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Summary

The last decade has seen an increased use of small fixed-wing unmanned
aerial vehicles (UAVs) in a multitude of civil, commercial and scientific ap-
plications. Autopilots are automatic control systems that provide the basic
low-level control functions that maintain aircraft attitude, speed, altitude
and course heading. As we move towards higher levels of automation, robust
and reliable autopilots are needed to enable safe and efficient autonomous
operation of UAVs. Conventional autopilots are designed using linear control
theory to operate close to some nominal operating conditions. However, the
underlying physics are highly nonlinear, causing performance deterioration
and, possibly, instability when approaching the edge of the flight envelope.

This thesis focuses on applying state-of-the-art nonlinear control algo-
rithms to develop autopilots that can provide fixed-wing UAVs with the
capability to operate in extended flight envelopes, with more aggressive ma-
noeuvres, and in a wider range of weather conditions. Although most of the
results of this thesis are valid for fixed-wing aircraft in general, simulation
studies and experimental trials are carried out for fixed-wing UAVs.

The thesis contributions are presented in three parts. Part I of the the-
sis develops novel geometric reduced-attitude controllers, particularly well-
suited for fixed-wing aircraft performing banked-turn manoeuvres. Instead
of using roll and pitch (Euler) angles, a global, singularity-free representa-
tion on the unit two-sphere is used that is independent of the yaw/heading
angle of the aircraft and allows for geodesic (shortest path) rotations. The
reduced-attitude representation lets us decouple the control objective into
two parts: 1. Reduced-attitude (roll/pitch) control, and 2. Control of the
angular velocity about the inertial z-axis (turn rate control). Posing the
control problem on the sphere has the advantage of opening up a wide range
of tools for control systems on spheres, including different choices of poten-
tial functions and methods for global stabilization and tracking using hybrid
control. Almost-global and global asymptotic stability is proven using Lya-
punov methods for smooth and hybrid controllers, respectively. Adaptive
and robust variants of the control design are developed to account for un-
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Summary

certain aerodynamic effects and turbulent wind disturbances. The control
performance is demonstrated in MATLAB simulations as well as using more
realistic software-in-the-loop simulations.

In part II, we revisit the path-following guidance problem in three dimen-
sions. First, by formulating the path-following error directly in the inertial
frame, we propose a class of guidance laws for regular parameterized paths
that, unlike most approaches existing in the literature, do not require the
explicit construction of a path frame. Based on an inner-outer loop control
paradigm, the guidance law generates a normal acceleration command that
is normal to the flow-relative velocity vector (as the lift force). This allows
for a natural decomposition of the desired vehicle acceleration for aerial ve-
hicles in coordinated turns: tangential acceleration for airspeed control and
normal acceleration for guidance generated through bank-to-turn manoeu-
vres, i.e., by tilting the lift vector. By using cascade arguments, we show
that the proposed design leads to almost global stability results and thus
relaxes the set of feasible initial conditions compared to existing methods.
The efficacy of the proposed guidance law is demonstrated in a simulation
study.

In part III, we explore the use of deep reinforcement learning (DRL) for
attitude control of UAVs. We show that DRL can successfully learn to per-
form attitude control of fixed-wing UAVs, requiring as little as three minutes
of flight data. The proposed method is based on the Soft Actor-Critic algo-
rithm and improves upon the data efficiency of the existing literature by at
least an order of magnitude, providing an important step towards enabling
the learning of reinforcement learning controllers entirely on the real UAV.
We initially train our model in a simulation environment and then deploy
the learned controller on the UAV in flight tests, demonstrating comparable
performance to the state-of-the-art ArduPlane PID attitude controller with
no further online learning required.
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Chapter 1

Introduction

1.1 Motivation

In recent years, technological advancements have led to increased use of small
unmanned aerial vehicles (UAVs) in civil, commercial, and scientific appli-
cations. UAVs, also known as drones, unmanned aircraft systems (UAS) or
remotely piloted aircraft systems (RPAS), are aircraft without any humans
onboard that can either be under remote control or fly automatically. UAVs
are employed extensively to increase safety and efficiency in a plethora of
tasks.

Fixed-wing UAVs, as illustrated in Fig. 1.1, have superior range and
endurance when compared to rotary-wing UAVs (like the ubiquitous quad-
copter), which enable applications such as infrastructure inspection, search
and rescue, aerial surveillance and mapping, environmental monitoring, and
medical transportation [242]1. UAVs can be deployed standalone or as part of
a network of unmanned vehicles performing coordinated operations (Fig. 1.2).

1In this thesis when referring to small fixed-wing UAVs, we mean UAVs in the size of
“model airplanes” from 50 cm and up to a few meters [70]. These vehicles can be carried
around by one person and easily hand-launched or launched using a catapult.

(a) Skywalker X8 (NTNU UAV-Lab). (b) H-King Bixler 3 (author photo).

Figure 1.1: Small fixed-wing unmanned aerial vehicles (UAVs).
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Figure 1.2: Unmanned systems in marine operations. Illustration by NTNU
AMOS.

In the observational pyramid illustrated in Fig. 1.3, vehicles operating in dif-
ferent temporal and spatial scales do biological mapping of an area using a
range of different sensors.

The interest in UAVs has skyrocketed in the last decade. In Fig. 1.4, we
see exponential growth in global drone investments, which also carries over
into academia. Figure 1.5 shows how the number of publications containing
the keyword “UAV” has increased exponentially as well (based on queries in
the databases of IEEEXplore and ScienceDirect). For guidance, navigation
and control (GNC) of these vehicles, several open-source hardware and soft-
ware systems exist. For instance, the ArduPilot [13] and PX4 [174] software
suites have been widely adopted by industry, research institutions, as well
as hobbyists. Over the last decade, open-source ecosystems have stimulated
many drone startups and considerable growth in the unmanned systems
industry.

A critical component of any GNC architecture is the autopilot, which is
the automatic control system that provides the basic low-level control func-
tions that maintain aircraft orientation (attitude), speed, altitude and course
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Figure 1.3: The observational pyramid. Illustration by NTNU AMOS.

heading [19]. Since the first aircraft autopilot was developed by Lawrence
Sperry2 of the Sperry Gyroscope Company in 1912 [233], automatic flight
control systems have evolved from basic stability augmentation systems
such as the yaw damper [231] to more elaborate systems such as automatic
landing systems [166]. The autopilot is a key enabling technology for the
widespread use of UAVs, with current systems providing functionality for
fully automated flight. Autopilots for fixed-wing UAVs are typically designed
using cascaded single-variable loops under assumptions of decoupled longi-
tudinal and lateral motion, using classical linear control theory [19]. The dy-
namics of fixed-wing aircraft are, however, strongly coupled and nonlinear.
Nonlinear terms in the equations of motion include kinematic nonlineari-
ties (rotations and Coriolis effects), actuator saturation and aerodynamic
nonlinearities, which are uncertain and difficult to model [113, 180].

The linear and decoupled controllers are designed to operate close to
some nominal operating conditions (trim conditions), and the flight per-
formance is usually reliable and well-tested for nominal flight (for non-

2As a curiosity, Lawrence Sperry is also widely regarded as the founder of the “Mile
High Club”.
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Figure 1.4: A decade of drone investments (Source: Drone Industry Insights).

aggressive manoeuvres under relatively calm wind conditions) but requires
conservative safety limits in the allowable range of flight conditions and ma-
noeuvres (flight envelope protection) because linear controllers applied to
nonlinear systems typically result in a limited region of attraction [125]. For
more aggressive flight trajectories, nonlinear aerodynamic effects become in-
creasingly significant, causing performance deterioration and, in the worst
case, instability. A practical approach to this problem is to limit the range
of flight conditions the UAV is operated in, referred to as the flight enve-
lope [233].

The nonlinear nature of the underlying physics suggests that state-of-
the-art methods in nonlinear control theory should instead be used to design
more advanced autopilots that are less conservative, more capable of agile
manoeuvring, and allow for a wider flight envelope. Such functionality will
increase the capabilities of fixed-wing UAVs and can lead to new innovative
use cases and products. Although promising results exist using nonlinear
methods such as dynamic inversion [137], backstepping [73, 228], and adap-
tive control [138], these methods have arguably not been developed to the
mature level required for implementation in UAV autopilots. Many non-
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Figure 1.5: Number of hits on keyword “UAV” at IEEEXplore and ScienceDirect
(Accessed 9/12-2022).

linear control algorithms have not been sufficiently tested outside nominal
operating conditions for fixed-wing UAVs. Moreover, flight control methods
developed for high-performance aircraft are not easily adopted since fixed-
wing UAVs typically operate at low speeds with small stall margins, [106].

Objectives

As we move towards higher levels of automation and to enable safe and ef-
ficient autonomous operation of UAVs, we need robust autopilots that can
handle a range of environmental conditions, including turbulent wind con-
ditions, and operate in the presence of highly uncertain aerodynamics [177].
The main research objective of this thesis is to develop nonlinear autopilot
designs for fixed-wing UAVs that extend the flight envelope for more aggres-
sive manoeuvres and allows the UAVs to operate in a wider range of weather
conditions. In particular, we consider to:

• Use Lyapunov methods [125] to design attitude controllers with large
regions of attraction that explicitly deal with kinematic and aerody-
namic nonlinearities.

• Use Lyapunov methods to develop a guidance controller suitable for
fixed-wing UAVs that allows for aggressive manoeuvring in windy con-
ditions.

5
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• Assess the applicability of alternative control design methods based on
recent progress in machine learning, in particular, deep reinforcement
learning (DRL).

• Develop an experimental platform to allow for implementation and
testing of the developed algorithms in outdoor flight experiments with
fixed-wing UAVs.

1.2 Background

We now proceed by providing further background for the contributions of
this thesis. The next paragraph is from [31] and the remainder of this section
from [58].

Examples of nonlinear control methods applied to UAVs include gain
scheduling [85], linear parameter varying (LPV) control [215], dynamic in-
version (feedback linearization) [123], adaptive backstepping [214], sliding
mode control [48], nonlinear model predictive control [167], nonlinear H-
infinity control [84], dynamic inversion combined with mu-synthesis [176],
model reference adaptive control [138] and L1 adaptive control [122]. Auto-
mated agile and aerobatic manoeuvring is treated in [150] and [40]. Several
of these methods require a more or less accurate aerodynamic model of
the UAV. A model-free method based on fuzzy logic can be found in [133].
Fuzzy control falls under the category of intelligent control systems, which
also includes the use of neural networks. An adaptive backstepping con-
troller using a neural network to compensate for aerodynamic uncertainties
is given in [144], while a genetic neuro-fuzzy approach for attitude control is
taken in [68]. The state of the art in intelligent flight control of small UAVs
is discussed in [218].

As underactuated vehicles, conventional fixed-wing aircraft have fewer
control inputs than the dimension of their configuration space. One or more
propellers provide a thrust force in the longitudinal direction, but the forces
orthogonal to the thrust axis (lift, side force) are not directly controllable.
Therefore, fixed-wing UAVs have to resort to using guidance schemes [36],
where the UAV’s geometric path in 3-D space is controlled by specifying
course and flight path angle commands to lower-level autopilots [116]. Due
to the fact that small fixed-wing UAVs experience winds that are large rela-
tive to their operating airspeeds [19], path-following methods [217] are usu-
ally preferred over trajectory tracking control [3]. In path following, the goal
is to reach and follow a geometric path without any temporal constraints.
This also deals with performance limitations of trajectory tracking for sys-
tems with nonminimum phase characteristics, such as aircraft [4]. See [234]
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and [196] for a comparison of different path-following algorithms for fixed-
wing UAVs in two and three dimensions, respectively. For a recent survey
with a focus on quadrotor UAVs, see [216].

Guidance and control systems for unmanned vehicles can be integrated,
or separated [219]. For integrated guidance and control (IGC) systems, the
guidance system and inner-loop autopilot are designed simultaneously, tak-
ing cross-coupling effects into account. On the other hand, in separated
guidance and control (SGC), inner and outer loops are designed separately,
with modularity and cross-platform use in mind [51]. Examples of sepa-
rate guidance algorithms for fixed-wing UAVs include nonlinear guidance
laws [193, 194], vector-field path following [139, 187] and a guidance law
based on nested saturations [195]. In [122], path following is achieved by us-
ing an existing commercial inner-loop autopilot but augmented with an L1
adaptive controller to deal with modelling uncertainty and environmental
disturbances. While most guidance algorithms use only kinematic models,
an integrated approach is presented in [119] that uses a simple model of the
aerodynamic forces acting on the aircraft. Common to all the mentioned
approaches, both IGC and SGC, is the reliance on attitude control in the
innermost loop, i.e. controlling the aircraft orientation relative to an inertial
reference frame.

Several different attitude representations have been employed for fixed-
wing UAV path following, including Euler angles [155], rotation matrices [56]
and unit quaternions [5]. Minimal representations such as Euler angles are
often used because of their intuitive interpretation but suffer from gimbal-
lock singularities [164]. Unit quaternions [250] are singularity-free but pro-
vide a double cover of SO(3), the space of 3-D rotations. This might lead
to unwinding, where the UAV unnecessarily makes a full rotation, even
when arbitrarily close to the target attitude [26, 54]. Rotation matrices,
on the other hand, provide a global and unique representation. This has
led to a significant research effort into so-called geometric attitude con-
trol, where singularity-free controllers are designed directly on SO(3), using
rotation matrices, that avoid the unwinding phenomenon and often con-
trol the system along geodesics, i.e., paths of minimum length in rotation
space [24, 42, 53, 120, 129, 141]. These advantages are desirable when the
controlled vehicle is subject to large angle rotations, e.g. a fixed-wing UAV
recovering from large attitude errors resulting from severe wind gusts [117].

Fixed-wing UAVs use one of two main mechanisms for turning, bank-to-
turn, where a lateral acceleration is generated by reorienting the lift-force
by rolling, or banking, the UAV, or skid-to-turn, where turning is achieved
by generating a sideslip angle, which in turn generates a lateral force that
turns the vehicle [46]. In [77], these methods are combined to reduce lateral
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distortion of camera images gathered by a fixed-wing UAV. In general, bank-
to-turn is often preferred over skid-to-turn because, for most aircraft, the
lift force is of orders of magnitude greater than thrust forces [6]. Thus, the
course angle, yaw angle, and turn rate of aircraft are not controlled directly
but rather through banked-turn manoeuvres. For aircraft in coordinated
turns, i.e., with zero sideslip angle, the coordinated-turn equation provides
a simple relationship between roll angle and resulting turn rate and is for
this reason often used in autopilot design [19, 44, 65, 92, 149, 232], including
those used in state-of-the-art open-source autopilots [13, 174].

Controllers designed using rotation matrices or quaternions control the
full attitude and, therefore, cannot be directly applied to fixed-wing aircraft
using banked turn manoeuvres. One approach could be to feedback the true
yaw angle into the desired rotation matrix and, as such, use a rotation error
representation for roll and pitch only. However, this representation is highly
redundant, as nine parameters are used to parametrize a two-dimensional
subspace. A simpler approach that does not require the full machinery of
working in SO(3) is to consider a reduced-attitude representation, evolving
on the two-sphere, S2 ⊂ R3 [41]. In this space of reduced attitude, all rota-
tions that are related by a rotation about some fixed axis are considered the
same [54]. Control systems with reduced attitude evolving on S2 have pre-
viously been studied in the context of spin-axis [41] and boresight axis [203]
control for satellites, pendulum stabilization [53], path-following control of
underwater vehicles [253], thrust-vector control for multirotor UAVs [47, 108]
and for general rigid bodies [143, 172, 205]. Controllers developed on S2 are
relatively simple compared to those developed using rotation matrices and
require fewer matrix operations.

It is well-known that a desired attitude (full or reduced) cannot be
globally stabilized using continuous state-feedback control laws [26]. This
stems from the topological properties of SO(3) and S2, which are compact,
boundaryless manifolds that are not diffeomorphic to any Euclidean space.
The largest possible attraction basins under continuous feedback are almost
global, i.e., excluding a zero-measure set, which corresponds to the stable
manifolds of additional unstable equilibrium points [145]. However, global
asymptotic stability can be achieved by using tools from hybrid dynami-
cal systems, where hysteresis-based switching ensures that all trajectories
converge to the desired equilibrium [21, 47, 142, 143, 169, 172, 173].
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1.3 Contributions

The main contributions of this work are focused on applied nonlinear con-
trol of fixed-wing aircraft and, in particular, small fixed-wing UAVs. While
most of the developments apply to fixed-wing aircraft in general, all simula-
tion studies and experiments are carried out using small fixed-wing UAVs. A
large focus has been put on the low-level control of these vehicles, i.e., atti-
tude control, using both formal, geometric methods grounded on Lyapunov
stability theory, as well as data-driven methods based on deep reinforcement
learning. Furthermore, there are contributions to path-following guidance in
three dimensions, especially suited for fixed-wing UAVs flying in wind fields
that are large compared to their airspeed. Finally, a significant amount of
work has been put into the development of a suitable test platform for exper-
imental evaluation of the developed control algorithms on a physical UAV
operating in an outdoor environment.

The thesis contributions can be summarized as follows:
• Proposed a novel geometric attitude controller for fixed-wing aircraft

using a reduced-attitude representation evolving on the S2 that is in-
variant to the yaw/heading angle and, therefore, especially well suited
for fixed-wing aircraft performing banked turn manoeuvres. The method-
ology is backed up by stability analysis and simulation results, which
show that the controller is more efficient than when using Euler angles
(roll and pitch).

• Developed hybrid geometric attitude controllers for fixed-wing aircraft
that render the desired reduced attitude globally asymptotically sta-
ble, thus extending the nominal controller in the previous contribution
and overcoming the obstruction to global stabilization that exists when
using continuous feedback.

• Further refined the nominal reduced-attitude controller to a more prac-
tical design. In particular, several assumptions are relaxed through a
new, simpler backstepping-based design, and the efficacy of the pro-
posed design is demonstrated through implementation in ArduPilot
and realistic software-in-the-loop (SITL) simulations.

• Proposed a new robust reduced-attitude controller for fixed-wing UAVs
using sliding-mode control concepts. In particular, we design a novel
sliding surface and employ a generalized multi-variable super-twisting
algorithm. The performance of the controller is demonstrated through
a simulation study with highly turbulent conditions.

• Designed a class of path-following guidance laws for three-dimensional,
regularly parameterized paths that, unlike most approaches existing in
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the literature, do not require the explicit construction of a path frame.
Through cascade arguments, we show that the proposed design leads
to almost global stability results and thus relaxes the set of feasi-
ble initial conditions compared to existing methods. Furthermore, the
guidance law generates a normal acceleration command that is normal
to the flow-relative velocity vector (as the lift force). This allows for a
natural decomposition of the desired vehicle acceleration for aerial ve-
hicles in coordinated turns: tangential acceleration for airspeed control
and normal acceleration for guidance generated through bank-to-turn
manoeuvres, i.e., by tilting the lift vector.

• Proposed and demonstrated, in simulation, the viability of using DRL
to control the attitude and speed of fixed-wing UAVs. Moreover, the
simulation results show that the DRL controller is more robust against
turbulent wind disturbances when compared to conventional proportional-
integral-derivative (PID) controllers.

• Demonstrated a successful real-life control application of DRL. We
present the results of field experiments where attitude control policies
trained in a simulation environment are successfully transferred to the
field, showing comparable performance to a state-of-the-art industrial
autopilot. Using a particularly data-efficient approach, we are able to
learn to control the UAV with only three minutes of flight data.

• Developed an experimental platform well suited for early-stage rapid
testing of computationally demanding, low-level control algorithms re-
quiring direct access to the actuators. This work is used for the DRL
experiments in Chapter 12 as well as the model predictive control
(MPC) experiments in [210].

1.4 Publications

This thesis is based on eight research papers, of which seven are published
in peer-reviewed international journals and conferences, and one is currently
under review for possible publication. These are listed below, chronologically
by date of publication.

[31] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen. Deep rein-
forcement learning attitude control of fixed-wing UAVs using proximal
policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), 2019.

[61] E. M. Coates, D. Reinhardt, and T. I. Fossen. Reduced-attitude control
of fixed-wing unmanned aerial vehicles using geometric methods on
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the two-sphere. 21st IFAC World Congress, Berlin, Germany. IFAC-
PapersOnLine, 53:5749–5756, 2020.

[209] D. Reinhardt, E. M. Coates, and T. A. Johansen. Hybrid control of
fixed-wing UAVs for large-angle attitude maneuvers on the two-sphere.
21st IFAC World Congress, Berlin, Germany. IFAC-PapersOnLine,
53:5717–5724, 2020.

[58] E. M. Coates and T. I. Fossen. Geometric reduced-attitude control of
fixed-wing UAVs. Applied Sciences, 11(7), 2021.

[59] E. M. Coates, J. B. Griffiths, and T. A. Johansen. Robust reduced-
attitude control of fixed-wing UAVs using a generalized multivariable
super-twisting algorithm. In 2021 International Conference on Un-
manned Aircraft Systems (ICUAS), 2021.

[62] E. M. Coates, D. Reinhardt, K. Gryte, and T. A. Johansen. Toward
nonlinear flight control for fixed-wing UAVs: System architecture, field
experiments, and lessons learned. In 2022 International Conference on
Unmanned Aircraft Systems (ICUAS), 2022.

[32] E. Bøhn, E. M. Coates, D. Reinhardt, and T. A. Johansen. Data-
efficient deep reinforcement learning for attitude control of fixed-wing
UAVs: Field experiments. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[60] E. M. Coates, T. Hamel, and T. I. Fossen. Almost global three-
dimensional path-following guidance law for arbitrary curved paths.
In 62nd IEEE Conference on Decision and Control (CDC) (accepted),
2023.

During the PhD period, I have also contributed to the following papers
that are related to but not part of this thesis:
[63] E. M. Coates, A. Wenz, K. Gryte, and T. A. Johansen. Propulsion

system modeling for small fixed-wing UAVs. In 2019 International
Conference on Unmanned Aircraft Systems (ICUAS), 2019.

[161] B. Løw-Hansen, N. C. Müller, E. M. Coates, T. A. Johansen, and
R. Hann. Identification of an electric uav propulsion system in ic-
ing conditions. SAE International Conference on Icing of Aircraft,
Engines, and Structures, 2023.

[126] Ø. K. Kjerstad and E. M. Coates. A cascaded heading control design
with motion constraint handling for marine surface vessels. In 2023
European Control Conference (ECC), 2023.

[210] D. Reinhardt, E. M. Coates, and T. A. Johansen. Low-level nonlinear
model predictive attitude and speed control of fixed-wing unmanned
aerial vehicles. Control Engineering Practice, submitted.
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1.5 Outline

The thesis consists of 14 chapters, divided into three main parts. Before com-
mencing with Part I, in Chapter 2, we first introduce mathematical notation
and review basic modelling and control used throughout the thesis. Part I
presents the results on geometric attitude control, path-following guidance
is covered in Part II, and Part III is about DRL. Finally, in Chapter 14, we
provide some concluding remarks, including possible future research direc-
tions.
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Chapter 2

Preliminaries

2.1 Notation and Definitions

Positive (resp. non-negative) real numbers are denoted R>0 (R≥0) and N
is the set of natural numbers. Let Rn denote the n-dimensional Euclidean
space with the standard basis {e1, . . . , en} and Euclidean norm ∥x∥ =

√
x⊤x.

When n = 1, we denote the absolute value of x by |x|.
For compactness, explicit time arguments will be used for state variables

only when considering specific solutions and for signals and functions in
general when we want to highlight that time-varying exogenous signals are
considered.

The set of 3× 3 symmetric positive definite matrices is denoted P3
+, the

identity matrix of dimension n × n is denoted by In, and the maximum
and minimum eigenvalues of a square matrix A are denoted λAmax, λAmin,
respectively. For a symmetric matrix A = A⊤ ∈ Rn×n, and x ∈ Rn, we have
the following inequality for quadratic forms:

λAmin∥x∥2 ≤ x⊤Ax ≤ λAmax∥x∥2. (2.1)

The induced 2-norm of a matrix A is ∥A∥ = σAmax, where σAmax is the largest
singular value of A. For square, real symmetric positive semidefinite matrices
A, λAmax = σAmax.

Sets

The set B := {x ∈ R3 : ∥x∥ ≤ 1} is the closed unit ball in R3, while
B2 := {x ∈ R3 : ∥x∥ ≤ 2} is the closed 3-ball of radius two. We denote the
boundary of B2 by ∂B2 := {x ∈ R3 : ∥x∥ = 2}.
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The set S2 ⊂ R3 is the two-sphere embedded in R3. S2 is the set of
three-dimensional unit vectors and is defined as

S2 := {x ∈ R3 : ∥x∥ = 1}. (2.2)

The tangent space at a point p ∈ S2 is identified with the vectors that are
orthogonal to p:

TpS2 := {v ∈ R3 : p⊤v = 0},

and the normal space NpS2 is the set of vectors parallel to p:

NpS2 := {w ∈ R3 : w⊤v = 0 for all v ∈ TpS2}.

The tangent bundle TS2 is the set

TS2 := {(p, v) : p ∈ S2, v ∈ TpS2}. (2.3)

The three-dimensional special orthogonal group is the set of three-dimensional
rotation matrices, given by

SO(3) := {R ∈ R3×3 : R⊤R = I3, detR = 1}. (2.4)

The three-sphere, which is a double cover of SO(3), is the set of four-
dimensional unit vectors,

S3 := {x ∈ R4 : ∥x∥ = 1}. (2.5)

The lie algebra of SO(3) is denoted by so(3) and consists of all 3×3 matrices
that are skew-symmetric:

so(3) = {A ∈ R3×3 : A⊤ = −A}. (2.6)

For u, v ∈ R3, the map S : R3 → so(3) is defined as

S(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (2.7)

and maps the vector u to the skew-symmetric matrix such that the (anticom-
mutative) cross-product operation in R3 can be performed as a matrix-vector
multiplication: S(u)v = u× v = −v × u.
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Algebraic Identities

For any u, v, w ∈ R3, the scalar triple product u · (v × w) ≡ u⊤S(v)w is
invariant to even permutations:

u⊤S(v)w = v⊤S(w)u = w⊤S(u)v. (2.8)

Another useful identity that can easily be derived from the Jacobi identity
for cross-products is the following:

S(S(a)b) = S(a)S(b)− S(b)S(a). (2.9)

For p ∈ S2, we have that
S3(p) = −S(p). (2.10)

Projection Operators

Any square matrix A ∈ Rn×n can be written as the sum of a symmetric
and skew-symmetric part, A = sym(A) + skew(A), where sym(A) = (A+
A⊤)/2 and skew(A) = (A−A⊤)/2 are the symmetric and skew-symmetric
projection operators, respectively.

With p ∈ S2 and x ∈ R3, define the orthogonal and parallel projection
operators Π⊥

p : R3 → TpS2 and Π
∥
p : R3 → NpS2 by

Π⊥
p (x) =

(
I3 − pp⊤

)
x = −S2(p)x, Π∥

p(x) = pp⊤x. (2.11)

Then, any vector x ∈ R3 can be written as the sum x = Π⊥
p (x) + Π

∥
p(x).

For any v ∈ TpS2 and x ∈ R,

v⊤Π⊥
p (x) = v⊤x. (2.12)

Saturation Functions

For x ∈ R, and ∆ > 0, the classical saturation function is defined as

sat∆(x) =

{
x, if |x| ≤ ∆

sgn(x)∆, otherwise.
= min(1,∆/|x|)x. (2.13)

The straightforward vector-valued extension (x ∈ Rn) is then given by
sat∆(x) = min(1,∆/∥x∥)x. Finally, ¯sat∆(x) (∆ > 0, x ∈ Rn) denotes a
sufficiently smooth approximation of the vector-valued saturation function.
A typical example can be constructed using the hyperbolic tangent function:
¯sat∆(x) = ∆ tanh(∥x∥/∆)x/∥x∥ [119].
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2.2 Stability Definitions

Definition 2.1. [142] An equilibrium solution of a dynamical system is
said to be almost globally asymptotically stable if it is asymptotically stable
with an almost global domain of attraction, i.e. the domain of attraction is
the entire state space excluding a set of Lebesgue measure zero.

Definition 2.2. [142] An equilibrium solution of a dynamical system is
almost semiglobally exponentially stable if it is asymptotically stable, and
for almost all initial states, there exist finite controller gains or parameters
such that the corresponding trajectory exponentially converges to the origin,
i.e. the set of initial states that cannot exponentially converge to the origin
has zero measure.

2.3 Kinematics of Flight

2.3.1 Vehicle Configuration

We consider aircraft that, for the purposes of this thesis, can be modelled
with sufficient accuracy as a single rigid body. The configuration of the
vehicle can then be fully specified by the position of a point on the body
and the vehicle’s orientation.

We make use of standard right-handed coordinate systems for aircraft
navigation and control [19]. Let {n} denote a local north-east-down (NED)
tangent frame, assumed inertial, and let {b} denote a body-fixed frame,
rigidly attached to the centre of mass of the vehicle, with the x-axis pointing
forward in the longitudinal direction, and with the y-axis pointing towards
the right wing.

Let p ∈ R3 denote the position of the origin of {b} relative to {n}, and
v ∈ R3 the linear velocity, both defined with respect to {n}. Then

ṗ = v. (2.14)

Further, let Rnb ∈ SO(3) be the rotation matrix that transforms vectors
from {b} to {n}. The matrix Rnb globally and uniquely describes the orien-
tation, or attitude, of {b} relative to {n}. In particular, the columns of Rnb
are the axes of {b} decomposed in {n}. The time evolution of Rnb is governed
by the kinematic differential equation [80]

Ṙnb = RnbS(ω), (2.15)

where ω = [p q r]⊤ ∈ R3 is the angular velocity of {b} relative to {n},
expressed in {b}.
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2.3.2 Alternative Attitude Representations

Although the rotation matrix Rnb , i.e. a matrix of nine numbers, represents
the orientation globally and uniquely, the constraints (2.4) suggest that more
compact attitude representations may be used. In this thesis, we also use
both Euler angles and unit quaternions, both of which are extensively used
in aerospace applications. We give a brief description of these below. Many
other attitude representations can be found in the literature, for which we
refer the reader to [163, 226].

Euler Angles

The orientation of a rigid body can also be represented using three coordi-
nates Θ = [ϕ θ ψ]T , where ϕ ∈ [−π, π], θ ∈ [−π/2, π/2] and ψ ∈ [−π, π]
are the roll, pitch and yaw angles respectively. The rotation matrix Rnb can
be calculated from Θ using the mapping

Rn
b (Θ) =

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

 , (2.16)

where c(·) and s(·) are shorthand notation for cos(·) and sin(·), respectively.
Analogous to (2.15), the time evolution of Θ is governed by

Θ̇ = TΘ(Θ)ω. (2.17)

The matrix TΘ(Θ) relating the angular velocity ω to the time derivative of
the Euler angles can be calculated from Θ as follows:

TΘ(Θ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 , (2.18)

where sec θ = 1/ cos θ. The inverse relation is given by

ω = T−1
Θ (Θ)Θ̇ (2.19)

with

T−1
Θ (Θ) =

1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 . (2.20)

The Euler angles Θ (also called nautical angles, Cardan angles or Tait-
Bryan angles) is a minimal three-parameter representation of SO(3) that
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parameterize a sequence of three elemental rotations, one out of 12 possible
sequences. The predominant sequence used in vehicle navigation and con-
trol [80, 233] is the intrinsic z-y-x sequence of basic rotations, where (2.16)
is the result of the following sequence of basic rotations:

Rn
b (Θ) = Rz,ψRy,θRx,ϕ, (2.21)

where

Rz,ψ =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (2.22)

Ry,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.23)

Rx,ϕ =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 . (2.24)

In the rest of this thesis, we will refer to Θ as simply Euler angles. Since
the mapping Θ 7→ Rn

b (Θ) is surjective, the Euler angle parameterization
has no geometric singularities. However, there is a kinematic singularity
present in (2.17). When |θ| approaches ±π/2, the matrix T−1

Θ (Θ) in (2.20)
becomes rank-deficient and the tan θ- and sec θ-terms in (2.18) goes to infin-
ity, causing the derivate Θ̇ to be undefined. This phenomenon is referred to
as gimbal-lock [164] and leads to the loss of a degree of freedom in the virtual
gimbal system defined by the Euler angle representation. With |θ| = π/2,
the yaw angle ψ and roll angle ϕ rotations have the same effect on the vehicle
orientation. With reference to (2.16) we see that e.g. θ = π/2 results in

Rn
b (Θ) =

 0 − sin(ψ − ϕ) cos(ψ − ϕ)
0 cos(ψ − ϕ) sin(ψ − ϕ)
−1 0 0

 . (2.25)

Unit Quaternions

Although the Euler angles provide a compact and intuitive attitude represen-
tation, the gimbal-lock singularity precludes efficient numerical simulation
of arbitrary attitude manoeuvres. Moreover, (2.16) and (2.18) contain a lot
of trigonometric terms that are computationally expensive to evaluate. A
popular singularity-free attitude representation for efficient numerical simu-
lation is the four-parameter unit quaternion representation (also known as
Euler parameters, Euler-Rodrigues parameters or versors).
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A unit quaternion Q ∈ S3 (satisfying Q⊤Q = 1) can be identified with
a vector of four numbers Q = [Q1 Q2:4]

⊤, where Q1 is the scalar part, and
Q2:4 = [Q2 Q3 Q4]

⊤ is the vector part. The unit quaternion can be identi-
fied with a single rotation by an angle φ about some axis k as follows [164]:

Q =

[
cos(φ2 )
k sin(φ2 )

]
. (2.26)

Further, the time derivative of the unit quaternion is related to the angular
velocity ω through the kinematic differential equation

Q̇ = TQ(Q)ω, (2.27)

where

TQ(Q) =
1

2

[
Q1I3 + S(Q2:4)

−Q⊤
2:4

]
. (2.28)

The rotation matrix Rnb can be calculated from Q using

Rn
b (Q) = I3 + 2Q1S(Q2:4) + 2S2(Q2:4). (2.29)

The mapping Q 7→ Rn
b (Q) is two-to-one. Antipodal points on S3, i.e. Q and

−Q, for any unit quaternion Q, results in the same attitude. This is easily
verified by insertion into (2.29) and stems from the fact that S3 is a double
cover of SO(3).

During simulation, small numerical round-off errors cause the unit quater-
nion Q to deviate from the unit norm constraint. One option is to renor-
malize every timestep according to Q ← Q/∥Q∥. Another option is to use
Corbett-Wright orthogonality control (see e.g. [19]) to maintain the unit-
norm constraint during simulation and modify (2.27) to

Q̇ = TQ(Q)ω − λ

2
(∥Q∥2 − 1)Q, (2.30)

where λ > 0 is the normalization gain.
An algorithm to convert between unit quaternions and Euler angles can

be found in [19].

2.3.3 The Wind Triangle

Let the wind speed be denoted by vw ∈ R3. The air-relative velocity ex-
pressed in the inertial frame, va ∈ R3, is then given by

va := v − vw. (2.31)
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In spherical coordinates (Va, χa, γa), we can express va as

va = Va

cos(γa) cos(χa)cos(γa) sin(χa)
− sin(γa)

 , (2.32)

where the magnitude of va, Va := ∥va∥ ∈ R≥0 is the airspeed, and the
azimuth and elevation angles χa ∈ [−π, π], γa ∈ [−π/2, π/2] are the airmass-
referenced course and flight-path angles, respectively. When decomposed in
{b}, the relative velocity is normally parameterized in terms of spherical
coordinates (Va, α, β) as

vba := (Rnb )
⊤va = Va

cos(α) cos(β)sin(β)
sin(α) cos(β)

 =

uava
wa

 , (2.33)

where α ∈ [−π, π] the angle of attack (AoA), and β ∈ [−π/2, π/2] is the
angle of sideslip (AoS). From (2.33), we get the relation

β = arcsin

(
va
Va

)
, Va ̸= 0, (2.34)

and
α = atan2(wa, ua), β ̸= ±π

2
. (2.35)

The AoA and AoS thus parameterize the orientation of airflow relative to
the aircraft and are therefore important quantities when characterizing aero-
dynamic performance.

Further, the wind velocity is decomposed into

vw = vw,s +Rnb vw,g, (2.36)

Here, vw,s is the steady part, expressed in {n}, representing the constant (or
slowly varying) mean wind velocity. Moreover, a stochastic term vw,g rep-
resents gusts and turbulence, expressed in {b}. Similarly, rotational distur-
bances are modelled through the wind angular velocity ωw. The air-relative
angular velocity is then defined as:

ωa = ω − ωa =

paqa
ra

 . (2.37)

The stochastic components of the wind, given by vw,g and ωw, can be gen-
erated by passing white noise through shaping filters given by the Dryden
velocity spectra [240][168].
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2.3.4 The Wind Frame

Aerodynamic forces are described with reference to the relative airflow, typi-
cally expressed using the so-called wind frame {w}. The x-axis of {w} points
in the direction of va, and the z-axis lies in the symmetry plane of the air-
craft, pointing downwards. The axes of {w} expressed in {b} are the columns
of the rotation matrix Rbw, which transforms vectors from the wind frame
to the body-fixed frame. In terms of α and β, we have the mapping

Rb
w(α, β) =

[
cos(α) cos(β) − cos(α) sin(β) − sin(α)

sin(β) cos(β) 0
cos(β) sin(α) − sin(α) sin(β) cos(α)

]
. (2.38)

2.4 Aircraft Equations of Motion

Following [19], the aircraft is modelled as a rigid body of mass m ∈ R>0

and positive definite inertia matrix J = J⊤ ∈ R3×3 with a body frame
{b} rigidly attached to its centre of mass, moving relative to a NED frame
assumed to be inertial {n}. A standard model of aircraft dynamics is given by
the Newton-Euler equations affected by forces and moments due to gravity,
aerodynamics, and propulsion effects [19, 233]:

mv̇ = mge3 + TRnb e1 + Fa (2.39)
Jω̇ = S(Jω)ω +Ma +Mp, (2.40)

where g ∈ R>0 the gravitational acceleration, Fa ∈ R3 the aerodynamic
force, expressed in {n}, and T ∈ R≥0 the thrust force, which is assumed to
be aligned with the x-axis of {b}. Ma and Mp ∈ R3 are the aerodynamic
moment and propeller moment, respectively, about the vehicle’s centre of
gravity (CG), expressed in {b}.

2.4.1 Propulsion Effects

Without loss of generality, we consider propeller-driven aircraft with a single
propeller driven by an electric motor. Let δt ∈ [0, 1] denote the propeller
throttle and ρ ∈ R>0 the density of air. The propeller thrust T can be
modelled as [18, 78]

Vd = Va + δt(km − Va)

T =
1

2
ρSpCpVd (Vd − Va) ,

(2.41)

where Vd is the discharge velocity of air from the propeller and km, Sp, Cp ∈
R>0 is the motor constant, propeller disc area and efficiency factor, respec-
tively.
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The propeller moment Mp is mainly due to a reaction torque from the
rotating propeller, for which a simple model is given by [19]

Mp =

kQδ2t0
0

 , (2.42)

where kQ ∈ R>0 is an appropriate constant.

2.4.2 Aerodynamic Forces and Moments

Aerodynamic forces and moments are, in general, nonlinear functions that
are difficult to model accurately. Identification of parameters for even simple
linear models from flight data remains a challenging problem [113], [180]. Let
u ∈ Rp denote a vector of p control surface deflections. Following [19], [233]
we model the aerodynamic torque as a control-affine (in u) function of u,
the angular velocity ω and the body-fixed relative velocity vba ∈ R3 as

Ma =Ma(ω, v
b
a) +G(ω, vba)u, (2.43)

where Ma(ω, v
b
a) ∈ R3 is the aerodynamic torque that is independent of u

and G(ω, vba) ∈ R3×p is the control effectiveness matrix. In (2.43), the typical
dependence on α, β is captured through vba (cf. (2.33)). Reynolds and Mach
number effects are usually ignored for small UAVs moving at airspeeds well
below the speed of sound [19].

The aerodynamic forces and moments are formulated in terms of dimen-
sionless aerodynamic coefficients C∗ that are, in general, nonlinear functions
of α, β and ω. The aerodynamic moment vector, and control effectiveness
matrix G(ω, vba) can be written in general form as [233]

Ma(ω, v
b
a) =

1

2
ρV 2

a S

 bCl(α, β, ω)cCm(α, β, ω)
bCn(α, β, ω)

 (2.44)

G(ω, vba) =
1

2
ρV 2

a S

 bClu(α, β, ω)⊤cCmu(α, β, ω)
⊤

bCnu(α, β, ω)
⊤

 , (2.45)

where S, b, c ∈ R>0 are the planform area of the wings, wingspan and aero-
dynamic chord, respectively. The functions Cl, Cm and Cn are roll, pitch
and yaw moment coefficients, respectively, while the vector-valued functions
Clu , Cmu and Cnu map control surface deflections to the resulting torque
vector.
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Simplified Model for Attitude Control

A first approximation of the aerodynamic moments that is commonly used
in the literature [19, 233], and can be useful for control design is given by

Ma = h(vba) + VaDω + V 2
a Bu,

with

h(vba) =
ρV 2

a S

2

 bClββ

c(Cm0 + Cmαα)
bCnβ

β


D =

ρS

4

b2Clp 0 b2Clr
0 c2Cmq 0

b2Cnp 0 b2Cnr


B =

ρS

2

bClδa 0 bClδr
0 cCmδe

0
bCnδa

0 bCnδr

 ,
where the parameters C∗ are dimensionless aerodynamic coefficients. In com-
bination with (2.40), the aircraft rotational dynamics can be written as

Jω̇ = S(Jω)ω + h(vba) + VaDω + V 2
a Bu+Mp. (2.46)

Aerodynamic Forces

The components of the aerodynamic force decomposed in the wind frame
are [−D Y −L]⊤, where D is the drag force, Y the side force and L the lift
force, defined in terms of aerodynamic coefficients as follows:DY

L

 =
1

2
ρV 2

a S

CD(α, β, ωa, u)CY (α, β, ωa, u)
CL(α, β, ωa, u)

 . (2.47)

To transform to the inertial frame, we perform the mapping

Fa = RnbR
b
w(α, β)

−DY
−L

 . (2.48)

Expressions for the force coefficients can be found in any textbook on flight
mechanics [19, 231, 233].
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Control Surfaces

A typical set of control surfaces is given by u = [δa δe δr]
⊤, where δa, δe, δr ∈

R are the aileron, elevator and rudder control surface deflection angles, re-
spectively. These are used to actively control the attitude of the aircraft and
produce control moments about each respective axis.

