strong magnetic inclusions inside the superconductor

[6] in cylindrically shaped current-carrying superconductors

[7–9] or through vortex cutting and recombination [10,11].

However, no observation of vortex loops in superconducting

systems has been found to date. One challenging aspect is

that vortex loops are typically small in conventional super-

conductors and difcult to stabilize for an extended period of

time [12]. Recently, it has been shown that vortex loops can

be formed in proximity systems by inserting physical barriers

around which the vortices can wrap [11].

In this paper, we present a way to create controllable

vortices in mesoscopic proximity systems in a manner

which makes them experimentally detectable through scan-

ning tunneling microscopy. The system considered is a three-

dimensional superconductor-normal metal-superconductor

(SNS) junction pierced by a current-carrying wire which cre-

ates the inhomogeneous eld responsible for the vortex loops.

In planar SNS junctions with uniform applied magnetic elds,

changing the superconducting phase difference between the

two superconductors shifts the vortex lines in the vertical

direction [13]. We here show that the corresponding effect

on vortex loops in three dimensions is to change their size.

*Corresponding author: eirik.h.fyhn@ntnu.no

Thus, these vortex loops are easily tunable. This makes it pos-

sible to make the vortices touch the surface, leaving distinct

traces which are directly observable by scanning tunneling

spectroscopy [14].

Vortex loops in superconducting systems have previously

been predicted using the phenomenological Ginzburg-Landau

theory [6,10,11]. Here, we use a fully microscopic framework

known as quasiclassical Usadel theory and solve the Usadel

equation relevant for diffusive systems [15]. By showing that

vortex loop formation occurs in a microscopic theory, we

give valuable support to the earlier proposed mechanisms for

superconducting vortex loops. Finally, we discuss how the

proposed setup can be realized experimentally.

II. METHODOLOGY

In this section, we discuss the quasiclassical Usadel theory

and how it may be used to analyze the SNS junction depicted

in Fig. 1. We rst present the mathematical tools and end with

the numerical implementation.

A. Quasiclassical theory

In the Usadel theory, the system is described by a qua-

siclassical Green’s function from which physical properties

can be extracted. The SNS junction depicted in Fig. 1 can be

treated in the quasiclassical formalism under the assumptions

that the Fermi wavelength is much shorter than all other

relevant length scales. If the system is diffusive, meaning that

the scattering time is short, the isotropic part dominates and

solves the Usadel equation [15–18], which, in the normal

metal, can be written

D∇̄ · (ǧ∇̄ǧ)+ i[ερ̂3 + ̂, ǧ] = 0. (1)

Here, D is a diffusion constant, ρ̂3 = diag(1, 1,−1,−1), and

̂ = antidiag(+,−,+∗,−∗) where  is the super-

conducting gap parameter. The covariant derivative is ∇̄ǧ=

∇ǧ− ie[ρ̂3A, ǧ], where e = −|e| is the electron charge, A is

the vector potential, and

ǧ=



ĝR ĝK

0 ĝA



(2)
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FIG. 1. Sketch of three-dimensional SNS junction considered in

this paper. The height, width, and length are H, W , and L, respec-

tively, and the junction is pierced by an insulated current-carrying

wire. Contours of the superconducting vortex loops are shown at the

location where they are found in our numerical simulations.

is the quasiclassical impurity-averaged Green’s function.

Finally, x ∈ [−L/2,L/2], y ∈ [−W/2,W/2] and z ∈
[−H/2,H/2] in the normal metal.

ǧ is normalized such that ǧǧ= 1. We use the convention

that, when two matrices of different dimensionality is multi-

plied, the smaller matrix is elevated to the dimensionality of

the larger matrix by the tensor product of an identity matrix

of the appropriate size. In equilibrium, the components of the

8× 8 Green’s function in Eq. (2) are related by the identi-

ties ĝK = (ĝR − ĝA) tanh(εβ/2) and ĝA = −ρ̂3ĝ
R†ρ̂3, which

means that, in this case, it is sufcient to solve for the retarded

component ĝR.

The quasiclassical formalism is not applicable across

boundaries because the associated length scale is too short.

The Usadel equation must, therefore, be solved in the normal

metal and superconductors separately, and the solutions must

be connected through boundary conditions. If we assume

a low-transparency interface, we may use the Kupriyanov-

Lukichev boundary condition,

ζiLien ·


ĝRi ∇̄ĝRi


= 1
2



ĝRi , ĝ
R
j



, (3)

where en is the outward-pointing normal vector for region

i, ζi is the ratio of the bulk and interface conductances of

material i, and Li is the length of material i in the direction

of en. For the boundaries interfacing vacuum, en · ∇̄ĝR = 0.

The Usadel equation can be made dimensionless by in-

troducing the Thouless energy, εT := D/L2. The Usadel

equation then becomes dimensionless by performing the

substitutions (x, y, z) → (x/L, y/L, z/L), ε → ε/εT,  →
/εT, and ∇̄ → L∇̄.

B. Electromagnetic vector potential

The magnetic eld should satisfy Biot-Savart’s law,

B =
μ

4π

∫

J(r)× (r− r)

|r− r|3
d3r, (4)

where μ is the permeability and J is the electric current

density. In general, J includes the contribution the induced

currents in the normal metal and superconductors in addition

to that from the insulated current-carrying wire along the x

axis. However, we will make some assumptions in order to

simplify the analytical and numerical calculations. First, we

will assume that the width W and height H is smaller than

the Josepshon penetration depth. In this case, we can ignore

the screening of the magnetic eld by currents inside the

normal metal [19]. Second, we will neglect the magnetic eld

produced by the supercurrents produced inside the normal

metal. Third, we will assume that the magnetic eld vanishes

inside the superconductors due to the screening currents.

These last two assumptions are widely used in the context

of hybrid structures with constant applied magnetic elds

[13,20,21] and has, in such conditions, been shown to give

good agreement with experimental results [22]. Finally, we

will assume that the part of the wire which is inside the

superconductors does not contribute to the magnetic eld in

the normal metal.

The last two assumptions are inaccurate very close to

the wire. Close to the wire, the details of screening cur-

rents will be important for the magnetic eld, but, far away,

we assume that the total contribution from the currents inside

the superconductor is zero. A more precise model could be

developed by taking into account screening currents inside

the superconductors and solving the Usadel equation self-

consistently with Maxwell’s equation and the superconduct-

ing gap equation inside the superconductors. However, we

are here interested in the solution far away from the wire,

and the details of the magnetic eld near the wire should not

signicantly alter the results. For this reason, we also model

the wire as being innitely thin.

With the assumptions presented above, we get a current

density which is

J = Iδ(y)δ(z)[θ (x + L/2)− θ (x − L/2)]ex, (5)

where θ is the Heaviside step function. Inserting Eq. (5) into

Eq. (4) we get

B =
μI

4πρ

(

L/2+ x
√

(L/2+ x)2 + ρ2
+

L/2− x
√

(L/2− x)2 + ρ2

)

eφ

(6)

for x ∈ (−L/2,L/2), where ρ =
√

y2 + z2 and eφ = (yez −
zey)/ρ. B = 0 for x < −L/2 and x > L/2. A vector potential

which satises B = ∇ × A is

A =
μI

4π
ln

(

√

(L/2− x)2 + ρ2 + L/2− x
√

(L/2+ x)2 + ρ2 − L/2− x

)

× [θ (x + L/2)− θ (x − L/2)]ex, (7)

as can be seen from insertion or calculated directly from Biot-

Savart law by using that ∇ × [J(r)/|r− r|] = J(r)× (r −
r)/|r − r|3.

C. The Riccati parametrization

In the Riccati parametrization [23] of ĝR, the parameter

is the 2× 2 matrix γ , and the retarded Green’s function is

214503-2
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written

ĝR =



N 0

0 −Ñ



1+ γ γ̃ 2γ

2γ̃ 1+ γ̃ γ



, (8)

where N := (1− γ γ̃ )−1 and tilde conjugation is γ̃ (ε) =

γ ∗(−ε).

Since the superconducting correlations in our system are

spin singlet, we may write γN = antidiag(a,−a) and γBCS =

antidiag(b,−b), where γN and γBCS are the Riccati parameters

in the normal metal and superconductors, respectively. Substi-

tuting this into Eqs. (1) and (3), we obtain the dimensionless

equations,

∇2a =
2ã∇a ·∇a

1+ aã
+

4(1− aã)LeA · (aLeA+ i∇a)

1+ aã

+ 2iLe(∇ · A)a− 2iεa, (9)

and

en ·∇a =
(1+ ab̃)(b− a)

ζ (bb̃+ 1)
+ 2iaen · AeL, (10)

where L is the length which is used to dene the Thouless

energy εT. The corresponding equations for ã and en ·∇ã are

found by tilde conjugating Eqs. (9) and (10).

D. Observables

As mentioned initially, a vortex is accompanied by a

nonsuperconducting core and a circulating supercurrent. Both

the superconducting order parameter and the supercurrent can

be extracted from the quasiclassical Green’s function. In the

following it will be useful to write:

ĝR =



g f

− f̃ −g̃



. (11)

There are only singlet correlations in the SNS system, so f =

antidiag( fs,− fs).

The local density of states for spin-band σ at energy ε and

location r can be written

Nσ (ε, r) = N0R {gσσ (ε, r)}, (12)

where N0 is the normal-state density of state at the Fermi

surface. In the normal metal, we can write Eq. (12) in terms

of a,

N (ε, r) :=
N↑(ε, r)+ N↓(ε, r)

2
= N0

1− aã

1+ aã
. (13)

In the cores of vortices, we expect N = N0 for all energies,

which happens when a(ε) ≡ 0.

The current density is [16]

j =
N0eD

4

∫ ∞

−∞
Tr(ρ̂3[ǧ∇̄ǧ]K)dε. (14)

Inserting Eq. (11), using the relations ĝA = −ρ̂3ĝ
R†ρ̂3, ĝK =

(ĝR − ĝA) tanh(εβ/2), Eq. (14) can be rewritten

j =
N0eD

2

∫ ∞

−∞
tanh



βε

2



Tr(Re[ f̃ †∇ f † − f∇ f̃ ]

+ 2eA Im[ f f̃ − f̃ † f †])dε. (15)

Written in terms of the quasiclassical Green’s function, the

superconducting order parameter is

(r) := ψ↑(r, 0)ψ↓(r, 0)

=
N0

2

∫ ∞

−∞
fs(r, ε) tanh(εβ/2)dε. (16)

where ψσ (r, t ) is the eld operator which destroys an electron

with spin σ at position r and time t, N0 is the normal-state

density of states and β = 1/kBT .

E. Numerics

The Usadel equation was solved numerically using a nite

element scheme. See, for instance, Ref. [24] to see how to set

up and solve the nonlinear Usadel equations in a nite element

scheme by the use of the Newton-Rhapson method. The

program was written in JULIA [25], we used linear hexehedral

elements, and JUAFEM.JL [26] was used to iterate through the

cells. Gauss-Legendre quadrature rules of fourth order were

used to integrate through the cells, and Romberg integration

was used to integrate over energy. See, for instance, Ref. [27].

Finally, forward-mode automatic differentiation [28] was used

to calculate the Jacobian.

III. RESULTS AND DISCUSSION

Here, we present rst an analytical solution of the Usadel

equation in the weak proximity effect regime, then we show

numerically that the ndings are also present in the full

proximity effect regime. Dimensionless quantities are used

in the analytics with distances being measured relative to

the length of the half-metal L, and energies being measured

relative to the Thouless energy εT = D/L2, where D is the

diffusion constant in the normal metal.

A. Analytics

Before solving the Usadel equation, we must determine the

solution in the superconductors. We will show that it sufces

to use the bulk solution,

ĝBCS =

[

θ (ε2 − ||2)
√

ε2 − ||2
sgn(ε)−

θ (||2 − ε2)
√

||2 − ε2
i

]

(ερ̂3 + ̂),

(17)

in the superconductors when a certain condition is fullled.

Let λ (to be dened quantitatively below) be the length scale

over which the Green’s function recovers its bulk value in the

superconductor. The criterion for neglecting the inverse prox-

imity effect in the superconductors is then that the normal-

state conductance of the superconductors for a sample of

length λ is much larger than the interface conductance and

that the length of each superconductor is not small compared

to λ. We now proceed to prove this.

The vector potential (7) is zero inside the superconductors,

so the Usadel equation simplies to

DSC∇ · (ĝR∇ĝR)+ i[ερ̂3 + ̂, ĝR] = 0, (18)
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in the superconductor at x < −1/2. To show that we can use

the bulk solution, let

ĝR = ĝBCS + δĝ. (19)

This gives an equation for δĝ,

DSC∇ · ([ĝBCS + δĝ]∇δĝ)+ i[ερ̂3 + ̂, δĝ] = 0, (20)

where we have used that ĝBCS solves Eq. (18) for a bulk

superconductor. Next, assume the inverse proximity effect to

be weak such that δĝ ĝBCS. Using that ĝBCSĝBCS = 1, this

yields

DSC∇
2δĝ+ iĝBCS[ερ̂3 + ̂, δĝ] = 0. (21)

ĝBCS + δĝ must also satisfy the normalization condition

(ĝR)2 = 1, so

(ĝBCS + δĝ)2 = 1 ⇒ {ĝBCS, δĝ} = 0. (22)

Hence, using that [ερ̂3 + ̂, ĝBCS] = 0,

ĝBCS[ερ̂3 + ̂, δĝ] = (ερ̂3 + ̂)ĝBCSδĝ+ δĝ(ερ̂3 + ̂)ĝBCS

= {δĝ, (ερ̂3 + ̂)ĝBCS}. (23)

Finally, from

(ερ̂3 + ̂)2 = ε2 −2, (24)

we get that δĝ is an eigenfunction of the Laplacian,

∇2δĝ= λ−2δĝ, (25)

where

λ−2 = −
2i

DSC

[sgn(ε)
√

ε2 − ||2θ (ε2 − ||2)

+ i
√

||2 − ε2θ (||2 − ε2)]. (26)

We can choose the sign of λ to be such that R (λ) > 0.

Let LSC be the length of the superconductor in multiples of

the length of the normal metal. Using the boundary condition,

∇δĝ|r∈ = 0, (27)

where  is the boundary not interfacing the normal metal, we

get

δĝ(ε, x, y) = C[e−|x+1/2|/λ + e−2LSC/λ+|x+1/2|/λ],

(28)

where C is some function of y and ε to be determined by

the nal boundary condition. From the remaining boundary

condition, Eq. (3), we get

C =
λĝBCS[ĝBCS + δĝ, ĝN]

2(1− e−2LSC/λ)ζSCLSC
. (29)

From Eq. (28), we see that R (λ) can be interpreted as

the penetration depth of δg. Note that R (λ) is bounded by

including the effect of inelastic scattering, which is performed

by the substitution ε → ε + iδ for some positive scattering

rate δ [29]. This ensures that 1/(1− e−2LSC/λ) remains nite

as ε → . Thus, we see from Eq. (29) that C, and, therefore,

δg, becomes negligible when

ζSCLSC/R (λ)  1 (30)

provided that the length of the superconductor LSC is not small

compared to the maximal penetration depth max[R (λ)].

ζSC is proportional to the conductance of the whole

superconductor and, therefore, with 1/LSC. Therefore,

ζSCLSC/R (λ) is the ratio of the normal-state conductance of a

superconductor of length R (λ) to the interface conductance.

Taking the superconducting coherence length ξ as a measure

of the inverse proximity effect penetration depthR (λ), we see

that the criterion Eq. (30) is, indeed, experimentally feasible.

The equation is fullled for a low-transparency interface and

for a superconductor that is larger than the coherence length.

A similar calculation shows that we can use ĝBCS also in the

superconductor at x > 1/2.

Solving for the Riccati parameter in the superconductors

we get that γBCS = antidiag(b,−b) with

b =


ε + i
√

||2 − ε2
θ (||− |ε|)

+
 sgn(ε)

|ε| +
√

ε2 − ||2
θ (|ε|− ||). (31)

The nonlinear Usadel equation does not have a general

analytical solution, but it can be solved analytically in an

approximate manner far away from the wire. If we assume the

proximity effect to be weak, we can keep only terms which

are linear in a, ã, and their gradients. In this case, the Usadel

equation (9) decouples

∇2a = 4eLA · (aeLA+ i∇a)+ 2ieL(∇ · A)a− 2iεa. (32)

Equation 32 can be further simplied when we only consider

regions where ρ  1 with ρ =
√

y2 + z2. The solution of

Eq. (32) is constant in y and z when A = 0, and by assuming

this is approximately true when |eLA|  1, we can neglect the

terms ∂2y a and ∂2z a. Finally, we can simplify the calculations

further by Taylor expanding the vector potential,

LeA = −nπ
1

ρ
ex + O



1

ρ2



ex, (33)

where

n = −
eLμI

4π2
. (34)

We keep only the rst term in the Taylor expansion.

Equation (32) can now be solved exactly, and by applying

the linearized boundary conditions,

en ·∇a =
(b+ a[bb̃− 1])

ζ (bb̃+ 1)
+ 2iaen · AeL, (35)

the solution can be written in the form

a =
ceiφl+u(x−0.5)

(k − d )2ek − (k + d )2e−k
{(k − d )[ek(x−0.5)

+ ei δφ−ue−k(x+0.5)]+ (k + d )[ek(0.5−x)

+ ei δφ−uek(x+0.5)]}, (36)

where

δφ = φr − φl , (37)

c =
|b|

ζ (bb̃+ 1)
, d =

(bb̃− 1)

ζ (bb̃+ 1)
, (38)

u = −
2π in

ρ
and k =

√
−2iε. (39)
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FIG. 2. Local density of states N relative to the normal-state

density of states N0 at energy ε = 0.5||, where  is the supercon-

ducting gap parameter. The lower left shows a cross section at x = 0

and the lower right shows a cross section at y = 0. Here, n = 1 and

the superconducting phase difference is φr = 0.

From Eq. (36), we see that a vanishes at x = 0 and i δφ − u =

i(2N + 1)π , where N is any integer. This happens at

ρ =
2n

1+ 2N − φr−φl

π

. (40)

This means that f and, hence,  vanish at these points. By

Taylor expanding a to rst order around a root located at

(0, ρ̃ ), we nd

a ∼ B1 cos(θ + α1)+ iB2 cos(θ + α2), (41)

where x ∼ cos θ and ρ − ρ̃ ∼ sin θ , B2
1 = 5|k|2/4− |k|d +

2d2, B2
2 = |k|2/4+ d2, α1 = tan−1[(|k|/2+ d )/(|k|− d )],

and α2 = tan−1(|k|/2d ). Hence, these roots have a phase

winding of 2π as is characteristic for vortices. Equation (40)

is our main analytical result as it predicts how the radius of

the vortex loops depends on the tunable parameters of the

system: the current through the wire and the applied phase

difference. Although it was obtained using approximations,

we demonstrate below that it matches the full numerical

solution of the exact Usadel equation very well.

Note that the radius ρ of the largest vortex loop given

Eq. (40) can be made arbitrarily large by letting φr − φl

approach π . Thus, for a given sample size L ×W × H and

current I , there is a superconducting phase difference for

FIG. 3. Amplitude of the superconducting order parameter for

n = 1 and superconducting phase difference φr = 0. The lower left

shows a cross section at x = 0, and the lower right shows a cross

section at y = 0.

which the vortex loop hits the surface and can be directly

detected experimentally.

It is expected that a change in the superconducting phase

difference will change the radii of vortex loops. This is be-

cause changing the phase difference is equivalent to changing

the applied supercurrent through the junction. The applied

current will be deected by the circulating currents associated

with the vortices and, hence, produce a reactionary force

on the vortices. See, for instance, Ref. [30]. What is more

surprising, however, is that changing the superconducting

phase difference can make the vortices arbitrarily large so that

they can always be made to hit the surface. If this feature is

generally true for other systems with vortex loops, it could

prove useful for the study of systems containing vortex loops

which are less obviously controllable than the one considered

in the present paper but which are easier to design in a

laboratory. For instance, one possibility is to grow the normal

metal around a magnetic dipole. Reference [6] found that

vortex loops can form around magnetic dipole inclusions

in superconductors if the magnetic eld is strong enough,

so there are reasons to believe that vortex loops can also

form around magnetic dipoles embedded in a SNS junction.

The magnetic eld from a dipole can, unlike the magnetic

eld from a wire, not be altered in strength. Nevertheless,

if the eld is strong enough to produce vortices, altering the
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FIG. 4. Plot of the three different components of the supercurrent

ex · j (upper left), ey · j (lower left), and ez · j (lower right). The

lower half shows the value of the current on the surface in color,

and the upper half shows streamlines of the current with the current

strength indicated by the same color. Here, n = 1 and φr = 0.

superconducting phase difference could be a way to increase

the size of the vortex to the point where it touches the surface

and becomes directly observable.

B. Numerics

We now proceed to show numerical results in the full

(nonlinear) proximity effect regime. We have set the param-

eters || = 4εT, ζ = 3, W = H = 6L, and φl = 0 common

for all the numerical calculations. We include the effect of

inelastic scattering by performing the substitution ε → ε + iδ

where δ = 0.001|| in order to avoid the divergence of ĝBCS
at ε = || [29].

Numerically, we nd that vortex loops form at the locations

predicted by the analysis. There are circular paths around the

origin where the superconducting order parameter vanishes,

and the local density of states is equal to that of the normal

state. This can be seen in Figs. 2 and 3 which shows the

local density of states and the amplitude of the Cooper pair-

correlation function, respectively. Around these loops, there

are a circulating supercurrent as can be seen in Fig. 4, and a

phase winding in the order parameter of 2π . Figure 5 shows a

contour plot of ||, which shows the location of the vortices,

together with the circulating supercurrent j as well as the

phase of, which shows that there is, indeed, a phase winding

of 2π around the vortices.

We nd that the positions of the vortex loops match with

Eq. (40) for vortices with radii that are between 2L and 3L.

Figures 6 and 7 show how the sizes of the vortex loops depend

π

−π
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r
g
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Ψ
)

H
i
g
h

L
o
w

C
u
r
r
e
n
t

FIG. 5. Plot of the phase of the superconducting order parameter

 on a the surface of a diagonally cut part of the normal metal, con-

tour plot of its amplitude ||, and streamlines of the supercurrent j.

Here, n = 1 and φr = 0.

on superconducting phase difference φ and magnetic-eld

strength n, respectively. We nd that increasing φ can make

the vortices arbitrarily large but does not increase the number

of vortices. Increasing n, on the other hand, also increases the

number of vortices, but the sizes grow only linearly with n.

Note that, as the vortex loops hit the surface, they curve so as

to hit normally to the surface. This is consistent with previous

results [6,31] and can be understood from the circulating

currents. There should be no current component normal to

the surface, and the only way for the current circulating the

vortices to adhere to this is if the vortices hit the surfaces at a

right angle.

IV. EXPERIMENTAL REALIZATION

Normal SNS junctions are created by vertically growing

rst a superconducting material, such as niobium, then, a

normal metal, such as copper, and nally the same super-

conducting material. The layers are grown, for instance, by a

sputter deposition technique, such as direct current sputtering

[32] or radio-frequency sputtering [33]. The setup presented

here adds an extra complication by requiring an isolated

conducting nanowire to penetrate the system. One possible

way to achieve this could be to rst grow a vertical insulated

nanowire and then grow the superconductor and normal metal

around it in a layerwise fashion.

Growing a wire is more complicated than growing a

plane because one must localize the growth to happen at the

tip of the wire, even though most of the surface area will

be on the sides. Nevertheless, growing vertical nanowires

has successfully been performed by methods, such as the

vapor-liquid-solid method [34–36] and template-directed
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FIG. 6. Contour plot of the amplitude of the superconducting order parameter for n = 1 and various values of the superconducting phase

difference φr .

synthesis [37]. The vapor-liquid-solid method works by using

droplets of, for instance, gold which are a few angstroms in

width to localize the growth [35], and template-directed syn-

thesis works by having the wire grow inside a premade tem-

plate which can later be removed [37]. The vapor-liquid-solid

method has already been used to produce vertical surround-

gate eld-effect transistors with a precision exceeding what

should be necessary for the system presented here [35].

Schmidt et al. [35] made nanowires using the vapor-

liquid-solid method which were 40 nm in diameter and 400

nm in length. This should be on the same length scale as

would be necessary for the system considered in this paper.

The superconducting energy gap of niobium is || = 30.5×

10−4 eV [38], which is equivalent to about 2.46 mm−1 in

natural units. The Fermi velocity and scattering time for

copper are about vF = 3.70× 10−3 and τ = 10.8 μm, re-

spectively [39]. The diffusion coefcient is dened as

D :=
τv2F

3
, (42)

so the diffusion coefcient for copper is about D = 49.2 pm.

In the numerics, we have used

|| = 4εT =
4D

L2
, (43)

so

L = 283 nm (44)

which is on the same scale as what has been made with

the vapor-liquid-solid method. Of course, other metals and

superconductors could be used, giving different physical

lengths corresponding to the values being used in the

numerics here. Moreover, from the analysis, it seems vortex

loops would form also for other values of ||/εT. The

calculation above is merely to show that the length scales

used here are not unreasonable compared to what has already

been experimentally achieved.

V. CONCLUSION

We have used quasiclassical Usadel theory to demonstrate

that controllable superconducting vortex loops can emerge in

a Josephson junction pierced by an insulated current-carrying

wire. The size and number of vortices depend on the phase

difference between the superconducting order parameter in

the superconductors φr − φl as well as the strength of the

magnetic eld. The radius of the vortices can be made arbitrar-

ily large by tuning of the superconducting phase difference,

which means that they can always be manipulated so that they

intersect the surface. This makes them directly observable

by scanning tunneling microscopy, which has already been

used to detect normal vortices in proximized metals [14].

If this ability of the superconducting phase difference to

expand vortex loops to arbitrary sizes is a general feature

of SNS junctions, it could be used to detect vortex loops

in systems where controlling the magnetic-eld strength is

not an option, such as in a system with a magnetic dipole

inclusion.
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The two-dimensional nature of graphene Josephson junctions offers the possibility of creating effective

superconductor-ferromagnet-superconductor junctions with tunable Zeeman splitting caused by an in-plane

magnetic eld. Such junctions would be able to alternate between a conventional superconducting ground

state and a ground state with an intrinsic phase difference, making them controllable 0-π Josephson junctions.

However, in addition to the Zeeman splitting, an in-plane magnetic eld will in general also produce an orbital

effect because of height variations in graphene, colloquially known as ripples. Both the Zeeman and orbital effect

will thus affect the critical current, so to be able to identify 0-π transitions it is necessary to understand their

combined effect. From both analytical and numerical solutions of the Usadel equation we nd that ripples can

in fact produce a current response similar to that which is characteristic of a 0-π transition. Hence, additional

analysis is required in order to reveal the presence of a 0-π transition caused by spin splitting in graphene with

ripples. We provide a closed form analytical expression for the critical current in the presence of exchange eld

and ripple effects as well as an expression for the scaling of critical current zeros with junction parameters.

DOI: 10.1103/PhysRevB.102.024510

I. INTRODUCTION

When the spinless superconducting order of a conven-

tional superconductor comes in contact with a ferromagnet,

it can adapt by creating spin-triplet Cooper pairs [1]. The

synergy between superconductivity and ferromagnetism, two

seemingly incompatible orders, is a topic of fundamental

interest but could also be of practical value. One interesting

consequence is that it allows for spinful supercurrents. The

promise of low-dissipation spin transport has helped spawn

the eld of superconducting spintronics [2].

In the last decade, the possibility of creating Joseph-

son junctions with graphene has attracted interest [3–7].

Superconductor-graphene-superconductor (SGS) junctions

provide an arena for understanding the interplay between

superconductivity and otherwise distinct physical phenomena,

such as special relativity [3] and the quantum Hall effect

[8,9]. Here, we are interested in how the two-dimensional

nature of monolayer graphene can be utilized to create an

effective superconductor-ferromagnet-superconductor (SFS)

junction with a tunable exchange eld. This is done by in-

troducing a Zeeman splitting between the spin bands in the

graphene by use of a strong in-plane magnetic eld. This is

possible because the two-dimensional nature of the graphene

minimizes the magnetic depairing effect that would otherwise

quench the superconducting correlations. By using electrodes

with Ising-like superconductivity, like thin NbSe2, one avoids

destroying the superconducting state of the electrodes via the

Pauli limitation.

The possibility of in situ control of the exchange eld could

open new avenues for manipulations that take advantage of the

*Corresponding author: eirik.h.fyhn@ntnu.no

combined effect of magnetic and superconducting order. In

addition to giving rise to the possibility of Cooper pairs with

nonzero total spin [2], the presence of a magnetic eld gives

the Cooper pairs a nonzero total momentum, as rst explained

by Fulde, Ferrel, Larkin and Ovchinnikov [10,11]. The total

momentum of the Cooper pairs in the so-called FFLO-state is

given by the strength of the exchange eld, as this determines

the displacement of the two Fermi surfaces corresponding

to spin-up and spin-down electrons. The nonzero momen-

tum produces spatial variations in the superconducting order

parameter [12].

One consequence of the spatial variations is that the ground

state of a superconductor-ferromagnet-superconductor (SFS)

Josephson junction can be one in which the phases of the

order parameter in the two superconductors differs by π ,

which is known as a π junction. Such junctions could have

an important role in the design of components for quantum

computing [13–15], superconducting computing [16,17], or as

cryogenic memory [18].

Whether an SFS junction is a π junction or not depends

on its length [19,20] as well as the strength of the exchange

eld, which are typically xed parameters. If, however, the

exchange eld could be tuned, this would allow for a control-

lable switching between the 0-junction state and π -junction

state. Zeeman-effect-induced 0-π transitions have previously

been observed in a Dirac semimetal with a g factor on the

order of 103 [21]. The large g factor allowed the 0-π tran-

sition to occur before the magnetic eld extinguished the

superconducting correlations. Using a junction with a two-

dimensional material, such as monolayer graphene, would

allow for Zeeman driven 0-π transitions without the need for

large g factors, since such junctions can withstand much larger

in-plane magnetic elds.

2469-9950/2020/102(2)/024510(10) 024510-1 ©2020 American Physical Society
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FIG. 1. Sketch of superconductor-graphene-superconductor jun-

ction with rippled graphene and external magnetic eld. The mag-

netic eld has out-of-plane component B⊥ and in-plane components

Bx and By .

The prospect of a graphene Josephson junction being used

as a tunable SFS junction is interesting, but it also demands

a thorough investigation into how the supercurrent in an

SGS junction responds to the strong in-plane magnetic eld

necessary for an appreciable Zeeman splitting. Even though

monolayer graphene is two dimensional, it will in general

not be perfectly at. It will have a curvature that depends

on the underlying substrate. If the graphene is placed on

SiO2, it will be rippled with peak-to-peak height difference

of about 1 nm and typical feature size of 30 nm [22]. Hence,

the in-plane magnetic eld will have a component orthogonal

to the graphene surface, giving rise to an orbital effect. This

orthogonal component has been observed to suppress phase-

coherent weak localization [23,24]. Consequently, extra care

must be taken when considering phase-coherent transport ex-

periments relying on in-plane magnetic elds. Here, we show

that attention must also be paid to ripples when considering

SGS junction with tunable Zeeman splitting.

One property of a 0-π transition is that the current changes

sign, giving zero net current exactly at the transition [19].

Characterization of an SGS junction and the identication of

a possible 0-π transition will typically be done by measuring

the current response to an applied magnetic eld. Therefore,

it is important to know whether features in the critical current,

such as the decay rate and zeros, can also be produced by

an interference effect that arises from ripples in the graphene.

Of particular interest is whether interference effects can give

a vanishing critical current at magnetic eld strengths that

are comparable to the magnetic eld necessary for a 0-π

transition. The Zeeman energy necessary for the transition is

typically smaller for diffusive systems [12], so diffusive sys-

tems, achievable for instance with SiO2 as substrate [25], are

most promising for tunable π junctions. However, computing

the supercurrent in a model with ripples in graphene is a

challenging task due to the nontrivial geometry of the system.

A sketch of the system under consideration is shown in

Fig. 1. In order to model this geometry, we add a spatially

varying magnetic eld to the equations governing diffusive

SFS junctions, where the exchange eld in the ferromagnet

comes from the Zeeman effect. In order to fully model the dis-

orderly ripples, one must be able to solve the equations with

arbitrary magnetic eld distributions. We are able to do that

numerically by using the nite element method. Additionally,

we extend the analytical result by Bergeret and Cuevas [26]

for superconductor-normal-superconductor (SNS) junctions

with uniform magnetic elds to SFS junctions with arbitrary

magnetic eld distributions and arbitrary exchange elds.

II. METHODOLOGY

The critical current, as well as other physical quantities

such as the local density of states, can be calculated us-

ing the quasiclassical Keldysh Green’s function formalism

[27,28]. Previous studies of ballistic systems have investigated

the interplay of the Zeeman and the orbital effect using an

analytical propagator approach [29,30]. The diffusive limit

considered here, however, is more appropriately described by

the Usadel equation, which previously has been done to suc-

cessfully model experimental results for the supercurrent in

SGS junctions [31]. We use natural units throughout, meaning

that c = h̄ = 1.

In thermal equilibrium it is sufcient to solve for the

retarded Green’s function ĝ, which is normalized to ĝ2 = 1

and solves the Usadel equation,

D∇̃ · (ĝ∇̃ĝ)+ i[̂, ĝ] = 0, (1)

provided that the Fermi wavelength and the elastic impurity

scattering time is much shorter than all other relevant length

scales, and the Fermi wavelength is much smaller than the

scattering time. Here D is the diffusion coefcient and the

covariant derivative is ∇̃ĝ≡ ∇ĝ− ieA[ρ̂3, ĝ], where A is the

vector potential and e = −|e| is the electron charge. The self-

energy is

̂ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(ε + iδ)ρ̂3+

⎛

⎜

⎝



−

∗

−∗

⎞

⎟

⎠
in the superconductors,

(ε + iδ)ρ̂3+



h · σ
h · σ ∗



in the ferromagnet,

(2)

where ε is the energy, δ−1 is the inelastic scattering time, ρ̂3 =
diag(1, 1,−1,−1),  is the superconducting gap parameter,

h is the exchange eld, and ∗σ is the vector consisting of

Pauli matrices. Dening “spin up” and “spin down” parallel

to the in-plane magnetic eld gives h = hẑ. We here disregard

the effect of the very weak k-dependent spin-orbit induced
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effective Zeeman-eld caused by ripples in graphene, which

is opposite in direction at the two inequivalent Dirac points of

graphene [32].

To model rippled graphene, we will map the nonat

graphene sheet in the laboratory frame xyz shown in Fig. 1

with magnetic eld components Bx ,By ,B⊥ to a local coor-

dinate system xyz that follows the graphene surface in the

sense that the z axis is always orthogonal to the surface.

The spatially constant magnetic eld in the laboratory frame

will then give rise to a spatially dependent magnetic eld in

the local coordinate system xyz.

Let x and y denote orthogonal coordinates on the graphene

surface such that the superconductors are located at x = ±L/2

and the interfaces with vacuum are at y = ±W/2. The curved

geometry of graphene will in general enter into the Usadel

Eq. (1) in three ways. First, the divergence and gradient oper-

ators are altered by the curvature. For a given ripple structure,

these operators can be calculated from the resulting metric

tensor. However, since the curvature of rippled graphene

typically is very small [22], the deviation from the Euclidean

metric is negligible. Consequently, we use ∇ ≡ x̂ ∂/∂x +
ŷ ∂/∂y. Second, the out-of-plane magnetic eld component

is modulated because it penetrates the graphene at varying

angles. That is, if B⊥ = B⊥ẑ
 is the out-of-plane magnetic

eld ẑ is the unit vector pointing out of the plane in the

external coordinate system, or “lab frame,” and ẑ is the unit

vector orthogonal to the graphene, then

B⊥ · ẑ = B⊥ + β(x, y). (3)

Again, since the curvature is small, β is negligible com-

pared to B⊥, so we can safely disregard this correction.

Third, and crucial for the effect considered here, the in-plane

magnetic eld has a component orthogonal to the surface.

In the laboratory frame, the magnetic eld can be written

B = (Bx ,By ,B⊥)
ᵀ. In the coordinate system of the curved

graphene, this gives rise to a magnetic eld with a z compo-

nent equal to

B · ẑ = −Bx sin



arctan



∂η

∂x



− By sin



arctan



∂η

∂y



+ B⊥ + β ≈ −Bx
∂η

∂x
− By

∂η

∂y
+ B⊥, (4)

where η is the height distribution of the graphene, x and
y are the coordinates in the laboratory frame, and we have

used the assumption that ∂η/∂x ≈ ∂η/∂x  1 and ∂η/∂y ≈
∂η/∂y  1.

In order to capture the magnetic eld given by Eq. (4), we

use the vector potential

A =



Byη + Bx

 y

0

∂η

∂x
dỹ− B⊥y



x̂. (5)

Choosing the vector potential parallel to the x axis allows us

to set A = 0 in the superconductors, which means that the

ground states in the superconductors have constant phases. In

the following we denote the superconducting phase in the left

(x < −L/2) and right (x > L/2) superconductors by φl and

φr , respectively. Having established the form of the vector

potential A [Eq. (5)] in the local coordinate system where

graphene is at, we will from now on omit the prime on Bx

and By for brevity of notation.

The Usadel Eq. (1) is not valid across boundaries of

different materials since the associated length scales are not

negligible compared to the Fermi wavelength. Instead, the

Green’s function in the different materials must be connected

through a boundary condition. For low-transparency tunneling

interfaces, one may use the Kupriyanov-Lukichev boundary

condition [33],

ζiLin̂ · (ĝi∇̃ĝi ) =
1
2
[ĝi, ĝ j], (6)

where the subscripts i and j denote the different sides of the

interface, n̂ is a normal unit vector pointing out of region

i, Li is the length of region i in the n̂ direction, and ζi is

the ratio of the normal-state conductance of region i to the

interface conductance. Equation (6) is used along the interface

between the superconductors and graphene at x = −L/2 and

x = L/2. Along the boundaries with vacuum at y = ±W/2,

the boundary condition is n̂ · ∇̃ĝ= 0.

It has been shown that one may use the bulk solution in the

superconductors,

ĝBCS =
̂



(ε + iδ)2 − ||2
, (7)

when the interface conductance is much smaller than the

normal-state conductance of length ξ of the superconductor

[34], where

ξ =



D


(8)

is the coherence length. The square root in Eq. (7) must be

chosen such that it has a positive imaginary part.

Having found the Green’s function, the electrical current

density can be calculated from [35]

j =
N0eD

4

 ∞

−∞
Tr(ρ̂3ĝ∇̃ĝ− ĝ†∇̃ĝ†ρ̂3) tanh



βε

2



dε, (9)

where N0 is the normal density of states and β is inverse

temperature. Finally, Eq. (9) allows for calculation of the

critical current, given by

Ic = max
φr−φl

 W/2

−W/2

x̂ · j(x, y)dy, (10)

where the choice of x is arbitrary.

In order to solve Eq. (1) numerically, we use the Ricatti

parametrization,

ĝ=



N

−Ñ



1+ γ γ̃ 2γ

2γ̃ 1+ γ̃ γ



, (11)

where N = (1− γ γ̃ )−1 and tilde conjugation is dened as

γ̃ (ε) = γ ∗(−ε). This respects the normalization and under-

lying symmetries of ĝ. The resulting equations for the 2× 2

matrices γ and γ̃ are discretized by the nite element method

[36] with quadratic elements, and Gauss-Legendre quadrature

rules of fourth order is used to integrate over the elements.

The resulting nonlinear set of algebraic equations are solved

by the Newton-Raphson method [37], where the Jacobian is

determined by forward-mode automatic differentiation [38].
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III. RESULTS AND DISCUSSION

In order to linearize the Usadel equation, we write

ĝ= ĝ0 + f̂ , (12)

where ĝ0 is the bulk solution. In a ferromagnet, the self-

energy ̂, given by (2), is diagonal. Hence, the bulk equa-

tion [̂, ĝ0] = 0 is solved by any diagonal matrix satisfying

ĝ20 = 1. In order to nd the correct solution one must solve

the full Gor’kov equation. The result is that ĝ0 = ρ̂3. If we

assume that the proximity effect is weak, we can keep only

linear terms in f̂ , yielding

Dρ̂3∇̃
2
f̂ + i[ f̂ ] = 0. (13)

In order for the normalization ĝ2 = 1 to hold to linear order

in f̂ , we need { f̂ , ρ̂3} = 0. This implies that

f̂ =



0 f

− f̃ 0



(14)

and

∇̃ f̂ = ∇ f̂ − 2ieAρ̂3 f̂ . (15)

In the weak proximity effect regime, the boundary condi-

tions read

ζLρ̂3n̂·∇̃ f̂ = 1
2
[ρ̂3 + f̂ , ĝs + f̂s] = ρ̂3 f̂s − ĝs f̂ , (16)

where ĝs is the part of ĝBCS proportional to ρ̂3 and f̂s is the

remaining part proportional to antidiag(,−,∗,−∗).
Additionally, we must have [ f̂ , f̂s] = 0, since this term would

be block diagonal.

Since ̂ is diagonal in the ferromagnet, the different

components of f̂ decouple. Only the elements which are

nonzero in f̂s will have a constant term in the boundary

conditions. The remaining elements must be zero. Hence, f̂

must be antidiagonal, just like f̂s. This in turn implies that

[̂, f̂ ] = 2̂ f̂ .

In order to solve the Usadel equation for arbitrary magnetic

elds, we rst dene

û = exp



−2ieρ̂3

 x

−L/2

A(x, y)dx


f̂ . (17)

With this, the Usadel equation can be written

Dρ̂3∇2û+ 2i̂û− 2Dieρ̂3û

 x

−L/2

∂B

∂y
dx

− 4De2û

 x

−L/2

Bdx
2

− 4Die
∂ û

∂y

 x

−L/2

Bdx = 0,

(18)

where we have dened B ≡ Bz = −∂A/∂y as the magnetic

eld component orthogonal to the graphene. We can neglect

the terms involving B by assuming that the magnetic eld is

sufciently weak. That is, for all x ∈ (−L/2,L/2),
 x

−L/2

Bdx  0



δ

D
, (19a)

and
 x

−L/2

∂B

∂y
dx 

0δ

D
, (19b)

where 0 = π/e is the magnetic ux quantum.

The boundary conditions for û at y = ±W/2 is

∂ û

∂y









y=±W/2

= −iû

 x

−L/2

Bdx. (20)

Equations (16), (18), and (20) can be solved exactly when B =
0 by assuming ∂2û/∂y2 = 0. For B satisfying Eq. (19) we can

nd an approximate solution by neglecting the term ∂2û/∂y2

in Eq. (18).

With these approximations, the Usadel equation becomes

an ordinary differential equation,

∂2û

∂x2
+

2iρ̂3̂

D
û = 0, (21)

with solution

û = ek̂xÂ+ e−k̂xB̂, (22)

for some coefcients Â and B̂. Here

k̂ =



−
2iρ̂3̂

D
, (23)

which, since ρ̂3̂ is diagonal, k̂ can be obtained simply by

taking the elementwise square root. To determine Â and B̂ one

must use Eq. (16). The solution is

û =


(ζLk̂ + ρ̂3ĝs)
2ek̂L − (ζLk̂ − ρ̂3ĝs)

2e−k̂L
−1

×


p̂(x)+ eiρ̂3θ p̂(−x)


f̂s, (24)

where

θ = φr − φl − 2e

 L/2

−L/2

A(x, y)dx (25)

and

p̂(x) = (ζLk̂ + ρ̂3ĝs)e
k̂(x−L/2) + (ζLk̂ − ρ̂3ĝs)e

−k̂(x−L/2).

(26)

Note that the boundary condition for the interfaces with

vacuum, Eq. (20), is only approximately satised.

To nd the current from Eq. (24) we can use that the x

component of the current, as given by Eq. (9), can be written

j · x̂ =
N0eD

4

 ∞

−∞
Tr



ρ̂3û
∂ û

∂x
− û†

∂ û†

∂x
ρ̂3



tanh



βε

2



dε.

(27)

To simplify this expression, note that Eq. (24) can be written

û =

⎛

⎜

⎜

⎝

d (h)eiφl

−d (−h)eiφl

−d̃ (h)e−iφl

d̃ (−h)e−iφl

⎞

⎟

⎟

⎠

(28)

where

d (h) =
[p(x)+ eiθ p(−x)]||/



(ε + iδ)2 − ||2

[(ζLk + gs)2ekL − (ζLk − gs)2e−kL]
(29)

with gs = (ε + iδ)/


(ε + iδ)2 − ||2; the square roots

are those which have positive imaginary parts, k =
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√
−2i(ε + h+ iδ)/D and

p(x) = (ζLk + gs)e
k(x−L/2) + (ζLk − gs)e

−k(x−L/2). (30)

Inserting Eq. (29) into Eq. (27) gives

j · x̂ = N0eD

 ∞

−∞



d (h)
∂ d̃ (−h)

∂x
+ d (−h)

∂ d̃ (h)

∂x



× tanh



βε

2



dε. (31)

By evaluating j at x = 0 we can factorize out the depen-

dence on the vector potential, since

∂ d̃ (h)

∂x









x=0

= −
2i sin θ

1+ eiθ
×

∂ ln p

∂x
d (−h)









x=0

. (32)

Inserting this into Eq. (31) and integrating the current density

over y to obtain the total current nally gives

I = 2N0eD

 W/2

−W/2

sin



φr − φl − 2e

 L/2

−L/2

A(x, y)dx



dy

×

 ∞

−∞
[κ+ + κ−] tanh



βε

2



dε, (33)

where

κ± =
4||2k±

(ε + iδ)2 − ||2
×

[ζLk± cosh(k±L/2)− gs sinh(k±L/2)]× [gs cosh(k±L/2)− ζLk± sinh(k±L/2)]

[(ζLk± + gs)2ek±L − (ζLk± − gs)2e−k±L]2
, (34)

with k± =
√
−2i(ε ± h+ iδ)/D.

Equation (33) is our main analytical result and allows for

evaluation of the current at arbitrary exchange eld strengths

and magnetic eld distributions. Of particular interest is the

fact that the contributions from the vector potential and ex-

change eld decouple. One consequence of this is that a

constant magnetic eld gives rise to a Fraunhofer pattern in

the current regardless of the strength of the exchange eld,

as long as the magnetic eld is weak enough. This can be

seen from the fact that for a constant magnetic eld eA =
−π⊥y/0WL, where ⊥ is the magnetic ux from the

perpendicular eld, so

I ∝
 W/2

−W/2

sin



φr − φl + 2π
⊥y

0W



dy

=W sin(φr − φl )
sin(π⊥/0)

π⊥/0

. (35)

Figure 2 shows the critical current found analytically using

Eq. (33) for the case of no ripples, compared to the critical

current obtained numerically from the full nonlinear Usadel

equation. In addition to showing the agreement between the

full solution and the analytical approximation, Fig. 2 also

shows that there is an exchange-driven 0-π transition at h ≈
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FIG. 2. Color plot of log10(Ic/I0 ), where Ic is the critical current

and I0 = N0eWD2/L3 for various exchange elds h and out-of-plane

magnetic uxes. (a) shows the solution found numerically from the

full Usadel equation, and (b) shows the analytical solution found

using Eq. (33). Here, εT = D/L2, W = 10L, L = 6ξ , δ/ = 0.01,

and Bx = By = 0.

2εT, where

εT =
D

L2
(36)

is the Thouless energy.

Since the contribution from the exchange eld is indepen-

dent of the vector potential, we can focus on how the magnetic

eld alters the critical current. With the vector potential given

by Eq. (5), we get

 L/2

L/2

A(x, y)dx = ByLη̄(y)−⊥
y

W

+ Bx

 y

0

[η(L/2, ỹ)− η(−L/2, ỹ)]dỹ,

(37)

where

η̄(y) =
1

L

 L/2

−L/2

η(x, y)dx (38)

is the longitudinally averaged height. From Eq. (37) it can be

observed that the contribution proportional to Bx is small for

variations that are fast in the y direction, since the integrand

will oscillate rapidly, and small for very slow variations,

which will contribute little to η(L/2, y)− η(−L/2, y). Sim-

ilarly, variations that are fast in the x direction will contribute

little to the term proportional to By. Otherwise, the contri-

butions from the terms proportional to By and Bx is similar,

so we set Bx = 0 in the following. We also set β = 1000/,

corresponding to T/Tc ≈ 1.8× 10−3, where Tc is the critical

temperature.

From Eqs. (33) and (37) we can nd how big the height

variations must be in order to possibly cause a vanishing

critical current at ⊥ = 0. In order for the critical current to

vanish, the argument of the sine function in Eq. (33) must have

variations of at least π/2. Otherwise, the phase difference,

φr − φl , can be chosen such that the integrand is of one sign.

This means that in order for there to be a root in the critical
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current at⊥ = 0, the in-plane magnetic eld must be at least

By =
0

4L(max η̄ −min η̄)
, (39)

assuming Bx = 0.

In order to apply Eq. (33) to the case of rippled graphene

with vector potential given by Eq. (5), we need a model of

the height distribution η of the ripples. From Eq. (37) we nd

that it is reasonable to categorize ripples into short ripples

and long ripples, depending on whether the wavelength is

shorter or longer than 2L. Ripples with wavelength shorter

than 2L will have a smaller contribution to η̄ in Eq. (37)

since the integrand oscillates between positive and negative

values. For this reason, short ripples will contribute less to

interference effects than long ripples with the same ampli-

tude. On the other hand, faster variations in the y direction

gives a larger magnetic eld component perpendicular to the

graphene surface and therefore a larger depairing effect. Short

ripples are therefore expected to lead to larger deviations from

the analytical approximation given by Eq. (33). In particular,

they are expected to cause a faster decay, which, as we will

see, is also what happens.

In general, the height distribution will be a superposition of

long and short ripples. We look rst at only long ripples, then

at only short ripples, and nally at the combination of both

short and long ripples. In order to simplify the presentation

and analysis, we present solutions for height distributions that

can be written as the product of cosines. We obtain quali-

tatively similar result for more realistic, randomized height

distributions.

To model n uniform ripples in the x direction and m uni-

form ripples in the y direction, we use the height distribution

η(x, y) =
η0

2
cos



nπ
x

L



cos



mπ
y

W



, (40)

where η0 is the peak-to-peak height difference. Figures 3–5

show the critical current, given by Eq. (10), for the height

distribution in Eq. (40) with n = 1 and m = 2, m = 5 and

m = 10, respectively. The exchange eld, h, is set to zero in

order to isolate the orbital effect, such that it can be observed

whether the orbital effect alone is sufcient to produce roots

in the critical current. Physically, the situation with negligible

exchange eld would be the case if the Thouless energy, εT, is

much larger than the Zeeman splitting μBBy, where μB is the

Bohr magneton.

It can be seen from Figs. 3–5 that a height variation of

only 1 nm is sufcient to produce oscillations in the critical

current. In particular, the critical current is zero for ⊥ = 0

and nite By when m = 2 and m = 10. Both zeros satisfy

Eq. (39), which is By = 2 T in this case. We can conclude

from this that a zero in the critical current of an SGS junction

is not sufcient to identify an exchange-driven 0-π transition,

since zeros can also be produced from the ripples.

Since the junction widths are equal in Figs. 3–5, larger

m means a larger orthogonal component from the in-plane

magnet eld. Consequently, the magnetic eld strengths for

which the weak eld assumption, Eq. (19), remains valid is

reduced when m increases. This is reected in the correspon-
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FIG. 3. Critical current Ic for various in-plane magnetic eld

strengths By and out-of-plane magnetic uxes ⊥ for the height

distribution given by Eq. (40) with n = 1 and m = 2. Here, I0 =
N0eWD2/L3, W = 10L, L = 10ξ = 400 nm, η0 = 1 nm, δ/ =
0.02, and Bx = 0. (a) shows the analytical solution of Ic against By

for ⊥ = 0 (blue line), compared to the numerical solution (red

dots). (b) shows the analytical solution of Ic against⊥ for By = 5 T

and (c) shows a logarithmically scaled color plot of analytical Ic
where white means zero current and deep blue corresponds to large

current.

dence between the numerical simulations and the analytical

predictions.

The color plots in Figs. 3–5(c) show that the critical current

has especially large maxima at ⊥/0 = km/2 for integer k.

This is also reected in Figs. 3–5(b), which show that the lobe

structure has strong maxima at⊥/0 = m/2. To understand

why, note that the orbital part of the current can be written as

a Fourier transform. That is,

I = C(h)

 W/2

−W/2

sin



φl − φr + 2π
ByLη̄

0

− 2π
⊥y

0W



dy

= C(h)

⎧

⎨

⎩

ei(φl−φr )

 W/2

−W/2

exp



2π i



ByLη̄

0

−
⊥y

0W



dy

⎫

⎬

⎭

,

(41)

whereC is a function of the exchange eld. Hence, the critical

current can be written as

Ic = C(h)









F


rect(y/W )e2π iByLη̄/0




2π⊥

W0









, (42)

where rect is the rectangular function and F means Fourier

transform. Accordingly, a Fourier analysis of the current re-

sponse to out-of-plane magnetic elds can uncover properties

of the ripple structure. In this case, η̄ is a cosine with wave

number mπ/W , so it is reasonable that the Fourier transform

peaks at 2π⊥/W0 = kmπ/W with strengths that depends

on By. For a more general ripple structure, mapping out the

current response to both the in-plane and out-of-plane one

could uncover information about the slow height variations

that can be difcult to detect with surface probe techniques.
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FIG. 4. Critical current Ic for various in-plane magnetic

eld strengths By and out-of-plane magnetic uxes ⊥ for the

height distribution given by Eq. (40) with n = 1 and m = 5.

Here, I0=N0eWD2/L3, W =10L, L=10ξ=400 nm, η0=1 nm,

δ/ = 0.02, and Bx = 0. (a) shows the analytical solution of Ic
against By for ⊥ = 0 (blue line), compared to the numerical

solution (red dots). (b) shows the analytical solution of Ic against

⊥ for By = 5 T and (c) shows a logarithmically scaled color plot

of analytical Ic where white means zero current and deep blue

corresponds to large current.

Obtaining η̄ from measurements of the critical current

is complicated by the loss of the phase information of the

Fourier transform in Eq. (42). One possible resolution is to

obtain the current-phase relation, as has been done for ballistic

graphene by use of a SQUID [39]. In this case, one could take

advantage of the fact that the current for a given in-plane mag-

netic eld is proportional to sin(φl − φr )(F )+ cos(φl −
φr )(F ), where F is the Fourier transform in Eq. (42). It

would then in theory be straightforward to nd the phase of

F and compute its Fourier inverse. If the only available data

is the critical current, one could look at the values of ⊥ that

gives enhanced current upon application of in-plane magnetic

eld to extract the most prominent Fourier components of η̄ or

use the variational method to approximate the function η̄ that

solves Eq. (42). If one can also manipulate the direction of the

in-plane magnetic eld, one could combine the knowledge of

η̄ with the corresponding function relevant for when the eld

is in the x direction to get even more insight into the full ripple

prole η.