Some aircraft, like the Skywalker X8 in Fig. 1.1a are tailless and do not
have any active control moments generated by a rudder. The rotational dy-
namics, (2.46), thus become underactuated. Instead, the X8 has one elevon
control surface on each wing. Collective and differential elevon deflections
can be mapped to "virtual" aileron and elevator deflections δa and δe which
are then used as input to the aerodynamic model.[

δa
δe

]
=

[
−0.5 0.5
0.5 0.5

] [
δe,r
δe,l

]
. (2.49)

Actuator Dynamics

Denoting commands with superscript c, the control surface dynamics are
given by the following second-order transfer function:

δi(s)

δci (s)
=

ω2
0

s2 + 2ζω0s+ ω2
0

, i = a, e, r, (2.50)

and δci is the commanded deflection angle for actuator δi.

2.5 The Coordinated-Turn Equation

A simple relation between roll angle and the resulting turn rate for aircraft
is the coordinated-turn equation, which for |ϕ| ̸= π/2 can be written as [19]

ψ̇ =
g

Va
tanϕ. (2.51)

The coordinated-turn equation is derived under the assumption of zero
sideslip angle and zero acceleration along the body-fixed y-axis. This is in
general a desirable flight condition as passenger comfort is increased (in the
case of manned aircraft) and drag (which depends on sideslip angle) is de-
creased. Related expressions also exist that instead relate the roll angle to
the course angle or (inertial-frame) lateral acceleration. See [92] for a detailed
discussion on the assumptions behind the coordinated-turn equation.

From a guidance and control perspective, the coordinated-turn equation
is very useful as it provides a simple way to translate course angle [81,
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187] or lateral acceleration [194] commands from an outer-loop guidance
system to roll angle references for the inner-loop autopilot. In addition,
the coordinated-turn equation can be used to (approximately) calculate a
feed-forward signal for ψ̇ required in a coordinated turn. The coordinated
turn equation (2.51) has an alternative formulation in terms of the course
angle [19], which is often used to perform course control. Course control
based on the coordinated-turn equation is thoroughly studied in [92].

2.6 ArduPlane

This section presents the main equations used for attitude control and guid-
ance in ArduPlane [13], which is a state-of-the-art open-source autopilot
for fixed-wing UAVs. The equations are based on ArduPlane, Release 4.0.9,
which is the most recent stable release (as of August 2021). This controller
is used as a baseline and to support the discussion in various chapters of
this thesis.

2.6.1 Attitude Control

The ArduPlane attitude controller consists of two cascaded single-input-
single-output (SISO) feedback loops. The elevator controls pitch angle, while
the ailerons are used for roll control. The outer loop consists of proportional
controllers, where desired roll and pitch rates pr, qr ∈ R are calculated ac-
cording to

pr = kϕ (ϕr − ϕ) (2.52)
qr = kθ (θr − θ) + qct, (2.53)

where kϕ, kθ > 0 and qct is the pitch rate offset needed to maintain a constant
pitch angle during coordinated turns, given by

qct = sin(ϕ) cos(θ)
g

Va
tan(ϕ). (2.54)

The rate setpoints are inputs to the inner loop, which consists of proportional-
integral (PI) controllers with feedforward action:

δa = kp,pν
2 (pr − p) +

∫ t

0
ki,pν

2 (pr − p) dτ + kff,pνpr (2.55)

δe = −kp,qν2 (qr − q)−
∫ t

0
ki,qν

2 (qr − q) dτ − kff,qνqr, (2.56)
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where kp,∗, kki,∗ and kff,∗ are proportional, integral and feedforward gains,
respectively. The variable ν = V ∗/Va, where V ∗ is some constant reference
airspeed, provides airspeed scaling of the controller parameters, accounting
for the fact that larger airspeeds give greater aerodynamic control author-
ity. The negative sign in the control law for δe is introduced to account
for the convention that positive elevator deflections yield a negative pitch
moment [19].

For UAVs equipped with a rudder, additional control loops utilize the
extra control surface for turn coordination.

For elevon planes like the Skywalker X8, the aileron and elevator de-
flection angles are virtual control signals that are mapped to elevon control
actions using the inverse of (2.49):

δl = δe + δa (2.57)
δr = δe − δa. (2.58)

2.6.2 Guidance

Lateral guidance is performed using a nonlinear guidance law [193], [194],
often called L1 guidance, by commanding a lateral acceleration ascmd

using

ascmd
= KL1

V 2
g

L1
sin(φ), (2.59)

where Vg := ∥v∥ is the ground speed of the UAV, L1 is the distance to a
reference point on the desired path, ahead of the UAV, KL1 is a tuning
parameter, and φ is the angle between the ground speed vector and the
L1 vector pointing from the UAV to the reference point on the path. The
desired lateral acceleration is then converted into a desired roll angle ϕd
using a simplified version of the coordinated turn equation:

ϕd = cos(θ) atan

(
ascmd

g

)
. (2.60)

The pitch angle reference is calculated using the total energy control
system (TECS) [136]. TECS is based on energy principles, and accounts
for dynamic coupling in the longitudinal dynamics of the aircraft by simul-
taneously controlling altitude and airspeed using pitch and throttle. The
pitch angle is used to control the energy distribution ED, i.e., the difference
between (specific/per mass) potential and kinetic energy, given by

ED = gh− 1

2
V 2
a , (2.61)
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where h is the altitude. For a desired altitude hd ∈ R and desired airspeed
Va,d ∈ R>0, define the desired specific energy distribution ED,d = ghd −
V 2
a,d/2 and the error ẼD = ED,d−ED. Then, the pitch reference is prescribed

as follows:

θd = k1ẼD + k2

∫ t

0
ẼDdτ + k3

˙̃ED + k4ĖD,d, (2.62)

where ki ∈ R>0, i = 1 . . . 4 are tuning gains.
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Geometric Attitude Control
Laws for Fixed-Wing Aircraft
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Chapter 3

Introduction to Part I

This chapter is based on material found in the following articles:
[61] E. M. Coates, D. Reinhardt, and T. I. Fossen. Reduced-attitude control

of fixed-wing unmanned aerial vehicles using geometric methods on
the two-sphere. 21st IFAC World Congress, Berlin, Germany. IFAC-
PapersOnLine, 53:5749–5756, 2020.

[58] E. M. Coates and T. I. Fossen. Geometric reduced-attitude control of
fixed-wing UAVs. Applied Sciences, 11(7), 2021.

3.1 Introduction

The attitude control system provides the primary stabilization function in
autopilots for fixed-wing aircraft. It enables aircraft to follow commands
originating from outer-loop guidance schemes, thus allowing fully automatic
flight. Guidance controllers typically achieve path-following or waypoint-
tracking capabilities by controlling climb and turn rates through roll and
pitch commands to the inner-loop attitude controller [19]. The yaw angle,
course, and turn rate of aircraft are typically not controlled directly but
through banked turn manoeuvres, where the horizontal component of the
lift force provides a centripetal force. Therefore, instead of controlling the full
attitude, the control objective is to accurately track time-varying roll and
pitch angles while simultaneously satisfying the condition of a coordinated
turn, Eq. (2.51).

The orientation, or attitude, of a fixed-wing aircraft relative to an inertial
reference frame is represented, both globally and uniquely, by an element of
the special orthogonal group SO(3), which is the set of 3× 3 rotation matri-
ces. The Euler angles given by roll, pitch, and yaw provide a minimal, local
coordinate system on SO(3), but will suffer from “gimbal-lock” singulari-
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ties [164]. In the last decades, coordinate-free geometric attitude controllers,
designed directly on SO(3), have been proposed in the literature without the
need for attitude parameterizations and with no singularities [54]. Another
advantage of these approaches is that such controllers are often geodesic in
the sense that proportional action is designed to steer the vehicle along the
shortest path in the physical rotation space. In contrast, controllers based
on Euler angles are not. These advantages are desirable when the controlled
vehicle is subject to large-angle rotations, e.g., a UAV recovering from large
attitude errors resulting from severe wind gusts [117].

Controllers designed on SO(3), or using quaternions [250], control the
full attitude and, therefore, can not be directly applied to fixed-wing air-
craft using banked turn manoeuvres. Instead of studying the full attitude,
some authors consider a reduced-attitude representation, evolving on the
two-sphere, S2 ⊂ R3 [41]. In this space of reduced attitude, all rotations
related by a rotation about some fixed axis are considered the same [53].
Control systems with reduced attitude evolving on S2 have previously been
studied in the context of spin-axis stabilization of satellites [41], pendulum
stabilization [53], path-following control of underwater vehicles [253], control
of multirotor UAVs [47] and for general rigid bodies [172].

Part I of this thesis covers novel contributions to the topic of geometric
attitude control, adapted specifically for fixed-wing aircraft. The key innova-
tion lies in a careful choice of kinematic representation: To control roll and
pitch in a multivariable non-decoupled manner, I propose to use a global
representation that evolves on S2, more specifically a vector representation
of reduced attitude that is invariant to rotations about the inertial gravity
axis, i.e. independent of the yaw/heading angle of the aircraft. This makes it
well-suited for banked turn manoeuvres. The chosen attitude representation
is singularity-free and can be exploited to apply proportional feedback along
the shortest path in the natural configuration space, giving it an advantage
over conventional design methods using Euler angles.

The reduced-attitude representation allows for a convenient decomposi-
tion of the dynamics and a corresponding natural decoupling of the control
objective into two parts: 1. Reduced-attitude (roll/pitch) control, and 2.
Control of the angular velocity about the inertial z-axis (turn rate control).
Since only two control torques are needed to control the reduced attitude,
one degree of freedom is left to do turn rate control, which essentially per-
forms turn coordination, providing damping about the inertial z-axis and
reducing the sideslip angle.

The resulting control design is lightweight, has no singularities, and can
be deployed in conjunction with state-of-the-art hierarchical flight control
architectures that rely on roll and pitch control in the inner loop, such as [19],
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and those implemented in open-source autopilots such as ArduPlane [13],
and PX4 [174]. The method applies to aircraft with fully actuated rotational
dynamics, e.g., those equipped with a full set of control surfaces, such as
ailerons, elevator, and rudder. Posing the control problem on S2 has the
advantage of opening up a wide range of tools for control systems on spheres,
including different choices of potential functions and methods for global
stabilization and tracking using hybrid control.

3.2 Outline of Part I

We first presented the main concepts in [61] and further developed the idea
in a series of papers [58, 59, 209]. The remainder of Part I of the thesis
consists of four chapters, based on each of these papers. In Chapter 4, the
main idea is presented before expanding this work in several directions,
considering global stabilization using hybrid control (Chapter 5), a refined
more practical design (Chapter 6) and robust control using super-twisting
sliding mode control (Chapter 7).

3.3 Related Work

Reduced-attitude control has been extensively applied for thrust-vector con-
trol of multirotor UAVs, e.g. [108]. Fixed-wing aircraft, on the other hand,
are subject to additional aerodynamic forces and moments that make con-
trol of such vehicles fundamentally different. Besides, the reduced-attitude
representation used in this thesis (gravity direction represented in body-
fixed frame) differs from the thrust direction of multirotors (body-fixed axis
represented in the inertial frame). The representation used here is similar to
that used to stabilize the inverted equilibrium manifold of the 3-D pendulum
in [52, 53].

The idea of separately controlling reduced attitude and another variable
decoupled from the reduced-attitude vector is not entirely new. In [162], the
reduced attitude is steered along a geodesic path, while the full attitude is
stabilized. In [82, 130], the attitude control of a quadrotor is decoupled into
thrust-vector control on S2 and control of the angle of rotation about the
thrust vector. A similar approach is taken in [37] with a control allocation
strategy prioritizing reduced-attitude correction over yaw errors. Different
rotational error metrics for quadrotor control, defined in terms of both full
and reduced attitude, are compared in [229]. Finally, in [103], a vector-
projection algorithm is used for trajectory tracking for an agile fixed-wing
UAV (where aerodynamics are dominated by the propeller). The roll angle
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is decoupled from the reference attitude so that thrust and lift forces can be
pointed to achieve position tracking. Compared to these works, I propose to
simultaneously control reduced attitude and an angular velocity around the
reduced-attitude vector.

Other related work can be found in [191, 192] and [178, 179], where non-
linear attitude controllers for fixed-wing UAVs are developed using quater-
nions, and that also use a model of the rotational dynamics. In [191, 192],
the translational and rotational subsystems are decoupled by estimating the
higher-order derivatives of the angle of attack and sideslip angle. This en-
ables controllers for the two subsystems to be designed separately. In [178],
a nonlinear PID controller for fixed-wing UAV (full) attitude control is pre-
sented. The control law is based on unit quaternions and compensates for
aerodynamic coupling effects using integral action. This approach is ex-
tended in [179] to apply also to rudderless (i.e., underactuated in attitude)
fixed-wing UAVs by using a projection of the quaternion error to a yaw-free
subspace. In [201], a gain-scheduled attitude controller based on Euler an-
gles is given. An algorithm for automatic tuning is provided, and the control
system is verified experimentally in a wind tunnel.
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Chapter 4

Reduced-Attitude Control for
Fixed-Wing Aircraft Using
Geometric Methods on the
Two-Sphere

The main results of this chapter can be found in the following article:
[61] E. M. Coates, D. Reinhardt, and T. I. Fossen. Reduced-attitude control

of fixed-wing unmanned aerial vehicles using geometric methods on
the two-sphere. 21st IFAC World Congress, Berlin, Germany. IFAC-
PapersOnLine, 53:5749–5756, 2020.

Some supporting material is also taken from
[58] E. M. Coates and T. I. Fossen. Geometric reduced-attitude control of

fixed-wing UAVs. Applied Sciences, 11(7), 2021.

4.1 Introduction

In this chapter, we develop a smooth, nonlinear reduced-attitude controller
for fixed-wing aircraft in a coordinate-free manner. We use a global, singularity-
free reduced-attitude representation on the two-sphere S2, which is particu-
larly well-suited for fixed-wing aircraft since it does not depend on the yaw
angle and enables traditional banked-turn manoeuvres.

We combine dynamic inversion, feedforward terms, and PD-like feed-
back to create the control law. Using Lyapunov methods, we establish al-
most semiglobal exponential tracking of reduced attitude and, in the case
of constant references, almost global asymptotic stability. Due to topologi-
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cal constraints, the latter is the best possible stability result for continuous
attitude control systems [26].

In addition to being singularity-free, the geometric approach offers the
benefit of directing the proportional action along the shortest path on the
sphere toward the reference. Finally, we establish the relation to a clas-
sical approach using Euler angles and demonstrate increased efficiency in
numerical simulations with a model of a small fixed-wing UAV. The results
of this chapter lay the foundations for a novel attitude control framework
for fixed-wing aircraft, which we expand in several directions in subsequent
chapters.

Chapter Outline

We introduce our choice of reduced-attitude representation in Section 4.2
before proceeding with the problem definition in Section 4.3. The core con-
troller design is presented in Section 4.4 while turn coordination is treated in
Section 4.5. A comparison between the geometric controller and a controller
based on Euler angles is performed in Section 4.6, and a reduced-attitude
reference filter based on roll and pitch angle references is provided in Sec-
tion 4.7. In Section 4.8, we present the simulation results before giving a
summary of the chapter in Section 4.9.

4.2 Reduced-Attitude Representation

Recall from Chapter 2 that Rnb ∈ SO(3) is the rotation matrix that trans-
forms vectors from {b} to {n}, and that e3 = [0 0 1]⊤ represents the inertial
z-direction (direction of gravitational acceleration). We employ the following
reduced-attitude representation:

Γ = (Rnb )
⊤e3 ∈ S2, (4.1)

which is interpreted as the inertial z-axis, expressed in {b}. By expand-
ing (4.1) using the roll-pitch-yaw Euler-angle parametrisation of Rnb , Eq. (2.16),
the reduced-attitude vector Γ can be expressed in terms of the roll angle
ϕ ∈ [−π, π] and pitch angle θ ∈ [−π/2, π/2] as follows:

Γ(ϕ, θ) =

 − sin(θ)
cos(θ) sin(ϕ)
cos(θ) cos(ϕ)

 . (4.2)

Observe that this particular choice of attitude representation is invariant to
changes in the heading/yaw angle ψ. The reduced attitude representation
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4.2. Reduced-Attitude Representation

is illustrated in Figure 4.1, where a section of the sphere corresponding to
θ = 0 is shown. Figure 4.2 shows another section where the aircraft is shown
from the side with a nonzero roll angle. As shown, the vector Γ is expressed
in the body-fixed frame, and the vector Γ points towards the ground.

Figure 4.1: Reduced-attitude representation illustrated with a section of the two-
sphere corresponding to θ = 0.

The reduced-attitude representation (4.1) is the same as the one consid-
ered for the 3-D pendulum in [53], but different compared to the one used
for thrust-vector control for multirotor UAVs, which is the thrust direction
in the inertial-frame, Rnb e1 [108].

Note that in light of Eq. (4.1), Γ is equivalent to the third row of the
matrix Rnb , which also appears as the third column of T−1

Θ (Θ) in Eq. (2.19).
Furthermore, from the mapping (4.2), we recognise ϕ and θ as azimuth and
elevation angles, respectively, of the vector Γ. In the language of differential
geometry, Eq. (4.2) is a parametrisation of S2 (excluding the poles) and
ϕ, θ are local coordinates. This parametrisation is not valid on the whole
sphere since ϕ is not unique at the poles. This is in line with the gimbal-lock
singularity of the Euler-angle parametrisation of the full orientation. Instead
of utilizing the azimuth and elevation angles ϕ, θ for control of reduced
attitude, as done in the existing aerospace and robotics literature, we employ
the vector itself, i.e. without using local coordinates on S2. This lets us work
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Figure 4.2: Reduced-attitude representation. The aircraft is shown from the side,
illustrated with a section of the two-sphere with a non-zero roll angle.

with S2 globally in a singularity-free manner without the need for multiple
coordinate charts.

Further, let ω ∈ R3 be the angular velocity of the body-fixed frame
relative to the inertial frame, expressed in the body-fixed frame. From (4.1)
and (2.15) we derive the following kinematic differential equation for the
reduced-attitude vector Γ:

Γ̇ = Γ× ω. (4.3)

Using (2.11), we can perform an orthogonal decomposition of the angular
velocity ω with respect to Γ such that ω = ω⊥ + ω∥, where

ω⊥ := Π⊥
Γ (ω) ∈ TΓS2 ω∥ := Π

∥
Γ(ω) ∈ NΓS2. (4.4)

Applying this decomposition of ω in combination with (4.3) gives

Γ̇ = Γ× (ω⊥ + ω∥) = Γ× ω⊥. (4.5)

The parallel component ω∥ is the angular velocity about the inertial z-axis
(expressed in the body-fixed frame) and does not influence Γ̇.
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Remark 4.1. Note that since the two-sphere S2 is a two-dimensional man-
ifold, in principle two actuators are sufficient to control reduced attitude.
However, since Γ is fixed in the inertial frame, the two required control di-
rections vary with the orientation of the vehicle and are thus not fixed in
{b}. Therefore, we need three linearly independent body-fixed actuators to
make the reduced attitude fully controllable throughout the configuration
space. In this chapter, we consider only aircraft with fully actuated rota-
tional dynamics, and at each time instant, we will use the remaining degree
of freedom (DOF) to stabilize ω∥.

For |θ| ̸= π/2, we can find an expression for ω∥ in terms of Euler angles.
From (2.11), (2.19)-(2.20), (4.2) and (4.4) we have that, for |θ| ̸= π/2,

ω∥ = ΓΓ⊤ω = ΓΓ⊤T−1
Θ (Θ)Θ̇ = ΓΓ⊤

ϕ̇e1 + θ̇

 0
cos(ϕ)
− sin(ϕ)

+ ψ̇Γ

 (4.6)

=

ϕ̇Γ(ϕ, θ)⊤e1 + θ̇Γ(ϕ, θ)⊤

 0
cos(ϕ)
− sin(ϕ)

+ ψ̇Γ⊤Γ

Γ =
(
−ϕ̇ sin θ + ψ̇

)
Γ.

(4.7)

If the roll angle ϕ is constant, we get the simplified expression

ω∥ = ψ̇Γ. (4.8)

We end this section by calculating expressions for the time derivatives
of the projections of the angular velocity vector given by Eq. (4.4). From
differentiating (4.4) and by using (4.5) and (2.8) we get

ω̇⊥ :=
d

dt
ω⊥ = Π⊥

Γ (ω̇) + ω⊥ × ω∥ (4.9)

ω̇∥ :=
d

dt
ω∥ = Π

∥
Γ(ω̇) + ω∥ × ω⊥. (4.10)

4.3 Problem Statement

4.3.1 Aircraft Attitude Dynamics

For control design purposes, we consider (4.5) and the rotational dynamics
(2.40) in control-affine form:

Γ̇ = Γ× ω⊥ (4.11)

Jω̇ = f(ω, vba, δt) +G(ω, vba)u, (4.12)
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where
f(ω, vba, δt) = S(Jω)ω +Ma(ω, v

b
a) +Mp(δt) (4.13)

defines the drift term, i.e. the torque that is independent of the control input
u. Further, we consider aircraft moving with a strictly positive airspeed
Va > 0 for which Eq. (4.12) is fully actuated, i.e. the control effectiveness
matrix G(ω, vba) has full row rank. Without loss of generality, we assume that
G(ω, vba) is square and invertible and that the aircraft is equipped with a
typical set of linearly independent control surfaces such that u = [δa δe δr]

⊤.

Remark 4.2. From (2.45), it is clear that a strictly positive airspeed is
necessary for G(ω, vba) to have full rank. To generate control moments, air-
craft use the control surfaces to deflect the airstream, so a sufficiently large
airspeed is needed to ensure controllability.

In what follows, the throttle δt and relative velocity vba, and therefore
also α, β and Va (as functions of vba), are treated as known time-varying
input signals.

Remark 4.3. Note that since the translational subsystem (2.39) depends
on R, ω and u, the relative velocity vba is not truly an exogenous signal.
Nevertheless, we assume that vba is available either through measurements of
the relative wind or estimated using standard sensors [115, 239]. This should
be considered during tuning and when integrating the attitude controller
developed in this chapter in GNC systems, for instance by using bandwidth
separation between inner and outer control loops. Formally, we consider the
system (4.12) along the (bounded) solutions vba(t) of (2.15), (2.31), (2.33)
and (2.39), and that the terms of (4.12) satisfy the following assumption to
ensure bounded control torques:

Assumption 1. The aerodynamic drift term and control-effectiveness ma-
trix satisfy

∥Ma(ω, v
b
a)∥ ≤ cMa ∥G−1(ω, vba)∥ ≤ cG−1 (4.14)

for some positive constants cMa and cG−1 .

4.3.2 Reference System

Analogous to (4.5), let a time-varying reference trajectory for the reduced
attitude Γd(t) ∈ S2 satisfy

Γ̇d = Γd × ω⊥
d , (4.15)
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where the desired angular velocity ω⊥
d ∈ TΓd

S2 is twice continuously differ-
entiable. Further, there exist positive constants cω⊥

d
, cω̇⊥

d
such that

∥ω⊥
d ∥ ≤ cω⊥

d
, ∥ω̇⊥

d ∥ ≤ cω̇⊥
d
. (4.16)

A method that generates reference trajectories Γd(t), ω
⊥
d (t), ω̇

⊥
d (t) satisfy-

ing (4.15) based on trajectories parameterised by Euler angles is given in
Section 4.7.

Consider the projection of ω⊥
d onto the tangent space TΓS2, given by

Π⊥
Γ (ω

⊥
d ) ∈ TΓS2. In a similar fashion to (4.9), the time derivative can be

found to satisfy

d

dt

(
Π⊥

Γ (ω
⊥
d )
)
= Π⊥

Γ (ω̇
⊥
d ) + ω⊥ ×Π

∥
Γ(ω

⊥
d ) +Π

∥
Γ(ω

⊥
d × ω⊥). (4.17)

4.3.3 Control Objective

The goal is to design a smooth control input u such that Γ = Γd is an
asymptotically stable equilibrium point.

It follows from (4.5), (4.9) and (4.12) that only u for which J−1G(ω, vba)u ∈
TΓS2 affects the reduced attitude. Let an orthogonal decomposition of the
control input vector u be given by u = u⊥ + u∥ such that J−1G(ω, vba)u

⊥ ∈
TΓS2, and J−1G(ω, vba)u

∥ ∈ NΓS2.
The primary control objective can be stated as follows:

Reduced-Attitude Tracking

Design a smooth state-feedback control law u⊥ such that Γ(t)→ Γd(t) and
ω⊥(t)→ ω⊥

d (t) as t→∞.
A special case of reduced-attitude tracking is the case when Γd is constant

and ωd ≡ 0:

Reduced-Attitude Regulation

Design a smooth state-feedback control law u⊥ such that Γ(t)→ Γd constant
and ω⊥(t)→ 0 as t→∞.

In both cases, due to topological restrictions to global stabilization on
compact manifolds, the strongest stability results that we can achieve are
almost global [26].
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Secondary Objective

The remaining control direction provided by u∥ is in the null space of the
orthogonal projection and as such does not interfere with the control of
reduced attitude. It should be used for secondary objectives such as turn
coordination and to stabilize the parallel component of angular velocity, ω∥.

4.4 Control Design

This section presents the main result of this chapter, where a control law u⊥

is given. The design of a control law using the remaining control direction,
given by u∥ is treated in Section 4.5.

4.4.1 Potential Function

Let a smooth configuration error function Ψ: S2 × S2 → [0, 2] be defined by

Ψ(Γ,Γd) =
1

2
∥Γ− Γd∥2 = 1− Γd · Γ = 1− cos ν, (4.18)

where ν is the angle between Γ and Γd. The function Ψ measures the “dis-
tance” between two points Γ and Γd on S2, and is clearly positive definite
with respect to Γ = Γd. There are two critical points: A minimum when
Γ = Γd, and a maximum when Γ = −Γd. In subsequent Lyapunov analysis,
Ψ will be used as pseudo-potential energy.

4.4.2 Error States

To design proportional feedback on S2, let a configuration error vector
eΓ : S2 × S2 → TΓS2 be given by

eΓ = Γ× Γd, (4.19)

and define the angular velocity error as

eω = ω⊥ −Π⊥
Γ (ω

⊥
d ) = Π⊥

Γ (ω − ω⊥
d ) ∈ TΓS2. (4.20)

From (4.9) and (4.17), the derivative of eω can be written as

ėω = Π⊥
Γ (ω̇ − ω̇⊥

d + ω⊥ × (ω∥ −Π
∥
Γ(ω

⊥
d )))−Π

∥
Γ(ω

⊥
d × eω). (4.21)

The error vector eΓ can be viewed as a gradient vector field on S2 in-
duced by the potential function Ψ [145], and as ∥eΓ∥ = |sin ν|, it vanishes at
the critical points of Ψ. The error vector eΓ is geodesic in the sense that its
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direction defines an axis of rotation which connects Γ and Γd with the short-
est possible curve on S2. In particular, the gradient w.r.t to Γ of Ψ(Γ,Γd),
viewed as a function from R3 × R3 to R is given by ∇ΓΨ(Γ,Γd) = −Γd.
However, for functions on general manifolds, the derivative of the function
at a point maps between tangent spaces [95]. Further, in light of (2.12), we
define a gradient vector field on S2 by projecting the gradient to the tangent
space as Γ̇ = −Π⊥

Γ (∇ΓΨ(Γ,Γd)) = Π⊥
Γ (Γd). To find the rotation axis to

apply torque, we form the cross-product

Γ×Π⊥
Γ (Γd) = −S3(Γ)Γd = S(Γ)Γd = eΓ, (4.22)

where we have used (2.10).
The error terms eΓ and eω are compatible in the sense that Ψ̇ = e⊤ω eΓ,

which will cancel with the proportional feedback term defined later when
calculating the derivative of a Lyapunov function. The error vector eΓ is
“geodesic” in the sense that when it is nonzero, its direction defines an axis
of rotation which connects Γ and Γd with the shortest possible curve on S2.

Remark 4.4. Other configuration error vectors (with corresponding poten-
tial functions) on S2 could be used in place of (4.19), without changing the
general approach considered in this chapter. The advantage of using (4.19)
for proportional feedback is that it is simple, smooth and globally defined.
However, there are some performance issues, since for initial reduced atti-
tudes arbitrarily close to −Γd, the control action will be close to zero, and
the reduced attitude will stay there for an extended period of time before
converging to the desired reduced attitude. Some alternative error vectors
that do not vanish when approaching −Γd (at the cost of being undefined
at this point) can be found in [41], [52] and [205]. Another advantage of us-
ing (4.18), (4.19) is that they are compatible with the concept of synergistic
potential functions [172], where methods from hybrid control theory can be
applied to overcome the topological obstruction to global stabilization that
exists when using continuous control laws [26].

4.4.3 Control Law

The control law is a combination of dynamic inversion, feedforward terms
and PD-like feedback in terms of eΓ and eω:

u⊥ = G−1(ω, vba)J

(
− kpeΓ −Π⊥

Γ (Kdeω)

−Π⊥
Γ (J

−1f(ω, vba, δt))− ω⊥ × (ω∥ −Π
∥
Γ(ω

⊥
d )) +Π⊥

Γ (ω̇
⊥
d )

)
,

(4.23)
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where kp ∈ R>0 and Kd ∈ P3
+ are tuning parameters (proportional and

derivative-like gains respectively).
A notable property of the control law (4.23) is that since the control

effectiveness matrix G(ω, vba) given by (2.45) contains a factor of V 2
a , the

inverse matrix G−1(ω, vba) contains a factor of 1/V 2
a . This means that the

control law includes airspeed scaling, a feature often found in commercial
and open-source autopilots [13, 174]. Also note that instead of compensat-
ing for the entire drift term f(ω, vba, δt), only the orthogonal projection is
compensated for.

The control law (4.23) is based on proportional action that is propor-
tional to the error term eΓ as defined by (4.19), whose direction defines
an axis of revolution for the direct, shortest rotation connecting Γ and Γd
(forming a geodesic curve on the sphere, i.e. part of a great circle). This is
convenient when dealing with large rotation errors and is a property that
is not shared with controllers based on Euler angles. We show in later sec-
tions that this construction makes the geometric controller spend less control
energy than the controller based on Euler angles.

The error vector eΓ is zero when Γ = Γd. However, this is also the case
when Γ = −Γd. Naturally, this choice of configuration error leads to an ad-
ditional undesired equilibrium point at Γ = −Γd, but due to the topology of
the sphere (it is a compact manifold), this is unavoidable when using con-
tinuous feedback [26]. The presence of more than one equilibrium prevents
us from designing globally stabilizing feedback laws. A suitable notion of
stability in this context is the concept of almost global asymptotic stability
as defined in Definition 2.1. As shown in e.g. [172], we can make the region
of attraction global using hybrid control. While the scope of the present
chapter is limited to considering smooth control laws, we explore the ap-
plication of hybrid methods to the attitude control of fixed-wing aircraft in
Chapter 5.

4.4.4 Main Result

We state the main stability properties of the closed-loop system in the fol-
lowing proposition, which is the main result of this chapter:

Proposition 4.1 (Reduced-Attitude Tracking): Consider the reduced-attitude
error dynamics defined by (4.12), (4.5) and (4.21), assuming Va ≥ V a > 0 and
that the control effectiveness matrix G(ω, vba) has full rank. With kp ∈ R>0 and
Kd ∈ P3

+, let a smooth tracking control law u⊥ satisfying J−1G(ω, vba)u
⊥ ∈

TΓS2 be given by Eq. (4.23). With δt, vba treated as bounded, time-varying ex-
ogenous signals, the following holds:
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1. The closed-loop error system has two equilibrium solutions given by (Γ, eω) =
(±Γd, 0).

2. The desired equilibrium (Γd, 0) is exponentially stable, with region of ex-
ponential convergence given by

Ψ(Γ(0),Γd(0)) ≤Ψ (4.24)

∥eω(0)∥ ≤
√

2kp

(
Ψ−Ψ(Γ(0),Γd(0))

)
, (4.25)

for someΨ< 2, where 2 is the maximum value of Ψ, attained at Γ = −Γd.
3. The additional undesired equilibrium (−Γd, 0) is unstable.

4. Additionally, if ω⊥
d = 0, the desired equilibrium (Γd, 0) is almost globally

asymptotically stable.

Proof. We break the proof into four parts, starting with the equilibrium
points.

Part 1: Equilibrium Points By differentiating (4.19), applying the identity
(2.9) and combining with (4.12), (4.21), (4.23) gives the non-autonomous
closed-loop error system

ėΓ = −S(ω⊥
d )eΓ − S(Γd)S(Γ)eω (4.26)

ėω = −kpeΓ −Π⊥
Γ (Kdeω)−Π

∥
Γ(ω

⊥
d × eω), (4.27)

which gives the equilibrium condition[
−S(ω⊥

d ) −S(Γd)S(Γ)
−kpI3 −S2(Γ)KdS

2(Γ)− ΓΓ⊤S(ω⊥
d )

] [
eΓ
eω

]
=

[
0
0

]
, (4.28)

where we have used the fact that −S2(Γ)eω = eω. For (4.28) to be satisfied
for all t, where the time-dependence is implicit through Γd(t), ω

⊥
d (t), we get

eΓ = eω = 0. Note that, when ω⊥
d = 0, the matrix above is rank-deficient,

with v = [0 w]⊤ as a basis of the null space, where w is parallel to Γ. But
eω lies in TΓS2. Thus, equilibrium solutions are given by (Γ, eω) = (±Γd, 0).

Part 2: Exponential Tracking Consider the Lyapunov-like function V1 : TS2×
S2 → R≥0

V1(Γ, eω,Γd) = kpΨ(Γ,Γd) +
1

2
e⊤ω eω. (4.29)
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Differentiating along closed-loop trajectories of (4.27) gives

V̇1 = kpe
⊤
ω eΓ + e⊤ω

(
−kpeΓ −Π⊥

Γ (Kdeω)−Π
∥
Γ(ω

⊥
d × eω)

)
(4.30)

= −e⊤ωKdeω ≤ −λKd
min∥eω∥2 ≤ 0, (4.31)

where the last term in (4.30) disappears since eω ∈ TΓS2, and we have used
(2.12). For initial conditions satisfying (4.24), (4.25), we get V1(t0) ≤ kpΨ.
Since V1(t) is non-increasing, we get:

kpΨ(Γ(t),Γd(t)) ≤ V1(t) ≤ V1(t0) ≤ kpΨ, (4.32)

which means that Ψ(Γ(t),Γd(t)) ≤Ψ. For the sublevel set

L2 =
{
Γ,Γd ∈ S2 : Ψ(Γ,Γd) ≤Ψ

}
(4.33)

we can bound Ψ by

1

2
∥eΓ∥2 ≤ Ψ(Γ,Γd) ≤

1

2−Ψ
∥eΓ∥2. (4.34)

Now, consider the Lyapunov function candidate

V2(Γ, eω,Γd) = V1 + ϵe⊤ω eΓ, (4.35)

where ϵ > 0. Using (4.34), we can derive upper and lower bounds

1

2
z⊤M1z ≤ V2 ≤

1

2
z⊤M2z, (4.36)

where z = [∥eΓ∥ ∥eω∥]⊤ and

M1 =

[
kp −ϵ
−ϵ 1

]
, M2 =

[
2kp

2−Ψ
ϵ

ϵ 1

]
. (4.37)

Differentiating V2 along the closed-loop trajectories gives

V̇2 = −e⊤ωKdeω + ϵė⊤ω eΓ + ϵe⊤ω ėΓ. (4.38)

The cross terms can be bounded as follows:

∥e⊤ω ėΓ∥ ≤ ∥eω∥ ∥ω⊥
d ∥ ∥eΓ∥+ ∥eω∥2 ≤ cω⊥

d
∥eω∥∥eΓ∥+ ∥eω∥2 (4.39)

∥e⊤Γ ėω∥ ≤ −kp∥eΓ∥2 + λKd
max∥eΓ∥∥eω∥, (4.40)
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which leads to

V̇2 = −e⊤ωKdeω + ϵė⊤ω eΓ + ϵe⊤ω ėΓ ≤ −z⊤M3z, (4.41)

where the matrix M3 is given by

M3 =

 ϵkp − ϵ
2

(
cω⊥

d
+ λKd

max

)
− ϵ

2

(
cω⊥

d
+ λKd

max

)
λKd
min − ϵ

 (4.42)

If ϵ is chosen to satisfy

ϵ < min

√kp, 4kpλ
Kd
min

4kp +
(
cω⊥

d
+ λKd

max

)2
 , (4.43)

then M1, M2 and M3 are all positive definite.
By following similar arguments as in the proof of Theorem 4.10 in [125],

we get that V2(t) and ∥z(t)∥ converge exponentially to zero, which in turn
means that (Γ(t), eω(t)) converge exponentially to (Γd(t), 0), with the region
of exponential convergence given by (4.24) and (4.25).

Part 3: Instability of Undesired Equilibrium To show that the undesired
equilibrium is unstable, define

W = 2kp − V2 ≥ −
1

2
∥eω∥2 − ϵ∥eω∥∥eΓ∥+ kp(2−Ψ(Γ,Γd)). (4.44)

At the undesired equilibrium (−Γd, 0), we have W = 0, and Ẇ = −V̇2 is
positive definite from (4.41). Now consider Γ arbitrarily close to −Γd. In this
case, the term 2−Ψ(Γ,Γd) is positive, and we can choose ∥eω∥ sufficiently
small such that W > 0 and Ẇ > 0. By Theorem 4.3 in [125], the equilibrium
(−Γd, 0) is unstable.

Part 4: Almost Global Regulation When ω⊥
d = 0, (4.31) reduces to

V̇1 = −(ω⊥)⊤Kdω
⊥ ≤ 0, (4.45)

so the set given by

Ω := {(Γ, ω⊥) ∈ S2 × TΓS2 :
V1(Γ(t), ω

⊥(t)) ≤ V1(Γ(t0), ω⊥(t0))}
(4.46)

is positively invariant. Since S2 is compact, all sublevel sets of V1 are com-
pact, which means that the set Ω is compact. Let E be set of points in Ω
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where V̇1 = 0. In E, ω⊥ = 0, which when inserted into (4.27) and using (4.19)
leads to Γ = ±Γd. By Theorem 4.4 in [125] (LaSalle), every solution start-
ing in Ω then converges asymptotically to one of the equilibrium solutions
(±Γd, 0). Local asymptotic stability of the desired equilibrium point, as well
as the instability of the undesired equilibrium, follows from Part 2 and Part
3 of the proof. To establish almost global asymptotic stability of the desired
equilibrium, we will study the local structure of the undesired equilibrium.

Let a perturbation of the equilibrium solution (Γ(t), ω⊥(t))
= (Γe, 0) be given in terms of a perturbation parameter ϵ as (Γϵ(t, ϵ), ω⊥

ϵ (t, ϵ)) =
(e−ϵS(η(t))Γe, ϵδω(t)), which satisfies η(t) · Γe = δω(t) · Γe = 0 for all t. Now,
consider the perturbed equations of motion (4.5), (4.27) given by

Γ̇ϵ(t, ϵ) = Γϵ(t, ϵ)× ω⊥
ϵ (t, ϵ) (4.47)

ω̇⊥
ϵ (t, ϵ) = −kpΓϵ(t, ϵ)× Γd −Kdω

⊥
ϵ (t, ϵ) (4.48)

+ Γϵ(t, ϵ)Γ
⊤
ϵ (t, ϵ)Kdω

⊥
ϵ (t, ϵ).

Differentiating both sides with respect to ϵ and inserting ϵ = 0 gives the
linearized set of equations ẋ = A(Γe)x, where x = [η δω]⊤. For Γe = −Γd,
we get

A(−Γd) := A =

[
0 I3

−kpS2(Γd) −S2(Γd)KdS
2(Γd)

]
, (4.49)

where the relation −S2(Γd)δω = δω has been used to add the last factor in
the lower right element of the matrix.

The state space has dimension six, but in reality, the system evolves on
a four-dimensional subspace according to the constraints

Cx =

[
Γ⊤
e 0
0 Γ⊤

e

] [
η
δω

]
=

[
0
0

]
, (4.50)

which is respected by the linearized dynamics, in the sense that CA = 0.
If decomposing eigenvectors vi of A into vi = [v⊤i1 v⊤i2]

⊤, it follows from
the equation Av = λv that eigenvalue-eigenvector pairs of A need to satisfy

vi2 = λivi1 (4.51)

−kpS2(Γd)vi1 − S2(Γd)KdS
2(Γd)vi2 = λivi2. (4.52)

Inserting (4.51) into (4.52) and pre-multiplying with the complex conjugate
transpose v̄⊤i1 of vi1 gives

aλ2 + bλ− c = 0, (4.53)
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where

a = v̄⊤i1vi1 > 0 (4.54)

b = v̄⊤i1[−S2(Γd)]Kd[−S2(Γd)]vi1 ≥ 0 (4.55)

c = kpv̄
⊤
i1[−S2(Γd)]vi1 ≥ 0, (4.56)

since the matrix −S2(Γd) is positive semi-definite. The coefficients b and c
are only (simultaneously) zero when −S2(Γd)vi1 = 0, i.e. when vi1 has the
form vi1 = z1Γd for some z1 ∈ C. In this case, (4.53) reduces to aλ2 = 0, so
λ1 = 0 is an eigenvalue of A with algebraic multiplicity two, corresponding
to the eigenvector v1 = [z1Γ

⊤
d 0⊤]⊤. However, since A has rank five, the

geometric multiplicity of λ1 is one. To get a full Jordan basis, we choose the
generalized eigenvector v2 = [z2Γ

⊤
d z1Γ

⊤
d ]

⊤, which satisfies (A − λ1I)v2 =
Av2 = v1, for z2 ∈ C.

The solutions of the linearized system defined by (4.49) can be written
in terms of its Jordan form as

x(t) = c1e
λ1tv1 + c2e

λ1t(v1t+ v2) +

6∑
i=3

cihi(t), (4.57)

where the functions hi(t) depend on the vectors vj , j ∈ {1, . . . , 6}, the
eigenvalues λk, k = {2, 3, 4, 5} and their multiplicities. The constants ci
depend on the intial condition x(0) =

∑6
i=1 civi, which satisifies Cx(0) = 0.

Since the vectors v1, v2 do not satisfy the constraints (4.50), c1 = c2 = 0,
the solution x(t) does not depend on λ1.

Since A ∈ R6×6 is a rank five matrix, we know that no other eigenvec-
tors are parallel to v1, so for all remaining eigenvector pairs, a, b, c > 0.
Since (4.53) has two solutions, we know from the quadratic formula that
from the remaining eigenvalues λk, k = {2, 3, 4, 5}, two are positive, and two
are negative. This confirms that the undesired equilibrium point (Γ, ω⊥) =
(−Γd, 0) is unstable. Moreover, the stable eigenspace corresponding to the
two negative eigenvalues is the tangent space to a two-dimensional stable
invariant manifold M, where all trajectories starting in M converge to the
undesired equilibrium point [94]. Since the zero eigenvalue has no influence
on the solution, all trajectories converging to the undesired equilibrium lie
inM. We conclude that all trajectories except those starting inM converge
to the desired equilibrium. Since the dimension ofM is two, it has measure
zero in the state space TS2, and we say that the domain of attraction of the
desired equilibrium point is almost global.