Figures 3–5(a) also give clues to how the full solution of

the Usadel equation deviates from Eq. (33) when the magnetic

eld is strong. Two things seem to happen when the ux

density is strong. First, compared to the analytical solution,

the full solution decays more rapidly as By increases. That

the critical current decays faster than the analytical solution

predicts is unsurprising, since we neglected the depairing

effect of the magnetic eld in our derivation of Eq. (33).

Second, the functional dependence on By is slower in the

numerical case, in the sense that roots and extremal values

in the critical current are skewed towards larger values of By.

A plausible explanation for this phenomenon is that the full
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FIG. 5. Critical current Ic for various in-plane magnetic eld

strengths By and out-of-plane magnetic uxes ⊥ for the

height distribution given by Eq. (40) with n = 1 and m = 10.

Here, I0=N0eWD2/L3, W =10L, L = 10ξ=400 nm, η0=1 nm,

δ/ = 0.02, and Bx = 0. (a) shows the analytical solution of Ic
against By for ⊥ = 0 (blue line), compared to the numerical so-

lution (red dots). (b) shows the analytical solution of Ic against

⊥ for By = 5 T and (c) shows a logarithmically scaled color plot

of analytical Ic where white means zero current and deep blue

corresponds to large current.

solution varies more slowly in the y-direction compared to the

analytical approximation in Eq. (24). The analytical solution

has ∂ f̂ /∂y ∝ B, but it neglects the boundary condition that

demands ∂ f̂ /∂y = 0 when y = ±W/2. Hence, it is possible

that the analytical solution overestimates the variation of f

with respect to y, at least close to y = ±W/2. The roots in

the critical current occur because the magnetic eld creates

mutually canceling oscillations in the current density as a

function of y. If the analytical approximation overestimates

how fast these oscillations occur, it will underestimate the

magnetic eld required to give Ic = 0. The faster decay, but

slower variation, is also exactly what happens in the case

of uniform magnetic elds, as can be seen from Fig. 3 in

Ref. [26].

Moving on to short ripples, Fig. 6 shows the critical current

for the distribution given by Eq. (40) with n = 11, m = 10,

and η0 = 1 nm. With L = 400 nm, this corresponds to a rip-

ple length of 40 nm, which is comparable to the short ripples

observed in graphene on SiO2 [22]. The exchange eld is

again set to 0. What matters for the analytical approximation

is the longitudinally averaged height η̄, which in this case is

small because of the rapid oscillations. Hence, the analytical

approximation predicts very little change in the critical current

at ⊥ = 0. On the other hand, the orbital depairing effect is

quite large because of the short ripples, which is reected in

the decay of the critical current observed in the numerical

solution of the full Usadel equations.

Finally, Fig. 7 shows the critical current for combinations

of short and long ripples, both with and without a nonzero
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FIG. 6. Critical current Ic for B⊥ = 0 and various in-plane mag-

netic eld strengths By with the height distribution given by Eq. (40)

with n = 11 and m = 10. Here, I0 = N0eWD2/L3, W = L = 10ξ =
400 nm, η0 = 1 nm, δ/ = 0.02, and Bx = 0. The blue line shows

the analytical solution, as found by Eq. (33), and the red line with

dots shows the numerical solution found by solving the full Usadel

equation.

exchange eld. The height distribution is in this case given by

η = 1 nm × cos



2π
y

W



+ A cos



nπ
x

L



cos



nπ
y

L



,

(43)

where n = 4 for “hBN” and “Large” and n = 10 for “SiO2.”

The amplitude of the short ripples are A = 0.1 nm, A =
0.5 nm, A = 2 nm for “hBN,” “SiO2,” and “Large,” respec-

h
B
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S
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2
L
arge

h = 0 h = 0

0

0.05

0.1

I c
/
I 0

0
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I c
/I
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0

0.05

0.1

By(T )

I c
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FIG. 7. Critical current Ic for B⊥ = 0 and various in-plane

magnetic eld strengths By with the height distribution given by

Eq. (43) with (A,N ) = (0.1 nm, 4), (0.5 nm, 10), and (2 nm, 4),

respectively, from top to bottom. The exchange eld is h = 0 in

the left panels and h = μBBy in the right panels, where μB is

the Bohr magneton. Here, I0 = N0eWD2/L3, W = 10L, L = 10ξ =
400 nm, δ/ = 0.02,  = 1.5 meV, and Bx = 0. The blue line

shows the analytical solution, as found by Eq. (33), and the red line

with dots shows the numerical solution found by solving the full

Usadel equation.

tively. The values for “SiO2” and “hBN” are chosen such that

the short ripple sizes correspond to the observed values for

SiO2 and hBN [22]. The values for “Large” are chosen such

that amplitudes of the short ripples are twice as large as the

long ripples. In this case the orthogonal component of the

magnetic eld is much too high for the analytical solution to

give accurate results.

Since n is even, the analytical solution given by Eq. (33) is

equal for the three cases. The only difference is the magnitude

of the additional magnetic ux density that comes from the

short ripples. As mentioned above, we should expect a faster

decay for larger and faster ripples. This is indeed also what we

observe from the numerical results in Fig. 7. Interestingly, the

location of the roots is not substantially altered by the short

ripples. Even in the lowermost panels, where the short ripples

are twice as large as the long ripples, the roots in the numerical

solution occur not far from the values of By predicted by the

analytical solution, even if the amplitude decays much faster.

Long ripples, as we have seen, can give rise to interference

effects that produce oscillations and possibly roots in the

critical current. Short ripples, on the other hand, increase the

magnetic ux density and can lead to a substantial magnetic

depairing effect, which manifest as a rapidly decaying critical

current. Hence, the combined effect of short and long ripples

can yield a rapidly decaying critical current with zeros, much

like what one would expect from a ferromagnet undergoing a

0-π transition.

From Fig. 7 it can also be observed that the deviation

between the analytical and numerical solutions is smaller

when the exchange eld is nonzero. This is as expected, since

neglecting the contribution from B in Eq. (18) is a better

approximation when the self-energy ̂ is larger. Note that

in Fig. 7, the presence of the exchange eld induces a 0-π

transition around By = 1 T, which manifests as a root in the

critical current.

Since the ripples and the exchange eld both give rise

to oscillating and decaying critical currents, it is useful to

determine whether a 0-π transition is expected to occur before

or after a possible zero in the critical current coming from

ripples. The exact values of By at which these events take

place will in general depend on several parameters, but we

can give some order of magnitude estimates based on Eq. (33)

and numerical simulations. The rst 0-π transition typically

occurs around h = 2εT but can occur at larger values if the

inelastic scattering time 1/δ is small. Inserting the denition

of the Thouless energy εT and using that h = μBBy, this means

that the Zeeman driven 0-π transition occurs at

By ≈
2D

μBL2
. (44)

Equation (39) gives a minimal value for By at which a zero

can be produced from the interference effect that is due to

ripples. In the numerical result presented here, we see that the

zero occurs for a value of By that is about three times larger.

An order of magnitude estimate is that, for long ripples with

peak-to-peak height of η0, the rst zero in the critical current

can occur at around

By ≈
0

η0L
. (45)
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Notice that Eqs. (44) and (45) scales differently with junction

length L. Therefore, it is more plausible that an observed zero

in the critical current correspond to a 0-π transition when

the junction is long. Alternatively, one could try to limit the

presence of variations in the y-direction that are longer than L

by makingW  L.

From Figs. 3–5 we also observe that the ripples can

substantially alter the Fraunhofer lobe structure found when

varying B⊥, while Fig. 2 shows that the Fraunhofer pattern

is unaltered when the effect of ripples is negligible. Hence,

investigating how Ic depends on B⊥ could also be useful when

identifying 0-π transitions. As long as the junction width and

diffusivity are approximately constant, a 0-π transition will

give rise to a vanishing critical current for all values of out-of-

plane magnetic ux densities B⊥. If in addition the effect of

ripples is small, one should expect that the critical current as

a function of B⊥ is a Fraunhofer pattern at any constant value

of the in-plane magnetic eld B. Accordingly, determining

whether the minima in critical current as a function of B⊥ and

B are straight lines, as in Fig. 2, or curved, as in Figs. 3–5,

can give clues as to whether ripples are important. If ripples

are important, Eq. (42) could give insight to their structure.

IV. CONCLUSION

We have solved the Usadel equation analytically in the

presence of an exchange eld and an arbitrary magnetic eld

distribution, under the assumption of a weak proximity effect

and a weak magnetic eld. The solution has been applied to

SGS junctions with the combined Zeeman effect and orbital

effect coming from an in-plane magnetic eld. Deviations

from the analytical solution at large magnetic elds have been

studied numerically. We nd that the orbital effect that results

from a curvature in the graphene can produce a critical current

response that is similar to what one would get by increasing

the exchange eld. Slow variations in the graphene height

distributions give rise to interference effects that produce

oscillations in the critical current, while rapid variations cause

larger orbital depairing effects that lead to a faster critical

current decay rate.

Since both the Zeeman splitting and orbital effects in rip-

pled graphene can cause similar behavior, extra care must be

taken when identifying possible 0-π transitions. The interfer-

ence effect from ripples is reduced if the width of the junction

is much smaller than the length. In addition to reducing the

relative effect of ripples compared to the Zeeman splitting,

which is achieved by increasing the length of the junction and

minimizing the height variations, it could also be useful to

look at how the critical current varies with a perpendicular

magnetic eld. The effect of ripples, if present, will then

typically alter the Fraunhofer pattern observed at zero in-plane

magnetic eld. Because slow height variations are difcult to

detect using surface probe techniques, we suggest the use of

parallel magnetic eld as a means to probe the presence of

such variations.
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Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic elds due to

Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe2 as

superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional

Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate

voltage, and both out-of-plane and in-plane magnetic elds. Notably, the 2DJJs sustain supercurrent up to

parallel elds as high as 8.5 T, where the Zeeman energy EZ rivals the Thouless energy ETh, a regime hitherto

inaccessible in graphene. As the parallel magnetic eldH increases, the 2DJJ’s critical current is suppressed and

in a few cases undergoes suppression and recovery. We explore the behavior in H by considering theoretically

two effects: a 0-π transition induced by tuning of the Zeeman energy and the unique effect of ripples in an

atomically thin layer which create a small spatially varying perpendicular component of the eld. The 2DJJs

have potential utility as exible probes for two-dimensional superconductivity in a variety of materials and

introduce high H as a newly accessible experimental knob.

DOI: 10.1103/PhysRevB.103.115401

I. INTRODUCTION

By coupling graphene to exfoliated superconductors such

as NbSe2 [1–3] it is possible to realize Josephson junctions

where both the normal and superconductor materials are two-

dimensional (2D). Such junctions should sustain high in-plane

magnetic elds. Thin NbSe2 retains superconductivity at very

high in-plane elds due to a combination of suppressed orbital

depairing and Ising protection against pair breaking [4,5] and

can sustain magnetic elds above 8 T without any measurable

effect on the gap size [4,6]. Coupling graphene to two NbSe2
akes results in an all van der Waals two-dimensional Joseph-

son junction (2DJJ). The response of such 2DJJs to in-plane

magnetic eld will be dictated by both spin and orbital effects.

In the graphene layer, forming the weak link, the response of

carrier spins to the Zeeman eld may lead to interesting phe-

nomena such as nite-momentum Cooper pairing and a 0-π

transition [7–10]. However, the deviation of such devices from

the ideal 2D geometry due to ripples and other deformations is

signicant, as it gives rise to eld components perpendicular

to the local sample plane, introducing orbital dephasing. The

latter also occurs due to the bending of magnetic eld ux

lines, which cannot be considered truly parallel, as they are

deected by superconducting leads [11].

Two-dimensional Josephson devices are a useful platform

for the study of nite-momentum superconducting states:

Cooper pairs may survive in the spin-polarized Fermi surface

*These authors contributed equally to this work.

created at high magnetic elds by attaining a nite center-

of-mass momentum [12,13], which translates into a spatially

varying order parameter. Finite Cooper-pair momentum q =

2EZ/h̄vF is dictated by the Zeeman energy EZ = 0.5gμBH ,

where g is the Landé factor, vF is the Fermi velocity, and μB

is the Bohr magneton. The resulting oscillation of the order

parameter within the junction can create π -phase junctions,

where the transition to the π phase is found in junction

lengths L determined by the multiples of π/q. Weak links

characterized by large g factors have shown signatures of

nite-momentum Cooper pairing [14] and allowed the re-

alization of tunable Zeeman-driven 0-π transitions [15–17].

Graphene should also exhibit a Zeeman-driven 0-π transi-

tion [7–10]. However, reaching this transition requires the

application of high magnetic elds due to the low g factor

which limits the momentum shift of the Cooper pair. Bal-

listic graphene is uniquely expected to produce eld-tunable

switching between 0 and π phases while retaining a nite

critical current [7] and is expected to exhibit triplet supercon-

ductivity [18].

However, the entirely 2D nature of the graphene sheet gives

rise to a unique form of disorder due to graphene ripples

in the third dimension. In the presence of applied H this

introduces a small component of perpendicular eld with a

disorderly spatial variation created by the ripple pattern. This

effect can lead to critical current decay with parallel eld,

a non-Fraunhofer interference pattern, and suppression and

recovery of the critical current mimicking a 0-π transition.

The effect of ripples changes depending on ripple amplitude

and wavelength and junction dimensions [19]. Thus, in any

2469-9950/2021/103(11)/115401(9) 115401-1 ©2021 American Physical Society
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FIG. 1. (a) Fabrication of planar graphene-NbSe2 JJs involves (1) exfoliation of graphene on SiO2 and NbSe2 on PDMS, (2) stamping a

cracked NbSe2 ake onto graphene, (3) stamping a thin hBN ake for encapsulation of the crack, (4) and patterning of electrodes. Steps are

illustrated from left to right. (b) Optical image of junction A with schematics of current ow. NbSe2 thickness is around 10 nm. Scale bar is

10 μm. (c) Illustration of a rectangular junction geometry. (d) A false-color SEM image of the region marked by a red square in (b), showing

the actual junction geometry, with the graphene ake contour highlighted and the direction of H indicated. Scale bar is 2 μm. (e) Schematic

illustration of the JJ in a four-probe electronic conguration. Current ows in plane from NbSe2 to graphene to NbSe2. The crack is shielded

from the top by hBN. Gate voltage is applied across the SiO2 dielectric.

experiment involving graphene in a parallel eld—or, indeed,

we believe any 2D conductor in a parallel eld—this effect

should be considered. The morphology and effect of ripples

are expected to change depending on the substrate and thick-

ness of the 2D layer. Due to the high parallel elds sustained

by the junction, our 2DJJ is sensitive to both long- and short-

wavelength submilliradian curvature and subnanometer height

variation in graphene.

We study planar NbSe2-graphene-NbSe2 junctions, fabri-

cated by transferring cracked NbSe2 on exfoliated graphene

(see Fig. 1 and detailed information in the Supplemental Ma-

terial, Sec. 4 [20]). The thickness of the NbSe2 akes used for

the devices in this paper was around 5–10 nm, evaluated by

optical contrast. The junctions exhibit supercurrent character-

istics which are similar to diffusive graphene-based devices

fabricated using evaporated superconducting electrodes, in-

cluding gate-tunable critical current and a Fraunhofer-like

interference in out-of-plane eld [21–25]. Upon applica-

tion of in-plane eld, the 2DJJ critical current undergoes

exponential suppression and transitions from a Fraunhofer

to superconducting quantum interference device (SQUID)-

like interference pattern, which is retained as the eld is

further increased up to 8.5 T. We focus our paper on junc-

tion A, with NbSe2 thickness of around 10 nm and a

weak link consisting of monolayer graphene. In this de-

vice we nd that the supercurrent exhibits a pronounced

suppression-recovery pattern, a feature which may be associ-

ated either with a 0-π transition or with the effect of graphene

ripples.

II. TRANSPORT MEASUREMENTS

We begin by characterizing the transport of a 2DJJ. Fig-

ure 2(a) shows the typical current-voltage characteristics of

junction A, where the I-V curves at different gate voltages

exhibit a switching behavior between zero resistance and -

nite resistance at the junction switching current IC . Typical

of density-tunable graphene JJs [21], IC is modulated by the

gate voltage VG and reaches a minimal, yet nite, value of

IC ≈ 0.4μA at the Dirac point VG = −4 V. This is evident in

Fig. 1(b), where the differential resistance dV/dI vs I and VG
is presented as a color plot. Thus, our 2DJJs exhibit the same

bipolar supercurrent expected in graphene-based Josephson

devices [21].

The Thouless energy ETh, dened as the inverse of the

traversal time of the junction, is an energy scale characteristic

of normal transport, which also governs the superconducting

properties of Josephson junctions [27]. Josephson junctions

vary between regimes dened as long (/ETh  1) or short

(/ETh  1) and diffusive (L > l) or ballistic (L < l), where

l is the mean free path in the weak link and L is the junction

length. In the diffusive case ETh = h̄D/L2, where D is the

diffusion constant and L is the junction length. ETh and l can,

in principle, be extracted from the dependence of graphene

normal resistance on VG [24,25]. However, our device has an

unusual geometry and noncolinear current and voltage probes,

introducing uncertainties in the determination of ETh. Taking l

in the tens of nanometers, we estimate ETh to be a few hundred

μeV. The gap  of 10-nm-thick NbSe2 is close to the bulk

115401-2
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FIG. 2. (a) I-V curves of junction A (monolayer graphene) taken at different gate voltages (see legend). (b) Differential resistance dV/dI

of junction A as a function of bias current and gate voltage. (c) Temperature dependence of the critical current of junction A (blue dots) and

a t to Eq. (1) (orange line), taken with a gate voltage of −20 V. (d)–(f) Differential resistance of junction A as a function of bias current and

external perpendicular magnetic eld, taken with gate voltages of 12 V, −4 V (Dirac point), and −20 V, respectively. All the panels show data

at H = 0 T and T = 30 mK.

value of 1.3 meV [28], placing junction A in an intermediate

regime, leaning towards the long and diffusive.

It is predicted that in innitely long metallic diffusive

superconductor-normal-superconductor (SNS) junctions, with

perfect contacts, at zero temperature eICRN = αETh (RN is

the junction normal resistance [29]). Values near the theoret-

ically predicted value of α = 10.82 were seen in metal SNS

junctions [29], whereas in graphene α varies widely, reaching

values as much as 100 times smaller than theory [22–25]. Low

values of α are attributed to an effective Thouless energy E∗
Th,

smaller than ETh determined by transport. This is possibly

due to nite contact resistance and Andreev reections across

the N-S barrier, which increase the time of junction traversal

[25,26]. In junction A ETh is of the order of ICRN ; thus, the

proportionality factor α is of order unity. This indicates an

effective E∗
Th ≈ 0.1ETh, smaller than metallic SNS junctions

and larger than previously reported diffusive graphene junc-

tions [22–25].

In the long junction limit at low temperatures theory pre-

dicts [29]

eICRN = α1ETh

[

1− b exp

(
−α2ETh

3.2kBT

)]

, (1)

where α1 = α2 = 10.82 and b = 1.3. Previous attempts to

t the temperature dependence in superconductor-graphene-

superconductor (SGS) junctions led to ndings of α1,2 =

1.1–2.9 in [3,22,25]. In Fig. 2(c) we show that the temperature

dependence of the critical current in junction A ts well to an

equation of this form at low temperatures up to T  3K. Since

we do not know the precise value of the transport ETh, the t-

ting parameters are of limited quantitative value; nevertheless,

assuming ETh ≈ 300μeV, we nd α1 = 1.2, α2 = 2.4, and

b = 1.2. (α1 < α2 was also found for similar NbSe2-graphene

JJs [17]). These values of α1,2 < 10.82 again indicate an ef-

fective E∗
Th < ETh. As we will show below, measurements at

parallel magnetic elds may provide another gauge for E∗
Th.

Next, we observe the response of the system to the applica-

tion of magnetic eld H⊥ perpendicular to the junction plane.

Figures 2(d)–2(f) show dV/dI as a function ofH⊥ and I , taken

at three different gate voltages. The observed Fraunhofer-

like pattern conrms a smooth current distribution across the

junction. The apparent period is 0.4 mT. We compare this

to the expected period 0/[(L + 2λL )W ], where 0 is the

ux quantum, L is the average junction length, and W is the

junction width. λL is the London penetration length, taken to

be λL = 200 nm (known values in the literature range between

≈120 nm for bulk NbSe2 [30] and 250 nm for bilayer NbSe2
[31]). Using the above, we nd the period to be ≈0.7 mT:

larger than the observed period, likely due to ux focusing

[11,23]

The junction appears to retain a homogeneous current dis-

tribution even when the Fermi energy is tuned to the Dirac

point, unlike ballistic graphene devices, where transport be-

comes dominated by edge modes [32,33]. Close scrutiny of
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FIG. 3. (a)–(d) Differential resistance of junction A as a function of bias current and external perpendicular magnetic eld, taken with

applied in-plane magnetic eld of 0, 1, 2, and 3 T, respectively. All measurements were conducted withVG = 20 V. (e) Parallel eld dependence

of the maximal critical current for junctions A, B, C, and D. IC is normalized to IC (H = 0,H⊥ = 0), and the in-plane eld is normalized by a

junction-specic decay eld HD. Each value is extracted from a 2D scan of R(V,H⊥) at a given H and is dened as the maximal IC obtained in

each scan. HD = 0.6, 0.16, 0.4, and 0.9 T for junctions A, B, C, and D, respectively. The eld at which exponential decay slows HT is indicated

by a dotted line for junctions A, B, and C. (f) IC of junction A as a function of H and H⊥. The curves were shifted to correct for sample

misalignment and were then aligned to be as continuous as possible. Logarithmic color scale. (g) Dependence of the maximal IC (blue) and of

IC at H⊥ = 0 (orange), extracted from (f).

Figs. 2(d)–2(f), however, reveals discrepancies from the per-

fect interference pattern: lobes are not identical, and there is an

asymmetry around H⊥ = 0. We suggest that this asymmetry

in the interference pattern is due to spatial asymmetry in

junction shape and disorder potential [11,34,35]. Additional

asymmetry could arise due to the penetration of vortices into

the junction area, breaking time reversal symmetry locally

[36,37]. This will be more likely to contribute at nite H.

Having conrmed that 2DJJs have transport characteristics

typical of diffusive SGS junctions [21], we turn our focus to

the effect of in-plane magnetic eld H on the junction.

III. TRANSPORT IN PARALLEL MAGNETIC FIELD

Since the junction is sensitive to out-of-plane elds H⊥ on

the scale of a few hundreds of microteslas, extreme care is

needed when aligning H⊥ and H in our vector magnet to the

sample geometric tilt. We do this by measuring the out-of-

plane interference pattern at any given H. At low elds of up

to 1.5 T in junction A, the interference pattern shows a clearly

distinguishable central lobe [Figs. 3(a) and 3(b)], allowing for

unambiguous identication of the absolute eld orientation.

At higher H this is no longer possible: the central lobe is

suppressed to the same magnitude as the side lobes [Figs. 3(c)

and 3(d)]. This SQUID-like supercurrent distribution may be

retained up to high parallel eld. Junction A, for example,

retains its critical current at a eld of H = 8.5T, showing a

SQUID-like lobe structure as a function ofH⊥ [Fig. 4(a)]. The

voltage as a function of current curve shows a clear transition

from the superconducting to normal state at a critical current

of I = 100 nA for H⊥ = −2 mT [Fig. 4(b)].

Once the central lobe is no longer distinguishable, there

is, in general, no straightforward indication of the true po-

sition of H⊥ = 0. Lacking this identication, we take the

maximal IC (H⊥) (hence Imax
C ) as a measure for the junction

critical current at each H. We nd that Imax
C (H) exhibits

an exponential-like decay, corresponding to the suppression

of the central lobe seen in Figs. 3(a)–3(c). Normalizing to

Imax
C (H = 0), we plot Imax

C (H) in Fig. 3(e) for junctions A,

B, C, and D (all have monolayer graphene weak links, except

junction B, which is bilayer graphene). To see the universality

of the decay of IC (H), we normalize it by a junction-specic

decay eld HD. The universal decay in Imax
C persists up to a

second characteristic eld scale HT , where Imax
C stabilizes to

the critical current of the side lobes. Depending on the sam-

ple, at H > HT the exponential decay in Imax
C either becomes

moderate or even turns into a small increase. For junctions

115401-4



PLANAR GRAPHENE-NbSe2 JOSEPHSON … PHYSICAL REVIEW B 103, 115401 (2021)

FIG. 4. High-eld supercurrent. (a) The interference pattern of junction A at a parallel eld of 8.5 T shows clear lobes of zero resistance

(data are from a different cooldown than Fig. 3). (b) I-V curve from (a) where the critical current is maximal (blue) and minimal (orange). The

measurement was set to stop when the normal state transport was observed.

A, B, and C shown in Fig. 3(e) this eld is given by HT =

2.4 T (4HD), 0.24 T (1.5HD), and 0.8 T (2HD), respectively.

In junction D there are not enough data points to quantify this

eld. The junctions thus evolve to a SQUID-like lobe structure

at nite, yet device-dependentH (see Supplemental Material,

Sec. 3 [20]). The Zeeman effect in a uniform junction predicts

universal decay with H. Deviation from universal behavior at

HT could be a result of ripples or junction nonuniformity, as

we will discuss.

We now turn our attention to Fig. 3(f), which depicts the

evolution of IC vsH⊥ andH in junction A. In this junction we

were able to track the evolution of the interference pattern up

to H = 6.5 T, aligning the IC (H⊥) curves as explained in Sec.

1 of the Supplemental Material [20], thus obtaining the map

shown in Fig. 3(f).1 The magnitude of IC (H,H⊥ = 0), plotted

in Fig. 3(g), shows a suppression and recovery pattern. These

data are reminiscent of suppression-recovery patterns seen in

superconductor-ferromagnet-superconductor (SFS) junctions

[38–43] and in 2D systems [14,15,17], where they are inter-

preted as a 0-π transition.

The salient features of the data are therefore (1) exponen-

tial decay of the critical current at low eld, (2) saturation

of the critical current at intermediate elds, (3) lobe struc-

ture transition from Fraunhofer-like to SQUID-like, and (4)

vanishing and reappearing of the central lobe critical current

in device A. In what follows, we discuss the physics in our

2DJJ by considering both the parallel eld-tunable Zeeman

splitting of the graphene band structure and the orbital effect

of out-of-plane ripples in the graphene [19].

IV. THEORETICAL MODEL AND DISCUSSION

Lacking an intrinsic spin-orbit coupling, graphene dis-

persion is affected by magnetic eld only through Zeeman

1Data in Figs. 3(a)–3(d) come from a different measurement than

those in Fig. 3(f), taken on the same device, and show a slightly

different lobe structure.

splitting, where the Zeeman energy is analogous to the ex-

change interaction in SFS JJs [19,44]. In the latter, the

superconducting order parameter in the ferromagnetic layer

varies as the product of an exponential decay and an oscilla-

tory term:

ψ (x) = ψi exp(−k1x) cos(k2x), (2)

whereψ (x) is the order parameter at position x along the junc-

tion,ψi is the order parameter at the superconducting lead, and

k1 and k2 are the inverse characteristic length scales associated

with the decay and oscillation. In the diffusive limit, they

are both given by 1/k1, 1/k2 =
√

L2ETh/EZ =
√

2D/gμBH,

where D is the diffusion coefcient.

The order parameter thus experiences a decay accompa-

nied by oscillation, with zeros occurring periodically when

Lk2 = π/2+ nπ or EZ = (π/2+ nπ )2ETh. This behavior of

the order parameter leads to an oscillatory decay of the critical

current of the junction. Following this intuition, the critical

current of an SGS junction in a parallel magnetic eld is

thus expected to undergo an exponential suppression at low

elds, in agreement with our observations. The oscillatory

component of the wave function leads to a 0-π transition:

a change in the equilibrium phase difference between the

two superconducting leads, accompanied by a reversal of the

supercurrent.

Using the analytical solution of the Usadel equations in

an SGS junction [19] to qualitatively model our system, we

calculate the critical current as a function of H and H⊥

specically for junction A. We assume the junction length

L = 214 nm and width W = 4.69μm [average dimensions

are taken from the scanning electron microscopy (SEM) mea-

surement shown in Fig. 1(c)]. Results are shown in Fig. 5(a).

The assumed uniform supercurrent reversal manifests in the

suppression of all lobes, corresponding to the disappearance

of the uniform supercurrent throughout the junction at a nu-

merically determined transition eld [19]:

H ≈
2.5ETh

0.5gμB

=
5Dh̄

gμBL2
. (3)

115401-5



TOM DVIR et al. PHYSICAL REVIEW B 103, 115401 (2021)

FIG. 5. (a)–(c) Calculated critical current IC with a logarithmic

color scale as a function of H⊥ and H. (a) Simulated Zeeman

effect with ETh = 64 μeV and a rectangular junction of dimensions

L = 214 nm,W = 4.69 μm without ripples. (b) A rectangular junc-

tion with ripples, disregarding the Zeeman effect. (c) Our measured

junction contour with varying L, ETh = 64μeV, Zeeman effect, and

ripples. (d) Top: ripple prole used to generate the maps in (b) and

(c). Note that the actual aspect ratio is around W/L = 20. Bottom:

illustration of a long-wavelength ripple which could give rise to a

zero in Ic at low elds. (e) IC at H⊥ = 0 (red) and maximal IC for all

H⊥ (blue) vsH; line cuts are taken from the simulation in (c). (f)–(h)

IC vs H⊥ for H = 0, 4.1, and 6.2 T; line cuts are from the simulation

in (c).

From the experimentally observed transition eld of 2.8 T,

assuming g= 2, we nd ETh = 64μeV. This falls between

the order of magnitude expected for ETh of hundreds of μeV

which we extract from normal regime transport properties and

E∗
Th of tens of μeV extracted from ICRN . Recalling that a

lower effective ETh has been attributed to Andreev reection

across an imperfect S-N interface, we point out that there is,

to the best of our knowledge, no theory addressing how this

would affect the Zeeman physics in the junction.

In the data in Fig. 3(f) we nd that high-order lobes

are retained, while the zero lobe, representing the average

supercurrent, is suppressed. This indicates that the supercur-

rent is nonuniform. When multiple transport channels are

present, they may carry positive and negative supercurrents

which cancel out at H = 2.8 T, where the central lobe van-

ishes. In this regime the other lobes of the interference pattern,

measuring higher moments of the supercurrent with respect

to the out-of-plane eld, should not, in general, disappear.

This phenomenon was seen in SFS JJs with a nonuniform

ferromagnetic barrier, leading to a similar interference pat-

tern [45–48]. Nonuniformity in supercurrent reversal can arise

from local variation in ETh since regions with lower ETh will

undergo stronger suppression due to EZ . Such variation in ETh

can arise from varying junction length, as well as from local

variations in contact transparency. Additionally, it could be a

consequence of charge disorder, locally affecting the diffusion

constant. However, the observed SQUID-like interference

pattern can be reproduced only by an ETh prole which

sharply favors edge transport.

We now turn to the orbital effects associated with the

locally varying perpendicular components of H. These vari-

ations may be caused either by graphene height variations or

by disruptions to the parallel eld due to the Meissner effect,

which diverts ux lines around the superconducting electrodes

(ux focusing). Because both ripples and ux focusing give

rise to a spatially varying perpendicular eld component, their

effects on the electric current are similar. For concreteness we

give an in-depth discussion of the ripple scenario but note that

the underlying mechanism could, in principle, also be ux

focusing.

Using the same model as discussed previously, we dis-

tinguish between the effects of short- and long-wavelength

ripples [19]. Short ripples as seen in microscopy studies of

graphene on SiO2 are typically ≈0.3 nm peak to peak, with

a correlation length of 10–30 nm [49–52]. Long ripples have

a wavelength larger than the junction dimensions. Intuitively,

one may gauge the effect of a ripple by calculating the ux

accumulated within an area dened by the ripple lateral cross

section, illustrated in Fig. 5(d). To induce a full current sup-

pression and revival at H⊥ = 0, a ripple within the junction

has to accumulate a single ux quantum due to the parallel

eld, according to the equation

H =
0

ηλ
, (4)

where η is the average ripple amplitude within the junction

and λ is the wavelength (or the limiting junction dimension if

the ripple extends beyond the junction). For the typical short-

wavelength ripple seen in graphene on SiO2, parallel elds of

order 50 T are required to obtain an entire ux quantum within

a ripple. However, the cumulative effect of many such ripples

causes a faster decay of the critical current which can create

exponential-like behavior, similar to the Zeeman effect [19].

Two-dimensional JJs in a parallel eld are highly sensitive

to long-wavelength height variations [19]. In our experimental

geometry, with junction width W ≈ 4.7μm, it is possible to

consider a ripple of length λ W . As a long-wavelength

feature accumulates much more ux, it is possible to reach

a ux quantum given a few-tesla parallel eld and a small

height variation of η ≈ 0.1 nm within the junction. We note

that based on atomic force microscopy and scanning tunneling

microscopy studies, it is difcult to tell whether such sub-

nanometer height variations are present over micron length

scales. Such geometry is physically conceivable due to strain

or curvature of the substrate and cannot be ruled out. We show

the simulated supercurrent in a sample ripple conguration

containing ripples in Fig. 5(b). The simulation reproduces the
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FIG. 6. (a)–(d) Differential resistance of junction A as a function

of bias current and gate voltage, taken with applied in-plane mag-

netic eld of 0, 1, 2, and 3 T, respectively. All measurements were

conducted with H⊥ = 0. (e) IC vs H⊥ and VG for junction A, taken

with parallel eld H = 3 T.

features of the data highlighted previously: exponential decay

followed by saturation, lobe structure transition, and a critical

current dip at around B = 3 T. The specics of these features,

such as the location and sharpness of the critical current dip,

vary with different ripple congurations; however, many dif-

ferent patterns can produce qualitatively similar results (see

Supplemental Material, Sec. 2 [20]). Figure 5(d) illustrates

the specic ripple prole used to obtain the map in Fig. 5(b).

The simulation does not include ripples of wavelength smaller

than around 100 nm. These, in general, cause a sharper decay

of critical current with parallel eld [19].

Since we expect Zeeman and ripple effects to coexist,

we present a compound simulation which considers them

both [Fig. 5(c)]. This simulation also accounts for varying

ETh due to variation in the junction length as extracted from

the SEM data presented in Fig. 1(c). In the case of varying

junction length our analytical model is not rigorous, but it

does give a qualitative approximation. As we see in Fig. 5(e),

the simulation reproduces the exponential decay, suppression,

and recovery of IC (H,H⊥ = 0). The lobe structure at H =

0, 4.1, 6.2 T [Figs. 5(f)–5(h)] exhibits the experimentally ob-

served transition between Fraunhofer-like and SQUID-like

proles.

V. GATE DEPENDENCE IN MAGNETIC FIELD

Finally, we observe how the application of H affects the

gate dependence of the critical current (Fig. 6). At zero eld

IC varies smoothly with VG [Fig. 6(a)], leading to a nearly

constant ICRN product away from the Dirac point. Upon in-

creasing H, IC uctuates with VG [Figs. 6(b)–6(d)] leading at

H = 3 T to patterns of decay and revival of IC (VG). Observing

the evolution of the interference pattern with VG at the same

eld reveals a qualitative change in the number of visible lobes

and in their positions [Fig. 6(e)].

The observed gate dependence of the interference pattern

shows that at H around the suppression-recovery eld of

2.8T, the junction enters a new regime where the critical

current survives in patches at uctuating gate values. Similar

phenomenology has been observed in ballistic graphene JJs

at high perpendicular eld and has been attributed to chaotic

billiards due to cyclotron orbits reecting from the graphene

edge [53]. However, the physics in our regime is different

since the junction is diffusive and B⊥ ≈ 0. Within the Zee-

man effect interpretation, it could be due to local gate-driven

uctuations around the 0-π transition as in [16]. Alternatively,

when ripples become important, changing gate could change

the resulting interference pattern. There could also be a gate-

dependent effect in the contact region between the graphene

and NbSe2. In any case, clearly, the current ow distribution in

this regime depends strongly on graphene Fermi energy. This

could be linked to local charge conditions such as the disorder

potential landscape; however, the lobe structure continues to

evolve when the graphene is at high carrier densities, where

disorder potential should be screened.

VI. CONCLUSION

We conclude that the 2DJJ architecture allows the study of

graphene Josephson junctions at high parallel magnetic elds,

where supercurrent is sensitive to both the Zeeman effect and

subnanometer graphene height variations. Junction currents

evolve from a Fraunhofer-like to a SQUID-like interference

pattern. We observe a supercurrent suppression and recovery

feature which may be associated with a Zeeman-driven 0-π

transition or with the accumulation of a single ux quantum

within a micron-wavelength ripple. While in the present mea-

surements it is difcult to distinguish between the two effects,

future experiments, with graphene placed on hexagonal boron

nitride (hBN), are expected to suppress the ripple contribution.

In the future it will be interesting to consider devices of the

2DJJ architecture utilizing different 2D materials as contacts

and weak links. For example, devices where graphene inher-

its a spin-orbit term from a transition metal dichalcogenide

substrate. The combination of signicant spin-orbit and high

parallel magnetic elds in the context of a Josephson junction

could give rise to topological effects [54].
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S1 Supplementary Section: Measurement and eld alignment

procedure

The system studied here, an SNS junction using graphene as the weak link between NbSe
2

SC leads,

is very sensitive to the presence of perpendicular elds on the scale of hundreds of µT. When applying

parallel magnetic eld, perpendicular eld can also be present, either from a small misalignment of the

sample within the magnet, or from the presence of vortices and trapped magnetic ux in the leads, in

the junction or in the magnet itself. At low parallel magnetic elds, the interference pattern of the

supercurrent with the application of perpendicular eld shows a clear maximum at zero applied eld.

Thus, it is possible to track the shift of this maximum with applied parallel eld and nd the sample

misalignment. In the measurements reported in this work we have done so, and found the required

amount of perpendicular eld to compensate for this eect. The interference patterns reported here are

always with respect to the corrected zero perpendicular eld.

At higher magnetic elds, this correction is not enough, as remnant eld, coming from vortices in the

leads and trapped ux in the magnet aects the sample. To correct for that, we assume that a small

change in the parallel eld should not create a large change in the interference pattern of the junction.

∗Equal contribution
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Based on this assumption, when analyzing the data, we use the following alignment procedure: We shift

the interference pattern measured at a given parallel eld by a some amount of perpendicular eld. We

calculate the sum of the squared dierences between an this pattern and the pattern measured in the

previous parallel eld. We repeat this for a series of shifts and nd for which shift this dierence is

minimal. We choose this shift as the correct alignment for the pattern, and repeat with the pattern

taken at the next step of the parallel eld.

The above procedure was utilized for junction A. For other junctions, we could not determine the

orientation of H⊥=0T at high values of H‖ due to jumps in the interference pattern. Therefore we used

the maximal critical current Imax

C
as an indicator of the junction critical current.

Supplementary Figure S1: (a) The 2D map of IC of Junction A as a function of H‖ and H⊥, aligned

using the full alignment procedure of minimizing the squared dierence between line-scans and shown

also in main text Fig. 2(f). (b) The same data shown when only geometrical misalignment was taken

into consideration.
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S2 Supplementary Section: Simulation of ripples in graphene

We assume the presence of height variations in graphene, and in the absence of the Zeeman eect (taking

ETh >> EZ), theoretically calculate the critical current expected for Junction A, shown in main text

Fig. 3 panel (b). We calculated this for eight dierent ripple proles, generated by taking a sum of a

random number of sine functions, all with randomized wavelength, amplitude and angular osets. The

wavelengths were taken from an exponential distribution (meaning that longer wavelengths are more

probable) while the rest of the parameters were taken from uniform distributions. Qualitative features

such as a transition in the lobe structure from Fraunhofer-like to SQUID-like, decay of the critical current

and a suppression and reappearance of IC(H⊥=0) appear for several of the randomly generated proles.

The specic result we chose to present in the main text was generated from the following ripple prole:

η(x, y) = 1.25 sin 64.6y + 1.7164 sin 3.5x− 0.7+0.45 sin 37.3y + 2.136 sin 2x+1.3 sin 2y + 0.3224 sin 0.1x+ 0.03

(S1)

Ripple amplitude is given in nm, while the coordinates x,y are normalized and range between -0.5,0.5.

The proles were chosen with wavelengths much larger than 50 nm, in order to accommodate the use

of the wide-junction approximation [1]. The junction length prole used for the combined simulation of

Zeeman, ripple and junction geometry eects presented in main text Fig. 3 panel (c), is illustrated in

Fig. S2.

Supplementary Figure S2: The junction length prole of Junction A as measured by SEM.
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S3 Supplementary Section: Additional junctions

We present critical current measurements from devices B,C,D, showing IC vs H⊥ (Junction B has a

weak link of bilayer graphene, the rest are monolayer). This exhibits a Fraunhofer-like interference at

low H‖ and a more SQUID-like lobe structure, with lobes having a similar maximal IC , at higher H‖

for each device. Junction D has a nonuniform geometry with multiple graphene weak links, making it

dicult to directly interpret the interference pattern. Roughly, the lobe structure at H‖=0 has a large

area non-uniform component leading to high frequency lobes, modulated by a slow decay due to the

uniform current in an individual small junction. The later modulation becomes more uniform as H‖

increases, as in the other devices.

Supplementary Figure S3: Interference patterns from Junctions B,C,D (a-c) Interference

patterns of Junctions B,C,D respectively at H‖=0 T showing a pronounced central lobe in each case

(d-e) Interference patterns at various values of non-zero H‖ (indicated in the panel) for device B,D,C

respectively. These patterns have all lobes with similar maximal values of IC , indicating a non-uniform

current distribution

S4 Supplementary Section: Fabrication Methods

To fabricate a graphene - NbSe
2

Josephson junction (JJ), we rst exfoliate graphene on markered SiO
2

and locate suitable akes. Next, NbSe
2

is exfoliated on PDMS gel and examined to nd akes which

are a few layers thick and have an observable crack, less than 500 nm wide. Chosen NbSe
2

akes are

4



transferred onto graphene using the viscoelastic dry-transfer method [2]. A few nm thick hBN ake may

then be transferred over the crack to serve as a protective layer and a potential top-gate dielectric. The

NbSe
2

ake is contacted with standard e-beam lithography using Ti/Au contacts. Prior to evaporation of

contacts surface oxide was removed using Argon ion milling. Four-probe measurements were conducted

in a dilution cryostat with a base temperature of 30 mK (see main text Fig. 1).
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Contrary to the expected detrimental inuence on superconductivity when applying a magnetic eld, we

predict that the abrupt onset of such a eld can temporarily strongly enhance the superconducting order

parameter. Specically, we nd that the supercurrent in a Josephson junction with a normal metal weak link

can increase more than twentyfold in this way. The effect can be understood from the interplay between the

energy dependence of Andreev reection and the abrupt spin-dependent shift in the distribution functions for

excitations in the system. The duration of the increase depends on the inelastic scattering rate in the system and

is estimated to be in the range of nanoseconds. We demonstrate this by developing a method which solves the

Usadel equation for an arbitrary time dependence. This enables the study of ultrafast time-dependent physics in

heterostructures combining superconductors with different types of materials.

DOI: 10.1103/PhysRevB.103.L100502

Introduction. Time-dependent phenomena in superconduc-

tors encompass a variety of both applied and fundamental

physics. These phenomena range from the perfect voltage-

to-frequency conversion via the AC Josephson effect to

excitation of the amplitude mode of the superconducting order

parameter, which is the condensed-matter equivalent of the

Higgs boson in the standard model.

More recently, interest in time-dependent phenomena in

superconductors has been generated by experiments showing

optically induced transient states with superconducting prop-

erties well above the equilibrium critical temperature [1–3]. In

superconducting heterostructures it has also been shown that

microwaves can greatly increase the critical current [4,5]. This

was given a theoretical explanation based on quasiclassical

Green’s functions [6]. Another application of quasiclassical

Green’s functions has been to show that time-dependent ex-

change elds can produce odd-frequency superconductivity

which survives for long distances inside ferromagnets [7,8].

This is a type of superconductivity that is interesting due

to its nonlocal temporal symmetry, its direct connection to

Majorana states [9], and for its resilient nature, making it

practically relevant in, e.g., superconducting spintronics [9].

Discovering new time-dependent physical phenomena in

superconducting structures, and explaining existing experi-

mental results, is clearly of substantial interest. Unfortunately,

a solution of the quasiclassical Green’s function equation is

generally not attainable, even numerically, when the system

evolves in time. This is because the relevant equations, pre-

sented below, are complicated partial differential equations

(PDEs) of innite order. So far, approximate solutions have

been found for periodic [6,7,10–12] and slow [13,14] tempo-

ral evolutions. Although many situations are either slow or

periodic, there is still a multitude of physical systems that are

unsolvable with current techniques. For instance, the transient

behavior of any sudden change that is not periodic, such as

a sudden increase in the applied magnetic eld or voltage,

would not be possible to study, even numerically, with these

methods. Finding a way to solve the Usadel equation that is

less restrictive on how it allows the system to evolve in time

would therefore open the possibility to study a vast range of

new physical phenomena.

Here we accomplish this goal and present a method solving

the time-dependent Usadel equation in hybrid nanostructures

that places no constraint on the time dependence. We apply

this to a superconductor-normal metal-superconductor (SNS)

Josephson junction with a time-dependent spin-splitting ap-

plied to the N part. Interestingly, we nd that the transient

behavior can involve a large increase in both the supercurrent

and the superconducting order parameter. This is our main re-

sult, which stands in stark contrast to the equilibrium effect of

an applied magnetic eld, which is to exponentially dampen

superconductivity [15].

In addition to the curious enhancement of superconduc-

tivity, which we suggest can be understood as the interplay

between properties of Andreev reection and the transient

behavior of the distribution function, we show how the

methodology developed herein can be used to uncover new

physics in a wide range of systems. It only requires that the

proximity effect is sufciently weak. In particular, it could be

used to study the mostly unexplored territory of explicit time

dependence in odd-frequency superconducting condensates,

both in the ballistic and diffusive limit.

Equations and notation. The quasiclassical theory is valid

when the Fermi wavelength is much shorter than all other

length scales. Here we shall focus on the dirty limit, which

is valid when the mean free path is short. However, we note

that the same derivation can be done with arbitrary impurity

concentration, something that is further discussed in the Sup-

plemental Material [16]. The relevant equation for the dirty

limit is the Usadel equation [17,18],

D∇̃ ◦ (ǧ ◦ ∇̃ ◦ ǧ)+ i(σ̌ ◦ ǧ− ǧ ◦ σ̌ ) = 0. (1)

2469-9950/2021/103(10)/L100502(5) L100502-1 ©2021 American Physical Society
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Here, D is the diffusion coefcient, the 8×8 matrix

ǧ=

(
ĝR ĝK

0 ĝA

)

(2)

is the isotropic part of the impurity-averaged quasiclassical

Green’s function, σ̌ is a self-energy that depends on the spe-

cic system, and

∇̃ ◦ ǧ= ∇ǧ− ie(â ◦ ǧ− ǧ ◦ â) (3)

is the covariant derivative. The vector â includes the effect of

the vector potential, but it could also incorporate spin-orbit

effects [19,20]. The electron charge is e = −|e|. Finally, the

circle product is

a ◦ b = exp

(
i

2
∂aε ∂

b
T −

i

2
∂aT ∂

b
ε

)

ab, (4)

which is what makes Eq. (1) difcult when the constituents

depend on the center-of-mass time T . The superscripts in

Eq. (4) denote which function the operators acts on and ε is

energy. The superscripts R, K , and A are used to denote the

upper-left, upper-right, and lower-right 4×4 blocks of 8×8

matrices, respectively.

Equation (1) can be made dimensionless by dividing every

term by the Thouless energy, εT := D/L2, where L is the

length of the system. With this one can dene dimensionless

quantities, where lengths are given in multiples of L and

energies are given in multiples of εT. Dimensionless quantities

will be used in the rest of this paper. We also use natural units

throughout, meaning that c = h̄ = 1.

Quasiclassical theory is invalid at interfaces between

different materials. Consequently, one needs boundary con-

ditions in order to connect the Green’s functions in different

materials. Here we use the Kupriyanov-Lukichev boundary

condition [21],

en · (ǧi ◦ ∇̃ ◦ ǧi ) =
z

2
(ǧi ◦ ǧ j − ǧ j ◦ ǧi ), (5)

which is valid for low-transparency tunneling interfaces. The

subscripts i and j label the two different regions, the unit

normal vector en points out of region i, and z is the ratio

between the bulk resistance of a part of the material that is

of length L and the interface resistance. Although we use

the Kupriyanov-Lukichev boundary condition here, the same

method could also be used with other types of boundaries [22].

The quasiclassical Green’s function satises the normaliza-

tion condition ǧ ◦ ǧ= 1 and the relations

ĝA = −ρ̂3(ĝ
R)†ρ̂3, ĝK = ĝR ◦ h− h ◦ ĝA, (6)

where ρ̂3 = diag(1, 1,−1,−1). From Eq. (6) one can see that

it is sufcient to solve for the retarded Green’s function ĝR and

the distribution function h. Equation (1) does not fully specify

h, and we can use this freedom to make h block-diagonal [23].

Finally, we use capital letters to denote Fourier transforms,

F (t,T, r) ≡ F ( f )(t,T, r) =
1

2π

∫ ∞

−∞
dε f (ε,T, r)e−iεt ,

(7)

and • to denote the circle product between functions of the

relative time t , that is, • is the mathematical operation which

satises F ( f ◦ g) = F • G.

The aim is to nd the Green’s function that solves Eq. (1)

in a region that is connected through the boundary condition

in Eq. (5) to a region with Green’s function ǧs. This region

could, for instance, be a superconducting reservoir. We have

developed a method which solves the Usadel equation with an

arbitrary time dependence, allowing for the study of quantum

quenches and ultrafast dynamics, and present this method

below.

The rst step is to write the retarded Green’s function

as ĝR = ρ̂3 + ĝ+ f̂ , where ĝ and f̂ are block-diagonal and

block-antidiagonal, respectively. Under the assumption that

the proximity effect is small, the components of ĝ and f̂ are all

much smaller than 1. One way to formalize this is to Taylor

expand ĝ and f̂ in terms of the interface parameter z. When

σ̌ R is block-diagonal and z = 0, we nd that ĝR = ρ̂3 solves

the Usadel equation. Hence, assuming σ̌ R is block-diagonal to

lowest order in z, we can write

f̂ =

∞∑
n=1

zn f̂n and ĝ=

∞∑
n=1

znĝn. (8)

From the normalization condition ĝR ◦ ĝR = 1, we see that

2ρ̂3ĝ+ ĝ ◦ ĝ= − f̂ ◦ f̂ and ĝ ◦ f̂ = − f̂ ◦ ĝ. Hence, ĝ1 = 0

and ĝ2 = − 1
2
ρ̂3 f̂1 ◦ f̂1.

To rst order in z, the retarded part of the Usadel equation

reads

ρ̂3∇̃ ◦ (∇̃ ◦ f̂1)+ 2iερ̂3 f̂1 + i(σ̂ R ◦ f̂1 − f̂1 ◦ σ̂ R) = 0, (9)

where ερ̂3 has been extracted from the self-energy and σ̂ R is

the remaining part. The self-energy σ̂ R could also depend on

ĝR, for instance, if the system included spin-orbit impurity

scattering or spin-ip scattering [24]. In that case Eq. (9)

would look slightly different, but the derivation would be

similar. To rst order in z, the boundary condition (5) reads

en · ∇̃ ◦ f̂1 = f̂s. (10)

Despite being linearized, Eqs. (9) and (10) are not much

simpler than the original Usadel equation and Kupriyanov-

Lukichev boundary condition. They still include the circle

product, given in Eq. (4), meaning that they are still PDEs of

innite order. However, one observation can be made which

will drastically simplify the equations. This is the fact that

all the circle products are between f̂1 and functions that are

independent of energy ε. It is this fact, not that the equations

are linear, that is crucial for the solvability of Eqs. (9) and (10).

As we shall see, this observation allows us to evaluate all the

circle products if we rst Fourier transform the equations.

When a function (ε,T ) → a(T ) is independent of ε, the

Fourier transform, as given by Eq. (7), is simply A(t,T ) =

δ(t )a(T ), where δ is the Dirac δ distribution. Accordingly, the

circle products of a function (ε,T ) → f (ε,T ) with a function

(ε,T ) → a(T ) are, in Fourier space,

(A • F )(t,T ) = a(T + t/2)F (t,T ), (11a)

(F • A)(t,T ) = F (t,T )a(T − t/2). (11b)

With this, all the circle products in Eq. (9) turn into normal

matrix multiplications when evaluated in Fourier space. This

is under the assumption that the self-energy σ̂ R does not
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depend explicitly on ε. However, it can depend implicitly on

energy through its dependence on ǧ, as mentioned above.

Let the subscripts+ and− denote B±(t,T ) = b(T ± t/2).
Then the equations for the retarded Green’s function become

2
∂F̂1

∂t
= ∇2F̂1 + 2i(∇F̂1 · Â− − Â+ · ∇F̂1)

+i(F̂1∇ · Â− − ∇ · Â+F̂1)− Â

2

+F̂1 + Â+F̂1Â−

−F̂1Â
2

− + iρ̂3(̂
R
+F̂1 − F̂1̂

R
−), (12a)

en · [∇F̂1 − i(Â+F̂1 − F̂1Â−)] = F̂s. (12b)

Hence an approximate solution to the full time-dependent

Usadel equation can be found by solving a normal PDE of

matrices. The approximation is good as long as the proximity

effect is weak and, crucially, no assumptions have been made

with regard to the time dependence. This approach there-

fore works for systems that vary both fast and slow in time

and regardless of whether or not the system is periodic. The

equations for the distribution function h can be obtained in a

similar way. This is shown in the Supplemental Material [16].

Application. We now use the above framework to show

the counterintuitive result that the abrupt onset of a magnetic

eld can temporarily strongly increase superconducting order.

Consider an SNS junction with no vector potential and a

time-dependent, spatially uniform exchange eld m(T ) that

lifts the spin degeneracy of the bands. The geometry is shown

in the inset of Fig. 1, where the nanowire geometry allows

us to neglect the orbital effect of the magnetic eld whereas

the thick superconducting regions screen the effect of the

magnetic eld in the bulk. The self-energy associated with the

exchange eld is σ̂ R = mdiag(1,−1, 1,−1). We also include

the effect of inelastic scattering through the relaxation time

approximation [6], which adds

σ̌i =

(
iδρ̂3 2iδρ̂3heq
0 −iδρ̂3

)

(13)

to the self-energy. Here δ is the inelastic scattering rate and

heq(ε) = tanh(βε/2), where β is the inverse temperature to-

wards which the system relaxes.

If we write the upper-right block of F̂1 as F1 = σ1Ft + σ2Fs,

where σ1 and σ2 are Pauli matrices, the zeroth-order distri-

bution function H0 = HLI4 + HTSdiag(1,−1,−1, 1), and let

m±(t,T ) := m(T + t/2)± m(T − t/2), we nd that
(

2
∂

∂t
−∇2 + 2δ

)(
Fs
Ft

)

=

(
−m+Ft
m+Fs

)

, (14a)

en · ∇Fs|x=0,1 = FBSC
l,r , en · ∇Ft |x=0,1 = 0,

(14b)
(

∂

∂T
+ 2δ

)(
HL − Heq

HTS

)

=

(
−m−HTS

m−HL

)

, (14c)

where FBCS
l = e−δt J0(||t )θ (t ) and FBCS

r = eiφFBCS
l are

the anomalous Green’s functions in the left and right super-

conductors, respectively. J0 is the zeroth-order Bessel function

of the rst kind,  is the superconducting gap parameter, and

φ is the phase difference between the two superconductors.

Equation (14) can be solved analytically for arbitrary m(T ),

and the solution is shown in the Supplemental Material [16].
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FIG. 1. Critical current Ic and singlet Cooper pair correlation

function s normalized by the values at zero exchange eld, I0 and

0. The inset in (a) shows a sketch of the setup. Panels (a) and

(b) show the steady-state values obtained with δ = 0 for various

values of exchange eld m0. Panels (c) and (d) show the time evo-

lution for different values of m0 with δ/ = 10−4 and β = 1000.

Panels (e) and (f) show the time evolution for different values of δ

with m0/ = 0.9 and β = 1000. In all cases /εT = 10. s is

computed for φ = 0, which makes the enhancement predicted here

applicable also to an SN junction.

The interface parameter z is assumed small enough to fulll

the criterion of a weak proximity effect for all relevant times

t and T .

Consider an exchange eld that abruptly changes value

from 0 to m0 at time T = 0, m(T ) = m0θ (T ). The critical

supercurrent

Ic = max
φ∈(0,2π]

πN0eD

4
Tr[ρ̂3(Ǧ • ∇̃ • Ǧ)K ]t=0 (15)

and the singlet Cooper pair correlation function

s = −iπN0(Fs • HL − Ft • HTS)|t=0, (16)

following an abrupt change in the exchange eld, are shown

in Fig. 1. When the time becomes comparable to the inelastic

scattering time, both Ic and s are suppressed and the quan-

tities reach their equilibrium values. However, before that, Ic
and s are signicantly enhanced when the exchange eld is
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close to the superconducting gap . When m0   there is

only a slight change to the current and Cooper pair correlation

function.

We suggest that the behavior of Ic and s can be un-

derstood from the interplay between the spin dependence of

the nonequilibrium distribution function and the energy de-

pendence of both the Andreev reection probability and the

degree of coherence between the participating electrons and

holes. To see this, we note that in a time-independent situation

both Ic and s, jointly denoted A below, can be written as an

integral over energy of the form

A =

∫
dε(a↑h↑ + a↓h↓), (17)

as shown in the Supplemental Material [16]. Here h↑ and h↓
are the distribution functions for electrons with spin ↑ and ↓.
The explanation can be summarized as three key points.

First, a↑,↓ is of largest amplitude at energies close to

± and ±m, where a↑ is large close to ε = −m and a↓
is large close to ε = m. These energies are special in the

context of Andreev reections, which is the process rele-

vant for transferring superconductivity into the normal metal.

At ε = ± there is a large peak in the Andreev reection

probability [25] which physically can be understood as res-

onant scattering produced by subsequent reections by the

interface and the superconducting order parameter [26]. At

ε = ∓m the wave vector of the incoming electrons, ke↑↓ =√
2m(EF + ε ± m), match that of the retroreected holes,

kh↓↑ =
√
2m(EF − ε ∓ m). Hence, at energies close to ±m

the superconducting correlations penetrate far into the normal

metal.

Second, a↑,↓ is antisymmetric close to ∓m, as long as

m < . This is shown in the Supplemental Material [16].

That is, lled states with energy just above ∓m contribute

oppositely to lled states with energy just below ∓m. Hence,

when m > 0 and the system is at equilibrium, such that

h↑(ε) = h↓(ε) = tanh(βε/2), the contributions to s and Ic
are suppressed because the coherent states are shifted away

from the Fermi surface. However, before inelastic scattering

relaxes the system, we nd that the distribution functions

evolve toward h↑,↓(ε) = tanh[(ε ± m)/β]. This is physically
reasonable, since an abrupt temporal change induced by the

magnetic eld not only shifts the energy levels but also pre-

serves the occupation of these states before they have had time

to relax. The energy shift in the antisymmetric contribution to

a↑,↓ coming from the coherent Andreev reections are thus

matched by a similar shift in the distribution function, so s

and Ic are not suppressed as m is increased.

Third, when m ≈  the enhanced probability of Andreev

reections amplies the contribution from ε ≈ m. In equi-

librium, both the positive and negative contributions are

amplied, so the overall effect is still a suppression of s

and Ic when compared to m = 0. However, in the transient

period with h↑,↓(ε) = tanh[(ε ± m)/β] the consequence is a

manifold increase in s and Ic. In other words, when m ≈ 

the Andreev reections with the longest lifetimes are also

the ones with the highest probability of occurring, and the

nonequilibrium distribution functions that are present before

the system has had time to relax allows this to manifest as a

strong enhancement in superconductivity.

We nd that the timescale for which the Ic and s are able

to reach their amplied states is given primarily by. Hence,

in order to experimentally detect the enhanced supercurrent it

is necessary that δ/ is not too large. From Fig. 1 one can

see that δ < 10−2 is sufcient to observe an increase in the

supercurrent. Experimental values of the inelastic scattering

rate, or Dynes parameter, are often found by parameter tting,

and values as low as δ/ = 2.2×10−5 have been reported

in the millikelvin regime [27]. With  ≈ 1 meV and δ/ =

2.2×10−5, the relaxation time is about 10ns. A Zeeman split-

ting of 1 meV is achieved with a magnetic eld strength of

around 30 T/g, where g is the Landau factor. This could be

either tens of T if g= 2 or tens of mT when g≈ 103. The

latter can be found, for instance, in Dirac semimetals [28]. In

the former case, an Ising-type superconductor such as NbSe2
can be used to retain superconductivity at high in-plane elds.

The strong enhancement of the proximity-induced singlet

order parameter s suggests that the order parameter in the

superconductor, if solved for self-consistently, could poten-

tially also be enhanced by virtue of the inverse proximity

effect. In turn, this would imply an increase in the critical

temperature Tc of the superconducting transition. We leave

this issue, which requires complicated time-dependent, self-

consistent numerical calculations, for a future work.

Conclusion. We have presented a method for solving the

time-dependent Usadel equation with arbitrary time depen-

dence. This is made possible by two observations. First, the

circle products simplify considerably in Fourier space when

one of the arguments is independent of energy; second, by

linearizing the equations, only such products remain.

We applied this method to analytically study SNS junctions

with time-dependent Zeeman splitting m where a magnetic

eld is abruptly turned on. We demonstrated a strong en-

hancement of the supercurrent and Cooper pair correlation

function when m ≈ , where  is the superconducting gap.

In particular, if the inelastic scattering rate δ is smaller than

×10−2 and the magnetic eld changes value during a time

frame shorter than 1/δ, our results show an up to twentyfold

increase in the magnetic eld that potentially lasts for tens of

nanoseconds.
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I. KINETIC EQUATIONS

Finding the retarded Green’s function is enough to calculate

the local density of states, but for many other quantities, such

as charge or spin currents, magnetization or Cooper-pair corre-

lation functions, one needs the full Keldysh Green’s function.

Here we show the equations for the distribution function ℎ,

which can be used to nd the Keldysh Green’s function through

the relations

푔̂퐴
= −휌̂3



푔̂푅
†

휌̂3, 푔̂퐾 = 푔̂푅 ◦ ℎ − ℎ ◦ 푔̂퐴
. (1)

We start by writing ℎ as an expansion in the small parameter,

ℎ =

∞’

푛=0

푧푛ℎ푛. (2)

In order to solve for the charge current in a way that consistently

include the supercurrent contribution we need to solve for ℎ to

second order in 푧. This can be seen from the fact that charge

and spin currents are given by the diagonal components of

푗̂퐾 = 푔̂푅 ◦



∇̃ ◦ 푔̂푅


◦ ℎ − ℎ ◦ 푔̂퐴
◦



∇̃ ◦ 푔̂퐴


+ ∇̃ ◦ ℎ − 푔̂푅 ◦


∇̃ ◦ ℎ


◦ 푔̂퐴
, (3)

where 푗̂퐾 is the upper right block of 푗̌ B 푔̌ ◦ ∇̃ ◦ 푔̌. The

supercurrent, which are given by the rst two terms on the right

hand side of Eq. (3), is at least second order in 푧. Hence, one

must in general nd ℎ0, ℎ1 and ℎ2.

The reason why the perturbation expansion in 푧 works for

푔̂푅, is that 푔̂푅 is independent of 휀 to zeroth order. This is

not true for ℎ. However, the equation for ℎ is linear, so the

perturbation expansion is nevertheless able to remove circle-

products between functions that depend on 휀. The equation for

ℎ can be found by taking the covariant derivative of Eq. (3) and

inserting the Usadel equation presented in the main text. We

nd that

휌̂3
휕ℎ

휕푇
◦ 푔̂퐴

− 푔̂푅 ◦
휕ℎ

휕푇
휌̂3 + ∇̃ ◦ ∇̃ ◦ ℎ + 푗̂푅 ◦ ∇̃ ◦ ℎ

−


∇̃ ◦ ℎ


◦ 푗̂ 퐴 − 푔̂푅 ◦


∇̃ ◦ ∇̃ ◦ ℎ


◦ 푔̂퐴

−



∇̃ ◦ 푔̂푅


◦


∇̃ ◦ ℎ


◦ 푔̂퐴
− 푔̂푅 ◦



∇̃ ◦ ℎ


◦ ∇̃ ◦ 푔̂퐴

= 푖[휎̌, 푔̌]푅
◦
◦ ℎ − 푖ℎ ◦ [휎̌, 푔̌]퐴

◦
− 푖[휎̌, 푔̌]퐾

◦
, (4)

where 푗̂푅 and 푗̂ 퐴 are the upper left and lower right blocks of

푗̌ and 휀 diag( 휌̂3, 휌̂3) has been extracted from the self-energy

휎̌. The commutators are with respect to the circle-product and

can be evaluated using

푖[휎̌, 푔̌]푅
◦
◦ ℎ − 푖ℎ ◦ [휎̌, 푔̌]퐴

◦
− 푖[휎̌, 푔̌]퐾

◦

= 푖푔̂푅 ◦

[

휎̂퐾
−



휎̂푅
◦ ℎ − ℎ ◦ 휎̂퐴

]

− 푖
[

휎̂퐾
−



휎̂푅
◦ ℎ − ℎ ◦ 휎̂퐴

]

◦ 푔̂퐴
. (5)

We will assume that 휎̂퐾 is block-diagonal, just like 휎̂푅 and

휎̂퐴. This assumption is valid in the system considered in the

main manuscript. Unlike 휎̂푅 and 휎̂퐴, however, there will be

no restrictions on 휎̂퐾 with regards to its energy-dependence.

This is taken advantage of in the relaxation time approximation

used in the main text. Note that the same derivation can

be done when 휎̂퐾 , 휎̂푅 and 휎̂퐴 are not block-diagonal. The

only dierence is which terms to include in the perturbation

expansion of Eq. (4).

The Keldysh part of Kupriyanov-Lukichev boundary condi-

tion can be written

풆푛 ·


∇̃ ◦ ℎ − 푔̂푅 ◦


∇̃ ◦ ℎ


◦ 푔̂퐴


=

푧

2



푔̂푅 ◦


푔̂푅푠 ◦ (ℎ푠 − ℎ) − (ℎ푠 − ℎ) ◦ 푔̂퐴
푠



−


푔̂푅푠 ◦ (ℎ푠 − ℎ) − (ℎ푠 − ℎ) ◦ 푔̂퐴
푠



◦ 푔̂퐴



, (6)

where ℎ푠 is the distribution function in the neighbouring region. We nd that to zeroth order in 푧,

휕ℎ0

휕푇
= ∇̃ ◦ ∇̃ ◦ ℎ0 − 푖 휌̂3



휎̂퐾
− 휎̂푅

◦ ℎ0 + ℎ0 ◦ 휎̂
퐴


, (7a)

풆푛 · ∇̃ ◦ ℎ0 = 0, (7b)



2

and to rst order,

휕ℎ1

휕푇
= ∇̃ ◦ ∇̃ ◦ ℎ1 + 푖 휌̂3



휎̂푅
◦ ℎ1 − ℎ1 ◦ 휎̂

퐴


, (8a)

풆푛 · ∇̃ ◦ ℎ1 =
1

4

{

휌̂3


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



+


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



휌̂3

}

. (8b)

There is also a rst order equation of o-diagonal matrices, but

this is automatically satised from Eq. (7). Finally, ℎ2 satises

2
휕ℎ2

휕푇
= 2∇̃ ◦ ∇̃ ◦ ℎ2 + 2푖 휌̂3



휎̂푅
◦ ℎ2 − ℎ2 ◦ 휎̂

퐴


+ 푗̂푅2 ◦


∇̃ ◦ ℎ0


−


∇̃ ◦ ℎ0


◦ 푗̂ 퐴2 +


∇̃ ◦ 푔̂2


◦ ∇̃ ◦ ℎ0 휌̂3

+휌̂3


∇̃ ◦ ℎ0


◦ ∇̃ ◦ 푔̂
†
2
−



∇̃ ◦ 푓̂1



◦


∇̃ ◦ ℎ0


◦ 푓̂
†
1

− 푓̂1 ◦


∇̃ ◦ ℎ0


◦ ∇̃ ◦ 푓̂
†
1
,

(9a)

풆푛 · ∇̃ ◦ ℎ2 =
1

4

{

푓̂1 ◦


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



−


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



◦ 푓̂
†
1

−휌̂3


푔̂푅푠 ◦ ℎ1 − ℎ1 ◦ 푔̂
퐴
푠



−


푔̂푅푠 ◦ ℎ1 − ℎ1 ◦ 푔̂
퐴
푠



휌̂3

}

.

(9b)

where

푗̂푅2 = 푓̂1 ◦ ∇̃ ◦ 푓̂1 + 휌3∇̃ ◦ 푔̂2, (10a)

푗̂ 퐴2 = 푓̂
†
1
◦ ∇̃ ◦ 푓̂

†
1
+ 휌3∇̃ ◦ 푔̂

†
2
. (10b)

Equations (8b) and (9b) can be further simplied by not-

ing that, since ℎ1 and ℎ2 are block-diagonal, so too must


푔̂푅푠 ◦ (ℎ푠 − ℎ푛) − (ℎ푠 − ℎ푛) ◦ 푔̂
퐴
푠



for 푛 = 1 and 푛 = 2. As a

result they commute with 휌̂3. Additionally,

0 = 푓̂1 ◦


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



−


푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



◦ 푓̂
†
1

because ℎ2 would have o-diagonal components otherwise.

Hence,

풆푛 · ∇̃ ◦ ℎ1 =
휌̂3

2



푔̂푅푠 ◦ (ℎ푠 − ℎ0) − (ℎ푠 − ℎ0) ◦ 푔̂
퐴
푠



, (11)

풆푛 · ∇̃ ◦ ℎ2 = −
휌̂3

2



푔̂푅푠 ◦ ℎ1 − ℎ1 ◦ 푔̂
퐴
푠



. (12)

Unlike the equation for 푓̂1, presented in the main text, the

equations for the distribution functions has circle-products that

do not reduce to ordinary matrix products in Fourier space.

However, these are all circle-products of functions that can

be evaluated prior to solving the equations. This suggests an

order in which to solve the equations. One can nd 푓̂1 and

ℎ0 rst, but in order to nd ℎ1 one must rst know ℎ0 and in

order to nd ℎ2 one must have solved 푓̂1, ℎ0 and ℎ1. To write

Eqs. (7)–(9) in a way that does not require evaluation of circle-

products between unknown functions is now only a matter of

Fourier-transforming, writing at the covariant derivatives and

using eq. (11) in the main text.

Note that the equation for 푓̂1 involve dierentiation with

respect to 푡, whereas the center of mass time 푇 appear only as a

parameter. The equations for the distribution functions ℎ0, ℎ1
and ℎ2 are opposite in this regard, and involve dierentiation

with respect to 푇 but not 푡.

II. ANALYTICAL SOLUTION TO EQ. (14)

The retarded and Keldysh self-energies for the SNS-junction

with inelastic scattering and time-dependent and spatially ho-

mogeneous exchange eld 푚(푇) are

휎̂푅
= 푖훿휌̂3 + 푚 diag(1,−1, 1,−1), (13a)

휎̂퐾
= 2푖훿휌̂3ℎeq, (13b)

where 훿 is the inelastic scattering rate, ℎeq (휀) = tanh(훽휀/2)

and 훽 is the inverse temperature towards which the system

relaxes.

From Eqs. (7)–(9) we see that ℎ0, ℎ1 and ℎ2 only have

non-zero components proportional to the identity matrix 퐼4 and

diag(1,−1,−1, 1). Hence, only the supercurrent contributes

to the charge current ∝
¥

d휀 Tr


휌̂3 푗̂
퐾


. For this reason we

need only nd the retarded Green’s function and ℎ0. We repeat

the relevant equations here for convenience. If we write the

upper right block of 퐹̂1 as 퐹1 = 휎1퐹푡 + 휎2퐹푠, where 휎1 and

휎2 are Pauli matrices, the zeroth order distribution function

퐻0 = 퐻퐿 퐼4 +퐻푇 푆 diag(1,−1,−1, 1) and let 푚
±(푡,푇) = 푚(푇 +

푡/2) ± 푚(푇 − 푡/2), we nd that

(

2
휕

휕푡
− ∇

2 + 2훿

) (

퐹푠
퐹푡

)

=

(

−푚+퐹푡
푚+퐹푠

)

, (14a)

풆푛 · ∇퐹푠 |푥=0,1 = 퐹BSC
푙,푟 , 풆푛 · ∇퐹푡 |푥=0,1 = 0 (14b)

(

휕

휕푇
+ 2훿

) (

퐻퐿 − 퐻eq

퐻푇 푆

)

=

(

−푚−퐻푇 푆

푚−퐻퐿

)

, (14c)

where 퐹BCS
푙

= Δe−훿푡 퐽0 ( |Δ|푡)휃 (푡) and 퐹BCS
푟 = e푖휙퐹BCS

푙
are

the anamalous Green’s functions in the left and right su-

perconductors, respectively. 퐽0 is the zeroth order Bessel

function of the rst kind. The superconducting energy gap

is Δ, and 휙 is the phase dierence between the two super-

conductors. Finally, with the notation used in the main text

푚±(푡,푇) = 푚(푇 + 푡/2) ± 푚(푇 − 푡/2).

Assuming that the system is at equilibrium at 푇 = −∞, we
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nd that the solution is

퐹푠 =
Δe−훿푡

2

æ 푡

0

d휏 퐽0 ( |Δ|휏) cos

(

1

2

æ 푡

휏

d휏̃ 푚+(휏̃,푇)

)

×

∞’

푛=−∞



1 + (−1)푛e푖휙


cos(푛휋푥)e−
1
2
푛2 휋2 (푡−휏)

, (15a)

퐹푡 =
Δe−훿푡

2

æ 푡

0

d휏 퐽0 ( |Δ|휏) sin

(

1

2

æ 푡

휏

d휏̃ 푚+(휏̃,푇)

)

×

∞’

푛=−∞



1 + (−1)푛e푖휙


cos(푛휋푥)e−
1
2
푛2 휋2 (푡−휏)

, (15b)

퐻퐿 = 2훿퐻eq

æ 푇

−∞

d휏 e−2훿 (푇 −휏) cos

(æ 푇

휏

d휏̃ 푚− (푡, 휏̃)

)

, (15c)

퐻푇 푆 = 2훿퐻eq

æ 푇

−∞

d휏 e−2훿 (푇 −휏) sin

(æ 푇

휏

d휏̃ 푚− (푡, 휏̃)

)

. (15d)

III. OBSERVABLES

The singlet Cooper pair correlation functionΨ푠 and electrical

current 퐼 can be obtained from inserting the analytical solution

given by Eq. (15) into the expressions

Ψ푠 = −푖휋푁0 (퐹푠 • 퐻퐿 − 퐹푡 • 퐻푇 푆) |푡=0 , (16)

and

퐼 =
휋푒퐷

4
Tr



휌̂3



퐺̌ • ∇̃ • 퐺̌
퐾



푡=0

, (17)

After some algebra we nd that

퐼 = 휋푁0푒퐷
[

Im


퐹푠 • ∇퐹
∗

푠 + ∇퐹∗

푠 • 퐹푠

−퐹푡 • ∇퐹
∗

푡 − ∇퐹∗

푡 • 퐹푡


• 푖퐻퐿

− Im


퐹푡 • ∇퐹
∗

푠 + ∇퐹∗

푠 • 퐹푡

+퐹푠 • ∇퐹
∗

푡 + ∇퐹∗

푡 • 퐹푠


• 푖퐻푇 푆

]

푡=0
. (18)

To understand the non-equilibrium behaviour it is useful to

use the distribution functions for spin-up, 퐻+ = 퐻퐿 + 푖퐻푇 푆 ,

and spin-down, 퐻− = 퐻퐿 − 푖퐻푇 푆 . If we write the upper right

block of 퐹̂ = antidiag(퐹+, 퐹−), then 퐹± = 퐹푡 ∓ 푖퐹푠. With this

we get that the singlet Cooper pair correlation function can be

written

Ψ =

휋푁0

2
(퐹+ • 퐻+ − 퐹− • 퐻−) |푡=0, (19)

and the current is

퐼 =
휋푁0푒퐷

4
(퐽+ • 퐻+ + 퐽− • 퐻−) |푡=0, (20)

where

퐽+ = 퐹∗

−
• ∇퐹+ + ∇퐹+ • 퐹

∗

−
− 퐹+ • ∇퐹

∗

−
− ∇퐹∗

−
• 퐹+, (21a)

퐽− = 퐹∗

+ • ∇퐹− + ∇퐹− • 퐹∗

+ − 퐹− • ∇퐹∗

+ − ∇퐹∗

+ • 퐹−. (21b)
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FIG. 1: a) The real part of the anomalous Green’s function 푓− with

휙 = 0 and b) spectral current 푗− with 휙 = 휋/2 as a function of

energy 휀 for various exchange elds 푚0. The energy gap in the

superconductors is Δ = 50휀, where 휀 is the Thouless energy, and

the inelastic scattering rate is 훿 = Δ × 10−3.

We note in passing that both 퐽+ and 퐽− are proportional to sin 휙,

as can be seen most readily by evaluating them at 푥 = 1/2.

Hence, the critical current occurs when 휙 is a half-integral

multiple of 휋. Also, when written as function of the exchange

eld 푚 we have that 퐹− (−푚) = −퐹+(푚) and 퐽− (−푚) = 퐽+(푚).

In order to study how the system evolves immediately after

the exchange eld is turned on, we can set the inelastic scattering

rate to 0. In this case we nd that

퐻±(푡,푇) = 퐻eq (푡) exp

(

±푖

æ 푇 +푡/2

푇 −푡/2

d휏 푚(휏)

)

. (22)

Assuming that 푇 > |푡 |/2 for all the relevant relative times 푡,

this is simply 퐻± = 퐻eqe
±푖푚0푡 . Hence, in energy space we have

ℎ±(휀) = ℎeq (휀 ± 푚0) = tanh[훽(휀 ± 푚0)/2].

If 푇 > |푡 |/2 for all the relevant relative times 푡 we can also

take advantage of the fact that the system is stationary, such

that the circle-products in energy space reduces to normal

multiplications. That is,

Ψ =

푁0

4

æ
∞

−∞

d휀 ( 푓+ℎ+ − 푓−ℎ−), (23)

and

퐼 =
푁0푒퐷

8

æ
∞

−∞

d휀 ( 푗+ℎ+ + 푗−ℎ−). (24)

From Eq. (21) we can immediately see that the spectral

current is antisymmetric in energy when 푚0 = 0. In this
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case 퐽+ = 퐽− = −4푖 Im(퐹∗
푠 • ∇퐹푠) is purely imaginary, so the

real part of its Fourier transform must be antisymmetric in 휀.

Because only the real part of the spectral current can give rise

to a real electrical current, the spectral current is antisymmetric

around 휀 = 0 when 푚0 = 0. Similarly, 퐹± are purely imaginary

when 휙 = 0, 푚0 = 0 and Δ is real, so the same arguments

shows that the real parts of 푓± are antisymmetric around 휀 = 0.

It is the real part of 푓± that is relevant for Ψ푠 when 휙 = 0, since

Ψ푠 is real.

When 푚0 ≠ 0 and 푇 > |푡 |/2 we get that

퐹± = ∓
푖Δe−훿푡e±푖푚0푡

2

æ 푡

0

d휏 퐽0 ( |Δ|휏)e
±푖푚0휏

×

∞’

푛=−∞



1 + (−1)푛e푖휙


cos(푛휋푥)e−
1
2
푛2 휋2 (푡−휏)

. (25)

The factor e±푖푚0푡 gives rise to a shift 휀 → 휀 ± 푚 in the Fourier

transform. Hence, 푓±(휀) = 푝±(휀 ± 푚0 + 푖훿), where 푝± is the

Fourier transform of the remaining integral. When푚0  Δ, the

presence of e±푖푚0휏 in the integrand works to shift oscillations

with frequency Δ, but this does not aect the low frequency

components. To see why, note that 퐽0 (푥) is well approximated

by cos(푥 − 휋/4)
√

2/휋푥 for large 푥 and

cos(푎)e푖푏 =

e푖 (푎+푏) + e−푖 (푎−푏)

2
. (26)

Hence, the oscillatory part of the integrand is shifted to Δ±푚0

while the low-frequency components in 푝± are left unchanged.

Because we know that 푝± is antisymmetric for 푚0 = 0, we see

that 푓± is antisymmetric close to 휀 ± 푚0 as long as 푚0  Δ.

When 푚0 ≈ Δ, the oscillations in 퐽0 ( |Δ|휏) are matched by

those in e±푖푚0휏 , which aects the low-frequency components

of 푝±.

Figure 1 showsRe( 푓−) and 푗− for various values of푚0. From

Fig. 1 one can see that the integrands are antisymmetric and

large close to 휀 = 푚0, which agrees with the discussion above.

Moreover, we see that the values close to 푚0 are enhanced as

푚0 approaches |Δ|. This can be understood as coming from

the fact that Andreev reections with long range occur at the

energies where the probability of Andreev reections is larger,

as discussed in the main text. In equilibrium ℎ± = tanh(훽휀/2),

so the positive and negative contributions cancel when 푚0 > 0.

However, out of equilibrium the distribution function changes

sign at 휀 = 푚0, which allows for a signicant contribution from

the part close to 휀 = 푚0.

IV. CONSISTENCY WITH MAXWELL’S EQUATIONS

Having solved the Usadel equation, the next step is to ensure

that the solution is consistent with Maxwell’s equation. There

are no orbital eects in the one-dimensional wire, but there

could in principle be an induced electric eld coming from a

nonuniform charge distribution. The charge density 휌 can be

calculated from

휌(푇) = −2푒푁0

{ 휋

8
Tr


퐺̂퐾 (0,푇)


+ 2푒휙(푇)
}

, (27)

where 휙 is the electrochemical potential.

Since 퐻0 and 퐻1 has no component proportional to 휌̂3, we

see that 휌 is at least second order in 푧. Thus the induced electric

eld is also at least second order in 푧 and thereby does not

aect 퐹̂1, 퐻0 or 퐻1. For this reason it follows that it does not

aect the Cooper pair correlation function or the supercurrent.

Nevertheless, it can in principle give rise to a resistive current

contribution,

퐼푟 = 푧2
휋푒퐷

2
∇Tr [ 휌̂3퐻2 (0,푇)] . (28)

By using the fact that the equilibrium distribution function

at electrochemical potential 휙 is

퐻eq (푡,푇) =
−푖

훽 sinh(휋푡/훽)
exp

(

−푖푒휌̂3

æ 푇 +푡/2

푇 −푡/2

d휏 휙 (휏)

)

, (29)

we get from Eq. (9) that the resistive current solves

휕퐼푟

휕 (푇휀)
−

휕2퐼푟

휕 (푥/퐿)2
= 4푧2훿퐿2푒2퐸 , (30)

where 푥, 푇 and 훿 are now not dimensionless and 퐸 = −∇휙

is the electric eld. From Eq. (12) we get that the boundary

condition is simply 퐼푟 = 0 at the interfaces. Thus, this resistive

current does not contribute to the total current going through

the wire and instead acts to redistribute charge.

By calculating Tr


퐺̂퐾


from the analytical expression we

nd that the 퐼푟 is negligible and can be safely ignored.

V. BEYOND THE DIRTY LIMIT

The focus so far has been on the so-called dirty limit, where

the elastic scattering time is small, such that the isotropic part of

the Green’s function dominates. However, the same framework

as was presented here and in the main text can be applied also

for systems outside the dirty limit. In fact, it works even better

in the clean limit.

With arbitrary elastic scattering time 휏푒, the quasiclassical

Green’s function solves the Eilenberger equation,

푖풗퐹 · ∇̃ ◦ 푔̌ +



휀휌̂3 + 휎̌ +
푖

2휏푒
푔̌푠 , 푔̌



◦

= 0, (31)

where 풗퐹 is the Fermi velocity, the subscript ◦ denotes that the

commutator is taken with respect to the circle product and 푔̌푠 is

the isotropic part of the Green’s function. Equation (31) gives

the Usadel equation in the limit 휏푒 → 0.

The method presented in the main text works by writing

the equations in the (푡,푇)-coordinates and eliminating circle

products between functions that both depend on energy, except

the term in the commutator that is linear in 휀. This was done

by linearizing the equations in the proximity eect. We see

from Eq. (31) that the same is possible for arbitrary impurity

concentrations. The dierence is that in the Usadel equation

it was the term 퐷∇̃ ◦


푔̌ ◦ ∇̃ ◦ 푔̌


that required linearization,

whereas in the Eilenberger equation it is 푖[푔̌푠 , 푔̌]/2휏푒. This

term is absent in the clean limit since 휏푒 → ∞, so in this case
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Eq. (31) is automatically free from the dicult kind of circle-

products if 휎̌ does not depend on energy. This means that we do

not need to linearize in the proximity eect. One consequence

of this is that in the clean limit it could be possible to solve time-

dependent transient situations even with retarded self-energies

that are not block-diagonal to lowest order in 푧. In particular,

this means that one could add superconducting pairing in the

self-energy. Thus, one could potentially use this framework to

nd transient phenomena in clean superconductors.

Whether the full equations can be solved in time-dependent

situations without additional simplifying assumption depends

on the boundary conditions. One type of boundary condition

which can be used in the clean limit is Zaitsev’s linearized

boundary condition [A. Zaitsev, Zh. Eksp. Teor. Fiz. 86,

1742-1758], valid for a weak proximity eect. In that case,

the antisymmetric part of the anomalous Green’s function

is continuous across the interfaces whereas the symmetric

part has a drop proportional to the antisymmetric part of

the anomalous Green function [N. Garcia and L.R. Tagirov,

arXiv:cond-mat/0601212]. For such a boundary condition,

the clean-limit equations can be solved even for an arbitrary

time-dependence.
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We study theoretically spin pumping in bilayers consisting of superconductors (SC) and antiferromagnetic

insulators (AFI). We consider both compensated and uncompensated interfaces and include both the regular

scattering channel and the Umklapp scattering channel. We nd that at temperatures close to the critical tem-

peratures and precession frequencies much lower than the gap, the spin current is enhanced in superconductors

as compared to normal metals. Otherwise, the spin current is suppressed. The relevant precession frequencies,

where the spin current in SC/AFI is enhanced compared to normal metals/AFI, is much lower than the typical

resonance frequencies of antiferromagnets, which makes the detection of this effect experimentally challenging.

A possible solution lies in the shifting of the resonance frequency by a static magnetic eld.

DOI: 10.1103/PhysRevB.103.134508

I. INTRODUCTION

Both superconductors (SC) and antiferromagnets (AF)

are of particular interest in the context of spintronics. An-

tiferromagnets disturb neighboring components less than

ferromagnetic or ferrimagnetic materials, because they pro-

duce no net stray eld [1]. This means that antiferromagnetic

components can be packed more tightly and are more ro-

bust against external magnetic elds than their ferromagnetic

counterparts. Additionally, antiferromagnets operate at THz

frequencies, which are much faster than the GHz frequencies

of ferromagnets (F). This can allow for ultrafast information

processing when working with antiferromagnets.

Superconductivity is a type of order that normally com-

petes with magnetism. However, the discovery of spin-triplet

superconductivity has shown that complete synergy between

superconductivity and magnetism is possible [2–6], and super-

conductors are now an integral part of spintronics research. In

addition to the potential for minimal Joule heating that comes

with superconductivity, superconductors are interesting from

a spintronics perspective because of spin-charge separation

[7,8], which allows spin and charge imbalances to decay over

different length scales. It has been observed that the spin

relaxation time can be considerably longer than the charge

relaxation time [9].

Since both superconductors and antiferromagnets are use-

ful as building blocks in spintronic devices, it is of interest to

study spin transport in hybrid superconductor-antiferromagnet

devices. Despite this, SC/AF structures are largely unex-

plored compared to superconductor-ferromagnetic structures.

Here, we study theoretically spin pumping in superconductor-

antiferromagnetic insulator (SC/AFI) bilayers. This refers to

the injection of a spin current in the superconductor, which we

consider to be spin singlet and s wave, by the application of

a precessing magnetic eld in the AFI [10]. Spin pumping

has been observed in F/SC structures [11–13] and investi-

gated theoretically in F/SC structures by calculations based

on the local dynamic spin susceptibility in the SC [14,15] and

quasiclassical theory [16,17]. The theoretical works found an

enhanced spin current in superconductors compared to normal

metals (NMs) below the transition temperatures [14,15].

While spin pumping in SC/AF structures has, to our

knowledge, not been explored, some important work has

been done with normal metal-antiferromagnetic systems. It

has been found theoretically that spin pumping is of a sim-

ilar magnitude as in the ferromagnetic case [18,19], and

more recently measurements of the inverse spin-Hall volt-

age demonstrated the spin-pumping effect in MnF2/Pt [20].

Combining the demonstration of AF/NM spin pumping with

the above mentioned evidence of F/SC spin pumping, AF/SC

spin pumping is feasible and merits further study.

We mainly follow the methodology presented in Ref. [15],

but modied for a superconductor-antiferromagnetic insulator

bilayer. In particular, the staggered magnetic order of the AFI

gives rise to two different scattering channels [21–23], and the

two different sublattices can be coupled to the superconductor

in a symmetric or asymmetric way. To capture this we will

not approximate the interaction Hamiltonian by a uniform

scattering amplitude, as in Ref. [15], but instead model the

interaction with an exchange coupling between itinerant elec-

trons in the SC and the localized spins in the AFI. Using this

coupling, it turns out that the relevant quantity is not the local

dynamic spin susceptibility, as in Refs. [14,15], but instead the

planar dynamic spin susceptibility. Using the planar dynamic

spin susceptibility we nd that the spin pumping into super-

conductors from antiferromagnets is enhanced as compared

to spin pumping into normal metals when the temperature

is close to the transition temperature and the precession fre-

quency is small compared to the energy gap. Otherwise the

spin current in the superconductor is suppressed. This is

similar to the results obtained from ferromagnets. However,

unlike in the case of ferromagnets, the resonance frequency in

antiferromagnets is typically too large for spin pumping with

2469-9950/2021/103(13)/134508(10) 134508-1 ©2021 American Physical Society
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h(t)
SC AFI

FIG. 1. Sketch of a superconductor (SC)-antiferromagnetic insu-

lator (AFI) bilayer with a precessing external magnetic eld h(t ).

frequencies below the gap to be experimentally detectable.

One possible solution is to apply a static magnetic eld, which

we discuss in Sec. VI.

II. MODEL

The system depicted in Fig. 1 is modeled by the Hamilto-

nian,

H = HSC + HAFI + Hint, (1)

where the Bogoliubov–de Gennes Hamiltonian,

HSC =


k∈

(c
†
k,↑ c−k,↓)



ξ
k



∗ −ξ
k



c
k,↑

c
†
−k,↓



, (2)

where  is the rst Brillouin zone (1BZ) in the superconduc-

tor, gives a mean-eld description of superconductivity. The

antiferromagnetic insulator Hamiltonian is given by

HAFI = J


i, j

Si · S j − K


i

S2i,z − γ


i

Si · h, (3)

where i, j means that the sum goes over nearest neighbors

and
∑

i goes over lattice points in the AFI. The exchange

coupling at the interface is given by

Hint = −2


i

Ji(c
†
i,↑ c

†
i,↓)σ



ci,↑
ci,↓



· Si, (4)

where the sum goes over the lattice points in the interface.

Here, ξ
k

is the kinetic energy measured relative to the chemi-

cal potential μ, c
k,σ is the annihilation operator for electrons

with spin σ and wave vector k, J is the antiferromagnetic

exchange parameter, K is the easy-axis anisotropy, Si is the

spin at lattice site i in the AFI, and γ gives the coupling

strength to the external magnetic eld h. The vector of Pauli

matrices is given by σ, and Ji = JA (Ji = JB) when i belongs

to the A (B) sublattice. Also,  is the superconducting gap

parameter, which we assume real and satises

1 = λ

 ωD

0

tanh(
√
ε2 +2/2T )

√
ε2 +2

, (5)

where T is the temperature, which we assume to be the same

for the superconductor and AFI, and ωD and λ are material-

specic parameters that determine the critical temperature Tc
and the zero-temperature gap 0 := (0).

In order to diagonalize HAFI we can do a Holstein-

Primakoff transformation followed by a Fourier transform

and a Bogoliubov transformation. This gives to second or-

der in magnon operators the following antiferromagnetic

Hamiltonian:

HAFI =


k∈♦



ωα
k

α
†
k

α
k

+ ω
β

k

β
†
k

β
k



+


2NAS(u0 + v0)γ [h
−(α0 + β

†
0 )+ h+(α†

0 + β0)],

(6)

where ♦ is the rst magnetic Brillouin zone, which is the

1BZ corresponding to the A sublattice, NA is the number of

lattice points in the A sublattice, S is the spin at each lattice

point, α
k

= u
k

a
k

− v
k

b
†
−k

and β
k

= u
k

b
k

− v
k

a
†
−k

, where a
k

and b
k

are the magnon annihilation operators for the A and B

sublattices, and

u
k

=
Jz + K



(Jz + K )2 − (Jγ
k

)2
, (7a)

v
k

= −
Jγ

k



(Jz + K )2 − (Jγ
k

)2
, (7b)

ωα
k

= S

√

(Jz + K )2 − (Jγ
k

)2 + γ hz, (7c)

ω
β

k

= S

√

(Jz + K )2 − (Jγ
k

)2 − γ hz. (7d)

Here, hz is the z component of the external magnetic eld,

which is the same as the magnetization direction in the an-

tiferromagnet and the direction of the easy-axis anisotropy.

Moreover, h± = hx ± ihy and

γ
k

=


δ

cos(k · δ) = γ−k

, (8)

where the sum goes over the nearest neighbor displacement

vectors δ, and z is the number of nearest neighbors.

To write Hint in terms of Fourier components requires us to

connect the reciprocal space in the superconductor with the

reduced Brillouin zone of the magnetic lattice in the AFI.

This gives rise to so-called Umklapp scattering, where the

wave vector falls outside the 1BZ in the AFI [23]. Whether

this effect is present depends on the interface. Depending on

how the interface slices the biparte lattice of the AFI, the

interface can have a different number of atoms belonging to

the A and B lattices. If the interface has an equal number of

atoms from each sublattice and the coupling strengths JA and

JB are equal, we call it a compensated interface. Otherwise, it

is uncompensated. We let x = 0 be the location of a lattice

point belonging to the A sublattice and x0 be such that all

lattice points at the interface can be written x0 + x̃i, where

x0 · x̃i = 0.

To capture both compensated and uncompensated inter-

faces we will use the notation δA
q,k

= 1 to mean that q · x̃i −
k · x̃i = 2πn+ d1 for all vectors x̃i such that x0 + x̃i is in

the A sublattice at the interface and for some integer n and

a constant d1 that is independent of x̃i. Similarly, δB
q,k

= 1

means that q · x̃i − k · x̃i = 2πn+ d2 for all lattice vectors

x0 + x̃i in the B sublattice at the interface and for some integer

n and a constant d2 that is independent of x̃i. We can determine

d1 by noting that both x̃i and 2x̃i is in the A sublattice, so

2d1 = d1 + 2πn ⇒ d1 = 2πm for some integerm. Hence, we

can set d1 = 0. Similarly, if x̃i is in the B sublattice, then

2x̃i is in the A sublattice, so 4πn+ 2d2 = 2πm ⇒ d2 = lπ
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for some integer l . The k vectors that result in l being an

odd number give rise to the Umklapp scattering channel. We

can drop the superscripts because δA
q,k

= 1 ⇐⇒ δB
q,k

= 1.

This is because every lattice point in the B sublattice is mid-

way between two lattice points in the A sublattice and vice

versa. Finally, if the number of lattice points at the interface

is equal on the superconductor and the antiferromagnet, then

half of the possible k vectors in the superconductor will give

l = 0 and the other half will give l = 1. There is a vector G

connecting the region in  with l = 0 to those with l = 1.

For a concrete example, consider the situation where the

crystal lattices of the SC and AFI are equal and cubical.

The 1BZ in the SC, , is therefore also cubical. Meanwhile,

the sublattice in the AFI is face-centered cubic, so ♦ is the

truncated octahedron inscribed in . A wave vector in the

corner of  will be in the center of the second Brillouin zone

in the AFI. If we let G be the vector in a corner of , then

exp(iG · xi ) is 1 when xi is in the A sublattice and −1 when

xi is in the B sublattice. Thus G is the vector that connects the

region of k vectors in with regular scattering and those with

Umklapp-scattering.

Using this notation, Hint can, to rst order in magnon oper-

ators, be written

Hint =


k∈



q∈♦



T α
qk

α
q

s−
k

+ T
β†

qk

β†
q

s−
k

+ H.c.


+ HZ
int, (9)

where

HZ
int = −



2SNA



k∈

δ
k,0(J̄A − (−1)l J̄B)s

z
k

e−ix0·k (10)

is the Zeeman energy and

T α
qk

= −eix0·(k+q)[J̄Auq + (−1)l J̄Bvq]δk,−q , (11a)

T
β†

qk

= −eix0·(k−q)[J̄Avq + (−1)l J̄Buq]δk,q . (11b)

Additionally,

J̄A = JA
2
√
2SN


A

NS

√
NA

, (12a)

J̄B = JB
2
√
2SN


B

NS

√
NA

, (12b)

where NS is the number of lattice points in the superconductor

and N

A (N


B) is the number of lattice points belonging to the A

(B) sublattice at the interface, and

sz
k

=
1

2



q∈

(c†
q↑cq+k↑ − c

†
q↓cq+k↓), (13a)

s−
k

=


q∈

c
†
q↓cq+k↑. (13b)

The reason why the factor (−1)l is in front of the terms

proportional to J̄B in Eqs. (10) and (11) is that the coordinate

system is dened such that x = 0 is the location of a lattice

point belonging to the A sublattice.

III. GREEN’S FUNCTIONS

In order to calculate the spin current we will make use

of Green’s functions corresponding to three different types

of operators. Let ψ be either α, β†, or s+, then the lesser,

retarded, and advanced Green’s functions are

G<
ψ (t1, t2, k) = −iψ†

k

(t2)ψk

(t1)0, (14a)

GR
ψ (t1, t2, k) = −iθ (t1 − t2)[ψk

(t1), ψ
†
k

(t2)]0, (14b)

GA
ψ (t1, t2, k) = iθ (t2 − t1)[ψk

(t1), ψ
†
k

(t2)]0, (14c)

respectively. The subscript 0 means that the expectation values

are taken in the absence on Hint. This is done because we

will treat Hint as a perturbation in the interaction picture. This

is a good approximation as long as the transmission coef-

cients are small and has previously been shown to give good

agreement with experiments [24–26]. We will also dene the

distribution function,

f ψ (ε, k) :=
G<

ψ (ε, k)

2iImGR
ψ (ε, k)

, (15)

where the Green’s functions in Eq. (14) are Fourier trans-

formed with respect to the relative time t1 − t2. In thermal

equilibrium, f ψ (ε, k) is equal to the Bose-Einstein distribu-

tion function nB(T, ε).

First consider the effect of spin pumping. We add spin

pumping in the AFI by letting h±(t ) = h0e
∓it . The reader

is referred to Appendix A for the detailed calculation, which

shows that the retarded Green’s functions are unaffected to

second order in h0. Since the unperturbed Hamiltonian is

diagonal in α and β, this means that the retarded Green’s

functions for α and β† are

GR
α (ε, k) =

1

ε − ωα
k

+ iηα
, (16a)

GR
β† (ε, k) = −GA

β (−ε, k) =
1

ε + ω
β

k

+ iηβ
, (16b)

where ηα and ηβ are the lifetimes of the α and β magnons. The

distribution functions are modied by the oscillating magnetic

eld, and to second order in h0,

f ν (ε, k) = nB(ε,T )

+
2πNAS[(u0 + v0)γ h0]

2

ην
δ
k,0δ(ε −), (17)

where ν ∈ {α, β†}.

The dynamic spin susceptibility GR
s+

is more compli-

cated, but can be calculated from the imaginary time Green’s

function by use of analytical continuation andMatsubara sum-

mation techniques. This is shown in Appendix B, and the

result is

GR
s+ (ε, k) = −

1

4



q



ω=±E



ω̃=±Ẽ



1+
ξ ξ̃ +2

ωω̃



×
nF (ω̃,T )− nF (ω,T )

ε + iηSC − (ω̃ − ω)
, (18)

where ξ = ξ
q

, ξ̃ = ξ
q+k

, E =


ξ 2 +2, and Ẽ =


ξ̃ 2 +2, nF is the Fermi-Dirac distribution function.
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Since the spin pumping in the AFI does not affect the

Hamiltonian in the superconductor, the distribution function

is f s
+

(ε, k) = nB(ε,T ).

IV. SPIN CURRENT

To nd the spin current we follow Kato et al. [15] and use

Is = −
∂

∂t



sz0


= −i


H, sz0


. (19)

From the fact that sz0 commutes with HSC + HAFI, [s
−
q

, sz0] =

s−
q

, and [A†,B] = −[A,B†]†, we nd that



H, sz0


=


k∈



q∈♦



T α
qk

α
q

s−
k

+ T
β†

qk

β†
q

s−
k

− H.c.


. (20)

Thus, the spin current is

Is(t ) = 2


k∈



q∈♦



ν∈{α, β†}

Im


T ν
qk

s−
k

(t )ν
q

(t )


. (21)

We evaluate this expectation value in the interaction picture

and treating the interfacial exchange interaction as a pertur-

bation using the Keldysh formalism. First, let Gψ with no

superscript denote contour-ordered Green’s functions,

Gψ (τ1, τ2, k) = −iTcψk

(τ1)ψ
†
k

(τ2)0, (22)

where Tc means that ψ
k

and ψ†
k

are ordered with respect to τ1
and τ2 along the complex Keldysh contour C. Next, we dene

C(τ1, τ2) :=


TcT
ν
qk

ν
q

(τ1)s
−
k

(τ2)


, (23)

where ν is either α or β†.

Going to the interaction picture with Hint as the interaction,

we get

C(τ1, τ2) =


TcT
ν
qk

ν
q

(τ1)s
−
k

(τ2)e
−i

∫

C
dτHint (τ )



0

≈
〈

Tc



C

dτ
∣

∣T ν
qk

∣

∣

2
ν
q

(τ1)ν
†
q

(τ )s+−k

(τ )s−
k

(τ2)

〉

0

= i
∣

∣T ν
qk

∣

∣

2
[Gν (q) • Gs+ (k)](τ1, τ2), (24)

where we have used the bullet product • to denote integration

of the internal complex time parameter along the Keldysh

contour. In the second equality it was used that

−iTcs
+

−k

 (τ )s
−
k

(τ2)0 = δ
k,kGs+ (τ, τ2, k), (25)

as can be conrmed by using Wick’s theorem. Next, if we

choose τ2 to be placed later in the contour we have

C(τ1, τ2) = C<(τ1, τ2) =


T ν
qk

s−
k

(τ2)νq(τ1)


. (26)

From the Langreth rules we have

C<(t, t ) =


GR
ν (q) ◦ G

<
s+ (k)+ G<

ν (q) ◦ G
A
s+ (k)



(t, t ), (27)

where the circle product ◦ means integration over the internal

real time coordinate. The circle products are the same as

normal convolution products, since GR
ψ (t1, t2) and G<

ψ (t1, t2)

only depend on time through the relative time t1 − t2. Thus,

by writing Eq. (27) in terms of Fourier transformed Green’s

functions, the circle products become normal products, so, by

inserting it into Eq. (21),

Is = 4



dε

2π



k∈



q∈♦



ν∈{α,β†}

∣

∣T ν
qk

∣

∣

2
ImGR

ν (ε, q)

× ImGR
s+ (ε, k)[ f

ν (ε, q)− f s
+

(ε, k)], (28)

where we used that GA
ψ (ε) = [GR

ψ (ε)]
∗.

Inserting Eqs. (11), (16), and (17) into Eq. (28) and using

Eq. (7) gives

Is = Ir + IU , (29)

where

Ir = −J̄2Aγ
2h20

(
1



− ωα
0

2
+ (ηα )2

[
UK + (1− c)

2+UK

]2

+
1



+ ω
β

0

2
+ (ηβ )

2

[
cUK + (c− 1)

2+UK

]2
)

×


k∈,l=0

ImGR
s+ (, k)δ

k,0 (30)

and

IU = −J̄2Aγ
2h20

(
1



− ωα
0

2
+ (ηα )2

[
UK + (1+ c)

2+UK

]2

+
1



+ ω
β

0

2
+ (ηβ )

2

[
cUK + (c+ 1)

2+UK

]2
)

×


k∈,l=0

ImGR
s+ (, k + G)δ

k,0. (31)

Here,UK = K/(Jz) and c = J̄B/J̄A is the interface asymmetry

parameter that gives the degree to which the interface is com-

pensated. The sums are restricted to include only the k vectors

that satisfy δ
k,0 = 1 with l = 0 and G is the vector that

connects these to the k vectors with l = 1. When both the SC

and AFI are cubical with a lattice parameter a and a compen-

sated interface, then G = π (ex + ey + ez )/a. In order for the

Umklapp scattering to produce a nonzero IU , it is necessary

that there exists k, q ∈  such that both q and q+ k + G are

close to the Fermi surface and δ
k,0 = 1. In a cubical lattice the

minimal value of k + G is
√
2π/a, so the maximal diameter

of the Fermi surface must be at least
√
2π/a. The Umklapp

current is also zero if the interface is fully uncompensated.

In this case there is no Umklapp scattering and the current is

simply Is = Ir with c = 0.

V. NUMERICAL RESULTS

Next we show numerical results for a cubical lattice with

lattice constant a such that

ξ
k

= −2t


i∈{x,y,z}

cos(aki )− μ, (32)

where t is the hopping parameter. In Fig. 2 we show the spin

current into the superconductor ISCs for different temperatures

T and precession frequencies , normalized by the normal

state value INMs in Fig. 2(a) and a constant in Fig. 2(b). In
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FIG. 2. The spin current into a superconductor with gap given by

Eq. (5), ISCs , for different precession frequencies  and temperatures

T and normalized by the normal state spin current, INMs , found by

setting  = 0 in (a) and the constant I0 = γ 2h20J̄
2
ANSN

⊥
S /[(2π )

40]

in (b). N⊥
S is the number of lattice points in the superconductor in the

direction transverse to the interface, 0 is the superconducting gap

at T = 0, and Tc is the critical temperature.

this case we have used μ = −4t , which means that IU = 0.

However, we nd that both Ir and IU scale in the same way as

functions of  and T also for other values of μ. In Fig. 2 we

have also usedUk = 0.01, which is close to the reported value

for MnF2 [27,28], t = 10000, c = 0.5, ηα = ηβ = 0 ×

10−4, and ωα
0 = ω

β

0 = 40. This corresponds to a resonance

frequency of 1 THz when 0 = 1 meV. From Fig. 2(b) we

see that the normal state spin current at T > Tc scales linearly

with  as expected. In comparison, the spin current changes

only very slowly with  in the superconducting state. This is

consistent with the physical picture that it is the availability

of quasiparticles rather than unoccupied states that limits the

current in the superconducting state.

As one can see from Fig. 2(a), the spin current in the

superconductor is peaked at small frequencies close to the

critical temperature, where it can be more than twice as large

as the normal-metal spin current. This is similar to the results

for spin currents in superconductor-ferromagnetic bilayers

[14,15]. Figure 3 shows the ratio ISCs /INMs as a function of

/0 for various T . It can be seen that at zero temperature the

spin current in the superconducting case is zero for  < 20.

For T > 0 the ratio ISCs /INMs initially decreases as increases

and reaches a minimum at  = 2(T ).

0 0.5 1 1.5 2 2.5 3 3.5 4
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2 2Δ(0.9Tc)
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I
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s
/
I
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s
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T/Tc = 0.7
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FIG. 3. The spin current into a superconductor ISCs , normalized

by the normal state spin current INMs , found by setting the gap = 0,

as a function of the spin-pumping precession frequency . Here,

(T ) is the energy gap that solves Eq. (5) and Tc is the critical

temperature.

This can be understood physically in the following way.

The spin current is generated by spin-ip scatterings which

excite particles by energy  and ip their spin. This can be

seen from Eqs. (9), (18), (30), and (31) when ηSC  1. In this

case the sum in Eq. (18) only contributes to the imaginary part

of GR
s+
(, k) when ω̃ − ω = , and only when nF (ω,T )−

nF (ω̃,T ) = 0. In the normal metal case there are a number of

electrons proportional to  around the Fermi surface which

can be excited to an available state. Hence, the dynamic spin

susceptibility is proportional to .