For almost all Ψ(Γ(t0),Γd(t0)), eω(t0) (excluding Γ(t0) = −Γd(t0)), some
kp can be chosen such that (4.24), (4.25) is satisfied. The equilibrium (Γd, 0)
is therefore said to be almost semiglobally exponentially stable [142].
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Remark 4.5. By exploiting passivity-properties in the Lyapunov design,
the term −ω⊥× (ω∥−Π

∥
Γ(ω

⊥
d )) in (4.23) could be replaced by −Π⊥

Γ (ω
⊥
d )×

(ω∥−Π
∥
Γ(ω

⊥
d )), without changing V̇ . This would also remove the seemingly

unneeded cross-product term in (4.58). However, this would give a closed-
loop system that depends on ω∥, and invalidate several arguments used in
the proof.

Parts of the proof are inspired by [143], where a tracking controller for
a double integrator system on S2 is presented. However, [143] considers an
inertial-frame representation of reduced attitude, as opposed to (4.1), which
is defined in the body-fixed frame. Also, no dynamics or parallel components
of the angular velocity are considered. In addition to compensating for the
dynamics, compared to [143], the controller (4.23) allows a matrix gain Kd,
projects the feedforward term ω̇⊥

d to TΓS2, and adds an additional term
−ω⊥ × ω∥ to compensate for the “Coriolis” term that appears when ω∥ is
nonzero.

In the special case of regulation, where ω⊥
d = 0, and eω = ω⊥, the control

law (4.23) reduces to

u⊥ = G−1(ω, vba)J

(
− kpeΓ −Π⊥

Γ (Kdω
⊥)

−Π⊥
Γ (J

−1f(ω, vba, δt))− ω⊥ × ω∥
)
.

(4.58)

The closed-loop system in this case is autonomous. This means that LaSalle’s
invariance theorem [125] can be applied. Inspired by the methodology pre-
sented for the 3-D pendulum in [53], this can be combined with local analysis
of the linearized closed-loop dynamics at the equilibria to show almost global
asymptotic stability. However, the linearized dynamics in [53] evolve on R5,
since the state space includes the full angular velocity ω. In [145], a closed-
loop 3-D pendulum system is analyzed, with angular velocity in TΓS2 and
with linearization evolving on R4, but only for very specific numerical values
of the controller gains. The proof of almost global asymptotic stability fol-
lows [53], but is adjusted to use a linearization on R4 instead of R5, inspired
by [145], but done in full generality. In addition, a matrix gain Kd is used
instead of a scalar.

4.5 Turn Coordination

The control law defined by (4.23) does not inject damping about the axis
defined by Γ. The control u∥ can be utilized to do this. The coordinated-turn
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Fixed-Wing UAV
Dynamics

Airspeed Controller

Reduced-Attitude +
Turn Rate
Controller

Guidance

Wind

Sensors and State
Estimation

Path Planning
Path

State estimates

Path specification

Figure 4.3: Block diagram of a guidance, navigation and control (GNC) architec-
ture for fixed-wing aircraft.

equation can be used to (approximately) calculate a feed-forward signal for
the component of angular velocity parallel to Γ required in a coordinated
turn. Thus, we combine (4.8) with the coordinated-turn equation, (2.51), to
generate a reference for ω∥:

ω
∥
d =

g

Va
tan(ϕ)Γ =

gΓ2

VaΓ3
, |Γ1| ̸= 1. (4.59)

Note that care needs to be taken to avoid the singularity at Γ3 = 0, corre-
sponding to ϕ = ±π/2, either by constraining the value of ϕ used in (4.59) or
by using the reference Γd instead, which we can constrain as we want. A con-
troller that adds damping about Γ without interfering with the banked-turn
manoeuvre is then given by

u∥ = G−1(ω, vba)J
(
−ktc(ω∥ − ω∥

d)−Π
∥
Γ(J

−1f(ω, vba, δt)) +Π
∥
Γ(ω̇

∥
d)
)
,

(4.60)
where ktc ∈ R>0 is a scalar design parameter.

As an alternative to (4.60), for some kβ ∈ R>0, consider the following
control law, which is designed to drive the sideslip angle to zero:

u∥ = G−1(ω, vba)J Π⊥
Γ (kββe3). (4.61)

We continue the discussion on the design of ω∥
d in Chapter 6, Section 6.3.

Figure 4.3 shows a block diagram that illustrates how the combined
reduced-attitude and turn rate controller integrates into a typical GNC ar-
chitecture for fixed-wing aircraft. The references for reduced-attitude, an-
gular velocity, and angular acceleration are generated by some outer-loop
guidance controller, and the reduced-attitude control law is combined with
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a control law for airspeed control, e.g. a PI-controller [19]. The controller
uses estimates of the rotation matrix R, the angular velocity ω, as well as the
relative velocity vba, which are all made available through a state estimation
module. The use of vba is relaxed in Chapter 6.

4.6 Comparison With Controller Based on Euler
Angles

In this section, the structure of the geometric controller presented in Sec-
tion 4.4 is compared to a controller based on Euler (azimuth and elevation)
angles. For Kω ∈ P3

+, consider the cascaded dynamic inversion based con-
troller

u = G−1(ω, vba)J

(
−Kω(ω − ω̄d)− J−1f(ω, vba, δt)

)
, (4.62)

where the bar in ω̄d is introduced to distinguish it from ω⊥
d in (4.15). The

desired angular velocity is computed using (2.51) and linear feedback from
the roll and pitch regulation errors ϕ̃ := ϕ− ϕd, θ̃ := θ − θd as follows:

ω̄d = T−1
Θ (Θ)

 −kϕϕ̃
−kθθ̃

g
Va

tan(ϕ)

 (4.63)

where kϕ, kθ ∈ R>0, and T−1
Θ (Θ) is given by (2.20).

Remark 4.6. This controller has a similar structure as the control archi-
tecture used in the PX4 open source autopilot [174], but there the dynamic
inversion term is replaced by an integral term.

To compare the geometric controller from Section 4.4 with the Euler
angle controller (4.62)-(4.63), we consider the regulation case with ω⊥

d = 0,
and set Kd = Kω = kdI3, kθ = kϕ = kp/kd, and (4.60) is used for u∥ with
ktc = kd.

For the controller based on Euler angles, the closed-loop dynamics are

ω̇ = −kpeθϕ − kdω + kdω
∥
d, (4.64)

where the error vector eθϕ is given by

eθϕ :=
[
ϕ̃ θ̃ cos(ϕ) −θ̃ sin(ϕ)

]⊤
. (4.65)

52



4.7. Reference Filter

For the geometric controller, if we ignore the cross-product term in (4.58)
and the derivative term in (4.60), the closed-loop angular velocity dynamics
becomes

ω̇ = −kpeΓ − kdω + kdω
∥
d. (4.66)

The only difference between (4.66) and (4.64) lies in the proportional error
vectors. By calculating Γ · eθϕ = −ϕ̃ sin(θ) ̸= 0, we see that eθϕ /∈ TΓS2, so
the proportional action has a different direction than the geodesic direction
defined by eΓ. The error vectors also have different magnitudes, but this
can be changed using a different potential function (see Remark 4.4). In
the simulation study of Section 4.8.2 we normalize the magnitude of the
error vectors by replacing eΓ with e′Γ = ∥eθϕ∥ · eΓ/∥eΓ∥, which enables us to
compare the controllers on equal grounds.

4.7 Reference Filter

An expression for the reduced-attitude vector Γ in terms of the Euler angles
roll and pitch is given by (4.2). Differentiating leads to

Γ̇ =

 − cos(θ)θ̇

− sin(θ) sin(ϕ)θ̇ + cos(θ) cos(ϕ)ϕ̇

− sin(θ) cos(ϕ)θ̇ − cos(θ) sin(ϕ)ϕ̇

 . (4.67)

For ω⊥ ∈ TΓS2 we can invert (4.5) using (4.2) and (4.67) to get

ω⊥ = Γ̇× Γ =

 cos2(θ)ϕ̇

cos(ϕ)θ̇ + sin(θ) cos(θ) sin(ϕ)ϕ̇

− sin(ϕ)θ̇ + sin(θ) cos(θ) cos(ϕ)ϕ̇

 , (4.68)

with derivative
ω̇⊥ = Γ̈× Γ, (4.69)

where Γ̈ = [Γ̈1, Γ̈2, Γ̈3]
⊤

can been found by differentiating (4.67), resulting
in

Γ̈1 = sin(θ)θ̇2 − cos(θ)θ̈ (4.70)

Γ̈2 = − cos(θ) sin(ϕ)(θ̇2 + ϕ̇2)− 2 sin(θ) cos(ϕ)θ̇ϕ̇ (4.71)

− sin(θ) sin(ϕ)θ̈ + cos(θ) cos(ϕ)ϕ̈

Γ̈3 = − cos(θ) cos(ϕ)(θ̇2 + ϕ̇2) + 2 sin(θ) sin(ϕ)θ̇ϕ̇ (4.72)

− sin(θ) cos(ϕ)θ̈ − cos(θ) sin(ϕ)ϕ̈.
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Given twice continuously differentiable reference trajectories ϕd(t), θd(t)
and their first and second derivatives (e.g. using third order linear reference
filters [80]), the relations (4.2) and (4.67) - (4.72) can be used to generate
continuous signals Γd(t), ω⊥

d (t), ω̇
⊥
d (t), which are needed to implement the

tracking controller (5.8).

4.8 Numerical Example

This section presents some simulation results using a model of the Aerosonde
UAV [19] with a simple proportional-integral (PI) controller for airspeed and
a constant reference of 35m/s. In the tracking example, (4.61) is used for u∥,
while (4.60) is used in the regulation case. The angular velocity is initialized
to zero in both cases, while the controller parameters are set to kp = 9.5,
Kd = 8I and kβ = 10.

4.8.1 Tracking

Consider a tracking scenario, where a trajectory (Γd(t), ω⊥
d (t), ω̇

⊥
d (t)) has

been generated using (4.2) and (4.67) - (4.72), ϕd(t) = 60 π
180 cos(0.1 · 2πt),

θd(t) = 30 π
180 cos(0.08·2πt) and their analytical first and second order deriva-

tives. Initial reduced attitude is set using ϕ(0) = −70◦ and θ(0) = −30◦.
Fig. 4.4 shows that reduced attitude, visualized using roll and pitch angles,
converges to the desired trajectory from large initial errors, while the an-
gular velocity error goes to zero. The angle of attack, sideslip angle and
control surface deflection angles, which attain reasonable values throughout
the manoeuvre, are displayed in Fig. 4.5.

4.8.2 Regulation

Now consider a regulation case, where ω⊥
d = 0. The constant reference is

generated using the mapping (4.2) with ϕd = 60◦ and θd = 30◦. Initial roll
and yaw angles are set to zero, while θ(0) is calculated using a trim routine.
As explained in Section 4.6, the magnitude of the error vector (4.19) is scaled
for comparison with the Euler angle controller. Fig. 4.6 shows that the UAV
performs a banked turn manoeuvre with approximately constant turn rate,
and roll and pitch angles converge in both cases. For this specific manoeuvre,
the geometric controller seems to have a slightly faster response in pitch.
The difference can be more clearly understood by looking at Fig. 4.8. The
response of the geometric controller is shown to make the UAV take the
shortest path between Γ and Γd, while the controller based on Euler angles
does not. Fig. 4.7 indicates that this makes the geometric controller spend
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Figure 4.4: Tracking scenario: Roll, pitch and angular velocity error.
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Figure 4.5: Tracking scenario: Angle of attack (AoA), sideslip angle (SSA) and
control surface deflection angles.
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Figure 4.6: Regulation scenario: Euler angle comparison.

less control energy. However, the sideslip angle is smaller, which results in
a reduced magnitude of the compensated drift term f(ω, vba, δt). Further
investigation should compare the two controllers in more realistic scenarios
with uncertain f(ω, vba, δt), for instance, compensated using integral action.

4.9 Chapter Summary

In this chapter, we introduced a novel geometric reduced-attitude controller
especially suited for fixed-wing aircraft, with several advantages over con-
ventional roll and pitch angles. The main novelty is designing the controller
using a kinematic representation on the two-sphere that is independent of
the aircraft’s heading/yaw angle. Almost semiglobal exponential stability
and almost global asymptotic stability properties are shown through Lya-
punov stability analysis for tracking and regulation objectives, respectively.
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Figure 4.7: Regulation scenario: Angle of attack, sideslip angle and norm of con-
trol input.

Figure 4.8: Regulation scenario: Trajectories on the two-sphere. Solid: Geometric
controller. Dashed: Controller based on Euler angles.
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Chapter 5

Hybrid Control of Fixed-Wing
Aircraft for Large-Angle
Attitude Maneuvers on the
Two-Sphere

This chapter is based on the following article:

[209] D. Reinhardt, E. M. Coates, and T. A. Johansen. Hybrid control of
fixed-wing UAVs for large-angle attitude maneuvers on the two-sphere.
21st IFAC World Congress, Berlin, Germany. IFAC-PapersOnLine,
53:5717–5724, 2020.

5.1 Introduction

As explained in the previous chapter, the topological properties of com-
pact manifolds such as the two-sphere preclude global stability results [26].
The strongest possible stability results using continuous feedback are al-
most global. Continuous controllers, such as (4.23), generate an additional
unstable (saddle) equilibrium point where the gradient of the potential func-
tion vanishes. This problem may seem purely academic since in practice,
small perturbations cause the system trajectories to leave the unstable point.
However, there are also performance issues [53]: due to the continuous de-
pendence on initial conditions [125], trajectories starting close to the stable
manifold of the unstable equilibrium can stay near this point for an extended
period of time before converging to the reference [145]. Global asymptotic
stability can be achieved using discontinuous feedback (e.g. [132]). However,
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discontinuous feedback is not robust to arbitrarily small measurement noise,
which can, in the worst case, cause the system to get stuck at the unsta-
ble equilibrium point [169]. In fact, [170] shows that when an equilibrium
point cannot be globally stabilized by continuous feedback, it cannot be ro-
bustly globally stabilized using discontinuous feedback either. To overcome
the topological obstructions, hybrid controllers for robust global tracking of
full attitude have been proposed in [169] using quaternions, and on SO(3) in
[21, 142, 173]. Similarly, for reduced attitude on S2, global asymptotic stabil-
ity was achieved using hybrid control in [143, 172] and [47] with application
to general rigid bodies and multirotor UAVs.

To the best of our knowledge, these methods have not been targeted at
fixed-wing aircraft. In this chapter, we expand on the result of Chapter 4
and inspired by [47, 143, 172], we propose a hybrid controller for fixed-
wing aircraft that guarantees global exponential tracking of reduced-attitude
references on the two-sphere. The design is based on the notion of synergistic
potential functions [171] and overcomes the topological obstruction to global
attitude stabilization using a hysteresis-based switching law between two
different gradient-based proportional feedbacks. The controller is well-suited
for the recovery from large attitude disturbances for which we demonstrate
the performance in a numerical example.

Chapter Outline

The rest of this chapter is structured as follows: In Section 5.2 we present the
hybrid controller design. The simulation results can be found in Section 5.3.
Finally, we provide a summary of the chapter in Section 5.4.

5.2 Hybrid Control Design

The dynamic model, reference model and control objective are the same as
in the previous chapter, as stated in Section 4.3. The goal of this chapter
is to achieve global asymptotic stability by designing a hybrid controller, in
particular using the notion of synergistic potential functions [171].

5.2.1 Hybrid Dynamical Systems

We proceed by introducing the framework presented in [86] where a hybrid
system can be defined in the following form:

ξ̇ ∈ F(ξ), ξ ∈ C (5.1)
ξ+ = G(ξ), ξ ∈ D. (5.2)
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When the state ξ is inside the flow set C, its continuous motion is governed by
the differential inclusion ξ̇ ∈ F(ξ). Complementary, when the state is inside
the jump set D it evolves in the form of discrete jumps with its dynamics
governed by the difference equation ξ+ = G(ξ). Solutions to (5.1)-(5.2) are
parametrised by (t, i) ∈ R≥0 × N, i.e. both the amount of time passed, t,
and i, the number of discrete jumps.

In the following, we describe the design of a hybrid controller which
employs proportional feedback based on a synergistic potential function as
presented in [172], coordinated by a set of modes. The magnitude of the
proportional feedback will depend on the gradient of the potential function
in the active mode, which vanishes at the critical points of the potential
function. The synergism property means that at all points other than the
reference where this occurs, there is another mode in which the potential
function has a significantly lower value. This solves the problem of van-
ishing proportional action at the opposite direction of the reduced-attitude
reference and renders the desired equilibrium globally asymptotically or ex-
ponentially stable, depending on the design of the sets C and D.

5.2.2 Potential Function

The design of a synergistic potential functions follows the approach pre-
sented in [143, 172] and employs a discrete logic variable q ∈ Q that speci-
fies at each time instant which mode, out of two, is active. To this end, let
Q = {0, 1}. The nominal mode q = 0 drives the reduced attitude towards
the nominal reference Γd. The expelling mode q = 1 will be designed such
that the critical points of its potential function are at a maximum distance
to both the nominal reference and its antipodal point, i.e. they evolve on
the great circle on S2 orthogonal to Γd.

Let the reference in the expelling mode be denoted by sd ∈ S2 and satisfy

ṡd = sd × ω⊥
d . (5.3)

It follows from (4.15), (5.3) and the identity (2.8) that when sd is initial-
ized orthogonal to Γd, i.e. satisfies sd(0)·Γd(0) = 0, it holds that sd(t)·Γd(t) =
0 for all future time.

As in [172] we define the synergistic potential functions as

Ψq(Γ,Γd, sd) =

{
1− Γ · Γd if q = 0

a+ b(1− Γ · sd) if q = 1,
(5.4)

where the parameters a, b ∈ R>0 act as a bias and a scaling factor to the ex-
pelling potential which are designed such that Ψq is positive definite relative
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to Γd. The gradient of Ψq with respect to Γ is given by

∇ΓΨq(Γ,Γd, sd) =

{
−Γd if q = 0

−bsd if q = 1.
(5.5)

Note that since S2 is a compact manifold and b is finite, ∥∇ΓΨq(Γ,Γd, sd)∥
is bounded.

5.2.3 Error States

The goal in either mode is to converge to the attitude with minimum poten-
tial along the shortest path on S2. This can be achieved by constructing a
gradient vector field on S2 (see Section 4.4.2) and use a proportional feedback
proportional to the error vector

eΓq = −Γ×∇ΓΨq(Γ,Γd, sd) ∈ TΓS2. (5.6)

Depending on the mode q, eΓq then becomes

eΓq =

{
Γ× Γd if q = 0

b(Γ× sd) if q = 1.
(5.7)

Further, the angular velocity error eω ∈ TΓS2 is defined as before, by (4.20).

5.2.4 Control Law

In the following, we let x = (Γ, ω⊥,Γd, sd, ω
⊥
d ) ∈ Ξ be the continuous state of

the hybrid system which evolves in the space Ξ := S2×TΓS2×S2×S2×TΓd
S2.

The full state is then given by ξ = (x, q) ∈ Ξ×Q.
In the nominal mode, the control law equals (4.23), but to accommodate

the expelling mode, we replace eΓ in the proportional feedback term of (4.23)
with eΓq to get a hybrid feedback law:

u⊥ = G−1(ω, vba)J
(
−Π⊥

Γ (J
−1f(ω, vba, δt)) + κ(x, q)

)
, (5.8)

where

κ(x, q) = −ω⊥ × (ω∥ −Π
∥
Γ(ω

⊥
d )) +Π

∥
Γ(ω̇

⊥
d )− kpeΓq −Π⊥

Γ (Kdeω), (5.9)

with proportional gain kp ∈ R>0 and positive definite gain matrix Kd =
Kd

⊤ ∈ R3×3.
As was the case with the nominal control law (4.23) this control law

only affects ω̇⊥. As discussed in Section 4.5, this leaves the possibility for
an independent design of a control law u∥ ∈ NΓS2 for other objectives such
as turn coordination.
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5.2.5 Jump Map

The binary logic variable q changes according to the equations

q̇ = 0 (x, q) ∈ C (5.10)
q+ = 1− q (x, q) ∈ D. (5.11)

During the continuous flow of the system, the mode stays constant, while
(5.11) describes how q toggles between q = 0 and q = 1 in the jump set.

In the nominal mode, the error vector eΓq drives the reduced attitude in
the direction on the sphere that lies on the path of minimal distance between
Γ and Γd, known as the minimal geodesic path [41]. To extend this path to
the case where the expelling mode is active, s+d is chosen as

s+d ∈ gsd(Γ,Γd, sd) :=
{

Γd×Γ
∥Γd×Γ∥ × Γd if Γ ̸= ±Γd
sd otherwise,

(5.12)

which in the first case gives the point on S2 that lies on the geodesic path and
satisfies the orthogonality constraint with respect to the nominal reference.
The second case is included to ensure that the mapping is well-defined also
when Γ = ±Γd.

5.2.6 Closed-loop System

We can now describe the closed-loop dynamics of the hybrid system. The
continuous kinematics of Γ,Γd, sd are given by (4.5), (4.15) and (5.3), re-
spectively. The closed-loop dynamics for ω⊥ are given by (4.9), (4.12) and
the control law (5.8). Both references are governed by the same kinematic
equation as the reduced-attitude vector. Furthermore, the uniform bounds
(4.16) can be equivalently stated as

ω⊥
d ∈ cω⊥

d
B (5.13)

ω̇⊥
d ∈ cω̇⊥

d
B. (5.14)

The differential inclusion, (5.14) allows us to formulate an autonomous
closed-loop system such that hybrid invariance principles can be applied
in the stability analysis [169].
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The resulting continuous motion of the closed-loop system is governed
by 

Γ̇
ω̇⊥

Γ̇d
ṡd
ω̇⊥
d

q̇

 ∈ F(x, q) :=


Γ× ω⊥

κ(x, q) + ω⊥ × ω∥

Γd × ω⊥
d

sd × ω⊥
d

cω̇⊥
d
B

0


. (5.15)

The discrete motion is independent of the control law and only has an ef-
fect on the mode and the expelling reference which results in jumps governed
by 

Γ+

ω⊥+

Γ+
d

s+d
ω⊥+
d

q+

 = G(x, q) :=



Γ
ω⊥

Γd
gsd(Γ,Γd, sd)

ω⊥
d

1− q

 . (5.16)

5.2.7 Hybrid Controller Sets

To coordinate the control laws, we use the difference between the potential
of the current mode to the minimum potential, referred to as the synergy
gap [172]. It is defined as

µ(Γ, q) = Ψq(Γ,Γd, sd)−min
ν∈Q

Ψν(Γ,Γd, sd). (5.17)

Let us further introduce the constant hysteresis parameter δ ∈ R>0 to
define the sets C,D ⊂ Ξ×Q as

C = {(x, q) : µ(Γ, q) ≤ δ}, (5.18)
D = {(x, q) : µ(Γ, q) ≥ δ}. (5.19)

The following proposition establishes conditions on the potential function
such that it is synergistic and positive definite relative to Γd:

Proposition 1: Let the sets C, D be given by (5.18) and (5.19), with synergy
gap µ defined in (5.17). Then the potential function Ψq in (5.4) is a synergistic
potential function with gap exceeding δ satisfying

0 < δ < min{2− a− b, a− 1, a+ 2b− 1}. (5.20)
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Proof. We first show that Ψq describes a synergistic potential function with
synergy gap exceeding δ. This is to say that at every critical point other
than the nominal reference the difference to the other potential function is
larger than some specified δ. To this end, denote the set of critical points of
Ψq for a fixed q ∈ Q as

CritΨq = {(Γ,Γd, sd) ∈ (S2)3 : eΓq = 0}. (5.21)

From the definition of eΓq it follows that at all critical points, the reduced
attitude Γ is parallel to ∇ΓΨq.

The set of all critical points follows as ∪q∈QCritΨq = {(±Γd), (±sd)}.
For {Ψq}q∈Q to be synergistic relative to Γd with gap exceeding δ, the condi-
tion ∪q∈QCritΨq \ {Γd} ⊂ D needs to be satisfied. At (Γ, q) = (−Γd, 0), the
potential function evaluates to Ψ0(−Γd) = 2 and Ψ1(−Γd) = a + b, where
we use the fact that sd · Γd = 0. To include that point in the jump set, the
synergy gap needs to satisfy

µ(−Γd, 0) = 2− a− b > δ > 0. (5.22)

At the critical points of the expelling mode, the nominal potential evalu-
ates to Ψ0(±sd) = 1 and for the expelling potential we have Ψ1(−sd) = a+2b
and Ψ1(sd) = a. Therefore the synergy gap also has to satisfy

µ(−sd, 1) = a− 1 > δ > 0 (5.23)
µ(+sd, 1) = a+ 2b− 1 > δ > 0. (5.24)

Then by [172, Proposition 1], the potential function Ψq is synergistic relative
to Γd with synergy gap exceeding δ given by (5.20).

The closed-loop hybrid system is defined such that it satisfies the hy-
brid basic conditions [86, Assumption 6.5] which makes it nominally robust
to measurement noise. The next proposition provides a collection of these
conditions.

Proposition 2: Consider the sets C in (5.18), D in (5.19) and the maps
F , G in (5.15),(5.16). Then, the following is satisfied:

(i) The sets C and D are closed.

(ii) The map F is outer semicontinuous and locally bounded relative to C and
F(x, q) is convex for every (x, q) ∈ C.

(iii) The map G is outer semicontinuous and locally bounded relative to D.
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Proof. To show that C and D are closed, note that Ψq is continuous for
q ∈ Q and that the minimum of two continuous functions is continuous.
The synergy gap µ in (5.17) then is the difference between two continu-
ous functions, which makes it continuous. Therefore the sets C and D are
closed. The unit ball B is compact and convex for any (x, q) ∈ C such that
ω⊥
d , ω̇

⊥
d are bounded by assumption. All remaining components of F are

continuous and single-valued functions on C. Thus, the map F is convex
and locally bounded relative to C and outer semicontinuity follows from [86,
Lemma 5.10], which shows (ii). Further, note that S2 is compact and hence
s+d = gsd(Γ,Γd, sd) ∈ S2 is locally bounded relative to D and the graph of
gsd : S2 × S2 7→ S2 given by

gph gsd = {(Γ,Γd, sd) ∈ S2 × S2 × S2 : sd ∈ gsd(Γ,Γd, sd} (5.25)

is closed. Since D is closed, outer semicontinuity of gsd relative to D follows
from [86, Lemma 5.10].

5.2.8 Main Result

We summarize the stability results with two propositions.

Proposition 3: Let the parameters a, b, δ ∈ R be chosen such that Ψq in
(5.4) satisfies (5.20) according to Proposition 1. Consider the closed-loop hybrid
system H = (C,F ,D,G) with F , G defined in (5.15), (5.16) and the sets C, D
given by (5.18), (5.19). Then the set

A = {(x, q) ∈ Ξ×Q : Γ = Γd, ω
⊥ = ω⊥

d } (5.26)

is globally asymptotically stable for H.

Proof. During flows of H, Ψq evolves according to

Ψ̇q = eΓq · eω. (5.27)

The time derivative of the hybrid configuration error vector is given by

ėΓq = −S(ω⊥
d )eΓq + S(∇ΓΨq)S(Γ)eω. (5.28)

To show asymptotic stability, let a Lyapunov-like function be defined as

V (x, q) = kpΨq +
1

2
eω

⊤eω. (5.29)

Analogous to (4.31), it follows from (5.27) and (4.21) that for (x, q) ∈ C
along solutions of the closed-loop system

V̇ (x, q) ≤ −λKd
min∥eω∥2 := uc(x). (5.30)
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It follows from Kd being positive definite that uc(x) ≤ 0 such that V (x, q) is
non-increasing along flows. In D, the mode is switched to the lower potential
which leads to the difference during jumps

V (G(x, q))− V (x, q) = −kpδ := ud. (5.31)

This shows that the growth of V (x, q) along solutions to H is bounded by
uc(x) ≤ 0 and ud < 0. Note that by requiring the reference to be bounded,
the dynamics of the closed-loop system in (5.15) and (5.16) are autonomous
and hybrid invariance principles can be applied. Then by [86, Theorem 8.8]
we have that for an arbitrary c ∈ V (Ξ,Q), each precompact solution to H
converges to the nonempty set that is the largest weakly invariant subset of

Ω = V −1(c) ∩ cl (u−1
c (0)), (5.32)

where V −1(c) denotes the preimage of the Lyapunov function candidate at
c and u−1

c (0) denotes the preimage of uc at 0 for which cl (u−1
c (0)) gives

the closure. Then from (5.30) we see that cl (u−1
c (0)) leads to eω = 0 which

implies ėω = 0. We substitute this into (4.21) to see that eΓq = 0 which
gives (Γ, q) ∈ CritΨ. Since all critical points except (Γd, 0) are included in
D, it follows that A is the largest weakly invariant subset of Ω. Thus all
precompact solutions of H converge to A. Further note that A is compact
and cl (C) ∪ D = Ξ × Q and therefore G(D) ⊂ cl (C) ∪ D. Since V (x, q) is
positive definite with respect to A it follows from [86, Theorem 8.8] and [86,
Corollary 8.9 (iii)] that A is globally asymptotically stable.

It follows from (5.7) and (4.20) that inclusion in the set A implies eΓq = 0
and eω = 0. An additional condition for inclusion in the jump set based on
the angular velocity error can be shown to yield a stronger stability result.
The next proposition summarizes the conditions for global exponential sta-
bility.

Proposition 4: Let the parameters a, b, δ ∈ R be chosen such that Ψq in
(5.4) satisfies (5.20) according to Proposition 1. Consider the closed-loop hybrid
system H = (C,F ,D,G) with F , G defined in in (5.15), (5.16) and the sets
C, D ⊂ Ξ×Q given by

C = {(x, q) : µ(Γ, q) ≤ δ or ∥eω∥ ≥ Beω}, (5.33)
D = {(x, q) : µ(Γ, q) ≥ δ and ∥eω∥ ≤ Beω} (5.34)

where Beω ∈ R>0 is constant. Then the set

A = {(x, q) ∈ Ξ×Q : Γ = Γd, ω
⊥ = ω⊥

d } (5.35)

is globally exponentially stable for H.
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Proof. The aim of this proof is to show global exponential stability as defined
in [236]. We first show that the potential function is uniformly quadratic [42].
Since all critical points other than Γd are excluded from the flow set C, there
exists a constant γ such that the potential function can be bounded from
above (see [142]) as

Ψq(Γ,Γd, sd) ≤
1

2
γ∥eΓq∥2. (5.36)

To show a lower bound, we use scaling in each mode and define bq as b0 = 1
and b1 = b. Analogous to (4.34), it then follows from (5.7), that the potential
function is uniformly bounded by

1

2bq
∥eΓq∥2 ≤ Ψq(Γ,Γd, sd) ≤

1

2
γ∥eΓq∥2. (5.37)

Using (5.29), let a Lyapunov function candidate be defined as

Vϵ(x, q) = V (x, q) + ϵe⊤ω eΓq (5.38)

for some ϵ ∈ R>0. From (5.37) and defining z =
[
∥eΓq∥ ∥eω∥

]⊤ we see that
Vϵ(x, q) can be bounded by

1

2
z⊤M1z ≤ Vϵ(x, q) ≤

1

2
z⊤M2z, (5.39)

where the matrices M1,M2 ∈ R2×2 are given by

M1 =

[
kp
bq
−ϵ

−ϵ 1

]
, M2 =

[
kpγ ϵ
ϵ 1

]
. (5.40)

Next, we show that there exists λ > 0 such that along solutions of the
closed-loop dynamics, Vϵ(t, i) := Vϵ(x(t, i), q(t, i)) can be bounded by

Vϵ(t, i) ≤ Vϵ(0, 0)exp(−λt). (5.41)

During jumps, the difference in Vϵ is given by

Vϵ(G(x, q))− Vϵ(x, q) = −kpδ + ϵeω
⊤(eΓq+ − eΓq) (5.42)

≤ −kpδ + ϵ∥eω∥∥Γ× (Γd − bsd)∥ (5.43)
≤ −kpδ + ϵ∥eω∥(∥Γd∥+ |b|∥sd∥) (5.44)
≤ −kpδ + ϵBeω(1 + |b|). (5.45)

The right side of the last inequality is non-positive for

ϵ ≤ kpδ

Beω(1 + |b|)
, (5.46)
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which shows that Vϵ(x, q) is non-increasing during jumps. Next we show
that there exists a positive definite matrix M3 ∈ R2×2 such that along flows,
Vϵ(x, q) satisfies

V̇ϵ(x, q) ≤ −z⊤M3z. (5.47)

The upper bound for V̇ (x, q) is given by (5.30) and it remains to find a bound
for the time-derivative of the cross-term in (5.38). From (5.28), (4.21) we
see that

d

dt
(e⊤ω eΓq) = e⊤ω (S(∇ΓΨq)S(Γ))eω − kp∥eΓq∥2

− eΓq⊤(Kd + S(ω⊥
d ))eω (5.48)

≤ ∥∇ΓΨq∥∥eω∥2 − kp∥eΓq∥2

+ (λKd
max +Bωd

)∥eΓq∥∥eω∥. (5.49)

From (5.30) and (5.47) we find that

M3 =

[
ϵkp − ϵ

2(λ
Kd
max +Bωd

)

− ϵ
2(λ

Kd
max +Bωd

) λKd
min − ϵ∥∇ΓΨq∥

]
. (5.50)

The matrices M1,M2,M3 are positive definite for any ϵ satisfying

ϵ < min
q∈Q

{√
kp
bq
,

4λKd
min

4kp∥∇ΓΨq∥+ (λKd
max +Bωd

)2

}
, (5.51)

which shows that (5.41) is satisfied for all initial conditions with λ = λM3
min.

We can then apply [236, Theorem 1] to conclude global exponential con-
vergence of Vϵ(x, q) to zero. Then Vϵ = 0(x, q) if and only if Ψq = 0 and
eω = 0 and hence Γ → Γd and ω⊥ → ω⊥

d , which shows that A is globally
exponentially stable.

Note in the proof to Proposition 4 that Beω may be chosen arbitrarily
large such that it does not necessarily impose practical limitations. Moreover,
the sets C and D are closed and the maps F and G are not changed. The
hybrid basic conditions are thus also satisfied for Proposition 4.

5.3 Numerical Example

We use a model of the Aerosonde UAV with nonlinear aerodynamics as
described in [19]. We compare two controllers: first, a continuous controller
that employs the nominal mode throughout the simulation and second, the
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Figure 5.1: Control surface deflections, respectively aileron δa, elevator δe and
rudder δr, for the continuous controller (blue) and the hybrid controller (orange).
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Figure 5.2: Attitude response towards the reference (green) represented by roll
angle ϕ and pitch angle θ for the continuous controller (blue) and the hybrid
controller (orange).
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Figure 5.3: Angular rate response compared to the reference (green), represented
by roll rate p, pitch rate q and yaw rate r, for the continuous controller (blue) and
the hybrid controller (orange).

presented hybrid controller. In the simulations, the airspeed of the UAV is
controlled via a PI controller using the propeller throttle, δt.

The controller parameters are chosen as kp = 9.5,Kd = 8I3, a = 1.25 and
b = 0.6. We simulate the recovery from a large initial attitude disturbance
and set the initial state such that Γ(0) = −exp(e1ϵ)Γd with ϵ = π/180. In
terms of Euler angles, this corresponds to a roll angle of -179 degrees and
a pitch angle of -21.26 degrees. The initial yaw angle is set to zero. The
reference is parameterized according to (4.2) with zero roll angle and 21.26
degrees pitch angle, which is the trim condition for wings-level ascending
flight at 35 meters per second airspeed. Note that the initial attitude is thus
far from the given reference.

As shown in Figure 5.2, the continuous controller remains close to the
initial attitude for up to 3 seconds, whereas the hybrid controller reacts
instantly and uses the expelling potential, which has a larger gradient, until
3.5 seconds into the simulation before switching to the nominal potential
(cf. Figure 5.5). As a consequence, the hybrid controller recovers faster from
the descend at a lower speed (cf. Figure 5.4) and returns to ascending flight
two seconds before the continuous controller, with similar actuator usage (cf.
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Figure 5.4: The relative velocity vba represented by airspeed Va, angle of attack
α (AOA) and sideslip angle β (SSA) for the continuous controller (blue) and the
hybrid controller (orange).
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Figure 5.5: Trajectories of the potential functions for the continuous controller
(blue) and the hybrid controller (orange). The values for the nominal potential
function Ψ0 (dashed), the expelling potential function Ψ1 (dotted), and the acti-
vated potential function Ψq (solid) are shown.
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Figure 5.1). However, a drawback of the hybrid controller is the deceleration
close to the expelling reference observed in Figure 5.3 and Figure 5.5. This
suggests using a dynamic extension in which the control action is given by
a dynamic weighting of both configuration error vectors as done in [21] or
[172]. Future work will also address the performance of the hybrid controller
in the face of non-vanishing disturbances and model perturbations. Another
aspect is the extension to the optimal use of the actuators while respecting
saturation constraints, potentially in a model predictive control scheme.

5.4 Chapter Summary

In this chapter, we extended the results of Chapter 4 by using hybrid con-
trol, in particular synergistic potential functions, to overcome the topological
obstructions to robust global reduced-attitude tracking. Using two different
jump sets, we were able to prove global asymptotic and global exponential
stability, respectively, using Lyapunov stability analysis for hybrid dynami-
cal systems. The efficacy of the design was illustrated in a simulated scenario
where a fixed-wing UAV is subject to large initial attitude errors.
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Chapter 6

Almost Global Geometric
Reduced-Attitude Tracking
Control of Fixed-Wing Aircraft

This chapter is based on the following article:
[58] E. M. Coates and T. I. Fossen. Geometric reduced-attitude control of

fixed-wing UAVs. Applied Sciences, 11(7), 2021.

6.1 Introduction

In the two preceding chapters, we introduced a nonlinear autopilot design for
multivariable reduced-attitude control of fixed-wing aircraft. To control roll
and pitch, we employ vector coordinates evolving on S2 that are independent
of the yaw/heading angle. There are, however, some shortcomings of the
nominal control law (4.23). It uses dynamic inversion, which requires a lot
of knowledge about the system dynamics. It is well known that control laws
based on dynamic inversion are sensitive to model uncertainty and often use
excessive control energy to cancel system nonlinearities [125].

In this chapter, we build upon the design methodology presented in
Chapter 4. By using a pertinent model of the aircraft rotational dynamics,
we exploit model structure to design more robust and practical controllers
that are less dependent on perfect knowledge about the system dynamics.
The stability results are also less restrictive than in Chapter 4. Through
the use of an extended version of Barbalat’s lemma [175], we prove almost
global asymptotic tracking with a simpler proof than that of Proposition 4.1.
The main simplification results from a redesign of the angular velocity error,
where we now also include the parallel part of angular velocity.
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Using Lyapunov theory, almost global asymptotic stability is established
for three controllers: one constructed based on an energy-like Lyapunov func-
tion, a variation of this based on a backstepping procedure, and lastly, an
adaptive version of the latter that estimates the net aerodynamic moment
caused by the translational dynamics (flow angles). This alleviates the need
for expensive flow angle measurement equipment, as well as the knowledge
of an accurate aerodynamic model. Furthermore, we show that only a rough
estimate of the input matrix is needed to achieve ultimate boundedness.

A limitation of the controller (4.23) is that the proportional gain is re-
stricted to a scalar. The backstepping-based controllers allow for a matrix
gain. This is an essential feature when implementing attitude controllers
on real aircraft since it allows for different gains for each axis of rotation.
This is achieved by prescribing a “geodesic” intermediate angular velocity
reference (in the direction of the shortest path on S2) instead of a geodesic
proportional torque.

The controller design can be used with state-of-the-art guidance sys-
tems for fixed-wing aircraft and is implemented in the open-source autopilot
ArduPilot, where we demonstrate the suitability of the proposed attitude
control algorithm through realistic SITL simulations of a fixed-wing UAV.

Chapter Outline

The rest of the chapter is organized as follows: we start with the problem
definition in Section 6.2, presenting the dynamic model used, error vari-
ables and stating the control objective. We give an expanded treatment on
turn coordination in Section 6.3 before continuing with the nominal con-
trol design in Section 6.4. In Section 6.5, we consider control design for
uncertain models, including a backstepping-based control law with integral
action. Simulation results are presented in Section 6.6, and finally, a chapter
summary is given in Section 6.7.

6.2 Problem Definition

6.2.1 Control-Oriented Model

In this chapter, compared to the previous two, we use a more elaborate
dynamic model to exploit model structure in the design. We base our control
design on Eq. (2.46):

Jω̇ = S(Jω)ω + h(vba) + VaDω + V 2
a Bu+Mp(δt).
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In horizontal, level flight, the angular velocity ω is zero. To ensure equilib-
rium flight (“trim conditions”), define

utrim = (V ∗
a )

−2B−1
[
−h(vb∗a )−M∗

p

]
,

where V ∗
a , vb∗a , Mp(δ

∗
t ) are the trim airspeed, trim relative velocity and trim

throttle setting, respectively. If u = utrim and ω = 0, then ω̇ = 0 during
trimmed flight. Now define

∆(vba, t) = V 2
a Butrim + h(vba) +Mp(δt), (6.1)

which represents the deviation from trimmed flight. We can now combine (6.1),
the rotational dynamics (2.46) and the reduced-attitude kinematics (4.3) to
obtain the following model that will be the basis for control design:

Γ̇ = Γ× ω (6.2)

Jω̇ = S(Jω)ω + VaDω + V 2
a B [u− utrim] + ∆(vba, t). (6.3)

The state is represented by (Γ, ω) ∈ S2 × R3, the control input is u ∈ R3,
and we consider δt and vba (and thus Va) as exogenous bounded inputs.

For control design purposes, we assume the following:

Assumption 2. The airspeed Va is strictly positive and bounded with
bounded derivative: 0 < Vmin ≤ Va ≤ Vmax, |V̇a| ≤ cV̇a .

Assumption 3. The vector ∆(vba, t) and its derivative ∆̇(vba, t) are bounded.

Assumption 4. The control effectiveness matrix B is square and invertible.

Assumption 5. The damping matrix D satisfies x⊤Dx ≤ 0, ∀x ∈ R3.