In a superconductor the spin-ip scatterings can happen

by breaking a Cooper pair or exciting a quasiparticle from

above the gap to a higher energy. When  < 2(T ) only the

latter is possible. Thus, in order to get a nonzero spin current

when  < 2(T ) the temperature must be large enough for

quasiparticle states above the gap to be occupied. This is why,

in Fig. 3, the current is identically zero in the superconductor

when T = 0 and  < 20. On the other hand, when the

temperature is close to the critical temperature there can be

many available quasiparticles available because the density

of states is peaked around the gap. This peak in the density

of states is why the spin current in a superconductor can be

larger than the spin current in a normal metal, but only when

the temperature is close to the critical temperature. It is also

only larger when   (T ), which is because the lack of

states below the gap in the superconductor means that the

spin susceptibility cannot increase as fast as in the normal

state when  increases. In the normal state there is a range of

energies ∝ around the Fermi surface that can be excited to

an available state, but in the superconducting state the number

of states that can be excited is limited by the number of

quasiparticles present. Increasing  therefore decreases the

ratio ISCs /INMs when  < 2(T ), as can be seen in Figs. 2

and 3. At  = 2(T ) the breaking of Cooper pairs becomes

possible as a spin-transfer mechanism, which is why ISCs /INMs

starts to increase. This can be seen most clearly in Fig. 3.

Figure 4 shows the ratio between regular spin current Ir
and the Umklapp contribution IU for μ = −2.2t . The result is
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FIG. 4. The ratio of the spin-current contribution from the reg-

ular scattering channel Ir , and the Umklapp scattering channel IU ,

as a function of the interface asymmetry parameter c for /0 =

0.1, T/Tc = 0.9, μ = −2.2t . The results are shown for easy axis

anisotropy values Uk = 0.01 and Uk = 0.37, where the former is

found in MnF2 and the latter is found in FeF2 [27–29].

shown for axis anisotropy Uk = 0.01, which corresponds to

MnF2 [27,28], and Uk = 0.37, corresponding to FeF2 [29].

In both cases the regular current dominates when the in-

terface asymmetry parameter c is small, meaning that the

superconductor is coupled more strongly to one of the sub-

lattices in the AFI. The Umklapp contribution becomes more

important as c increases and when Uk is small the Umklapp

contribution eventually becomes larger than the contribution

from the regular scattering channel. This is consistent with

the work by Kamra and Belzig showing that the in the ab-

sence of easy-axis anisotropy the cross-sublattice contribution

quenches the spin- current from the regular scattering channel

[19]. However, here we see that if we include the Umklapp

scattering the spin current will not go all the way to zero, even

in the absence of easy-axis anisotropy. Mathematically, this

can be seen from Eqs. (30) and (31): When Uk = 0 we have

Ir ∝ (1− c)2 and IU ∝ (1+ c)2. However, when Uk = 0.37

the regular contribution remains dominant for all values of c.

VI. EXPERIMENTAL DETECTION

Although the spin current can be enhanced in SC/AFI

bilayers as compared to NM/AFI bilayers, it can be difcult

to observe this enhancement experimentally. This is because

the spin current is strongly peaked around the antiferromag-

netic resonance frequencies ω
α/β

0 . In antiferromagnets this

resonance frequency is on the order of 1 THz, which is much

larger than in ferromagnets [1]. This is an advantage for

spintronics as it allows for ultrafast information processing,

but in the context of this paper it means that observation

of the enhancement produced by the superconducting order

is hard to experimentally verify. A resonance frequency of

1 THz means that the spin current is most easily observed at

/0 ≈ 4, assuming that 0 = 1 meV, but from Fig. 2 we

see that the current is enhanced only for /0 < 0.2.

In order to observe the strong suppression of spin current at

low temperatures, it is necessary to probe frequencies below

20. This is also below 1 THz, but not out of reach. The res-
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FIG. 5. The superconductor spin current ISCs and normal metal

spin current INMs normalized by the maximal value of INMs as a

function of the precession frequency  for two different values of

constant external magnetic eld hz. Here, γ is the gyromagnetic ratio,

T/Tc = 0.9, ηα/β/0 = 0.01, c = 0.5, Uk = 0.01, Tc is the critical

temperature, and 0 is the superconducting gap at zero temperature.

onance frequency of MnF2, which was used in the detection

of spin pumping by Vaidya et al., was reported to be around

250 GHz [20]. This corresponds to  ≈ 1 meV ≈ 0, which

makes the low-temperature suppression shown in Figs. 2 and

3 detectable.

One way to potentially detect the spin-current enhance-

ment at low frequencies is to apply a constant magnetic eld

along the z axis. This was also done by Vaidya et al., who

reduced the frequency of MnF2 to 120 GHz by applying a

magnetic eld of 4.7 T. From Eqs. (7), (30), (31) we see that

the resonance frequencies are

ωres = ω0



Uk (2+Uk )± γ hz, (33)

where ω0 = JzS. Thus, by applying a magnetic eld of

ω0

√
Uk (2+Uk )/γ , the resonance frequency can be pushed

well below 0, making the enhancement in spin current due

to superconductivity detectable. This is illustrated in Fig. 5.

At γ hz = 0 the peak is at  = 40, where the peak in ISCs is

only slightly smaller than the peak in INMs , in accordance with

Fig. 3. However, when γ hz = −3.90, the peak is shifted to

 = 0.10 and the peak in the superconducting case is taller.

How large the applied magnetic eld is required to be depends

on the gyromagnetic ratio γ as well as ω0 and Uk , but it will

in general be several tesla. Experimental ingenuity is therefore

required in order to make sure that the superconductivity is not

completely suppressed by the magnetic eld. This could, for

instance, be done by shielding the superconductors or using

superconductors that can withstand large magnetic eld from

a certain direction, such as Ising superconductors.

VII. CONCLUSION

We have derived an expression for the spin current in

SC/AFI bilayers undergoing spin pumping, valid for both

compensated and uncompensated interfaces and taking into

consideration both the regular scattering channel and the

Umklapp scattering channel. We found that for temperature
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T well below the critical temperature Tc, the spin current is

strongly suppressed as long as the precession frequency of the

applied magnetic eld is less than 2(T ). This is because the

energy gap in the superconductor inhibits spin-ip scatterings

below the gap and there are few quasiparticles present that

can be scattered to higher energies. However, at temperatures

close to Tc there are quasiparticles present and because of their

large density of states close to the gap, the spin current can

be more than twice as large as for NM/AFI bilayers when

the precession frequency is signicantly less than the gap.

The spin-current contribution from the Umklapp channel is

typically much smaller than the contribution from the regular

scattering channel, but it can be signicant if the Fermi surface

is large, the easy axis anisotropy is small, and the interface is

compensated.

The relevant precession frequencies where the spin cur-

rent in SC/AFI is enhanced compared to NM/AFI is much

lower than the typical resonance frequencies of antiferromag-

nets, which makes the detection of this effect experimentally

challenging. A possible solution lies in the shifting of the

resonance frequency by a static magnetic eld.
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APPENDIX A: AFI GREEN’S FUNCTIONS

In this section we calculate the correction to the magnon

Green’s functions due to the precessing external magnetic

eld. The Hamiltonian for the antiferromagnetic insulator is

given by Eq. (3), and we treat

V :=


2NAS(u0 + v0)γ [h
−(α0 + β

†
0 )+ h+(α†

0 + β0)] (A1)

as a perturbation. In order to calculateGR
ν andG

<
ν , where ν ∈ {α,β†}, we will rst calculate the contour-ordered Green’s function.

This, in turn, is done by adding an innitesimal imaginary part to the otherwise real time coordinates and integrating over the

complex Keldysh contour.

To second order in V , the contour-ordered Green’s function is

Gν (τ1, τ2, k) = −iTcνk(τ1)ν
†
k

(τ2)e
−i

∫

C
dτV (τ )0

= −iTcνk(τ1)ν
†
k

(τ2)0 −
〈

Tc



C

dτν
k

(τ1)ν
†
k

(τ2)V (τ )

〉

0

+ i

〈

Tc



C

dτ dτν
k

(τ1)ν
†
k

(τ2)V (τ )V (τ )

〉

0

+ O(V 3),

(A2)

where Tc means ordering along the Keldysh contour C and the subscript 0 means that the expectation values are evaluated in

the absence of V . The rst-order term is odd in magnon operators and is therefore zero. Inserting Eq. (A1), the correction to the

equilibrium Green’s function is

Gν (t1, t2, k) := Gν (t1, t2, k)− G0
ν (t1, t2, k) = iλ2

〈

Tc



C

dτ dτν
k

(t1)ν
†
0 (τ )h

+(τ )h−(τ )ν0(τ
)ν†

k

(t2)

〉

0

, (A3)

where

λ =


2NAS(u0 + v0)γ . (A4)

We can use Wick’s theorem to evaluate the rewrite as
〈

Tc



C

dτ dτν
k

(t1)ν
†
0 (τ )h

+(τ )h−(τ )ν0(τ
)ν†

k

(t2)

〉

0

=



C

dτ dτh+(τ )h−(τ )[Tcνk(t1)ν
†
0 (τ )0Tcν0(τ

)ν†
k

(t2)0

+ Tcνk(t1)ν
†
k

(t2)0Tcν0(τ
)ν†0 (τ )0]. (A5)

The second term is zero, which we show in the following. First, dene

(τ1, τ2) = h+(t1)h
−(t2) = Tch

+(τ1)h
−(τ2). (A6)

Then,


C

dτ dτh+(τ )h−(τ )Tcνk(τ1)ν
†
k

(τ2)0Tcν0(τ
)ν†0 (τ )0 = −G0

ν (τ1, τ2, k)



C

dτ


 • G0
ν



k=0
(τ, τ )

= −G0
ν (τ1, τ2, k)

 ∞

−∞
dt +

 −∞

∞
dt





 • G0
ν



k=0
(t, t ) = 0, (A7)

where it was used that C goes from −∞− iδ to ∞− iδ and then from ∞+ iδ to −∞+ iδ with δ ∈ R being an innitesimal.

The bullet product is

(A • B)(τ1, τ2) =



C

dτA(τ1, τ )B(τ, τ2). (A8)
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Hence, we are left with

Gν (τ1, τ2, k) = −iδ
k,0λ

2


G0
ν • • G0

ν



(τ1, τ2). (A9)

To get the real-time Green’s functions we can use the Langreth rules. If

C(τ1, τ2) = (A • B)(τ1, τ2), (A10a)

D(τ1, τ2) = (A • B •C)(τ1, τ2), (A10b)

where A and B are contour-ordered functions, then the corresponding advanced, retarded, and lesser Green’s functions satisfy

[30]

C< = AR ◦ B< + A< ◦ BA, (A11a)

CR/A = AR/A ◦ BR/A, (A11b)

D< = AR ◦ BR ◦C< + AR ◦ B< ◦CA + A< ◦ BA ◦CA, (A11c)

DR/A = AR/A ◦ BR/A ◦CR/A, (A11d)

where the circle product is

(A ◦ B)(t1, t2) =
 ∞

−∞
dtA(t1, t )B(t, t2). (A12)

Using Eq. (A11c) as well as < =  and R = A = 0 we see that GR/A
ν = 0 and

G<
ν (t1, t2, k) = −iδ

k,0λ
2


GR
ν ◦ ◦ GA

ν



(t1, t2). (A13)

Next, if we let hx(t ) = h0 cos(t ) and hy(t ) = −h0 sin(t ) we get h±(t ) = h0 exp(∓it ), so

(t1, t2) = h20e
−i(t1−t2 ). (A14)

The circle products in Eq. (A13) reduce to normal convolutions because G0
ν and  only depend on the relative time. Thus,

they further reduce to ordinary products in energy space. The Fourier transform of  is

(ε) =

 ∞

−∞
d (t1 − t2)(t1, t2)e

iε(t1−t2 ) = 2πh20δ(ε −). (A15)

We also have [30]

GA
ν (ε, k) =



GR
ν (ε, k)

∗
, (A16)

so, to second order in h,

G<
ν (ε, k) = −2iπh20λ

2
∣

∣GR
ν (ε, k)

∣

∣

2
δ
k,0δ(ε −). (A17)

Inserting this into the denition of the distribution function and using Eq. (16) nally gives us Eq. (17).

APPENDIX B: BCS DYNAMIC SPIN SUSCEPTIBILITY

To calculate ImGR
s+
(ε, k) we will use the imaginary time Green’s function [31],

Ḡs+ (τ1, τ2, k) = −Tτ s
+
−k

(τ1)s
−
k

(τ2), (B1)

where Tτ means time ordering in τ , together with the connection through analytical continuation,

GR
s+ (ε, k) = Ḡs+ (ε + iηSC, k), (B2)

where

Ḡs+ (iωn, k) =

 β

0

d (τ1 − τ2)Ḡs+ (τ1, τ2, k)e
iωn(τ1−τ2 ) (B3)

and

ωn =
2nπ

β
(B4)

are bosonic Matsubara frequencies. The inverse temperature is β = 1/T .

We will also make use of the Nambu spinors,

φ
†
k

= (c†
k,↑ c−k,↓). (B5)
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With these spinors we can write

s−
k

=


q

φ−q,2φq+k,1, s+−k

=


q

φ
†
q+k,1

φ
†
−q,2. (B6)

Thus,

Ḡs+ (τ1, τ2, k) = −


qq



Tτ φ
†
q+k,1

(τ1)φ
†
−q,2(τ1)φ−q

,2(τ2)φq

+k,1(τ2)

=


qq



(Tτ φ
†
q+k,1

(τ1)φ−q

,2(τ2)Tτ φ
†
−q,2(τ1)φq

+k,1(τ2) − Tτ φ
†
q+k,1

(τ1)φq

+k,1(τ2)Tτ φ
†
−q,2(τ1)φ−q

,2(τ2))

=


q

[G1,2(τ2, τ1, q+ k)G2,1(τ2, τ1,−q)− G1,1(τ2, τ1, q+ k)G2,2(τ2, τ1,−q)], (B7)

where

G(τ1, τ2, k) = −Tτ φk

(τ1)φ
†
k

(τ2) =
1

β



n

1

(iνn)2 − ξ 2
k

− ||2



iνn + ξ
k

−

−∗ iνn − ξ
k



e−iνn (τ1−τ2 )
(B8)

is the BCS single-particle Green’s function. Here, νn = (2n+ 1)π/β are fermionic Matsubara frequencies. Inserting this into

Eq. (B3), we get

Ḡs+ (iωn, k) = T


q,m

[G1,2(−iνm − iωn, q+ k)G2,1(iνm,−q)− G1,1(−iνm − iωn, q+ k)G2,2(iνm,−q)]

= T


q,m

[G1,2(iνm + iωn, q+ k)G2,1(iνm,−q)+ G2,2(iνm + iωn, q+ k)G2,2(iνm,−q)]

=
1

2β



q,m

Tr[G(iνm + iωn, q+ k)G(iνm, q)]. (B9)

In the last equality we have used G(iνm,−q) = G(iνm, q), G1,2(iνn, k)G2,1(iνm, q) = G2,1(iνn, k)G1,2(iνm, q) and



q,m

G1,1(iνm + iωn, q+ k)G1,1(iνm, q) =


q

,k

G1,1(−iνk, q
)G1,1(−iνk − iωn, q

 + k)

=


q

,k

G2,2(iνk, q
)G2,2(iνk + iωn, q

 + k). (B10)

In the rst equality, we introduced q

 = −q− k and iνk = −iνm − iωn, and in the last equality we used G2,2(iνk, q
) =

−G1,1(−iνk, q
).

Next, we can use the spectral form,

G(iνm, q) =

 ∞

−∞

dω

(−π )

ImG(ω + iηSC, q)

iνm − ω
, (B11)

and the Matsubara sum identity,

1

β



m

1

iνm + iωn − ω̃
×

1

iνm − ω
=

nF (ω,T )− nF (ω̃,T )

iωn − (ω̃ − ω)
, (B12)

where we have used that νm are fermionic Matsubara frequencies, giving rise to the Fermi-Dirac distribution function nF . We

have also used that nF (ω − iωn) = nF (ω) since ωn is a bosonic Matsubara frequency. Additionally, Eq. (B8) gives, assuming 

real,

ImG(ω + iηSC, k) = −
π

2

√

ξ 2
k

+ ||2



ω + ξ
k

−

− ω − ξ
k





δ


ω −
√

ξ 2
k

+ ||2


− δ


ω +

√

ξ 2
k

+ ||2


, (B13)

in the limit ηSC → 0+. Hence, if we dene E
k

:=

√

ξ 2
k

+ ||2,

lim
ηSC→0+

Tr[ImG(ω̃ + iηSC, q+ k)ImG(ω + iηSC, q)] = π2ωω̃ + ξ ξ̃ +2

2EẼ
[δ(ω − E )− δ(ω + E )][δ(ω̃ − Ẽ )− δ(ω̃ + Ẽ )],

(B14)
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where ξ = ξ
q

, ξ̃ = ξ
q+k

, E = E
q

, and Ẽ = E
q+k

. Inserting this into Eq. (B9) gives

Ḡs+ (iωn, k) = −
1

4



q



ω=±E



ω̃=±Ẽ

ωω̃ + ξ ξ̃ +2

ωω̃

nF (ω̃,TSC)− nF (ω,TSC)

iωn − (ω̃ − ω)
. (B15)

From Eq. (B2) we then nally have Eq. (18).

[1] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and

Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

[2] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).

[3] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

[4] J. Linder and J. Robinson, Nat. Phys. 11, 307 (2015).

[5] M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).

[6] J. Linder and A. V. Balatsky, Rev. Mod. Phys. 91, 045005

(2019).

[7] S. A. Kivelson and D. S. Rokhsar, Phys. Rev. B 41, 11693

(1990).

[8] H. L. Zhao and S. Hersheld, Phys. Rev. B 52, 3632 (1995).

[9] C. H. L. Quay, D. Chevallier, C. Bena, andM. Aprili, Nat. Phys.

9, 84 (2013).

[10] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 88, 117601 (2002).

[11] K.-R. Jeon, C. Ciccarelli, H. Kurebayashi, J. Wunderlich, L. F.

Cohen, S. Komori, J. W. A. Robinson, and M. G. Blamire,

Phys. Rev. Applied 10, 014029 (2018).

[12] K.-R. Jeon, C. Ciccarelli, A. J. Ferguson, H. Kurebayashi, L. F.

Cohen, X. Montiel, M. Eschrig, J. W. A. Robinson, and M. G.

Blamire, Nature Mater. 17, 499 (2018).

[13] Y. Yao, Q. Song, Y. Takamura, J. P. Cascales, W. Yuan, Y. Ma,

Y. Yun, X. C. Xie, J. S. Moodera, and W. Han, Phys. Rev. B 97,

224414 (2018).

[14] M. Inoue, M. Ichioka, and H. Adachi, Phys. Rev. B 96, 024414

(2017).

[15] T. Kato, Y. Ohnuma, M. Matsuo, J. Rech, T. Jonckheere, and

T. Martin, Phys. Rev. B 99, 144411 (2019).

[16] M. A. Silaev, Phys. Rev. B 102, 144521 (2020).

[17] M. A. Silaev, Phys. Rev. B 102, 180502(R) (2020).

[18] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113,

057601 (2014).

[19] A. Kamra and W. Belzig, Phys. Rev. Lett. 119, 197201 (2017).

[20] P. Vaidya, S. A. Morley, J. van Tol, Y. Liu, R. Cheng, A. Brataas,

D. Lederman, and E. del Barco, Science 368, 160 (2020).

[21] S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak,

Phys. Rev. B 90, 094408 (2014).

[22] E. L. Fjærbu, N. Rohling, and A. Brataas, Phys. Rev. B 95,

144408 (2017).

[23] E. L. Fjærbu, N. Rohling, and A. Brataas, Phys. Rev. B 100,

125432 (2019).

[24] K. Oyanagi, S. Takahashi, L. J. Cornelissen, J. Shan, S. Daimon,

T. Kikkawa, G. E. Bauer, B. J. van Wees, and E. Saitoh,

Nat. Commun. 10, 1 (2019).

[25] T. Kato, Y. Ohnuma, and M. Matsuo, Phys. Rev. B 102, 094437

(2020).

[26] M. Umeda, Y. Shiomi, T. Kikkawa, T. Niizeki, J. Lustikova, S.

Takahashi, and E. Saitoh, Appl. Phys. Lett. 112, 232601 (2018).

[27] M. Hagiwara, K. Katsumata, I. Yamada, and H. Suzuki,

J. Phys.: Condens. Matter 8, 7349 (1996).

[28] F. M. Johnson and A. H. Nethercot, Phys. Rev. 114, 705 (1959).

[29] R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961).

[30] J. Rammer, Quantum Field Theory of Non-equilibrium States

(Cambridge University Press, Cambridge, 2007), Vol. 22.

[31] H. Bruus and K. Flensberg, Many-body Quantum Theory in

Condensed Matter Physics: An Introduction (Oxford University

Press, Oxford, 2004).

134508-10



Paper VII

333



Reference
Eirik Holm Fyhn and Jacob Linder,
Spin-orbit pumping.
Physical Review B 105, L020409 (2022)
doi: 10.1103/physrevb.105.l020409

Contributions
EHF performed the analytical calculations and the numerical
simulations, with support from JL. EHF drafted the manuscript.
JL formulated the initial idea. EHF and JL contributed to the dis-
cussions of the physics, and the revision of the final manuscript.
Specifically, in addition to participating in the discussion of the
physics and the revision of the final manuscript, EHF wrote the
initial draft, performed all the calculations, developed the code,
performed the numerical simulations and produced all figures
presented in the paper.

334

https://dx.doi.org/10.1103/PhysRevB.105.L020409


PHYSICAL REVIEW B 105, L020409 (2022)

Letter

Spin-orbit pumping

Eirik Holm Fyhn and Jacob Linder

Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 7 July 2021; revised 13 January 2022; accepted 15 January 2022; published 31 January 2022)

We study theoretically the effect of a rotating electric eld on a diffusive nanowire and nd an effect that is

analogous to spin pumping, which refers to the generation of spin through a rotating magnetic eld. The electron

spin couples to the electric eld because the particle motion induces an effective magnetic eld in its rest frame.

In a diffusive system the velocity of the particle, and therefore also its effective magnetic eld, rapidly and

randomly changes direction. Nevertheless, we demonstrate analytically and via a physical argument why the

combination of the two effects described above produces a nite magnetization along the axis of rotation. This

manifests as a measurable spin-voltage in the range of tens of microvolts.

DOI: 10.1103/PhysRevB.105.L020409

Introduction. As further miniaturization of transistors be-

comes ever more difcult [1], there is a pressing need for new

technologies to aid or replace silicon-based information tech-

nology. Spintronics is a candidate which has as its underlying

idea to use the electron spin as an information carrier [2,3].

This idea is promising because the spin degrees of freedom in

solid-state systems can potentially be manipulated in a highly

energy-efcient manner. This is important since the growing

need for more computing power has signicantly increased

the energy consumption of information and communication

technologies [4,5]. As a result, the study of spin transport and

spin manipulation in low-dimensional and nanoscale devices

is a growing eld of research.

One important aspect of spin manipulation is the genera-

tion of spin, which can be done by so-called spin pumping

[6,7]. This refers to the generation of spin through a pre-

cessing magnetic eld. After its discovery in ferromagnets

[6], spin pumping was studied for a wide range of systems,

such as antiferromagnets [8–10], spin-glass systems [11], and

superconducting hybrid structures [12–14]. Since the electron

spin gives rise to a magnetic dipole moment, it is conceptually

simplest to manipulate through magnetic elds. However, spin

also couples to electric elds since, from the perspective of

a moving electron, an electric eld gives rise to an effective

magnetic eld. This interaction between spin and electric

elds is known as spin-orbit coupling (SOC) and is the reason

why electric elds play a central role in spintronics research

[15,16]. In this Letter we investigate whether an effect analo-

gous to spin pumping can be obtained from a time-dependent

electric eld through SOC.

Materials with SOC are most famously able to produce

spin polarization through the spin Hall effect [17]. This refers

to how spin accumulates when a charge current is passed

through because the trajectories of electrons with opposite

spins are bent in opposite directions. This can produce a mea-

surable spin polarization [18–20], but unlike spin pumping it

requires an applied electric current. The spin Hall effect is

also widely used to detect the spin-currents produced by spin

pumping [10,17,21].

The prospect of spin manipulation from external electric

elds is especially interesting in the context of spin-based

quantum bits. This is because magnetic elds are difcult

to localize [22–24] compared to their electric counter-

parts [25,26], something which makes individual control of

spin-based quantum bits more feasible with electric elds.

Time-dependent SOC has, therefore, mostly been considered

in quantum dots and quantum wells. In such structures, os-

cillating electric elds were studied experimentally [25,27]

and theoretically [28–31] with a xed direction in space.

However, a harmonically oscillating electric eld with xed

direction does not by itself break time reversal symmetry,

which is necessary to produce magnetization. These systems,

therefore, require an additional static magnetic eld, but an

entirely electric control of the spin motion can be obtained

by a rotating electric eld. This was pointed out by Serebren-

nikov [32] who considered an electron in a spherical potential

under the inuence of a rotating electric eld. More recently,

Entin-Wohlman et al. [33] showed that when a quantum dot

subjected to a rotating electric eld is placed in a junction

with normal metals, the resulting time-dependent tunneling

can induce a nonzero magnetization in the leads.

The prospect of spin-generation from purely electric elds

from local gate electrodes is attractive also from a spintronics

perspective since such devices could be placed in close prox-

imity to other nanoscale devices without them being affected

by undesirable stray elds. For this reason, and motivated

by the success of the electrical control of spin dynamics in

quantum dots, we present here a study of how magnetization

can be induced in diffusive nanowires by purely electrical

means. We consider an insulated wire subjected to a rotating

electric eld, as depicted in Fig. 1.

In diffusive systems the physical picture is complicated by

the fact that the particles rapidly change momentum direction.

This means that the effective magnetic elds also change

direction frequently, as viewed from the rest frame of the

particles. Nevertheless, we nd using quasiclassical Keldysh

theory that a nite, time-independent magnetization is in-

duced along the axis of rotation. After presenting our results,
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FIG. 1. Illustration of an insulated nanowire of length L sub-

jected to an electric eld E, which rotates in the xy-plane with

angular frequency ω. The rotating eld can be experimentally imple-

mented using two pairs of gate voltage plates along the x and y axes

with AC voltages and a phase-shift between the pairs, as illustrated

in the top right part of the gure. The top right gure also illustrates

a possible method of measuring the spin accumulation through the

voltage difference across a spin-polarized interface. Additionally, the

gure illustrates the physical mechanism behind the spin pumping

effect induced by the electric eld. The effective magnetic eld Beff

in the rest frame of the electron is perpendicular to its motion in

the laboratory frame and changes with each scattering event. Despite

this, the projection of Beff onto the plane (xy) perpendicular to the

nanowire length (z) rotates in the same direction after any scattering

event, as indicated by the blue ellipses. This causes the spin pumping

effect.

we explain the physical origin of this effect. Hence, pumping

spin by rotating electric elds, which we here refer to as spin-

orbit pumping, or SO pumping, can be used as an alternative

to conventional spin pumping. Systems with strong atomic

SOC would be advantageous to realize spin-orbit pumping

experimentally. The SOC in such a system can, depending

on the lattice symmetry, have additional static terms. These

terms will not induce spin-orbit pumping by themselves, but

they can nevertheless affect the results. We do not include such

terms here, but note that it would be interesting for future work

to study how the inclusion of other types of SOC can affect

spin-orbit pumping.

Equations. Under the assumption that the Fermi energy is

the dominant energy scale and the mean free path is short, the

system illustrated in Fig. 1 can be described by the quasiclas-

sical Keldysh theory [34–36]. Moreover, if the mean free path

is much shorter than the system length and the lengthscale

associated with SOC, 1/mα, and the elastic scattering rate

is much shorter than the angular frequency of the rotating

electric eld, the system can be classied as diffusive. In this

case the quasiclassical Green’s function ǧs solves the Usadel

equation [35,37]

∂ ǧs

∂T
+ D∇̃ ◦ (ǧs ◦ ∇̃ ◦ ǧs)+ i[σ̌inel, ǧs]◦ = 0, (1)

Here T is time, D is the diffusion constant, σ̌inel is the self-

energy matrix from inelastic relaxation processes [38], and

∇̃ is the covariant derivative which includes the spin-orbit

coupling. Moreover, the circle-product is

a ◦ b = exp
 i

2
∂aε ∂

b
T −

i

2
∂aT ∂

b
ε



ab, (2)

where ε is energy. The time-varying electric eld will gen-

erally also induce a magnetic eld, but we nd that this is

negligible compared to the effective magnetic eld felt by the

moving particles due to the electric eld.

The circle-product makes the Usadel equation difcult to

solve in time-dependent situations, but in this case it can be

simplied by a Fourier transform in energy [39]. From this

we can nd an equation for the magnetization,

m =
gμBN0

16



∞

−∞

dεTr(σǧKs ), (3)

where the superscript K denotes the Keldysh part, σ is the

vector of Pauli matrices, g is the Landé g-factor, N0 is the

density of states at the Fermi energy, and μB is the Bohr

magneton. We nd that m solves

∂m

∂T
− D

∂2m

∂z2
+ 2δm = 4DA×

∂m

∂z
+ 4DA× (A×m)

− gμBN0DA×
∂A

∂T
, (4)

as shown in the Supplementary Material [40,41]. Here, A

comes from the spin-orbit coupling and is given by

A = mαeE × ez, (5)

where α is the Rashba coupling, m is the effective mass, ez
is the unit vector in the z-direction, and eE is the unit vector

pointing in the direction of the electric eld, which is assumed

to be uniform in space. Finally, δ is an effective parameter

describing the spin relaxation rate from sources other than

spin-orbit coupling, such as inelastic phonon scattering. The

spin relaxation rate described by δ is assumed independent of

spin direction. Moreover, Eq. (5) already contains a relaxation

term that depends on the spin direction due to A, which we

comment on below.

The left-hand side of Eq. (4) describes diffusion and the

spin relaxation in the absence of SOC, while the right-hand

side is the effect of the SOC. The rst term on the right

side describes spin precession of the diffusion current and

the second term is spin relaxation due to the Dyakonov-Perel

mechanism [42]. This relaxation comes from the randomiza-

tion of spin precession angles caused by elastic scattering

at nonmagnetic impurities. The third and nal term is the

source term coming from the time dependence of A. It is

this term which makes SOC capable of producing spin in

diffusive systems. We can from this term immediately see

that a time-varying electric eld with xed direction will not

generate spin since A× ∂A/∂T = 0 in that case.
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FIG. 2. Spatial distribution of the components of the magnetization mr for various system parameters. mrx and mry are the x- and y-

components of the magnetization as seen from the rotating frame of reference, while mz is the z-component of the magnetization and therefore

the same in the rotating frame and the laboratory frame. The normalization constant is c = 1

2
gμBN0. Panel (a) has Rashba coupling α =

3× 10−12 eVm, length L = 1μm, frequency f = 32GHz, and inelastic relaxation rate δ = 0.1meV. The remaining panels have the same

parameters as (a), except for the quantity labeled at the corresponding arrow. Thus, the four side panels illustrate the effect of varying ω, L, δ,

and α, respectively. (b) has f = 3.2GHz, (c) has δ = 0.01meV, (d) has L = 2μm, and (e) has α = 9× 10−12 eVm.

Equation (4) must be accompanied by boundary condi-

tions. For simplicity we choose insulating boundaries, which

means that the particle ux across the interfaces at z = 0 and

z = L must be zero. In the diffusive limit of the quasiclassical

Green’s function formalism, the relevant boundary condition

is known as the Kupriyanov-Lukichev boundary condition

[43]. From this we nd that

∂m

∂z
+ 2A×m−

1

2
gμBN0

∂A

∂T
= 0 (6)

at z = 0 and z = L, as shown in the Supplementary Material

[40,44,45].

Equation (4) can be solved for times long after the rotating

electric eld has been turned on by looking for a stationary

solution in the rotating reference frame. This is because all

solutions converge to this unique stationary solution, as we

prove in the Supplementary Material [40]. In the rotating

reference frame, the electric eld is time-independent and

the magnetization along the z-direction is the same as in the

laboratory frame. Converting the equations into the rotating

frame can be done by inserting the rotation matrix R(ωT ),

which satises

A =

⎛

⎜

⎝

cos(ωT ) sin(ωT ) 0

− sin(ωT ) cos(ωT ) 0

0 0 1

⎞

⎟

⎠
A0 = R(ωT )A0, (7)

whereA0 is constant in time.We chooseA0 = |A0|ex. To write

Eq. (4) in the rotating system, we writem = R(ωT )mr and use

the relations [R(θ )u]× [R(θ )v] = R(θ )u× v and

∂

∂T
R(ωT )u = R(ωT )

∂u

∂T
+ R(ωT )[u× ωez]. (8)

The equation for the magnetization in the rotating frame is

therefore

D
∂2mr

∂z2
− 2δmr +×mr + 4DA0 ×

∂mr

∂z

+ 4DA0 ×



A0 ×



mr −
gμBN0

4




= 0, (9)

where we use that mr is independent of time and  = ωez.

The boundary condition in the rotating frame is

∂mr

∂z
+ 2A0 ×



mr −
gμBN0

4




= 0, (10)

at z = 0 and z = L.

The magnetization is measurable through the so-called

spin-voltage

μz =
mz

1
2
gμBN0|e|

. (11)

If we connect the nanowire to a detector electrode through an

interface with polarization P along the z-direction, as illus-

trated in Fig. 1, then Pμz is the voltage difference between

the nanowire and ferromagnet in the absence of electric cur-

rent [46–51]. This is shown in the Supplementary Material

[40,52–54].

Results. We solve Eqs. (9) and (10) numerically by using

the nite element method. Figure 2 shows the resulting spatial

distribution of mr for various system parameters and Fig. 3

shows the spatially averaged spin-voltage as a function of

the Rashba coupling parameter and frequency, f = ω/2π .
We use m = 0.1me, where me is the electron mass and D =

102 cm2 s−1. Note that the z-component of the magnetization

is equal in the rotating frame and laboratory-frame, so mz in

Fig. 2 is static and equal in both frames.

Figure 2 shows that the magnetization has nonzero compo-

nents in the x- and y-directions that are antisymmetric around

the middle of the wire. In the rotating frame, magnetization
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FIG. 3. Spatially averaged spin-voltage as a function of Rashba

coupling parameter α and frequency f . The spin relaxation rate is set

to δ = 0.1meV and the length of the wire is L = 1μm.

along the y-direction is induced at the boundaries, as can

be seen from Eq. (10). This magnetization is rotated around

the z-axis from the term ×mr in Eq. (9), and it is rotated

into the z-component because of 4DA0 × ∂mr/∂z. The rst

comes from the effective magnetic eld present in the rotating

frame and the second is the spin precession of the diffusion

current from SOC. We can see the spin rotation effect of 

by comparing Figs. 2(a) and 2(b). From this we see that when

f is decreased from 32GHz to 3.2GHz, mz and mry are also

scaled by a factor of 1/10. This is reasonable since the source
term in the magnetization equation is proportional to f . The

x-component mrx, on the other hand, is reduced much more

in Fig. 2(b), which is expected since the rotation from mry,

coming from the term ×mr , is much less.

Comparing Fig. 2(a) to Figs. 2(c) and 2(e) shows the ef-

fect of decreasing the inelastic relaxation and increasing the

Rashba coupling, respectively. In both cases the ratio between

the spin generation from SOC and the inelastic spin relaxation

is increased. As a result, the magnetization along the z-axis

is increased. From Eq. (10) we see |∂mry/∂z| gets smaller

at the boundaries when mz is larger. This is reected in the

smaller y-component in Figs. 2(c) and 2(e). Finally, unlike

Fig. 2(c), Fig. 2(e) has more rapid oscillations in mz and mry.

This is expected since increasing α not only increases the spin

generation, but also the spin precession associated with SOC.

From Figs. 2 and 3 we see that the rotating electric eld

can produce a spin-voltage of tens of microvolt with the pa-

rameters used here. This is our main result and shows that

spin-orbit pumping is be capable of producing a measur-

able magnetization. We propose that the SO pumping effect

can be understood in terms of normal spin pumping from

the effective magnetic eld in the reference frames of the

moving charge carriers. Consider a particle with velocity

v = (vx, vy, vz ) moving in the effective electric eld E =

E [cos(ωT ), sin(ωT ), 0]. The effective magnetic eld is ob-

tained via a Lorentz transformation

Beff =

⎛

⎜

⎝

vz sin(ωT )

−vz cos(ωT )

vy cos(ωT )− vx sin(ωT )

⎞

⎟

⎠
E . (12)

This effective eld rotates in an elliptical way around an axis.

Although the direction of this axis changes with the particle

velocity, its component along the z-axis is always of the same

sign. This is illustrated in Fig. 1 and can be most easily

seen by noting that the projection of Beff onto the xy-plane

always rotates counterclockwise when ω > 0 and clockwise

when ω < 0. Since it is known from normal spin pumping

that a rotating magnetic eld induces a magnetization along

the axis of rotation, this explains why a rotating electric eld

can generate a magnetization in the z-direction. Summarized,

the physical picture of SO pumping in diffusive systems is

as follows. With each elastic scattering, the spin precession

axis jumps to a new direction. This randomizes the spin over

time and gives rise to a spin relaxation. This is just the nor-

mal Dyakonov-Perel mechanism. However, since the electric

eld rotates, the spin precession axis also rotates between

scatterings. Since this rotation is always in the same direction

around the z-axis it gives rise to a net spin-accumulation polar-

ized in the z-direction. The equivalence in the quasiclassical

theory between SOC and the effective magnetic eld Beff is

shown explicitly in the Supplementary Material [40].

One difference from normal spin pumping is that a rotating

electric eld both generates and dissipates spin because of the

Dyakonov-Perel mechanism. Thus, by increasing the electric

eld strength, both spin generation and spin relaxation is

increased. When Dyakonov-Perel relaxation is the dominant

spin relaxation mechanism, we can see from Eqs. (9) and

(10) that the spin generation and spin relaxation mechanisms

equalize when mr = gμBN0/4. This can be seen from the

fact that mr = gμBN0/4 solves Eqs. (9) and (10) when

δ = 0. Thus, SO pumping in diffusive systems can at most

produce as spin-voltage of μz = ω/2|e| ≈ 2× ( f /GHz)μV.
However, in the presence of other spin relaxation mechanisms,

the observed spin-voltage will be less, as is the case in Figs. 2

and 3.

Based on the physical picture of SO pumping as the cu-

mulative effect of normal spin pumping from the rotating

effective magnetic eld observed between each scattering,

it is clear that scattering processes work to reduce the SO

pumping effect. It would therefore be of interest to study

rotating electric elds in clean, ballistic systems to see if the

SO pumping effect can be enhanced in such systems. We leave

this for future work.

Conclusion. We found using quasiclassical Keldysh theory

that a rotating electric eld can induce a magnetization and a

measurable spin-voltage of tens of μV. This spin-orbit pump-

ing can be understood as a spin pumping from the effective

magnetic eld in the rest frame of the moving particles. This is

because, despite the jumps occurring at each scattering event,

the projection of the effective magnetic eld onto the plane

in which the electric eld is applied always rotates in the

same direction. Obtaining a spin-voltage above 10 μV with

the material parameters used here requiring a Rashba coupling

of 10−12 eVm. Rashba coupling strengths of this magnitude

were obtained experimentally at temperatures below 15K in

nanowires with applied electric elds [26,55]. One reason for

this requirement is that spin relaxation, both from inelastic

relaxation and from SOC through Dyakonov-Perel relaxation,

inhibits spin-orbit pumping. Thus, it would be of interest to

study rotating electric elds in clean, ballistic nanowires to

see whether the spin-orbit pumping effect is stronger in such

systems. Nevertheless, the ndings presented here shows that
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spin-orbit pumping should be capable of producing an experi-

mentally observable magnetization even in diffusive systems.
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I. DERIVATION OF MAGNETIZATION EQUATION

When a charged particle with mass 푚 moves with momentum 풑 in an electric eld 푬 = 퐸풆퐸 , it will feel an eective magnetic

eld, 푩e = 푬 × 풑/푚 (in natural units), and therefore also an eective Zeeman energy

HSOC = 훼 (흈 × 풑) · 풆퐸 , (1)

where 흈 is the vector of Pauli-matrices, such that 흈/2 is the spin operator, and 훼 = 푔휇퐵퐸/2푚 is a parameter giving the strength

of the spin-orbit coupling (SOC). Here, 푔 is the Landé 푔-factor and 휇퐵 is the Bohr magneton. In realistic system the SOC can

be more complicated and depend on the crystal structure and atomic potential. Nevertheless, the spin-orbit eect can often be

approximated by an Hamiltonian on the form of Eq. (1) where 풆퐸 is the unit vector in the direction of the external electric eld

and 훼 is an eective parameter called the Rashba coupling [1]. Here we use this Rashba form for the spin-orbit coupling and keep

훼 as a free parameter.

The system under consideration can be treated quasiclassically if the material has a well-dened Fermi surface and the Fermi

wavelength is much shorter than all other relevant length-scales, such as the mean free path, system length and the length scale

associated with SOC, 1/푚훼. In this case, the system can be described by quasiclassical Green’s functions, which can be collected

in a 4 × 4 matrix as

푔̌ =


푔푅 푔퐾

0 푔퐴


, (2)

where 푔푅, 푔퐴 and 푔퐾 are the retarded, advanced and Keldysh quasiclassical Green’s functions, respectively. These are normalized

such that 푔̌ ◦ 푔̌ = 1 and solve the Eilenberger equation [2, 3],

휕푔̌

휕푇
+ 풗퐹 · ∇̃ ◦ 푔̌ − 푖

[

휎̌inel −
푖

2휏
푔̌푠 , 푔̌

]

◦
= 0, (3)

where 풗퐹 is the Fermi velocity, 푇 is time, 휏 is the elastic impurity scattering time, 푔̌푠 is the isotropic part of the quasiclassical

Green’s function and 휎̌inel is the self-energy matrix from inelastic relaxation processes. Moreover, the circle-product is

푎 ◦ 푏 = exp


푖

2
휕푎휀 휕

푏
푇 − 푖

2
휕푎푇 휕

푏
휀


푎푏, (4)

where 휀 is energy and the covariant derivative is

∇̃ ◦ 푔̌ = ∇푔̌ − 푖 (풂 ◦ 푔̌ − 푔̌ ◦ 풂) , (5)

where 풂 depend on the Rashba coupling through

풂 = 푚훼흈 × 풆퐸 . (6)

We include inelastic relaxation through the relaxation time approximation [4]. In this approximation the relaxation rate is given

by 훿 and we assume that it is isotropic in spin-space. In this case, 휎푅
inel

= −휎퐴
inel

= 푖훿 and 휎퐾
inel

= 2푖훿ℎeq, where ℎeq is the

equilibrium distribution function which the system relaxes towards. At inverse temperature 훽 and electrochemical potential 푉 , this

is ℎeq (휀) = tanh[훽(휀 − 푒푉)/2], where 푒 is the electron charge. Generally, SOC also gives rise to a term in the self-energy, which

is 휎푅
SOC

= 휎퐴
SOC

= −푚훼2. However, since we assume that 훼 is constant in time, 휎̌SOC ◦ 푔̌ = 푔̌ ◦ 휎̌SOC, and 휎̌SOC disappears from

Eq. (3).

We can see how the eective magnetic eld discussed in the main text enters the quasiclassical framework by noting that if

푩e = (2/푔휇퐵)훼푚풆퐸 × 풗퐹 , we can rewrite Eq. (3) as

휕푔̌

휕푇
+ 풗퐹 · ∇푔̌ − 푖

[
1

2
푔휇퐵푩e · 흈 − 푖

2휏
푔̌푠 + 휎̌inel, 푔̌

]

◦
= 0, (7)
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where 흈 is the vector of Pauli matrices. The term 1
2
푔휇퐵푩e · 흈 is exactly how the Zeeman energy from a magnetic eld 푩e

would enter as a self-energy the Eilenberger equation. In other words, the spin-orbit coupling present in the covariant derivative is

functionally equivalent to an external magnetic eld 푩e. This is in accordance with the physical picture of spin-orbit pumping as

an eective spin-pumping from 푩e, as discussed in the main text.

The isotropic part of 푔̌ dominates when the impurity scattering time 휏 is small, such that the elastic impurity scattering term

−푖푔̌푠/2휏 is large. In particular, if the scattering time 휏 is much smaller than the inelastic scattering time, 1/훿, and the rate at which

the Green’s function changes, which in this case is given by the frequency of the rotating electric eld, 휔, and if the corresponding

mean free path 푙mfp = 푣퐹휏 is much smaller than the system length as well as the length scale associated with SOC, 1/푚훼, then the

Eilenberger equation reduces to the Usadel equation [5, 6],

휕푔̌푠

휕푇
+ 퐷∇̃ ◦


푔̌푠 ◦ ∇̃ ◦ 푔̌푠


+ 푖[휎̌inel, 푔̌푠]◦ = 0, (8)

where 퐷 is the diusion constant. In the non-superconducting case considered here, the equations are considerably simplied by

the fact that the retarded and advanced are simply proportional to the unitary matrix. In this case we have 푔푅푠 = 퐼2, 푔
퐴
푠 = −퐼2, and

푔퐾푠 = 2ℎ, where 퐼2 is the 2 × 2 identity matrix and ℎ is the distribution function. From Eqs. (4) and (8) and the relaxation time

approximation we get that the distribution function solves

휕ℎ

휕푇
− 퐷∇̃ ◦ ∇̃ ◦ ℎ + 2훿


ℎ − ℎeq


= 0. (9)

The circle-products can be removed either by a unitary transformation [7] or a Fourier transform in energy [8]. Here we choose

the latter and use capital letters to denote Fourier transforms,

퐻 (푡,푇 , 푧) = F{ℎ}(푡,푇 , 푧) =
1

2휋

æ ∞

−∞
d휀 ℎ(휀,푇 , 푧)e−푖 휀푡 , (10)

where 푧 ∈ (0, 퐿) is the position along the wire. Next, we dene the 푧-component of 풂 to be 푎푧 = 푨 · 흈 and 퐻 = 퐻0 + 푯 · 흈. The

Fourier transform is useful because

F {[푨 · 흈, ℎ]◦} (푡,푇 , 푧) = 푨(푇 + 푡/2) · 흈퐻 (푡,푇 , 푧) − 퐻 (푡,푇 , 푧)푨(푇 − 푡/2) · 흈. (11)

We can use that for the Pauli matrices we have 휎푖휎푗 = 훿푖 푗 + 푖휀푖 푗푘휎푘 , where 휀푖 푗푘 is the Levi-Civita symbol, and dene

푨±(푇 , 푡) = 푨(푇 + 푡/2) ± 푨(푇 − 푡/2) to get

F {[푨 · 흈, ℎ]◦} = 푨− · 푯 + (푨−퐻0 + 푖푨+ × 푯) · 흈. (12)

Using this we get that

1

2
Tr

흈F


∇̃ ◦ ∇̃ ◦ ℎ


=
휕2푯

휕푧2
− 2푖푨−

휕퐻0

휕푧
+ 2푨+ ×

휕푯

휕푧
− 푨− (푨− · 푯) − 푖푨+ × 푨−퐻0 + 푨+ × (푨+ × 푯) . (13)

Thus, by Fourier transforming Eq. (9), multiplying it with 흈/2 and taking the trace, we get that

휕푯

휕푇
− 퐷

휕2푯

휕푧2
+ 2푖퐷푨−

휕퐻0

휕푧
− 2퐷푨+ ×

휕푯

휕푧
+ 퐷푨− (푨− · 푯) + 푖퐷푨+ × 푨−퐻0 − 퐷푨+ × (푨+ × 푯) + 2훿푯 = 0. (14)

In the quasiclassical framework, magnetization is given by 풎 = 1
2
푔휇퐵푁0휋 lim푡→0 Re(푯) in the absence of an exchange eld.

All we need to get an equation for 풎 is therefore to take the limit 푡 → 0 of Eq. (14). This requires some care, since 퐻0 is

asymptotic to 퐻eq as 푡 → 0, and 퐻eq = −푖/[훽 sinh(휋푡/훽)] diverges as 푡 → 0. Nevertheless, the limit in Eq. (14) is well-dened

since 퐻0 only occurs multiplied by 푨−, which goes to 0 as 푡 → 0.

First, we show that 퐻0 is asymptotic to 퐻eq. This is a consequence of the fact that the physics happens close to the Fermi-surface,

meaning that for energies far away from the Fermi-surface the states are either fully occupied (ℎ0 (휀) = −1) or entirely empty

(ℎ0 (휀) = 1). That is, |휀 |  1 =⇒ ℎ0 (휀) ≈ ℎeq (휀) ≈ 휀/|휀 |. Thus,

lim
푡→0

푖휋푡퐻0 = lim
푡→0

1

2
푖푡F{ℎ0} = lim

푡→0

1

2
F

{
휕ℎ0

휕휀

}

=
1

2

æ ∞

−∞
d휀

휕ℎ0

휕휀
= 1. (15)

Hence, 퐻0 ∼ 1/푖휋푡 as 푡 → 0. Finally, using that lim푡→0 푨+(푇 , 푡) = 2푨(푇), lim푡→0 푨− (푇 , 푡)/푡 = 휕푨(푇)/휕푇 , we get the equation

for the equation for the magnetization by taking the limit 푡 → 0 of Eq. (14) and multiplying it with 1
2
푔휇퐵푁0휋. This yields

휕풎

휕푇
− 퐷

휕2풎

휕푧2
+ 2훿풎 = 4퐷푨 ×

휕풎

휕푧
+ 4퐷푨 × (푨 × 풎) − 푔휇퐵푁0퐷푨 ×

휕푨

휕푇
, (16)

which is the same as Eq. (1) in the main text.
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II. BOUNDARY CONDITION

Quasiclassical theory is not valid across interfaces because the relevant length scale is short. Consequently, the quasiclassical

Green’s function is generally not continuous. Instead, the quasiclassical Green’s functions in neighbouring materials are connected

through boundary conditions. The boundary conditions express the so-called matrix current,

푰̌(푹, 휀,푇) =

æ

dΩ 풗퐹 푔̌(풗퐹 , 푹, 휀,푇), (17)

where the integral goes over all directions of the Fermi velocity, in terms of the propagators on both sides of the interface. Only

the Keldysh-component is nonzero in the our case. The matrix current contain in its Keldysh-component both the electrical

current and the spin-current, as well as the heat-current and so-called spin-heat-current [9, 10]. There should be no current across

insulating, spin-inactive interfaces, and so in this case

풆푛 · 푰̌
퐾
= −2퐷풆푛 · ∇̃ ◦ ℎ = 0, (18)

where 풆푛 is the unit normal vector pointing out of the interface. Here, we have used that in the diusive limit 푰̌ = −퐷

푔̌푠 ◦ ∇̃ ◦ 푔̌푠


.

More generally, one can use the Kupriyanov-Lukichev boundary condition [11],

푁0푖퐷푖풆푛 ·

푔̌푠푖 ◦ ∇̃ ◦ 푔̌푠푖

퐾
=
휁

2


푔̌푠푖 , 푔̌푠 푗

퐾
◦ , (19)

which is valid for low-transparency tunneling interfaces with no spin-active properties. Here, 푁0푖 and 퐷푖 is the density of states at

the Fermi surface and diusion constant in material 푖, respectively, 풆푛 is the unit vector orthogonal to the interface and pointing

from material 푖 to material 푗 , and 휁 is the conductance across the interface. We can rewrite Eq. (19) to

풆푛 · ∇̃ ◦ ℎ푖 =
휁

푁0푖퐷푖


ℎ 푗 − ℎ푖


. (20)

We assume that the nanowire is insulated, so we set 휁 = 0. Taking the Fourier transform, multiplying with 흈/2, taking the trace

and assuming that 풆푛 is in the 푧-direction, we get that

휕푯

휕푧
+ 푨+ × 푯 − 푖퐻0푨− = 0, (21)

where we have dropped the subscript 푖. Again multiplying by 1
2
푔휇퐵푁0휋 and taking the limit 푡 → 0 we get

휕풎

휕푧
+ 2푨 × 풎 − 1

2
푔휇퐵푁0

휕푨

휕푇
= 0, (22)

which is the boundary condition used in the main text.

III. CONVERGENCE TO THE STATIONARY SOLUTION AND ITS UNIQUENESS

In this section we show that regardless of initial condition, all solutions of Eq. (16) together with the boundary condition,

Eq. (22), converge to the solution we present in the main manuscript for times long after the electric eld has been turned on. In so

doing, we also show that this solution is unique.

We start from the equation in the rotating fram, as derived in the main manuscript,

−휕풎푟

휕푇
+ 퐷

휕2풎푟

휕푧2
− 2훿풎푟 +훀 × 풎푟 + 4퐷푨0 ×

휕풎푟

휕풛
+ 4퐷푨0 ×

[

푨0 ×


풎푟 −

푔휇퐵푁0

4
훀

]
= 0, (23)

and the boundary condition,

휕풎푟

휕푧
+ 2푨0 ×


풎푟 −

푔휇퐵푁0

4
훀


= 0. (24)

Let the stationary solution found in the main text be 풖. What we want to show is that all solutions converge to 풖 as time goes to

innity. Let 풗 be any other solution to Eqs. (23) and (24). Next, dene 풘 = 풖 − 풗. We want to show that 풘 must go to zero.

Inserting 풘 in the equation above, we get

−휕풘
휕푇

+ 퐷
휕2풘

휕푧2
− 2훿풘 +훀 × 풘 + 4퐷푨0 ×

휕풘

휕풛
+ 4퐷푨0 × (푨0 × 풘) = 0, (25)

휕풘

휕푧
+ 2푨0 × 풘 = 0 at 푧 = 0 and 푧 = 퐿. (26)
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Next, we introduce the rotation matrix

푅 =
©≠
´

1

cos(2퐴0푧) − sin(2퐴0푧)

sin(2퐴0푧) cos(2퐴0푧)

™
Æ

¨

, (27)

where 퐴0 = |푨0 |, and dene 풘̃ = 푅풘. Recall that 푨0 points in the 푥-direction, so

−휕풘̃
휕푇

+ 퐷
휕2풘̃

휕푧2
− 2훿풘̃ + (푅훀) × 풘̃ = 0, (28)

휕풘̃

휕푧
= 0 at 푧 = 0 and 푧 = 퐿, (29)

where we used 푅[휕푧풘 + 2푨0 × 풘] = 휕푧 (푅풘) and 푅(풂 × 풃) = (푅풂) × (푅풃), for any vectors 풂 and 풃. Next, take the dot product of

these equations with 풘̃ and use (풂 × 풃) · 풃 = 0 to obtain

−1

2

휕푤̃2

휕푇
+
퐷

2

휕2푤̃2

휕푧2
= 퐷


휕풘̃

휕푧


2

+ 2훿푤̃2
, (30)

휕푤̃2

휕푧
= 0. (31)

Finally, we dene푊2 =
¥ 퐿

0
푑푧푤̃2 and integrate Eq. (30) to obtain

휕푊2

휕푇
= −2

æ 퐿

0

푑푧

(

퐷


휕풘̃

휕푧


2

+ 2훿푤̃2

)

. (32)

The right hand side is negative as long as푊2 ≠ 0. Moreover, since푊2 ≥ 0, we see that푊2 → 0 as 푇 → ∞. Hence, the stationary

solution is unique and all solutions converge to the stationary solution independently of initial condition.