Remark 6.1. Assumption 3 is an assumption on the translational dynamics,
which is assumed to affect the rotational dynamics through the exogenous
signal vba (may also be considered as “internal dynamics”). In practice, since
we are dealing with a physical system, ∆(vba, t) and ∆̇(vba, t) will always be
bounded. However, since the control surfaces are bounded, we would want
the upper bounds to be relatively small. In particular, during nominal flight,
the angle of attack α is usually small, and the lift coefficient is such that
a perturbation in α tends to be restored [19]. However, if the stall angle
of attack is reached, the slope of the lift coefficient changes such that the
α-dynamics might go unstable, which in turn results in a high aerodynamic
moment ∆(vba, t).
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Remark 6.2. A square matrix B corresponds to aircraft with fully actuated
rotational dynamics, i.e. three independent actuators. Now B is invertible if
it has full rank. It can be shown that the full rank condition corresponds to
primary control coefficients being larger than the coefficients associated with
secondary roll-yaw coupling effects. Therefore, the full rank assumption is
reasonable for most common fully actuated control surface configurations.
Remark 6.3. Assumption 5 is a dissipation assumption and is equivalent to
requiring that sym(D) has nonpositive eigenvalues. In nominal flight condi-
tions, this will be true for most airframes [233] but can be relaxed by using
a higher derivative gain (adding damping to the system). See Remark 6.7.

6.2.2 Error Functions

The goal is to design a state-feedback control law u ∈ R3 to make the reduced
attitude Γ ∈ S2 asymptotically track a smooth, time-varying reference Γd ∈
S2, satisfying (4.15), and at the same time drive ω∥ to ω∥

d, where ω∥
d ∈ NΓS2

denotes the desired value of ω∥, yet to be specified.
We require that all references are bounded, as specified in the following

assumption:

Assumption 6. The angular velocity references ω⊥
d , ω∥

d and their deriva-
tives ω̇⊥

d := d
dtω

⊥
d , ω̇∥

d :=
d
dtω

∥
d can be bounded a priori by

∥ω∥
d∥ ≤ cω∥

d

∥ω̇∥
d∥ ≤ bω̇∥

d

∥ω∥+ c
ω̇
∥
d

∥ω⊥
d ∥ ≤ cω⊥

d
∥ω̇⊥

d ∥ ≤ cω̇⊥
d
,

(6.4)

where c
ω
∥
d

, c
ω̇
∥
d

, cω⊥
d
, cω̇⊥

d
, b
ω̇
∥
d

∈ R>0 are appropriate constant parameters.

We base our design on the same potential function and configuration
error vector as before, i.e., Ψ(Γ,Γd) and eΓ given by (4.18) and (4.19), re-
spectively. However, to simplify the design process and utilize (6.3) in a way
that the resulting controller design is more robust to model uncertainty, we
redefine the angular velocity error as follows:

eω := ω − ωd ∈ R3, (6.5)

where ωd := Π⊥
Γ (ω

⊥
d ) + ω

∥
d.

As before, the error terms, eΓ and eω, are compatible in the sense that
Ψ̇ = e⊤ω eΓ, which cancels with the proportional feedback term in the subse-
quent Lyapunov analysis.

From (6.3), the derivative of eω satisfies

Jėω = S(Jω)ω + VaDω + V 2
a B [u− utrim] + ∆(vba, t)− Jω̇d. (6.6)
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6.2.3 Control Objective

The control objective is to simultaneously achieve ω∥ → ω
∥
d and Γ → Γd,

ω⊥ → ω⊥
d as t→∞. These two objectives are orthogonal and not in conflict

with each other. In particular, note that from our definition of eω, Eq. (6.5),
and (4.4), eω can be decomposed into two orthogonal parts:

eω = (ω⊥ −Π⊥
Γ (ω

⊥
d ))︸ ︷︷ ︸

∈TΓS2

+(ω∥ − ω∥
d)︸ ︷︷ ︸

∈NΓS2

. (6.7)

This means that as eω converges to zero, ω⊥ → Π⊥
Γ (ω

⊥
d ) and ω∥ → ω

∥
d, in a

decoupled manner. If in addition eΓ = 0, then Π⊥
Γ (ω

⊥
d ) = ω⊥

d .
We now state the control objective as follows:

Almost global reduced-attitude tracking

Design a state-feedback control law u such that for almost all initial condi-
tions, eΓ(t0), eω(t0), Γ(t)→ Γd(t) and eω(t)→ 0 as t→∞.

As we consider continuous feedback on a compact configuration manifold,
almost global asymptotic stability is the best possible achievable result [26].
In our setting, if the equilibrium point (Γ, eω) = (Γd, 0) is almost globally
asymptotically stable, then almost all trajectories converge to it, except for
those with initial velocity (depending on the initial configuration error) that
are exactly such that ω⊥(t)−Π⊥

Γ (ω
⊥
d (t)) = 0 when Γ(t) = −Γd(t). This set

of initial conditions has a dimension lower than the dimension of the state
space and therefore has measure zero. As shown in Chapter 5, we can make
the region of attraction global using hybrid control. Indeed, we can extend
the work presented in this chapter in a similar manner, but this is outside
of the scope of this thesis.

6.3 Turn Coordination

Before continuing with the controller design, we proceed by following up on
the topic of turn coordination in Section 4.5 with a discussion on different
design choices for ω∥

d.
Motivated by (4.7) and the coordinated-turn equation (2.51), we propose

the following design for ω∥
d that satisfies Assumption 6:

ω
∥
d =

(
g

Va
tanϕd − ϕ̇d sin θd

)
Γ, (6.8)
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where θd, ϕd and ϕ̇d are consistent with Γd, ω
⊥
d (through (4.2) and (4.68)).

Clearly, since (4.7) is only valid for |θ| ̸= π/2, and (6.8) contains tanϕd, we
must restrict the desired reduced-attitude as follows:

Assumption 7. The desired reduced-attitude Γd is such that |θd| ≤ cθd <
π/2 and |ϕd| ≤ cϕd < π/2, for some cθd , cϕd ∈ R>0, and Γd, ϕd, θd satisfy
Eq. (4.2).

Remark 6.4. We stress that the mentioned singularities at ϕ = ±π/2 and
θ = ±π/2 are only present for the reference angles. The allowed reference
orientations cover most typical flight conditions except for certain aerobatic
manoeuvres. The controller design, however, is globally defined, which en-
ables recovery from large reduced-attitude errors, e.g. resulting from large
wind gusts.

Alternative design choices for ω
∥
d: It is possible to consider some vari-

ations of the preceding design of ω∥
d. We now present a few of these options

but leave it as an exercise for the reader to fully explore these possibilities.

• An alternative to (6.8) is to define ω∥
d in terms of Γd and then project

to NΓS2:

ω
∥
d = Π

∥
Γ(

(
g

Va
tan(ϕd)− ϕ̇d sin θd

)
Γd)

=

(
g

Va
tan(ϕd)− ϕ̇d sin θd

)
(Γ⊤
d Γ)Γ.

The extra term Γ⊤
d Γ = cos(ν) puts less emphasis on turn coordination

when errors in reduced attitude are large.

• Eq. (6.8) only satisfies the coordinated-turn equation (2.51) asymptot-
ically, as Γ→ Γd (and ϕ→ ϕd). One might consider to instead use the
actual value of ϕ instead of ϕd (as in Section 4.5), but in this case, we
cannot guarantee a priori that ω∥

d and its derivative are bounded. This
means that the subsequent stability analysis needs to be adjusted. A
pragmatic solution could be to use a saturation function in combina-
tion with (6.8).

Variants of the preceding design can be developed by incorporating turn
coordination concepts to drive sideslip angle (cf. Eq. (4.61)) or lateral accel-
eration to zero, or by including a yaw damper to increase dutch-roll damp-
ing [233]. This can be combined with the turn-rate feedforward (6.8) by using
a high-pass (washout) filter [233]. As long as the resulting angular velocity
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command is parallel to Γ, it does not interfere with the reduced-attitude
control objective.

To summarize, the expression for the total desired angular velocity ωd
in (6.5) is

ωd = Π⊥
Γ (ω

⊥
d ) + ω

∥
d,

where ω∥
d ∈ NΓS2 is given by (6.8), and ω⊥

d ∈ TΓd
S2.

Eq. (6.8) satisfies Assumption 6 with

c
ω
∥
d

=
g

Vmin
tan cϕd + cϕ̇d sin cθd ,

where cϕ̇d is a bound for ϕ̇d, i.e. |ϕ̇d| ≤ cϕ̇d . Furthermore, ω̇∥
d can be bounded

using appropriate constants b
ω̇
∥
d

and c
ω̇
∥
d

that depends on the bounds on the
airspeed, reference angles and their derivatives. See Section 6.3.1 for details.
Also, we write

∥ωd∥ ≤ ∥ω⊥
d ∥+ ∥ω

∥
d∥ ≤ cω⊥

d
+ c

ω
∥
d

:= cωd
. (6.9)

We proceed by calculating an explicit expression for ω̇d, which is needed
in the control laws.

6.3.1 Time Derivative of Desired Velocities

The total time derivative of ωd is

ω̇d =
d

dt
[Π⊥

Γ (ω
⊥
d )] + ω̇

∥
d,

with
d

dt
[Π⊥

Γ (ω
⊥
d )] = Π⊥

Γ (ω̇
⊥
d ) + ω⊥ ×Π

∥
Γ(ω

⊥
d )−Π

∥
Γ(ω

⊥ × ω⊥
d ),

and

ω̇
∥
d =

(
g

Va
tanϕd − ϕ̇d sin θd

)
S(Γ)ω⊥ − g

V 2
a

tan(ϕd)V̇aΓ

+

(
g

Va

1

cos2(ϕd)
ϕ̇d − ϕ̈d sin θd − ϕ̇dθ̇d cos θd

)
Γ.

Let |θ̇d| ≤ cθ̇d and |ϕ̈d| ≤ cϕ̈d , for some cθ̇d , cϕ̈d , cV̇a ∈ R>0. Then, the

norm of ω̇∥
d can be bounded as follows:

∥ω̇∥
d∥ ≤ bω̇∥

d

∥ω∥+ c
ω̇
∥
d

,

where c
ω̇
∥
d

= c
ω
∥
d

and

b
ω̇
∥
d

=
g

Vmin cos2(cϕd)
+ cϕ̈d sin cθd + cϕ̇dcθ̇d +

g

V 2
min

cV̇a tan cϕd .

81



6. Almost Global Geometric Reduced-Attitude Tracking Control of
Fixed-Wing Aircraft

6.4 Control Laws - Nominal Case

In this section, we present nominal state-feedback control laws assuming per-
fect knowledge of the rotational dynamics. Two different controllers are pre-
sented: one based on an energy-like Lyapunov function and another based on
the backstepping procedure. Although perfect model knowledge is assumed,
we do not perform feedback linearization/dynamic inversion but rather ex-
ploit structural properties of the model, such as skew-symmetry and positive
definiteness of matrices. This way, we avoid cancelling “good” terms, while
other terms are dominated in the stability proof.

6.4.1 Control Design Based on an Energy-Like Lyapunov
Function

Proposition 6.1: Consider the tracking error dynamics (6.6), and for kp >
0,Kd = K⊤

d > 0, define the control input as

u = utrim +
1

V 2
a

B−1
[
upd + uff −∆(vba, t)

]
, (6.10)

where

upd = −kpeΓ −Kdeω (6.11)
uff = Jω̇d − S(Jωd)ωd − VaDωd, (6.12)

and the matrix Kd is chosen such that

λKd
min − λJmaxcωd

≥ γ, (6.13)

for some γ > 0. Then the following holds:
i) There are two closed-loop equilibria, given by (Γ, eω) = (±Γd, 0).
ii) The equilibrium (Γ, eω) = (−Γd, 0) is unstable.

iii) The desired equilibrium (Γ, eω) = (Γd, 0) is almost globally asymptotically
stable.

iv) The desired equilibrium (Γ, eω) = (Γd, 0) is locally exponentially stable.
In addition, if the initial conditions Γ(0),Γd(0), eω(0) satisfy

Ψ(Γ(0),Γd(0)) < 2 (6.14)

kpΨ(Γ(0),Γd(0)) +
1

2
e⊤ω (0)Jeω(0) < 2kp, (6.15)

then the energy-like function V (t) := kpΨ(Γ,Γd)+(1/2)e⊤ω Jeω converges
exponentially to zero.
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v) ω⊥ → ω⊥
d and ω∥ → ω

∥
d as t→∞.

Proof. The control law (6.10) in combination with (6.6) results in the closed-
loop error dynamics

Jėω = −kpeΓ − [Kd − VaD + S(ωd)J ] eω + S(J(eω + ωd))eω. (6.16)

Note that the system is time-varying due to the presence of ωd and Va.

Part 1: Equilibrium solutions When Γ = ±Γd, then eΓ = 0. By sub-
stituting (eΓ, eω) = (0, 0) into (6.16) and (4.26), we see that (Γ(t), eω(t)) =
(±Γd(t), 0) indeed represent equilibrium solutions of the closed-loop dynam-
ics. To see that all solutions converge to either of these equilibria, consider
the Lyapunov function candidate

V (Γ,Γd, eω) = kpΨ(Γ,Γd) +
1

2
e⊤ω Jeω ≥ 0, (6.17)

whose time derivative along the solutions of (6.16), (4.3) and (4.15) satisfies

V̇ = kpe
⊤
ω eΓ + e⊤ω Jėω = −e⊤ω [Kd − VaD + S(ωd)J ]eω.

By Assumption 5 and the gain condition (6.13) (inspired by [20]), we get

V̇ ≤ −
(
λKd
min − λJmaxcωd

)
∥eω∥2 ≤ −γ∥eω∥2 ≤ 0. (6.18)

From V ≥ 0 and V̇ ≤ 0 we get that eω is bounded. In addition, the
limit V∞ = lim

t→∞
V (t) exists and is finite ([112], Lemma 3.2.3). This means

that
∫∞
t0
V̇ dτ = V∞ − V (t0). Therefore, the function W = γ∥eω∥2 satisfies∫∞

t0
Wdτ ≤ −

∫∞
t0
V̇ dτ = V (t0) − V∞ < ∞, so the limit lim

t→∞

∫ t
t0
Wdτ ex-

ists and is finite. By definition, eΓ is bounded. Since eω is bounded, ėω is
bounded. This follows from (6.16) and the boundedness of ωd and Va. Now,
since Ẇ = 2γe⊤ω ėω is bounded, it follows that W (t) is a uniformly continu-
ous function. From Barbalat’s Lemma ([112], Lemma 3.2.6), W (t) (and thus
eω(t)) converges to zero as t→∞.

To show that eΓ also converges to zero, we need the following technical
lemma:

Lemma 6.1. Let x(t) denote a solution to the differential equation ẋ =
a(t)+b(t) with a(t) a uniformly continuous function. Assume that limt→∞ x(t) =
c and limt→∞ b(t) = 0, with c a constant value. Then, limt→∞ ẋ(t) =
0 [108, 175].
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From (6.16) we can write Jėω = a(t) + b(t), where

a(t) := −kpeΓ
b(t) := − [Kd − VaD + S(ωd)J ] eω + S(J(eω + ωd))eω

Since eω converges to zero, we know that b(t) converges to zero. From (4.26),
the derivative of a(t) is given by

ȧ(t) = −kpėΓ = kp

[
S(ω⊥

d )eΓ + S(Γd)S(Γ)eω

]
,

which is bounded because eΓ, eω and ω⊥
d are bounded. Therefore, a(t) is

uniformly continuous, and convergence of eΓ to zero follows from Lemma 6.1.
To summarize, all solutions converge to one of the two equilibria given

by (Γ, eω) = (±Γd, 0).
Remark 6.5. The Lyapunov function (6.17) is quadratic, and as we will
see, leads to exponential stability, which in general leads to good perfor-
mance and robustness to perturbations [125]. In [105], it is shown that
non-quadratic Lyapunov functions could lead to better performance. There-
fore, future work based on the general approach presented in this paper
might explore whether different Lyapunov functions than (6.17), possibly
non-quadratic ones, could lead to better performance.
Part 2: Instability of the undesired equilibrium point At the equilibrium
point (Γ, eω) = (−Γd, 0), the value of the Lyapunov function is V = 2kp.
To show that this equilibrium is unstable, it suffices to show that for any
neighbourhood U around this point, one can find Γ∗, e∗ω such that V < 2kp.
Since V is non-increasing and all solutions converge to either of the two
equilibria, any solution starting at (Γ∗, e∗ω) must converge to (Γ, eω) = (Γ, 0).
Consider Γ∗ arbitrarily close to −Γd, say at an angle ϵ away from −Γd. Then,
ψ(Γ,Γd) = 1− cos(π− ϵ) ≈ 2− ϵ and V ≈ kp(2− ϵ)+e∗⊤ω Je∗ω/2. This means
that if we choose e∗ω small enough, then V < 2kp and we conclude that the
equilibrium point is unstable.
Remark 6.6. This line of reasoning parallels that of Chetaev’s Theorem, for
which a version for time-invariant systems is given in Theorem 4.3 in [125].
Part 3: Stability of the desired equilibrium We proceed by studying the
asymptotic stability of the equilibrium point where Γ = Γd. To this end,
consider again the Lyapunov function candidate (6.17). From [143], we know
that in some neighborhood of (Γ, eω) = (Γd, 0), V can be lower and upper
bounded by

kp
2
∥eΓ∥2 +

λJmin

2
∥eω∥2 ≤ V ≤

kp
2− Ψ̄

∥eΓ∥2 +
λJmax

2
∥eω∥2.
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V̇ ≤ 0 together with the positive definite bounds on V makes the equilibrium
point (Γ, eω) = (Γd, 0) uniformly stable (Theorem 4.8 in [125]).

Convergence combined with Lyapunov stability leads to asymptotic sta-
bility of the desired equilibrium point (Γ, eω) = (Γd, 0). The stable manifold
of the unstable equilibrium is less than the dimension of the state space
of the system and therefore has measure zero. The region of attraction to
the stable equilibrium point excludes this manifold, so we conclude that the
desired equilibrium is almost globally asymptotically stable.
Part 4: Exponential stability To show exponential stability, let ϵ > 0 (ar-
bitarily small) and consider the Lyapunov function (6.17) augmented with
a cross-term:

Vϵ = V + ϵe⊤ΓJeω.

which is positive definite for small ϵ. The time derivative of Vϵ along the
closed-loop trajectories satisfies

V̇ϵ = V̇ + ϵe⊤ΓJėω + ϵe⊤ω JėΓ.

We calculate the last two terms separately. From (6.16) and (4.26) we get

ϵe⊤ΓJėω = −ϵkpe⊤Γ eΓ + ϵe⊤ΓS(Jeω)eω − ϵe⊤Γ [Kd − VaD + S(ωd)J − S(Jωd)] eω

≤ −ϵkp∥eΓ∥2 + ϵλJmax∥eω∥2 + ϵ(λKd
max + Vmaxσ

D
max + 2λJmaxcωd

)∥eΓ∥∥eω∥,

since ∥eΓ∥ ≤ 1.

ϵe⊤ω JėΓ = −ϵe⊤ω J
[
S(ω⊥

d )eΓ + S(Γd)S(Γ)eω

]
≤ ϵλJmaxcω⊥

d
∥eΓ∥∥eω∥+ ϵλJmax∥eω∥2.

Combining this with (6.18) gives

V̇ϵ ≤ −ϵkp∥eΓ∥2 − (γ − 2ϵλJmax)∥eω∥2 + ϵ(λKd
max + Vmaxσ

D
max

+ λJmax(2cωd
+ cω⊥

d
)∥eΓ∥∥eω∥

Let x := [∥eΓ∥ ∥eω∥]⊤. Then, we can write V̇ϵ ≤ −x⊤Mx, where the matrix
M is given by

M =

[
ϵkp − ϵξ

2

− ϵξ
2 γ − 2ϵλJmax

]
,

where ξ = λKd
max + Vmaxσ

D
max + λJmax(2cωd

+ cω⊥
d
). The matrix M is positive

definite if the following inequality is satisfied:

ϵ <
4kpγ

8kpλJmax + ξ2
.
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Since ϵ can be chosen arbitrarily small, this inequality can always be satis-
fied. With V̇ϵ negative definite, and with quadratic bounds on Vϵ, we conclude
that the desired equilibrium is exponentially stable. For estimation of the
region of exponential convergence, see [61].
Part 5: Convergence of angular velocities Since eΓ converges to zero,
Π⊥

Γ (ω
⊥
d ) → ω⊥

d . Now, Eq. (6.7) proves our point due to the orthogonal-
ity of the two parenthesized terms.

Remark 6.7. If Assumption 5 is not satisfied, it is not difficult to show that
the result still holds if Kd is chosen such that λKd

min > λJmaxcωd
+Vmaxσ

sym(D)
max .

Remark 6.8. The region of exponential convergence to the desired equilib-
rium point can be made (almost) arbitrarily large by increasing kp (“semi-
global” property). However, the region of convergence can never include the
unstable equilibrium point and its corresponding unstable manifold [145].

6.4.2 Backstepping Design

A disadvantage of the controller design in the previous section is that the
scalar proportional gain kp is restrictive. In this section, we present a back-
stepping controller that allows for a matrix proportional gain, which gives
the flexibility for the control to be more aggressive along certain body-fixed
axes, which is important due to geometric and aerodynamic asymmetries of
aircraft. In the previous section, the proportional action defines a torque that
is aligned with the axis of shortest rotation. The backstepping controller, on
the other hand, defines a desired angular velocity that generates a geodesic
curve on the sphere.

To this end, define the virtual control signal

φ(Γ,Γd, ω
⊥
d ) := −κeΓ +Π⊥

Γ (ω
⊥
d ) ∈ TΓS2, (6.19)

where κ ∈ R>0 is a user specified parameter. We will show that ω⊥ =
φ(Γ,Γd, ω

⊥
d ) solves the kinematic reduced-attitude tracking problem (see

the proof of Proposition 2). Now, introduce the tracking-error signal

z :=
(
ω⊥ − φ(Γ,Γd, ω⊥

d )
)

︸ ︷︷ ︸
∈TΓS2

+(ω∥ − ω∥
d)︸ ︷︷ ︸

∈NΓS2

= ω − ω̄d, (6.20)

where ω̄d = φ(Γ,Γd, ω
⊥
d )+ω

∥
d. Note that ω̄d = ωd−κeΓ and z can be written

as z = eω + κeΓ. Due to orthogonality properties, z defined as in (6.20) has
the nice property that as z converges to zero, ω⊥ → φ(Γ,Γd, ω

⊥
d ), which

stabilizes the desired reduced-attitude, and at the same time, ω∥ converges
to ω∥

d.
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Proposition 6.2: Consider the tracking error dynamics (6.6), and for k1 >
0,K2 = K⊤

2 > 0, define the control input as

u = utrim +
1

V 2
a

B−1
[
upd + uff −∆(vba, t)

]
(6.21)

where

upd = −k1eΓ −K2z (6.22)
uff = J ˙̄ωd − S(Jω̄d)ω̄d − VaDω̄d, (6.23)

and the matrix K2 is chosen such that

λK2
min − λJmax(cωd

+ κ) ≥ γ, (6.24)

for some γ > 0. Then the following holds:
i) There are two closed-loop equilibria, given by (Γ, z) = (±Γd, 0).
ii) The equilibrium (Γ, z) = (−Γd, 0) is unstable.

iii) The desired equilibrium (Γ, z) = (Γd, 0) is almost globally asymptotically
stable.

iv) The desired equilibrium (Γ, z) = (Γd, 0) is locally exponentially stable. In
addition, if the initial conditions Γ(0),Γd(0), z(0) satisfy

Ψ(Γ(0),Γd(0)) < 2 (6.25)

k1Ψ(Γ(0),Γd(0)) +
1

2
z⊤(0)Jz(0) < 2k1, (6.26)

then the energy function V2(t) := k1Ψ(Γ,Γd) + (1/2)z⊤Jz converges
exponentially to zero.

v) ω⊥ → ω⊥
d and ω∥ → ω

∥
d as t→∞.

Proof. We begin by establishing that ω⊥ = φ(Γ,Γd, ω
⊥
d ) stabilizes the de-

sired reduced-attitude with V1 = k1Ψ(Γ,Γd) as a Lyapunov function. The
derivative of V1 under the stated virtual control becomes V̇1 = −κk1∥eΓ∥2.
When ω⊥ ̸= φ(Γ,Γd, ω

⊥
d ) we use (6.20) and get:

V̇1 = −κk1∥eΓ∥2 + k1z
⊤eΓ,

since e⊤Γω
∥ = e⊤Γωct = 0.

From (6.6) and (6.20), the derivative of z satisfies

Jż = [S(J(z + ω̄d)) + VaD] (z + ω̄d) + V 2
a B [u− utrim] + ∆(vba, t)− J ˙̄ωd.

(6.27)
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In closed loop with the control law (6.21), we get

Jż = −k1eΓ − [K2 − VaD + S(ω̄d)J ] z + S(J(z + ω̄d))z. (6.28)

Let a Lyapunov function candidate for the complete system be given by

V2 = V1 +
1

2
z⊤Jz,

whose total time derivative satisfies

V̇2 = −κk1e⊤Γ eΓ + z⊤ [k1eΓ + Jż] ≤ −κk1e⊤Γ eΓ − z⊤ [K2 + S(ω̄d)J ] z

≤ −κk1∥eΓ∥2 −
(
λK2
min − (λJmaxcωd

+ κ)
)
∥z∥2 ≤ −κk1∥eΓ∥2 − γ∥z∥2,

where we have used (6.24), (6.28) and Assumption 5.
The rest of the proof follows the same arguments as in the proof of

Proposition 1.

As for the previous design, a statement similar to Remark 6.7 holds true
also here.

The control laws (6.10) and (6.21) might seem similar at first glance, but
by inserting z = eω + κeΓ we can rewrite Eq. (6.21) in terms of eω and ωd:

upd = −
[
K(t) + κ2S(JeΓ)

]
eΓ − [K2 − κJS(Γd)S(Γ)] eω

uff = Jω̇d − S(Jωd)ωd − VaDωd,
where K(t) = k1 + κ[K2 − VaD − JS(ω⊥

d ) + S(ωd)J − S(Jωd)], and the
time-dependence is implicit through Va, ω⊥

d and ωd. Here, the feed-forward
part is the same as (6.12), but the change of variables imposed by the back-
stepping procedure has introduced a time-varying matrix proportional gain
K(t), a time-varying derivative gain, as well as a nonlinear feedback-term
−κ2S(JeΓ)eΓ.

6.5 Robustness Considerations

There are a few drawbacks to the controller designs presented in Section 6.4.
In particular, the control laws (6.10) and (6.21) require the knowledge of the
inertia matrix J , the damping matrix D, the input-matrix B, and the aero-
dynamic moment ∆(vba, t). In this section, we focus on the control law (6.21)
and state some properties regarding robustness to uncertainty in our model
estimates. In addition, an adaptive version of (6.21) is presented that pro-
vides integral action by estimating ∆(vba, t) under a slowly time-varying as-
sumption.

Assumption 8. The aerodynamic moment disturbance ∆(vba, t) is slowly
varying, satisfying ∆̇(vba, t) ≈ 0.
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6.5.1 Integral Action

The assumption that ∆(vba, t) is known is particularly restrictive. The aero-
dynamics of aircraft is highly uncertain. Moreover, the explicit computation
of ∆(vba, t) requires knowledge of the surrounding flow field. Although the
airspeed can be measured using a small pitot-static tube, equipment that
measures the flow angles α and β is usually not readily available for some
aircraft such as small UAVs. There exists some available technologies [2],
but such equipment can be expensive, too large or too heavy, or just im-
practical to install on small UAVs that often perform belly landings [239].
Several approaches for flow angle estimation have been proposed in the lit-
erature [115, 206, 239, 251], but it remains a challenging problem. There-
fore, we focus our attention to instead estimating the aerodynamic moments
directly. The control input during trim, utrim can often be quite easily iden-
tified during manual flight, so we turn our attention to estimating ∆(vba, t)
instead of hr(vba). This also removes the need for an explicit estimate of Mp.

Proposition 6.3: Consider the tracking error dynamics (6.6), and let ∆̂ be
an estimate of ∆(vba, t). Define the estimation error ∆̃ := ∆̂ − ∆(vba, t), let
K2,K3 be symmetric, positive definite matrices and define the control input as

u = utrim +
1

V 2
a

B−1
[
upd + uff − ∆̂

]
(6.29)

where

upd = −k1eΓ −K2z (6.30)
uff = J ˙̄ωd − S(Jω̄d)ω̄d − VaDω̄d, (6.31)

where the update law for ∆̂ is given by

˙̂
∆ = K3z, (6.32)

and the matrix K2 is chosen such that

λK2
min − λJmax(cωd

+ κ) ≥ γ, (6.33)

for some γ > 0. Then the following holds:
i) There are two closed-loop equilibria, given by (Γ, z, ∆̃) = (±Γd, 0, 0).
ii) The equilibrium (Γ, z, ∆̃) = (−Γd, 0, 0) is unstable.

iii) The desired equilibrium (Γ, z, ∆̃) = (Γd, 0, 0) is almost globally asymp-
totically stable and locally exponentially stable.
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Proof. By combining (6.27) with the control law (6.29), we now get the
closed-loop error dynamics

Jż = −k1eΓ − [K2 − VaD + S(ω̄d)J ] z + S(J(z + ω̄d))z − ∆̃. (6.34)

This is similar to (6.28), but with the extra estimation-error term −∆̃. Again,
calculating V̇2 gives

V̇2 ≤ −κk1∥eΓ∥2 − γ∥z∥2 − z⊤∆̃.

For some symmetric, positive definite gain matrix K3 = K⊤
3 > 0, let an

augmented Lyapunov function candidate be given by

V3 = V2 +
1

2
∆̃⊤K−1

3 ∆̃.

Differentiating V3 gives

V̇3 = V̇2 + ∆̃⊤K−1
3

˙̂
∆ ≤ −κk1∥eΓ∥2 − γ∥z∥2 + ∆̃⊤K−1

3

[
˙̂
∆−K3z

]
.

If the update law for ∆̂ is chosen as

˙̂
∆ = K3z,

we are left with
V̇3 ≤ −κk1∥eΓ∥2 − γ∥z∥2.

By Barbalat’s lemma, V̇ goes to zero asymptotically, and so does eΓ and
z, and therefore also eω. From (6.34), we have Jż = a(t) + b(t), where

a(t) := −∆̃
b(t) := −k1eΓ − [K2 − VaD + S(ω̄d)J ] z + S(J(z + ω̄d))z

Since eΓ and z converges to zero, we know that b(t) converges to zero. The
derivative of a(t) is given by

ȧ(t) = − ˙̂
∆ = −K3z

which is bounded by the boundedness of z. Therefore, a(t) is uniformly
continuous. From Lemma 6.1, we get that ∆̃ converges to zero as well. The
rest of the proof follows closely that of Proposition 1.

To show exponential stability, for ϵ > 0, consider

V4 = V3 + ϵ∆̃⊤Jz,
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whose time derivative satisfies

V̇4 = V̇3 + ϵ∆̃⊤Jż + ϵz⊤J
˙̂
∆ ≤ −κk1∥eΓ∥2 − γ∥z∥2 + ϵz⊤JK3z + ϵ∆̃⊤Jż

From (6.34), we calculate the last term as

ϵ∆̃⊤Jż = −ϵ∆̃⊤∆̃ + ϵ∆̃⊤S(J(z + ω̄d))z − ϵk1∆̃⊤eΓ − ϵ∆̃⊤ [K2 − VaD + S(ω̄d)J ] z

≤ −ϵ∥∆̃∥2 + ϵλJmax(cωd
+ κ)∥z∥2∥∆̃∥+ ϵk1∥eΓ∥∥∆̃∥

+ ϵ
(
λK2
max + σD(Va)

max + λJmax(cωd
+ κ)

)
∥z∥∥∆̃∥

Now, for z such that ∥z∥ ≤ cz, we can write V̇4 ≤ −x̄⊤Nx̄, where the matrix
N is given by

N =

 κk1 0 − ϵk1
2

0 γ − ϵλJmaxλ
K3
max − ϵξ

2

− ϵk1
2 − ϵξ

2 ϵ

 ,
with ξ = λK2

max+Vmaxσ
D
max+(1+cz)λ

J
max(cωd

+κ) and x̄ = [∥eΓ∥ ∥z∥ ∥∆̃∥]⊤.
The parameter ϵ can be chosen small enough such that N is positive

definite. Requiring a positive determinant leads to a second-order inequality
in ϵ of the form aϵ2 − bϵ + c > 0, where a, b, c are positive coefficients.
Clearly, since c > 0, there exists some ϵ (arbitrarily small) that satisfies this
inequality.

While the controller in the previous section is of PD type, this is a PID
controller with feedforward terms. Integral action removes any steady-state
error between the desired and actual angular velocity.

6.5.2 Uncertain Model

Sometimes it is desirable not to include integral action in the inner loops
of cascaded control systems. Therefore, we focus on a version of the con-
troller that uses a fixed—possibly time- and state-varying, but bounded—
disturbance estimate. This estimate does not necessarily equal the true value
of ∆. Besides, for some hierarchical flight control loops, the reference veloc-
ities are not made available for the inner loop. We thus remove the assump-
tion that ω⊥

d is known in the control design, and thus redefine the backstep-
ping variable as ẑ = ω− ω̂d, and ω̂d = ω

∥
d−κeΓ. The backstepping procedure

in the previous section has provided us with a strict Lyapunov function that
can be used to show uniform ultimate boundedness of the solutions of the
closed-loop system.
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To account for model uncertainties, consider again the control law (6.21)

u = utrim +
1

V 2
a

B̂−1
[
upd + uff − ∆̂(vba, t)

]
(6.35)

where

upd = −k1eΓ −K2ẑ (6.36)

uff = Ĵ ˙̂ω
′
d − S(Ĵ ω̂d)ω̂d − VaD̂ω̂d, (6.37)

and ∆̂(vba, t), B̂, Ĵ , D̂ are our best estimates of ∆(vba, t), B, J,D, respectively.
The term ˙̂ω

′
d is defined as the parts of ˙̂ωd that do not require reference

angular velocities or accelerations:

˙̂ω
′
d =

(
g

Va
tanϕd

)
Γ̇− g

V 2
a

tan(ϕd)V̇aΓ− κ(Γ̇× Γd). (6.38)

The next proposition states that, for sufficiently small model uncertain-
ties, and sufficiently small ω⊥

d , the solutions are ultimately bounded. This is
essentially a local input-to-state stability (ISS) property [125].

To parametrize the model uncertainty, let δB := BB̂−1, E := I − δB,
J̃ := Ĵ−J , and D̃ := D̂−D. For compactness, we define cJ = ∥J̃∥+∥E∥∥Ĵ∥
and cD = ∥D̃∥+ ∥E∥∥D̂∥.

Proposition 6.4: Consider the tracking error dynamics (6.6) and the per-
turbed controller (6.35). Assume that δB satisifes x⊤δBx > 0, ∀x ̸= 0. Then,
there exists some gain matrix K2 = K⊤

2 > 0 such that the matrix sym(δBK2)
is positive definite. If the matrix K2 is chosen such that

λ
sym(δBK2)
min >

a2

4κk1
+ λJmax(cω∥

d

+ κ) + cJ(κ+ b
ω̇
∥
d

), (6.39)

where a = k1∥E∥+ k1cω⊥
d
+ κcD + cJκ

(
2κ+ 2c

ω
∥
d

+ b
ω̇
∥
d

)
, and if c as defined

by Equation (6.44) is sufficiently small, then the solutions of the closed-loop
system are uniformly ultimately bounded, with an ultimate bound that depends
on the controller parameters, the model estimation errors, and the reference
velocity bounds.

Proof. The derivative of ẑ satisfies

J ˙̂z = [S(J(z + ω̂d)) + VaD] (z + ω̂d) + V 2
a B [u− utrim] + ∆(vba, t)− J ˙̂ωd.

(6.40)
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In closed loop with the control law (6.35), we get

J ˙̂z = δB
[
−k1eΓ −K2ẑ − ∆̃

]
+ [VaD + S(ω̂d)J ] ẑ + S(J(ẑ + ω̂d))ẑ + d1,

(6.41)

where

d1 = E∆(vba, t) + [J̃ − EĴ ] ˙̂ωd − Va[D̃ − ED̂]ω̂d + S(J̃ ω̂d)ω̂d

− ES(Ĵ ω̂d)ω̂d − δBĴ( ˙̂ωd − ˙̂ω
′
d).

The time derivative of V1 = k1Ψ(Γ,Γd) now becomes

V̇1 = k1

(
ω − ω∥

d −Π⊥
Γ (ω

⊥
d )
)⊤

eΓ = k1

(
ẑ − κeΓ −Π⊥

Γ (ω
⊥
d )
)⊤

eΓ

= −κk1∥eΓ∥2 + k1ẑ
⊤eΓ − k1e⊤ΓΠ⊥

Γ (ω
⊥
d ).

Let a Lyapunov function candidate be given by V̂2 = V1 + ẑ⊤Jẑ/2, whose
time derivative satisfies

˙̂
V2 = V̇1 + ẑ⊤J ˙̂z = −κk1∥eΓ∥2 − k1e⊤ΓΠ⊥

Γ (ω
⊥
d ) + ẑ⊤

[
k1eΓ + J ˙̂z

]
= −κk1∥eΓ∥2 − ẑ⊤ [δBK2 + S(ω̂d)J ] ẑ + ẑ⊤d2

where d2 = d1 − δB∆̃ + k1EeΓ − k1e⊤ΓΠ⊥
Γ (ω

⊥
d ).

The time derivative of ω̂d is

˙̂ωd = ω̇
∥
d − κėΓ,

where ėΓ can be bounded using

∥ėΓ∥ ≤ ∥ω⊥
d ∥+ ∥eω∥ ≤ 2∥ω⊥

d ∥+ ∥ẑ∥+ κ∥eΓ∥.

From Assumption 6 we get

∥ ˙̂ωd∥ ≤ bω̇∥
d

∥ω∥+ c
ω̇
∥
d

+ 2κ∥ω⊥
d ∥+ κ∥ẑ∥+ κ2∥eΓ∥

≤ κ(κ+ b
ω̇
∥
d

)∥eΓ∥+ (κ+ b
ω̇
∥
d

)∥ẑ∥+
(
b
ω̇
∥
d

c
ω
∥
d

+ c
ω̇
∥
d

+ 2κcω⊥
d

)
,

where we have used ∥ω∥ ≤ ∥ẑ∥+ ∥ω∥
d∥+ κ∥eΓ∥, from the definition of ẑ.

Now, it is not difficult to show that d2 satisfies

∥d2∥ ≤ a∥eΓ∥+ b∥ẑ∥+ c,
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where

a = k1∥E∥+ k1cω⊥
d
+ κcDVmax + cJκ

(
2κ+ 2c

ω
∥
d

+ b
ω̇
∥
d

)
+ κcϕ̇d sin cθd

(6.42)

b = cJ(κ+ b
ω̇
∥
d

) + cϕ̇d sin cθd (6.43)

c = cJ

(
(c
ω
∥
d

)2 + b
ω̇
∥
d

c
ω
∥
d

+ c
ω̇
∥
d

+ 2κcω⊥
d

)
+ cDVmaxcω∥

d

+ ∥E∥∥∆∥+ ∥δB∥∥∆̃∥

+ c
ω
∥
d

cϕ̇d sin cθd + κcω⊥
d
+

g

Vmin cos2(cϕd)
cϕ̇d + cϕ̇dcθ̇d + cϕ̈d sin cθd . (6.44)

Inserting this into the expression for ˙̂
V2 gives

˙̂
V2 ≤ −κk1∥eΓ∥2 −

[
λ
sym(δBK2)
min − λJmax(cω∥

d

+ κ)
]
∥ẑ∥2 + ∥ẑ∥∥d2∥

≤ −κk1∥eΓ∥2 −
[
λ
sym(δBK2)
min − λJmax(cω∥

d

+ κ)− cJ(κ+ b
ω̇
∥
d

)
]
∥ẑ∥2

+ a∥eΓ∥∥ẑ∥+ c∥ẑ∥
≤ −κk1∥eΓ∥2 − γ∥ẑ∥2 + a∥eΓ∥∥ẑ∥+ c∥ζ∥
= −ζ⊤Lζ + c∥ζ∥,

where ζ = [∥eΓ∥ ∥ẑ∥]⊤ and

L =

[
κk1 −a

2
−a

2 γ

]
,

which is positive definite if γ > a2/(4κk1). Clearly, the matrix sym(δBK2)
must be positive definite, and sufficiently so, satisfying

λ
sym(δBK2)
min >

a2

4κk1
+ λJmax(cω∥

d

+ κ) + cJ(κ+ b
ω̇
∥
d

).

If this holds, and c is sufficiently small, then the solutions are ultimately
bounded with an ultimate bound that depends on the controller gains, model
estimation errors, and the bounds on reference velocities [125].

In essence, the matrix K2 can be chosen such that the controller is robust
to model uncertainties, even when the derivatives of the reduced-attitude
reference are not available. However, a necessary condition is that the un-
certainty in the input matrix is not too large. The condition x⊤δBx > 0
implies that the control direction is known up to an error of 90 degrees.
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Remark 6.9. Global stability of the nominal system is a necessary condition
for (global) ISS. Due to the topological obstruction to global stabilization
on compact manifolds such as S2, a relaxed property of almost (global) ISS
has been proposed in [9], and sufficient conditions based on dual Lyapunov
techniques (density functions) [207] are given. In [243], a combination of
Lyapunov and density functions are used to show almost ISS for systems
with rotational degrees of freedom, illustrated using a perturbed nonlinear
observer. In [10], a complementary set of tools is given, based on Lyapunov
functions and the theory of stable and unstable manifolds of dynamical sys-
tems. It is shown that the downward equilibrium of a perturbed pendulum
with friction is almost ISS. This is a system that is very much of a similar
nature to the one considered in this paper. In [22], robustness on SO(3) is
considered in the context of nonlinear complementary filters in the presence
of measurement errors. “Divergence” of trajectories on SO(3) is defined as
trajectories that converge to the manifold of maximum distance, i.e., the
manifold of all rotations of angle 180 degrees. In contrast to [10], only kine-
matic systems are considered. While almost ISS could probably be shown in
our case, the result of [10] only considers a perturbation that is independent
of the state. Since in our case, the perturbation is state-dependent, we settle
for a local property.

6.6 Simulation Results

In this section, simulation results are presented. We show results from an
ideal Matlab-environment, as well as realistic software-in-the-loop simula-
tions where discretization effects and simulated sensor noise are present. In
both cases, reduced-attitude references are generated from roll and pitch an-
gle references using Equation (4.2). A topic for future work is to investigate
if a tailor-made guidance scheme can be designed that directly produces a
reduced-attitude vector reference.