IV. DETECTOR SETUP

In order to detect the spin-voltage one can connect the nanowire to a detector electrode through a polarized tunneling

boundary [12–17]. The detector can be a normal metal or ferromagnet. In the case of a normal metal, a spin-polarized interface

can for instance be achieved by inserting a thin ferromagnetic insulator between the nanowire and detector electrode. In the

following we show how the voltage dierence between the nanowire and electrode can be used to determine the spin-voltage, as

discussed in the main text.

Consider the detector setup illustrated in Fig. 1. The detector is connected to the nanowire through a polarized interface and

forms an open circuit. Charge, unlike spin, is conserved inside the detector. Hence, the charge current into the electrode must be

zero in the stationary state. Assuming that the interface is polarized in the 푧-direction, the charge current into the detector can

generally be written

퐼det = 퐺↑(푉
det − 휇푧) + 퐺↓(푉

det + 휇푧), (33)

where 퐺↑ and 퐺↓ is the conductances for electrons with spin up and spin down, respectively. The spin-voltage inside the nanowire
is 휇푧 and the voltage dierence between the detector and nanowire is 푉det. It is assumed that the spin-diusion length inside the

detector is short, such that the spin-voltage inside the detector is much smaller than 푉det. The voltage inside the detector electrode

will stabilize at the value satisfying 퐼det = 0, which we nd from Eq. (33) happens at

푉det =
퐺↑ − 퐺↓
퐺↑ + 퐺↓

휇푧 = 푃휇푧 , (34)

where we have inserted the polarization 푃 = (퐺↑ − 퐺↓)/(퐺↑ + 퐺↓).
We can derive Eq. (33) more rigorously in the quasiclassical theory. In this way we can take into account the nite spin-voltage

which will also be induced in the detector. In order to capture spin-active tunneling boundaries in the quasiclassical framework,

we can use a generalization of the Kupriyanov-Lukichev condition [18, 19],

푁0푖퐷푖풆푛 ·

푔̌푠푖 ◦ ∇̃ ◦ 푔̌푠푖

퐾
=
휁

2


푔̌푠푖 , (푡 + 푢휎푧)푔̌푠 푗 (푡 + 푢휎푧)

퐾
◦ − 푖

퐺휙

2


푔퐾푠푖 ,휎푧


◦, (35)
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Gates
Detector

Polarized

interface

V

FIG. 1: Illustration of the system under consideration together with the proposed detection setup. The gates encapsulating the nanowire produce a

magnetization inside the nanowire through spin-orbit pumping. The resulting spin-voltage can in turn be detected through the voltage dierence

푉 between the detector and the nanowire, given that the interface is polarized.

where we have assumed that the interface is polarized in the 푧-direction, 푡 =


(1 +

√
1 − 푃2)/2, 푢 =


(1 −

√
1 − 푃2)/2 and

퐺휙 is the spin-mixing term originating from the reected electrons [19]. To nd the distribution function in the detector, we

insert ℎ 푗 = ℎ0 + 풉 · 흈 and ℎ푖 = ℎdet
0

+ 풉det · 흈, where the former is the distribution function in the nanowire and the latter is the

distribution function in the detector. From this, we get

푁det
0 퐷det풆푛 · ∇̃ ◦ ℎdet0 = 휁


ℎ0 − ℎdet0


+ 푃휁


ℎ푧 − ℎdet푧


, (36a)

푁det
0 퐷det풆푛 · ∇̃ ◦ ℎdet푧 = 휁


ℎ푧 − ℎdet푧


+ 푃휁


ℎ0 − ℎdet0


, (36b)

푁det
0 퐷det풆푛 · ∇̃ ◦ ℎdet푥 = 휁


1 − 푃2ℎ푥 − ℎdet푥


− 푖푃휁ℎdet푦 + 퐺휙ℎ

det
푦 , (36c)

푁det
0 퐷det풆푛 · ∇̃ ◦ ℎdet푦 = 휁


1 − 푃2ℎ푦 − ℎdet푦


+ 푖푃휁ℎdet푥 − 퐺휙ℎ

det
푥 . (36d)

We can see that the boundary conditions couple ℎdet
0

with ℎdet푧 and ℎdet푥 with ℎdet푦 . We can rewrite the boundary condition in terms

of current densities, voltages and spin-voltages by multiplying with 휋/|푒 |. where 푒 is the electron charge, Fourier transforming

and letting 푡 → 0, giving

−풆푛 · 푱푒 =
휁

푁det
0


푃

휇푧 − 휇det푧


−푉det


, (37a)

−풆푛 · 푱푧 =
휁

푁det
0


휇푧 − 휇det푧 − 푃푉det


, (37b)

where 퐽푒 = − lim푡→0 (휋퐷
det/|푒 |)∇̃ ◦퐻det

0
and 퐽푧 = − lim푡→0 (휋퐷

det/|푒 |)∇̃ ◦퐻det
푧 is the normalized charge current density and spin

current density in the 푧-direction, respectively. The electrochemical potential is

푉det =
1

2|푒 |

æ ∞

−∞
d휀


ℎdet0 − tanh(훽휀/2)


. (38)

We have set the electrochemical potential on the nanowire side to be 0.

To solve for 휇det푧 and 푉det we must use solve Usadel equation. For concreteness we assume that the electrode is a normal metal,

but the relevant equations will be the same if it was instead a ferromagnet that is weakly polarized in the 푧-direction. For the case

of a normal metal, the Usadel equation is

휕ℎdet

휕푇
− 퐷det∇̃ ◦ ∇̃ ◦ ℎdet + 2훿(ℎdet − ℎeq) +

푖

2


휎̌sd, 푔̌

det
푠

퐾
◦ = 0, (39)

where 휎̌sp is a source of spin-diusion. This could for instance come from scattering with magnetic impurities, in which case

휎̌sd = −푖풏 · 흈푔̌det푠 풏 · 흈/2휏sd, where 휏sd is the scattering time and 풏 is the magnetization direction of the magnetic impurities [20].

Spin-diusion could also come from spin-orbit coupling, as is the case in the nanowire. Here we assume that spin-diusion come

from magnetic impurities rather than SOC. Since the spin-accumulation in the 푧-direction is static in the nanowire and since there

is no coupling between 휇det푧 and 휇det푥 or 휇det푦 , we can look for static solutions to 휇det푧 and 푉det. From Eq. (39) we nd that these

solve

−퐷det∇2푉det = 0 = ∇ · 푱푒, (40a)

−퐷det∇2휇det푧 + 2


훿 +

1

휏sd,푥
+

1

휏sd,푦


휇det푧 = 0, (40b)



6

where 휏sd,푥 and 휏sd,푦 is the spin-diusion times for magnetic impurities with magnetization in the 푥- and 푦-direction, respectively.

Equation (40a) states that charge is conserved inside the detector, so the electrical current is constant. Since the detector is assumed

to be an open circuit, 풆푛 · 푱푒 = 0 on the far side of the detector, so from Eq. (37a) we get that

푉det = 푃

휇푧 − 휇det푧


. (41)

From Eq. (40b) we see that the spin-accumulation decay exponentially inside the detector over a length scale given by the

spin-diusion time. If we assume that the detector is thin we can approximate it as one-dimensional. Let the length of the detector

be 퐿det and the axial coordinate be 푠, then

휇det푧 = 퐶 cosh

푘푧


퐿det − 푠

 
, (42)

where 푠 = 0 is at the interface with the nanowire, 퐶 is a constant and

푘푧 =

√

2


훿 +

1

휏sd,푥
+

1

휏sd,푦


/퐷det (43)

is the inverse spin-diusion length. The coecient 퐶 can be found from Eq. (37b). From this we nd that the spin-voltage in the

detector at the interface is

휇det푧 =
휁 (1 − 푃2)휇푧

푁det
0
퐷det푘푧 tanh


푘푧퐿det


+ 휁 (1 − 푃2)

. (44)

We see that
휇det푧

  |휇푧 | if the spin-diusion length, 1/푘푧 , or interface conductance, 휁 , is suciently small or the polarization, 푃,

is suciently close to 1. In particular,
휇det푧

  |휇푧 | if

1

푘푧


푁det
0
퐷det tanh


푘푧퐿

det


휁 (1 − 푃2)
. (45)

In this case Eq. (41) reduces to

푉det = 푃휇푧 , (46)

which is the same as Eq. (33). Since there is no current inside the detector, the electrochemical potential is constant and the voltage

dierence measured between the detector and nanowire will be 푉 = 푉det.

Finally, note that there is a nite spin-current into the detector if the polarization is dierent from 1. That is, the detector acts as

a spin-sink. This can aect the magnetization in the nanowire where the spin-voltage is supposed to be measured. However, this

eect can be neglected if the interface conductivity and contact area are small.
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CONDENSED MATTER PHYS ICS

Extreme enhancement of superconductivity in epitaxial
aluminum near the monolayer limit
Werner M. J. van Weerdenburg1†, Anand Kamlapure1†, Eirik Holm Fyhn2, Xiaochun Huang1,
Niels P. E. van Mullekom1, Manuel Steinbrecher1, Peter Krogstrup3, Jacob Linder2,
Alexander Ako Khajetoorians1*

BCS theory has beenwidely successful at describing elemental bulk superconductors. Yet, as the length scales of
such superconductors approach the atomic limit, dimensionality as well as the environment of the supercon-
ductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold
enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111),
when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/
STS) measurements. Using spatially resolved spectroscopy, we characterize the vortex structure in the presence
of a strong Zeeman field and find evidence of a paramagnetic Meissner effect originating from odd-frequency
pairing contributions. These results illustrate two notable influences of reduced dimensionality on a BCS super-
conductor and present a platform to study BCS superconductivity in large magnetic fields.
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INTRODUCTION
Bardeen-Cooper-Schrieffer (BCS) theory has been vastly successful
at explaining the behavior of conventional superconductors (1). Yet,
superconductors, both conventional and unconventional, can
exhibit complex and unexpected behavior when one or more
length scales approach a lower dimensional limit (2). While the su-
perconducting critical temperature (Tc) of some materials reduces
in the monolayer limit, compared to the bulk (3–5), it has also been
shown that Tc can be greatly enhanced in this regime, as illustrated
by FeSe/SrTiO3 (6). Likewise, superconductivity can emerge at the
interface of two insulating materials, as exemplified by the interface
of LaAlO3/SrTiO3 (7). As many types of quantum technologies
depend on the growth of superconductors integrated into hetero-
structures, including superconducting spintronic devices (8),
high-precision magnetometers (9), and qubits based on supercon-
ducting nanostructures (10), it is imperative to understand what the
role of dimensionality and the influence of the environment is on
the superconductivity.

Elemental aluminum (Al) is exemplary of a type I BCS supercon-
ductor in the weak-coupling regime (1) and exhibits unexpected
modifications to its superconducting behavior when scaled to the
two-dimensional (2D) limit. It has been shown that the critical tem-
perature of Al can be increased from its bulk value of Tc = 1.2 K by
growing thin films, both epitaxial and granular. However, widely
varying growth procedures resulting in oxidized films (11–18),
granular Al (19–21), Al nanowires (22, 23), or doped Al films (24,
25) give dispersing values for Tc clouding ultimately what contrib-
utes to the aforementioned enhancement. In some of these studies,
the cleanliness of the interface and the Al itself, as well as the rele-
vant thickness, is ill-defined. Moreover, these studies are often

limited to a regime where the thickness is greater than six monolay-
ers (MLs), mainly due to the challenges to synthesize monolayer
scale epitaxial Al films. The dispersive findings question to what
extent the enhancement of superconductivity is intrinsic to Al
itself and to what extent the trend of increasing Tc persists as
films are thinned down further. To this end, experimental ap-
proaches that combine high-purity growth methods in a controlled
ultrahigh vacuum (UHV) environment with a concurrent in situ
characterization are vital to identify the intrinsic superconducting
behavior of Al films near the 2D limit. In addition to the observed
enhancement of TC, the upper critical field in the direction parallel
to the film surface has been shown to increase substantially (16).
Because of the low spin-orbit scattering rate in Al, these films char-
acteristically show the Meservey-Tedrow-Fulde (MTF) effect, where
the application of a magnetic field gives rise to a spin splitting of the
quasiparticle excitations (26, 27). In addition, it has been proposed
that this high-field regime can promote odd-frequency spin-triplet
correlations (28–32), but it has been challenging to confirm their
presence experimentally (28, 33, 34). The combination of thin
film Al and large magnetic fields, as used in superconducting
qubit devices, especially those aiming to induce topological super-
conductivity (10, 35, 36), puts forward questions about how super-
conductivity is affected by external magnetic fields and the role of
unconventional pairing.

Here, we show that Al(111) films epitaxially grown on Si(111)–(7
× 7), approaching the monolayer limit, exhibit a greatly enhanced
Tc, up to about a factor of three, when compared to the bulk value.
Using scanning tunneling microscopy/spectroscopy (STM/STS) at
variable temperatures down to millikelvin, we first characterize the
structural and large-scale electronic properties of epitaxial films of
Al grown on Si(111) for various thicknesses (N). We subsequently
characterize the associated superconducting gap (Δ) with each
grown film. For the largest gap values, we corroborate these mea-
surements with Tc by measuring Δ(T ). Next, we probe the magnetic
field–dependent properties of individual Al films for different
thicknesses in magnetic fields with different field orientations. We
confirm the expected type II behavior in out-of-plane magnetic

1Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen,
Netherlands. 2Center for Quantum Spintronics, Department of Physics, Norwegian
University of Science and Technology, NO-7491 Trondheim, Norway. 3NNF
Quantum Computing Programme, Niels Bohr Institute, University of Copenhagen,
2100 Copenhagen, Denmark.
†These authors contributed equally to this work.
*Corresponding author. Email: a.khajetoorians@science.ru.nl
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fields, including the observation of an Abrikosov lattice. For in-
plane magnetic fields, we observe the MTF effect and use the spec-
tral evolution in magnetic field to quantify the g-factor of the
various films, which are all shown to exhibit g ≈ 2. We finally char-
acterize the vortex structure in the presence of the MTF effect,
which shows a reshaping of the vortex structure when compared
to zero in-plane field. Based on numerical simulations using the
Usadel equation, we quantify the observed structure and relate it
to the presence of both even and odd-frequency pairing correlations
as well as their contribution to the screening currents.

RESULTS
Structural and spectroscopic properties of epitaxial Al films
Epitaxially grownAl films (seeMaterials andMethods) imaged with
STM typically show a closed film of a given thickness, decorated
with a density of islands a monolayer higher (Fig. 1A and fig. S2).
Films with a given thickness exhibit two different periodicities
(Fig. 1, B and C). A short-range threefold periodicity with a ≈
0.25 nm coincides with the expected atomic lattice constant of
Al(111). In addition to the atomic periodicity, a long-range period-
icity can be observed in films for thicknesses up to 26 MLs, which is
also threefold symmetric and exhibits a periodicity aM ≈ 2.6 nm.
This periodicity is commensurate with the underlying 7 × 7 recon-
struction of Si(111) (37, 38), and it is reminiscent of the moiré-type
structures seen for other thin superconducting films (39, 40). The
appearance of both the moiré-type structure and the atomic period-
icity is indicative that the interface is most likely pristine with neg-
ligible intermixing at the growth temperatures used. Epitaxial film
growth is observed for Al films ≥4 MLs, as identified in (38). In at-
tempts to measure even thinner Al films, our growth procedure re-
sulted in broken and granular films.

The thickness of a given film can be corroborated with STS mea-
sured in a voltage range of ±2 V. For a given N, layer-dependent
broad peaks can be identified at given voltages, which vary depend-
ing on the given value of N (Fig. 1D). To better illustrate the mea-
sured peaks for both filled and empty states, dI/dV spectroscopy was

normalized to I/V. Moreover, different films with the same value of
N reproducibly show the same spectroscopic features, enabling
spectroscopic fingerprinting of the layer thickness, although the
films are closed (see section S1 and fig. S3). The appearance of
such peaks in STS is reminiscent of quantumwell states (QWS) typ-
ically observed on other thin metallic films grown on Si(111) (41).
For reference, the QWS energies extracted from (42, 43) are indicat-
ed in Fig. 1D by blue arrows underneath each measured spectrum.
In this comparison, the QWS energies do not exactly match the
measured peak positions, but there is a qualitative agreement
between the energy difference between adjacent QWS, and the mea-
sured spectra, up to approximately 13 MLs. As seen from previous
angle-resolved photoemission spectroscopy (ARPES) measure-
ments (44) and the aforementioned calculations, the expected
QWS have a smaller effective mass and are expected to disperse,
when compared to the QWS of Pb/Si(111) (41). This inherently
weakens the QWS intensity and makes a direct mapping of the
exact QWS onset energies based solely on point-STS measurements
imprecise. We note that a direct comparison to measured ARPES
(44) is challenging, as we observe stronger features in the empty
state region of the spectra, where there are no ARPES measure-
ments. Likewise, ARPES spatially averages over regions of the film
where we expect spectroscopic contributions from multiple thick-
nesses of the film.

Superconducting gap and critical temperature as a function
of film coverage
Wemeasured Δ as a function of coverage using high-energy resolu-
tion STS at variable temperature. Here, the coverage of a given film
is defined as the cumulative Al material of its main layer and
(vacancy) islands. Below, we first detail the spectral gap as measured
at the lowest temperature, namely, T = 30mK, for three coverages in
Fig. 2A. A typical spectrum shows a BCS-like, hard gap structure
symmetric around Vs = 0 mV and sharp coherence peaks at the
gap energy Δ, which can be fitted and extracted with a broadened
Maki function (see section S2 and fig. S5 for a discussion on the
possible broadening contributions) (45). We find that the gap

Fig. 1. Structural and spectroscopic properties of ultrathin epitaxial Al films. (A) Constant-current STM image of an Al/Si(111) sample with 8.5-ML coverage (Vs = 100
mV, It = 20 pA; scale bar, 20 nm). (B) Constant-current STM image with atomic resolution (coverage: 35.1 MLs, Vs = 3 mV, It = 500 pA; scale bar, 2 nm). Inset: fast Fourier
transform (FFT) of the image in (B) (scale bar, 2 nm−1). (C) FFT of the image in (A) (scale bar, 0.5 nm−1). (D) Spectroscopy taken on 4- to 9-ML layers (stabilized at Vs = 2 V,
It = 200 pA, Vmod = 5 mV, T = 1.3 K). The dI/dV signal (in arbitrary units; a.u.) is normalized by I/V to correct for the transmission factor of the tunneling barrier. Arrows
indicate the calculated QWS energies from density functional theory in (42) (see section S1 and fig. S3). Inset sketch shows an Al film on Si(111) with a thickness of NMLs.
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value shows the largest enhancement of Δ = 0.560 ± 0.015meV for a
coverage of 3.9 MLs (4 MLs with a distribution of vacancy islands),
which is more than a threefold enhancement compared to the bulk
value of Δbulk = 0.16 to 0.18 meV (46, 47). We find that the spectra
taken at various locations on the sample, including on (vacancy)
islands and along the long-range periodicity, reveal a uniform su-
perconducting gap with a constant Δ (± 0.02 meV) and small var-
iations in coherence peak height (see fig. S4). Therefore, we assign Δ
for each sample as the spatial average of all gap values extracted from
≥18 spectra, where the error bar represents the standard deviation
of those values. The uniformity in the value of Δ is in contrast to the
variations in the band structure on larger energy scales, where we
see clear differences in STS for different layer heights. This observa-
tion suggests that the value of Δ is not significantly modulated due
to the presence of different QWS stemming from variations in the
film thickness, in contrast to reports on Pb/Si(111) (39, 48) and in
line with observations for Pb/BP (49).

Measurements on films with different coverage yield a monoto-
nously increasing trend in Δ as the film coverage is lowered, as
shown in Fig. 2B for samples between 4 and 35 MLs. Here, each
data point represents one grown sample. For the largest coverages
we measured, namely, 35 MLs, we still observed a slight enhance-
ment in Δ compared to the bulk value (blue bar), as was also seen in
(18). The monotonous trend contrasts the observations for Pb/
Si(111), where the critical temperature oscillates due to a modula-
tion of the local density of states (LDOS) at EF. Here, we see no clear
correlation between the QWS energies and the corresponding
gap size.

To quantify Tc in relation to the measured values of Δ at milli-
kelvin temperature, we performed temperature-dependent mea-
surements of Δ(T) for four different film coverages (see Materials
and Methods for details and section S3 and fig. S6 for the temper-
ature calibration). Δ(T ) was measured for a given sample by incre-
mentally raising the sample temperature between 1.3 and 4.0
K. With increasing T, Δ(T ) shows the expected decrease until the
gap is eventually fully quenched, coinciding with Tc (Fig. 2C). To

quantify the value to Tc, we first fitted each measured spectra
with a BCS Dynes function (see section S2) (50). We subsequently
fitted the numerically determined temperature dependence of the
gap within BCS theory to the extracted Δ(T ), as exemplified for
anAl filmwith a 4.7-MLcoverage inFig. 2D, and findTc = 3.31±0.11
K. In Fig. 2E, we illustrate the extracted Tc for four different films
(see fig. S7). Based on BCS theory, the ratio between Tc and Δ(T = 0)
leads to an expected ratio of 2Δ(T = 0)/kBTc = 3.53, which typically
describes superconductors in the weak-coupling limit, such as bulk
Al (46, 47). Based on the extracted values, we plot the ratio between
Δ and Tc in Fig. 2E. The overall trend indicates that the ratio is in
close agreement to the expected value 3.53 as seen for the bulk Al,
suggesting that the thin Al films studied here may be in the weak-
coupling limit. We note that the Tc was only measured for four
films, and not for a given film multiple times. Therefore, the error
bars coincide with the standard deviation given by the fits shown in
Fig. 2D and fig. S7. To infer a coverage-dependent trend in the ex-
tracted ratio, further measurements are needed.Moreover, the effect
of the sample morphology and defects on the gap value and the ratio
requires further study.

The threefold enhancement of Δ and Tc is distinctly larger than
reported epitaxial Al films in the literature, where capped films were
studied ex situ only down to 6 MLs (18). Likewise, it exceeds most
reported values for Tc of other studies on oxidized (single) Al films
(12–18, 20, 21), likely due to the thinner films, the crystallinity, and
the absence of the oxide layer. This observation directly refutes an
early idea that the origin of the enhancement effect was due to the
oxygen layer (12). In other reports (24, 25), enhanced values of Tc
for Al films were obtained by doping with ~2% of Si impurities.
However, potential intermixing of Si and Al with this quantity of
impurities would likely obscure the moiré pattern and atomic-res-
olution images presented in Fig. 1. In addition, we can also exclude a
considerable influence of Si intermixing on the enhancement of
superconductivity, since we do not observe a considerable change
in gap enhancement for films when the annealing time (and thus
potential intermixing) is minimized (see section S4 and fig. S8).

Fig. 2. Δ and Tc enhancement for ultrathin Al films. (A) Superconducting gap spectra taken at T = 30 mK for samples with varying Al coverage (artificially offset) with
Maki fits (gray lines) (stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV). (B) Extracted Δ at T = 30mK for varying Al coverage, where the error bar represents the SD of Δ in an
ensemble of 18 to 30 spectra. (C) Temperature-dependent superconducting gap spectra (artificially offset) for 4.5-ML coverage, manually matched with the Dynes equa-
tion (gray lines) (stabilized at Vs = 5mV, It = 300 pA, Vmod = 100 μV). (D) ExtractedΔ as a function of temperaturewith the BCS fit with Tc = 3.3 ± 0.1 K andΔT = 0 = 0.55 ± 0.02
meV. (E) Extracted Tc values and 2Δ/kBTc ratios for four Al coverages (see fig. S7; error bars represent SD from the BCS fit). We note that the films in (C) to (E) were not
measured at T = 30 mK and are therefore excluded from (B).
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These observations indicate that the enhanced superconductivity is
an intrinsic property of ultrathin Al films, but it remains an open
question if other weak-coupling superconductors present similar
enhancement effects and what the role of the substrate/interface
is (4).

Abrikosov lattice and out-of-plane magnetic field response
Subsequently, we characterize the magnetic field–dependent re-
sponse of various Al films in two magnetic field orientations, i.e.,
perpendicular/parallel to the surface. First, we quantify the upper
critical field for an Al film with an 11.7-ML coverage in a magnetic
field perpendicular to the film plane (B?

c2). By incrementally increas-
ing B⊥ and measuring local point spectra (Fig. 3A), the coherence
peaks flatten and the zero-bias conductance increases gradually
until the gap has completely vanished at B⊥ = 100 mT. This
upper limit for B?

c2 gives an estimate for the coherence length ξ of

~64 nm, as ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0=2πB?
c2ðT ¼ 0Þ

q

, where Φ0 is the magnetic flux
quantum (51). The expected type II behavior can be observed by
spatially imaging the zero-bias conductance for nonzero values of
B⊥. We measured a constant-contour dI/dV conductance map at
Vs = 0 mV (B⊥ = 50 mT), which reveals an Abrikosov lattice,
with a vortex radius on the order of the coherence length (Fig. 3B
and fig. S9).

MTF effect and the Clogston-Chandrasekhar limit
After characterizing the out-of-plane response, we characterized the
response of various films to an in-plane magnetic field (B∥) for
various coverages. Since screening currents cannot build up in the
confined superconductor, orbital depairing is absent, and the mag-
netic field penetrates the superconductor, allowing us to study the
superconducting state in combination with large magnetic fields
compared to the typical out-of-plane critical values. In the
absence of spin-orbit scattering, the quasi-particle excitations of
the superconductor are sufficiently long-lived to observe the MTF
effect in this regime (26, 27). This effect is exemplified by a spin-
splitting of the coherence peaks, where each peak shifts by ±

gμBSB∥, giving a total Zeeman splitting of ∣Ez∣ = gμBB∥ for S = 1/
2. For a homogeneous superconductor in the absence of spin-
orbit coupling, the superconducting state may only persist up to
the Clogston-Chandrasekhar limit (52, 53), given by h ¼ Δ=

ffiffiffi
2

p
,

with h = μBB∥, where a first-order phase transition to the normal
state occurs.

In Fig. 3C, we illustrate the measuredMTF effect for two Al films
with a coverage of 3.9 and 8.5 MLs, where the STS was measured for
increasing values of B∥, up to B∥ = 4 T. The manifestation of the
MTF effect is the appearance of a spin-split gap structure. We quan-
tify the splitting in Fig. 3C by subdividing the gap structure into two
independent spin-polarized distributions and fitting two Maki
functions with equal gaps, shifted with respect to each other by
the Zeeman energy ΔEz. As illustrated in Fig. 3D, we measured
ΔEz(B‖) for four film coverages (also see fig. S10) and quantified
the splitting of the coherence peaks at each field increment. The re-
sulting linear trend is used to extract the g-factors (see inset of
Fig. 3D) with an average of g = 1.98 ± 0.02 (where g = ΔEz/μBB∥

for S = 1/2). This measurement shows that the quasiparticles in
the ultrathin regime remain free-electron like, and the linearity of
the graph further illustrates that spin-orbit coupling is negligible
in these films. In addition, we note that the expected Clogston-
Chandrasekhar limit for the 8.5-ML film is at
Bk

CC ¼ Δ=
ffiffiffi
2

p
μB ≏ 5:5 T, i.e., above our experimental limit of B∥

= 4.0 T. However, for films with a smaller gap size (with coverages
of 11.7 and 17.4 MLs), we could observe a sudden quenching of
superconductivity at in-plane fields near the theoretical limit.

Vortex structure in the presence of the MTF effect
The manifestation of the MTF effect in ultrathin Al films provides
an opportunity to explore the atomic-scale variations in the conduc-
tance in response to variable magnetic field, for example, the resul-
tant vortex behavior in the presence of the MTF effect. Moreover,
the presence of large in-plane magnetic fields can induce pairing
contributions in the form of odd-frequency spin-triplet correla-
tions, which may act differently around a vortex and exhibit a para-
magnetic Meissner response (33, 54, 55). Using a vector magnetic

Fig. 3. Magnetic field response of Al films. (A) Evolution of the superconducting gap in out-of-plane magnetic field B⊥ for an 11.7-ML film, measured in between
vortices in (B). (B) Constant-contour dI/dV map with B⊥ = 50 mT (height profile recorded at Vs = 10 mV, It = 10 pA; image taken with Vs = 0 mV, Vmod = 20 μV; scale
bar, 100 nm). (C) Evolution of the superconducting gap as a function of in-plane magnetic field B∥ for a 3.9- and 8.5-ML film. Black lines are fits using two Maki functions
separated by Zeeman splitting ΔEz (stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV). (D) Extracted ΔEz for four Al coverages (see fig. S10). The solid lines are weighted
linear fits to extract the g-factor for each sample (inset).
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field, we induced vortices in a given Al film with B⊥ = 30 mT and
simultaneously applied B∥ = 2.99 T to enter the MTF regime. We
subsequently spatially mapped the zero-bias conductance in cons-
tant-contour mode, as illustrated for an 8.5-ML Al film (Fig. 4A).
The resulting image showsmultiple round vortices with an expected
flux density (see also section S5). Note that the vortices may occa-
sionally move, likely due to interactions with the tip (also see figs. S9
and S11). This can yield vortices that appear noisy as well as obscure
the symmetry of underlying vortex lattice. To further characterize
the structure, we also performed STS along a horizontal and vertical
line across a given vortex (Fig. 4, C and D). Both directions show a
split gap structure with Δ = 0.45 meV at ~150 nm from the vortex
center and a gradual decrease of Δ toward the center with a constant
Zeeman splitting. Closer to the vortex center, the spectral gap is
rapidly quenched, resulting in an extended region of ~70 nm in di-
ameter without any spectroscopic indications of superconductivity.
In this regime, the apparent region with conductance associated
with the normal state is radially larger than what is expected for a
typical vortex in the absence of an in-plane magnetic field compo-
nent (e.g., fig. S9). Besides this extended region where the quasipar-
ticle gap is zero, the total radius of a vortex in theMTF regime is also
larger compared to the typical vortex shape in the absence of an in-
plane magnetic field, as illustrated by comparing the zero-bias con-
ductance profiles in Fig. 4B (also see fig. S9).

To explain the observation of the vortex structure in the presence
of the MTF effect, or the MTF vortex for short, we modeled the su-
perconducting vortex structure using the quasiclassical Keldysh
Green’s function formalism (56, 57), assuming a single-phase
winding in the superconducting gap parameter. We assume that
the coherence length of the superconductor is large compared to
the mean free path, dictated by the sample morphology (sample
thickness, island size, and moiré periodicity), such that the

quasiclassical Green’s function solves the Usadel equation (58).
Therefore, we consider the diffusive limit, where only s-wave corre-
lations can persist. This is in contrast to considerations in the bal-
listic limit (31). We fix Δ∞, the gap size at infinite distance from the
vortex, and the spin-splitting field h∥ = μBB‖ to the experimental
values (h∥/Δ∞ = 0.38) and solve the Usadel equation self-consistent-
ly with both the superconducting gap equation andMaxwell’s equa-
tions (see section S5 for more details). In Fig. 4E, we illustrate the
calculated density of states and account for Dynes broadening as
well as experimental broadening by convoluting with the Fermi-
Dirac distribution with Teff = 250 mK. The simulated distance-de-
pendent spectra show an excellent agreement with the experimental
data, reproducing the zero-bias conductance profiles (Fig. 4B), the
evolution of the spin-split gap structure, and the extended region
with a quenched quasiparticle gap (see fig. S9 for the calculated
profile for h∥/Δ∞ = 0). In addition, we can extract the coherence
length of ξ = 42 nm.

The theoretical model provides a detailed understanding of the
MTF vortex structure in a varying in-plane magnetic field. First, the
solution to the gap equation consists of both even-frequency (ωe)
spin-singlet 1ffiffi

2
p (|↑↓⟩ − |↓↑⟩) and odd-frequency (ωo) spin-triplet

1ffiffi
2

p (|↑↓⟩ + |↓↑⟩) pairing contributions. Therefore, there is always a
coexistence of both types of pairing contributions in the presence
of an in-plane magnetic field. To understand the vortex structure,
it is important to identify the role of both types of pairing contribu-
tions. In Fig. 5 (A and B), we plot the contributions of ωe and ωo
pairing correlations, Δeven and Ψodd, respectively, as a function of
distance across the MTF vortex structure, where r = 0 refers to the
vortex center. Toward the vortex core, both order parameters de-
crease monotonically and gradually as the distance to the core is
reduced. By evaluating the gap equation for increasing values of
h∥, we find an increasing contribution of ωo pairs, as well as a

Fig. 4. MTF vortex in vectormagnetic field. (A) Constant-contour dI/dVmap in vector magnetic field with B∥ = 2.99 T and B⊥ = 30mT for an 8.5-ML film (height recorded
at Vs = 10 mV, It = 10 pA; image taken with Vs = 0 mV and z offset = 100 pm, Vmod = 50 μV; scale bar, 100 nm). (B) Vortex profile at Vs = 0 mV, extracted from the line spectra
across the Abrikosov vortex (blue; see fig. S9, B and C) and the MTF vortex (orange; C and E). Both the experimental (scatter points) and theoretical (lines) zero-bias
conductance profiles are presented. (C and D) dI/dV spectra along a horizontal and vertical line across a vortex core (stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20
μV). (E) Simulated dI/dV signal by solving the self-consistent gap equation (see section S5) using h∥/Δ∞ = 0.38, ξ = 42 nm, Γ = 0.007 Δ∞, κ = 5 and broadened with
Teff = 250 mK.
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more extended and gradual vortex profile. The combination of the
shallow vortex shape and the presence of ωo correlations near the
vortex core, which aremore susceptible to single-particle excitations
(54), explains the extended quenched gap region, despite a finite
order parameter being present in this region. We also note that
close to the vortex center, Δeven is reduced beyond the Clogston-
Chandrasekhar limit, which is only allowed for a local region in
the superconductor.

Mesoscopically, the presence of vortices is driven by a circulating
supercurrent that screens the penetrating magnetic flux. Therefore,
we additionally calculated the ωe and ωo contributions to the super-
current density and plot this as a function of distance in Fig. 5C for
various values of h∥/Δ∞. In the absence of h∥, we find the charac-
teristic diamagnetic response of the screening current (59) (black
dashed lines), consisting of purely ωe pairs. At finite values for
h∥/Δ∞, we find two contributions to the screening current with op-
posite signs, originating from the ωe and ωo pairing correlations.
This demonstrates a paramagnetic Meissner contribution from
the ωo pair correlations. With increasing h∥/Δ∞, both screening
current contributions extend further outward, and the paramagnet-
ic component increases in amplitude, but the total screening
current (i.e., the sum of both contributions) remains diamagnetic.
In this way, the paramagnetic contribution to the supercurrent,
originating from the odd-frequency correlations induced in the
MTF regime, gives rise to an enhanced magnetic penetration
depth and contributes to the enhanced vortex size.

In addition to the aforementioned details, we calculated how the
measurable vortex structure evolves as a function of h∥. Figure 5D
provides a visual representation of the simulated spatial dI/dV signal
at Vs = 0 mV, showing the evolution of the vortex structure. For h∥/
Δ∞ = 0, the vortex starts as the expected structure with a sharp rise

in conductance at the core (also see fig. S9). For a persistently rising
field value, the high-conductance region broadens and flattens out
near the core, as can be seen for h∥/Δ∞ = 0.5, and finally develops a
high-intensity ring around the vortex core at h∥/Δ∞ = 0.7 due to the
overlap of pronounced inner coherence peaks.

We propose that these MTF vortices can appear in any type II
superconductor in the presence of a large magnetic field, given
that spin-orbit scattering and orbital depairing are negligible.
These reshaped vortices are likely to occur in experimental setups,
even in the absence of an applied out-of-plane field, since a small
misalignment between the sample plane and the in-plane magnetic
field direction can induce an out-of-plane component (where
Bk
c2/B

k
c2 ≪ 1). In our case, we find a small tilt angle of 0.2° (see

section S5 and fig. S11), estimated by the observed vortex density
at B∥ = 4.0 T. Consequently, it is interesting to explore larger
ratios of h∥/Δ∞, close to the Clogston-Chandrasekhar limit. In
Fig. 6A, we show one instance of a vortex where B∥ = 3.60 T,
while B⊥ = 0.0 T for an 11.7-ML Al film. Here, STS measurements
along a horizontal line and the simulated dI/dV signal (Fig. 6, B and
C) reveal the appearance of a zero-bias peak at finite distance from
the vortex core, owing to the gradual merging of the two inner co-
herence peaks. We expect that for even larger h∥/Δ∞ ratios, this will
give rise to a pronounced ring as seen in Fig. 5D. For these films,
where B?

c1/B
k
c2 is very small, small angular offsets in the magnetic

field can lead to vortex formation near the Clogston-Chandrasekhar
limit. For experiments where large in-plane magnetic fields are
needed to induce a topological superconducting phase, the appear-
ance of the aforementioned in-gap states at zero energy may make it
more complicated to assign a topological character in this
field regime.

Fig. 5. Evolution of the MTF vortex structure with in-plane magnetic fields. Calculated gap function across a vortex for (A) ωe spin-singlet pairs, (B) ωo spin-triplet
pairs, and (C) the calculated electric supercurrent density for various in-plane magnetic fields [color used consistently in (A) to (C)]. The supercurrent flow around the
magnetic flux line (⊗) is indicated schematically. (D) Simulated zero-bias conductance represented spatially for three h∥/Δ∞ ratios (ξ = 42 nm, Γ = 0.001 Δ∞, κ = 5, as
defined in section S5).
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DISCUSSION
In conclusion, we have demonstrated that the superconducting gap
size and critical temperature of Al can be enhanced up to threefold
in the 2D limit, for films as thin as 4 MLs. Based on thickness-de-
pendent measurements of the superconducting gap combined with
variable temperature measurements, we establish that the ratio of Δ
to Tc remains near the expected BCS ratio. While the enhancement
of superconductivity can be seen gradually as films reach the 2D
limit, it remains an open question how the enhanced superconduc-
tivity arises. More specifically, it remains to be explored if, besides
electron-phonon coupling, other low-energy excitations become
relevant in the lower dimensional limit, such as plasmons. It is
also particularly interesting to explore if this enhancement is
unique to Al, or if it can be generalized to other superconductors
in the weak-coupling limit. In addition to the enhancement of the
critical temperature, we quantify the type II behavior of these films,
including a characterization of the vortex lattice in the presence of
the MTF effect. Notably, we find that the shape of the vortex struc-
ture in the presence of the MTF effect is strongly modified, includ-
ing an experimental observation of a gapless region. Our
simulations confirm a connection between the extended vortex
shape and the presence of odd-frequency pairing contributions,
as exemplified by a paramagnetic contribution to the screening
supercurrent. In addition, these results highlight that the presence
of pairing correlations and the observation of a tunneling gap are
not synonymous in a tunneling experiment (60). Therefore,
further investigation with pair-sensitive tunneling techniques can
provide more insight into the unconventional pairing contributions
in the high-field regime of superconductivity (59, 61, 62).

MATERIALS AND METHODS
All presented STM/STS measurements were performed using two
different homebuilt systems with base temperatures of 30 mK (63)
and 1.3 K (system A and system B, respectively). All presented ex-
perimental data were measured at T ≈ 30 mK, unless specified

otherwise. Since both systems have an identical UHV chamber
design (<5 × 10−10 mbar), the sample growth was performed
using the same procedures. First, the Si(111) wafer (As doped, resis-
tivity <0.005 ohm·cm) is annealed at ~750°C for >3 hours for degas-
sing purposes by applying a direct current through the wafer. The
temperature is measured by aligning a pyrometer onto the wafer
surface. Afterward, the Si(111)–7 × 7 reconstruction is prepared
by repeated flash-annealing to T = 1500 to 1530°C. Second, the Si
substrate is cooled on a liquid nitrogen cold stage (~110 K) for low-
temperature Al growth. We deposited Al from a crucible with a
cold-lip effusion cell (CLC-ST, CreaTec) at an evaporation temper-
ature of T = 1030°C, yielding a deposition rate of 0.39 MLs (A) or
1.06 MLs (B) per minute (see section S1 and fig. S1). Third, after
depositing the desired amount of material, the sample is placed
onto a manipulator arm and annealed at room temperature for 30
min for coverages of >4 MLs and 10 to 20 min for coverages of <4
MLs (A) and 15 min for coverages of 4 to 6 MLs (B). The anneal
time is stopped by placing the sample into a flow cryostat–cooled
manipulator arm (for system A) and transferring the sample into
the STM body.

All samples were measured using an electrochemically etchedW
tip, which was prepared by dipping into an Au(111) crystal and sub-
sequently characterized. STS measurements were done with a stan-
dard lock-in technique, where a sinusoidal modulation voltage
( fmod = 877 to 927 Hz and Vmod as indicated in the figure captions)
was added to Vs. For variable temperature measurements on system
B, we calibrated the used temperature sensor by measuring and
fitting the temperature-dependent superconducting gaps of a film
of Sn/Si(111) and bulk V(111) (see section S3 and fig. S6).

For vortex imaging, we spatially mapped the dI/dV signal in
constant-contour mode, as done in (49). In this mode, we first re-
corded a constant-current line scan trace, measuring the values of z,
with a closed feedback loop, at a bias voltage (Vs = 3 mV). Next, the
recorded values of z (including a z offset) were used at the measur-
ing bias (Vs = 0 mV). This method was repeated for every line of the
image. Sharp topographic features, such as island edges, are likely to

Fig. 6. Zero-bias peak in the MTF vortex profile for large h∥/Δ∞. (A) Constant-contour dI/dVmap with B∥ = 3.6 T (B⊥ = 0 mT) for an 11.7-ML film (height recorded at
Vs = 10 mV, It = 10 pA; image taken with Vs = 0 mV and z offset = 120 pm, Vmod = 50 μV; scale bar, 100 nm). (B) Spectra measured along a line of 400 nm across a vortex
structure [see white line in (A); stabilized at each point with Vs = 3 mV, It = 200 pA, Vmod = 20 μV]. (C) Simulated dI/dV signal across a vortex core by solving the self-
consistent gap equation using h∥/Δ∞ = 0.63, Γ = 0.1Δ∞, κ = 5, ξ = 50 nm and broadened with Teff = 250 mK.
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contribute to the signal in this measurement mode. In all presented
vortex maps, the orientation of the in-plane magnetic field is 10° off
the vertical (y) axis of the images (64–73).

Supplementary Materials
This PDF file includes:
Sections S1 to S5
Figs. S1 to S11
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S1 Film morphology and characterization 
Calibration of the coverage 
Prior to sample growth on Si(111), the deposition rate at T = 1030 °C is characterized by depositing Al 
onto a quartz microbalance (QMB). We repeat this calibration between multiple sample preparations to 
ensure that the deposition rate does not substantially change over time. We also calibrated the Al 
deposition by evaporating Al onto a clean Si(111)-7x7 surface at room temperature, for both STMs 
used in this study. This growth method yields small islands of thickness ≥ 4 ML, which enable 
calibration as also seen in ref. (38). Fig. S1A shows a constant-current STM image illustrating this 
calibration, after depositing Al for 12 minutes, followed by an additional 10 minutes waiting time before 
low temperature characterization. The corresponding apparent height histogram in Fig. S1B shows the 
density for each specified thickness. Based on this analysis, we extracted a deposition rate of 0.39 
ML/min for system A. This rate is used to estimate the coverage of each sample in combination with 
morphology analysis on large-scale images to precisely determine the amount of main layer and 
(vacancy) islands. 

Film morphology for different coverages 
The morphology of the Al films measured in this work vary as a function of coverage and annealing 
conditions. In Fig. S2, we present the morphology of three different Al films with different coverage, 
grown with the described sample preparation (see Materials and Methods) and with a room-
temperature anneal time of (A) 10 minutes, and (B,C) 30 minutes. The key differences are: (i) the 
roughness of the film increases as we approach the 4 ML coverage limit, where we still observe a 
closed, metallic film (ii) the apparent height variation changes for thicker films, e.g. as shown for 35 
ML, where samples can show N-2/ N+2 variations in addition to the N-1/N+1 variations observed in 
thinner films. We note that the morphology is extremely sensitive to the annealing time (also see Fig. 
S7A). However, the length scale related to the mean surface roughness typically remains smaller than 
the coherence length of the superconductor (i.e. < 50 nm).  

Large-scale scanning tunneling spectroscopy and comparison to DFT and ARPES 
We measured dI/dV in a large bias voltage range between Vs = ± 2 V on various thicknesses for a 
given sample. To compare to previous results, we plotted the calculated quantum well state (QWS) 
energies for Al(111) from DFT calculations derived from refs. (42, 43) in the upper panel of Fig. S3A, 
as well as the extracted QWS energies from ARPES measurements on various Al(111) films derived 
from ref. (44). We note that ARPES macroscopically averages over large areas of the film, compared 
to STS, and therefore the measured spectra will presumably convolute all layer thicknesses present 
on the film. Furthermore, we compare the QWS energies from DFT with the peak positions observed 
in the large-scale STS measurements in the lower panel of Fig. S3A. The spectra for layer thicknesses 
between 11 ML and 37 ML are shown in Fig. S3B-E.  

Spatial measurement of superconductivity 
To check the effect of the film morphology (i.e. islands, moiré-type pattern) on the superconductivity, 
we measured dI/dV spectra along a line across an Al film with 8.5 ML coverage. Fig. S4A shows the 
main layer (8 ML) and an island (9 ML), as well as the long-range periodicity, with the measured line 
running across all these morphological features. The spectra along this line (Fig. S4B) show a 
constant gap size with small variations in the coherence peak height. Similarly, we measured spectra 
on arbitrary locations on all samples and find negligible variations in the gap size, as indicated by the 
error bars in Fig. 2B.  
 

S2 Fitting superconducting spectra and the influence of broadening 
For fitting superconducting gap spectra and extracting Δ, we used two different BCS-based fitting 
models. 
1) The Maki equation for the density of states (45), based on Pauli paramagnetism in small 
superconductors: 

𝜌𝜌(𝐸𝐸) = ℜ � 𝑢𝑢
�𝑢𝑢2−1

�, 

where 𝑢𝑢 = 𝐸𝐸
Δ

+ ζ 𝑢𝑢
�1−𝑢𝑢2 (see ref. (64) for the analytical solution) and ζ describes the pair-breaking 

parameter. Note that this description is valid in absence of magnetic field, i.e. no spin-splitting.  



 
2) The Dynes equation (50), a phenomenological equation to capture the broadening due to finite 
quasiparticle recombination times: 

𝜌𝜌(𝐸𝐸) = 𝐸𝐸−𝑖𝑖Γ
�(𝐸𝐸−𝑖𝑖Γ)2−Δ2 

 . 

The Maki equation renormalizes the coherence peak height, while the Dynes equation induces a 
Gaussian type of broadening which may induce in-gap conductance.  

In Fig. S5, we plot a typical superconducting gap of a film with coverage 8.5 ML (blue circles), and in 
Fig. S5A fitted with the Maki equation (red line), with a magnified focus of the fit on the left coherence 
peak. We find an excellent agreement between data and fit for Δ = 0.46 meV, ζ = 0.02 meV if we 
include a Fermi-Dirac broadening with an effective temperature Teff = 250 mK. Noteworthy, this 
approach does not specify the origin of the broadening effects and can include broadening 
contributions that are unrelated to temperature. Moreover, this effective temperature is considerably 
larger than the measurement temperature of T = 30 mK, which suggests additional non-thermal 
broadening. Previously, we calibrated the energy resolution of our experimental setup at ~65 μeV in 
ref. (65). Here, we consider three potential broadening contributions. 

Firstly, tunneling spectroscopy at mK temperature suffers from an intrinsic broadening mechanism, 
based on the quantization of the tunneling current and its interaction with the electromagnetic 
environment (66). The capacitive noise can be described by the P(E) theory and in practice adds a 

Gaussian broadening 𝑃𝑃𝑁𝑁(𝐸𝐸) =  1

�4𝜋𝜋𝐸𝐸C𝑘𝑘B𝑇𝑇
exp �− 𝐸𝐸2

4𝐸𝐸C𝑘𝑘B𝑇𝑇
�, where 𝐸𝐸C = 𝑄𝑄2 2𝐶𝐶J�  is the charging energy of 

the Cooper pairs with Q = 2e and CJ  the capacitance of the tunnel junction. In Fig. S5B, we fitted the 
same spectrum with the Maki equation, extended by the PN(E) contribution and find that we require a 
capacitance of CJ = 0.25 fF to account for the broadening, if Teff equals the measurement temperature. 
However, assuming the proposed model in ref. (66) for a tip with diameter d = 0.3 mm and an opening 
angle of α = 60°, we find a capacitance of 12.7 fF instead, suggesting that the PN(E) broadening is not 
the main broadening contribution.  

Secondly, we considered a sample with a convolution of two-layer thicknesses, where each layer has 
a distinct value of Δ, namely ΔN and ΔN+1. We model this by combining two Maki equations for each 
value of Δ, considering a 50% contribution of each Δ. In Fig. S5C, we illustrate the resultant 
convolution as well as a decomposition of each of gap contributions (dashed lines). The result shows a 
good match with the data, using Teff = 150 mK and a difference |ΔN - ΔN+1| = 70 μeV. Based on the 
data shown in Fig. 2B it is reasonable to consider such differences in the limit where N < 10 ML. 
However, we also observed that the inherent broadening remained for higher coverages, and 
therefore we cannot conclude that this is solely responsible for the observed gap broadening. 
Ultimately, a gap difference larger than the energy resolution is required to confirm the existence of 
such a double-gap proximity effect, as this would result in a kink in the spectral shape.  

Lastly, we considered the hybridization model proposed in ref. (49). For Pb films on black phosphorus 
(BP), weak hybridization between the bands of BP and the quantum well states of Pb leads to a non-
thermal broadening of the superconducting gap and anisotropic vortices. However, for Al films on Si, 
no renormalization of the superconducting gap is not expected, as indicated by the observed isotropic 
vortices. A good agreement between the model and the data (Fig. S5D) is only found by taking a large 
amount of anisotropy (e.g. 𝑚𝑚𝑥𝑥/𝑚𝑚𝑦𝑦  = 8, where 𝑚𝑚𝑥𝑥 and 𝑚𝑚𝑦𝑦 describe the effective mass of the Al band 
in x- and y-direction respectively) and a weighting function (using Teff = 150 mK). However, such large 
anisotropy values are expected to influence the vortex shape, as seen for vortices in Pb on black 
phosphorus, but the vortices in Al are isotropic (Fig. 3B, Fig. S9). Therefore, we expect that the 
broadening mechanism in Al films does not stem from anisotropic hybridization effects.  

 

S3 Temperature calibration for temperature dependent measurements above 1 K 
To perform temperature dependent measurements, we heated the sample with a Zener diode. To 
calibrate the temperature sensor, we measured the temperature dependence of V(111) bulk, and a 
thick Sn film epitaxially grown on Si(111)-(7x7) (67-71). We prepared the V(111) sample with repeated 



sputter and anneal cycles (Tanneal = 850 °C). For the second study, we deposited Sn on a clean 
Si(111)-(7x7) substrate held at T ~ 110 K . Based on a previous calibration, we expected a coverage 
between 120-150 ML, i.e. in the bulk regime.  

In Fig. S6, we plot the dI/dV spectroscopy measured as a function of temperature, where the 
temperature value refers to the sensor reading, for the two aforementioned samples. We extracted 
Δ(T) by fitting a Dynes equation (black lines). The resultant Δ(T) is plotted below each subfigure. Both 
material systems show an excellent agreement with the BCS equation and the measured Δ(T). Using 
the extracted values for Δ and Tc (ΔSn

𝑇𝑇=0= 0.67 ± 0.03 meV, Tc,Sn = 3.9 ± 0.2 K, ΔV
𝑇𝑇=0 = 0.79 ± 0.04 meV, 

Tc,V = 5.1 ± 0.2 K), we find that the BCS ratio 2Δ/kBTc = 3.99 ± 0.27 for Sn/Si(111) and 2Δ/kBTc = 3.60 
± 0.23 for V(111). Since these values, in particular those for V, match with literature (67, 70, 71), we 
conclude that the temperature of the STM sensor gives a reliable measurement of the sample 
temperature in the range between 1.2 K and 5.1 K.  

Temperature dependence of three thin Al films 
Temperature dependent measurements as described in the main manuscript were performed for three 
other Al films with coverages of 6.3 ML, 5.3 ML and 4.2 ML, as shown in Fig. S7A-C. We apply the 
same analysis and extract Δ6.3 ML

𝑇𝑇=0 = 0.39 ± 0.02 meV, Δ5.3 ML
𝑇𝑇=0 = 0.43 ± 0.02 meV and Δ4.2 ML

𝑇𝑇=0 = 0.51 ± 0.02 
meV, as well as Tc,6.3 ML = 2.51 ± 0.10 K, Tc,5.3 ML = 2.90 ± 0.11 K and Tc,4.2 ML = 3.15 ± 0.08 K. Here, the 
error bars represent the standard deviation given by the BCS fit.   

 

S4 Effect of minimal annealing on the film morphology and resultant superconductivity 
In order to explore the role of room temperature annealing on the morphology and resultant 
superconducting gap, we prepared an additional sample with a coverage of 8.5 ML. After cold 
deposition, the sample was minimally annealed at room temperature (~ 1 min). The resulting sample 
shows small islands on top of a closed layer with atomic resolution visible, as shown in Fig. S8A. The 
moiré-like periodicity was not visible, likely obstructed by the abundance of small islands. Still, we find 
a spatially homogeneous gap with a gap size of ~ 0.5 meV, shown in Fig. S8B, which is similarly 
enhanced compared to the annealed sample with 8.5 ML coverage (see Fig. 2A).  

  

S5 Al films in (high) magnetic fields 
Theoretical model for vortex simulations 
To model the superconducting vortices, we use quasiclassical Keldysh theory, which is valid when the 
Fermi energy is much larger than all other energy scales. Assuming that the mean free path is also 
much less than the coherence length, the system can be fully described by the momentum-averaged 
quasiclassical Green’s function, 

𝑔𝑔� = �
𝑔𝑔�𝑅𝑅 𝑔𝑔�𝐾𝐾

0 𝑔𝑔�𝐴𝐴�, 

(1) 

where 𝑔𝑔�𝑅𝑅, 𝑔𝑔�𝐴𝐴 and 𝑔𝑔�𝐾𝐾  are the retarded, advanced and Keldysh components of the Green’s function, 
respectively. In thermal equilibrium it is sufficient to find the retarded Green’s function, since 𝑔𝑔�𝐴𝐴 =
 −τ�𝑍𝑍(𝑔𝑔�𝑅𝑅)†τ�𝑍𝑍 and 𝑔𝑔�𝐾𝐾 = (𝑔𝑔�𝑅𝑅 − 𝑔𝑔�𝐴𝐴)tanh(βε/2) , where τ�𝑍𝑍 = diag(1,1,-1,-1), β is the inverse temperature 
and ε is the energy.  