6.6.1 Matlab

Figures 6.1-6.6 show the simulation results for the adaptive backstepping
controller (6.29) applied to a simulation model of the Aerosonde UAV [19].
The controller uses perfect estimates of the matrices B, J , and D but no in-
formation about ∆(vba, t). While the control surface deflections are controlled
by the attitude controller, a PI controller is used to control airspeed using
throttle [19]. The airspeed reference is constant and set to 35m s−1. The
attitude controller parameters are set to κ = 1, k1 = 1,K2 = diag(7, 5, 7)
and K3 = diag(40, 30, 40). During the first 20 seconds, the reduced-attitude
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reference is constant, corresponding to ϕd = 60deg and θd = 15deg, which
might correspond to a sharp, climbing turn. During the last 20 seconds, we
use the time-varying reference A cos(2πf(t−20)), with amplitude A equal to
the initial 20 seconds, and f = 0.1Hz for roll and f = 0.08Hz for pitch. The
initial conditions are set to ω(0) = 0, ϕ(0) = −40 deg and θ(0) = −20 deg.

Figure 6.1 shows the tracking performance in terms of roll and pitch
angles, while Figure 6.2 shows the vector coordinates Γ ∈ S2. The errors
converge quickly from large initial values, and the velocity errors are kept
close to zero throughout the maneuver. During the latter half of the sim-
ulated trajectory, a slightly deteriorated tracking performance is observed
in pitch. This also applies to the turn rate, visualized in Figure 6.3. This is
explained by looking at Figure 6.4: When stabilizing a constant reference,
the assumption that aerodynamic moments are slowly-varying applies quite
well, and the disturbance estimates converge towards their true values. When
tracking a time-varying trajectory, however, this assumption seems to break
down, which has a negative impact on tracking performance. This varia-
tion seems to be attributed to the variations in the angle of attack seen in
Figure 6.5. Nevertheless, this simulated case study shows adequate track-
ing performance for both constant and time-varying reference trajectories.
The effect of turn-coordination can be seen by observing the sideslip angle
in Figure 6.5. During the first 20 seconds, the sideslip angle is reduced to
zero. During the last 20 seconds, some variation is seen, but the sideslip
angle is still kept at small values (less than 2 degrees). The control surface
deflections are shown in the bottom half of Figure 6.5, and are smooth and
well below the saturation limits, which in the simulation is set to ±20 deg.
Finally, the start of the maneuver is illustrated as a path on the two-sphere
in Figure 6.6, which is an alternative to showing roll and pitch angles when
visualizing reduced-attitude trajectories.

6.6.2 Software-in-the-Loop Simulation

This section showcases the efficacy of the control design via realistic SITL
simulations. The controller is implemented in the ArduPilot [13] open-source
autopilot framework for fixed-wing UAVs. We simulate our code using ArduPi-
lot’s SITL framework, using the JSBSim flight dynamics engine with a model
of a SIG Rascal 110. Roll and pitch reference angles are provided by ArduPi-
lot’s guidance system, described in Section 2.6.2.

Figures 6.7-6.10 shows the result of a simulation run of the adaptive
backstepping controller (6.29). However, as the derivatives of the reduced-
attitude reference are not available in the ArduPilot code, we use a ver-
sion of (6.29) where no information about the reference velocities is used in
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Figure 6.1: Roll and pitch angles vs. references, and velocity tracking error eω.
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Figure 6.2: Reduced attitude Γ (blue) and the reduced-attitude reference Γd (red).
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Figure 6.3: Magnitudes of ω∥ (red) vs ω∥
d (blue), both parallel to Γ.
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Figure 6.5: a) Flow angles: Angle of attack α and sideslip angle β; b) Control
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Figure 6.6: Path on the two-sphere for the 17 first seconds. Red asterix marks
the initial configuration, while the constant reference is marked green.

99



6. Almost Global Geometric Reduced-Attitude Tracking Control of
Fixed-Wing Aircraft

35°21'50"S

35°21'40"S

L
a
ti
tu

d
e

149°09'40"E 149°09'50"E

Longitude

Esri, HERE

0 100 200 300 400

Time [s]

0

20

40

60

80

100

120

A
lt
it
u
d
e
 [
m

]

Figure 6.7: SITL: a) Geographical plot showing the horizontal path of the UAV;
b) Altitude in meters (above home position).

the feedforward part of the controller. in addition, up to 20 percent uncer-
tainty is added to all elements of the matrices J,B and D. This makes
the controller more akin to (6.35), but with added integral action. The
controller parameters are set to κ = 2, k1 = 10,K2 = diag(5, 7, 5) and
K3 = diag(0.1, 0.25, 0.1).

The simulated UAV is tasked with following a square pattern, shown
in Figure 6.7. The actual horizontal position and altitude are shown, from
takeoff and until a few rounds have been completed. It is clear that the pro-
posed reduced-attitude controller successfully integrates into the ArduPilot
infrastructure. Roll and pitch responses are shown in Figure 6.8, while Fig-
ure 6.9 shows the vector coordinates Γ. The UAV tracks the reference well,
except when there are large steps in roll angle going into a turn. This is
where a feedforward from the reference velocity could help reduce the er-
rors. Anyhow, the errors are relatively small and do not interfere with the
overall control objective. Figure 6.7 shows that the altitude is kept approx-
imately constant at 100 meters, with only minor drops in altitude during
sharp turns. The control input is shown in Figure 6.10. Except for some large
spikes in the control surface deflections (due to large steps in roll reference
when going into sharp turns), the control input is well behaved.

100



6.6. Simulation Results

100 150 200 250 300

-60

-40

-20

0

R
o
ll 

a
n
g
le

 [
d
e
g
]

100 150 200 250 300

Time [s]

-10

0

10

20

P
it
c
h
 a

n
g
le

 [
d
e
g
]

Figure 6.8: SITL: Roll and pitch angles (red) vs reference angles (blue).
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Figure 6.9: SITL: Reduced-attitude vector Γ (red) vs reference attitude (blue).
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Figure 6.10: SITL: Control input. Control surface deflections are normalized to
[−1, 1] and the throttle to [0, 1].

6.7 Chapter Summary

In this chapter, building upon the nominal control design of Chapter 4,
we have designed more practical reduced-attitude controllers for fixed-wing
aircraft. In particular, the controllers are less dependent on known system
dynamics, and stability proofs are both simpler and less restrictive. Using
a pertinent aerodynamic model of the rotational dynamics, almost global
asymptotic stability is established for the proposed controllers. The efficacy
of the presented approach was demonstrated using Matlab simulations as
well as more realistic SITL simulations, where the control law shows that
it successfully completes the defined control objectives in the presence of
uncertain aerodynamics and reference velocities and integrates into a state-
of-the-art open-source autopilot for fixed-wing UAVs.
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Chapter 7

Robust Reduced-Attitude
Control of Fixed-Wing UAVs
Using a Generalized
Multivariable Super-Twisting
Algorithm

This chapter is based on the following article:

[59] E. M. Coates, J. B. Griffiths, and T. A. Johansen. Robust reduced-
attitude control of fixed-wing UAVs using a generalized multivariable
super-twisting algorithm. In 2021 International Conference on Un-
manned Aircraft Systems (ICUAS), 2021.

7.1 Introduction

Attitude control of fixed-wing unmanned aerial vehicles (UAV) is a challeng-
ing control problem, mainly caused by the highly uncertain aerodynamics
of such vehicles. This is particularly true in heavy wind and turbulent con-
ditions, as wind speeds often exceed 50 per cent of typical airspeeds flown
by small UAVs [19]. Therefore, robust control laws could potentially en-
able the use of UAVs in a broader range of environmental conditions. Large
wind gusts may bring the UAV far away from nominal conditions where
longitudinal/lateral-decoupling assumptions are valid [233]. This motivates
the use of multivariable methods to effectively deal with coupled uncertain-
ties and disturbances.
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Sliding mode control (SMC) [224, 241] is a robust control method that
has gained popularity over the last decades due to its insensitivity to matched
disturbances, i.e., disturbances that enter the system through the same chan-
nel as the control input. The robustness properties of SMC are attributed to
a discontinuous control signal that also introduces a significant drawback to
SMC design: the chattering phenomenon. Chattering is experienced as high-
frequency oscillations in the control signal, which is undesirable in many
control applications, including flight control. This has led to significant ef-
forts to reduce chattering while retaining the desirable robustness properties.
Several chattering-reduction techniques exist, including continuous approxi-
mations of the discontinuous SMC (“boundary-layer” methods) [43, 125], as
well as higher-order SMC algorithms [147, 148].

A particular class of second-order SMC is the super-twisting algorithm
(STA) [146]. STA applies to systems of relative degree one, and a continuous
control signal is achieved by applying the discontinuous control input behind
an integrator. While the stability properties of STA were originally proven
using geometric methods or homogeneity approaches [148], Lyapunov meth-
ods have recently been applied [182, 183] to show finite-time convergence of
the sliding-variable and its first derivative to zero.

The Lyapunov stability proof has enabled the research community to
explore a range of extensions to the basic STA, including variable gain
STA [88], adaptive STA [225], and generalized STA (GSTA) [181]. In [50],
the GSTA is applied to systems whose perturbations and uncertain control
coefficients are time- and state-dependent. An adaptive version of the GSTA
was recently published in [34].

A multivariable super-twisting algorithm (MSTA) for multi-input-multi-
output (MIMO) systems was recently presented in [186], based on unit-
vector control [97, 98] and the Lyapunov ideas in [183]. While it is sometimes
possible to decouple a MIMO system into several scalar single-input sys-
tems, this approach may fail if the interaction between the system variables
is too strong [69]. Several extensions to the MSTA have appeared since [186]
was published, including variable-gain MSTA [246], adaptive MSTA (AM-
STA) [69, 71, 107, 237], the generalized MSTA (GMSTA) [160], and adap-
tive generalized MSTA (AGMSTA) [249]. A drawback of these algorithms
is that perfect knowledge of the input matrix is needed. This is relaxed in
[245] and [124], which give modified conditions on the parameters for the
MSTA in [186] that allow for both symmetric [245] and non-symmetric [124]
uncertain input matrices.

Operation of fixed-wing unmanned aerial vehicles (UAVs) outside their
nominal operating conditions require autopilots that can effectively com-
pensate for highly uncertain aerodynamics and coupled disturbances due to
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turbulent winds. In this chapter, we apply a generalized multivariable super-
twisting algorithm [160] to the robust reduced-attitude control problem for
fixed-wing UAVs. We design a novel sliding surface based on geometric meth-
ods to perform reduced-attitude tracking while simultaneously stabilizing a
turn rate based on the coordinated-turn equation. In contrast to Chapter 4
and Chapter 5, where perfect model knowledge is assumed, and Chapter 6,
where a nonlinear PID controller is designed using backstepping to account
for slowly-varying aerodynamic uncertainties, we extend these results to a
more general class of model uncertainties and wind disturbances. The con-
troller is validated through simulations, and it is shown that the controller
robustly stabilizes the desired trajectory in the presence of model uncertain-
ties and highly turbulent wind conditions.

In the master’s thesis [89], several different approaches to multivariable
super-twisting attitude control of fixed-wing UAVs were compared. The GM-
STA generally performed favourably and is, therefore, the focus of this chap-
ter. Although STA has been applied to fixed-wing UAVs and aircraft previ-
ously [15, 49, 96, 102, 156, 204, 262], we apply a multivariable, generalized
STA in combination with the proposed sliding surface, to achieve robust
reduced-attitude tracking. Different geometric approaches to sliding-surface
design have also been considered in [99, 131, 157] using rotation matrices
and quaternions, respectively.

Chapter Outline

The rest of the chapter is organized as follows: A literature review on pre-
vious applications of multivariable super-twisting control is given in Sec-
tion 7.2. Preliminaries on the generalized multivariable super-twisting algo-
rithm are presented in Section 7.3 and in Section 7.4, the problem definition
is stated. The control law, including the sliding surface design, is presented
in Section 7.5, and in Section 7.6 we present a simulation case study. Finally,
concluding remarks are given in Section 7.7.

7.2 Literature Review

This literature review aims to give an overview of related applications of the
MSTA and its extensions, with a focus on aerospace control systems and
attitude control designs. Section 7.2.1 presents research on the use of the
MSTA, while section 7.2.2 presents several papers in which extensions of
the MSTA are employed in aerospace and attitude control design.
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7.2.1 Multivariable STA Applied to Attitude Control
Design

An example of the use of the MSTA in attitude control problems in aerospace
applications is given in [256]. In this paper, the control objective is to achieve
continuous finite-time tracking of a trajectory for a spacecraft in the pres-
ence of external disturbances. Lyapunov methods are employed to prove the
finite-time convergence of the closed-loop system to the equilibrium. Numer-
ical simulations are performed to show the performance characteristics of the
proposed controller. The simulations show the robustness of the controller in
the presence of cyclic disturbance torques. Additionally, the resulting con-
trol signal is shown to be continuous and the error trajectories reach the
equilibrium point in finite time.

Another example of the application of the MSTA in attitude control de-
sign is presented in [72]. In this paper, a robust trajectory tracking controller
for a small unmanned helicopter with model uncertainties and external dis-
turbances is designed. The controller is paired with a disturbance observer
which is designed based on both backstepping and the MSTA. The system
with the controller and disturbance observer is proven to be globally asymp-
totically stable through Lyapunov-analysis. Lastly, the proposed control de-
sign is compared through simulations with another control system design
based only on backstepping. The tracking performance of the method pro-
posed in [72] is shown to be more effective than the backstepping method,
with smaller overshoot, faster tracking, and less chattering in the system.

The MSTA has also been applied in control design for attitude con-
trol of quadrotor UAVs, such as in [238]. Here, the control objective is to
achieve continuous finite-time trajectory tracking. The finite-time stability
of the closed-loop system is determined using the Lyapunov method and
the homogeneous technique [238]. The performance of the control strategy
is confirmed first through numerical simulations, then through experimental
tests on a quadrotor UAV indoors. During the performance testing, the pro-
posed method is compared with a PID controller. The controller based on the
MSTA demonstrates better robustness and higher tracking accuracy than
the PID controller due to the ability of the MSTA to reject disturbances.

7.2.2 Extensions of the Multivariable STA Applied to
Attitude Control Design

An example of the application of the AMSTA in attitude control design is
presented in [69] where an autopilot based on the AMSTA for a reusable
launch vehicle (RLV) is presented. The control objective is to design the
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control torque so that the RLV can track the guidance commands in finite
time in the presence of model uncertainties and external disturbances with
unknown boundaries [69]. The paper states that the AMSTA based con-
troller can adapt to additive and multiplicative perturbations with unknown
boundaries while avoiding gain overestimation. It is confirmed through sim-
ulations that the proposed controller is effective and robust, and can provide
fast and accurate tracking, and chattering suppression.

The control strategy presented in [71] is another approach to AMSTA.
In this paper, an AMSTA is implemented for a hypersonic vehicle with the
control objective of tracking a velocity and altitude reference in the presence
of bounded but unknown perturbations. While the control objective in this
article may not be to perform attitude control, the problem of following a
velocity and altitude reference is in many ways similar to attitude control.
Designing control systems for hypersonic vehicles is challenging due to the
high-speed flight conditions and severe aerodynamic uncertainties [71]. It is,
therefore, necessary to design a robust and effective controller to guarantee
adequate tracking of the references. In [71], the controller is combined with
a disturbance observer to further improve the tracking results.

In [237] an attitude control design for a quadrotor UAV using an AM-
STA is presented. The UAV is assumed to be affected by unknown external
disturbances with unknown bounds so that gain adaptation is necessary to
avoid overestimation of the control gains. The proof of finite-time stability of
the closed-loop dynamics is derived using the Lyapunov technique [237]. A
comparison between using the AMSTA and single-input ASTA controllers is
investigated, where the single-input design exhibits better accuracy in the-
ory, while in practice the multivariable design proved to be easier to tune
and gave the best results.

The AMSTA has also been employed in the control design for other
autonomous vehicles, for example in [107]. In this paper, an AMSTA con-
trol strategy is applied to the problem of designing a lane-keeping control
for four-wheel independently actuated autonomous vehicles. Since it is diffi-
cult to measure the lateral velocity [107] a high-order sliding mode observer
is included in the system. Lyapunov methods are employed to prove the
finite-time convergence of the closed-loop system. To verify the effective-
ness of the proposed control strategy, simulations were performed in which
the proposed controller was compared to a more traditional SMC approach.
The simulations show the robustness of the adaptive controller in yielding a
high-performance, fast and accurate lane-keeping control in a faulty steering
situation [107].

An example of the application of the GMSTA to a problem that is simi-
lar to the problem of attitude control is presented in [227]. In this paper, an
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event-based GMSTA is used to perform path tracking to achieve safe navi-
gation of a nonholonomic mobile robot in an unknown indoor environment.
The event-triggered condition is obtained using Lyapunov theory to mini-
mize the utilization of the resources. In addition to the Lyapunov analysis,
a sensitivity analysis of the proposed controller is performed to ensure that
the GMSTA is more robust than the MSTA from [186]. The performance
of the proposed control strategy is compared to several other controllers
through experiments for obstacle avoidance applications. The effectiveness
of the proposed controller is shown in terms of error convergence rate and
disturbance rejection capability with minimum control effort compared to
the other controllers.

Another extension of the MSTA is the previously mentioned AGMSTA.
A version of this algorithm is implemented in [249] in the control scheme
for a space robot with coupled uncertainties and external disturbances. The
space robot is a system with strongly coupled characteristics between the
robot platform and the manipulators due to the absence of a fixed base. The
advantages of the proposed controller over the original MSTA presented in
[186] are that there are fewer conditions and parameters to design, and the
ability to compensate for both Lipschitz continuous disturbances and state-
dependent uncertainties in finite-time [249]. In addition to the AGMSTA, a
sliding mode disturbance observer is introduced in the system to alleviate
the system conservatism and improve convergence rate and accuracy [249].
Numerical simulations show the efficiency of the proposed control design in
achieving tracking of the reference trajectory while compensating for exter-
nal disturbances and coupled uncertainties. The simulations also show that
improved convergence accuracy and rate are achieved when the disturbance
observer is added to the control design.

7.3 The Generalized Multivariable Super-Twisting
Algorithm

Sliding mode control design typically consists of two design steps:
1. Design of a sliding variable σ ∈ Rm, such that, when the system dy-

namics are constrained to σ = 0, the compensated dynamics are of
reduced order, and satisfy some control objective specified by the de-
signer.

2. Design of a reaching law to control σ to zero.
Suppose that the sliding dynamics for a nonlinear system can be written

on the form
σ̇ = a(t, x) + b(t, x)u+ γ(t, σ), (7.1)
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where x ∈ Rn is the state, u ∈ Rm is the control input, a(t, x) ∈ Rm and
b(t, x) ∈ Rm×m are known functions, and γ(t, σ, z) ∈ Rm is an unknown dis-
turbance. Assuming that the control-effectiveness matrix b(t, x) is invertible,
define the control u as

u = b−1(t, x) (ū− a(t, x)) . (7.2)

The generalized multivariable super-twisting algorithm (GMSTA) presented
in [160] is

ū = −k1ϕ1(σ) + k3ξ (7.3)

ξ̇ = −k2ϕ2(σ), (7.4)

where k1, k2, k3 ∈ R>0 and

ϕ1(σ) =
(
c1∥σ∥−d12 + c2 + c3∥σ∥d22

)
σ (7.5)

ϕ2(σ) =
(
c1(1− d1)∥σ∥−d12 + c2 + c3(1 + d2)∥σ∥d22

)
ϕ1(σ) (7.6)

with
c1 > 0, c2, c3 ≥ 0, 0 < d1 ≤

1

2
, d2 > 0.

The control law (7.2)-(7.4) transforms the system (7.1) into

σ̇ = −k1ϕ1(σ) + k3ξ + γ(t, σ) (7.7)

ξ̇ = −k2ϕ2(σ). (7.8)

Let z1 = Aσ ∈ Rm, where A ∈ Rm×m is invertible. Furthermore, decompose
the disturbance into γ(t, σ) = γ1(t, σ)+γ2(t, σ). Then the change of variables
z2 = ξ + (1/k3)γ2(t, σ) turns the system into

ż1 = A
[
−k1ϕ1(A−1z1) + k3z2

]
+ δ1(t, z1) (7.9)

ż2 = −k2ϕ2(A−1z1) + δ2(t, z1), (7.10)

where δ1(t, z1) ≜ Aγ1(t, σ) and δ2(t, z1) ≜ (1/k3)d/dt[γ2(t, σ)]. If the per-
turbations δ1(t, z1), δ2(t, z1) satisfy

δ1(t, σ) = AG1(t)ϕ1(σ) (7.11)
δ2(t, σ) = G2(t)ϕ2(σ), (7.12)

for some (possibly unknown) element-wise bounded matrices G1(t), G2(t),
then there exists controller parameters ki, i = [1, 3] such that the origin
of (7.9)-(7.10) is finite-time stable. An explicit algorithm to calculate such
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parameters, based on bounds on the elements of G1(t), G2(t), can be found
in [160]. It should also be noted that the right-hand-side of (7.9)-(7.10) is dis-
continuous, and solutions should be interpreted in the sense of Filippov [76].

A special case of the GMSTA arises if we consider k3 = 1, c3 = 0 and
d1 = 1/2. From (7.3)-(7.4), we are left with

ū = −c1k1
σ

∥σ∥ 1
2

− c2k1σ + ξ (7.13)

ξ̇ = −c
2
1k2
2

σ

∥σ∥ − c1c2k2
σ

∥σ∥ 1
2

− c22k2σ, (7.14)

which has (up to a constant in the second term of (7.14)) the same form
as the adaptive GMSTA in [249], which is a multivariable extension of the
GSTA [50, 181]. Furthermore, the GMSTA (7.13)-(7.14) reduces to the origi-
nal MSTA in [186] if the second term in (7.14) is removed. In [186] and [249],
the class of disturbances for which there exists controller parameters ki such
that finite-time stability is preserved, are those that satisfy

∥δ1(t, σ)∥ ≤ δ̄1∥σ∥ (7.15)
∥δ2(t, σ)∥ ≤ δ̄2, (7.16)

for some δ̄1, δ̄2 ∈ R>0.
We also note that if we in addition take c1 = 0 and c2 = 1, then ϕ1(σ) =

ϕ2(σ) = σ and (7.13)-(7.14) turns into

ū = −k1σ + ξ (7.17)

ξ̇ = −k2σ, (7.18)

which is a linear, proportional-integral controller in the sliding variable σ,
akin to a typical backstepping controller.

7.4 Problem Definition

The control objective is the same as in the previous chapter, i.e., to si-
multaneously achieve ω∥ → ω

∥
d and Γ → Γd, ω⊥ → ω⊥

d as t → ∞ (see
Section 6.2.3).

As in previous chapters, the geometric methodology is based on the
potential function Ψ(Γ,Γd) and the corresponding configuration error vector
eΓ as defined by Eq. (4.18) and Eq. (4.19), respectively.

As in Chapter 6 we base our design on the rotational dynamics (2.46).
However, in contrast to Chapter 6, we get an extra term, −VaDωw, related
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to the possibly non-zero angular velocity of the wind:

Jω̇ = [S(Jω) + VaD]ω + V 2
a Bu+ h(vba) +Mp(δt)− VaDωw. (7.19)

We treat ωw, the relative velocity vba (and thus also Va, α, β) and the throttle
setting δt as time-varying exogenous inputs. As before, the moment vectors
h(vba) and Mp(δt) are assumed to be bounded, and the input matrix B is
assumed to be square and invertible.

Remark 7.1. Wind and turbulence enters Equation (7.19) through ωw, a
time-varying airspeed Va, and vw, which affects h(vba) through vba.

Remark 7.2. The assumption that h(vba) is bounded is an implicit assump-
tion on stable internal dynamics. In section 7.5, a sliding variable σ is chosen,
which corresponds to choosing a controlled output for the system. In par-
ticular, a necessary condition for SMC algorithms to be applicable is that
the zero dynamics (the internal dynamics of the system when confined to
the sliding surface) is stable. This is related to similar issues in input-output
feedback linearization. See e.g.. [125] for a detailed discussion on these mat-
ters.

7.5 Control Law

7.5.1 Sliding Surface Design

Inspired by the backstepping design in Chapter 6, let the sliding variable
σ ∈ R3 be given by

σ = ω − ωd, (7.20)

where ωd = Π⊥
Γ (ω

⊥
d ) − κeΓ + ω

∥
d, and κ ∈ R>0 is a design parameter. We

can rewrite (7.20) as

σ =
(
ω⊥ −Π⊥

Γ (ω
⊥
d ) + κeΓ

)
︸ ︷︷ ︸

∈TΓS2

+
(
ω∥ − ω∥

d

)
︸ ︷︷ ︸

∈NΓS2

. (7.21)

Due to the orthogonality of the two parts, it is clear that when constrained
to the sliding surface defined by σ = 0, the system dynamics collapse to ω∥ =

ω
∥
d and ω⊥ = Π⊥

Γ (ω
⊥
d ) − κeΓ. To show that the latter leads to convergence

of Γ to Γd, we use the potential function (4.18) as a Lyapunov function
candidate. Ψ(Γ,Γd) is positive definite w.r.t. the equilibrium point Γ = Γd.
The time derivative of Ψ(Γ,Γd) along the trajectories of (4.5) and (4.15)
satisfies

Ψ̇(Γ,Γd) = e⊤Γ

[
ω⊥ −Π⊥

Γ (ω
⊥
d )
]
= −κ∥eΓ∥2 < 0, ∀eΓ ̸= 0. (7.22)
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This shows that on the sliding surface, the desired reduced-attitude equilib-
rium Γ = Γd is asymptotically stable. The fact that Ψ(Γ,Γd) is constant for
eΓ = 0, means that there is an additional equilibrium point at Γ = −Γd.
Since this represents a maximum of the Lyapunov function, and Ψ̇(Γ,Γd) < 0
in any neighbourhood around this point, the equilibrium Γ = −Γd is unsta-
ble. When the sliding surface is reached, convergence to the desired equilib-
rium is thus guaranteed for all initial reduced attitude configurations except
the unstable point.

By using geometric concepts on the two-sphere S2, the sliding vari-
able (7.20) combines the objectives of reduced-attitude tracking and coordi-
nated banked turns, without singularities and with no conflicts between the
two objectives. With the chosen error representation, (4.19), the closed-loop
system does not exhibit the unwinding behavior [54]. In addition, errors in
reduced attitude are compensated by commanding an angular velocity that
is directed along the shortest path (a geodesic) on the sphere. As pointed
out in previous chapters as well, potential shaping can be achieved by mod-
ifying (4.19), e.g. by multiplication with a nonlinear gain. Nevertheless, this
does not change the general design procedure outlined above for the geo-
metric sliding surface design on S2.

7.5.2 Reaching Law

The role of the reaching law is to control the sliding variable σ to zero in
finite time. To this end, let a model-based feedforward term uff ∈ R3 be
given by

uff = Ĵ ω̇d − VaD̂ωd − S(Ĵωd)ωd, (7.23)

where Ĵ , D̂ are estimates of J,D, respectively. Also, let ĥ(vba) and M̂p be
estimates of h(vba) and Mp. In light of (7.2), let a(t, x) = ĥ(vba) + M̂p − uff
and b−1(t, x) = (1/V 2

a )B
−1J such that

u =
1

V 2
a

B−1
[
Jū+ uff − ĥ(vba)− M̂p

]
, (7.24)

and ū is given by (7.3)-(7.4).

Remark 7.3. The feedforward term (7.23) is motivated by the fact that if
Ĵ = J and D̂ = D, the controller u = (1/V 2

a )B
−1[−Kσσ+uff−h(vba)−Mp]

achieves global asymptotic stability of the origin σ = 0. To see this, consider
the Lyapunov function candidate

Vσ(σ) =
1

2
σ⊤Jσ, (7.25)
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whose time derivative along the closed-loop trajectories satisfies

V̇σ(σ) = σ⊤ [−Kσσ + VaDσ + S(Jω)σ − S(ωd)Jσ] (7.26)

= −σ⊤ [Kσ − VaD + S(ωd)J ]σ (7.27)

≤ −
(
λKσ
min − cωd

λJmax − Vmax∥D∥
)
∥σ∥2 (7.28)

< 0, ∀σ ̸= 0, (7.29)

if λKσ
min > cωd

λJmax + Vmax∥D∥. Here, ∥ωd∥ ≤ cωd
, Vmax is an upper bound

on Va, and λAmin, λ
A
max denotes the min and max eigenvalues of a matrix A,

respectively. In many cases, the matrix D provides natural damping such
that the preceding gain condition can be relaxed.

7.5.3 Disturbance Bounds

Let z1 = Jσ. Then

ż1 = J [−k1ϕ1(σ) + k3ξ] + γ(t, σ, ω, ωd, ω̇d), (7.30)

where

γ(t, σ, ω, ωd, ω̇d) = VaDσ + S(Jω)σ − S(ωd)Jσ − M̃p

− h̃(vba) + J̃ ω̇d − VaD̃ωd − S(J̃ωd)ωd, (7.31)

and J̃ = Ĵ − J , D̃ = D̂ − D, h̃(vba) = ĥ(vba) − h(vba) and M̃p = M̂p −Mp.
Now, with reference to (7.9)-(7.10), write γ in (7.31) as γ = γ1(t, σ, ω) +
γ2(t, ωd, ω̇d), with

γ1(t, σ, ω) = VaDσ + S(Jω)σ − S(ωd)Jσ (7.32)

γ2(t, ωd, ω̇d) = −M̃p − h̃(vba) + J̃ ω̇d − VaD̃ωd − S(J̃ωd)ωd. (7.33)

We note that γ1 is vanishing at σ = 0, and that γ2 vanishes as the model
error (“tilde”-terms) goes to zero.

Let z2 = ξ + (1/k3)J
−1γ2, δ1 ≜ γ1(t, σ, ω) and δ2 ≜ (1/k3)J

−1γ̇2. Then
we recover the closed-loop structure of (7.9)-(7.10).

From (7.32), we get that, for any cω ∈ R>0 such that ∥ω∥ ≤ cω, the
following inequality holds:

∥δ1∥ ≤
[
Vmax∥D∥+ (cω + cωd

)λJmax︸ ︷︷ ︸
≜δ̄1

]
∥σ∥. (7.34)
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Therefore, the condition (7.15) is satisfied, and we move on to consider (7.16).
Without calculating δ2 explicitly, we see from (7.33) that γ̇2 is a function of
time, vba, v̇r, ωd, ω̇d and ω̈d:

δ2 =
1

k3
J−1γ̇2 = δ2(t, v

b
a, v̇r, ωd, ω̇d, ω̈d) (7.35)

By the definition of ωd, (7.20), it is clear that ω̇d also depends on ω and ϕ̈d.
Thus ω̇ enters into the expression for ω̈d. To satisfy (7.16), bounded relative
velocities and accelerations, as well as bounded angular accelerations, are
needed. Due to the smoothness of the equations of motion, (2.39) and (2.40),
this will be satisfied in any compact domain of the state space. Additionally,
the wind velocity and acceleration is bounded.

Although we do not explicitly calculate δ̄2 in (7.16), we conclude that the
value of δ̄2 has a strong dependence on wind acceleration, angular velocity,
and acceleration, as well as on how demanding the desired trajectory is.
Instead of using such bounds to calculate controller gains for (7.3), (7.4), we
argue that explicit gain calculation formulas derived from Lyapunov analysis
often are conservative, and rather tune the parameters by trial and error.
Another reason is that in practice, actuator dynamics, saturation effects,
and discrete controls are present, all of which affect performance but are not
explicitly treated in the analysis.

7.5.4 Input-Matrix Uncertainty

The MSTA in [186], as well as the GMSTAs in [249] and [160], all assume
that the input matrix is fully known. In [245], a modification to the MSTA is
provided which is robust to an uncertain input matrix, but only symmetric,
positive definite input matrices are considered. This is relaxed in [124], where
it is shown that the MSTA is robust to non-symmetric uncertain input
matrices, but for large asymmetries, the algorithm becomes unstable. For
the GMSTA however, no results on input-matrix uncertainty can be found,
and it is unclear how such uncertainties affect the stability properties of
the algorithm. Nevertheless, in this chapter, we simulate with input matrix
uncertainty, and for the UAV model considered, asymmetry is relatively
small.
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7.6 Simulation Study

7.6.1 Simulation Environment

The six-degree-of-freedom nonlinear dynamic model of Section 2.4 is im-
plemented in MATLAB/Simulink with parameters for the Aerosonde UAV
from [19]. This also includes models for propeller thrust and aerodynamic
forces. In our simulations, the UAV is subject to severe turbulence, shown
in Figure 7.1, generated by the Dryden turbulence model [168]. The wind
disturbance enters the equations of motion through (2.31).

The controller, given by Eq. (7.24), is run at discrete time instants at
a constant rate of 50Hz with zero-order hold on the commanded control
surface deflection angles. This is the same as the sampling frequency of the
ArduPilot fixed-wing autopilot [13]. The ode45 method is used for numerical
integration between controller updates. To make the simulation model more
realistic, measurement noise and a time delay of one timestep are added to
the discrete measurements. Based on logged data from ArduPilot running
on a Pixhawk autopilot [200] standing still on a desk, the measurement noise
of the angular rate sensors is approximated as a zero-mean Gaussian noise
process with a variance of 2.2×10−7 rad2 s−2. In the logged data, the attitude
estimates provided by the onboard extended Kalman filter show very little
to no variance. Therefore, measurement noise in the attitude estimates is not
considered in the simulation model. The discrete control surface deflection
commands are run through the (continuous) second-order actuator dynamics
defined by (2.50) with ζ = 1/

√
2, ω0 = 30 rad s−1. Magnitude and rate

constraints of ±30 deg and ±200 deg/s, respectively, are added to (2.50)
using conditional integration.

When simulating our controller, the airspeed is controlled separately
using the proportional-integral (PI) controller

δt = δt,0 − 0.15(Va − Va,d)− 0.25

∫ t

0
(Va − Va,d)dτ, (7.36)

where Va,d = 35m s−1 is the airspeed reference, δt ∈ [0, 1] is the throttle,
and δt,0 is the nominal throttle calculated by a trim procedure for straight
and level horizontal flight at Va = 35m s−1.

7.6.2 Controller Implementation

Controller parameters are set to κ = 1, c1 = 0.6, c2 = 1, c3 = 0, k1 = 5, k2 =
20, k3 = 1, d1 = 1/2. This corresponds to the special case (7.13)-(7.14). This
is done to simplify tuning as it is still unclear what to gain in practice by

115



7. Robust Reduced-Attitude Control of Fixed-Wing UAVs Using a
Generalized Multivariable Super-Twisting Algorithm

allowing more general parameter values. This will be the topic of further
investigation in the future. The parameters were tuned by trial and error
to achieve low tracking errors without noticeable chattering in the control
input.

In the implementation, ∥σ∥ in (7.13) and (7.14) is replaced by ∥σ∥ + ϵ
for some small ϵ > 0 to avoid division by zero during simulation. A value of
ϵ = 0.01 seems to work well.

In (7.24), to really test the robustness of the controller, no model es-
timates are used, i.e., uff = ĥ(vba) = M̂p = 0. In place of the true inertia
and input matrices in (7.24), the following matrices are used to introduce
uncertainty in the control directions in the simulation:

Ĵ =
A+A⊤

2
(7.37)

A =

1.2 0 0.1
0 1.13 0
0.1 0 0.8

 J (7.38)

B̂ =

 0.9 0 0.1
0 1.12 0

−0.12 0 1.0

B, (7.39)

where J and B are the true matrices with parameters from [19].

7.6.3 Results

Figures 7.2-7.8 show the results of a simulation run where for the 20 first
seconds, ϕd = 60deg and θd = 15deg are constant. In the following 40
seconds, ϕd = 60 cos(0.2π(t − 20)) deg and θd = 15 cos(0.16(t − 20)) deg.
These expressions are differentiated analytically, and ω⊥

d is calculated as
described in [209], Appendix E. The initial conditions are ϕ(0) = −40 deg,
θ(0) = −20 deg and ω(0) = 0.

Despite the turbulent wind conditions and the fact that no feed-forward,
including reference time derivatives, is used, the GMSTA achieves excellent
tracking of reduced attitude. Tracking results for both constant and time-
varying references are shown in terms of roll and pitch angles in Figure 7.2,
and in terms of the vector coordinates Γ in Figure 7.3. To better visualize
the spherical parameterization, a path on the sphere is shown in Figure 7.4,
corresponding to the first 17 seconds of the simulation. No significant chat-
tering can be observed in the control signal shown in Figure 7.5.

The sliding variable σ and GMSTA integrator state z is shown in Fig-
ure 7.6. Some oscillations of the sliding variable around σ = 0 can be
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Figure 7.1: Wind turbulence generated by Dryden turbulence model: Linear wind
velocity (top) and angular velocity (bottom).

observed. Theoretically, σ should stay at zero once the sliding surface is
reached. However, the analysis does not consider discrete implementations
and actuator dynamics. We have also tuned the controller to avoid significant
chattering in the control signal, which conflicts with the objective of perfect
disturbance rejection. In practice, due to the high degree of turbulence, such
oscillations are to be expected.

The variation of σ seems to affect the parallel component of angular
velocity the most, seen as high-frequent oscillations of ω∥ around ω∥

d in Fig-
ure 7.7, which should be investigated further. Although there are some os-
cillations, the GMSTA fulfils the control objective of simultaneous reduced-
attitude tracking and control of ω∥ to ω∥

d. Finally, airspeed, angle of attack,
and sideslip are plotted in Figure 7.8, which displays the turbulent con-
ditions. In light of (2.51), the sideslip angle is kept small throughout the
manoeuvre.

7.7 Chapter Summary

This chapter has presented a solution to the robust reduced-attitude control
problem for fixed-wing UAVs based on a generalized multivariable super-
twisting algorithm. The sliding surface is designed by applying methods from
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Figure 7.2: Roll and pitch angles (red) vs references (blue).
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Figure 7.3: Reduced-attitude vector Γ (blue) vs reference Γd (red).
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Figure 7.4: The 17 first seconds of simulated trajectory shown as a path on the
sphere. Initial condition marked red. Reference marked green.
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Figure 7.5: Commanded control surface deflections.
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Figure 7.6: Sliding variable σ (top) and integrator state z (bottom).
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Figure 7.8: Airspeed, angle of attack and sideslip angle.

geometric attitude control combined with the coordinated-turn equation.
The efficacy of the design has been demonstrated in a simulated environ-
ment. To evaluate the practical applicability of the methods, the simulation
model includes several elements that can make real-life application of slid-
ing mode control theory challenging: discrete measurements and controls,
time delay, measurement noise, saturated actuator dynamics, as well as a
turbulence model.
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Path-Following Control
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Chapter 8

Introduction to Part II

In Part II, which consists of one main chapter, we revisit the path-following
guidance problem in three dimensions. First, by formulating the path-following
error directly in the inertial frame, we propose a class of guidance laws for
regular parametrised paths that, unlike most approaches existing in the lit-
erature, do not require the explicit construction of a path frame. Based on
an inner-outer loop control paradigm, the guidance law generates a normal
acceleration command that is normal to the flow-relative velocity vector (as
the lift force). This allows for a natural decomposition of the desired vehicle
acceleration for aerial vehicles in coordinated turns: tangential acceleration
for airspeed control and normal acceleration for guidance generated through
bank-to-turn manoeuvres, i.e., by tilting the lift vector. By using cascade
arguments, we show that the proposed design leads to almost global stabil-
ity results and thus relaxes the set of feasible initial conditions compared to
existing methods. The efficacy of the proposed guidance law is demonstrated
in a simulation study.
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Chapter 9

Almost Global
Three-Dimensional
Path-Following Guidance Law
for Arbitrary Curved Paths

This chapter is based on the following article:

[60] E. M. Coates, T. Hamel, and T. I. Fossen. Almost global three-
dimensional path-following guidance law for arbitrary curved paths.
In 62nd IEEE Conference on Decision and Control (CDC) (accepted),
2023.

9.1 Introduction

In the last decade, advances in hardware technology and control algorithms
have led to increased use of small UAVs in a wide range of civil, commercial,
and scientific applications [19].

In high-performance applications, the position of the UAV is typically
controlled by either trajectory tracking or path-following algorithms [3].
The objective of path following is to ensure that the vehicle’s position con-
verges to and follows a desired geometric path without any temporal con-
straints [36].

For fixed-wing aircraft, path-following algorithms are usually preferred
over trajectory tracking for the following reasons: Aerodynamic character-
istics and performance depend on the air-relative velocity, so accurate tra-
jectory tracking can be difficult. This is especially true for small fixed-wing
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UAVs, where wind speeds comprise a high percentage of the total speed.
Furthermore, the underactuated and nonminimum phase characteristics of
typical fixed-wing aircraft further complicate the matter. Moreover, in [4],
it is shown that path-following removes the fundamental performance limi-
tations present in trajectory tracking for nonminimum phase systems.

During the last three decades, many path-following methods have ap-
peared in the literature. We refer the reader to the recent review [109]
for an in-depth treatment. The existing literature on 3D path following,
e.g. [55, 56, 119], solve the control problem by specifying a guidance law
in terms of normal acceleration, normal to the (ground) velocity vector of
the aircraft. However, the control of fixed-wing aircraft is better defined in
terms of the air-relative velocity vector for the following reasons:

• Performance specifications (lift, drag, stall, efficiency, etc.) of fixed-
wing aircraft are defined using airspeed. Therefore, the airspeed should
be carefully monitored and controlled during flight.

• A fixed-wing aircraft in a coordinated turn generate normal accelera-
tions by reorienting the lift force through a banking (“bank-to-turn”)
maneuver. The lift force is normal to the relative velocity.

• Decomposing the desired acceleration in components orthogonal to,
and in the direction of, the relative velocity allows us to decouple the
guidance from airspeed control.

• In many applications, the discrepancy between the two different nor-
mal accelerations is ignored. However, this difference can be signifi-
cant for fixed-wing aircraft flying in wind, resulting in disturbances
that deteriorate the control performance. This is especially true for
small UAVs, which often experience significant wind speeds compared
to their airspeed.

In this chapter, we propose a class of guidance laws for almost-global
path-following of any viable path in three dimensions, especially suited for
fixed-wing aircraft. We employ an inner-outer loop control paradigm: In the
outer loop, a desired heading vector (the velocity direction) is chosen that
steers the vehicle toward the path. This is achieved using a simple line-of-
sight (LOS)-like feedback law, and in contrast to most existing methods for
3D path-following [36, 55, 56, 119], we do not require the definition of a
moving coordinate frame attached to the path. The desired heading vector
is converted to a relative heading vector by carefully considering the wind
triangle. In the inner loop, a control law on the two-sphere achieves the
desired relative heading by specifying a normal acceleration, normal to the
relative velocity as is natural for fixed-wing aircraft. The resulting closed-
loop system is analyzed as a cascade and is shown to be almost globally
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asymptotically stable. The effectiveness of our approach is demonstrated in
a simulation case study.