 
The retarded quasiclassical Green’s function solves the Usadel equation (58), 

𝐷𝐷𝛁𝛁�  ∙ �𝑔𝑔�𝑅𝑅𝛁𝛁�𝑔𝑔�𝑅𝑅� + 𝑖𝑖�τ�𝑍𝑍(ε + 𝑖𝑖Γ) + ℎ‖σ�𝑧𝑧 + Δ�, 𝑔𝑔�𝑅𝑅� = 0,  

(2) 



Here, D is the diffusion constant, Γ is the Dynes parameter, ℎ‖ is the spin-splitting field, Δ� = antidiag(Δ,-
Δ,Δ*,-Δ*) and the covariant derivative is 

𝛁𝛁�𝑔𝑔�𝑅𝑅 =  𝛁𝛁𝑔𝑔�𝑅𝑅 − 𝑖𝑖𝑖𝑖[τ�𝑍𝑍𝑨𝑨, 𝑔𝑔�𝑅𝑅], 

(3) 

where e = -|e| is the electron charge and A is the vector potential. The superconducting gap 
parameter, Δ, must solve the gap equation (72). 

Δ =  
1

16 log(2ωD Δ0⁄ ) � dε Tr�−𝑖𝑖σ�𝑦𝑦�τ�𝑥𝑥 −  𝑖𝑖τ�𝑦𝑦�𝑔𝑔�𝐾𝐾�
ω𝐷𝐷

−ω𝐷𝐷

, 

(4) 

where ω𝐷𝐷 is the Debye frequency and Δ0 is the zero-temperature BCS bulk solution. Additionally, the 
vector potential must solve Maxwell’s equation. Assuming 𝛁𝛁 ∙ 𝑨𝑨 = 0, Maxwell’s equation reads (57) 

𝛁𝛁2𝑨𝑨 =  −
μ𝑁𝑁0𝑒𝑒𝑒𝑒

4
� dε

𝐸𝐸𝑐𝑐

−𝐸𝐸𝑐𝑐

Tr �τ�𝑍𝑍�𝑔𝑔�𝛁𝛁�𝑔𝑔��𝐾𝐾�, 

(5)  

where 𝛁𝛁2 is the vector Laplacian, 𝐸𝐸𝑐𝑐 is a cut-off energy, μ is the magnetic permeability and N0 is the 
normal state density of states at the Fermi level. For a self-consistent solution, we must solve eqs. (2), 
(4) and (5) simultaneously. 

To model the vortex, we solve eqs. (2), (4) and (5) on an infinite plane with a single phase winding in 
the gap parameter around the origin and assume that the vector potential points in the azimuthal 
direction. That is, using polar coordinates, Δ(𝒓𝒓) = Δ(𝑟𝑟)𝑒𝑒𝑖𝑖𝑖𝑖 and 𝑨𝑨 = 𝐴𝐴𝒆𝒆θ, where 𝒆𝒆θ is the unit vector in 
the θ-direction. The latter means that ∇2𝑨𝑨 =  (𝛻𝛻2𝐴𝐴 − 𝐴𝐴 𝑟𝑟2⁄ )𝒆𝒆θ. We solve the equations numerically by 
using the Ricatti parametrization,  

𝑔𝑔�𝑅𝑅 =  �𝑁𝑁 0
0 −𝑁𝑁�� �1 + γγ� 2γ

2γ� 1 + γ�γ�,  

(6)  

where γ�(ϵ) = γ*(−ϵ) and 𝑁𝑁 = (1 − γγ�)−1. If we choose the spin-quantization axis to be along the in-
plane magnetic field, we need only solve for two components of 𝛾𝛾, and we may write  

γ(𝒓𝒓, θ) =  � 0 γ1(𝑟𝑟)
−γ2(𝑟𝑟) 0 � 𝑒𝑒𝑖𝑖θ. 

(7) 

Next, we make all quantities dimensionless by dividing eqs. (2) and (4) by the superconducting gap at 
𝑟𝑟 → ∞, Δ∞, and multiplying eq. (5) by 2𝑒𝑒ξ, where ξ = �𝐷𝐷 Δ∞⁄  is the diffusive superconducting 
coherence length. We define the dimensionless quantities ε� = ε Δ∞⁄ , ℎ�‖ = ℎ‖ Δ∞⁄ , Γ� = Γ Δ∞⁄ , Δ� =
Δ Δ∞⁄ , 𝑟̅𝑟 = 𝑟𝑟 ξ⁄ , and 𝐴̅𝐴 = 2𝑒𝑒ξ𝐴𝐴. To solve the equations numerically on an infinite domain, we also define 
𝑧𝑧 = 𝑟̅𝑟 (1 + 𝑟̅𝑟)⁄ .  

From eq. (2) we find that  



(1 − 𝑧𝑧)4
𝜕𝜕2γ1 2⁄

𝜕𝜕𝑧𝑧2 +  
(1 − 2𝑧𝑧)(1 − 𝑧𝑧)3

𝑧𝑧

𝜕𝜕γ1 2⁄

𝜕𝜕𝜕𝜕
−

(1 − 𝑧𝑧)2

𝑧𝑧2 γ1 2⁄ +  2𝑖𝑖�ε� + 𝑖𝑖Γ� ± ℎ�‖�γ1 2⁄ − 𝑖𝑖Δ� − 𝑖𝑖Δ�∗γ1 2⁄
2

+
2γ�1 2⁄

1 + γ1 2⁄ γ�2 1⁄
�
(1 − 𝑧𝑧)2γ1 2⁄

2  

𝑧𝑧2 − (1 − 𝑧𝑧4) �
𝜕𝜕γ1 2⁄

𝜕𝜕𝜕𝜕
�

2

�

−  𝐴𝐴�γ1 2⁄
1 − γ1 2⁄ γ�2 1⁄

1 + γ1 2⁄ γ�2 1⁄
�𝐴𝐴� −

2(1 − 𝑧𝑧)
𝑧𝑧

� = 0, 

(8) 

from eq. (4), we get  

Δ� =
1

2 log(2ω𝐷𝐷 Δ0⁄ ) � dε�
ω𝐷𝐷 Δ∞⁄

−ω𝐷𝐷 Δ∞⁄
ℜ �

γ1

1 + γ1γ�2
+  

γ2

1 + γ2γ�1
� tanh �

βε
2

�,  

(9) 

and from eq. (5), we get that  

(1 − 𝑧𝑧)4 𝜕𝜕2𝐴𝐴�
𝜕𝜕𝑧𝑧2 −  

(1 − 𝑧𝑧)2

𝑧𝑧2 𝐴𝐴� +
(1 − 2𝑧𝑧)(1 − 𝑧𝑧)3

𝑧𝑧
𝜕𝜕𝐴𝐴�
𝜕𝜕𝜕𝜕

=
1
κ2 �𝐴𝐴� −

1 − 𝑧𝑧
𝑧𝑧

� � dε� ℑ �
γ1γ�2

�1 + γ1γ�2�2 +  
γ2γ�1

�1 + γ2γ�1�2
 
� tanh �

βε
2

� ,
𝐸𝐸𝑐𝑐 Δ∞⁄

0 
 

(10) 

where κ is a dimensionless parameter which we set equal to 5 in all calculations. 

Having found the quasiclassical Green’s function, one can calculate the local density of states, and 
thereby the theoretical prediction for the current as measured by the STM. In terms of the Ricatti 
parameters, the local density of states reads 

ρ(𝐸𝐸) =
𝑁𝑁0

2
ℜ �

1 − γ1γ�2

1 + γ1γ�2
+

1 − γ2γ�1

1 + γ2γ�1
�. 

(11) 

Assuming a constant tunnelling transmission, we get that the differential conductance is  

d𝐼𝐼
d𝑉𝑉

= 𝐶𝐶 ∫ dε̅∞
−∞  ℜ �1−γ1γ�2

1+γ1γ�2
+ 1−γ2γ�1

1+γ2γ�1
� exp(ε−𝑒𝑒𝑒𝑒 𝑘𝑘B𝑇𝑇eff⁄ ) 

(1+exp(ε−𝑒𝑒𝑒𝑒 𝑘𝑘B𝑇𝑇eff⁄ ) )2  
, 

(12) 

where V is the applied bias voltage, kB is the Boltzmann constant and Teff is an experimental 
broadening parameter and C is a proportionality constant.   

The presence of the spin-splitting field ℎ‖ induces odd-frequency superconducting correlations. These 
correlations are characterized by �Tr�σ�𝑥𝑥�τ�x − 𝑖𝑖τ�𝑦𝑦�𝑔𝑔�𝐾𝐾�� > 0. However, unlike the even frequency 
correlations, the odd-frequency correlations vanish upon integration over ε and therefore require 
another correlation function compared to eq. (4). Here we use the correlation function obtained by 
multiplying the integrand with ε, 

Ψodd = −𝑖𝑖
16 ∫ dεω𝐷𝐷 Δ∞⁄

−ω𝐷𝐷 Δ∞⁄  Tr�σ�𝑥𝑥�τ�𝑥𝑥 − 𝑖𝑖τ�𝑦𝑦�𝑔𝑔�𝐾𝐾� ε = ∫ dεω𝐷𝐷 Δ∞⁄
−ω𝐷𝐷 Δ∞⁄ ℑ � γ1

1+γ1γ�2
− γ2

1+γ2γ�1
� tanh �βε

2
� ε. 

(13) 

This is equivalent to differentiating the anomalous Green’s function with respect to relative time (73). 



When calculating the electric current density, we can separate the contributions from the even-
frequency correlations and the odd-frequency correlations. In terms of the even-frequency retarded 
anomalous Green’s function, 

𝑓𝑓even =
𝛾𝛾1

1 + 𝛾𝛾1𝛾𝛾�2
+

𝛾𝛾2

1 + 𝛾𝛾2𝛾𝛾�1
, 

(14) 

and the odd-frequency retarded anomalous Green’s function, 

𝑓𝑓odd =
𝛾𝛾1

1 + 𝛾𝛾1𝛾𝛾�2
−

𝛾𝛾2

1 + 𝛾𝛾2𝛾𝛾�1
, 

(15) 

the electric supercurrent density can be written 

𝑗𝑗𝑠𝑠 = 𝑗𝑗𝑠𝑠,even + 𝑗𝑗𝑠𝑠,odd, 

(16) 

where 

𝑗𝑗𝑠𝑠,even = −𝑁𝑁0𝑒𝑒𝑒𝑒 �2𝑒𝑒𝑒𝑒 −
1
𝑟𝑟

� � dε
𝐸𝐸𝑐𝑐

−𝐸𝐸𝑐𝑐

ℑ�𝑓𝑓even𝑓𝑓even�tanh �
βε
2

�, 

(17) 

is the electric current density associated with the even-frequency correlations and 

𝑗𝑗𝑠𝑠,odd = 𝑁𝑁0𝑒𝑒𝑒𝑒 �2𝑒𝑒𝑒𝑒 −
1
𝑟𝑟

� � dε
𝐸𝐸𝑐𝑐

−𝐸𝐸𝑐𝑐

ℑ�𝑓𝑓odd𝑓𝑓odd�tanh �
βε
2

�, 

(18) 

is the electric current density associated with the odd-frequency correlations. 

 

Abrikosov vortex lattice of thin film Al 
In order to compare the typical Abrikosov vortex with the MTF vortex structure, we measured a zero-
bias conductance map in the same area as the map shown in Fig. 4A, but now with an applied 
magnetic field of 𝐵𝐵⊥ = 30 mT and 𝐵𝐵∥ = 0 T (Fig. S9A). The map shows several round vortices, which 
are likely influenced by the tip during scanning (fast scan direction: horizontal). We characterize the 
Abrikosov vortex structure by taking spectra along a horizontal line, plotted in Fig. S9B. We observe 
that the spectral gap reduces gradually towards the vortex core and can reproduce this trend by 
solving the self-consistent gap equation in the absence of in-plane fields (Fig. S9C), while keeping the 
other parameters the same as in Fig. 4E. The zero-bias conductance profile, as plotted in Fig. 4B, 
shows a much sharper peak, compared to the MTF vortex. 

 

In-plane magnetic field dependence on three thin Al films 
The measurement in Fig. 3C is repeated on two additional films with coverages of 11.7 ML, and 5.6 
ML, as shown in Fig. S10A-B. Additionally, we plot the extracted gap values as a function of 𝐵𝐵∥ in Fig. 
S10C, for each of the four film coverages presented in Fig. 3C and Fig. S10A-B. We find that the gap 
values are robust against 𝐵𝐵∥ fields, demonstrating that the MTF effect can be understood as the 
Zeeman shifting of two spin-polarized gap functions, without a modification of the gap value. We note 
that the presented spectrum at 𝐵𝐵∥ = 4.0 T in Fig. S10B is likely influenced by a nearby MTF vortex.  

 



Zero-bias conductance maps in in-plane and vector magnetic fields 
To ascertain the origin of the vortex structure in Fig. 6, we imaged the zero-bias conductance in large 
in-plane magnetic field (𝐵𝐵∥= 4 T) for a 5.6 ML Al film in an 800 nm x 500 nm image (Fig. S11A/B). By 
measuring the density of vortices, we can estimate the number of flux lines that penetrate the film due 
to an out-of-plane component. While the sparsity of objects is low in Fig. S11B, we estimate that the 
intervortex distance d is between 400 – 450 nm. Using Btilt =  �4 3⁄ Φ0 𝑑𝑑2⁄ , we find that the 
corresponding out-of-plane component is Btilt ~ 12 to 15 mT. The angle between the applied field (𝐵𝐵∥ = 
4 T) and the sample is therefore αtilt ~ 0.2°. We suspect that the placement of the Si wafer on the 
sample plate is the main contribution to this angle, for this particular sample. By measuring the zero-
bias conductance for the same area in a vector magnetic field of 𝐵𝐵∥ = 3 T and 𝐵𝐵⊥ = 30 mT, we expect 
a total out-of-plane component of either ~40 mT (B┴ + Btilt) or ~20 mT (B┴ - Btilt), depending on the 
orientation of the tilt. From the flux density in Fig. S11C, we conclude that B┴ and Btilt align, resulting in 
a higher vortex density. Comparable tilt angles are expected for all samples in this study. 

 

  



 
Fig. S1. Coverage calibration with room-temperature growth. (A) Constant-current image of Al 
islands grown on Si(111)-(7x7) after depositing Al for 12 minutes (Vs = 1 V, It = 10 pA, scale bar = 50 
nm, T ≈ 7 K). (B) Apparent height histogram of (A) with layer numbers assigned. Inset numbers: 
percentages for each layer thickness as extracted by flooding analysis.  

  



 
Fig. S2. Morphology of various coverages. Constant-current STM images of Al films with (A) 3.9 
ML, (B) 8.5 ML, and (C) 35.1 ML coverages (Vs = 1 V, It = 10 pA, scale bar = 50 nm, (A,B) T ≈ 30 mK 
and (C) T ≈ 7 K).  

  



 
Fig. S3. dI/dV comparison to QWS derived from DFT and ARPES. (A) Calculated QWS energies 
from DFT (gray), extracted from ref. (42, 43), and ARPES peak positions (orange), extracted by eye 
from ref. (44), for Al(111) films on Si(111) as a function of film thickness. (B-E) dI/dV spectra 
normalized by the total conductance I/V, obtained for four Al films with coverages of (B) 26.3 ML, (C) 
35.1 ML, (D) 11.7 ML and (E) 17.4 ML, where the arrows indicate the DFT energies in (A) (stabilized 
Vs = 2 V, It = 200 pA or 500 pA, Vmod = 5 mV, (B,C,E) T ≈ 30 mK and (D) T ≈ 7 K). 

  



 

Fig. S4. Spatial measurement of superconductivity. (A) Constant-current STM image of an Al film 
with 8.5 ML coverage (Vs = 100 mV, It = 10 pA, scale bar = 5 nm). (B) dI/dV spectra along a line 
across 8 ML and 9 ML regions and across the long-range periodicity (line indicated in (A); each 
spectrum is stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV). 

 



 
Fig. S5. Comparison of different fitting methods and broadening contributions. Example of a 
typical superconducting gap spectrum (blue dots) measured on an Al film with 8.5 ML coverage, 
compared to different models (red lines) (stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV). (A) Fit 
with the Maki equation, (B) a PN(E) broadening Maki equation, (C) a double Maki equation using two 
different gap sizes Δ1 and Δ2 (individual contributions in black dashed lines), and (D) a Maki-based 
anisotropic two-band model. The fitting parameters, indicated above each plot, are the gap size Δ, the 
Maki broadening ζ, the effective temperature Teff, the junction capacitance 𝐶𝐶J, the degree of anisotropy 

𝜀𝜀 = 𝑚𝑚𝑥𝑥
∗

𝑚𝑚𝑦𝑦
∗ − 1 and the effective mass 𝑚𝑚𝑖𝑖

∗ of the Al band in direction i, p0 = τ/μ, σ = δ/μ, χ = 𝑚𝑚∗ 𝑚𝑚𝑥𝑥
∗⁄ , τ is 

the coupling between bands, μ is the chemical potential, and δ is the energy offset between bands. 
The inset of (D) shows the resulting anisotropic gap structure. 



 
Fig. S6. Temperature calibration of the temperature dependent measurements made above 1 K. 
(A) Superconducting gap measurements as a function of STM temperature (see legend; artificially 
offset) on bulk V(111) (stabilized at Vs = 5 mV, It = 300 pA, Vmod = 100 μV). (B) Extracted Δ(T) fitted 
with the BCS equation (dashed line). (C) Superconducting gap measurements as a function of STM 
temperature (artificially offset) for a Sn film with an estimated coverage of 120-150 ML, grown on 
Si(111) (stabilized at Vs = 5 mV, It = 300 pA, Vmod = 100 μV). (D) Extracted Δ(T) fitted with the BCS 
equation (dashed line).  

 



 

Fig. S7. Temperature dependence of three Al films. (A-C) Temperature dependent spectra 
(artificially offset) fitted with the Dynes equation (stabilized at Vs = 5 mV, It = 300 pA, Vmod = 100 μV). 
(D-F) Extracted Δ(T) fitted with the BCS equation (dashed lines). The film coverages of (A,D) 6.3 ML, 
(B,E) 5.3 ML and (C,F) 4.2 ML yield a BCS ratio of 3.63 ± 0.02, 3.44 ± 0.02 and 3.75 ± 0.01 
respectively (see Fig. 2E).  



 
Fig. S8. Morphology and superconductivity after minimal annealing. (A) Constant-current image 
of the morphology of an 8.5 ML Al film after cold-growth and minimal annealing (transfer time of ~ 1 
minute; Vs = 2 V, It = 10 pA, scale bar = 50 nm, T ≈ 7 K). Inset: Constant-current STM image showing 
atomic resolution in a flat region (Vs = 3 mV, It = 500 pA, scale bar = 1 nm). (B) Spatially averaged 
superconducting gap fitted with the Maki equation (red line; parameters indicated above graph; 
stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV).  

  



 
Fig. S9. Abrikosov vortices. (A) Constant-contour dI/dV map with 𝐵𝐵⊥ = 30 mT (𝐵𝐵∥ = 0.0 T) for an 8.5 
ML film (height recorded at Vs = 10 mV, It = 10 pA; image taken with Vs = 0 mV and z-offset = 100 pm, 
Vmod = 50 μV, scale bar = 100 nm). (B) dI/dV spectra along a horizontal line across a vortex core 
(stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV). (C) Simulated dI/dV signal by solving the self-
consistent gap equation using ℎ∥/Δ∞ = 0, ξ = 42 nm, Γ = 0.001 Δ∞, κ = 5, and broadened with Teff = 
250 mK.  

  



 
Fig. S10. In-plane magnetic field dependence for two additional Al films. Evolution of the SC gap 
in in-plane magnetic field 𝐵𝐵∥ for film coverages of (A) 11.7 ML, and (B) 5.6 ML. Black lines are fits 
using a double-Maki fit with Zeeman splitting (stabilized at Vs = 3 mV, It = 200 pA, Vmod = 20 μV) (C) 
Extracted Δ for four Al coverages (also see Fig. 3C) as a function of 𝐵𝐵∥. Note that Δ stays 
approximately constant while the two spin-polarized gaps shift with respect to each other by ΔEz (see 
Fig. 3D) 

  



 
Fig. S11. Zero-bias conductance in large in-plane and vector fields. (A) Constant-current STM 
image of a 5.6 ML Al film and (B) simultaneously recorded constant-contour dI/dV map with 𝐵𝐵∥ = 4 T 
(𝐵𝐵⊥ = 0 mT). (C) Constant-contour dI/dV map with 𝐵𝐵⊥ = 30 mT and 𝐵𝐵∥ = 2.99 T (height profiles 
recorded at Vs = 10 mV, It = 10 pA; dI/dV maps taken with Vs = 0 mV and z-offset = 100 pm, Vmod = 50 
μV, scale bar = 50 nm).  
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Unlike ferromagnetism, antiferromagnetism cannot readily be included in the quasiclassical Keldysh theory

because of the rapid spatial variation in the directions of of the magnetic moments. The quasiclassical framework

is useful because it separates the quantum effects occurring at length scales comparable to the Fermi wavelength

from other length scales, and has successfully been used to study a wide range of phenomena involving both

superconductivity and ferromagnetism. Starting from a tight-binding Hamiltonian, we develop general quasi-

classical equations of motion and boundary conditions, which can be used to describe two-sublattice metallic

antiferromagnets in the dirty limit. The boundary conditions are applicable also for spin-active boundaries that

can be either compensated or uncompensated. Additionally, we show how nonuniform or dynamic magnetic

textures inuence the equations and we derive a general expression for observables within this framework.

DOI: 10.1103/PhysRevB.107.174503

I. INTRODUCTION

The quasiclassical Keldysh Green’s function technique

[1–5] is a powerful tool to study mesoscopic structures [5–24].

It is applicable to systems where the Fermi wavelength is

much smaller than all other length scales and can be used to

study a wide range of systems, including heterostructure with

multiple competing types of order, such as superconductivity

and ferromagnetism [6–12], both in and out of equilibrium. In

addition, the quasiclassical framework is versatile in regards

to sample geometry [18–20] and the details of external or

intrinsic elds, such as applied magnetic elds [22,23] or

spin-orbit coupling [15,21], whether they are time dependent

[9,13–15] or spatially inhomogeneous [11,20,24]. This makes

the quasiclassical framework especially useful to the eld of

superconducting spintronics [25], which aims to utilize super-

conductivity in the eld of spintronics. In spintronics, spin is

used as an information carrier rather than the electric charge

used in conventional electronics [26,27]. The combination of

superconductivity and magnetism is therefore at the core of

superconducting spintronics.

While the presence of a magnetic eld typically suppresses

superconductivity, the relationship between ferromagnets and

superconductors (SC) can be synergistic [8,25]. The interplay

between magnetic and superconducting orders may give rise

to spin-polarized superconductivity, which can transport spin

angular momentum with zero resistance [8,28], and the pres-

ence of superconductivity has also been shown to be benecial

for other central effects in spintronics, such as giving rise to

innite magnetoresistance [29].

Antiferromagnets (AFs) have many important advantages

over ferromagnets in the context of spintronics [30]. The al-

ternating magnetic moments mean that they are more robust

and impervious to external magnetic elds while creating

negligible magnetic stray elds of their own. As a result, they

are less intrusive to neighboring components. Moreover, the

resonance frequencies in AFs are on the order of terahertz

[31,32], which allows for very fast information processing.

The fact that spin transport has been shown to be long ranged

in AFs [33] also makes them promising and an active research

topic in spintronics.

Superconductivity may coexist with antiferromagnetism

[34–36], and AFs have a prominent role in the context of

high-Tc superconductivity [36–38]. Despite this, AFs are

much less studied in the eld of superconducting spintron-

ics compared to ferromagnets. Heterostructures composed

of superconductors and ferromagnets, including strongly

polarized ferromagnets [6], has been studied theoretically

in a wide range of systems [6–12], including in systems

with complex geometries [19,20]. On the other hand, while

antiferromagnetic-superconductor junctions have been stud-

ied theoretically [39–44], such studies are typically limited

to simple geometries and clean systems. This is because

the rapid variation of the magnetic moments in AFs means

that they, unlike ferromagnets, cannot readily be incorporated

into the quasiclassical framework used for normal metals.

The quasiclassical Keldysh theory separates the short-range

quantum effects from the long-range semiclassical dynamics,

thereby allowing the inclusion of long-range spatial and tem-

poral gradients. As such, it is desirable with a quasiclassical

framework that is applicable to systems with both supercon-

ductivity and AFs.

One approach, which has been used previously when

studying the superconducting proximity effect in antiferro-

magnetic metals (AFMs) [45–47], is to treat the AFM as

a normal metal. The reasoning is that the magnetic order

is compensated on the length scale of the superconducting

correlation length. Using this framework, Hübener et al. [45]

studied AFM/SC/AFM structures and found an anomalous

strong suppression of the proximity effect happening when

the thickness of the AFM exceeded around 6 nm. They argued

that the drop in superconducting critical temperature could

possibly be associated with the onset of an incommensurate

spin-density wave (SDW) state. However, based on the theory

presented in the present paper, the observed suppression is ex-

pected even without the SDW state. This is because Hübener
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et al. [45] also reported a mean free path of 5.3 nm for their

samples, and the theory presented here shows that even non-

magnetic impurities behave magnetically in the presence of

antiferromagnetic order. As such, conventional, spin-singlet

superconductivity can be expected to be suppressed in antifer-

romagnetic systems when they enter the diffusive regime, and

in particular more so than in diffusive normal metals. This

happens when the system size exceeds the mean free path,

which was exactly the case in Ref. [45].

Quasiclassical equations of motion for AFMs, but with-

out superconductivity, have been derived by Manchon [48].

This was done by dening sublattice-resolved Green’s func-

tion. Such Green’s functions can be treated quasiclassically

because, while the magnetic order varies rapidly in the an-

tiferromagnet, the Néel order varies slowly. More recently,

Bobkov et al. [49] derived a sublattice-resolved quasiclassical

theory for antiferromagnetic insulators with superconductiv-

ity. Other related types of magnetically ordered systems that

have been studied within quasiclassical theory are spiral ferro-

magnets [50,51] and SDW AFs [52,53]. Spiral ferromagnets

have compensated magnetic order similar to AFs. However,

in order for these to be treated quasiclassically, the spatial

modulation of the magnetic order must be slow compared

to the Fermi wavelength. SDW is also a state of matter with

spatial modulation of the magnetic order, typically formed by

itinerant particles with Fermi-surface nesting [54,55]. SDW

can also coexist with SC [54,56], and quasiclassical theory

has been developed to model systems with both SDW and

SC [52,53]. This is possible because the SDW state can be

modeled using a mean-eld approach with a slowly varying

SDW order parameter.

Here, we develop quasiclassical equations of motion for

two-sublattice AFMs with superconductivity and impurities,

as well as external elds and spin-orbit coupling, and where

all the parameters, including the direction of the Néel vector,

may be inhomogeneous in time and space, as long as it is not

rapidly varying on the atomic length scale. We also develop

boundary conditions for the diffusive regime, which work also

for spin-active interfaces that can be either uncompensated or

compensated. Because we consider antiferromagnetic metals,

we assume that the Fermi level is deep within the conduction

band compared to other energy scales except for the exchange

energy between localized spins and itinerant electrons, as

illustrated in Fig. 1. This exchange energy may be either

large or small compared to the distance between the Fermi

level and the edges of the conduction band. The quasiclassical

theory can therefore not be used to model heavy-fermion

antiferromagnetic superconductors, where the Fermi energy

is comparable to the superconducting gap [57]. On the other

hand, it is well suited to study heterostructures or other sys-

tems in which the Fermi level can be assumed to lie deep

within the conduction band.

Although our starting point is similar to that presented

in Refs. [48,49], except that we additionally consider the

other effects mentioned above, there are a few impor-

tant differences. Instead of equations for sublattice-resolved

Green’s functions, we derive equations for the conduction

band Green’s functions. This is possible because there is

no rapidly varying magnetic order for these Green’s func-

tions, just as there is no rapidly varying magnetic order for

FIG. 1. A sketch of the energy bands in an antiferromagnet,

where ξα± = −μα ±


(Jα )2 + (Kα )2. Here, α labels different materi-

als, µα is the chemical potential, Jα is the exchange coupling between

itinerant electrons and localized magnetic moments and Kα is the

kinetic energy andEα is the smallest difference between the Fermi

level and the edges of the conduction band. The gap between the

energy bands is 2|Jα|. This gap can be arbitrary within the quasi-

classical theory developed here, but Eα must be large compared to

other energies in the system, not including the gap.

sublattice-resolved Green’s functions. The reason why we

project onto the conduction band is that only states close

to the Fermi level contribute to the quasiclassical Green’s

function, and the Fermi level lies deep inside the conduction

band. As a result, we end up with fewer Green’s func-

tions to solve for. More importantly, however, it means that

the chemical potential drops out of the equations, similar

to how it drops out in Keldysh theory for normal metals.

Therefore, we can consistently let it be much larger than

other energies. This procedure, leaving only the conduction

band, means that the spin- and sublattice degrees of free-

dom are not independent. An important consequence of this

fact is that the effect of nonmagnetic impurities in AFMs

is similar to the effect of magnetic impurities in normal

metals.

We summarize the main results, outline how they are de-

rived, and describe the necessary assumptions in Sec. II. The

derivations are presented in Secs. III–XIV. This includes the

derivation of quasiclassical equations of motion, boundary

conditions for the diffusive regime and a general expression

for computing observables. Concluding remarks are given in

Sec. XV.

II. OUTLINE

The main results are equations for the isotropic part of

the quasiclassical Green’s function ǧαs and the matrix cur-

rent ǰ
α
, where α labels the materials in the junction. Under

the assumptions that the quasiclassical Green’s function is

approximately spherically symmetric and that the energy

difference between the Fermi level and the edges of the con-

duction band is larger than all other energy scales, except

174503-2
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possibly the exchange energy Jα , we nd in Sec. XI that ǧαs
and ǰ

α
solve

i∇̃ ◦ ǰ
α
+



τzε − V̌ α
s +

i(Jα )2

2ταimp(η
α )2

σzτzǧ
α
sσzτz, ǧ

α
s



◦

= 0, (1a)

ǰ
α
=− ǧαs ◦ ∇̃ ◦



Dα ǧαs


− ǧαs ◦


(Jα )2

2(ηα )2
σzτzǧ

α
sσzτz, ǰ

α



◦
, (1b)

where all the symbols are explained below. In the absence

of antiferromagnetism, Jα → 0, Eq. (1) reduces to the well-

known Usadel equation for normal metals [4]. In the limit

of very strong exchange coupling, such that (Jα/ηα )2 → 1,

the short-range correlations become negligible in the diffusive

limit, as we show in Sec. XI.

The itinerant electrons in an AFM are described by a

Hamiltonian including kinetic energy Kα , exchange energy to

the magnetic lattice Jα , chemical potential µα , as well as other

additional terms coming from superconductivity, impurity

scattering, external elds, or spin-orbit coupling. Equation (1)

is valid under the assumption that Kα at the Fermi level is

large compared to all additional energies such as the impurity

scattering rate and the superconducting gap. Note that Kα

need not be large compared to Jα . As a result, the fraction

(Jα )2/(ηα )2, where ηα =


(Jα )2 + (Kα )2, can take any value

between 0 and 1.

The second assumption behind Eq. (1) is that the system is

in the dirty regime. This means two things. First, it means

that the elastic impurity scattering rate 1/τimp is dominant

out of all the additional energies in the system, not including

Kα , Jα , and µα . Second, it means that the matrix current

ǰ
α
is small compared to the Fermi velocity. As we show in

Sec. XI, this is the case if the variation in ǧαs is small compared

to 1 over the length of the mean free path, either because

the mean free path is short or because the proximity effect

is weak.

To complete the theory for use in systems involving more

than one material, we derive the boundary condition

en · ǰ
α
=


T̂

αβ

l ◦ ǧβs


x
β

l



◦ T̂βα

l + i


Sαc
T
R̂lS

α
c , ǧ

α
s



◦, (2)

which are valid when the quasiclassical Green’s function is

isotropic also close to the interface. This is the case for in-

stance when the tunneling is weak. Equation (2) can be used

to model interfaces that are compensated or uncompensated,

magnetic or nonmagnetic, and conducting or isolating. In the

absence of antiferromagnetism, Eq. (2) reduces to the general-

ized Kupriyanov-Lukichev boundary condition for spin-active

boundaries [58,59].

In Sec. XIV, we derive a general expression for computing

observables, which can be used to compute quantities such as

densities and currents once ǧαs and ǰ
α
have been found. The

expression, Eq. (198), contains not only the contribution from

states captured by the quasiclassical Green’s function but also

a general expression for the contribution from states further

away from the Fermi level.

We present a detailed, self-contained derivation of Eqs. (1)

and (2), starting from a general tight-binding Hamiltonian

with a tunneling contact, introduced in Sec. III. The full

Green’s functions and their equations of motion are presented

in Sec. IV. Impurity averaging is performed in Sec. V, where

FIG. 2. Sketch of a plane in material α for the case of a square

lattice. Each unit cell contains two orbitals. One is located at sublat-

tice A, xαn , and one is located at sublattice B, xαn + δα .

we derive the impurity self-energy to second order in the

impurity potential. This is valid as long as the impurity po-

tential is weak, but since the self-energy depends only on

the isotropic part of the Green’s function, effects such as

skew scattering [60] would require going to third order. In

Sec. VI, we use the tunneling Hamiltonian to remove the

intermaterial Green’s functions from the equations of motion.

In Sec. VII we Fourier transform in relative coordinates, and

it is taken into consideration both that the system is dened

on a discrete lattice and, more importantly, different matrix

elements correspond to different relative spatial positions be-

cause of the relative displacement between the two sublattices.

In Sec. VIII we transform the Green’s functions into the basis

of the antiferromagnetic energy bands, and thereby extract the

conduction band. From this, we carefully dene the quasiclas-

sical Green’s functions in Sec. IX and use them to remove

higher-order spatial derivatives from the gradient expansion.

Next, in Sec. X, we derive the quasiclassical expression for

the impurity scattering and show how it is modied by the

antiferromagnetic order. The main results are then derived

in Sec. XI and Sec. XII. Finally, in Sec. XIII we show

how the equations are inuenced by nonuniform magnetic

textures.

III. HAMILTONIAN

We consider a system composed of two materials, which

we label material L and material R, connected through a

tunneling contact. The Hamiltonian is

H(t ) = HL(t )+HR(t )+HT . (3)

Here,

Hα (t ) =


n,m∈Aα

cα†n


Hα
0 (t )+V α (t )



nm
cαm, (4)

where α ∈ {L,R} denotes material, Aα is the set of unit cells

in material α. As sketched in Fig. 2, each unit cell, labeled

by a 3-tuple n, contains one orbital associated with the A-

sublattice at position xαn , and one orbital associated with the

B-sublattice at position xαn + δα . We let the annihilation op-

erators for the orbitals with spin σ at unit cell n in material
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α at the A- and B-sublattice be cαnAσ and cαnBσ , respectively,

and dene

cα†n =


c
α†
nA↑c

α†
nA↓c

α†
nB↑c

α†
nB↓c

α
nA↓ − cαnA↑c

α
nB↓ − cαnB↑



. (5)

We include only nearest-neighbor hopping and assume that

this hopping is only between the two different sublattices.

The hopping parameter tα , chemical potential µα , and the

exchange energy Jα between localized spins and conduct-

ing electrons are collected in Hα
0 . The full electrochemical

potential need not be constant. However, we take µα to be

constant. Any deviation in the electrochemical potential away

from µα is included in V α . If σ is the vector of Pauli matrices

in spin-space, τ are the Pauli matrices in Nambu-space, and ρ

are the Pauli matrices in sublattice space, then



Hα
0



nm
(t )

= −
1

4
tα (ρx + iρy)τzχN.N.



xαn − δα − xαm


−
1

4
tα (ρx − iρy)τzχN.N.



xαn + δα − xαm


−
1

2
δnmμ

ατz

−
1

2
δnmJ

αρzσ ·



1+ ρz

2
n


xαn , t


+
1− ρz

2
n


xαn + δα, t




,

(6)

where n = (sin θ cosφ, sin θ sin φ, cos θ ) is the direction of

the Néel vector, and χN.N(x) is a nearest neighbor charac-

teristic function, which is 1 if x is a nearest neighbor vector

between a A-lattice point and a B-lattice point and 0 otherwise.

Because the direction Néel vector generally is inuenced by

the dynamics of the itinerant electron, it should be solved for

self-consistently. This can be done with the Landau-Lifshitz-

Gilbert equation [30].

The term proportional to V α in Eq. (4) contains all

additional effects that may be present in the model, such as su-

perconductivity, external spin-splitting elds and corrections

to the hopping term from the vector potential or spin-orbit

coupling. Additionally, V α importantly also determines the

spatial geometry of material α by a potential that is zero

inside the material and very large outside the material. We can

therefore let the lattice Aα run to innity in all spatial direc-

tions, meaning that Aα = Z3, where Z is the set of integers,

while still having the system be conned to a nite region of

space. Note that the potential can also be spin dependent, for

instance if there is a spin-splitting eld in the neighboring re-

gion. This will inuence the boundary condition we derive in

Sec. XII.

Finally, the tunneling Hamiltonian is

HT =


n,m∈Z3

cL†n T LR
nm cRm =



i, j∈Z3

cR†n T RL
nm cLm, (7)

where T RL and T LR = (T RL )† are matrices satisfying T LR =

diag(T, iσyT
∗iσy) for some 4× 4 matrix T .

We rotate spin space such that the Néel vector is always

parallel to the z axis. To do this we dene the rotation matrix

R(x, t ) = exp



−i
θ [n(x, t )× ez] · σ

2 sin θ



, (8)

and

c̃αn (t ) =



1+ ρz

2
R†


xαn , t


+
1− ρz

2
R†


xαn + δα, t




cαn , (9)

such that

Hα (t ) =


n,m∈Z3

c̃α†n (t )


H̃α
0 (t )+ Ṽ α (t )



nm
c̃αm(t ), (10)

where, if we assume that n varies slowly in space over the

distance of neighboring lattice points,



H̃α
0



nm
(t ) = −

1

2
δnm[J

αρzσz + μτz]+
1

2
Kα
nmτz

−
τz

2



Kα
nm



xαn − xαm


+


δαρB, K
α
nm



· (R†∇R)


xαn , t


. (11)

where the kinetic term is

Kα
nm = −

tα

2



(ρx + iρy)χN.N.



xαn − δα − xαm


+ (ρx − iρy)χN.N.



xαn + δα − xαm


(12)

Finally, we also dene the projection operators in sublattice

space,

ρA =
1+ ρz

2
and ρB =

1− ρz

2
, (13)

for ease of notation.

IV. GREEN’S FUNCTIONS AND EQUATIONS OF MOTION

In this section, we dene the full Green’s functions. These

are the starting point of our derivation and will later be

used to dene the quasiclassical, impurity-averaged conduc-

tion band Green’s functions, which are the objects of the

nal equations. To obtain the nal equations we must rst

derive the equation of motion for the full Green’s function.

These are called the Gor’kov equations and are derived in

this section.

The retarded, advanced, and Keldysh Green’s functions are

dened respectively as

ĜR,αβ
nm (t1, t2) = −iτz



c̃αn (t1), c̃
β†
m (t2)



θ (t1 − t2), (14a)

ĜA,αβ
nm (t1, t2) = +iτz



c̃αn (t1), c̃
β†
m (t2)



θ (t2 − t1), (14b)

ĜK,αβ
nm (t1, t2) = −iτz



c̃αn (t1), c̃
β†
m (t2)



. (14c)

These are 8× 8 matrices, and are collected in larger 16×

16 matrices,

Ǧαβ
nm =



ĜR,αβ
nm ĜK,αβ

nm

ĜA,αβ
nm



, (15)

and even larger 32× 32 matrices,

Ğnm =



ǦLL
nm ǦLR

nm

ǦRL
nm ǦRR

nm



. (16)

We use the notation that ·̂ indicates a nontrivial matrix

structure in Nambu-space, ·̌ indicates a nontrivial structure

in Keldysh-space, and ·̆ indicates a nontrivial structure in

material-space.
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In order to derive the equations of motion, we use that any

operator A evolves in time according to

∂t

∂A
= i[H,A]+



∂A

∂t



H

. (17)

From this, together with the relation [AB,C] = A{B,C}−
{A,C}B, we nd

∂ c̃αn

∂t
= − 2i



m∈Z3



H̃α
0 (t )+ Ṽ α (t )



nm
c̃αm − i



m∈Z3

T̃ αβ
nm c̃βm

− [ρA(R
†Ṙ)(xn, t )+ ρB(R

†Ṙ)(xn + δ, t )]c̃αn , (18)

where β = α, and

∂ c̃α†n

∂t
= 2i



m∈Z3

c̃α†m


H̃α
0 (t )+ Ṽ α (t )



mn
+ i



m∈Z3

T̃ αβ
nm c̃βm

+ c̃α†n [ρA(R
†Ṙ)(xn, t )+ ρB(R

†Ṙ)(xn + δ, t )]. (19)

From this, we derive the Gor’kov equations,

iτz
∂Ğ

∂t
− ̆ • Ğ = δ(t1 − t2)δnm, (20a)

∂Ğ

∂t 
iτz + Ğ • ̆ = −δ(t1 − t2)δnm, (20b)

where

̆ =



ĤL
0 + V̌ L T̂ LR

T̂ RL ĤR
0 + V̌ R



, (21)

and


Ĥα
0



nm
(t1, t2) =



Kα
nm − δnm[J

αρzσzτz+μ]


δ(t1 − t2), (22a)

(T̂ αβ )nm(t1, t2) = T̃ αβ
nm τzδ(t1 − t2), (22b)

V̌ α
nm(t1, t2) =



̌α
inel



nm
(t1, t2)+



2Ṽ α
nm(t )

− τz


Kα
nm



xαn − xαm


+


δαρB, K
α
nm



·(R†∇R)


xαn , t1


−i[ρA(R
†Ṙ)(xn, t1)+ ρB(R

†Ṙ)(xn + δ, t )]

× δnm


τzδ(t1 − t2). (22c)

We have added in V̌ α
nm a term, which models inelastic pro-

cesses ̌α
inel. The bullet product between two matrix-valued

functions, A and B, is dened as

(A • B)nm(t1, t2) =

ˆ ∞

−∞
dt


l∈Z3

Anl (t1, t )Blm(t, t2). (23)

We also dene the circle-product to be the integral over time,

(A ◦ B)(t1, t2) =
ˆ ∞

−∞
dtA(t1, t )B(t, t2). (24)

From Eq. (20) we also get the Dyson equations,

Ğ = Ğ0 + Ğ0 • δ̆ • Ğ, (25a)

Ğ = Ğ0 + Ğ • δ̆ • Ğ0, (25b)

if ̆ = ̆0 + δ̆ and Ğ0 solves

iτz
∂Ğ0

∂t1
− ̆0 • Ğ0 = δ(t1 − t2)δnm, (26a)

∂Ğ0

∂t2
iτz + Ğ0 • ̆0 = −δ(t1 − t2)δnm. (26b)

Equation (25) can be derived by taking bullet products of

Eqs. (26a) and (26b) with Ğ from the left and right, respec-

tively, and using that A • (∂B/∂t1) = −(∂A/∂t2) • B when

limt→±∞ A(t1, t )B(t, t2) = 0.

V. IMPURITY AVERAGING

In this section, we average over impurities and identify

the self-energy, which relates the impurity-averaged Green’s

function to the Green’s function in the absence of impurities.

The impurity-averaged Green’s function can then be found by

replacing the impurity potential in the Gor’kov equations with

this self-energy. We determine this self-energy to second order

in the impurity potential. This is valid under the assumption

that the impurity potentials are weak, although the number

of impurities may be large. By not going to third order, the

self-energy depends only on the isotropic part of the Green’s

function and therefore does not capture effects such as skew

scattering [60].

Let mαX be the number of impurities in material α on

sublattice X ∈ {A,B}. Next, we assume that the impurity po-

tentials are local and that the potential strength and position of

the ith impurity in material α on sublattice X areU αX
i and rαXi ,

respectively. The self-energy term from the impurity potential

is then

V̆ imp
nm = δnmδ(t1 − t2)

×


X∈{A,B}



mLX

i=1 ρXU
LX
i δnrLXi

mRX

i=1 ρXU
RX
i δnrRXi



.

(27)

Next, we dene the impurity average as the sum over all

possible impurity locations and impurity potential strengths,

weighted by some normalized distribution function pimp :

{Ui}, {ri} → R, where {Ui} and {ri} denote the set of potential

strengths and locations, respectively. That is,

Aimp =


α∈{L,R}



X∈{A,B}

mαX



i=1

ˆ ∞

−∞
dU αX

i

×


rαXi ∈Z3

pimp({Ui}, {ri})A({Ui}, {ri}). (28)

We do not specify pimp, but we assume it is such that impuri-

ties are independently and uniformly distributed. By assuming

that they are uniformly distributed in space, we have that

δnrαXj imp = 1/Nα = nαXimp/m
αX , where Nα is the number of

unit cells in material α and nαXimp = mαX/Nα is the impurity

density on sublattice X in material α. The assumption that im-

purities are independent means that U αX
i δnrαXi U

βY
j δ

mr
βY
j
imp =

U αX
i δnrαXi impU βY

j δ
mr

βY
j
imp if i = j, α = β or X = Y . Fi-

nally, we also assume that the strengths and locations
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of impurities are uncorrelated, such that U αX
i δnrαXi imp =

U αX
i impδnrαXi imp, and that the impurities on each sublattice

and material are identically distributed, such that U αX
i imp =

U αX
j imp =: U αX imp for all i and j.

To nd how the impurity-averaged Green’s function,

Ğimp := Ğimp is related to the Green’s function in the ab-

sence of impurities, Ğ0, we take the impurity average of

Eq. (25a) with δ̆ = V̆ imp to obtain

Ğimp = Ğ0 + Ğ0 • V̆ imp • Ğimp. (29)

We want an equation on the form

Ğimp = Ğ0 + Ğ0 • ̆imp • Ğimp. (30)

That is, we want to remove Ğ, which depends on the specic

realizations of the impurity conguration. To nd ̆imp to

second order in V̆ imp, we again set δ̆ = V̆ imp and insert

Eq. (25a) twice into Eq. (29) to obtain

Ğimp = Ğ0 + Ğ0 • V̆ impimp • Ğ0

+ Ğ0 • V̆ imp • Ğ0 • V̆
impimp • Ğ0

+ Ğ0 • V̆ imp • Ğ0 • V̆
imp • Ğ0 • V̆

imp • Ğimp. (31)

We need Ğ0 as a function of Ğimp to get Eq. (30). This can be

found to the appropriate order in V̆ imp in inserting Eq. (25a)

with δ̆ = V̆ imp once into Eq. (29) and solving for Ğ0, giving

Ğ0 = Ğimp − Ğ0 • V̆ impimp • Ğ0

− Ğ0 • V̆ imp • Ğ0 • V̆
imp • Ğimp. (32)

In order to nd a self-consistent expression for the impurity

self-energy ̆imp as a function of V̆ imp and Ğimp, we insert the

expression for Ğ0 iteratively into Eq. (31). By comparing the

result to Eq. (30), this gives that, to second order in V̆ imp,

̆imp = V̆ impimp + V̆ imp • Ğimp • V̆
impimp

− V̆ impimp • Ğimp • V̆ impimp. (33)

Using the properties of pimp, we see that the rst-order term



̆
(1)
imp(t1, t2)



nm

= [V̆ impimp(t1, t2)]nm = δnmδ(t1 − t2)

×


X∈{A,B}



nLXimpρX ULX imp

nRXimpρX URX imp



(34)

is an energy shift that may be sublattice dependent if the num-

ber or strength of impurities is different on the two sublattices.

It may in general also be spin dependent if the impurities are

magnetic, meaning thatU αX
i has a nontrivial structure in spin

space. Here we assume that the impurities are not magnetic.

Nevertheless, we shall see in Sec. X that they will have an

effective magnetic component in the nal equations.

To evaluate the second-order term,

̆
(2)
imp = V̆ imp • Ğimp • V̆

impimp

− V̆ impimp • Ğimp • V̆ impimp. (35)

Note that the assumption that the impurities are independent

means that the contributions with different impurities to the

left and right of the Green’s function cancel. Hence,



̆
(2)
imp(t1, t2)

αβ

nm
= δαβ



X∈{A,B}

mαX



i=1



ρX


Ǧαα
imp



nm
ρX


U αX
i δnrαXi U αX

i δmrαXi



imp
− ρX



Ǧαα
imp



nm
ρX


U αX
i δnrαXi



imp



U αX
i δmrαXi



imp



= δαβ



X∈{A,B}

δnmn
αX
impU

XαUXαimpρX


Ǧαα
imp



nn
ρX − δαβ



X∈{A,B}

nαXimp

Nα
UXα2impρX



Ǧαα
imp



nm
ρX . (36)

We can neglect the second term because Nα is large and the

amplitude of the Green’s function decreases as a function

of relative distance in the presence of impurities, as will be

shown later. Thus, to second order the impurity self-energy is

[̆imp(t1, t2)]
αβ
nm = δαβδnm



X∈{A,B}

nαXimp(ρX U
Xαimp

+ UXαUXαimpρX


Ǧαα
imp



nn
(t1, t2)ρX ).

(37)

From here on we drop the subscript on the impurity averaged

Green’s function, such that Ğimp → Ğ.

VI. TUNNELING

In order to get closed equations for ǦLL and ǦRR, we must

rst remove ǦLR and ǦRL. In this section, we do this by

treating the tunneling self-energy as the perturbation in the

Dyson equation. However, we note that the derived effective

tunneling self-energy is still of innite order in the tunneling

amplitudes T̂ LR.

Let

T̆ =



T̂ LR

T̂ RL



, (38)

and let Ğ0 be the Green’s function with T̂ RL = T̂ LR =

0, meaning that it solves Eq. (26) with δ̆ = ̆ − T̆ =

diag(̌LL, ̌RR). Here δ̆ includes the impurity self-energy

term obtained from the impurity average above. Note that

this means that ǦRR
0 still depends on ǦLL. This is because

ǦRR
0 depend on ǦRR through the impurity self-energy found

in Sec. V, and ǦRR depend on ǦLL. For the same reason ǦLL
0

depends on ǦRR.

From the Dyson equation, (25), we have that\vskip-3pt

Ğ = Ğ0 + Ğ0 • T̆ • Ğ, (39a)

Ğ = Ğ0 + Ğ • T̆ • Ğ0. (39b)
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From the upper-right block of Eq. (39a) we have that

ǦLR = ǦLR
0 + ǦLR

0 • T̂ RL • ǦLR + ǦLL
0 • T̂ LR • ǦRR

= ǦLR
0 •



iτz
∂ǦRR

∂t
− ̌RR • ǦRR − T̂ RL • ǦLR



+ ǦLR
0 • T̂ RL • ǦLR + ǦLL

0 • T̂ LR • ǦRR

= −



∂ǦLR
0

∂t 
iτz+ǦLR

0 • ̌RR



• ǦRR + ǦLL
0 • T̂ LR • ǦRR

= ǦLL
0 • T̂ LR • ǦRR, (40)

where we used Eq. (26) in the last equality.

Doing the same for ǦLR, and from similar calculations

using Eq. (39b) we nd that

ǦLR = ǦLL
0 • T̂ LR • ǦRR = ǦLL • T̂ LR • ǦRR

0 , (41a)

ǦRL = ǦRR
0 • T̂ RL • ǦLL = ǦRR • T̂ RL • ǦLL

0 . (41b)

Inserting this into the Gor’kov equation, we can remove

ǦRL and ǦLR and get a block-diagonal self-energy,

̆ = H̆0 + V̆ + ̆imp + ̆T , (42)

where

H̆0 =



ĤL
0

ĤR
0



, (43a)

V̆ =



V̌ L

V̌ R



, (43b)

̆T =



T̂ LR • ǦRR
0 • T̂ RL

T̂ RL • ǦLL
0 • T̂ LR



. (43c)

VII. FOURIER TRANSFORM AND WIGNER

COORDINATES

In the quasiclassical framework, functions vary slowly with

the center-of-mass (COM) coordinates, and quickly with the

relative coordinates. It is therefore useful to Fourier transform

in the relative coordinates to obtain functions of momentum,

energy, COM time, and COM position, also known as Wigner

coordinates. The Fourier transform in relative time reads

Ft (A)(T, ε) =

ˆ ∞

−∞
dtA(T + t/2,T − t/2)eiεt , (44)

and for the Fourier transform in relative position we use

Fr (A)s(k, x
α
n s) =



m∈Z3

e−iρBk·δ
α

A(n+m)ne
iρBk·δ

α

e−ik·xαm . (45)

This is is a three-dimensional discrete-time Fourier transform

(DTFT), and the inverse transform is given by

F

−1
r (A)(n+m)n = V α

e

ˆ

♦α

d[3]k

(2π )3
eiρBk·δ

α

A


k, xαn


e−iρBk·δ
α

eik·x
α
m ,

(46)

where V α
e is the volume of the unit cell and ♦α is the rst

Brillouin zone in material α. Note that xαn in Eq. (45) is not

exactly the COM position, since the COM position for term m

on the right is (xαn + xαm)/2.

We use the same symbols as before to denote the bullet and

circle products in the Wigner coordinates, meaning that they

satisfy

Fr[Ft (A)] • Fr[Ft (B)] = Fr[Ft (A • B)] (47)

and

Ft (A) ◦ Ft (B) = Ft (A ◦ B). (48)

Thus, the Gor’kov equations in the Wigner coordinates read

τzε ◦ Ğ− ̆ • Ğ = 1, (49a)

Ğ ◦ τzε − Ğ • ̆ = 1. (49b)

The circle product in the Wigner product is the same as in

continuous models for normal metals [5,61],

A ◦ B = exp



i

2
∂Aε ∂

B
T −

i

2
∂AT ∂

B
ε



AB, (50)

where the superscripts on the differential operators denote

which function they act on. The spatial part of the bullet prod-

uct, on the other hand, is different, and there are three reasons

for this. First, since we are working on a discrete lattice, we

cannot Taylor expand, which is how the series expansion in

differential operators is achieved in Eq. (50). Second, since we

are working with two sublattices that are located differently in

space, the COM positions and relative positions are different

for different matrix elements. Third, the COM position is not

set constant in the way we have dened the Fourier trans-

form in Eq. (45). Nevertheless, the bullet product can still

be written as a series of differential operators of increasing

order. To derive the explicit series expansion, one can use

the Newton forward difference equation, which is the discrete

analog to the Taylor series expansion. The zeroth-order term

is the same, namely just the normal matrix product, and we

will end up keeping only the zeroth-order terms, except for

the kinetic energy term, the tunneling term, and the potential,

which is large outside the material. We will evaluate these

terms explicitly when considering the boundary condition.

Note, however, that we cannot neglect the higher-order terms

at this stage because the Green’s function is strongly peaked

in momentum space.

To evaluate Ĥα
0 • Ǧαα and Ǧαα • Ĥα

0 in Wigner coordi-

nates, note that

Fr[A • B]


k, xαn


=


m∈Z3

F[A]


k, xαm + xαn


◦ e−iρBk·δ
α

B(n+m)ne
iρBk·δ

α

e−ik·xαm . (51)

Hence, as Ĥα
0 does not depend on COM-position,

Ft



Fr



Ĥα
0 • Ǧαα



k, xαn


= Ĥα
0 (k)Ǧ

αα


k, xαn


. (52)

Here,

Ĥα
0 (k) = ρxK

α (k)− (Jαρzσzτz + μ), (53)

and

Kα (k) = −


δi∈N.N.

tα cos(k · δi ) (54)

where the sum goes over all the six nearest-neighbor-

displacement vectors.
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Interchanging the order, we nd that

Ft



Fr



Ǧαα • Ĥα
0



= ǦααĤα
0

−
1

2



δi∈N.N.

(RǦ
αα ) · (δi + δα )(ρx + iρy)t

αe−ik·δi

−
1

2



δi∈N.N.

(RǦ
αα ) · (δi − δα )(ρx − iρy)t

αe−ik·δi (55)

where the symbols on the right-hand side denote functions of

Wigner coordinates and the discrete nite difference operator

is dened as

xαm ·RǦ
αα


k, xαn


= Ǧαα


k, xαn + xαm


− Ǧαα


k, xαn


. (56)

The nite difference is only well dened when xαm is a lattice

vector, meaning that xαm is a displacement vector from one unit

cell to another. However, we can dene

δi ·RǦ
αα


k, xαn


=


Ǧαα


k, xαn + 2δi


− Ǧαα


k, xαn


/2.

(57)

This is possible because we assume that 2δi is a lattice vector

when δi is a nearest-neighbor-displacement vector. With this,

δi ·RǦ
αα


k, xαn


+ δα ·RǦ
αα


k, xαn


= (δi + δα ) ·RǦ
αα


k, xαn


+ 1
2
Ǧαα



k, xαn + 2δi


+ 1
2
Ǧαα



k, xαn + 2δα


− Ǧαα


k, xαn + δi + δα


. (58)

The last three terms are equal to |δi − δα|2/2 times the second-

order central difference of Ǧαα , so they are negligible under

the assumption that the Green’s function changes slowly as

a function COM position compared to the interlattice spac-

ing. By the same reasoning we also approximate (−xαm) ·

RǦ
αα = −xαm ·RǦ

αα , since the difference is equal to the

|xαm|
2 multiplied by the second-order derivative of Ǧαα . With

this we have

Ft



Fr



Ǧαα • Ĥα
0



= ǦααĤα
0

+ i(RǦ
αα ) · (ρx∇kK

α + δαρyK
α ).

(59)

The dot product in the last term must be interpreted in the

following sense: If ∇kK
α = A1δ1 + A2δ2 + A3δ3, where δ1,

δ2 and δ3 are three different, linearly independent, nearest-

neighbor-displacement vectors, then

(RǦ
αα ) · ∇kK

α =

3


i=1

δi · (RǦ
αα )Ai. (60)

VIII. EXTRACTING THE CONDUCTION BAND

The main idea behind the quasiclassical theory is that most

of the interesting physics happens close to the Fermi surface.

Therefore, it is of interest to isolate the contribution from

states close to the Fermi surface. In our model there are two

energy bands that are not overlapping, so only one of these

can pass through the Fermi surface. In real materials, it is not

always the case that the energy bands are not overlapping. It

is sufcient that the energy bands are not overlapping near the

Fermi surface.

To separate the two bands, we must diagonalize Ĥα
0 . We

nd that

Ĥα
0 = SαDα (Sα )T , (61)

where

Dα = diag(ξα−, ξ
α
−, ξ

α
−, ξ

α
−, ξ

α
+, ξ

α
+, ξ

α
+, ξ

α
+) (62)

and (Sα )T denotes the transpose of

Sα =
1

√
2ηα

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

−σ0 0 σ0 0

σ0 0 σ0 0

0 −σ0 0 σ0
0 σ0 0 σ0

⎞

⎟

⎟

⎠

s̄α

−

⎛

⎜

⎜

⎝

σz 0 σz 0

σz 0 −σz 0

0 −σz 0 −σz
0 −σz 0 σz

⎞

⎟

⎟

⎠

sα

⎤

⎥

⎥

⎦

, (63)

where σ0 is the 2× 2 identity matrix, ηα =


(Jα )2 + (Kα )2,

ξα± = −μα ± ηα , s̄α = (sα+ + sα−)/2, and sα = (sα+ − sα−)/2,

with sα± =
√
ηα ± Jα .

Next, we dene


Ǧαα
−− Ǧαα

−+

Ǧαα
+− Ǧαα

++



= (Sα )T ǦααSα. (64)

We want an equation for the Green’s function associated with

the energy band, which crosses the Fermi surface. This can

be either Ǧαα
−− or Ǧαα

++. Here we choose Ǧαα
−−. To derive this

equation, we rst nd that

(Sα )Tρx∇kK
αSα = ∇kD+

Jα∇kη
α

Kα

⎛

⎜

⎜

⎝

0 0 σz 0

0 0 0 −σz
σz 0 0 0

0 −σz 0 0

⎞

⎟

⎟

⎠

(65)

and

(Sα )T iρyS
α =

⎛

⎜

⎜

⎝

0 0 −σ0 0

0 0 0 −σ0
σ0 0 0 0

0 σ0 0 0

⎞

⎟

⎟

⎠

. (66)

Additionally, we continue to use τz to denote the third Pauli

matrix in Nambu space after transforming to the band basis,

which means that

(Sα )T τzS
α =

⎛

⎜

⎜

⎝

σ0 0 0 0

0 −σ0 0 0

0 0 σ0 0

0 0 0 −σ0

⎞

⎟

⎟

⎠

=



τz 0

0 τz



. (67)

Transforming the rst Gor’kov equation to the AFM en-

ergy band basis and extracting the block corresponding to the

conduction band, we get

τzε ◦ Ǧαα
−− − ξα−Ǧ

αα
−− −



̌α − Ĥα
0



• Ǧαα


−− = 1, (68)

where ̌α is the block of ̆, given by Eq. (42), corresponding

to material α and the subscript on the last term on the left-hand

side means that one should take the upper left block in the
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FIG. 3. A sketch of the integration decomposition introduced by

Eilenberger [3].

conduction band basis. That is, for a general matrix A in the

sublattice basis,


A−− A−+

A+− A++



= (Sα )T ASα. (69)

The second Gor’kov equation becomes

Ǧαα
−− ◦ τzε − ξα−Ǧ

αα
−− − i∇kξ

α
− ·RǦ

αα
−−

−
iJα∇kη

α

Kα
·RǦ

αα
−+τzσz − Kαδα ·RǦ

αα
−+

−


Ǧαα •


̌α − Ĥα
0



−− = 1. (70)

IX. QUASICLASSICAL GREEN’S FUNCTIONS

In this section, we derive the quasiclassical equations of

motion. To do so, we must integrate the Green’s function

over momenta. Note that since we only want the contribution

from states close to the Fermi surface, we cannot integrate

over all momenta, but must instead integrate over a contour

close to the Fermi surface. While it is true that the Green’s

function will be strongly peaked around the Fermi surface,

the contribution from far away from the Fermi surface is not

negligible. This is because the retarded and advanced Green’s

function goes as 1/ξα− far away from the Fermi surface.

Observables are given as integrals over all momenta. To

extract the quasiclassical contribution, one must decompose

this integral into one part, which includes the contribution

close to the Fermi surface and one part, which includes the

rest. By using the Eilenberger decomposition [3], as illus-

trated in Fig. 3, the contribution from the Fermi surface is

included as two closed contours in the complex plane, which

simplies the calculations. We show how observables can be

expressed as a quasiclassical contribution and a rest term in

Sec. XIV.

To get the quasiclassical equations of motion, we must

integrate the Gor’kov equations over the closed contours. This

allows us to simplify many of the bullet products when the

self-energy varies slowly as a function of COM position, as

we show in this section. Note that the tunneling term and

the potential, which is large outside of the material change

rapidly as a function of COM position. These can therefore

not be simplied in the same way. However, these terms are

only nonzero at the interface. In this section, we consider

only positions inside the material and therefore ignore these

terms. We will return to them when deriving the boundary

conditions. Hence, as long as we consider COM positions

away from the boundaries,

̌α − Ĥα
0 = V̌ α + ̌α

imp. (71)

To simplify the bullet product, we can use the gradient

expansion. However, the gradient expansion is more com-

plicated in our case compared to the continuous case. This

is because we are working with two discrete sublattices. To

derive the gradient expansion for discrete lattices, we can use

the Newton forward difference equation. If the basis vectors

are {vα1 , v
α
2 , v

α
3 }, such that xαm = am1 v

α
1 + am2 v

α
2 + am3 v

α
3 , with

integers am1 , a
m
2 , and a

m
3 , then

A


xαn + xαm


=


j∈N3
0



xαm


j

j!

3


i=1





sgn


ami


vαi



·R


vαi





 ji

A


xαn


,

(72)

where j = ( j1, j2, j3) is a multi-index, j! = j1! j2! j3! and


xαm


j
=


am1 v
α
1



j1



am2 v
α
2



j2



am3 v
α
3



j3
, (73a)



ami v
α
i



ji
= sgn



ami
 ji


vαi







ami



− (n− 1)


ami v
α
i







ji−1
.

(73b)

Hence, we see from Eq. (51) that the bullet product can be

written as a series expansion in derivative operators,

A • B = A ◦ B+ [RA] ◦ (i∇kB− [δαρB, B])+ · · · , (74)

where the circle product in the second term on the right-hand

side includes a dot product, which must be interpreted accord-

ing to Eq. (60). Equation (74) is the gradient expansion. The

gradient expansion is useful because the higher-order terms

can be neglected after a proper integral over momenta.

We dene the quasiclassical Green’s function

ǧα =
i

π

˛

dξα−Ǧ
αα
−−, (75)

where the closed paths are illustrated in Fig. 3. They follow

the real line from ξα− = −Eα
c to ξα− = Eα

c and then split into

two semicircular paths to close the contours. Here, Eα
c is some

cutoff that is far larger than the other energies in the system,

but smaller than |μα|. Since the interval (−Eα
c ,E

α
c ) must be

inside the conduction band, Eα
c must also be smaller than

Eα , which is the smallest energy difference between the

Fermi level and the edges of the conduction band.

We can relate the kinetic energy Kα at the Fermi

level to Eα . To do so, note that ξα− +Eα = −μα −


(Jα )2 + (Kα )2 +Eα
6 −μα − |Jα| means that



Jα

Kα

2

6
(Jα )2

2|Jα|Eα + (Eα )2
. (76)

It is possible that Eα  Jα . For this reason, one can

still consider Jα  Kα within this framework, meaning that

Jα/ηα = Jα/


(Jα )2 + (Kα )2 → 1. The only requirement for

the quasiclassical theory presented here to be valid is thatEα

is large compared to all other energies except possibly the

exchange energy Jα . We can have any ratio Jα/Kα , and the

limit Jα/Kα → 0 should reproduce the quasiclassical theory

for normal metals.

Since the contours are closed in the complex plane and we

assume that the functions are analytic in ξα−, we can use the

residue theorem to evaluate

ǧα = −


ξi

sgn(Im[ξi]) Res(Ǧ
αα
−−, ξi ), (77)
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where the sum goes over all poles of Ǧαα
−−, which are inside the

contours and Res(Ǧαα
−−, ξi ) denote the corresponding residues.

To obtain an equation for the quasiclassical Green’s function,

we integrate the Gor’kov equations, Eqs. (68) and (70), over

momenta and use Eqs. (74) and (75).

Consider rst terms on the form Ǧαα
−− • A, for some A. The

zeroth-order term in gradients is Ǧαα
−− ◦ A. If A(ξα−) has no

poles inside the contour, we see that

i

π

˛

dξα−Ǧ
αα
−− ◦ A = −



ξi

sgn(Im[ξi]) Res(Ǧ
αα
−−, ξi ) ◦ A(ξ

α
−)

= ǧα ◦ A(0)+ O(ǧα ◦ a∂ξα−A), (78)

where a is the maximal distance from the poles of Ǧαα
−− to

ξα− = 0. It is therefore much smaller than Eα
c . We can ne-

glect the second term when A varies slowly as a function

of ξα−, such that |a∂ξα−A|  |A|. Note that this is not true

when A = ξα−, which is the case for the second terms on the

left-hand sides of Eqs. (68) and (70). We can therefore not

evaluate
¸
dξα−ξ

α
−Ǧ

αα
−− in terms of the quasiclassical Green’s

function.

From Eq. (37) we see that (̌α
imp)−− only depend on mo-

mentum through S. Equation (22c) shows that V̌ α
nm depend on

relative coordinates if there are magnetic textures or if the

Hamiltonian includes terms other than the kinetic term, which

depend on relative position. Corrections to the hopping term

from the vector potential or spin-orbit coupling are included

in V̌ α
nm, and these terms will depend on relative position. As a

result, (V̌ α )−− depends on momentum, and therefore also on

ξα−. However, we assume that the dependence on momentum

and ξα− is sufciently slow, such that the condition |a∂ξα−A| 
|A| is valid when A = (V̌ α + ̌α

imp)−−. As we now show, this

assumption is reasonable as long as the Fermi level is far away

from the bottom of the conduction band.

Fourier transforming the term in Eq. (22c) coming from the

magnetic texture, we get that

Fr



Kα
nm



xαn − xαm


+


δαρB, K
α
nm



· (R†∇R)


xαn , t1


= i∇kFr



Kα
nm



k, xαn


· (R†∇R)


xαn , t1


. (79)

As long as the Fermi level is sufciently far away from the

bottom of the conduction band, the gradient ∇kFr{K
α
nm} =

∇kK
α will be approximately constant near the Fermi surface.

This can be seen from Eq. (54), since









a∂ξα−∇kK
α

∇kKα









=











a

vαF · k̂F



δi
δi(δi · k̂F ) cos(kF · δi )



δi
(δi · k̂F ) sin(kF · δi )











<











a

vαF · k̂F



δi
δi(δi · k̂F ) cos(kF · δi )


δi
(δi · k̂F )(kF · δi )












aλF

|vαF · k̂F |
, (80)

where vαF = ∇kξ
α
− is the Fermi velocity, λF = 1/|kF | is the

Fermi wavelength, and k̂F is the unit vector in the direction of

kF . Hence, the variation in ∇kK
α is negligible provided that

λF  |vαF |/a.

Physically, the condition can be understood in the follow-

ing sense. The inverse energy 1/a denes a time, so |vαF |/a

is the distance an electron with speed |vαF | travels in this

time. For instance, when the dominant energy scale, other

than Jα and Kα , comes from the impurity scattering, then

a is at most the impurity scattering rate. In this case, the

condition λF  |vαF |/a implies that the mean free path should

be much greater than the Fermi wavelength. This condition

holds provided that the energy difference between the Fermi

level and the bottom of the conduction band is sufciently

large. Under this assumption, we can approximate

i

π

˛

dξα−Ǧ
αα
−− ◦



V̌ α + ̌α
imp



−− = ǧα ◦


V̌ α + ̌α
imp



−− (81)

in the presence of an inhomogeneous magnetic texture. A

similar argument can be used to show that the same assump-

tions also imply that the condition |a∂ξα−A|  |A| holds in the

presence of corrections to the hopping amplitude, which can

come from an external vector potential or spin-orbit coupling.

With these assumptions,

i

π

˛

dξα−


V̌ α + ̌α
imp



◦ Ǧαα


−−

≈


V̌ α + ̌α
imp



−− ◦ ǧα +
i

π

˛

dξα−


V̌ α + ̌α
imp



−+
◦ Ǧαα

+−.

(82)

Equation (78) works the same when reversing the order of A

and Ǧαα
−−, so it is also true that

i

π

˛

dξα−


Ǧαα ◦


V̌ α + ̌α
imp



−− ≈ ǧα ◦


V̌ α + ̌α
imp



−−

+
i

π

˛

dξα−Ǧ
αα
−+ ◦



V̌ α + ̌α
imp



+−. (83)

If we are also sufciently far away from the top of the

conduction band, then the velocity vαF = ∇kξ
α
− is also approx-

imately constant at all the poles of the Green’s function. By

approximately constant, we mean that the variation is small

compared to vαF . To see why, note that

∇kξ
α
− =



(μα − ξα−)
2 − (Jα )2∇kK

α

(μα − ξα−)
. (84)

Differentiating with respect to ξα− gives

|a∂ξα−∇kξ
α
−|



∇kFr



Kα
nm





=









a(Jα )2

(ξα− − μα )(Kα )2
+

a∂ξα−∇kK
α

∇kKα









. (85)

From Eq. (76), we know that (Jα/Kα )2 < |Jα|/2Eα . Since

|Jα/(ξα− − μα )| ≈ |Jα/μα| < 1 and a/Eα  1, the rst

term on the right-hand side of Eq. (85) is small. We have

shown that the second term on the right-hand side of Eq. (85)

is also negligible. As a result, integrating the third term on the

left-hand side of Eq. (70) gives

−
i

π

˛

dξα−i∇kξ
α
− ·RǦ

αα
−− = −ivαF ·Rǧ

α. (86)
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Next, consider the higher-order terms in the gradient ex-

pansion. We will show that we can ignore these terms when

the Hamiltonian, and therefore the Green’s function, vary

slowly in the center-of-mass (COM) spatial coordinate. As-

suming |a∂ξα−A|  |A|,

i

π

˛

dξα−[RǦ
αα
−−] ◦ (i∇kA− [δαρB, A])

≈ [Rǧ
α] ◦ (i∇kA− [δαρB, A]), (87)

where we used Eq. (78). The gradient ∇kA is evaluated at the

Fermi surface. We dene the characteristic COM length scale

L to be the smallest number satisfying

|Rǧ
α| <

|ǧα|

L
, (88)

everywhere and for all momentum directions, where the

norms can be understood using an appropriate matrix norm

such as the Frobenius norm. In the quasiclassical framework,

L is assumed to be much larger than the length of the nearest-

neighbor-displacement vectors and the Fermi wavelength. As

a result,

|Rǧ
α ◦ [δαρB, A]| <

|δα|

L
|ǧα| ◦ |A|  |ǧα| ◦ |A|, (89)

meaning that the second term in Eq. (87) is negligible com-

pared to the zeroth-order term, ǧα ◦ A. The magnitude of the

rst term is

|[Rǧ
α] ◦ (i∇kA)| <

|vαF |

L
|ǧα| ◦ |∂ξα−A|. (90)

Therefore, this term is negligible compared to the zeroth-order

term if ||vαF |∂ξα−A/L|  |A|. This is guaranteed to be the case

if L > |vαF |/a, since |a∂ξα−A|  |A|. Physically, this criterion

can again be understood by considering the time scale dened

by 1/a. For instance, 1/a can be on the order of the elastic

impurity scattering time. The condition L > |vαF |/a then states

that the variation is small over a distance equal to the mean

free path. However, we note that this condition is too strict. It

assumes only that |∂ξα−A|/|A|  1/a, but if one can replace

1/a with a smaller number, then one can also loosen the

condition on L.

With these assumptions, we neglect the rst-order terms

in the gradient expansion of Ǧαα
−− • A after integration over

ξα−. Since L is large, higher-order terms will be even smaller

than the rst-order terms, so we neglect all terms except the

zeroth-order term in the gradient expansion of Ǧαα
−− • A. Next,

we must consider

i

π

˛

dξα−[RA] ◦ (i∇kǦ
αα
−− − [δαρB, Ǧ

αα
−−]). (91)

We can use Eq. (78) one the second term on the right-hand

side, which we see can be neglected since |RA| < |A|/L and

|δα|/L  1. However, we cannot use Eq. (78) to evaluate the

rst term on the right-hand side of Eq. (91). This is because

Ǧαα
−− varies rapidly as a function of k near its poles. To pro-

ceed, we can use the contour integral of a total derivative is

zero. This implies that
˛

dξA
∂B

∂k
=

˛

dξA
∂ξα−

∂k

∂B

∂ξα−
= −

˛

dξ
∂

∂ξα−



A
∂ξα−

∂k



B,

(92)

for any A and B, where ∂/∂k is differentiation with respect to

the amplitude of k in spherical coordinates. This is not to be

confused with the gradient operator ∇k . We already assume

that ∇kξ
α
− is approximately constant on all the poles of Ǧαα

−−.
Using this we nd that

i

π

˛

dξRA ◦ ∇kǦ
αα
−− =

RA

kF
◦


eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂φ



ǧα

− ek · (∂kRA) ◦ ǧα, (93)

where kαF is the Fermi momentum, satisfying ξα−(k
α
F ) = 0 and

θ and φ are the azimuthal and polar angles in momentum

space, respectively. As long as ǧα does not vary rapidly as

a function of θ and φ, the right-hand side of Eq. (93) is

negligible under the same assumptions as Eq. (87). Hence,

we can also neglect the higher-order terms in the gradient

expansion of A • Ǧαα
−−. Combining the above results,

i

π

˛

dξα−


̌α − Ĥα
0



• Ǧαα


−−

=


̌α − Ĥα
0



−− ◦ ǧα +
i

π

˛

dξα−


̌α − Ĥα
0



−+
◦ Ǧαα

+−,

(94)

and

i

π

˛

dξα−


Ǧαα •


̌α − Ĥα
0



−−

= ǧα ◦


̌α − Ĥα
0



−− +
i

π

˛

dξα−Ǧ
αα
−+ ◦



̌α − Ĥα
0



+−.

(95)

The circle-products in the last terms on the right-hand side of

Eqs. (94) and (95) comes from a truncation in the gradient ex-

pansion, which is valid for the same reasons as the truncation

in the gradient expansions involving Ǧαα
−−.

To complete the derivation of the quasiclassical equations,

we must remove the terms involving Ǧαα
−+ and Ǧαα

+−. Physi-
cally, this can be done because the energy difference between

the two bands is large for momenta close to the Fermi sur-

face. This means that there is negligible coupling between the

electrons near the Fermi surface and the electrons in the other

band. In order to show








i

π

˛

dξα−Ǧ
αα
−+









 |ǧα| and









i

π

˛

dξα−Ǧ
αα
+−









 |ǧα|,

(96)

we dene

ǧα±∓ =
i

π

˛

dξα−Ǧ
αα
±∓. (97)

We get from the rst Gor’kov equation that

τzε ◦ ǧα+− − ξα+ǧ
α
+− −



̌α − Ĥα
0



++
◦ ǧα+−

−


̌α − Ĥα
0



+− ◦ ǧα = 0, (98)
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where ξα+(kF ) = −μα + ηα (kαF ) is evaluated at the Fermi sur-

face dened by ξα−(kF ) = −μα − ηα (kαF ) = 0. As a result,

|ξα+| = 2|μα|, which is much larger than |(̌α − Ĥα
0 )+−| by

assumption. We will also assume |ε|  Eα
c , and consider

larger |ε| separately when computing observables in Sec. XIV.

Therefore, ǧα+− ≈ (̌α − Ĥα
0 )+− ◦ ǧα/ξα+ is negligible. The

same argument from the second Gor’kov equation shows that

ǧα−+ is negligible as well.

Finally, integrating the Gor’kov equations, Eqs. (68) and

(70), over the contours in ξα− space and using Eqs. (94)–(96)

we get

τzε ◦ ǧα −


̌α − Ĥα
0



−− ◦ ǧα =
i

π

˛

dξα−ξ
α
−Ǧ

αα
−−, (99a)

ǧα ◦ τzε − ivαF ·Rǧ
α − ǧα ◦



̌α − Ĥα
0



−− =
i

π

˛

dξα−ξ
α
−Ǧ

αα
−−. (99b)

We have no way to evaluate the right-hand sides because it would require rst nding the poles of Ǧαα
−−. Instead, we can

subtract Eq. (99b) from Eq. (99a) to obtain the Eilenberger equation,

ivαF ·Rǧ
α +



τzε −


̌α − Ĥα
0



−−, ǧ
α


◦ = 0. (100)

The distances between neighboring points are short compared to the characteristic COM length scale L, dened in Eq. (88),

so we can approximate ǧα by a continuous function in COM position and replace R by the gradient operator, ∇R. One way to

do this rigorously is to dene the continuous function as a weighted average,

ǧαc (R) =


n∈Z3

ǧα


xαn
 1

C(R)
e−(R−xαn )

2/l2 , (101)

where l  L andC(R) =


n∈Z3 e−(R−xαn )
2/l2 . From the fact that l  L, it is clear that ǧα (xαn ) ≈ ǧαc (x

α
n ). Moreover, if |xαm|  L,



xαm ·Rǧ
α


xαn


≈


n∈Z3



xαm ·Rǧ
α


xαn
 1

C(R)
e−(R−xαn )

2/(2l ) =


n∈Z3



ǧα


xαn + xαm


− ǧα


xαn
 1

C(R)
e
−


R−xαn

2

/(2l )

=


n∈Z3

ǧα


xαn




e−(R+xαm−xαn )
2/(2l )

C(R+ xαm)
−

e−(R−xαn )
2/(2l )

C(R)



≈ xαm · ∇Rǧ
α
c



xαn


. (102)

Inserting this into Eq. (100) and relabeling ǧαc → ǧα , the

Eilenberger equation now becomes, in terms of continuous

COM coordinates,

ivαF · ∇Rǧ
α +



τzε −


̌α − Ĥα
0



−−, ǧ
α


◦ = 0. (103)

The Eilenberger equation does not have a unique steady-

state solution. This can be seen from the fact that any constant

multiple of the identity matrix is a solution. To compensate

for this, one typically assumes a normalization condition. In a

spatially and temporally uniform system, we see from Eq. (70)

that

Ǧαα
−− =



τzε − ξα− − V̌ α − ̌α
imp

−1
= P(−ξα− + D)−1P−1,

(104)

where τzε − V̌ α − ̌α
imp = PDP−1 and D is diagonal. Since D

varies slowly as a function of ξα− within the contour, we see

that

i

π

˛

dξα−(−ξα− + D)−1
ll = −sgn[Im(Dll )], (105)

which implies that ǧα ǧα = 1. More generally, we assume that

ǧα ◦ ǧα = 1. This is consistent with the fact that ǧα ◦ ǧα = 1

must also solve the Eilenberger equation, as can be seen by

taking the circle product of the Eilenberger equation by ǧα

from the left and from the right, as well as the fact that the ini-

tial condition, if taken at T → −∞, should be a time-invariant

state, such that ǧα ◦ ǧα = ǧα ǧα = 1. Moreover, it is possible

to derive ǧα ◦ ǧα = 1 if one denes the quasiclassical Green’s

function in terms of trajectory Green’s function, as shown by

Shelankov [62].

X. QUASICLASSICAL IMPURITY SELF-ENERGY

Before deriving the dirty limit equation of motion for the

quasiclassical Green’s function, we must express the impurity

self-energy in terms of the quasiclassical Green’s function.

From Sec. V we have that

̌α
imp



ε,T, k, xαn


=


X∈{A,B}

nαXimp



ρX UXαimp

+ UXαUXαimpρX (Ǧ
αα )nn(ε,T )ρX



.

(106)

If on average there are an equal amount of impurities of equal

average strength on both sublattices, and the impurities are

not magnetic, then the rst term is simply equivalent to a shift

in the electrochemical potential. It can therefore be absorbed

into µα .
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To evaluate the second term in Eq. (106) we use the Eilenberger contour,

(Ǧαα )nn = V α
e

ˆ

♦α

d[3]k

(2π )3
eiρBk·δ

α

Ǧαα


k, xαn


e−iρBk·δ
α

= V α
e

ˆ
d

4π

ˆ ξmax

ξmin

p2dξ−
α

2π2(ξ−α )
eiρBk·δ

α

Ǧαα


k, xαn


e−iρBk·δ
α

= V α
e

ˆ
d

4π

˛

k2dξ−
α

2π2vαF

eiρBk·δ
α

Ǧαα


k, xαn


e−iρBk·δ
α

+ V α
e

ˆ
d

4π

 
k2dξ−

α

2π2(ξ−α )
eiρBk·δ

α

Ǧαα


k, xαn


e−iρBk·δ
α

. (107)

Using that

ρX e
iρBk·δ

α

Ǧαα


k, xαn


e−iρBk·δ
α

ρX = ρX Ǧ
αα


k, xαn


ρX , (108)

where X ∈ {A,B}, we see that we can remove the exponentials

in Eq. (107). The rst term on the right-hand side of Eq. (107)

is what gives us the quasiclassical Green’s function. To evalu-

ate the second term, we can use the fact that we are far away

from the Fermi surface, so, if we neglect spatial and temporal

derivatives in the Gor’kov equations,

Ǧαα ≈


ετz − Ĥα
0 − V̌ α − ̌α

imp

−1

=


−Ĥα
0

−1 −


Ĥα
0

−1

ετz − V̌ α − ̌α
imp



Ĥα
0

−1

+ O([ξ−
α]−3). (109)

We can neglect the second term after integration for the

following reason. We can complete the contour in


dξ−
α

with a semicircle of radius (|ξmin| + |ξmax|)/2. Since there

are no poles inside the closed contour, the integral


dξ−
α

must be equal to minus the integral over the semicircle arc.

The integral over this arc is negligible because it is less

than π (|ξmin| + |ξmax|)/2× amax(Nα
0 )/min(|ξmin|, |ξmax|)

2,

which is O(Nα
0 (0)a/Eα ), where a is again an order of mag-

nitude estimate of the elements of (ετz − V̌ α − ̌α
imp), and

therefore much smaller than Eα , and

Nα
0 (ε) =

ˆ
d[3]k

(2π )3
δ(ξ (k)− ε)

=

ˆ
d

4π

ˆ
k2dξ

2π2ξ 
δ(ξ (k)− ε) (110)

is the normal state density of states per spin. For the same

reason, the terms of higher order in (ξα−)
−1 are also negligible.

The rst term, however, is not negligible, as the same argu-

ment shows that this integral is O(N0(0)), which is the same

as the quasiclassical term.

Evaluating the (−Ĥα
0 )

−1 and applying the projection oper-

ators, we get



X∈A,B

ρX (−Ĥ0)
−1ρX =

μα − Jαρzσzτz

ξα−ξ
α
+

. (111)

Integrating out the momentum dependence, we see that we

get constant matrices with the same matrix structure as a

chemical potential and an antiferromagnetic spin-splitting.We

can therefore include this by renormalizing µα and Jα .

In order to evaluate the quasiclassical contribution, we

dene

Sα


1

0



= Sαc , (112)

where 1 and 0 are 4× 4 matrices, such that

A−− =


Sαc
T
ASαc . (113)

Since only the contribution from the conduction band is non-

negligible close to the Fermi surface, we have that
˛

k2dξ−
α

2π2vαF

Ǧαα


k, xαn


= −iπNα
0 (0)S

α
c ǧ

α


Sαc
T
, (114)

where Sαc is evaluated at the Fermi surface.

Hence, if we dene

ǧαs :=

ˆ
d

4π
ǧα = ǧα, (115)

where in the last equality we also dened the angular average

in momentum space as ·, then


̌α
imp



−− = −
i

τimp



X∈{A,B}



Sαc
T
ρXS

α
c ǧ

α
s



Sαc
T
ρXS

α
c , (116)

where

ταimp =


πNα
0 (0)V

α
e n

αA
impU

AαUAαimp

−1
(117)

is the impurity scattering time.

Next, we nd that



Sαc
T
ρA/BS

α
c =

1

2



1±
Jα

ηα
σzτz



, (118)

such that



̌α
imp



−− = −
i

2ταimp



ǧαs +
(Jα )2

(ηα )2
σzτzǧ

α
sσzτz



. (119)

This reduces to the normal state impurity self-energy in the

absence of antiferromagnetism when Jα = 0. However, when

Jα = 0 we get an additional term, which is the same as one

gets when adding magnetic impurities in the quasiclassical

theory for normal metals. This is an important result, which

means that impurities in the antiferromagnet behave as if

they were magnetic. This effect becomes important when the

system size becomes larger than the mean free path, and

this is why one should expect the critical temperature to

decrease in superconducting proximity structures when the

antiferromagnet becomes larger than its mean free path, which

explains the ndings of Hübener et al. [45], as alluded to in

Sec. I. Physical consequences of well Eq. (119), as well as a

physical explanation for its existence is further discussed in

Ref. [63].

The effective magnetic component of nonmagnetic impuri-

ties is similar to how interfacial disorder in antiferromagnetic

insulators has been shown to give rise to magnetic effects

when the interface is uncompensated [64], except that here

it is a bulk effect. As a result, it is present even though the
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magnetization is fully compensated. Another type of material

in which one can nd effective “magnetic” coupling from

nonmagnetic impurities is in Rashba superconductors [65,66].

The strong coupling between spin and momentum degrees of

freedom in Rashba superconductors means that nonmagnetic

impurities get a nontrivial matrix structure in the helical basis

[65]. However, the effective “magnetic” impurities in Rashba

superconductors are different from what we see here. They

couple to the p-wave part of the Green’s function and not

the s-wave part. They are “magnetic” in the sense that they

couple different components in the helical basis, but not in the

sense that it is as if the system has magnetic impurities. Here

we nd that nonmagnetic impurities in AFMs are mathemati-

cally equivalent to having magnetic impurities in the original

model.

XI. THE DIRTY LIMIT

In this section, we derive the equations of motion in the

dirty limit, which are valid for diffusive systems. There are

two central assumptions in the dirty limit. First, it is assumed

that the quasiclassical Green’s function is dominated by the

s-wave and p-wave components. Second, it is assumed that

the elastic impurity scattering rate is large compared to the

other energies in the system, except for the minimal distance

between the Fermi level and the edges of the conduction

band Eα , and possibly Jα . We show that the resulting equa-

tions are valid if the variation in ǧα over the length scale of

the mean free path is small compared to 1. This is the case for

instance if the system varies slowly in space or the proximity

effect is small. In the limit of very strong exchange coupling,

such that (Jα )2/(ηα )2 = O(1), we show that the quasiclassical

Green’s function can be separated into short-range correla-

tions and long-range components, where the former vanish

in the diffusive limit. Therefore, this regime can be solved

by projecting the Green’s function onto the set of long-range

components. The derivation is done by averaging the Eilen-

berger equation,

ivαF · ∇Rǧ
α +



τzε − V̌ α
−− −



̌α
imp



−−, ǧ
α


◦ = 0, (120)

over momentum directions. This will reduce the problem

from having innitely many coupled Green’s functions, one

for each momentum direction, to having only two coupled

Green’s functions.

Before proceeding, we rst replace the gradient term with

the covariant derivative. This is done by extracting the p-wave

part of V̌ α
−−, meaning that we write

V̌ α
−− = −vαF · Â

α
+ V̌ α

s +V̌ α, (121)

where V̌ α
s = V̌ α

−− is the s-wave part and −vαF · Â
α
is the p-

wave part of V̌ α
−−. The p-wave contribution includes the vector

gauge potential from the electromagnetic eld as well as spin-

orbit coupling and the spatial variation in the Néel vector. The

covariant derivative is then dened as

∇̃ ◦ ǧ= ∇Rǧ− i[Â, ǧ]◦, (122)

such that

ivαF · ∇̃ ◦ ǧα +


τzε − V̌ α
s −V̌ α −



̌α
imp



−−, ǧ
α


◦ = 0.

(123)

Doing an angular average of Eq. (123), we get

i∇̃ ◦


vαF ǧ
α


+



τzε − V̌ α
s +

i(Jα )2

2ταimp(η
α )2

σzτzǧ
α
sσzτz, ǧ

α
s



◦

− [V̌ α, ǧα]◦ = 0. (124)

If we take the product with vαF before averaging, we get

i∇̃ ◦


vαF ⊗ vαF ǧ
α


+



τzε − V̌ α
s +

i

2ταimp

ǧαs ,


vαF ǧ
α




◦

+



i(Jα )2

2ταimp(η
α )2

σzτzǧ
α
sσzτz,



vαF ǧ
α




◦

−


V̌ α, vαF ǧ
α


◦



= 0, (125)

where ⊗ denotes the tensor product. Next, we dene the

matrix current

ǰ
α
:=


vαF ǧ
α


. (126)

The aim is a set of equations for ǰ
α
and ǧαs = ǧα. This can

be obtained from Eqs. (124) and (125) if we assume thatV̌ α

is negligible. Neglecting the terms proportional to V̌ α , mul-

tiplying Eq. (125) by ταimp, and dening the diffusion tensor,

Dα:=ταimp



vαF ⊗ vαF


, (127)

Eqs. (124) and (125) become

i∇̃ ◦ ǰ
α
+



τzε − V̌ α
s +

i(Jα )2

2ταimp(η
α )2

σzτzǧ
α
sσzτz, ǧ

α
s



◦

= 0,

(128)

and

ǧαs ◦ ǰ
α
= − ∇̃ ◦



Dα ǧαs


+ iταimp



τzε − V̌ α
s , ǰ

α

◦

−


(Jα )2

2(ηα )2
σzτzǧ

α
sσzτz, ǰ

α



◦
, (129)

respectively. In Eq. (129) we assumed that the higher-order

spherical harmonics in ǧα are small, and used that { ǰ
α
, ǧαs } =

0. The latter follows from the former together with the p-wave

component of the normalization condition, vαF ǧα ◦ ǧα =
{ ǰ

α
, ǧαs } = 0. The assumption that the d-wave component is

negligible compared to 1 is consistent as long as ǰ
α
is small

compared to the Fermi velocity. To see why, note that the

normalization condition

ǧα ◦ ǧα = ǧαs ◦ ǧ
α
s +



ǧαs , ǧα


◦ +ǧα ◦ǧα = 1 (130)

must be satised for all momenta. Hence, if ǧα = ǧαp +

ǧαd + · · · , where ǧαp is the p-wave component and ǧαd is the

d-wave component, the d-wave component resulting from

ǧαp ◦ ǧαp must be canceled by the d-wave term in {ǧαs , ǧ
α
d}◦.

If ǧs = O(1), then ǧαd will be O[( ǰ
α
· vαF/(v

α
F )

2)2], which we

assume is negligible compared to 1. Hence,

ταimp



vαF ⊗ vαF ǧ
α


≈ Dα ǧαs + ταimp



vαF ⊗ vαF



ǰ
α
· vαF





vαF

2



≈ Dα ǧαs . (131)
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If the Fermi surface is spherically symmetric, then Dα
i j =

δi jτ
α
imp(v

α
F )

2/3.

For a complete description in terms of ǰ
α
and ǧαs , we must

also express the normalization condition, ǧα ◦ ǧα = 1 in terms

of ǧαs and ǰ
α
. Taking the angular average of the normalization

condition and using that vαF/(vαF )2 = 0, we get that

ǧαs ◦ ǧ
α
s = 1+ O



 ǰ
α
/vαF





2

. (132)

We have already assumed that ( ǰ
α
· vαF/(v

α
F )

2)2 is negligible

compared to 1, so

ǧαs ◦ ǧ
α
s = 1. (133)

Using Eq. (133), we can rewrite Eq. (129) to

ǰ
α
= − ǧαs ◦ ∇̃ ◦



Dα ǧαs


+ iταimpǧ
α
s ◦


τzε − V̌ α
s , ǰ

α

◦

− ǧαs ◦


(Jα )2

2(ηα )2
σzτzǧ

α
sσzτz, ǰ

α



◦
. (134)

Eqs. (133), (128), and (134) can be used to study systems

with an arbitrary amount of disorder, provided that the matrix

current squared | ǰ
α
|2 is small compared to the Fermi velocity

squared |vαF |
2. To say that | ǰ

α
|2  |vαF |

2 is the same as say-

ing that the quasiclassical Green’s function is approximately

isotropic in momentum space. Physically, this is expected to

be the case when the elastic scattering time ταimp is small, but

this can also happen, for example, if the tunneling is weak.

In Sec. XII we show that the matrix current at the boundary

is proportional to the square amplitude of the tunneling in the

absence of spin-active boundaries.

We can also simplify Eq. (134) a bit further if we assume

that |ταimpV̌
α
s |  1 and only consider energies |ε|  1/ταimp. In

this case, we can neglect the second term on the right-hand

side of Eq. (134), since this term must be much smaller in

magnitude than ǰ
α
. Hence,

ǰ
α
= −ǧαs ◦ ∇̃ ◦



Dα ǧαs


− ǧαs ◦


(Jα )2

2(ηα )2
σzτzǧ

α
sσzτz, ǰ

α



◦
.

(135)

At this point, it might be tempting to also assume that the last

term in the commutator in Eq. (128) is dominant, but this is

not generally true. Although 1/ταimp  |V̌ α
s |, one can not say

in general that












i(Jα )2

2ταimp(η
α )2

σzτzǧ
α
sσzτz, ǧ

α
s



◦


















V̌ α
s , ǧ

α
s



◦



. (136)

This can be because the prefactor (Jα )2/(ηα )2 is small, or it

can be because the matrices on the right-hand side commute.

even for very strong antiferromagnets with (Jα )2/(ηα )2 =

O(1). This is because, even though the prefactor can be large,

the commutator can still be small. Thus, one must in general

keep all terms in Eq. (128).

Next, consider the case of very strong exchange cou-

pling, such that (Jα )2/(ηα )2 = O(1). In this case the prefactor

(Jα )2/[2ταimp(η
α )2] is large in the diffusive limit. This will

strongly suppress some components of the quasiclassical

Green’s function, making them negligible in the diffusive

limit. We can write the quasiclassical Green’s functions in

terms of Pauli matrices in spin space and Nambu space as

ǧα =

3


i=0

3


j=0

ci jτiσ j, (137)

where σ0 and τ0 are identity matrices and {ci j} is a set of scalar

functions. We can separate these components into long-range

components, satisfying

σzτzci jτiσ jσzτz = ci jτiσ j, (138)

and short-range components, satisfying

σzτzci jτiσ jσzτz = −ci jτiσ j . (139)

That is, long-range components have either i ∈ {0, 3} and

j ∈ {0, 3} or i ∈ {1, 2} and j ∈ {1, 2}, while the short-range

components are the remaining components. Note that the

product of two long-ranged components or two short-ranged

components is a long-range component, while the product of

one long-range component and one short-range component is

a short-range component.

Let the subscripts SR and LR denote the short-range and

long-range components, respectively, such that ǧα = ǧαSR +

ǧαLR. Using the product properties of long-range and short-

range components, the long-range component of Eq. (128)

becomes

i∇̃LR ◦ ǰ
α

LR +


τzε − V̌ α
LR,s, ǧ

α
LR,s



◦ +


ÂSR, ǰ
α

SR



◦

−


V̌ α
SR,s, ǧ

α
SR,s



◦ = 0, (140)

where ∇̃LR ◦ ǰ
α

LR = ∇R · ǰ
α

LR − i[ÂLR, ǰ
α

LR]◦. We want to

show that the short-range components vanish from the equa-

tions in the diffusive limit when (Jα )2/(ηα )2 → 1. This means

that in this limit one can solve quasiclassical equations by

simply setting the short-ranged components to zero.

Assuming that (Jα )2/(ηα )2 ≈ 1, |ταimpV̌
α
s |  1 and only

considering energies |ε|  1/ταimp, the Eilenberger equa-

tion for the short-range components becomes

∇̃ ◦


vαF ǧ
α
SR



+
1

ταimp



ǧαLR


, ǧαSR


◦ = 0. (141)

The short-range correlations and the long-range correlations

will generally not commute. As a result, we see that the short-

range correlations decay exponentially over a distance equal

to the mean free path in this case.

Making no assumptions other than assuming that τimp is

small and ǧαs ◦ ǧαs = 1, which is valid even if the short-range

components are not isotropic, provided they are small in mag-

nitude, the short-range component of Eq. (125) becomes

ǰ
α

SR = − ταimp



ǧαs ◦ ∇̃ ◦


vαF ⊗ vαF ǧ
α


SR

−


ǧαs

2
◦


ǧαLR


− ǧαSR


, ǰ
α

◦



SR

. (142)

Using that ǧαSR decays exponentially away from the interface

with over a length-scale equal to the mean free path, Eq. (142)

implies that, since ǧαLR = O(1),

ǧαSR = O



lαmfp ǰ
α

SR

|Dα|



, (143)
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where lαmfp = v
α
Fτ

α
imp is the mean free path. The short-range

component of the matrix current will be largest closest to the

interface, where it will be determined by the boundary con-

ditions. Moreover, in the diffusive regime, the matrix current

is small at the interface, as discussed in Sec. XII. Hence, in

the diffusive regime we see that ǧαSR = O(ταimp). Hence, to

zeroth order in ταimp the long-ranged components can be solved

for consistently in the limit (Jα )2/(ηα )2 → 1 by setting the

short-ranged components to zero, effectively projecting out

these components from the Green’s function.

Very close to the interface the term [ÂSR, ǰ
α

SR]◦ can give a

contribution to Eq. (140). This is not a problem if ÂSR = 0,

but in Sec. XIII we show that, similar to spin-orbit coupling,

nonuniform magnetic textures can induce a nonzero ÂSR. This

means that if there are domain walls very close to the interface

to a spin-singlet superconductor, it can induce long-ranged su-

perconducting correlations in the antiferromagnetic metal. As

long as ÂSR = 0, the limit of very strong exchange coupling,

(Jα )2/(ηα )2 → 1, can be consistently captured by setting the

short-range components to zero and solving

i∇̃LR ◦ ǰ
α

LR +


τzε − V̌ α
LR,s, ǧ

α
LR,s



◦ = 0. (144)

The matrix current can be found by doing the same projec-

tion in Eq. (125), which in the limit (Jα )2/(ηα )2 → 1 simply

becomes

ǰ
α

LR = −
ǧαLR,s ◦ ∇̃ ◦



Dα ǧαLR,s


2
. (145)

From Eq. (135) we see that ǰ
α
· vαF/(v

α
F )

2 = O(lαimp∇̃ ◦ ǧαs ),
where lαimp = v

α
Fτ

α
imp is the mean free path. As a result, the

assumption that ǧαs ◦ ǧαs = 1 is consistent as long as the change

in ǧαs over the length of the mean free path is small compared

to 1. In the limit of strong exchange coupling, the short-ranged

components can decay over a length scale equal to the mean

free path, but these components also become negligible, as

shown above. Therefore, although the short-ranged compo-

nents are not necessarily isotropic in the limit Jα → ∞, one

can still solve the diffusive equations as long as there is no

strong spin-orbit coupling or sudden change in the Néel vector

close to the interface. To simplify the equations in this limit,

one can project out the long-range components. Spin-orbit

coupling or nonuniform Néel vector close to the boundary

can induce long-range components from the short-range com-

ponents of the matrix current. In this case, it is therefore not

always consistent to simply set the short-range components to

zero. Instead, if the limit of very strong exchange coupling is

necessary, one should solve the full Eilenberger equation for

the short-ranged components.

Equations (135) and (128) are our main results, together

with the boundary condition derived in Sec. XII. They pro-

vide general equations of motion, which can be solved to

obtain information about currents, densities, the local density

of states, and superconducting correlations in systems with

antiferromagnetism and arbitrary geometry both in and out of

equilibrium. In the absence of antiferromagnetism, meaning

that Jα → 0, Eqs. (135) and (128) reduce to the well-known

Usadel equation for normal dirty metals [4]. In the presence

of antiferromagnetism, there are three important differences.

First, all self-energies must be projected onto the conduction

band, which means that they must be transformed according

to the Sαc matrix. Second, the coupling between spin and

sublattice gives rise to effective magnetic impurities with scat-

tering time ταimp(η
α )2/(Jα )2. Third, the magnetic impurities

also modify the equation for the matrix current, which in the

normal metal case is simply ǰ
α
= −ǧαs ◦ ∇̃ ◦ (Dα ǧαs ).

One can solve Eq. (135) for jα in time-independent situa-

tions. If we can diagonalize (ǧαsσzτzǧ
α
sσzτz )i j = Ǔ−1

ik
λkǓk j , we

nd that

ǰ
α

i j = −Ǔ−1
ik

Ǔkm



ǧαs ∇̃ ·


Dα ǧαs


mn
Ǔ−1
ml

1+ (Jα )2(λk + λl )/[2(ηα )2]
Ǔl j, (146)

with summation over repeated indices. Alternatively, since

(Jα/ηα )2 is smaller by 1 by denition, one can solve for ǰ
α

by iteratively inserting into the right-hand side of Eq. (135).

To get a series expansion with a faster convergence rate it can

be benecial to rewrite Eq. (135) as

ǰ
α
= − [1+ (Jα/ηα )2]−1



ǧαs ◦ ∇̃ ◦


Dα ǧαs


+ ǧαs ◦


(Jα )2

2(ηα )2
σzτz



ǧαs , σzτz


, ǰ
α



◦



. (147)

This is because the effective magnetic impurities in Eq. (128)

will tend to suppress [ǧαs , σzτz]. In the limit of small Jα/ηα

or vanishing [ǧαs , σzτz], one can solve Eqs. (128) and (135)

in the same way as the Usadel equation for normal metals,

but with a renormalized diffusion coefcient, Dα → Dα/[1+

(Jα/ηα )2], additional magnetic impurities and self-energies,

which are projected onto the conduction band of the antifer-

romagnet. Otherwise, in the more general case, one can for

instance solve Eqs. (128) and (135) numerically using the

algorithm presented in Appendix.

XII. BOUNDARY CONDITION

Next, we derive the boundary condition, which is valid in

the diffusive regime. To do so, we must evaluate the two terms,

which we could neglect in the equation of motion inside the

materials. These are the tunneling terms and the potentials,

which are large only outside the materials. Here we consider

the interface between material L and R. To get the boundary

condition at the interface to a vacuum or an insulator, one

need only set the tunneling to zero. As before, let (α,β ) be

either (L,R) or (R,L). We assume that the Green’s functions

are approximately spherically symmetric also close to the

interface. This is the case as long as the matrix current at

the interface is small compared to the Fermi velocity, which

happens for instance when the tunneling amplitudes are small.

The way the boundary condition is derived here is that we

sum the Gor’kov equations over a small set of unit cells, which

includes the interface. We take this set to be the shape of a

wide cylinder. The width of this cylinder is much larger than

its length but much smaller than the characteristic length scale

L of the bulk as dened in Sec. IX. Then we integrate over

all momentum directions and integrate over the Eilenberger

contour. First, we consider the potential, which is large only

outside material α,


̂α
R



nm
(t1, t2) = R̂α

n (t1)δnmδ(t1 − t2), (148)
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where R̂α
n is nonzero only at the boundary and outside of

material α. Taking the bullet product with Ǧαα , we have


Ǧαα • ̂α
R



nm
(t1, t2) = Ǧαα

nm(t1, t2)R̂
α
m(t2). (149)

Next, we sum this over a set of unit cells V and dene I ⊂
V to be the subset of V , which is at the interface. We get


i

π

˛

dξ−
α


n∈V

Ǧαα • ̂α
R



=


n∈I

Sαc ǧ
α
s



xαn


Sαc
T ◦ R̂α

n .

(150)

Note that in our model ̂α
R is very large outside material α,

such that Ǧαα (k, x)̂α
R (x) ∼ 1 when x is outside material α.

Nevertheless, only the points in I contribute in Eq. (150).

This is because the poles of Ǧαα are shifted outside of the

Eilenberger contour when x is outside of material α, rendering

the quasiclassical Green’s function exactly equal to zero. The

points at, or very close to, the interface are therefore the only

points where both ǧα and R̂α
n are different from 0.

Since the width of the cylinder is small compared to L, ǧαs is

approximately constant on the points in I . We further assume

that R̂α
n is also approximately constant on the points in I . This

means that if l ∈ I and  is the number of unit cells in I , then


i

π

˛

dξ−
α


n∈V

Ǧαα • ̂α
R



= Sαc ǧ
α
s



xαl


Sαc
T ◦ R̂α

l .

(151)

Next, we must evaluate


̂α
R • Ǧαα



k, xαn


= V α
e



m∈Z3

ˆ

♦α

d[3]q

(2π )3
R̂α
m ◦ e−iρB (k−q)·δα

× Ǧαα (q, xn)e
iρB (k−q)·δαe−i(k−q)·(xαm−xαn ). (152)

First, we evaluate the sum over m. We use that R̂α
m = R̂α

l ,

where xαl is a point on the interface close to xαn , whenever x
α
m

is on the interface. Otherwise, R̂α
m = 0. We nd that



̂α
R • Ǧαα



i j



k, xαn


= R̂α
l ◦

ˆ

♦α

d[3]q

(2π )3
fi j (q)Ǧ

αα
i j (k + q, xn),

(153)

where fi j is a normalized function, which is peaked at q = 0.

Next, integrating over the Eilenberger contour and averaging

over momentum directions, we nd that


i

π

˛

dξ−
α


n∈V

̂R • Ǧ
αα



= R̂l ◦ Sαc ǧ
α
s



xαl


Sαc
T
. (154)

Next, we must evaluate the tunneling self-energy,

̌α
T = T̂ αβ • Ǧ

ββ

0 • T̂ βα. (155)

To proceed, we must assume some properties of the tunneling

term. The tunneling should be short ranged and only at lattice

points at the interface between the two materials. For each

unit cell in material α at the interface we assume that there is

exactly one connected unit cell in material β. For simplicity,

we label the connected unit cells the same. This means that if

xαn is at the interface, then the connected unit cell in material

β is xβn . With this we have

T̂ αβ
nm =



l∈int

t̂
αβ

l
δlnδlm, (156)

where the sum goes over all the points at the interface. Hence,

if χint is the characteristic function, which is 1 if the argument

is at the interface and 0 otherwise, then


̌α
T



nm
(t1, t2) = t̂αβn (t1)



Ǧ
ββ

0



nm
(t1, t2)t̂

βα
m (t2)χint(n)χint(m),

(157)

In order to evaluate the bullet product



Ǧαα • ̂α
T



k, xαn


=χint(n)


m∈int

Ǧαα


k, xαm


◦ e−iρBk·δ
α

t̂αβm ◦


Ǧ
ββ

0



mn
◦ t̂βαn eiρBk·δ

α

× e−ik·(xαm−xαn ), (158)

we write



Ǧ
ββ

0



mn
=V β

e

ˆ

♦β

d[3]p

(2π )3
eiρB p·δ

β

Ǧ
ββ

0



xβn , p


e−iρB p·δ
β

× eip·(x
β
m−x

β
n ). (159)

We can separate this integral into the quasiclassical contribu-

tion and a rest term, or high-energy contribution, according

to the Eilenberger contour. The high-energy contribution was

not negligible when we calculated the impurity self-energy.