The main contributions can be summarized as follows:

1. We propose a novel guidance law for arbitrary regular curved paths in
3D with almost global stability properties. This contrasts with many
existing works that either consider only a specific type of path, such
as straight lines or circular paths, or constrain the allowable range of
initial conditions.

2. The control input is the normal acceleration, normal to the relative ve-
locity, making the proposed guidance law particularly suited for fixed-
wing aircraft.

3. The control design and implementation is carried out without any path
frames such as Frenet-Serret or parallel transport frames. This, in
conjunction with the cascade design approach, results in a simple and
modular design.

4. Finally, we establish the connection between the proposed guidance
law and the classical LOS guidance law in 2D, showing that the pro-
posed design is a natural generalization of LOS guidance to 3D.

Chapter Outline

This chapter is organized as follows: the problem formulation is stated in
Section 9.2. Section 9.3 explains the derivation of the outer-loop guidance
controller, which includes the desired relative heading as well as an update
law driving the progression of the reference point on the desired path. The
inner-loop heading control is discussed in Section 9.4, while Section 9.5 cov-
ers the analysis of the complete closed-loop system. The relation between
our proposed guidance law and the classical LOS guidance law in 2D is
established in Section 9.6. Numerical simulation results are presented in
Section 9.7 before we summarize the chapter in Section 9.8.

9.2 Problem Formulation

Let a ∈ R3 denote an acceleration vector, and consider some p ∈ S2. Then
Π⊥
p (a) ∈ TpS2 is the normal acceleration, normal to p, and Π

∥
p(a) ∈ NpS2

is the tangential acceleration, in the direction of p. Let a = v̇ and v = V η
with V > 0 and η ∈ S2. From the product rule, v̇ = V η̇+ V̇ η. It follows that
Π⊥
η (a) = V η̇ and Π

∥
η(a) = V̇ η.

129



9. Almost Global Three-Dimensional Path-Following Guidance Law for
Arbitrary Curved Paths

9.2.1 Dynamical Model

We address the guidance problem by considering the vehicle’s second-order
kinematics. We use a simplified model in which the vehicle is treated as a
point particle moving in a uniform, constant wind field:

ξ̇ = v = Vaηa + vw (9.1)

η̇a =
1

Va
a⊥a , (9.2)

where the vehicle’s position and velocity are represented by ξ ∈ R3 and
v ∈ R3, respectively, and vw ∈ R3 is the constant wind velocity, all expressed
with respect to an inertial reference frame FI = {e1, e2, e3}. By assuming
that the ground speed V = ∥v∥ never crosses zero, the velocity vector v is
split into its ground speed V = ∥v∥ and heading vector η = v/V ∈ S2. To
account for the effects of wind on the vehicle’s motion, we similarly rewrite
the air-relative velocity va = v − vw as Vaηa, with Va = ∥va∥ representing
the airspeed and ηa ∈ S2 is the air-relative heading vector. The normal
acceleration, a⊥a ∈ TηaS2, is the control input for the path-following problem
considered here. We assume that some inner-loop autopilot system controls
a⊥a to its desired value, e.g. using the method presented in [140]. For airspeed
control, we assume that there is an independent inner-loop control law that
uses the thrust input that stabilizes Va to the desired value V d

a (typically
constant) greater than the stall airspeed V s

a . From now on, we assume that
Va is constant and Va ≥ V s

a > Vw, with Vw the wind magnitude ∥vw∥.

9.2.2 Path-Following Control Problem

ξr(sr)
ηr(sr)

ξ̃

ξ

v

η

e1

e3

e2

P

Figure 9.1: Desired path.

Let the desired path be represented by a regular curve P in 3D space
with a desired orientation, parametrised by signed arc length sr ∈ R (sr
increases as the point on the path moves along the curve).
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We denote a reference position on the path by ξr(sr) ∈ R3, and the
tangent vector at ξr(sr) by ηr(sr) ∈ S2. For regular curves, ηr = ∂ξr/∂sr is
always well defined. The reference velocity (on the path) is then given by

ξ̇r = (∂ξr/∂sr)ṡr = Vrηr, (9.3)

where Vr := ṡr is the “signed speed” on the path. For ease of notation, we
denote ηr(sr) by ηr for the remainder of this chapter.

Let ξ̃ = ξ− ξr be the position error. From (9.1) and (9.3) it follows that

˙̃
ξ = v − Vrηr(sr) = Vaηa + vw − Vrηr(sr) (9.4)
ṡr = Vr (9.5)

As the regulation of Va is ensured independently of the system under con-
sideration, we can consider ηa and Vr as virtual controls to steer the vehicle
towards the path and then follow the path onward in the direction of ηr by
the asymptotic stabilization of the equilibrium ξ̃ = 0. These key concepts
are depicted in Fig. 9.1, which illustrates the main quantities involved in the
control process.

We simplify the control design by dividing the path-following control
problem into two subproblems:

1. Guidance that consists in defining ηda and Vr that ensure the asymp-
totic stabilization of ξ̃ = 0 when ηa ≡ ηda and consequently Vr = V .

2. Heading control that uses the normal acceleration a⊥a to drive the
actual direction ηa towards the desired direction ηda.

The resulting closed-loop system is then analyzed using the cascaded
dynamical systems theory.

9.3 Guidance controller Design

The guidance controller design is based on the model (9.4)–(9.5). By using
ηa as virtual control and assigning an update law for Vr, one can impose
the dynamics ˙̃

ξ = f1(ξ̃, sr) for some function f1(ξ̃, sr) such that for all t
and sr, f1(0, sr) = 0 and ξ̃⊤f1(ξ̃, sr) < 0 when ξ̃ ̸= 0. The global asymp-
totic (local exponential) stability proof of the origin ξ̃ = 0 follows directly
using the function W1(ξ̃) = (1/2)∥ξ̃∥2 along with standard Lyapunov sta-
bility arguments [125, Theorem 4.9]. Note however that f1(ξ̃, sr) should be
bounded since ∥Π⊥

ηr(f1(ξ̃, sr))∥ ≤ Va and hence precludes the global expo-
nential stability of ξ̃ = 0, which is consistent with the prior work on guidance
in 2D [81].
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Using the fact that Vr is a degree of freedom that can be used at will in
the ηr direction, it is natural to rewrite f1 = f1(ξ̃, sr) in two components:
one in the direction of ηr and the other in the orthogonal space: f1(ξ̃, sr) =
Π

∥
ηr(f1(ξ̃, sr)) +Π⊥

ηr(f1(ξ̃, sr)).
At this stage, the virtual control input ηda and Vr enter into the equation

via (9.4) using ηda ≡ ηa. The exact manner in which the virtual control input
ηda and the input Vr enter imposes a class of feasible feedback f1(ξ̃, sr) as
discussed below.

9.3.1 Specifying the Progression of the Path Reference
Point

Recalling (9.4) along with the fact that ˙̃
ξ = f1(ξ̃, sr) and pre-multiplying by

η⊤r on both sides of the equation, one verifies that:

η⊤r v − Vrη⊤r ηr = η⊤r f1(ξ̃, sr). (9.6)

Since ηr ∈ S2, one can rewrite (9.6) as follows:

Vr = η⊤r v − η⊤r f1(ξ̃, sr) = η⊤r v − η⊤r Π∥
ηr(f1(ξ̃, sr)). (9.7)

From there, one can choose the following feedback in the direction of ηr (or
equivalently in the image of ηrη⊤r ):

Π∥
ηr(f1(ξ̃, sr)) = −k1Π∥

ηr(ξ̃), (9.8)

A saturated version of the form:

Π∥
ηr(f1(ξ̃, sr)) = − ¯sat∆1

(
k1η

⊤
r ξ̃
)
ηr, (9.9)

with ∆1 the saturation limit, is also a possible choice.

9.3.2 Specifying the Desired Heading Vector

To specify the desired relative heading vector ηda, we insert first the expres-
sion of Vr, (9.7), into (9.4) to get

˙̃
ξ = Π⊥

ηr(v) +Π∥
ηr(f1(ξ̃, sr)) = f1(ξ̃, sr). (9.10)

By projecting both sides of the above equation by using Π⊥
ηr(·), one arrives

at the condition:
Π⊥
ηr(V η) = Π⊥

ηr(f1(ξ̃, sr)), (9.11)
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or equivalently,

Π⊥
ηr(Vaηa + vw) = Π⊥

ηr(f1(ξ̃, sr)). (9.12)

From there, one has to select ηda ∈ S2 to fulfil the objective. However, solv-
ing (9.12) for ηa can be challenging as it requires cancelling the wind effect
and ensuring normalization of ηa ∈ S2. Therefore, to simplify this process,
we will perform the assignment in two steps: 1) specify first ηd that satis-
fies (9.11) and then 2) transform ηd to ηda by involving the measure or an
estimate of the wind according to (9.12). See the prior work [115] on how
the wind can be estimated using standard sensors. We also refer the reader
to the recent survey [239].

Desired heading ηd

The simplest choice for ηd is:

ηd =
ηr − k2Π⊥

ηr(ξ̃)

∥ηr − k2Π⊥
ηr(ξ̃)∥

, (9.13)

where k2 > 0. By referring to (9.11) it is clear that in this case, Π⊥
ηr(f1(ξ̃, sr)) =

−k2VΠ⊥
ηr(ξ̃)/∥ηr − k2Π⊥

ηr(ξ̃)∥. One can consider the following option to in-
dependently manage the aircraft’s behaviour in both the horizontal and
vertical planes:

ηd =
ηr − (k2Π

⊥
e3 + k3e3e

⊤
3 )Π

⊥
ηr(ξ̃)

∥ηr − (k2Π
⊥
e3 + k3e3e⊤3 )Π

⊥
ηr(ξ̃)∥

, (9.14)

in which case

Π⊥
ηr(f1(ξ̃, sr)) = −

VΠ⊥
ηr((k2Π

⊥
e3 + k3e3e

⊤
3 )Π

⊥
ηr(ξ̃))

∥ηr − (k2Π
⊥
e3 + k3e3e⊤3 )Π

⊥
ηr(ξ̃)∥

, (9.15)

and k2, k3 > 0. One verifies that if k2 = k3, (9.14) reduces to (9.13).

Remark 9.1. The expressions (9.13) and (9.14) are closely related to the
classical line-of-sight guidance laws in 2D [81], see Section 9.6 for further
details.

Similarly to (9.9) saturation functions can be introduced in the design
of ηd to limit the maximum approach angle (w.r.t. ηr) when Π⊥

ηr(ξ̃) is large.
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Desired relative heading ηda

To convert the desired heading vector to a desired relative heading vector,
we will carefully consider the wind triangle.

Consider the wind triangle relating the velocity vector v, the air-relative
velocity va and the wind velocity vw:

va = v − vw, (9.16)

or equivalently:
Vaηa = V η − vw. (9.17)

Dividing by Va gives the following expression for the relative heading vector
as a function of V , η, Va, and the wind velocity vw:

ηa =
V

Va
η − vw

Va
. (9.18)

From geometrical considerations (see Fig. 9.2), one directly derives the fol-
lowing expression for the actual ground speed V as a function of Va, η and
vw:

V = η⊤vw +
√
(η⊤vw)2 + V 2

a − V 2
w . (9.19)

From there, one defines the expression for the desired relative heading:

ηda =
Vd
Va
ηd − vw

Va
. (9.20)

where
Vd = v⊤wη

d +
√
(v⊤wη

d)2 + V 2
a − V 2

w . (9.21)

η

ηa va

v

vw

Vw

Va

Y

X

v
⊤

w
η

Figure 9.2: The wind triangle. From the Pythagorean theorem, Y =√
V 2
w − (v⊤wη)

2 and X =
√

(v⊤wη)
2 + V 2

a − V 2
w . Finally, V = v⊤wη + X to de-

rive (9.19)
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It is straightforward to verify by direct computation of ∥ηda∥ that ηda is a
unit vector and that Vd is the normalizing factor required to compensate for
vw in (9.12). In particular, by inserting ηa ≡ ηda with ηda defined by (9.20)
into (9.12) one arrives at Π⊥

ηr(Vdηd). Finally, one notes that when vw = 0,
ηda = ηd.

9.4 Heading Control

In this section, we solve the (relative) heading control problem by choosing
a control law for normal acceleration a⊥a in (9.2), ensuring that the actual
relative heading vector ηa tracks the desired heading vector ηda.

Note that the set of all possible heading vectors ηa is the two-sphere S2,
and for each point ηa ∈ S2, the normal acceleration a⊥a ∈ TηaS2 is a vector
in the tangent space at ηa.

Several control laws for systems evolving on spheres can be found in the
literature, e.g. [41, 53, 64]. We propose to use the following:

Proposition 9.1: Consider the system (9.2) and a desired relative heading
vector ηda ∈ S2. Chose the following expression for a⊥a :

a⊥a = V 2
a kηΠ

⊥
ηa(η

d
a) + Vaηa ×

(
η̇da × ηda

)
, kη > 0. (9.22)

Then,
1. there are two closed-loop equilibria, given by ηa = ±ηda.
2. the desired equilibrium ηa = ηda is almost globally asymptotically stable

and locally exponentially stable, uniformly in t0.

3. the undesired equilibrium ηa = −ηda is unstable.

Proof. Let η̃a := ηa−ηda ∈ B2 denote the relative heading tracking error and
consider the storage function given by

W2(η̃a) =
1

2
η̃⊤a η̃a = 1− η⊤a ηda. (9.23)

One verifies that the time derivative of W2(η̃a) is:

Ẇ2(η̃a) = η̃⊤a ˙̃ηa = −Vakηηd
⊤
a Π⊥

ηa(η
d
a) (9.24)

= −Vakη∥ηa × ηda∥2 ≤ 0. (9.25)

The stated properties in the proposition then follow from standard Lyapunov
arguments, see e.g. [58, Proposition 1].
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Remark 9.2. Since S2 is a compact manifold, almost global asymptotic sta-
bility is the strongest stability result possible using continuous feedback [26].
However, global asymptotic stability can be achieved using hybrid control,
where hysteresis-based switching ensures that all trajectories converge to
the desired equilibrium [47, 143, 172, 209].

9.5 Analysis of the Complete Closed-Loop System

Proposition 9.2 (Main Result): Consider the second-order kinematics (9.1)–
(9.2) under the control (9.22) with the desired relative heading defined as
in (9.20)–(9.21), and Vr given by (9.7). Then the equilibrium point (ξ̃, η̃a) =
(0, 0) is almost globally exponentially stable and locally exponentially stable,
uniformly in t0.

Proof. To simplify the analysis, we consider the closed-loop system along
the solutions sr(t) of (9.5), which lets us analyze the system as a cascade.
The rigorous foundation that allows us to do this can be found in [158] and
is based on the notion of forward completeness [11], which can easily be
shown to hold for our system considered here.

Following the developments of Section 9.3 and substituting η̃a = ηa− ηda
then leads to

˙̃
ξ = f1(ξ̃, sr(t)) + VaΠ

⊥
ηr(η̃a). (9.26)

By construction, the origin ξ̃ = 0 of the unperturbed system ˙̃
ξ = f1(ξ̃, sr(t))

is uniformly globally asymptotically (locally exponentially) stable. Further,
the perturbation term VaΠ

⊥
ηr(η̃a) is bounded, since η̃a ∈ B2. Moreover, from

Proposition 9.1 we know that for all initial conditions except the (zero mea-
sure) set where ∥η̃a∥ = 2, η̃a is converging (ultimately exponentially) to
zero and thus the integral

∫∞
t0
∥η̃a(t)∥dt is bounded. By standard cascade

arguments, e.g. [159, Theorem 2.1], with a minor technicality being that
η̃a belongs to the compact space B2, one concludes that the equilibrium
point (ξ̃, η̃a) = (0, 0) is almost globally asymptotically stable, and locally
exponentially stable, uniform in t0.

The region of attraction to the desired equilibrium point only excludes
initial conditions in the set R3 × ∂B2 which has zero measure in R3 × B2.
The region of attraction is thus almost global. In practice, however, conver-
gence is essentially global: any slight perturbation of ∥η̃(t0)∥ would cause the
heading to converge to the desired heading. Global asymptotic stability can
be achieved using hybrid control, where hysteresis-based switching ensures
that all trajectories converge to the desired equilibrium [47, 143, 172, 209].
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9.6 Relation to Classical Line-of-Sight Guidance
Laws Using Angles

ξr

Πe3
ηr

Πe3
ξ̃

ξ

χr

Πe3
Pχd

Πe3
ηr

Πe3
(−k2Πηr

ξ̃)

χd − χr

Πe3
ηd

Figure 9.3: Projection to the horizontal plane. The magnitude of Π⊥
e3(ηr) equals

cos(γr), and ∥Π⊥
e3(Π

⊥
ηr
(ξ̃))∥ = |ye|.

Let parametrisations of ηr and ηd based on the commonly used spherical
coordinates be given by:

ηr =

cos(γr) cos(χr)cos(γr) sin(χr)
− sin(γr)

 , ηd =

cos(γd) cos(χd)cos(γd) sin(χd)
− sin(γd)

 (9.27)

where the pairs χr, γr and χd, γd are the azimuth and elevation angles of ηr,
ηd, respectively.

We can derive a relation between the guidance laws (9.13)–(9.14) and the
classical angle-based line-of-sight (LOS) guidance laws in 2D (e.g. [36, 81]) by
projecting to the horizontal plane using the projection Π⊥

e3(·). The projection
is illustrated in Fig. 9.3. By considering the projection of the right triangle
made up by ηd and its components in the direction of, and orthogonal to ηr,
Equations (9.13) and (9.14) can be expressed in terms of azimuth (course)
angles as

χd = χr + arctan

( −k2ye
cos(γr)

)
, γr ̸= ±

π

2
(9.28)

where ye is the cross-track error, i.e. the horizontal component of Π⊥
ηr(ξ̃),

given by ye := (Π⊥
ηr(ξ̃))

⊤(e3×ηr)⊤/∥e3×ηr∥. The expression (9.28) is equiv-
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alent to that given in [36, 81] with ∆ = cos(γr)/k2. The control laws (9.13)–
(9.14) thus provide natural generalizations of 2D LOS guidance laws to 3D
using unit vectors in S2.

9.7 Simulation Results

In this section, we consider a simulation scenario to demonstrate the effec-
tiveness of the proposed guidance law.

The specific choice of feedback used are given by (9.9) and (9.13) with
the following set of control parameters: k1 = 20, ∆1 = 50, k2 = 0.01, and
kη = 0.025. Further, the simulation has been set up with Va = 18m s−1 and
vw = [10m s−1, 0, 0]⊤. The desired path is the arc length parametrisation of
a helix of radius R = 200m and vertical separation h = 100m:

ξr(sr) =

R cos( sr√
R2+c2

)

R sin( sr√
R2+c2

)
c√

R2+c2
sr

 , (9.29)

where c = h/(2π). The initial conditions used are ξ(t0) = [0, 0, 0]⊤ (in
the center of the helix) and ηa(t0) = [−1, 0, 0]⊤, resulting in a large initial
heading error.

The simulation results are shown in Figs. 9.4–9.7 and show that after
an initial transient, perfect path following is achieved, even for a very large
initial heading error.

Fig. 9.4 shows how the vehicle (red) starts in the centre of the helix and
then converges to the path. In the bottom of Fig. 9.5, the angle θ between ηa
and ηda is shown to converge rapidly to zero after an initial error of around
150 degrees. The “cross-track error” ∥Π⊥

ηr(ξ̃)∥ (middle) seemingly converges
linearly to zero. This is because the vehicle is moving towards the path with a
constant airspeed Va. The bump in the magnitude of the normal acceleration
(top) occurring around 30 sec is also seen in Fig. 9.6 and is caused by the
wind. As the vehicle moves around the helix with constant airspeed, the
ground speed V varies, depending on the angle of the velocity with respect
to the non-zero wind. One also observes that when ξ̃ has converged close to
zero that η is aligned with ηr (see Fig. 9.7 where the time evolution of these
vectors are plotted using spherical coordinates) and that Vr converges to V .
From Fig. 9.7 one also sees how ηda is offset from ηd to account for the wind,
and how ηa converge to ηda, and η to ηd (and in turn, to ηr), respectively.
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Figure 9.4: Path following of helical path. Desired path P in blue, and path traced
out by the vehicle in red. The direction of travel is upwards.

9.8 Chapter Summary

In this chapter, we presented a class of novel path-following guidance laws
with almost global stability properties for any feasible curved path in 3D.
Working with the path-following error directly in the inertial frame means
there is no need to construct explicit “path frames” moving along the path.
Using a cascade approach, we provided conditions for choosing suitable feed-
back laws. Further, using the normal acceleration normal to the relative
velocity as the control input makes the guidance law especially suited for
fixed-wing aircraft. The simulated results demonstrate the efficacy of the
proposed method.
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Part III

Deep Reinforcement Learning
Attitude Control of
Fixed-Wing UAVs
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Chapter 10

Introduction to Part III

This chapter is based on material found in the following articles:
[31] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen. Deep rein-

forcement learning attitude control of fixed-wing UAVs using proximal
policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), 2019.

[32] E. Bøhn, E. M. Coates, D. Reinhardt, and T. A. Johansen. Data-
efficient deep reinforcement learning for attitude control of fixed-wing
UAVs: Field experiments. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

10.1 Introduction

Many challenging control problems arise during advanced operation of fixed-
wing UAVs, such as aerobatic maneuvering [40], perching [66], deep-stall
landing [166], recovery from loss of control [67], flying in strong wind fields [154],
or performing vertical take-off and landing (VTOL) transitions between
hover and forward flight [12]. Fixed-wing UAVs, as illustrated in Fig. 1.1a,
have superior range and endurance when compared to multirotor UAVs.
However, the control of such vehicles is challenging due to highly coupled,
underactuated nonlinear dynamics, as well as uncertain aerodynamics af-
fected by wind disturbances that make up a large fraction of the vehicle’s
airspeed.

A class of methods that have shown promising results for challenging con-
trol problems is deep reinforcement learning (DRL). Reinforcement learning
(RL) [25, 235] is a computational approach to solving sequential decision
problems under uncertainty or alternatively, learning approximate (subopti-
mal) solutions to stochastic optimal control problems, often through learn-
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ing from interaction with the (true or simulated) environment. DRL is the
combination of reinforcement learning (RL) algorithms with artificial neural
networks (ANNs) as function approximators, which is the state-of-the-art
approach for many complex decision-making problems with long time hori-
zons such as game-playing [221], dexterous in-hand robotic manipulation
[8], and object manipulation [220]. It can handle continuous state and ac-
tion spaces, highly complex and nonlinear system dynamics, and in general,
does not require a model of the system to be controlled. Furthermore, the
online execution of an RL controller is often very computationally efficient.
This should make DRL an enticing alternative for problems where accurate
identification of the system is difficult and traditional control approaches
are unable to yield sufficient control performance. Despite this potential,
DRL has yet to be widely adopted for control systems and notably lacks
demonstrations of control applications outside of simulations. One of the
main contributing factors to this is the lack of safety guarantees and the
ability to formulate operating constraints, both in the exploration and ex-
ploitation phase, which is further complicated by the data-intensive nature
of DRL.

One approach to mitigate the challenges of RL for control is foregoing
online exploration entirely and learning the controller exclusively from his-
torical data with no further interaction with the system to be optimized, i.e.
offline RL [151]. The latter is a radical alteration of the RL problem intro-
ducing new challenges and requiring its own set of learning algorithms. It
could nevertheless be an important future tool for problems such as control
of UAVs — where data collection carries a high risk, and accurate modelling
is difficult. A more common approach is performing part of or the whole
exploration phase in a simulation of the target system. A downside of this
approach is that while RL in principle is a model-free optimization frame-
work, the success of the transfer from the simulated environment to the
real target environment is highly affected by the accuracy of the simulation
model, the lack of which is referred to as the reality gap. One should there-
fore make a great effort in minimizing the reality gap through sim-to-real
measures, which aim at robustifying the learned controller and emulating
effects such as latency and measurement noise present in the real control
system. For a recent survey on sim-to-real methods in the context of control
and robotics, see [261].

For the sim-to-real learning approach to be useful for practical flight
control applications, controllers trained in simulation need to transfer well
to control the real UAV. Before attempting advanced problems like e.g.
deep-stall landing, it makes sense to first attempt simpler problems and
identify what factors are important for controllers to transfer well to reality.
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In Part III of the thesis, we consider the application of DRL methods to
low-level attitude control of fixed-wing UAVs.

10.2 Outline of Part III

First, in Chapter 11, which is based on [31], we apply the proximal policy
optimization (PPO) algorithm to control the attitude and speed of a fixed-
wing UAV. The controller is trained in a simulator environment developed
using the OpenAI Gym framework [38] and a flight dynamics model of the
Skywalker X8 flying wing. The DRL controller is evaluated in simulations
and compared against PID controllers using a range of performance metrics.
Next, in Chapter 12, based on [32], we demonstrate successful real-world
flight experiments using a Soft Actor-Critic (SAC) algorithm. We adopt the
method of exploring and learning in a simulator environment and iteratively
adjust the model and simulation environment with insights from flight ex-
periments. We apply domain randomization and other sim-to-real measures
in order to reduce the reality gap. Finally, in Chapter 13, based on [62], we
detail the experimental platform used for flight-testing of DRL controllers
as well as other high-performance flight control algorithms tested at our
lab. We summarize the challenges and lessons learned and document the
architecture of our experimental platform in a best-practice manner.

Before moving on to controller design in Chapter 11, we now give an
overview of related work and then end the present chapter with a brief intro
to RL and the specific DRL algorithms used in this work.

10.3 Related Work

In general, the application of RL to UAV platforms has been limited com-
pared to other robotics applications due to data collection with UAV systems
carrying a significant risk of fatal damage to the aircraft. RL have been pro-
posed as a solution to many high-level tasks for UAVs such as the higher-level
path planning and guidance tasks, alongside tried and tested traditional con-
trollers providing low-level stabilization. In the work of Gandhi et al. [83],
a UAV is trained to navigate in an indoor environment by gathering a siz-
able dataset consisting of crashes, giving the UAV ample experience of how
not to fly. In [101], the authors tackle the data collection problem by con-
structing a pseudo flight environment in which a fixed-wing UAV and the
surrounding area are fitted with magnets, allowing for adjustable magnetic
forces and moments in each DOF. In this way, the UAV can be propped
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up as one would do when teaching a baby to walk, and thereby experiment
without fear of crashing in a setting more realistic than simulations.

Imanberdiyev et al. [94] [111] developed a model-based RL algorithm
called TEXPLORE to efficiently plan trajectories in unknown environments
subject to constraints such as battery life. In [260], the authors use MPC
to generate training data for an RL controller, thereby guiding the pol-
icy search and avoiding the potentially catastrophic early phase before an
effective policy is found. Their controller generalizes to avoid multiple ob-
stacles, compared to the singular obstacle avoided by the MPC controller
in training, does not require full state information like MPC does, and is
computed at a fraction of the time. With the advent of DRL, it has also
been used for more advanced tasks such as enabling intelligent coopera-
tion between multiple UAVs [110], and for specific control problems such as
landing [202]. RL algorithms have also been proposed for attitude control
of other autonomous vehicles, including satellites [255] and underwater ve-
hicles. Carlucho et al. [45] apply an actor-critic DRL algorithm to low-level
attitude control of an autonomous underwater vehicle (AUV) and find that
the derived control law transfers well from simulation to real-world experi-
ments.

Of work addressing problems more similar in nature to the one in this
part of the thesis, i.e. low-level attitude control of UAVs, one can trace the
application of RL methods back to the works of Bagnell and Schneider [16]
and Ng er al. [189], both focusing on helicopter UAVs. Both employed meth-
ods based on offline learning from data gathered by an experienced pilot,
as opposed to the online self-learning approach proposed in this thesis. The
former focuses on control of a subset of the controllable states while keeping
the others fixed, whereas the latter work extends the control to all six de-
grees of freedom. In both cases, the controllers exhibit control performance
exceeding that of the original pilot when tested on real UAVs. In [1], the
latter work was further extended to include difficult aerobatic manoeuvres
such as forward flips and sideways rolls, significantly improving upon the
state-of-the-art. Cory and Tedrake [66] present experimental data of a fixed-
wing UAV perching manoeuvre using an approximate optimal control solu-
tion. The control is calculated using a value iteration algorithm on a model
obtained using nonlinear function approximators and unsteady system iden-
tification based on motion capture data. Bou-Ammar et al. [35] compared
an RL algorithm using fitted value iteration (FVI) for approximation of the
value function, to a non-linear controller based on feedback linearization, on
their proficiency in stabilizing a quadcopter UAV after an input disturbance.
They find the feedback-linearized controller to have superior performance.
Recently, Koch et al. [128] applied three state-of-the-art RL algorithms to
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control the angular rates of a quadcopter UAV. They found PPO to perform
the best of the RL algorithms, outperforming the PID controller on nearly
every metric.

The literature on RL-based attitude control of UAVs is dominated by
quadcopters, and most works operate exclusively in simulated environments
[23, 74, 128, 153, 248]. When it comes to works presenting real-world flight
experiments we have identified the following: [57, 79, 127, 135, 185, 247, 254].
Of these, only [57], their follow-up work [79], and [247] use a fixed-wing UAV
design. [57] and [79] study the specific problem of controlling a perched land-
ing, [247] fixes the aircraft in a wind-tunnel and limit themselves to control-
ling the pitch of the UAV, while we study the attitude control problem of
an unconstrained vehicle in a 3D outdoor environment. Moreover, the data
requirement of their methods is on the order of millions of samples. The
other aforementioned works also require millions of samples of data, with
the notable exception of [135]. Their method uses model-based RL and in-
volves learning a forward dynamics model that is used in an MPC scheme
that controls the quadrotor. While this method is very sample efficient, the
MPC controller is too computationally complex to run aboard the UAV and
therefore necessitates continuous communication with an external computer,
while our controller can run on a fraction of the computational power em-
bedded in the UAV. For a more general overview of the application of RL
to UAVs see [14] and the related works section of [31].

Other related control methods that have been proposed for attitude con-
trol of fixed-wing UAVs include simple PID loops [19], the linear quadratic
regulator (LQR) [138], adaptive dynamic programming (ADP) [75, 259, 263],
and MPC [208]. ADP is similarly to RL a data-driven optimal control
scheme. In the works of [75, 259, 263], the cost function is assumed to have
a quadratic form and the optimal control law is derived from the Hamilton-
Jacobi-Bellman (HJB) equation, which is solved numerically by approximat-
ing the cost-function using a value iteration scheme. Of note is also MPC
which has inherent support for system constraints, multivariate objectives,
high interpretability, and the ability to incorporate domain knowledge in the
dynamics model. Motivated by these properties, the authors of this work
have developed an MPC controller for simultaneous control of the UAV’s
attitude and airspeed, allowing the controller to consider the coupling be-
tween pitch and airspeed dynamics (note that we have previously demon-
strated that RL is also capable of learning this coupled control problem
[30, 31]). Flight experiments with this MPC were conducted using the same
experimental platform as this work, albeit with a more powerful processing
unit. See [208] for details and experimental results, as well as the discus-
sion in [62]. A in-depth comparison between MPC and the RL controller is

149



10. Introduction to Part III
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Figure 10.1: Agent-environment interaction in RL (adapted from [235]).

outside the scope of this thesis.

10.4 Reinforcement Learning

The RL optimization framework, illustrated by Fig. 10.1, consists of two
main parts, an environment that is to be controlled and an agent that ob-
serves the state of the environment and selects actions to maximize the
rewards it receives. The environment is typically described as a Markov deci-
sion process (MDP), which is defined by a 5-tuple of components (S,A, T , R, γ):
A set of states, S, a set of actions available to the agent, A, a transition func-
tion T (st, at) = st+1 which describe the evolution of the states as a function
of actions and previous states, a reward function R(s, a) quantifying the
utility of states and accompanying actions, and finally, a discount factor
γ ∈ [0, 1), weighing the relative value of immediate and future rewards.

We consider the episodic finite-horizon formulation of RL. An episode
is a trajectory of states and actions τ = (s0, a0, s1, a1, . . . , sT ) of maximum
length T with a distribution of initial states S0. The policy πϑ is a parame-
terized function that maps states to actions, describing the agent’s behaviour
(analogous to a control law in control terminology). The RL objective can
then be stated as finding the parameters ϑ of the optimal policy π∗ϑ that
maximizes the return G over the distribution of the initial conditions of the
episode:
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G(τ) =

T−1∑
t=0

γtR(st, at) (10.1)

π∗ϑ = argmax
ϑ

Eτ∼T (S0,πϑ) [G(τ)] (10.2)

where ∼ signifies that the trajectories τ are sampled from T (S0, π), i.e. the
distribution of trajectories given by the transition dynamics T , the initial
state distribution S0, and the action-distribution of the policy π.

Further, we define the value function V π(s) and action-value function
Qπ(s, a) as follows:

V π(s) =
∑
t

Eπϑ [R(st, at) | s] (10.3)

Qπ(s, a) =
∑
t

Eπϑ [R(st, at) | s, a]. (10.4)

Current state-of-the-art DRL algorithms for continuous state and ac-
tion spaces, notably Deep Deterministic Policy Gradient (DDPG) [152],
Trust Region Policy Optimization (TRPO) [222], PPO [223] and SAC [100],
are generally policy-gradient methods, where some parameterization of the
policy is iteratively optimized through estimating the gradients. They are
model-free, meaning they make no attempt at estimating the state-transition
function. Thus they are very general and can be applied to many problems
with little effort at the cost of lower sample efficiency. These methods gen-
erally follow the actor-critic architecture, wherein the actor module, i.e. the
policy, chooses actions for the agent and the critic module evaluates how
good these actions are, i.e. it estimates the expected long-term reward, which
reduces the variance of the gradient estimates.

Policy Gradient Methods

One class of RL methods that attempt to solve (10.2) are policy gradient
algorithms. Policy gradient algorithms work by estimating the policy gradi-
ent and then applying a gradient ascent algorithm to the gradient estimate.
The gradients are estimated in a Monte Carlo (MC) fashion by running the
policy in the environment to obtain samples of the gradient of the policy
loss JPG(ϑ)t [235]:1

1τ represents trajectories of the form (s0, a0, s1, a1, s2, a2, . . . , sT )
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∇ϑJ(ϑ) = Eτ∼πϑ(τ)

[(
T∑
t=0

∇ϑ log πϑ(at|st)
)
G(τ)

]
(10.5)

ϑnew = ϑold + η∇ϑJSAC(πϑ), (10.6)

and (10.6) shows the gradient ascent scheme used to arrive at the optimal
policy in which η > 0 is the learning rate and JSAC is the SAC objective
function.

In practice, these gradients are obtained with automatic differentiation
software on a surrogate loss objective, whose gradients are the same as (10.5),
and are then backpropagated through the ANN to update ϑ.

In this section, π is the policy network (that is, the control law) which
is optimized wrt. its parameterization ϑ, in this case the ANN weights. The
policy network takes the state, s, as its input, i.e. the observation vector,
and outputs an action, a, consisting of the elevator, aileron and throttle
setpoints. For continuous action spaces, the policy network is tasked with
outputting the moments of a probability distribution, in this case, the means
and variances of a multivariate Gaussian, from which actions are drawn.
During training, actions are randomly sampled from this distribution to
increase exploration, while the mean is taken as the action when training is
completed.

Actor-Critic Methods

The central challenge in policy gradient methods lies in reducing the variance
of the gradient estimates such that consistent progress towards better poli-
cies can be made. The actor-critic architecture makes a significant impact
in this regard by reformulating the reward signals in terms of the advantage,
defined as:

Aπ(s, a) = Qπ(s, a)− V π(s). (10.7)

The advantage function (10.7) measures how good an action is compared to
the other actions available in the state, such that good actions have positive
rewards and bad actions have negative rewards. One thus has to be able
to estimate the average reward of the state, i.e. the value function V (s).2

This is the job of the critic network, a separate ANN trained in a supervised
manner to predict the value function with ground truth from the reward

2The value function V π(s) is the expected long-term reward of being in state s and
then following policy π, as opposed to the Qπ(s, a)-function which focuses on the long
term reward of taking a specific action in the state, and then following the policy.
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values in the gathered samples. Several improvements such as generalized
advantage estimate (GAE) are further employed to reduce variance of the
advantage estimates.

10.4.1 The Proximal Policy Optimization Algorithm

PPO is a model-free, on-policy, actor-critic, policy-gradient method. It aims
to retain the reliable performance of TRPO algorithms, which guarantee
monotonic improvements by considering the Kullback–Leibler (KL) diver-
gence of policy updates, while only using first-order optimization. PPO max-
imizes the surrogate objective function

L(ϑ) = Êt
[
min

(
rt(ϑ)Ât, clip (rt(ϑ), 1− ϵ, 1 + ϵ) Ât

)]
, (10.8)

in which Â and Ê denotes the empirically obtained estimates of the ad-
vantage function and expectation, respectively, and rt(ϑ) is the probability
ratio

rt(ϑ) =
πϑ(at, st)

πϑold(at, st)
. (10.9)

Vanilla policy gradients require samples from the policy being optimized,
which after a single optimization step are no longer usable for the improved
policy. For increased sample efficiency, PPO uses importance sampling to
obtain the expectation of samples gathered from an old policy πϑold under
the new policy we want to refine πϑ. In this way, each sample can be used for
several gradient ascent steps. As the new policy is refined, the two policies
will diverge, increasing the variance of the estimation, and the old policy is
therefore periodically updated to match the new policy. For this approach
to be valid, the state transition function must be similar between the two
policies, which is ensured by clipping the probability ratio (10.9) to the re-
gion [1 − ϵ, 1 + ϵ].3 This also gives a first-order approach to trust region
optimization: The algorithm is not too greedy in favouring actions with pos-
itive advantage and not too quick to avoid actions with a negative advantage
function from a small set of samples. The minimum operator ensures that
the surrogate objective function is a lower bound on the unclipped objec-
tive and eliminates increased preference for actions with negative advantage
function. PPO also makes use of several actors simultaneously gathering
samples with the policy to increase the sample batch size. PPO is outlined
in Algorithm 1.

3The clip operator saturates the variable in the first argument between the values
supplied by the two following arguments.
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Algorithm 1: PPO
for iteration=1, 2, . . . do

for actor=1, 2, . . . , N do
Run policy πϑold in environment for T time steps
Compute advantage estimates Ât for t = 1, 2, . . . , T

end
Optimize surrogate L wrt. ϑ.
ϑold ← ϑ

end

10.4.2 Soft Actor Critic

SAC [100] is an actor-critic algorithm whose defining characteristic is its
entropy regularization, meaning that it is jointly maximizing the expected
rewards as in (10.2) and maximizing the entropy of the policy:

π∗ϑ = argmax
ϑ

Eτ∼T (S0,πϑ)

[
T∑
t=0

γt (R(st, at) + χH(ϑ|st, at))
]

(10.10)

where H(ϑ|s, a) = Ea∼πϑ(a|s) [− log πϑ(a|s)] is the entropy, equal to the neg-
ative log probability of the action-distribution of the policy in the state in
question and χ is the entropy coefficient. For brevity, we limit our discussion
about SAC to the implementation of the policy and instead refer the reader
to the original paper [100] for details on the objective function. The policy
is implemented as follows:

πϑ(st) = tanh(µϑ(s) + σϑ(s)⊙ ξ), ξ ∼ N (0, I), (10.11)

where µϑ and σϑ are two parameterized deterministic functions of the input,
representing the mean and covariance of the output, respectively. The no-
tation ⊙ denotes element-wise matrix multiplication and ξ is independently
sampled Gaussian noise. The entropy can therefore be controlled in a state-
dependent manner through the σϑ function. Finally, the output is saturated
with the hyperbolic tangent function, which squashes the Gaussian’s infinite
support to the domain [−1, 1], limiting the adverse effects of extreme noise
values and giving bounded outputs.
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Chapter 11

Deep Reinforcement Learning
Attitude Control of
Fixed-Wing UAVs Using
Proximal Policy Optimization

This chapter is based on the following article:

[31] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen. Deep rein-
forcement learning attitude control of fixed-wing UAVs using proximal
policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), 2019.

11.1 Introduction

Contemporary autopilot systems for UAVs are far more limited in their
flight envelope as compared to experienced human pilots, thereby restricting
the conditions UAVs can operate in and the types of missions they can
accomplish autonomously. In this chapter, we propose to use DRL to handle
the nonlinear attitude control problem and to extend the flight envelope for
fixed-wing UAVs. The objective is to explore the application of RL methods
to low-level control of fixed-wing UAVs and produce a proof-of-concept RL
controller capable of stabilizing the attitude of the UAV to a given attitude
reference. To this end, we implement an OpenAI Gym environment [38] with
a flight simulator tailored to the Skywalker X8 flying wing, where the RL
controller is tasked with controlling the attitude (the roll and pitch angles)
as well as the airspeed of the aircraft. To the best of the authors’ knowledge,
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this is the first reported work to use DRL for attitude control of fixed-wing
UAVs.

Chapter Outline

The rest of the chapter is organized as follows: First, Section 11.2 outlines the
approach taken to develop the RL controller, presenting the configuration
of the RL algorithm and the key design decisions taken, and finally how the
controller is evaluated. In Section 11.3, we present simulation results and
evaluate the controller in light of the approach described in Section 11.2
before ending with a chapter summary in Section 11.4.

11.2 Method

11.2.1 Control Objective

The objective is to control the UAV’s attitude, so a natural choice of con-
trolled variables are the roll, pitch and yaw angles. However, the yaw/heading
angle of the aircraft is typically not controlled directly but through banked-
turn manoeuvres. In addition, it is desirable to stay close to some nominal
airspeed to ensure energy-efficient flight, avoid stalling, and maintain con-
trol surface effectiveness which is proportional to airspeed squared. The RL
controller is therefore tasked with controlling the roll and pitch angles, ϕ
and θ, and the airspeed Va to desired reference values.

11.2.2 RL Algorithm

The RL controller is constructed using PPO [223], described in Section 10.4.1.
PPO was chosen for several reasons: first, PPO was found to be the best
performing algorithm for attitude control of quadcopters in [128], and sec-
ondly, PPO’s hyperparameters are robust for a large variety of tasks, and
it has high performance and low computational complexity. It is therefore
the default choice of algorithm in OpenAIs projects. Our implementation is
based on the OpenAI Baselines implementation [104].

11.2.3 UAV Simulation Model

To train and test the RL controller, we have implemented a simulation model
of a Skywalker X8 flying wing (Fig. 1.1a) integrated with the OpenAI Gym
environment [38], which enables easy integration with OpenAI Baselines.
We have since made this software publicly available [27, 28].
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The simulation model is based on the general aircraft equations of mo-
tion presented in Section 2.3 and Section 2.4, tailored to the Skywalker
X8 and based on previous modelling efforts. Aerodynamic coefficients are
taken from [93], based on wind tunnel experiments of the X8 and simple
computational fluid dynamics (CFD) simulations. In addition to the linear
coefficients typically used in flight mechanics [19, 233], the drag coefficient
CD contains extra terms quadratic in β and the (virtual) elevator deflection
δe. Furthermore, the flight simulator was designed with the goal of being
valid for a wide array of flight conditions and therefore includes additional
nonlinear effects in the aerodynamic model. Therefore, as an attempt to ex-
tend the range of validity to a greater range of α- and β-values, lift, drag
and pitch moment coefficients are made nonlinear using Newtonian flat plate
theory [19, 91].

The propeller thrust Tp is given by Eq. (2.41) with parameters based on
wind-tunnel experiments presented in [63]. The propeller moment is given
by Eq. (2.42) where kΩ = 797.1268 and kQ = 1.1871×10−6. These numbers
are estimated based on the same experimental data used in [63]. Gyroscopic
moments are assumed negligible. The throttle dynamics is given by a first-
order (unity DC gain) low-pass filter with time constant T = 0.2.

The X8 is equipped with elevons, one control surface on each wing, that
are moved collectively to produce a pitch moment and differentially to pro-
duce a roll moment. The elevon control surface dynamics are modelled by
magnitude- and rate-limited second-order low-pass filters (2.50) with natural
frequency ω0 = 100 rad s−1 and damping ratio ζ = 1/

√
2. The angular de-

flections and rates are constrained to ±30 deg and ±200 deg/s, respectively.
The aerodynamic model is defined in terms of virtual aileron and elevator
deflections. The true elevon deflection angles are therefore transformed using
Eq. (2.49) before evaluating the aerodynamic forces and moments.

11.2.4 Controller Architecture

In DRL, the controller policy is made up of an ANN. The input to the policy
is the observation vector, and the outputs are control actions. The policy
network is an extended version of the default two hidden layers, 64 nodes
multilayer perceptron (MLP) policy of the OpenAI Baselines implementa-
tion: the observation vector is first processed in a convolutional layer with
three filters spanning the time dimension for each component, before being
fed to the default policy. This allows the policy to construct functions on
the time evolution of the observation vector while scaling more favourably
in parameter count with increasing observation vector size compared to a
fully connected input layer.
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Observation Vector

The observation vector (i.e. the input to the RL algorithm) contains infor-
mation obtained directly from state feedback of states typically measured by
standard sensor suites. No sensor noise is added. To promote smooth actions
it also includes a moving average of previous actuator setpoints. Moreover,
since the policy network is a feed-forward network with no memory, the ob-
servation vector at each time step consists of these values for several previous
time steps to facilitate learning of the dynamics.

The choice of observation vector supplied to the RL controller proved
to be significant for its rate of improvement during training and its final
performance. We found that reducing the observation vector to only the
essential components, i.e. the current airspeed and roll and pitch angles, the
current angular velocities of the UAV, and the state errors, helped the RL
controller improve significantly faster than other, larger observation vectors.1

Including values for several previous time steps (five was found to be a
good choice) further accelerated training, possibly making dynamics learning
easier for the memoryless feed-forward policy.

The components of the observation vector are expressed in different units
and also have different dynamic ranges. ANNs are known to converge faster
when the input features share a common scale, such that the network does
not need to learn this scaling itself. The observation vector is therefore nor-
malized. This is accomplished with the VecNormalize class of [104], which
estimates each observation component’s running mean and variance and
normalizes based on these estimates.

Action Space

The action space of the controller is three-dimensional, consisting of com-
manded virtual elevator and aileron angles as well as the throttle. Elevator
and aileron commands are mapped to commanded elevon deflections using
the inverse of the transformation given by (2.49).

A known issue in optimal control is that continually switching between
maximum and minimum input is often optimal in the sense of maximizing
the objective function, it wears unnecessarily on the actuators in practice.
Since PPO samples its outputs from a Gaussian distribution during training,
a high variance will generate highly fluctuating actions. This is not much of a
problem in a simulator environment but could be an issue if trained online on

1Essential here refers to the factors’ impact on performance for this specific control
task. One would for instance expect α and β to be essential factors when operating in the
more extreme and nonlinear regions of the state space.

158



11.2. Method

a real aircraft. PPO’s hyperparameters are tuned w.r.t. a symmetric action
space with a small range (e.g. -1 to 1). Adhering to this design also has the
benefit of increased generality, training the controller to output actions as a
fraction of maximal and minimal setpoints. Therefore, the actions produced
by the controller are saturated to this range and subsequently scaled to fit
the actuator ranges as described in Section 11.2.3.

11.2.5 Reward Function and Training Procedure

At each time step t, the controller receives an immediate reward Rt, and it
aims at developing a control law that maximizes the sum of future discounted
rewards. In accordance with traditional control theory, where one usually
considers the cost to be minimized rather than rewards to be maximized,
the immediate reward returns to the RL controller are all negative rewards
in the normalized range of -1 to 0:

Rt = −(Rϕ +Rθ +RVa +Rδc), (11.1)

where

Rϕ = satγ1
( |ϕ− ϕd|

ζ1

)
Rθ = satγ2

( |(θ − θd)|
ζ2

)
RVa = satγ3

( |Va − V d
a |

ζ3

)
Rδc = satγ4

(∑
j∈[a,e,t]

∑4
i=0 |δcjt−i

− δcjt−1−i
|

ζ4

)

and

ζ1 = 3.3, ζ2 = 2.25, ζ3 = 25, ζ4 = 60

γ1 = 0.3, γ2 = 0.3, γ3 = 0.3, γ4 = 0.1

In this reward function, L1 was chosen as the distance metric between the
current and desired states (denoted with superscript d).2 Furthermore, a
cost is attached to changing the actuator setpoints to address oscillatory
control behaviour. Commanded control setpoint of actuator j at time step t
is denoted δcjt , where j ∈ [a, e, t]. The importance of each component of the

2The L1 distance has the advantage of punishing small errors harsher than the L2

distance and therefore encourages eliminating small steady-state errors.
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Table 11.1: Constraints and ranges for initial conditions and target setpoints used
during training.

Variable Initial Condition Target

ϕ ±150° ±60°
θ ±45° ±30°
ψ ±60° -
ω ±60 °/s -
α ±26° -
β ±26° -
Va 12− 30m/s 12− 30m/s

reward function is weighted through the γ factors. To balance the disparate
scales of the different components, the values are divided by the variables’
approximate dynamic range, represented by the ζ factors.

The reward function is one of the major ways the designer can influence
and direct the behaviour of the agent. One of the more popular alternatives
to L1 norm and clipping to achieve saturated rewards are the class of ex-
ponential reward functions, and notably the Gaussian reward function as in
[45]. Analyzing different choices of the reward function was not given much
focus as the original choice gave satisfying results.

The PPO RL controller was initialized with the default hyperparameters
in the OpenAI Baselines implementation [104] and ran with 6 parallel ac-
tors. The controller is then trained in an episodic manner to assume control
of an aircraft in motion and orient it towards some new reference attitude.
Although the task at hand is not truly episodic in the sense of having natural
terminal states, episodic training allows one to adjust episode conditions to
suit the agent’s proficiency and admits greater control of the agent’s explo-
ration of the state space. The aircraft’s initial state and reference setpoints
are randomized in the ranges shown in Table 11.1. Episode conditions are
made progressively more difficult as the controller improves, beginning close
to target setpoints and in stable conditions until finally spanning the en-
tire range of values given in Table 11.1. The chosen ranges allow the RL
controller to demonstrate that it is capable of attitude control and facili-
tates comparison with the PID controller as it is expected to perform well
in this region. According to [19], a typical sampling frequency for autopilots
is 100 Hertz, and the simulator, therefore, advances 0.01 seconds at each
time step. Each episode is terminated after a maximum of 2000 time steps,

160



11.2. Method

Table 11.2: PID controller parameters.

Parameter Value Parameter Value

kpV 0.5 kdϕ 0.5

kiV 0.1 kpθ −4
kpϕ 1 kiθ −0.75
kiϕ 0 kdθ −0.1

corresponding to 20 seconds of flight time, and no wind or turbulence forces
are enabled during training.

11.2.6 Evaluation

Representing the state-of-the-art in model-free control, fixed-gain PID con-
trollers for roll, pitch and airspeed were implemented to provide a baseline
comparison for the RL controller:

δct = −kpV (Va − V d
a )− kiV

∫ t

0
(Va − V d

a )dτ (11.2)

δca = −kpϕ(ϕ− ϕd)− kiϕ
∫ t

0
(ϕ− ϕd)dτ − kdϕp (11.3)

δce = −kpθ(θ − θd)− kiθ
∫ t

0
(θ − θd)dτ − kdθq (11.4)

The throttle is used to control airspeed, while virtual aileron and eleva-
tor commands are calculated to control roll and pitch, respectively. The
PID controllers were manually tuned using a trial-and-error approach un-
til achieving acceptable transient responses and low steady-state errors for a
range of initial conditions and setpoints. The wind was turned off in the sim-
ulator during tuning. The integral terms in (11.2)-(11.4) are implemented
numerically using forward Euler. Controller gains are given in Table 11.2.

The same aerodynamic model used for training is also used for evaluation
purposes, with the addition of disturbances in the form of wind to test gen-
eralization capabilities. The controllers are compared in four distinct wind
and turbulence regions: light, moderate, severe and no turbulence. Each set-
ting consists of a steady wind component, with randomized orientation and
a magnitude of 7 m/s, 15 m/s, 23 m/s and 0 m/s respectively, and additive
turbulence given by the Dryden turbulence model [240]. Note that a wind
speed of 23 m/s is a substantial disturbance, especially when considering the
Skywalker X8’s nominal airspeed of 18 m/s. For each wind setting, 100 sets
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of initial conditions and target setpoints are generated, spanning the ranges
shown in Table 11.1. The reference setpoints are set to 20-30 degrees and
3-4 m/s deviation from the initial state for the angle variables and airspeed,
respectively. Each evaluation scenario is run for a maximum of 1500 time
steps, corresponding to 15 seconds of flight time, which should be sufficient
time to allow the controller to regulate to the setpoint.

The reward function is not merely measuring the proficiency of the RL
controller but is also designed to facilitate learning. To compare, rank and
evaluate different controllers, one needs to define additional evaluation crite-
ria. To this end, the controllers are evaluated on the following criteria: Suc-
cess/failure, whether the controller is successful in controlling the state
to within some bound of the setpoint. The state must remain within the
bounds for at least 100 consecutive time steps to be counted as a success.
The bound was chosen to be ±5° for the roll and pitch angles, and ±2m/s for
the airspeed. Rise time, the time it takes the controller to reduce the initial
error from 90 % to 10 %. As these control scenarios are not just simple step
responses and may cross these thresholds several times during the episode,
the rise time is calculated from the first time it crosses the lower threshold
until the first time it reaches the upper threshold. Settling time, the time
it takes the controller to settle within the success setpoint bounds and never
leave this bound again. Overshoot, the peak value reached on the opposing
side of the setpoint wrt. the initial error, expressed as a percentage of the
initial error. Control variation, the average change in actuator commands
per second, where the average is taken over time steps and actuators. Rise
time, settling time, overshoot and control variation are measured only when
the episode is counted as a success. When comparing controllers, the suc-
cess criterion is the most important, as it is indicative of stability as well
as achieving the control objective. Secondly, low control variation is impor-
tant to avoid unnecessary wear and tear on the actuators. While success or
failure is a binary variable, rise time, settling time and overshoot give addi-
tional quantitative information on the average performance of the successful
scenarios.

11.3 Results and Discussion

The controller was trained on a desktop computer with an i7-9700k CPU and
an RTX 2070 GPU. The model converges after around two million time steps
of training, which on this hardware takes about an hour. This is relatively
little compared to other applications of DRL, and suggests that the RL con-
troller has additional capacity to master more difficult tasks. Inference with
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the trained model takes 800 microseconds on this hardware, meaning that
the RL controller can operate at the assumed autopilot sampling frequency
of 100 Hertz in flight.

The RL controller generalizes well to situations and tasks not encoun-
tered during training. Even though the controller is trained with a single
setpoint for each episode, Figure 11.1 shows that the controller is perfectly
capable of adapting to new setpoints during flight. This result was also found
by Koch et al. [128] for quadcopters. The generalization capability also holds
for unmodeled wind and turbulence forces. The controller is trained with no
wind estimates present in the observation vector and no wind forces enabled
in the simulator. However, as Table 11.3 shows, it is still able to achieve
tracking to the setpoint when steady wind and turbulence is enabled in
the test environment. Table 11.3 should be read as a quantitative analysis
of performance in conditions similar to normal operating conditions, while
Figure 11.1 and 11.2 qualitatively shows the capabilities of the controllers
on significantly more challenging tasks.

Table 11.3 shows that both controllers can achieve convergence to the
target for the evaluation tasks, with neither controller clearly outperforming
the other. The RL controller has an advantage over the PID controller on
the success criterion and seems to be more robust to the turbulence dis-
turbance. It achieves convergence in the attitude states in all situations,
unlike the PID controller, and is also notably more successful in moderate
and severe turbulence conditions. The PID controller has considerably lower
control variation for the simple settings with little or no wind, but its control
variation grows fast with increasing disturbance. At severe turbulence, the
RL controller has the least control variation.

The two controllers perform similarly w.r.t. settling time and rise time,
each having the edge in different states under various conditions, while the
PID controller performs favourably when measured on overshoot. All in all,
this is an encouraging result for the RL controller, as it is able to perform
similarly as the established PID controller in its preferred domain, while
the RL controller is expected to make its greatest contribution in the more
nonlinear regions of the state space.

A comparison of the two controllers is shown in Figure 11.2 on a scenario
involving fairly aggressive maneuvers, which both are able to execute. Figure
11.1 and 11.2 illustrate an interesting result; the RL controller is able to
eliminate steady-state errors. While the PID controller has integral action
to mitigate steady-state errors, the control law of the RL controller is only
a function of the last few states and references. This might suggest that
the RL controller has learned some feed-forward action, including nominal
inputs in each equilibrium state, thus removing steady-state errors in most
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Figure 11.1: The RL controller trained episodically with a single setpoint and
no wind or turbulence generalizes well to many wind conditions and continuous
tracking of setpoints (shown with dashed lines marked by crosses). Here subjected
to severe wind and turbulence disturbances with a magnitude of 20 m/s.
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cases. Another possibility is that steady-state errors are significantly reduced
through high-gain feedback, but the low control variation shown for severe
turbulence in Table 11.3 indicates that the gain is not excessive. Future
work should include integral error states in the observations and evaluate
the implications on training and flight performance.

11.4 Chapter Summary

In this chapter, we have proposed to use the DRL algorithm PPO to control
the attitude and airspeed of a fixed-wing UAV. Both training and evaluation
of the controller were carried out in simulation. The ease at which the RL
controller learns to control the UAV for the tasks presented in this chapter,
and its ability to generalize to turbulent wind conditions, suggests that DRL
is a good candidate for nonlinear flight control design. However, a central
unanswered question here is the severity of the reality gap, or in other words,
how transferable the strategies learned in simulations are to real-world flight.
We address this problem in the next chapter, where we target real-life flight
experiments using DRL.
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Chapter 12

Data-Efficient Deep
Reinforcement Learning for
Attitude Control of
Fixed-Wing UAVs: Field
Experiments

This chapter is based on the following article:

[32] E. Bøhn, E. M. Coates, D. Reinhardt, and T. A. Johansen. Data-
efficient deep reinforcement learning for attitude control of fixed-wing
UAVs: Field experiments. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

12.1 Introduction

In this chapter, we extend the work presented in the preceding chapter and
show that DRL can successfully learn to perform attitude control of a fixed-
wing UAV, requiring as little as three minutes of flight data. The proposed
method is based on the SAC algorithm and improves upon the data effi-
ciency of the existing literature by at least an order of magnitude, providing
an important step towards enabling the learning of RL controllers entirely on
the real UAV. We initially train our model in a simulation environment and
then deploy the learned controller on the UAV in flight tests, demonstrat-
ing comparable performance to the state-of-the-art ArduPlane PID attitude
controller with no further online learning required.
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To the best of our knowledge, this is the first work to demonstrate
through field experiments the efficacy of RL for attitude control of fixed-
wing UAVs, a class of UAV design generally considered to be significantly
more complex to control than the multirotor which is common in the liter-
ature.

Chapter Outline

The rest of this chapter is organized as follows: Section 12.2 describes our
method in detail and presents our thoughts on what parameters are impor-
tant for the learning problem. Section 12.3 presents the main experimental
results, followed by a discussion and analysis part in Section 12.4. Finally,
Section 12.5 concludes with a chapter summary and ideas for future research
directions.

12.2 Method

The control objective of the RL controller is to control the attitude of the
aircraft to the desired reference attitude. Compared to the previous chapter,
the airspeed is not a controlled variable. We use standard aircraft nomen-
clature and coordinate systems [19], as well as a roll-pitch-yaw Euler angle
parameterization of attitude. The heading/yaw angle is typically not con-
trolled directly, but rather through banked-turn maneuvers [19]. Therefore,
the natural choice of controlled states are the roll angle ϕ, and the pitch an-
gle θ. We assume that the UAV is equipped with control surfaces such that
the roll and pitch angles are controllable (an assumption that is satisfied by
most UAV designs). The Skywalker X8 seen in Fig. 1.1a is used in our field
experiments. It has two elevon control surfaces, one on each wing, which can
be driven together to produce a pitching moment, or driven differentially to
produce a rolling moment. In addition, it has a propeller that can produce
a thrust force along the longitudinal axis of the UAV. In the simulation
environment, a PI-controller is used to control airspeed using the propeller
throttle [31].

As a general approach, we tested new ideas in the simulation environ-
ment and made extensive use of sim-to-sim experiments where we studied
how the controller transferred from simulation with one set of parameters
to a simulation with another set of parameters. We then tested the most
promising controllers in flight experiments in the field and adjusted our ap-
proach based on the insight we gathered from the flight experiments. The
simulation environment software is made open-source and is available at
[29].
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Table 12.1: Hyperparameters of the RL algorithm

Hyperparameter Value Description

γ 0.99 Discount factor of MDP
η 3 · 10−4 Learning rate
Buffer size 5 · 105 Size of experience replay buffer
Batch size 128 Number of samples in minibatch
τ 0.005 Polyak averaging factor for target networks
χ auto Entropy coefficient, learned automatically
Target entropy -2 Target entropy for the automatic η learning
Train freq 100 Update parameters after every train freq steps
Gradient steps 100 Number of gradient steps per parameter update
N goals 4 Number of imagined goals for HER per sample
HER strategy Future Goal selection strategy for HER

12.2.1 Reinforcement Learning Algorithm

To develop the RL controller we use the SAC algorithm and augment the
collected data using Hindsight Experience Replay (HER) [7], based on the
implementation [104], with the hyperparameters listed in Table 12.1. We
chose the SAC algorithm because it is off-policy, and therefore has com-
paratively high data efficiency among RL methods, and furthermore the
policy is explicitly trained to handle perturbations from the inherent ran-
domness, which tends to yield more robust policies that transfer better than
non-entropy-regularized algorithms. Note that we employ the technique of
initializing the replay buffer of the algorithm with 5k data samples (corre-
sponding to 100 seconds of flight at 50Hz), which is a common technique
in RL to help the policy with the initial exploration phase. This data is
entirely independent of the learning controller being trained and is obtained
by uniformly sampling random actions from the set of possible actions in the
simulator environment. This data could also stem from other sources such
as historical data gathered by a human pilot or another controller, which
might be more suitable when performing exploration exclusively in the field.
Since this data is independent of the learning controller, we do not count it
towards the data requirement of our method and do not include it in the
learning curve graphs. During field experiments we set σϑ = 0 in Eq. (10.11)
as this tends to yield better performance and smoother outputs [100].
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12.2.2 Controller Architecture and State Design

We identified in our previous work that limiting the state vector to only
the most useful information and reducing redundancy is important for the
rate of convergence and to prevent the controller from learning spurious
relationships. This has also been observed in other research [23]. At every
time step, we measure the following information:

mt =
[
pt, qt, rt, αt, βt, Va,t, δr,t−1, δl,t−1,

Iϕ,t, Iθ,t, ϕt, θt, eϕ,t, eθ,t
]⊤ (12.1)

I∗,t = γII∗,t−1 + e∗,t, γ
I = 0.99, I0 = 0, ∗ ∈ {ϕ, θ} (12.2)

where t is the time index, ωt = [pt, qt, rt]
⊤ is the angular velocity in the

body-fixed frame, αt is the angle-of-attack, βt is the sideslip-angle, Va,t is
the airspeed, δ{r,l},t−1 represent the previous output of the RL controller,
in this case the commanded deflection angles of the right and left elevons,
e∗,t = ∗t−∗r,t is the state tracking error where subscript r denotes the state
reference, I∗ is the integrator of the state error and γI is the integrator decay
rate. The integration decay scheme follows [254], and facilitates boundedness
of the integrator state. Lastly, because ANNs are known to converge faster
given normalized inputs, the measurements are normalized using running
estimates of mean and variance for each component before being fed to the
controller.

Due to unmeasured effects such as turbulence and the sim-to-real mea-
sures described in Section 12.2.5, the attitude control problem is partially
observable. Furthermore, to enable the controller to adapt to the dynam-
ics of the field experiments, we wish to enhance the controller with the
capability of inferring the dynamics around the current state. A common
approach to achieve this effect is to use a recurrent neural network (RNN)
[197, 247]. However, we found that using a one-dimensional convolution over
the time dimension as the input layer yielded similar control performance,
and therefore prefer it since it is significantly less complex than the RNN.
We therefore include the h last measurements (12.1) in the state vector,
where m̂t indicates a noisy measurement to be defined in Section 12.2.5:

st = [m̂t, m̂t−1, . . . , m̂t−h]
⊤ (12.3)

[δr,t, δl,t]
⊤ = πϑ(st) + [δr,trim, δl,trim]

⊤ (12.4)

such that the total size of the state vector is |st| = |mt|·h. The convolutional
input layer scales favorably in number of learned parameters compared to
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Figure 12.1: Architecture of the RL controller, superscript ∼ signifies normalized
states.

a fully-connected (FC) layer: it scales linearly in |mt| as opposed to multi-
plicative for the FC layer, and it is constant for h. The convolutional layers’
output size is F · |mt| where F is the number of learned convolutional fil-
ters, and each filter has size h. The memory capacity of the state vector can
therefore be increased as required to give sufficient history to infer the dy-
namics, with only a slight increase in the number of parameters. Through a
small grid search using rate of learning and asymptotic performance as met-
rics we found F = 8 and h = 10 to work well. The complete RL controller
architecture is shown in Fig. 12.1.

The output of the RL controller is the commanded states of the con-
trolled system’s actuators relative to the trim-point (12.4). The nominal
elevon deflection angles δr,trim = δl,trim = 0.045 are calculated using a stan-
dard trim routine for horizontal, wings-level flight based on the model in
Section 12.2.4 [19]. The target UAV for the field experiments, the Skywalker
X8, has elevon actuators and we therefore chose to have the controller output
the desired deflection angles of these directly, in order to provide RL with as
direct control as possible. This choice is fairly arbitrary, however, and exper-
iments showed that outputting virtual elevator and aileron angles (the sum
and difference, respectively, of the elevon angles defined by (2.57)-(2.58))
instead yield similar performance.

12.2.3 Reward and Objective Design

We found sparse rewards to yield better results than shaped rewards, both
in terms of rate of learning and in terms of asymptotic performance. A
sparse reward is one that is nonzero only for some subset of the state space.
It has the benefit that it is easier to formulate than hand-crafted shaped
rewards, and would therefore be more transferable to other UAVs with fewer
adjustments necessary. The reward is formulated as follows:
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R(st, at) = λϕB(eϕ,t) + λθB(eθ,t) + λϕ̇B(ϕ̇t) + λθ̇B(θ̇t) (12.5)

B(·) =
{
1 if |·| ≤ ·b
0 otherwise

(12.6)

ebϕt = 3°, ebθt = 3°, ϕ̇bt = 4.3°/s, θ̇bt = 4.3°/s (12.7)

λϕ = 0.5, λθ = 0.5, λϕ̇ = 0.167, λθ̇ = 0.167 (12.8)

where superscript b refers to the goal-bound on the variable and the λs
are weighting factors. This reward ensures that the controller tracks the
setpoints with accuracy as specified by the bound, while the rewards on
the derivatives of the controlled states discourage high rates. Our method
is not very sensitive to the size of the bound, but generally larger bounds
accelerate learning at the expense of tracking accuracy.

When transferring from a simulator environment to the field, it is im-
portant to consider how the actuation system impacts the effects of actions.
That is, while high-gain bang-bang control may be an optimal strategy in
the simulator, frequently changing the setpoints of the actuators introduces
considerable wear due to the high currents generated as a result of the
switching. In our previous work [31] (and indeed in other works [128]) this
problem is addressed through a term in the reward that discourages chang-
ing the setpoints. We now take a different approach to this problem, using
the conditioning for action policy smoothness (CAPS) method [184]:

JTS(πϑ) = ||πϑ(st)− πϑ(st+1)||2 (12.9)

JSS(πϑ) = ||πϑ(st)− πϑ(ŝt)||2, ŝt ∼ N (st, 0.01) (12.10)

This method adds two regularization terms to the loss, a temporal smooth-
ness term (12.9) and a spatial smoothness term (12.10). As the authors
demonstrate, this method is more successful in generating controllers that
yield smooth control signals compared to the action reward-term approach.
Additionally, removing the action term from the reward simplifies the prob-
lem of learning the action-value function since the reward now contains fewer
disparate parts, thereby accelerating learning. Instead, the gradient ascent
scheme calculating the parameter updates is conditioned towards policies
that are smooth in the output. Finally, we add a regularization term on
the pre-activation πPAϑ (that is, before applying the hyperbolic tangent in
(10.11)) of the output:
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JPA(πϑ) = ||πPAϑ (st)||2 (12.11)

This helps in reducing the gain of the controller, especially for small er-
rors, as it essentially tells the controller that it needs to have a strong benefit
to move the actuators away from the trim-point. Additionally, we find it ac-
celerates learning as the controller is biased towards non-aggressive control,
which in conjunction with HER means the controller quickly discovers how
to achieve the sparse stabilizing objective. Thus, the objective we optimize
is defined as:

J(πϑ) = JSAC(πϑ) + λTSJTS(πϑ) + λSSJSS(πϑ) +

λPAJPA(πϑ)
(12.12)

λTS = 5 · 10−2, λSS = 10−1, λPA = 10−4 (12.13)

12.2.4 UAV Model

The simulated environment is based on the same model as described in
Section 11.2.3, but updated based on recent modelling efforts. An estimate of
the inertia matrix is provided in [92] based on bifilar pendulum experiments,
and complementary CFD results presented in [252].

We collected a short data series to assess the quality of the dynamic
model. To excite the system dynamics, we used the actuator signals from
the baseline attitude controller and perturbed them with chirp signals before
mapping them to the elevon deflections. The start and end frequencies of the
chirp signals were 8Hz and 12Hz, respectively. A dynamic mode analysis of
the model indicates that this is the dominant frequency spectrum of the X8.
The signal duration was 15 seconds and we used a peak-to-peak amplitude
of 20 degrees.

The aerodynamic coefficients that are calculated based on recorded sen-
sor data and the inertia matrix of the vehicle are shown in Fig. 12.2. Follow-
ing [19], the coefficient subscript L,D, Y, l,m, n denotes lift, drag, side force,
roll moment, pitch moment and yaw moment, respectively. These results
show that despite the modeling efforts, there are still significant discrepan-
cies between the predicted and measured data, particularly in the pitching
moment coefficient, Cm.

12.2.5 Sim-to-Real Measures

The main sim-to-real measure employed in the method is domain random-
ization. As shown in Section 12.2.4, there is a significant reality gap, and
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Figure 12.2: The aerodynamic coefficients of the UAV in a longitudinal (top
three) and a lateral (bottom three) chirp signal test sequence for elevator and
aileron, respectively, based on IMU data (blue) and model prediction (orange).

as such we want to avoid the RL controller overfitting to the simulation
environment. The intuition behind the domain randomization technique is
that learning over a distribution of possible UAV models should robustify
the controller. To this end, we assess the uncertainty in the estimate of ev-
ery parameter of the UAV model and use this uncertainty to construct a
probability distribution over its range of probable values (see [29] for de-
tails). The coefficients of the rate-dependent terms of the UAV model have
larger sampling ranges since these are not estimated based on wind tunnel
data but rather on uncertain CFD simulations [93]. The sampled values are
also clipped as indicated to avoid extreme unrealistic values. At the start of
every episode, we sample a value for each parameter from its distribution,
together constituting one realization of the UAV model.

The UAV sensor suite is subject to noise in its measurements. To model
these, we first estimated the real hardware’s noise characteristics, then we
emulated this in the simulator environment. We model the measurement
noise as an Ornstein-Uhlenbeck (OU) process (12.14), which in addition to
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white noise gives rise to effects like measurement drift:

m̂t = mt + wt, wt ∼ OU(µm, σm, θm), µm = 0, θm = 1

σm = 0.005 · [1.5, 1.5, 1.5, 1, 1, 15, 0, 0, 0, 0, 1, 1, 0, 0]⊤ (12.14)

where µm, σm, θm are the mean, variance, and rate of mean-reversion
parameters of the measurement noise. Note that we do not add noise to
the error and integrator states, as these are already affected by the noise
in the measurement of the state that is used to calculate the error, while
the previous output of the controller is by nature free of noise. The sensor
suite has an update rate of 50Hz, and we therefore chose this as the con-
trol frequency as well. In the simulation environment we add exponentially
distributed noise on top of the fixed control frequency in order to simulate
sensor timing-variability:

∆t = ∆0 + zt, zt ∼ Exp(κ), κ ∼ U(250, 1000) (12.15)

where ∆t is the simulation step size at step t, ∆0 = 0.02 s is the base
control frequency, and zt is exponentially distributed noise whose parameter
κ is drawn uniformly at the start of every episode.

Although not strictly sim-to-real measures, the adjustments to the RL
objective described in Section 12.2.3 in the form of CAPS and the pre-
activation term also serve to improve the transferability from simulation to
reality, as they encourage less aggressive lower-gain control. Another major
effect present in the field is atmospheric disturbances such as wind and tur-
bulence. We model turbulence with the Dryden turbulence model [19], and a
steady wind component whose direction and magnitude between 0ms−1 and
15ms−1 is sampled at the start of each episode. The last effect we found was
highly impactful for successful transfer was the actuation delay, i.e. the time
it takes before the output of the controller is applied to the system, a result
which was also found in [247]. The simulator contains a constant actuation
delay of 100ms, while we believe this is a significant overestimation of the
delay of the real system, we motivate this choice in Section 12.4.2.

12.2.6 Simulator Episode Design

The standard design of episodes for UAV control in the literature seems to
be short episodes with a single constant desired attitude [23, 128]. We found
that having constant setpoints accelerates learning, however, the operation
of the UAV in the field typically sees the navigation system continuously
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Table 12.2: Initial conditions for the episodes are uniformly sampled from the
indicated ranges.

Variable Range Unit Variable Range Unit

ϕ -40, 40 degrees ϕr -60, 60 degrees
θ -15, 15 degrees θr -25, 20 degrees
Va 13, 26 m/s α -8, 8 degrees
ω -60, 60 degrees β -10, 10 degrees
δr,l -30, 30 degrees

update the desired attitude. To align these considerations, we employ fairly
long episodes of length 900 steps (18 s) where setpoints are kept constant
but resampled every 150 steps. To ensure sufficient diversity of the state tra-
jectories and transitions used to update the parameters of the RL controller,
we sample initial conditions as shown in Table 12.2. Considering that the
main objective of the simulation environment is to ready the controller for
the field, we sample initial conditions mostly from the linear region of the
model, as this is where the UAV model is assumed to have the most validity.
Note that while the range of initial conditions is somewhat limited, there
is nothing stopping the controller from exploring the full state space. Fur-
thermore, since the initial states of the actuators are also randomized the
sampled initial conditions could cause instability, such that the controller
must learn to recover.

12.2.7 Experimental Platform

Our custom avionics stack is based on the low-level control architecture de-
veloped at the NTNU UAV-lab [62]. It consists of a Cube Orange flight
controller running the (industry standard) ArduPlane open-source autopi-
lot [13], and a Raspberry Pi 4 running the DUNE Uniform Navigation Envi-
ronment [199]. During experiments, the total flight weight of the Skywalker
X8 is 3.8 kg.

The RL controller is implemented as a DUNE task in C++ with the
ANN implemented in TensorFlow. Sensor data and state estimates from
ArduPlane are sent through a serial connection to the Raspberry Pi, pro-
viding all necessary data for the RL controller. The ANN controller output is
converted to PWM duty cycle and sent to the elevon servos using a PCA9685
servo driver, interfaced through I2C from the Raspberry Pi. A PWM multi-
plexer supports switching between the RL controller output and ArduPlane.
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This enables the pilot to always take control during testing, either through
manual controls, or through ArduPlane’s standard autopilot. This switch-
ing mechanism enables us to safely engage the RL controller in flight, while
takeoff and landing are performed by the pilot operating our tried and tested
avionics stack [264]. The experimental platform is discussed in more detail
in Chapter 13.

12.3 Experimental Results

This section presents the main experimental results, collected during two
days of flight experiments at Agdenes Airfield, Breivika, Norway in Septem-
ber 2021. During the first day, we enjoyed calm weather and perfect flight
conditions, with a mean wind speed (as estimated by ArduPlane’s Kalman
Filter) of less than 4m s−1. The second day of flight tests, however, pre-
sented challenging weather conditions, with frequent gusts and a mean wind
speed of approximately 12.5m s−1 (70% of the Skywalker X8’s cruise speed
of 18m s−1).

We present three types of data, differing mainly by how roll and pitch
angle references are provided:

1. References are given by the pilot, mimicking ArduPlane’s fly-by-wire
A (FBWA) mode (Section 12.3.1).

2. References are provided by ArduPlane’s guidance system, which is set
to track a rectangular waypoint pattern (Section 12.3.2).

3. References are set by a predefined, automated series of steps (Sec-
tion 12.3.3). Similar maneuvers are also performed with an implemen-
tation of the ArduPlane PID attitude controller, with the response
compared to that of the RL controller.

In contrast to the training phase, where the throttle actuator used to control
airspeed is operated by a PI controller (see [31] for details), the throttle is ei-
ther under manual control by the pilot (FBWA) or controlled by ArduPlane
(auto/steps). In figures presenting flight results, the dashed orange line cor-
responds to state reference, while in the elevon plots, the blue and orange
lines correspond to the right and left elevon, respectively, with minimum
and maximum deflections of −30° and +30°.

12.3.1 FBWA Mode

Fig. 12.3 shows an excerpt from the flight experiments where a human pilot
decides the desired attitude of the UAV. The RL controller is able to closely
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track the desired attitude even for the most difficult and aggressive ma-
neuvers, while producing smooth outputs for the actuators. We do however
note a consistent steady-state error. Towards the end of the maneuver, we
observe that the roll response is non-symmetric, that is, rolling to the left
(towards negative roll angles) is slower than rolling in the opposite direction.
We investigate and discuss this matter, as well as the steady-state error, in
Section 12.4.
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Figure 12.3: FBWA mode using references (dashed orange line) from the pilot,
showing the attitude states and right (blue) and left (orange) elevon signals.

12.3.2 Auto mode

Fig. 12.4 shows the results for the RL controller operating with references
provided from the ArduPlane guidance system, set to track a square way-
point pattern. Before tracking the square, the UAV loiters in a circular
pattern for a while. Despite some steady-state offset, especially for the roll
angle error, the UAV successfully completes the specified mission. This is
because the outer-loop guidance controller can compensate for this error,
and still achieve convergence when faced with disturbances such as wind
and offset in inner-loop control. This is similar to how a pilot supplying
manual references would offset the references to keep the intended course.

During turns, a certain altitude drop is seen from the right part of
Fig. 12.4. This is caused by the aggressive turn radius accompanied by drops
in the pitch angle. This effect can be reduced by tuning the guidance sys-
tem to be less aggressive (e.g. by increasing the turn radius) or reducing
the maximum allowable roll angle setpoint, which is set to be 55 degrees. A
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Figure 12.4: Position plot showing how the RL controller is able to take references
from ArduPlane’s guidance system in Auto mode, and effectively follow prescribed
paths. First, a loiter, then a square waypoint pattern.

similar drop in pitch angle is also seen when using the default ArduPlane
attitude controller.

12.3.3 Step sequences and Comparison with ArduPlane
PIDs

Step responses for the RL controller, as well as the ArduPlane PID controller,
are displayed in Fig. 12.5. The RL controller shows comparable transient
performance to that of ArduPlane, the main difference being the steady-
state error of the RL controller. Additionally, the pitch response of the PID
controller is slightly more aggressive. However, this could be changed by
tuning the controller.

The control signals generated by the RL controller are relatively smooth
and well-behaved but include some high-frequency components not seen in
the PID response. Apart from that, the control input looks qualitatively
similar, with similar magnitude. For a quantitative comparison we employ
the smoothness metric defined in [184] which jointly considers the amplitudes
and frequencies of the control signals:
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Figure 12.5: Comparison between the RL controller and the ArduPlane PID
controller for steps in the roll (top) and pitch (bottom) references (dashed orange
line).

Sm =
2

nfs

n∑
i=1

Mifi (12.16)

where Mi is the amplitude of the i′th frequency component fi, and fs is
the sampling frequency. On this metric the PID measures at 6.20·10−4, 6.30·
10−4 for the roll and pitch maneuvers in Fig. 12.5, respectively, while RL
measures 2% and 44% higher at 6.30·10−4, 9.05·10−4. This metric shows that
RL has comparable smoothness in its output with the PID controller, but
also indicates the higher frequency components of the RL controller’s output
in Fig. 12.5. It is not clear why there is such a discrepancy between the two
maneuvers for the RL controller, but this data is as mentioned subjected to
considerable turbulence and wind, and could therefore be caused by transient
gusts.

While the former results were gathered on a calm day with virtually no
wind, these maneuvers are executed in harsh wind conditions on day two.
The UAV also suffered structural damage (not while under RL control) after
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collecting the PID data, before redoing the experiments with RL. The vehi-
cle had to be repaired with a new wing and duct tape, causing a change in
the UAV’s trim point. Thus, the presented results demonstrate the RL con-
troller’s robustness towards model mismatch and varying wind conditions,
including heavy gusts.

To achieve a fair comparison, the ArduPlane PID is implemented in the
same software stack and ran with the same hardware architecture as the
RL controller (described in Section 12.2.7). In particular, this means that
any increased signal latency introduced in our setup does not affect the
comparison.

12.4 Discussion

The experimental results of Section 12.3 show that the RL controller per-
forms well compared to a state-of-the-art open-source autopilot, and is ro-
bust to disturbances caused by harsh wind conditions. The control perfor-
mance of the RL controller across the various flight modes speaks to its
ability to generalize further than just the maneuvers encountered during
training. In particular, no guidance controller was present during training.

Despite the promising results, there is room for improvement. In this
section, we further discuss how performance can be improved, the iterative
development process, and training, and we perform a linear analysis to gain
further insight into the behavior of the RL controller.

As noted in Section 12.3.1, the roll response of the RL controller is non-
symmetric, meaning that rolling towards the left wing is slower than rolling
to the right. This is supported by the pilot’s qualitative assessment during
flight. We found that this effect was caused by an overestimation of the
simulated propeller torque, which was found to be less prominent on the
physical UAV than expected, presumably due to the mechanical mounting
of the propeller. This causes a bias in the RL controller, which has learned
to counteract the propeller torque. To remedy this, we trained a new RL
controller in a simulation model without propeller torque, which was briefly
tested in the field to verify our hypothesis. The new controller exhibited a
more symmetric roll response, as expected.

12.4.1 Steady-State Errors

We experimented with several techniques in order to address the steady-
state error of the RL controller observed in flight experiments: pure integra-
tor (no decay), higher decay factor (e.g. 0.999), having integration separate
from the ANN controller with learned integration gains, shaped rewards,
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Figure 12.6: Response of the RL controller where the steady-state error has been
estimated and references (dashed orange line) adjusted to compensate.

and training with input disturbances. Whereas some of these measures re-
duced the steady-state error to some degree, none were successful in entirely
eliminating it.

We note that there is no consistent steady-state error in the simulator in
the same way we observe in field experiments, i.e. consistently over or under
the reference with a consistent magnitude. The controller has learned to use
integral action to reduce steady-state error from disturbances in the simu-
lator, but not in a way that transfers to the field. This could be because the
controller is overfitting to the simulator, thus the larger tracking errors in the
field combined with the hyperbolic tangent saturating functions of the ANN
causes the integrator states’ effect on the output to saturate prematurely.

An effective way to address this problem is to estimate the steady-state
error and then add the estimated value to the references provided to the RL
controller, as was done in the flight experiment shown in Fig. 12.6. As can be
seen, this simple technique can fully compensate for the steady-state error
and may also be automated using an integrator in an outer loop to estimate
the steady-state error [165]. Furthermore, there are compelling arguments
for not having integral action in the inner-loop attitude controller, as adding
integral action to the controller necessarily reduces the phase margins and
the achievable bandwidth [19].

12.4.2 Oscillations: Illustration of Iterative Development

Initial field experiments were characterized by excessive oscillations in the
attitude response of the UAV, especially in pitch, necessitating halving the
RL controller’s outputs in order to keep the aircraft airborne. These oscilla-
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.

tions were not present in the simulator, as such, we suspected that this was
(at least in part) caused by the simulator overestimating the natural damp-
ing present in the aircraft. Therefore, we reduced the Cmq (pitch damping)
parameter by a factor of 10. While this reduced the oscillations somewhat,
there were still significant oscillations in the response, see Fig. 12.7.

We estimated a typical actuation latency for the system of 10ms−1. In
sim-to-sim experiments, where we raised the latency of the control system
during the exploitation phase of a controller trained with 10ms−1 latency,
we observed similar oscillatory responses as in the flight experiments and
noted its relationship with increasing latency. We then trained an RL con-
troller where the latency was set to 100ms−1 during the learning phase.
This controller trained with higher latency almost entirely eliminated the
oscillations to the levels shown in the field experiment figures. Favoring
robust controller design, we increased the base latency of the simulation
environment to 100ms−1, even though we believe that this is a significant
overestimation of the true latency of the real system.

12.4.3 Linear Analysis

In order to better understand how the RL attitude controller operates, we
analyze its sensitivity to the input variables. In Fig. 12.8 we have plotted
the open-loop response of the controller as a function of a single perturbed
input. The rest of the state vector is kept constant at the steady-flight value,
i.e. zero for all variables except the airspeed Va which is set to the cruising
speed of 18m s−1, and the angle-of-attack α and pitch angle θ, which are kept
at the trim values necessary to generate lift for level flight, while the input
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values for previous time steps are kept constant in the time dimension. To be
able to compare the results with ArduPlane, we translate the elevon outputs
into virtual elevator and aileron commands using the inverse of (2.57)-(2.58).
The figures and tables are presented in terms of these virtual commands,
which also have a more intuitive and straightforward effect on the roll and
pitch angles.