This was because we evaluated the Green’s function at m = n.

The high-energy contribution to the term in Eq. (158) with

m = n will only renormalize R̂n, because it only depends on

Ĥ
β

0 , as we showed earlier. When evaluated at m = n the oscil-

lating exponential suppresses the integral for the high-energy

contribution. For this reason, we neglect the high-energy con-

tribution.

Next, we must evaluate the quasiclassical part. Close to

the Fermi surface we have ξ
β
−(p) = 0+ (p− p

β

F )(ξ
β
−)(p

β

F ) =

v
β

F (p− p
β

F ). Hence, if the poles are located at {ξi}i,

i

π

˛

dξ
β
−Ǧ

ββ

0 eip·r = −


ξi

sgn(Im[ξi]) Res


Ǧ
ββ

0 , ξi


× exp


ir · ep


pF + ξi/v
β

F



(160)

From Eq. (119) we know that impurity scattering gives rise to

an imaginary shift in the pole location, such that |Im(ξi )| >

1/2τ
β

imp. Therefore,

|eirξi/v
β

F | < e−r/2l
β

mfp , (161)

where l
β

mfp = τ
β

impv
β

F is the mean free path. The effective mean

free path very close to the interface may additionally be low-

ered by interfacial disorder.

The exponential decay means that we need only consider

relative distances up to around the mean free path in the sum

over m ∈ int. In the dirty limit, which is what we consider

here, it is assumed that 1/2τ
β

imp is much larger than all the

other self-energy contributions, and therefore |Im(ξi )| is much

larger than the real part of ξi. As a result, when r < 2l
β

mfp,

r Re(ξi)/v
β

F < 2τ
β

imp Re(ξi)  1, which means that we can
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neglect Reξi/v
β

F in the exponential function when r < 2l
β

mfp. Hence,

i

π

˛

dξ
β
−Ǧ

ββ

0 eip·r = Sβc ǧ
β

0



Sβc
T
eir·p

β

F f β (r). (162)

where f β (r) is an exponentially decaying function that gives rise to a soft cutoff as a function of relative distance at |r| ≈ 2l
β

mfp.

Hence, we nd that


i

π

˛

dξ−
α


n∈V

Ǧαα • ̂T



= − iπV β
e



n∈I



m∈int

ˆ
dp

4π

ˆ
dk

4π

f β


xβm − xβn


p
β

F

2

2πv
β

F

Sαc ǧ
α


kαF , x
α
m



Sαc
T

◦ e−iρBk
α
F ·δ

α

t̂αβn eiρB p
β

F ·δ
β

Sβc ǧ
β

0



p
β

F , x
β
n



Sβc
T ◦ e−iρB p

β

F ·δ
β

t̂βαm eiρBk
α
F ·δ

α

e−ikαF ·(x
α
m−xαn )eip

β

F ·(x
β
m−x

β
n ). (163)

Next, we assume that the averaging over all momentum directions for both p
β

F and kαF gives the s-wave contribution from

the Green’s function together with a renormalization of the tunneling amplitudes. This is the case because we assume

that the Green’s functions are approximately spherically symmetric also close to the interface. As a result, we nally

have


i

π

˛

dξ−
α


n∈V

Ǧαα • ̂T



−−

= −i


n∈I

ǧαs


xαn


◦ T̂αβ

n ◦ ǧβ0,s


xβn


◦ T̂βα

n , (164)

where

T̂

αβ

n =


Sαc
T ˆ̃tαβn Sβc , (165)

and where ˆ̃tαβn are the renormalized versions of t̂αβn resulting from the average over momentum directions. Similarly, T̂
βα

n =

(Sβc )
T ˆ̃tβαn Sαc . In a similar way, we nd that



i

π

˛

dξ−
α


n∈V

̂T • Ǧαα



−−

= −i


n∈I

T̂

αβ

n ◦ ǧβ0,s


xβn


◦ T̂βα

n ◦ ǧαs


xαn


. (166)

We choose the volume dened by the unit cells in V to be approximately the shape of a wide cylinder, which includes the

interface. Let the discs at the ends of this cylinder have 2 points and dene a plane. Let en be the unit vector that is orthogonal

to this plane and points out of material α. We assume that the width of the cylinder is much larger than the length. Inserting

Eqs. (164) and (151) into Eq. (70), integrating over the Eilenberger contour and momentum directions and summing over the

unit cells in V , we get that

i2en · ǰ
α

xαl


/|δ| +


n∈V

ǧαs ◦ ετz −



i

π

˛

dξ−
α


n∈V

Ǧαα •


̌α
imp + V̌ α





−−

+ iǧαs


xαl


◦ T̂αβ

l ◦ ǧβ0,s


x
β

l



◦ T̂βα

l

− ǧαs


xαl


◦


Sαc
T
R̂lS

α
c =



i

π

˛

dξ−
α


n∈V

Ǧααξ−
α



, (167)

where l is again a unit cell in I and |δ| is the distance between nearest neighbors in the direction of en. We note that /2 can in

general be different from 1 because the interface need not lie in a perfect plane parallel to the ends of the cylinder. We assume

that the second and third terms on the left-hand side of Eq. (167) are negligible compared to the fourth and fth terms because

the width of the cylinder is much larger than its length and R̂l and T̂

αβ

l T̂

βα

l are large compared to ε and (̌α
imp + V̌ α ). However,

we cannot neglect the term on the right-hand side. The way to remove this term is again to use the other Gor’kov equation. From

the other Gor’kov equation, Eq. (68), we get, using Eqs. (166) and (154), that



n∈V

ετz ◦ ǧαs −



i

π

˛

dξ−
α


n∈V



̌α
imp + V̌ α



• Ǧαα



−−

+ iT̂
αβ

l ◦ ǧβ0,s


x
β

l



◦ T̂βα

l ◦ ǧαs


xαl


− 


Sαc
T
R̂lS

α
c ◦ ǧαs



xαl


=



i

π

˛

dξ−
α


n∈V

Ǧααξ−
α



. (168)

Here, we neglect the rst two terms for the same reason as above. Combining Eqs. (167) and (168) and absorbing the factor

|δ|/2 into the reection and tunneling matrices, we nally get the boundary condition,

en · ǰ
α
=


T̂

αβ

l ◦ ǧβ0,s


x
β

l



◦ T̂βα

l + i


Sαc
T
R̂lS

α
c , ǧ

α
s



◦. (169)
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One can use the Dyson equation to write ǧ
β

0,s as a series

expansion in ǧβs and the tunneling matrix. In principle, this

should produce a generalization of the Nazarov boundary

condition [67,68]. However, we are here interested in the

diffusive regime, meaning that the matrix current is small

compared to the Fermi velocity. This is the case when the

tunneling and reection amplitudes are small. For this reason,

we need only consider Eq. (169) to the lowest order in the

tunneling matrices, which are obtained by setting ǧ
β

0,s = ǧβs ,

yielding

en · ǰ
α
=


T̂

αβ

l ◦ ǧβs


x
β

l



◦ T̂βα

l + i


Sαc
T
R̂lS

α
c , ǧ

α
s



◦. (170)

We note that in the absence of antiferromagnetism, this

exactly reproduces the generalized Kupriyanov-Lukichev

boundary condition for spin-active boundaries in the quasi-

classical theory for normal metals [58,59].

XIII. NONUNIFORM MAGNETIC TEXTURES

In this section, we derive the self-energy terms associated

with nonuniform magnetic textures in antiferromagnets. We

nd that a spatial gradient in the magnetic texture gives rise to

a term in the covariant gradient, similar to spin-orbit coupling,

and a temporal gradient gives rise to an effective magnetic

eld.

In both cases, we must evaluate R†∂R, where ∂ can be

either the time derivative or gradient operator and R is given

by Eq. (8). We nd that

R†∂R = −
i

2
∂ (θ sin φσx − θ cosφσy), (171)

where the direction of the Néel vector is n =

(sin θ cosφ, sin θ sin φ, cos θ ). From Eq. (22c) we see

that the spatial gradient of the Néel vector gives rise to a

self-energy term equal to



α
s



nm
(t1, t2) = −



Kα
nm



xαn − xαm


+


δαρB, K
α
nm



· (R†∇R)


xαn , t1


δ(t1 − t2). (172)

To get how it looks in the nal equation, we must Fourier

transform and project onto the conduction band by use of Sαc .

By doing this, we get



Sαc
T
α

s



k, xαn ,T


Sαc = −
vαF

2
· ∇(θ sin φσx − θ cosφσy).

(173)

Since this is a momentum-dependent self-energy, we see that

this is supposed to go into the covariant derivative. As a result,

the covariant derivative looks like

∇̃ ◦ ǧα =∇ǧα − i


1
2
∇(θ sin φσx − θ cosφσy), ǧ

α


− i[Ǎrest, ǧ
α], (174)

where Ǎrest is the remaining p-wave contribution, which may

come from the vector gauge eld or spin-orbit coupling.

The temporal gradient gives rise to a term similar to a mag-

netic eld. From Eq. (22c) we see that the temporal gradient

of the Néel vector gives rise to a self-energy term equal to


α
t



nm
(t1, t2) = −iτz(R

†Ṙ)


xαn , t1


δnmδ(t1 − t2), (175)

since

ρA(R
†Ṙ)


xαn , t1


+ ρB(R
†Ṙ)


xαn + δα, t1


≈ (R†Ṙ)


xαn , t1


.

(176)

If we again Fourier transform in relative coordinates and trans-

form using Sαc , we get



Sαc
T
α

t



k, xαn ,T


Sαc = − 1
2



1− (Jα/ηα )2

× τz∂T (θ sin φσx − θ cosφσy).

(177)

The factor


1− (Jα/ηα )2 comes from the projection of σx
and σy onto the conduction band. To understand the physical

reason for this factor, consider a general electron state near the

Fermi level. An electron near the Fermi level will in general be

in a superposition of spin-up and spin-down, but the spin-up

component and the spin-down component will have different

spatial distributions. For the spin of this electron at a given

lattice site to have a nonzero projection in a direction orthog-

onal to the Néel vector, it will need to be in a superposition of

spin-up and spin-down. At Jα/ηα = 0, an electron state near

the Fermi level, which is in an equal superposition of spin-up

and spin-down will have spin everywhere orthogonal to the

Néel vector. However, as Jα/ηα increases, the spin-up and

spin-down component starts to separate in space, and in the

limit Jα/ηα → 1, any superposition of spin-up and spin-down

has all of its spin-up component localized on one sublattice

and all of its spin-down component localized on the other

sublattice. This means that it has spin along the Néel vector

everywhere in space. As a result, the effect of spin-splitting

elds orthogonal to the Néel vector is suppressed as Jα/ηα

increases.

XIV. OBSERVABLES

Generally, observables such as densities or currents may be

written

Q


xαn ,T


=


cα†n (T )M


xαn ,−iR



cαn (T )

−


cαn
T
(T )MT



xαn ,−iR



cα†n
T
(T )


+C,

(178)

where C is a constant and M is a matrix that depends on

the observable. We can relate this to our Green’s functions,

which are dened by the spin-rotated creation and annihilation

operators c̃αn , as dened by Eq. (9), if we dene

M̃ =


ρAR
†


xαn , t


+ ρBR
†


xαn + δα, t


M

×


ρAR


xαn , t


+ ρBR


xαn + δα, t


. (179)

With this

Q


xαn ,T


=C + i

ˆ

♦α

d[3]k

(2π )3

ˆ ∞

−∞

dε

2π

× Tr


M̃


xαn , k


τzĜ
K,αα



k, xαn ,T, ε


. (180)

174503-19



FYHN, BRATAAS, QAIUMZADEH, AND LINDER PHYSICAL REVIEW B 107, 174503 (2023)

The quasiclassical treatment is only valid for ε  Eα
c . As a result, we should split the energy integral,

ˆ

♦α

d[3]k

(2π )3

ˆ ∞

−∞

dε

2π
Tr


M̃


xαn , k


τzĜ
K,αα



k, xαn ,T, ε


=

ˆ a

−a

dε

2π

ˆ

♦α

d[3]k

(2π )3
Tr


M̃


xαn , k


τzĜ
K,αα



k, xαn ,T, ε


+

ˆ −a

−∞

dε

2π
+

ˆ ∞

a

dε

2π

 ˆ
d[3]k

(2π )3
Tr


M̃


xαn , k


τzĜ
K,αα



k, xαn ,T, ε


,

(181)

where a is much smaller than Eα
c . In the diffusive regime, a should also be much smaller than the elastic impurity scattering

rate. We can rewrite the rst term on the right-hand side by again using the Eilenberger contour. The Keldysh Green’s function

is ∼1/(ξ−
α )2 for large (ξ−

α )2, so we can neglect the high energy contribution,


dξ−
α . Hence,

ˆ a

−a

dε

2π

ˆ

♦α

d[3]k

(2π )3
Tr


M̃


xαn , k


τzĜ
K,αα



k, xαn ,T, ε


= −iπNα
0

ˆ a

−a

dε

2π
Tr


Sαc
T
M̃


xαn , kF


Sαc τzĝ
K,α


kF , x
α
n ,T, ε





. (182)

Next, we must evaluate the second term on the right-hand side of Eq. (181). Generally, we can write

ĜR,αα =


τzε − Ĥα
0 − ̂R,α

−1
+ δĜR,αα. (183)

Inserting this into the equation

τzε ◦ ĜR,αα − Ĥα
0 Ĝ

R,αα − ̂R,α • ĜR,αα = 1, (184)

one gets an equation for δĜR,αα . We nd that the contribution to the expression for the observable from δĜR,αα is negligible, so

we neglect it in the following. We assume that a is sufciently large such that states at |ε| > a are either completely occupied

or completely unoccupied. Moreover, a is much larger than the superconducting gap, so the density of states at energies above a

should not be affected by superconductivity. For this reason, we assume that we can neglect superconductivity when considering

the high-energy contribution. When this is the case,

ĜK,αα = sgn(ε)[ĜR,αα − (ĜR,αα )†]. (185)

By neglecting δĜR,αα , we nd that

ĜR,αα = Sα


τzε −


ξ−
α,

ξα+



− (Sα )T ̂R,αSα
−1

(Sα )T . (186)

Let (Sα )T ̂R,αSα = A, then

[(Sα )T ĜR,ααSα]−− = [τzε − ξ−
α − A−− − A−+(τzε − ξα+ − A++)

−1A+−]
−1, (187a)

[(Sα )T ĜR,ααSα]++ = [τzε − ξα+ − A++ − A+−(τzε − ξ−
α − A−−)

−1A−+]
−1, (187b)

[(Sα )T ĜR,ααSα]−+ = −[(Sα )T ĜR,ααSα]−−A−+(τzε − ξα+ − A++)
−1, (187c)

[(Sα )T ĜR,ααSα]+− = −[(Sα )T ĜR,ααSα]++A+−(τzε − ξ−
α − A−−)

−1. (187d)

If

A−− − A−+(τzε − ξα+ − A++)
−1A+− = P−J−P

†
−, (188a)

A++ − A+−(τzε − ξ−
α − A−−)

−1A−+ = P+J+P
†
+, (188b)

where J− and J+ are diagonal, we nd that

[(Sα )T Ĝk,ααSα]±±,i j = 2π i sgn(ε)


l

P±,il

Im(J±,ll )/π

[ετz,ll − ξα± − Re(J±,ll )]2 + [Im(J±,ll )]2
P
†
±,l j

. (189)

If not for the fact that J± depends on ε, this would be a sum of Lorentz distribution as functions of ε. However, the dependence

of J± on ε is very weak close to the peak of the distribution. For this reason, we neglect the dependence of both P± and J± on

ε. From Eq. (187) we can see that [(Sα )T ĜR,ααSα]±∓ are products of two functions with peaks at distantly separated values of ε.

One peak is close to ξ−
α and the other is close to ξα+. As a result, we neglect these terms.

To proceed, we must evaluate terms that look like

I±:=

ˆ −a

−∞

dε

2π
+

ˆ ∞

a

dε

2π

ˆ ξmax

ξmin

dξ−
α2πsgn(ε)g(ξ−

α )
Im(J±,ll )/π

[ετz,ll − ξα± − Re(J±,ll )]2 + [Im(J±,ll )]2
, (190)

where the function g can be identied from Eqs. (181) and (189).
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From the fact that the retarded Green’s function should be nonzero only for positive relative times, we have that Im(J−,ll ) =

τz,ll |Im(J−,ll )|. If we dene

f (y) =

ˆ y

−∞
dx

|Im(J±,ll )|/π

x2 + [Im(J±,ll )]2
, (191)

we nd that

I− =

ˆ ξmax

a−Re(J±,ll )+C

dξ−
αg(ξ−

α )−
ˆ −a−Re(J±,ll )−C

ξmin

dξ−
αg(ξ−

α )

+

ˆ C

−C
dξ−

α f (ξ−
α ){g[ξ−

α + a− Re(J±,ll )]− g[−ξ−
α − a− Re(J±,ll )]}, (192)

where C is a number, which is on the order of Im(J±,ll ), and sufciently large such that f (y) ≈ 0 for y 6 −C and f (y) = 1

for y > C. From Eqs. (181) and (189), one can see that g is a slowly varying function. For this reason, we can neglect the last

integral in Eq. (192). Next, we rewrite I− as one term, which depend on J±,ll and one, which does not, as

I− ≈
ˆ ξmax

a+C

dξ−
αg(ξ−

α )−
ˆ −a−C

ξmin

dξ−
αg(ξ−

α )+ Re(J±,ll )[g(a)+ g(−a)], (193)

so that, since g(±a) ≈ g(0),
ˆ −a

−∞

dε

2π
+

ˆ ∞

a

dε

2π

 ˆ ξmax

ξmin

dξ−
αg(ξ−

α )[(Sα )T Ĝk,ααSα]−−,i j

= iδi j

ˆ ξmax

a+C

dξ−
αg(ξ−

α )− iδi j

ˆ −a−C

ξmin

dξ−
αg(ξ−

α )+ ig(0)[A−− + A
†
−−]i j, (194)

where we have used that for ξ−
α ≈ 0,

2P−Re(J−)P
†
− = P−J−P

†
− + (P−J−P

†
−)

† ≈ A−− + A
†
−−. (195)

Evaluating I+ is less difcult because ξα+  a for all k. Hence,

I+ =

ˆ ξmax

ξmin

dξ−
αg(ξ−

α ). (196)

Inserting this into the expression for the high-ε contribution to the observable, we nd
ˆ −a

−∞

dε

2π
+

ˆ ∞

a

dε

2π

 ˆ
d[3]k

(2π )3
Tr[M̃τzĜ

K,αα]

= i

ˆ ξmax

ξmin

dξ−
αNα

0 (ξ−
α )Tr{[(Sα )T M̃Sα]++τz}



+ i

ˆ ξmax

a+C

dξ−
αNα

0 (ξ−
α )Tr{[(Sα )T M̃Sα]−−τz}



− i

ˆ −a−C

ξmin

dξ−
αNα

0 (ξ−
α )Tr{[(Sα )T M̃Sα]−−τz}



+ i


Nα
0 Tr



[(Sα )T M̃Sα]−−τz[A−− + A
†
−−]



. (197)

The rst three terms on the right-hand side are just constants and can be absorbed into the constant C in the expression for the

observable. By doing this, we get that the observable can nally be written

Q =C +
Nα
0

2

ˆ a

−a

dεTr


Sαc
T
M̃Sαc τzĝ

K,α




− Nα
0



Tr


Sαc
T
M̃Sαc τz



Sαc
T 

̂R,α + (̂R,α )†]Sαc


. (198)

To compute observables from the quasiclassical Green’s functions, one therefore generally also need to take into account the

contribution from the self-energy term. Note that since the quasiclassical Green’s function is not gauge-invariant, the second

term in Eq. (198) is required to make the observables gauge-invariant.

For concrete examples of observables, consider the electric charge density in material α, nαe , and the spin densities in material

α, sα = (sαx , s
α
y , s

α
z ). For the electric charge density M̃ = eτz/4, which can be conrmed by inserting this into Eq. (178). The

denominator 4 comes from the fact that we count each electron 4 times in Eq. (178). To derive the formula for electric charge

density, we can insert this into Eq. (198), giving

nαe =
Nα
0 e

8

ˆ a

−a

dεTr


ĝK,αs



− 2Nα
0 eφ

α
e , (199)

where we dropped the constant and φα
e is the deviation in the electrochemical potential away from µα , and may therefore

vary in both time and space. In other words, φα
e is the real, diagonal part of the self-energy. Equation 199 reproduces earlier
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results for charge density in the quasiclassical regime [1,69]. We can see that the second term in Eq. (199) is necessary to

retain gauge invariance. Take for example, a nonsuperconducting stationary system in equilibrium with an electrochemical

potential φα
e . The symmetric part of the quasiclassical Keldysh function is then ĝK,αs = 2diag(tanh[β(ε + φα

e )/2], tanh[β(ε +

φα
e )/2],− tanh[β(ε − φα

e )/2],− tanh[β(ε − φα
e )/2]), where β is inverse temperature. Taking the trace and integrating over

energies, we get

Nα
0 e

8

ˆ a

−a

dεTr


ĝK,αs



=
Nα
0 e

8
16φα

e = 2Nα
0 eφ

α
e . (200)

The electrochemical potential is gauge dependent, so the second term in Eq. (199) is required to cancel the gauge-dependent

contribution from ĝK,αs in this case.

For the spin density in direction i, M̃ = σi/8. The projection of spin Pauli matrices onto the conduction band is trivial for the

z direction since it commutes with the Sα matrix. That is, (Sαc )
TσzS

α
c = σz. However, (S

α
c )

Tσx/yS
α
c =



1− (Jα/ηα )2σx/y, so for

the directions orthogonal to the Néel vector we get an additional factor


1− (Jα/ηα )2. If the initial Hamiltonian in material

α, given by Eq. (4), has a Zeeman spin-splitting eld hα , this gives rise to a self-energy term equal to ̂
R,α
Z = hα · στz before

projection onto the conduction band. Inserting this into Eq. (198), we get that the spin densities are given by

sαx =



1−


Jα

ηα

2
Nα
0

16

ˆ a

−a

dεTr


σxτzĝ
K,α
s



−



1−


Jα

ηα

2


Nα
0 h

α
x , (201a)

sαy =



1−


Jα

ηα

2
Nα
0

16

ˆ a

−a

dεTr


σyτzĝ
K,α
s



−



1−


Jα

ηα

2


Nα
0 h

α
y , (201b)

sαz =
Nα
0

16

ˆ a

−a

dεTr


σyτzĝ
K,α
s



− Nα
0 h

α
y , (201c)

where we again dropped the constant. The extra factor of


1− (Jα/ηα )2 comes from the fact itinerant electrons become more

polarized in the direction of the Néel vector as Jα/ηα increases, as discussed above. This polarization comes in through two

different aspects. First, the Zeeman spin-splitting felt by the itinerant electrons is reduced by a factor


1− (Jα/ηα )2. Second,

the σx and σy components of the Green’s function do not correspond to spin in the same sense as in a normal metal. In the limit

of very strong exchange coupling Jα , the itinerant electrons become fully polarized, and sαx = sαy = 0.

To compute the sublattice-resolved charge densities, one can use Eq. (118) together with M̃ = eτzρA/B/4, which gives

nαA/B =
1

2
nαe ±

eJα

ηα
sαz . (202)

One can similarly use Eq. (198) to compute energy and spin-energy densities [70] and all associated current. Another way to

derive expressions for currents is to use the expressions for densities together with Eq. (128) to obtain conservation laws of the

form ∂n/∂t + ∇ · j = S, where n is the density, j can be identied as the current and S is a source term. For instance, multiplying

Eq. (128) with −ieN0τz/8, taking the trace, integrating over energy and adding −2N0e∂φ
α
e /∂t to both sides of the equality sign,

one obtains ∂nαe /∂t + ∇ · jαe = Sαe , where the electric current density can be identied as

jαe =
Nα
0 e

8

ˆ a

−a

dεTr(τz ĵ
K,α

). (203)

XV. CONCLUSION

We have derived quasiclassical equations of motion, which
are valid for mesoscopic heterostructures with antiferromag-
netic order, superconductivity, impurity scattering, external
electric or magnetic elds, spin-orbit coupling, temporally
or spatially inhomogeneous Néel vector, or, in principle any
other effect that can be modeled using a quadratic Hamilto-
nian. These are valid when the distance between the Fermi
level and the edges of the conduction bandEα is larger than
all other energy scales except possibly the exchange energy,
which couples the itinerant electrons to the localized, antifer-
romagnetically ordered spins. The ratio between the exchange
energy and the chemical potential relative to the center of
the two energy bands Jα/ηα can take any value between 0

and 1. Our main results are the quasiclassical equation in
the dirty regime, which are valid when the elastic impurity
scattering rate is high compared to other energies, except for
Eα and possibly Jα , and when the isotropic part of the
quasiclassical Green’s function dominates. The latter is true
when the matrix current is small, which happens for instance
when the system varies slowly on the scale of the mean free
path, or when the proximity effect is small. In the limit of
very strong exchange coupling, such that (Jα/ηα )2 → 1, the
short-ranged correlations can vary on the scale of the mean
free path. However, these correlations become vanishingly
small in the diffusive limit. Therefore, one can solve the
equations by projecting the Green’s functions onto the set of
long-range components. Being based on Keldysh theory, the
equations can be used to study nonequilibrium situations, such
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as externally driven currents or spin injection. Additionally,
they can also be solved to study time-dependent phenomena,
as there are ways to evaluate the circle products [9,13–15].
In the absence of antiferromagnetism, the equations reduce to
the Eilenberger equation [3] and Usadel equation [4] for nor-
mal metals, as expected. However, with antiferromagnetism,
there are a few important differences. First, all self-energy
terms must be projected onto the conduction band. Second,
even nonmagnetic impurities behave magnetically because of
the coupling between spin and sublattice. Finally, this also
changes the equation for the matrix current in the dirty regime.
We discuss the physical origin and implications of these ef-
fects in Ref. [63].

We have also derived boundary conditions that are valid

in the diffusive regime. These are valid as long as the tun-

neling amplitudes are small, such that the matrix current

is small compared to the Fermi velocity. They take into

account both tunneling and reection and allow for both

compensated and uncompensated interfaces, meaning that the

coupling can be asymmetric in sublattice. Additionally, the

boundary conditions allow for spin-active boundaries and iso-

lating, spin-active boundaries can be obtained by setting the

tunneling matrices to zero. In the absence of antiferromag-

netism, the boundary conditions reduce to the generalized

Kupriyanov-Lukichev boundary conditions for spin-active

boundaries [58,59].

Finally, we have derived an expression that can be used

to compute observables from the quasiclassical Green’s func-

tion. This expression also includes the contribution from

energies, which are not captured by the quasiclassical Green’s

function. As we saw in the example of charge density, the

high-energy contribution is needed to make the observables

gauge invariant.
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APPENDIX: NUMERICAL SOLUTION ALGORITHM

As an example, we illustrate how one can solve Eqs. (128),

(135), and (170) in a time-independent one-dimensional sys-

tem at thermal equilibrium. The components of the Green’s

function are not independent because of the normalization

condition, so it is necessary to use a parametrization scheme.

For instance, one can use the Ricatti parametrization [71,72]

or the θ parametrization [73]. In order to solve Eqs. (128),

(135), and (170) numerically, one must rst dene a set of

algebraic equations. These equations can then be solved for

the unknown parameters. For simplicity, assume we need only

solve Eqs. (128), (135), and (170) in one material because the

solution is known in all neighboring materials. For this reason,

we remove the superscript α. Let there be N discretization

points, and denote by u
j
n the jth parameter at discretization

point n ∈ {1, . . . ,N}. The spherically symmetric part of the

quasiclassical Green’s function at point n is a function of

the M parameters. Depending on the problem, the number of

different parameters needed to characterize the system will

vary. At most, M = 8 in thermal equilibrium since it is only

necessary to compute the retarded Green’s function. Let ǧRs,n
be the spherically symmetric part of the retarded Green’s

function in position x = (n− 1)x, where x is the distance

between discretization points. Then,

ĝRs,n = ĝRs,n


u1n, u
2
n, . . . , u

M
n



(A1)

is a function of only the local parameters (u1n, u
2
n, . . . , u

M
n ).

In order to solve Eqs. (135) and (128), we need not only

the Green’s function but also its spatial derivative. Let the

derivative at point n be (∂xǧ
R
s )n. This can be obtained from

the gradients of the parameters,



∂xǧ
R
s



n
=

M


j=1

∂ ĝRs,n

∂u
j
n

∂u
j
n

∂x
. (A2)

Thus, we have 2M unknown parameters at each point:

(u1n, . . . , u
M
n , ∂xu

1
n, . . . , ∂xu

M
n ). The circle products reduce to

normal matrix products in a static system, so, if ĵRn is the

retarded matrix current at point n, we get from Eq. (135) that

ĵRn = − DĝRs,n


∂xĝ
R
s



n
+ iDĝRs,n



AR
x , ĝ

R
s,n



− ĝRs,n



J2

2η2
σzτzĝ

R
s,nσzτz, ĵRn



. (A3)

The boundary conditions, given by Eq. (170), is in this case

ĵR1 = −


T̂Lĝ
R
s,LT̂

†
L + iR̂L, ĝ

R
s,1



, (A4a)

ĵRN =


T̂Rĝ
R
s,RT̂

†
R + iR̂R, ĝ

R
s,N



, (A4b)

where T̂L and T̂R are the tunneling matrices, R̂L and R̂R are

the reection matrices, and ĝRs,L and ĝRs,R are the quasiclas-

sical Green’s functions on the left (x = 0) and right (x =

[N − 1]x) side, respectively. If a boundary is insulating, then

the corresponding tunneling matrix is zero. A magnetic insu-

lator will have nonzero magnetic components in the reection

matrix, so that R̂ = r0 +m · σ for some scalar r0 and some

vector m.

We have 2NM unknown parameters, so we need 2NM

algebraic equations. These can be obtained by integrating

Eq. (128) in space. Equation (128) can in this case be written

∂ ĵR

∂x
+ F = 0, (A5)

where

F = −i



τzε − V̂ R
s +

iJ2

2τimpη
2
σzτzĝ

R
s σzτz, ĝ

R
s



− i


ÂR
x , ĵ

R


.

(A6)

To obtain algebraic equations, we can integrate Eq. (A5)

between two discretization points and use a numerical inte-

gration scheme to approximate the integral of F . Integrating

between (i − 1)x and (i + j − 1)x, we get

ĵRi+ j − ĵRi +

j


k=1

wkFi+k = 0, (A7)

174503-23



FYHN, BRATAAS, QAIUMZADEH, AND LINDER PHYSICAL REVIEW B 107, 174503 (2023)

where (w1, . . . ,w j ) is the set of weights dened by the

numerical integration scheme and Fn is Eq. (A6) evaluated

with ĝRs = ĝRs,n and ĵRs = ĵRs,n. Equation (A7) is a matrix-valued

equation from which one can takeM independent scalar equa-

tions. For instance, in the most general case with M = 8,

one can take the upper right and lower left 2× 2 blocks of

Eq. (A7). Another M algebraic equations can be found from

the same interval by integrating ∂xu
p for p ∈ 1, . . . ,M,

u
p

i+ j − u
p

i −
j


k=1

wk∂xu
p

i+k
= 0. (A8)

To obtain 2NM algebraic equations, one can choose

N different subintervals, each of which denes 2M alge-

braic equations through Eqs. (A7) and (A8). These can

be solved using Newton’s method, and one can use for

instance forward-mode automatic differentiation or nite dif-

ferences to determine the Jacobian. The algorithm for solving

Eqs. (128), (135), and (170) for arbitrary values of J/η in one

dimension is summarized in Algorithm 1. Having found the

retarded Green’s function, one can determine the advanced

and Keldysh Green’s functions, and thereby compute observ-

ables, through

ĝAs = −τz


ĝRs
†
τz, (A9a)

ĝKs =


ĝRs − ĝAs


tanh(βε/2), (A9b)

where β is inverse temperature. Equation (A9a) follows from

the denition of the advanced and retarded Green’s function

Algorithm 1. Numerical scheme for solving Eqs. (128), (135),

and (170).

Require (ni,mi ) for i ∈ {1, . . . ,N} are N different intervals and

(wi
1, . . . ,w

i
mi−ni

) are corresponding numerical weights.

1: function (R){u j
n}, {∂xu

j
n}

2: for i ← 1 to N do

3: ĝRs,i ← ĝRs,i(u
1
i , . . . , u

M
i )

4: (∂xĝ
R
s )i ← (∂xĝ

R
s )i(u

1
i , . . . , u

M
i , ∂xu

1
i , . . . , ∂xu

M
i )

5: if i = 1 or i = N then

6: ĵRi ← ĵRi (ĝ
R
s,i, (∂xĝ

R
s )i )  Eq. (A4)

7: else

8: ĵRi,0 ← 0

9: ĵRi ← ĵRi (ĝ
R
s,i, (∂xĝ

R
s )i, ĵ

R
i,0)  Eq. (A3)

10: while | ĵRi − ĵRi,0| > tolerance do

11: ĵRi,0 ← ĵRi
12: ĵRi ← ĵRi (ĝ

R
s,i, (∂xĝ

R
s )i, ĵ

R
i,0)  Eq. (A3)

13: end while

14: end if

15: end for

16: for i ← 1 to N do

17: ri1 ← ĵRmi
− ĵRni +

 j

k=1 w
i
kFni+k  Eq. (A7)

18: ri2 ← {up
mi
− up

ni
−
 j

k=1 w
i
k∂xu

p

ni+k}p
19: end for

20: return {ri1}, {r2}

21: end function

22: Solve R({u j
n}, {∂xu

j
n}) = 0

while Eq. (A9b) follows from the uctuation-dissipation the-

orem.
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[66] S. Ilić and F. S. Bergeret, Phys. Rev. Lett. 128, 177001

(2022).

[67] Y. V. Nazarov, Superlattices Microstruct. 25, 1221 (1999).

[68] Y. V. Nazarov and Y. M. Blanter,Quantum Transport: Introduc-

tion to Nanoscience (Cambridge University Press, Cambridge,

2009).

[69] G. M. Eliashberg, Sov. Phys. JETP 34, 668 (1972).

[70] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä, Rev.

Mod. Phys. 90, 041001 (2018).

[71] M. Eschrig, Phys. Rev. B 61, 9061 (2000).

[72] A. Konstandin, J. Kopu, and M. Eschrig, Phys. Rev. B 72,

140501(R) (2005).

[73] D. A. Ivanov and Y. V. Fominov, Phys. Rev. B 73, 214524

(2006).

174503-25





Paper X

407



Reference
Eirik Holm Fyhn, Arne Brataas, Alireza Qaiumzadeh, and
Jacob Linder,
Superconducting proximity effect and long-ranged triplets in dirty
metallic antiferromagnets.
arXiv:2210.09325
doi: 10.48550/arxiv.2210.09325

Contributions
EHF performed the analytical calculations and the numerical
simulations. EHF developed the code, drafted the manuscript
and produced all the figures presented in the paper. All authors
contributed to the physics discussions and the final manuscript.

408

https://dx.doi.org/10.48550/arXiv.2210.09325


Superconducting proximity eect and long-ranged triplets in dirty metallic antiferromagnets

Eirik Holm Fyhn,1 Arne Brataas,1 Alireza Qaiumzadeh,1 and Jacob Linder1

1Center for Quantum Spintronics, Department of Physics, Norwegian

University of Science and Technology, NO-7491 Trondheim, Norway

(Dated: May 30, 2023)

Antiferromagnets have no net spin-splitting on the scale of the superconducting coherence length. Despite
this, antiferromagnets have been observed to suppress superconductivity in a similar way as ferromagnets, a
phenomenon that still lacks a clear understanding. We nd that this eect can be explained by the role of impurities
in antiferromagnets. Using quasiclassical Green’s functions, we study the proximity eect and critical temperature
in diusive superconductor-metallic antiferromagnet bilayers. The non-magnetic impurities acquire an eective
magnetic component in the antiferromagnet. This not only reduces the critical temperature but also separates the
superconducting correlations into short-ranged and long-ranged components, similar to ferromagnetic proximity
systems.

Introduction: Antiferromagnets and superconductors
both have prominent roles in condensed matter physics [1–
9]. Separately, they are both theoretically interesting due to
their dierent types of quantum order [10–13]. They are also
technologically useful: superconductors in part because of
their perfect diamagnetism and dissipationless current [14, 15],
and antiferromagnets because of their ultrafast dynamics [16,
17], negligible stray-eld and considerable magnetotransport
eects [1]. However, while materials with superconducting or
magnetic properties can be interesting on their own, new physics
and applications can be found in systems that combine both. For
instance, combining superconductivity and ferromagnetism in
mesoscopic heterostructures is now a well-established method
to produce odd-frequency superconductivity and long-range
spin-triplet superconductivity [13, 18]. The latter can carry
dissipationless spin-currents, giving superconductors a unique
role in the eld of spintronics [2].

Superconductor-antiferromagnet (SC-AF) heterostructures
have been studied both theoretically and experimentally [19–
30], but much less than their ferromagnetic counterparts. As a
result, much remains to be fully understood about SC-AF het-
erostructures. For instance, experiments show that proximity
to antiferromagnets can severely suppress the superconduct-
ing critical temperature [28–30]. This suppression is much
stronger than the prediction by the theoretical models which
considered the AFs to be similar to normal metals due to their
lack of uncompensated magnetic moments [29–31]. In fact, the
suppression has been reported to be even larger than the suppres-
sion seen in ferromagnetic junctions [28]. Various proposals
have been suggested to explain this suppression, such as nite
spin-splitting coming from uncompensated interfaces [30], the
possibility of magnetic impurities having been infused into the
superconductor during sample preparation [28], or the complex
spin structure of the specic antiferromagnetic materials used
in the experiments [29].

More recently, in a theoretical study of superconductor-
antiferromagnetic insulator bilayers with compensated inter-
faces, Bobkov et al. [32] suggested that a band-gap opening
mechanism together with the induction of spin-triplet Cooper
pairs could explain the suppression. As these eects are smaller
when the mean free path is shorter, they argued that the sup-
pression would be larger for cleaner systems, but noted that a

fully detailed analysis of the roles of impurities and AF length
should consider a metallic AF.
Here, we study the proximity eect in diusive supercon-

ductor (SC)-antiferromagnetic metal (AFM) bilayers using our
newly derived quasiclassical framework [33]. Interestingly, our
results show that the suppression of superconductivity is not
larger for clean systems, but that impurity scattering is in fact
the dominant mechanism for superconductivity suppression in
metallic AFs. The reason is that the sublattice-spin coupling in
the antiferromagnet gives the non-magnetic impurities an eec-
tive magnetic component. These eective magnetic impurities
are detrimental to superconductivity, except for spin-triplet
superconductivity with spin aligned orthogonal to the Néel
vector. As a result, dirty AFMs work as superconductivity l-
ters letting only spin-triplet superconductivity with orthogonal
spin-projection to the Néel vector pass through. After studying
the critical temperature in SC/AFM bilayers, we show how the
superconducting correlations penetrate into the antiferromag-
netic metal, as well as the inverse proximity eect. Moreover,
we show how the long-range spin-triplet components can be
induced by either uncompensated or magnetic interfaces with
magnetic misalignment relative to the AFM Néel vector.
Theory: To study SC-AFM bilayers, we employ the quasi-

classical Keldysh formalism derived in [33]. It is valid under
the assumption that the Fermi wavelength is short compared to
the coherence length and the mean free path, and the chemical
potential, , is much larger than all other energy scales in the
system, except possibly the exchange energy between localized
spins and conducting electrons, . Note that |/ | < 1, since
| | =

√
2 + 2, where  is the hopping parameter evaluated at

the Fermi surface. We also assume the dirty limit, meaning
that the system is diusive, and that there is no electromag-
netic vector potential. In this case, the quasiclassical Green’s
function ̌ solves [33]

∇ · ̌ +



 ( + ) + Δ̂ +
2

2imp2
 ̌ , ̌



= 0. (1)

Here, ̌ is the matrix current,  and  are Pauli matrices
in Nambu- and spin-space, respectively,  is energy,  is the
Dynes parameter, imp is the elastic impurity scattering time
and Δ̂ = Δ , under the assumption that the gap parameter
Δ is real. The spin-quantization axis is chosen to be parallel
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2

to the Néel vector, which is assumed homogeneous within the
AFM. We let the system be large in the directions parallel to
the interface, such that the problem becomes an eective 1D
problem.

The quasiclassical Green’s function can be written

̌ =



̂ ̂

0 ̂



, (2)

where ̂, ̂ and ̂ are the retarded, advanced and Keldysh
Green’s functions, respectively. In thermal equilibrium, which
is assumed here, it is sucient to solve for ̂, since ̂

=

− (̂)† and ̂ = (̂ − ̂) tanh(/2).
Equation (1) is similar to the Usadel equation for normal

metals [34] but is modied by the antiferromagnetic order in
two important ways. First, the expression for the matrix current
is now

̌ = −̌∇̌ − ̌



2

22
 ̌ , ̌



, (3)

where  is the diusion constant. The second way AFMs
dier from normal metals is through the term proportional to
 ̌ in Eq. (1). This is exactly the way magnetic impu-
rities enter the Usadel equation for normal metals [35]. Hence,
the antiferromagnetic order gives rise to eective magnetic
impurities with scattering time equal to imp

2/2.
The presence of −1imp in the equations requires some special

care, as discussed in detail in Ref. [33]. Since the impurity
scattering rate, −1imp, is small in the dirty limit, one should project

onto only the long-ranged components of ̌ when 2/2 ≈ 1.
This is possible because some components become negligible in
this limit of very strong exchange coupling. Here, we consider
smaller values of 2/2. Consequently, the eective magnetic
scattering rate 2/(2imp) is not necessarily large, and we
must keep all components of ̌.
To model SC-AFM bilayers, we set  = 0 in the SC and

Δ = 0 in the AFM. The dimensionless quantity / is non-zero
in the AFM, while the gap parameter in the SC is determined
through the self-consistency equation [36],

Δ =

1

4 acosh(/Δ0)

∫ 

0

d Tr


( − )̂



, (4)

where symmetries of the Green’s function were used to write
Δ as an integral over only positive energies,  is a cuto
energy and Δ0 is a material-specic parameter dening the gap
parameter in the bulk. We set  = 30Δ0.
The two materials must be connected through a boundary

condition, which is also derived in [33]. We consider both
compensated and uncompensated interfaces. Let the interface
be located at  = 0, and let ̌ = ̌(0−) and ̌ = ̌(0+) be
the quasiclassical Green’s functions on the superconducting
and antiferromagnetic sides of the interface, respectively. We
similarly let ̌ and ̌ be the matrix current on the SC and
AFM sides, respectively. The general boundary condition for
the matrix current going out of material  ∈ {, } and
into material  ∈ {, } is [33]

 · ̌ =



̂ ̌̂ + ̂, ̌



. (5)

where  is the outward-pointing normal vector, ̂ is the
tunneling matrix and ̂ is the reection matrix. For the case
of a compensated interface, we assume that tunneling and
reection are independent of spin and sublattice. In this case
̂ = ̂∗


=  and ̂ are scalars.

In the case of an uncompensated interface, we assume that
tunneling can only occur between the SC and the A-sublattice in
the AFM. In this case, we nd from Ref. [33] that the tunneling
matrix becomes

 , = 
†
 , =



2





1 + / +


1 − /

+




1 + / −


1 − /


 · 


. (6)

Here we have allowed for a possible misalignment between
the magnetization direction in the AFM and the magnetization
direction at the interface through the unit vector . When
the system is uncompensated, there should in general also be
spin-dependent reection. For simplicity, we set the reection
matrix equal at both sides of the interface and equal to ̂ =

̂ =  · . Note that instead of an uncompensated
interface, one can instead use a thin ferromagnetic (F) layer.
For instance, one could consider an SC/F/I/AFM structure,
where the insulator (I) is used to reduce the exchange bias eect.
In this case,  would be the magnetization direction of the
ferromagnet.

We solve Eqs. (1) and (3)–(5) numerically using the Ricatti-
parametrization [37, 38] and a collocation method [33], and
determine the matrix current by xed-point iterations of Eq. (3).
For simplicity, we set the diusion constant to be equal in
both materials. We denote by  and  the lengths of the
AFM and SC, respectively, and  =



/Δ0 is the diusive
coherence length. To nd the critical temperature, we use the
algorithm described in Ref. [39].
Critical temperature: We plot the critical temperature

as a function of AFM length for various values of / in
Fig. 1 for the case of a compensated interface. As / is
increased, the critical temperature is reduced substantially,
which is consistent with experiments [28–30]. While 
decays slowly, reaching only around one-third of the bulk value
in the SC/NM bilayers (/ = 0),  is reduced all the way to 0
in the SC/AFM bilayers. The AFM length needed to make 
vanish reduces with increasing /. This can be understood
from the eective magnetic impurities in the AFM, which
has a scattering rate proportional to 2/2. It has long been
known that even a small amount of magnetic impurities can
strongly reduce the superconducting transition temperature [40–
42]. The magnetic impurities give rise to spin-ip scatterings
which break the spin-singlet Cooper pairs, thereby lowering
the transition temperature.
Note that the maximal suppression of  depends on the

length of the superconductor and the magnitude of the tunneling
amplitude. When the superconductor is long compared to the
coherence length,  will be non-zero no matter how much
the gap is suppressed near the interface. Therefore, while one
can observe total  suppression for short superconductors,
like in Ref. [29], one should expect only a partial suppression,
like in Refs. [28, 30], when the superconductor is long or the
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tunneling amplitude is small. In the case of partial suppression,
one should expect the minimal value to be reached when
the length of the antiferromagnet reaches approximately the
penetration depth of spin-singlet correlations, determined by
imp and /.
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FIG. 1: Critical temperature  as a function of AFM length 

normalized by the coherence length  =



/Δ0. 0 is the bulk
critical temperature. The inset shows a sketch of an SC/AFM bilayer
with a compensated interface. The length of the superconductor is
 = , the impurity scattering rate is 1/imp = 100Δ0, the Dynes

parameter is  = 0.001Δ0 and the tunneling amplitude is  = 3


Δ0.

|ψ↓(r)|

A B A B

FIG. 2: Exaggerated sketch of the spatial distribution of the conduction
electron state with spin down. The overlap is larger with the B-
sublattice than with the A-sublattice. As a result, the conduction
band electrons with spin-down will be aected more strongly by
non-magnetic impurities on the B-sublattice than by non-magnetic
impurities on the A-sublattice.

To understand the origin of the eective magnetic impurities,
consider the spatial distributions of the two degenerate spin-
states of the antiferromagnetic conduction band. The spin-down
state is sketched in Fig. 2. The spin-down (spin-up) state has
larger amplitude on sublattice B (A) compared to sublattice.
As a result, non-magnetic impurities on sublattice B (A) act
like superpositions of non-magnetic impurities and impurities
with magnetization in the −(+)-direction on the conduction
band electrons. Therefore, electrons in the conduction band
experience an eective magnetic impurity potential giving rise
to spin-ip scattering described by the term proportional to
2/2imp

2 in Eq. (1). The spin orientations of these impurities
are locked along the direction of the Néel vector. This gives
rise to the possibility of long-ranged triplet correlations, as is
shown in the following.
Proximity eect: To study how the proximity eect is

aected by the antiferromagnetic order, we consider the anoma-
lous Green’s function, Tr



( − )̂



= 0 +  · . Here,
0 describes the conventional spin-singlet superconducting
correlations while  = (  ,  , ) describes the spin-triplet
correlations. Note that since we are working with diusive
systems, the spin-singlet and spin-triplet correlations are also
even and odd in frequency, respectively.
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FIG. 3: The non-zero components of the anomalous Green’s function
0 +  +  evaluated at energy  = /2


for various bilayer

cases illustrated by the insets. The SC/AFM interface is at  = 0

and the Néel vector points in the -direction. (a) SC/NM (/ =

0), (b) SC/AFM with compensated interface, (c) SC/AFM with
uncompensated interface aligned in the -direction, (d) SC/AFM
with uncompensated interface aligned in the -direction. (a)-(d)

have Dynes parameter  = 0.001Δ0, tunneling amplitude  = 2


Δ0,
temperature  = 0.050, SC length  = 2 and AFM length
 = 2. (b)-(d) have 2/2 = 0.1, 1/imp = 100Δ0. (c)-(d) have
 = Δ0.

Figure 3 shows the anomalous Green’s function for various
SC/AFM structures evaluated at  = /2


. There is a

large singlet component in the SC as expected. In Fig. 3(a),
the neighboring material is a normal metal, meaning that
/ = 0, and therefore the proximity induced 0 penetrates
deeply without signicant decay. On the other hand, in Fig. 3(b),
the neighboring material has antiferromagnetic ordering with
2/2 = 0.1 and 2/2imp = 10Δ0. In this case, the spin-
singlet 0 induced through the compensated interface decays
over a much shorter length scale because of the eective
magnetic impurities discussed above. Additionally, 0 is also
more suppressed on the SC side, as expected from the 
results.

With an uncompensated interface, as shown in Fig. 3(c)-(d),
spin-triplet correlations,  , are also induced at the interface.
These correlations are aligned parallel to the magnetization
direction of the interface. When the correlations are parallel
to the Néel-vector of the antiferromagnet, as in Fig. 3(c), they
are aected by the magnetic impurities in the same way as the
spin-singlet correlations, and therefore decay over the same
length-scale. However, when  is orthogonal to the Néel vector,
as in Fig. 3(d), the spin-triplet correlations become long-ranged,
decaying over a length scale that is the same as for a normal
metal.

Thus, one can distinguish between short-ranged triplets and
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long-ranged triplets in diusive AFMs, just as in FMs. The
reason why spin-singlet correlations and  ∥  are short-
ranged in FMs with spin-splitting eld  is because  induces
an energy-dierence between the electrons in the Cooper pairs,
causing decoherence. On the other hand, the spins of the
two electrons in  ⊥  are both parallel to , such that they
have the same wavelength as they propagate into the FM. In
diusive antiferromagnets with Néel vector , the reason for
the decoherence is non-magnetic impurities, but the eect is
similar. Spin-singlet 0 and spin-triplet  ∥  are short-ranged
while  ⊥  are long-ranged.

In order to compute the decay length associated with long-
ranged and short-ranged correlations, we linearize the retarded
component of Eq. (1) in theAFM.We let ̂ = +  . To rst

order in  , we get from Eq. (3) that ̂

= −∇  /(1+2/2).

Inserting this into Eq. (1), we get to rst order in  that

∇2 

1 + 2/2
= −



2 − 2 − 2

imp2



 +
2

imp2
   . (7)

Thus, if lim→∞  () = 0 and  (0) = 0 +  ·  for some
constants 0, and  = ( ,  , ), then  = (0+)e

∥  +

( + )e
⊥ , where ⊥ =



2(1 + 2/2) ( − )/

and  ∥ = ⊥
√

( −  − −1imp
2/2)/( − ), such that the

imaginary parts of  ∥ and ⊥ are positive.
To nd the decay lengths, we must take the imaginary

parts of  ∥ and ⊥. When  ≫ , the long-ranged correla-
tions decay over a length scale equal to ⊥ = 1/Im(⊥) =


/[(1 + 2/2)]. This is on the same order as in a normal

metal, NM =



/. On the other hand, if 2/2imp ≫ ,
the short-ranged correlations decay over a length scale equal to
 ∥ = mfp/[



6(1 + 2/2)], which can be compared to the
decay length for short-ranged correlations in ferromagnets [18],
FM =



/ℎ, where ℎ is the spin-splitting energy. Here,
mfp = imp is the mean free path, where  is the Fermi
velocity.

Local density of states: In Fig. 4 we show the normalized
density of states, /0 = Re(̂

11
+ ̂

22
)/2, as a function of

energy at various positions with the same parameters as in
Fig. 3, except that 2/2 = 0.01 in Fig. 4(b)-(d). The local
density of states in the SC/NM bilayer is shown in Fig. 4(a),
and one can see a minigap in the spectrum as expected [43].
However, no minigap is present in the SC/AFM bilayers. This
is because the eective magnetic impurities act similarly to
inelastic scattering for the spin-singlet correlations, leading
to a much weaker suppression in the density of states, and a
more smeared-out spectrum. This is true also very close to the
interface, as can be seen in Fig. 4(b). As one moves away from
the interface as  = 0, the spectrum in the Fig. 4(b) rapidly
becomes atter. This is in contrast to the spectrum in the
SC/NM system, which retains the minigap also away from the
interface. The atness of the spectrum away from the interface
can be understood from the exponential decay coming from the
eective magnetic impurities.

Figure 4(c) and Fig. 4(d) shows the local density of states for
SC/AFM bilayers with short-ranged and long-ranged triplets
respectively. Both show a pronounced peak in the density of
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FIG. 4: The local density of states,  , normalized by the normal state
density of states 0, at dierent positions inside the antiferromagnet.
The parameters are the same as in Fig. 3, except that 2/2 = 0.01 in
(b)-(d).

states at zero energy, similar to ferromagnetic systems with
spin-triplet superconductivity [44]. Close to the interface, the
spectrum in Fig. 4(c) is more smeared out than the spectrum in
Fig. 4(d), probably because the eective magnetic impurities
act on the short-ranged spin-triplet correlations in a similar
way as they do on the spin-singlet correlations. However, the
biggest dierence can be observed when going away from the
interface. While the spectrum in Fig. 4(c) becomes atter, as
expected from the exponential decay of the superconducting
correlations, the spectrum in Fig. 4(d) transforms in the opposite
way. The zero-energy peak becomes sharper as the distance to
the interface increases.

Conclusion: We have theoretically studied diusive
SC/AFM bilayers with both compensated and uncompensated
interfaces. We nd a strong suppression of the critical temper-
ature, consistent with experiments [28–30]. This suppression
can be explained in terms of eective magnetic impurities.
Non-magnetic impurities interact with conduction electrons in
the AFM in a similar way as magnetic impurities in NMs. Thus,
we predict that cleaner AFMs will suppress superconductivity
to a smaller degree, giving rise to higher critical temperatures.
The impurities in AFMs not only suppress spin-singlet super-
conductivity, and thereby  , but they also suppress spin-triplet
correlations that are oriented parallel to the Néel vector. As
a result, spin-singlet correlations and spin-triplet correlations
with parallel orientation are short-ranged, decaying exponen-
tially over a length scale determined by the mean free path and
the exchange energy between localized spins and conducting
electrons. In contrast, spin-triplet correlations with orientation
orthogonal to the Néel vector are long-ranged. They can pene-
trate as far as in normal metals. Such long-range triplets can be
induced by misaligned uncompensated interfaces, or by more
complicated heterostructures.
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