The saturating effect of the hyperbolic tangent nonlinearity on the RL
controller is distinctly present in the responses. This is a desired effect as
we know that any input should have a bounded effect on the output, which
gives robustness towards possible measurement errors or misalignment of the
dynamics of the simulation and real environments. The controller makes use
of all its inputs, with the previous outputs of the controller having the most
significance for the current output (the typical values for most states in Fig.
12.8 are close to the level-flight value in the center and will thus use a limited
range of the response curve, while the previous output of the controller
frequently employs the full range). This makes sense as the controller is
conditioned towards smooth outputs, as described in Section 12.2.3, which
means that a reasonable initial guess of any action is to be similar to the
previous action. Moreover, the fact that the previous output (left and right
elevons) do not have a symmetric effect on the subsequent output (there
is no mechanism enforcing symmetry in the learning controller) could be a
motivating factor to instead employ (virtual) elevator and aileron as outputs
of the RL controller.

Since the control authority of the actuators increases with airspeed, we
investigated if the RL controller has learned to scale its outputs depending
on airspeed, an effect that is included in the ArduPlane controller. With no
further documentation (due to space constraints), we state that this is not
the case. However, it has learned to bias the response, essentially shifting
the curves in Fig. 12.8 up, as airspeed increases in order to compensate for
the change in trim-point with airspeed.

To estimate sensitivities wrt. an input we take a linear approximation of
its response curve by using the slope of the tangent line at level-flight condi-
tions. The result is shown in Table 12.3, and compared to the ArduPlane PID
controller gains (see Appendix 2.6.1). The RL controller is noticeably more
aggressive in the pitch error, while simultaneously introducing more damp-
ing through the angular velocity component q. This is evident in Fig. 12.5
where the RL controller exhibits less oscillation in the pitch response. The
estimated gains for the integrator states in Table 12.3 are not representative
of the response curves for these states, as the response curve exhibits cubic
characteristics with a small opposing region around the level-flight value.
Thus, for these states, a linear approximation over a larger region would be
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more descriptive. Overall, the gains of the RL controller are similar to those
of the PID controller, which increases the trust in the RL controller. On
the other hand, the dynamic aspect caused by integral states and data from
previous time steps increases the complexity of the analysis and thus limits
the conclusions that can be drawn from it.
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Figure 12.8: Open-loop level-flight response of the RL controller when perturbing
one input at a time. The x-axis is in the units of the corresponding state. The lines
are elevon outputs mapped to aileron (orange) and elevator (blue).

12.4.4 Data Requirements

In this section, we attempt to quantify the data efficiency of our method.
We start by presenting the learning phase of the controller in the simu-
lation environment (Fig. 12.9), demonstrating that our method produces
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Table 12.3: Linearly approximated gains at level-flight, where each input is per-
turbed in isolation.

Controller
∂δa

∂eϕ

∂δe

∂eθ

∂δa

∂Iϕ

∂δe

∂Iθ

∂δa

∂p

∂δe

∂q

RL 1.268 -3.320 -0.005 0.006 -0.008 0.223
PID 1.630 -1.081 0.052 -0.052 -0.024 0.031
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Figure 12.9: The learning phase of the proposed RL controller, showing normal-
ized mean episode reward and error-proportional gains. The solid line represents a
rolling average mean value while the shaded region represents one standard devia-
tion over three randomly seeded controllers. Base refers to the method as presented
in Section 12.2, the FC version replaces the convolutional layer with an FC layer,
and the h1 version has no history in the input.

proficient controllers with a number of data samples on the order of 10s
of thousands, and then demonstrate that the learning controllers are flight-
worthy in the field after experiencing only three minutes of real-time flight
data (Fig. 12.10). It is difficult to compare this result directly to the exist-
ing literature, for reasons outlined in the literature review of Section 12.1,
that is, no other reported work study the full attitude control problem of
fixed-wing UAVs using RL. Other works study either a limited version of
the attitude control problem, or consider other aircraft designs (e.g. quad-
copters) whose dynamics are more linear and controllable than the dynamics
of a fixed-wing UAV. Nonetheless, works in the existing literature report a
data requirement on the order of 100s of thousands or millions of data sam-
ples, meaning our result presents a significant improvement in terms of data
efficiency. Further, we would argue that this improvement in data efficiency
is significant because it suggests that learning the controller entirely in the
real world (i.e. no simulation required) is possible. Collecting data for a few
minutes of flight seems reasonably achievable through some form of safe ex-
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Figure 12.10: An RL controller that has trained for only 3 minutes of real-time
flight in the simulation environment is airworthy, able to track references (dashed
orange line) reasonably well.

ploration or guided learning where, for instance, the learning controller is
monitored by a pilot or other proficient controller that can assume control
should dangerous situations arise.

The evolution of the learning phase for the RL controller as a function of
time steps is shown in Fig. 12.9. For every version in Fig. 12.9, we train three
controllers each with a different initial random seed and average the results
over the controllers. The rewards are normalized so that 1 corresponds to
attaining the maximum reward as defined in (12.5) at every step (although
this is not physically achievable) and 0 corresponds to obtaining no rewards
at all. Base refers to the RL controller as presented in Section 12.2 that was
used in the field experiments. To assess the contribution of the convolutional
input layer, we trained one version where the input layer is replaced with
an FC layer, and further to test the importance of the history of states in
the state vector we train one model with an FC input layer and with h = 1
(labeled FCh1).

The base version learns fast, reaching convergent performance after around
40k time steps. This corresponds to about 13 minutes of real-time flight or
16 minutes of wall-clock training time when trained entirely on an i7-9700
Intel CPU with a single data-generating-agent in the simulator1. We veri-

1Note that the wall-clock training time can essentially be made arbitrarily short with
parallelization of more agents and more powerful computing hardware
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fied in the field that the RL controller is flightworthy long before this point:
The controller shown in Figure 12.10 exhibits decent and stable performance
(although unable to follow the most aggressive maneuvers) after only 10k
time steps of training in the simulator (corresponding to three minutes of
real-time flight). We conjecture that the data efficiency of our method limits
overfitting to the simulation environment and therefore transfers better to
the field, although this statement requires further evidence such as a bench
of learning controllers with varying time in simulation to verify.

We find that our training method is stable in the sense that the perfor-
mance differences between controllers with different seeds are small, within
a few percent. The FCh1 version without state history is never able to learn
to consistently stabilize the UAV at the desired attitude in the time frames
we considered. The FC version with state history on the other hand achieves
comparable rewards to the base version, showing the importance of history
in the RL input state. The base version reaches peak performance slightly
faster than the FC version, and further its proportional gains are consid-
erably lower. This is also evidenced by the smoothness metric (12.16) for
which the base version scores 50% lower than the FC version. The lower
gains and the smoothness metric indicate that the convolutional input layer
provides a superior ability to predict the system response and thus provide
smoother responses in attitude and control signals, while the FC version is
more reactive and oscillatory.

12.5 Chapter Summary

This chapter has presented a data-efficient method for learning attitude
controllers for fixed wing UAVs using RL. The learning controller is able
to operate directly on the nonlinear dynamics and therefore could extend
the flight envelope and capabilities of autopilots. The high data efficiency
of the presented method facilitates transfer to the control of the real UAV
by limiting overfitting to the simulated model. We demonstrate that the
learned controller has comparable performance to the existing state-of-the-
art ArduPlane PID autopilot and is capable of tracking prescribed paths
from a guidance system while generating smooth actuation signals and at-
titude responses. Key factors behind the success of the method were ro-
bustifying the controller through increasing its phase margins by learning
with significant actuation delay and diversifying the simulated dynamics,
as well as incentivizing non-aggressive control through sparse rewards and
additional objective terms enforcing temporal and spatial smoothness in the
controller outputs.
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Chapter 13

Experimental Platform for
Evaluation of Advanced
Low-Level Control Algorithms

This chapter is based on the following article:
[62] E. M. Coates, D. Reinhardt, K. Gryte, and T. A. Johansen. Toward

nonlinear flight control for fixed-wing UAVs: System architecture, field
experiments, and lessons learned. In 2022 International Conference on
Unmanned Aircraft Systems (ICUAS), 2022.

13.1 Introduction

Inner-loop control algorithms in state-of-the-art autopilots for fixed-wing
UAVs are typically designed using linear control theory to operate in rela-
tively conservative flight envelopes. In this work, we seek to extend the flight
envelopes of fixed-wing UAVs to allow for more aggressive manoeuvring and
operation in a wider range of weather conditions. As a result of this, we have
successfully flight-tested several advanced nonlinear algorithms for attitude
control of fixed-wing UAVs, including those presented in the preceding chap-
ters, namely DRL and geometric attitude control (GAC) but also nonlinear
model predictive control (NMPC) [210]. Each of these algorithms demands
different capabilities in the onboard avionics stack. In particular, NMPC is
very computationally demanding, as a nonlinear optimization program needs
to be solved at every controller update. DRL is more computationally effi-
cient but requires access to some framework for artificial neural networks,
which is not provided by the standard autopilots. Therefore, we have es-
tablished a common hardware platform, system architecture, and operating
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procedures for flight experiments of low-level nonlinear control algorithms
for fixed-wing UAVs. The flexible embedded platform, briefly introduced in
Section 12.2.7, is capable of running computationally demanding low-level
controllers that require direct actuator control. For safe operation and rapid
development cycles, this platform can be deployed in tandem with well-
tested standard autopilots. In this chapter, we summarize this work with a
focus on the challenges and lessons learned and document our experimental
platform in a best-practice manner.

There does not seem to be any documented standard solution or best
practice for computationally demanding fixed-wing UAV control architec-
tures that require low-level access to the actuators. Motivated by this, and
based on experience with extensive field testing of a wide range of nonlinear
control algorithms, the main contributions of this chapter are:

• We describe novel experimental results from flight testing of several
advanced nonlinear control algorithms for attitude control of fixed-
wing UAVs while articulating the key challenges and lessons learned.

• A set of constructive guidelines on how to deploy an experimental plat-
form that is well-suited for the evaluation of control algorithms that
require a lot of computational resources and direct access to the actua-
tors. Our approach also allows for switching between the experimental
algorithm and the standard autopilot, allowing safe experimental test-
ing at an early stage.

In summary, this lowers the threshold for other researchers and engineers to
employ new low-level control algorithms for fixed-wing UAVs. The individ-
ual components are off-the-shelf and thus readily available. This lowers the
threshold for other researchers and engineers to employ new low-level control
algorithms for fixed-wing UAVs. Case studies from outdoor field experiments
are provided to demonstrate the efficacy of our research platform.

Chapter Outline

The rest of this chapter is structured as follows: In Section 13.3 we describe
the control algorithms that have been successfully implemented and tested
using our experimental platform. The system architecture is presented in
Section 13.4, and our test procedure, for both ground testing and flight
experiments, is described in Section 13.5. In Section 13.6, we summarize our
results, and in Section 13.7 we discuss the lessons learned before giving some
concluding remarks in Section 13.8.
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13.2 Related work

We classify algorithms as either high-level (guidance/outer-loop) controllers
or low-level (inner-loop) controllers. Whereas the high-level algorithms are
typically implemented on a single-board computer, transmitting references
to standard low-level control loops running on some commercial or open-
source autopilot (e.g ArduPilot [13] or PX4 [174]), the low-level algorithms
need direct access to the actuators. A comprehensive review of different con-
trol architectures is not in the scope of this chapter. Although we mention
some notable works that include experimental verification of high-level con-
trollers, our focus is on low-level control and the computing platforms and
system architectures used.

The low-level algorithms can be further classified concerning their re-
quirements to the embedded computing platform as either: (a) lightweight,
or (b) computationally intensive. Lightweight algorithms are easily inte-
grated into open-source autopilots and can be run directly on hardware
platforms such as the Pixhawk or CubePilot series of autopilots. For in-
stance, in [190], the low-level control framework is based on explicit MPC us-
ing linearized models and implemented directly on the resource-constrained
onboard avionics. The unified guidance and low-level control architecture
in [118] is implemented directly on a mRo PixRacer with a 180Mhz ARM
Cortex M4 processor by modifying the existing PX4 middleware.

Among the more computationally intensive algorithms, the NMPC scheme
in [17] first poses a feasibility problem to generate dynamically feasible paths
from an initial guess found via a Rapidly-Exploring Random Tree (RRT) al-
gorithm combined with spline smoothing. Then, a time-varying LQR is used
to follow the nominal trajectories calculated by the planner in a receding-
horizon manner. Their experiments are conducted in a controlled lab envi-
ronment with a motion capture system and desktop computer for nonlinear
optimization. The desired actuator signals are transmitted to the vehicle
through radio communication. The authors in [230] identify second-order
models of the autopilot-controlled low-level dynamics which is used in their
MPC guidance algorithm. The computing platform is an Intel UP board
running a Robot Operating System (ROS) node. In [121] MPC controllers
for trajectory-tracking of both fixed-wing and rotary-wing UAVs are pre-
sented, with a special focus on ROS integration. ROS is also used in [257],
where an optimal path-following controller for windy conditions transmits
roll and pitch angle references to low-level controllers running in PX4 on a
Pixhawk.

Looking wider, into the realm of multirotor UAVs, [188] presents a con-
troller for unified trajectory optimization and tracking with a hexacopter
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UAV. They explicitly aim at improving performance by giving the controller
direct actuator access. The optimal controller is implemented on a station-
ary Intel Core i7 processor that sends the velocity commands of the rotors to
the flight control unit. State estimation is done with an optical motion cap-
ture system. The work in [258] aims at showing that current optimal control
solvers have become fast enough to handle the computational burden that
is coming with highly dynamic robotics applications such as the low-level
control of multirotors for which they provide experimental results.

DRL algorithms are computationally efficient during online execution,
but often require more flexibility than is typically provided by standard flight
controllers. Some specialized solutions exist, e.g. in [198], a low-level RL-
based controller for multirotors is validated experimentally using a PixRacer
flight control board. In [135], a model-based RL algorithm for low-level con-
trol of a Quadrotor is validated using the open-source Crazyflie 2.0 quadro-
tor. pulse-width modulation (PWM) commands are calculated on a ROS
server running on the ground and sent to the UAV using radio. The Neu-
roflight neural network-based flight control firmware is presented in [127],
where experimental validation of a low-level RL controller for a quadcopter
is carried out using a 216MHz ARM Cortex-M7 microcontroller.

13.3 Control algorithms: Overview

In this section, we describe the main control algorithms evaluated using our
experimental platform, namely NMPC [210], DRL [32], GAC [58], as well as
a PID benchmark implementation based on the ArduPilot [13] fixed-wing
attitude controller. The capabilities needed to effectively run these algo-
rithms online define the requirements for the system architecture presented
in Section 13.4. This section also provides the necessary background for the
experimental results of Section 13.6.

An in-depth discussion of the experimental controllers is out of scope of
this work, and more details can be found in each of the respective references
[32, 58, 210]. A comparison of the most significant features of the controllers
is given in Tab. 13.1.

A significant part of our controllers is, to some extent, relying on accurate
models of the UAV. We also depend on dynamic models in our simulators,
discussed in Section 13.5. Our dynamic models are based on previous and
ongoing modelling efforts, in particular [63, 92, 93].
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Table 13.1: Features of the compared controllers.

GAC DRL NMPC
Demand for comp. resources Low Low High
Needs dynamic model Low Medium/High High
Optimality wrt. cost/reward Low Medium High
Constraint satisfaction No No Yes
Interpretable performance Yes No Yes
Open software available Not needed Yes Yes
Available stability proofs High Low Medium

13.3.1 PID Benchmark

As a benchmark, we use the widely adopted ArduPilot [13] open-source au-
topilot and compare our methods to the ArduPlane PID attitude controller
for fixed-wing UAVs, given in Section 2.6.1. To get a fair comparison, we
implemented a version of this in the same system as our algorithms. This
means that all algorithms run on the same hardware, in the same software
environment, and with the same communication latencies.

13.3.2 Nonlinear Model Predictive Control (NMPC)

NMPC allows us to explicitly encode the flight envelope in the controller
design as nonlinear constraints in an optimal control problem (OCP) that
can be solved regularly to obtain an optimal control input trajectory. The
OCP over a prediction horizon T usually has the form

min
x(·),u(·)

∫ T

0
l(x(τ),u(τ ), r(τ))dτ +

1

2
s⊤Ps t ∈ [0, T )

s. t. x(0) = x0

ẋ(t) = f(x(t),u(t),d(0) t ∈ [0, T )

h(x(t),u(t), s) ≥ 0 t ∈ [0, T ),

where the cost consists of l, denoting a stabilizing stage cost that is often
in quadratic form, and a penalty for the slack variables s that are included
for constraint relaxation to guarantee the feasibility of the approximating
quadratic program (QP). The constraints include the initial condition, de-
noted by x0, dynamic constraints in form of the continuous model, denoted
by the vector ordinary differential equation (ODE) defined by f , and in-
equality constraints to reflect operational and actuator limits, denoted by
h. Optimal performance with respect to a defined cost function and pre-
diction in addition to constraint satisfaction by use of the actuation system
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in an integrated multiple-input multiple-output (MIMO) fashion are traits
that are hard to achieve with the existing autopilot software such as Ardu-
Plane. The drawback however is its increased computational complexity and
requirement for a dynamic model of the UAV, [212], which demands power-
ful embedded computing platforms and a considerable engineering effort in
system identification [211]. The field of MPC is quite mature and conditions
for performance and stability guarantees exist on a theoretical level but may
be hard to formally verify for a particular system [90].

13.3.3 Deep Reinforcement Learning (DRL)

In addition to NMPC, we looked at DRL, a set of data-driven methods
for approximate optimal control, where the controller is implemented as
an ANN [31]. These methods can operate on and optimize control perfor-
mance for the full nonlinear dynamics in a model-free manner (at least in
theory), their online operation is generally highly computationally efficient,
and can exhibit (nearly) arbitrarily complex behavior. A downside of the
DRL methods is the lack of interpretability of the deep neural network;
stability, robustness, and constraint satisfaction properties are not guaran-
teed. In addition, DRL requires a lot of training data, a challenge that is
further complicated for flight control applications by the high inherent risk
associated with data collection using a suboptimal controller. A common ap-
proach is to instead train the controller in a simulator environment, which
motivates the need for a good model. To deal with model mismatch when
transferring the trained controller to the field, "Sim2Real" measures such as
domain randomization [32] are typically applied.

13.3.4 Geometric Attitude Control (GAC)

A third approach we considered is to apply nonlinear control methods based
on Lyapunov stability theory, in particular GAC. Such methods require only
a fraction of the computational resources required by NMPC, and stability
and robustness guarantees can be given under some assumptions for the par-
ticular system under study, even with limited knowledge of system models.
However, constraint handling is difficult to address and optimality is not
addressed. Traditionally, the orientation/attitude of aircraft in 3D space is
parametrized using Euler angles, which have singularities for certain ori-
entations, which in itself contributes to a more limited flight envelope. In
our work, we employ a global, nonsingular reduced attitude representation
on the two-sphere. In addition to avoiding singularities, this enables more
efficient, shortest path (geodesic) rotation maneuvers, [61].
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13.4 System Architecture

In this section, we describe our experimental platform, which has evolved
over several years as a result of a wide range of research activities carried
out at the NTNU UAV-lab. An alternative system architecture is described
in [264], which provides a flexible architecture for system integration that
is well-suited for research on high-level planning, guidance, and payload
control, but less ideal for low-level control research. For our purpose, the goal
was to extend the existing capabilities to satisfy the following requirements:

1. An embedded platform powerful enough to run low-level NMPC online
on-board the vehicle at a sufficiently high update frequency.

2. This platform should also have direct access to the actuators.

3. The system should be flexible enough to run a wide range of advanced
control algorithms.

4. To lower the threshold for early testing of highly experimental low-
level control algorithms (and to lower the risk of crashing), we needed
some way to safely transition between the well-tested (and trusted)
standard autopilot and our experimental algorithms.

5. For continued safe operation, the added functionality should not in-
terfere with the existing fail-safe systems.

6. A SITL simulation environment to test the airworthiness of the low-
level algorithms before conducting flight experiments.

7. Support for an automated reference generator to gather repeated sam-
ple trajectories for system identification, as well as evaluation and
comparison of different algorithms.

An overview of the hardware configuration and communication architecture
of the UAV and ground station is depicted in Fig. 13.1. We proceed by
describing each main element of the system architecture. The following dis-
cussion concerns fixed-wing UAVs, given that we focus our research on this
type of UAV. Note, however, that it is straightforward to translate the hard-
ware architecture and outlined test procedures to other UAV morphologies.
The only requirement is access to the actuators through PWM signals and
a fallback controller, which is usually available on off-the-shelf platforms.

13.4.1 UAV Platform

Our platform is built around a Skywalker X8 airframe, depicted in Fig. 1.1a.
The X8 is a tailless aircraft with two elevon control surfaces, one on each
wing, which can be moved differentially to produce a rolling acceleration,
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Figure 13.1: Hardware configuration of the experimental platform.

or collectively, to produce a pitch acceleration. The control signals consist
of PWM signals to the two servo motors that actuate the elevons, and the
throttle signal (also PWM) to a consumer-grade electronic speed controller
(ESC) that controls the motor and propeller in the back of the UAV.

The standard avionics flight stack is centered around a Cube Orange1

that is running ArduPlane open-source autopilot, which is the fixed-wing
build of the ArduPilot firmware [13]. The sensor suite consists of triple re-
dundant inertial measurement units (IMUs) with magnetometers, pressure
sensors for altitude and airspeed (pitot-static tube), and a global navigation
satellite system (GNSS) receiver.

13.4.2 Payload Computer

Alongside the Cube Orange, we use the Khadas Vim32 single-board com-
puter (SBC) that includes four 2.2Ghz Cortex-A73 cores and two 1.8Ghz
Cortex-A53 cores. We initially started using other SBCs, including the Odroid-
XU4 and a Raspberry Pi 4. After a series of benchmarking tests, we settled
with the Khadas Vim3, mainly driven by the computational requirements
of the NMPC.

1https://cubepilot.org/
2https://www.khadas.com/vim3
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Figure 13.2: NMPC benchmarking results for the employed SBC for different
prediction horizons N in a direct multiple-shooting scheme with 0.1 s shooting
interval.

On the SBC we run the DUNE Uniform Navigation Environment. DUNE
is part of the LSTS toolchain [199] developed at the Underwater Systems
and Technology Laboratory (LSTS), University of Porto. DUNE allows us
to (similarily to ROS) write different tasks that run independently from
each other on separate threads or processes while exchanging data using a
message bus mechanism.

The NMPC is implemented using acados [244], which we interfaced as a
DUNE Task. The closed-loop runtime of the solver was benchmarked for each
SBC based on simulations that reflect targeted maneuvers. Benchmarking
results for Khadas Vim3 are depicted in Fig. 13.2, which show the closed-
loop runtime of the solver to find solutions to the OCP at each solver update
for a Monte-Carlo study that includes a range of initial conditions and en-
vironmental disturbances. Approximately 96% of the simulations allow the
solver to find a solution in less than 50 ms after two controller updates when
warm-starting the solver based on the time-shifted previous solution. There-
fore, we chose an update period of 50 ms in the experiments, which led to
satisfactory performance. More details can be found in [212].

The DRL controller is implemented as a DUNE task in C++ with the
ANN implemented in TensorFlow. Benchmarking tests show that the con-
troller can run with an update rate of several thousand hertz. However, this
is orders of magnitude faster than needed since state estimates are deliv-
ered at 50Hz (see next section). Naturally, the computational demands of
the DRL controller is not the bottleneck when selecting our hardware, but
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rather that of the NMPC.

13.4.3 State Estimates

State estimates, including estimates of the local wind velocity, are provided
by ArduPilot’s extended Kalman filter (EKF), and is propagated to the SBC
together with attitude references (either originating from the pilot’s radio
transmitter or ArduPlane’s guidance system) and other auxiliary signals
via a serial communication link using the MAVLink protocol. This provides
our controllers with all the necessary data. The MAVLink communication
was configured to provide data at the highest possible rate, which in this
case is 50 Hz, corresponding to the loop rate of the ArduPlane scheduler.
Communicating such large amounts of data at a high rate turned out to be
a demanding task for the ArduPilot system, which in turn made us select
the Cube Orange among several candidate autopilots. Cube Orange is (as
of February 2022) the most powerful of the CubePilot series of autopilots,
with a 400MHz ARM Cortex M7 processor. Benchmarking tests showed
that less powerful autopilot hardware platforms such as the Pixhawk 1 and
Pixhawk 2.1/Cube Black were not powerful enough to handle the high data
throughput over the serial link.

13.4.4 Actuators

Our controllers output desired throttle and control surface deflections that
are converted to PWM duty cycle using static linear maps. For the elevons,
these were identified based on lab experiments using a camera.

Remark 13.1. For future work, an interesting extension to a static linear
mapping would be to identify a second-order model of the actuator dynam-
ics. This can be done with a series of step responses that can be recorded
in a motion capture lab [134]. More advanced servos that provide position
feedback and control of the surface deflection angles can also be considered
for model-based control.

Most of the SBCs require additional hardware for PWM output. For in-
stance, the Odroid-XU4 has no hardware PWM ports, and the Raspberry
PI 4 only has two (we need three). For the Khadas Vim3, we chose a so-
lution based on a PCA9685 servo driver which is interfaced through Inter-
Integrated circuit (I2C) communication.
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13.4.5 Multiplexer Switch

The PWM signals to the actuators can be set by both computing platforms.
A PWM multiplexer (MUX) is used to switch between the controller that
runs on the SBC and the ArduPilot controllers. A switch on the pilot’s
radio transmitter is mapped to the MUX switch using ArduPilot’s RC pass-
through functionality, allowing the pilot to choose the output source at any
given time, including a manual recovery if loss of control should occur. To
achieve an additional layer of safety, the manual mode always overrides the
SBC output.

This architecture allows for a redundant PID controller to run on the au-
topilot that may overwrite the commands from the experimental controller
whenever necessary to ensure a safe operation, for example, if instability oc-
curs or when the required update rates of an optimization-based controller
such as MPC can not be met by the employed solver. The switching mech-
anism enables us to safely engage the highly experimental low-level control
code in flight, while takeoff and landing are performed by the pilot operating
the standard ArduPlane autopilot.

When switching between different controllers, we reset integral terms
to zero to avoid potential stability or performance issues. In ArduPlane
this is done every time a switch happens between "MANUAL" mode and
stabilized modes. For our custom controllers implemented in DUNE, we do
this through dedicated parameters.

For an alternative control selection method, based on a performance
monitoring scheme, together with a thorough discussion of MPC employed
on alternative computing platforms such as field-programmable gate arrays
(FPGAs), see [114].

13.4.6 Fail-Safe

The ArduPilot system includes standard fail-safe functionality, such as an
automatic return to launch (RTL) mode that is triggered if the pilot’s radio
transmitter signal is out of range or otherwise lost. Since this includes the
MUX switch signal, we had to augment the fail-safe functionality. Otherwise,
if the signal is lost when the SBC is in control, we would have no way to
recover the aircraft should our algorithms fail. To solve this, the fail-safe
configuration of our RC receiver (FrSky) is set to move the controls to the
following preset values in the case of a lost control signal for some time:

• The mode switch is set to RTL.

• The MUX switch is set such that the Cube Orange’s PWM output is
sent to the servos.
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• The other controls are set such that they correspond to centered sticks
on the transmitter.

This way, our fail-safe system works similar to ArduPilot’s. In addition, we
are sure that ArduPilot will be in control should we lose the control signal.
A potential downside of this is that the ArduPilot system will not be aware
that the control signal is out of range since the receiver channels are just set
to some preset values, instead of the usual "no signal".

13.4.7 Ground Station

Communication with the ground station is handled through a redundant
radio link using one 433MHz SiK Telemetry Radio and a 5GHz Ubiquiti
Rocket M5, both providing MAVLink communication with the Cube au-
topilot. The 5GHz radio also enables us to communicate with the SBC on a
local area network (LAN) through an onboard network router (see [264] for
details).

We use the ArduPilot-compatible ground control software Mission Plan-
ner running on a dedicated computer. Both radio communication links are
used for redundancy, and multiplexing of the two radio signals is handled
by MAVProxy.

Control of the DUNE controller tasks is done through Neptus, which is
the command and control framework of the LSTS toolchain, communicating
with DUNE using the Inter Module Communication (IMC) protocol. Neptus
allows the operator to set configuration parameters, monitor telemetry data,
and execute commands on the SBC.

13.4.8 Reference Generation for Automated Testing

We can use pre-defined signals to overwrite references coming from the guid-
ance controller to test our low-level motion controllers in a repeatable man-
ner. This means that we can e.g. use ArduPlane to fly a square waypoint
mission, where we run repeated custom maneuvers when on the long sides
of the square. Step sequences and chirp signals with increasing frequency
turned out to be a good way to test the closed-loop dynamics with different
control algorithms that need to be compared.

We follow a similar approach to collect data for identifying dynamic
models of a particular airframe. However, instead of manipulating refer-
ence signals for the low-level controller, the actuator signals of a particular
actuator are overwritten by suitable step sequences or oscillating signals. A
frequency analysis of the open-loop model dynamics or the linearized closed-
loop system around trim states can be used to guide the parametrization
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of the test signals such that their power spectral density covers the natural
frequencies of the system. The aim is to sufficiently excite the dynamics such
that the collected aerodynamic data can be used for system identification.

13.5 Test procedures

This section describes our testing procedures. To assess the airworthiness
of our algorithms, we use a three-stage ground-testing process before finally
attempting field experiments: (a) initial verification of promising designs in
our laptop simulators, (b) SITL simulation to verify the platform-specific
implementation of the algorithms, and (c) system integration testing at the
lab.

13.5.1 Python Simulator

As an initial verification step, prototype implementations of promising de-
signs are first tested in simulator environments implemented in Matlab or
Python. Model mismatch can be introduced in a controlled environment
to assess the algorithms’ robustness to modeling errors. Also, initial tuning
guidelines are established during this stage. Our Python-based DRL test
bench is publicly available online3. This is the same simulator that is also
used for training of the DRL algorithms, using our OpenAI Gym wrapper4.

13.5.2 Software-In-The-Loop (SITL) Simulations

The SITL simulator is based on a combination of a SITL configuration of
our DUNE application, in combination with ArduPilot’s SITL framework,
using a JSBSim simulation model for the Skywalker X8 based on our pre-
viously mentioned models. The standard SITL framework is sufficient for
systems where the SBC only sends commands to a low-level autopilot us-
ing the MAVLink interface, e.g. when testing high-level guidance controllers.
However, since we need to simulate the case where the SBC has direct access
to the actuators, we need to extend this functionality.

Our solution uses MAVLink’s "RC override" functionality to emulate the
behavior of our physical system. In DUNE, instead of sending actuator sig-
nals to the PWM driver, the controller output is transmitted to ArduPlane
SITL using our MAVLink interface, using the RC override message. In the
simulator, these values are interpreted as servo setpoints, as if the UAV was

3https://github.com/eivindeb/pyfly
4https://github.com/eivindeb/fixed-wing-gym
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under manual control. Therefore, for this to work, ArduPlane needs to be in
"MANUAL" mode.

To achieve automated testing of different maneuvers, we implemented a
DUNE Task that essentially provides scripting capabilities of a succession
of different maneuvers and system commands, including automated arming,
takeoff, and loitering, mode switching, as well as switching between Ardu-
Plane and our controllers.

13.5.3 Lab Testing

We conduct system integration tests on the physical hardware at the lab,
checking all communication channels and verifying that critical systems work
as expected. This includes the MUX switch, data logging, and telemetry. In
particular, we check edge cases concerning arming/disarming of the propeller
and confirm that the MUX switch does not interfere with the safety-critical
features.

When preparing for field tests, we first communicate the expected be-
havior of our system to the pilot and demonstrate safety-critical features.
An important tool we use when verifying and configuring our controller im-
plementations is the surface deflection test ("ground test"), where we check
that the control surfaces move in the correct directions in response to man-
ually tilting the vehicle, or moving the transmitter sticks. Moreover, the
magnitude of the deflection is an indicator of the controller response.

13.5.4 Field Experiments

When performing field experiments, we typically use a team of three per-
sons: (1) the pilot (first in command), operating the UAV in the manually
controlled modes using an RC transmitter, (2) ground station operator (sec-
ond in command) operating the automatically controlled modes and set-
ting ArduPilot parameters through Mission Planner, and (3) one researcher
controlling the payload computer through Neptus. This is typically the re-
searcher that designed the experiment or implemented the algorithm that we
test. During experiments, the team communicates using radio. Additional
personnel, if any, is in charge of taking notes.

The flight testing procedure can be roughly broken down into the fol-
lowing steps:

1. After all pre-flights checks are passed, the pilot takes off manually and
puts the UAV into loiter mode or a square pattern of waypoints.
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2. With the experimental algorithm running in the background, we mon-
itor its outputs while comparing them with the PWM values set by
ArduPlane.

3. If everything looks good, we switch to our controller using the MUX
switch mapped to a switch on the pilot’s radio transmitter. When test-
ing controllers with dynamic elements such as integral action or dis-
turbance observers, the dynamic elements are engaged (or their states
reset) when we perform the switch. This is to avoid any wind-up or
other potential issues.

4. We then observe the behavior of the experimental controller and test
it with increasingly challenging maneuvers, starting with straight and
level flight. If the UAV performs any sudden maneuvers, or if sub-
stantial oscillations or instability occurs, the pilot takes back control
over the UAV by using the MUX switch. The pilot’s visual eye contact
with the vehicle is aided by the other operators, constantly monitoring
telemetry data, and warning the pilot if needed.

5. After some initial tuning, we initiate the automated maneuver se-
quences for tuning and repeatability of the collected evaluation data.
This is especially useful when comparing the performance of two con-
trollers.

6. When data collection is complete, we switch the actuator control back
to ArduPlane using the MUX switch before landing.

13.6 Experimental results

As a result of this work, we have been able to perform a series of suc-
cessful outdoor flight experiments to evaluate the algorithms described in
Section 13.3. A detailed description of the specific experiments and the re-
sults obtained will appear in separate manuscripts. See [32] and [210] for
DRL and NMPC results, respectively.

In this section, we demonstrate the efficacy of our experimental platform
by presenting some of our results, with a special focus on the switching
mechanism. In particular, we show initial results for GAC, based on [58],
and look at one of our earliest attempts at closed-loop flight using DRL.

13.6.1 Geometric Attitude Control (GAC)

See Fig. 13.3 for an early attempt during the tuning process of GAC. Ini-
tially, after takeoff, the pilot uses ArduPlane’s fly-by-wire A (FBWA) mode
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Figure 13.3: Experimental results: Initial switch to GAC. The plots show the
tracking response for roll and pitch references (dashed, black). The bottom subplot
depicts the virtual deflections of the aileron (blue) and the elevator (orange).

to control the UAV’s roll and pitch angles using manual stick input. At
720 s (marked by the vertical line), the pilot switches the MUX to engage
closed-loop operation of the GAC. During this initial test, integral action
was disabled, explaining the increased offset visible after the switch. The
switch between the PWM outputs from the Cube and those from the SBC
is seamless, and any potential communication delays in the hardware archi-
tecture do not seem to have a significant effect on the controller.

Fig. 13.4 shows the performance of the GAC controller after further
tuning. The steady-state offset has been removed, and the test shows good
performance through repeated step responses in both roll and pitch channels.
The parallel pipeline, including a solid backup system and in-air switching
between the two, enabled a safe and comfortable tuning process. A more
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Figure 13.4: Performance of GAC after a short tuning procedure. The plots show
the tracking response for roll and pitch references (dashed, black). The bottom sub-
plot depicts the virtual deflections of the aileron (blue) and the elevator (orange).

thorough evaluation of the GAC experiments is set to appear in a separate
article.

13.6.2 Deep Reinforcement Learning (DRL)

Fig. 13.5 shows one of the first attempts during flight testing of the DRL
controller. Again, after takeoff and checking that all systems behave as ex-
pected, the pilot gave control over the servos to the DRL controller by
flipping the MUX switch. The closed-loop pitch response was highly oscilla-
tory (unstable), causing the pilot to switch to manual control of the UAV.
After tweaking a few parameters to scale down the magnitude of the con-
troller outputs (while the UAV was still flying), we were able to reduce the
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oscillations. Fig. 13.5 shows a marginally stable response where the pilot
was comfortable leaving the experimental algorithm in control. After some
design iterations with rapid test cycles, we obtained results comparable to
a well-tuned benchmark PID controller. See [32] for details.

These examples illustrate how our system lowers the threshold for high-
risk tests of experimental low-level algorithms. The main takeaways are
(a) the switch does not interfere when our algorithm works, and in case
it doesn’t, our system saves the day (although we did crash a few times due
to human errors), and (b) the serial communication between the Cube and
the SBC provide state estimates with a low enough latency to be satisfactory
for our purposes.

13.7 Lessons learned

In this section, we discuss some lessons learned based on the experience
gained in this project.

Previous work at our lab has focused on different aspects of state estima-
tion for autonomous vehicles, including GNSS-aided inertial navigation [39]
and estimation of airflow angles [115, 251]. However, in our work, the focus
has been on control. To provide the SBC with the state estimates needed to
run our control algorithms, we chose a pragmatic solution instead of spend-
ing time on implementing a custom solution: to utilize the already existing
navigation solution provided by ArduPlane and send this to the SBC using
the MAVLink protocol. Initially, we were worried that the latency of this
link could cause problems with the closed-loop operation of our algorithms
or that the achieved update frequency would be too low. However, this has
not caused any issues to this day. Therefore, instead of spending too much
time and resources on a perfect solution, we choose something simple and
stick with it until something better is needed.

An unexpected problem that was particularly time-consuming during
the preparations of the experiments was the electromagnetic interference
between components of the flight stack. Being unaware of the fact that this
is the source of error makes it hard to debug components of the system. For
example, on our test platform, an earlier controller board interfered with the
GNSS antenna, ultimately causing the EKF to diverge in a non-deterministic
way. It took a considerable amount of time until we discovered a correlation
with the distance between the GNSS antenna and the controller board. Early
integration tests with alternatives for each hardware component is our lesson
learned in this case, assuming that an engineering team with expertise in
electromagnetic interference is not part of the crew.
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13.7. Lessons learned
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(a) Early DRL experiment.
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(b) Performance after a few design iterations.

Figure 13.5: Experimental results with DRL showing (a) oscillatory attitude re-
sponse (blue) vs reference angles (dashed, black) in initial flight experiments, and
(b) after a few design iterations, the controller achieves good tracking performance.
See [32] for details.
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13. Experimental Platform for Evaluation of Advanced Low-Level Control
Algorithms

Before attempting the first flight experiments of our model-based de-
signs, we lingered for too long because initial model validation efforts showed
some discrepancies with flight data. Looking back, we would have instead
performed more early flight tests before iteratively improving the model [211,
213]. For instance, the NMPC has proved to be robust against modelling er-
rors. Do not underestimate the robustness of feedback control.

The pilot is an essential part of the crew and can be a good resource
when doing experimental work. Supporting with experience from the field
and practical aspects of the UAV, it is a good idea to keep the pilot in close
communication and discuss ideas early to get additional insights into the
feasibility of the case study. Create an open environment where ideas can
be freely discussed.

A working experimental platform is a solid foundation for rapid proto-
typing of practical control designs. However, it has taken some time to get
there. Performing flight experiments with fixed-wing UAVs is an outdoor
sport. Weather conditions, travel time to the airfield, and the size of our
test crew are all elements that make this a substantial undertaking.

13.8 Chapter Summary

We provided a detailed description of a flight-stack architecture and experi-
ment protocols to test advanced nonlinear control algorithms. The hardware
architecture consists of off-the-shelf components researchers can integrate
into existing flight platforms with minimum effort. Finally, we demonstrate
the practical use with examples of low-level motion control algorithms from
our lab and conclude with lessons learned to help other researchers avoid
pitfalls we discovered while building our test infrastructure.
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Concluding Remarks
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Chapter 14

Conclusions and Future
Directions

This thesis has contributed to the theory and practice of nonlinear autopilot
design for fixed-wing aircraft with a particular focus on UAV applications.
Each chapter contains a summary section at the end. In this chapter, we con-
clude this thesis by highlighting some future research directions, structured
by parts.

Part I: Geometric Attitude Control Laws for Fixed-Wing
Aircraft

In Chapter 4, the simulation results show that the geometric reduced-attitude
controller is more efficient than the Euler-angle-based (roll/pitch) controller
in the sense that it uses less control energy. However, the difference in the
angle of attack and sideslip angle causes a difference between the dynamic
inversion terms of the two controllers. Therefore, the increase in efficiency
should be investigated further in a more detailed comparison between the
two approaches by using Monte Carlo simulation.

Chapter 5 presented a hybrid controller to overcome the topological ob-
struction to global attitude stabilization. Although the results here are in-
triguing, further studies should assess if we gain anything (robustness or
performance) with the extra machinery compared to simpler discontinuous
control designs using simulated measurement noise with representative noise
levels. Further, a drawback of the hybrid controller is the deceleration close
to the expelling reference as shown in Figure 5.3 and Figure 5.5. This sug-
gests using a dynamic extension in which the control action is given by a
dynamic weighting of both configuration error vectors as done in [21] or
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14. Conclusions and Future Directions

[172]. This would essentially mean extending the backstepping-based design
of Chapter 6 with the hybrid design principles outlined here. Future work
will also address the performance of the hybrid controller in the face of non-
vanishing disturbances and model perturbations. An interesting topic here
would be to combine hybrid and robust controller designs. This is not nec-
essarily straightforward since the jump between potential functions would
cause a discontinuous jump in the sliding variable.

The controllers designed in Chapter 6 and Chapter 7 have been imple-
mented in the ArduPlane open-source autopilot. SITL simulation results
are presented in Chapter 6. Initial flight test results, some of which are
shown in Chapter 13, demonstrate the performance of the results. Although
the simulation results and initial flight test results look promising, further
validation of the presented approach is warranted. In particular, extensive
flight experiments on a physical UAV platform should be carried out to
evaluate the real contribution compared to state-of-the-art autopilots for
fixed-wing UAVs. One additional practical aspect that has not been covered
in this chapter and needs to be considered in real-life applications is the use
of anti-windup mechanisms in conjunction with the super-twisting control
law. Anti-windup in the context of the super-twisting algorithm has recently
been treated in [87].

Part II: Path-Following Control

The results of Part II could be extended in a few different directions. One
downside of the approach is the reliance on a known wind estimate. The
method can be improved by the addition of a wind estimator, which would
(cf. Section 9.6) result in a 3D adaptive/integral LOS-like algorithm [33]. An-
other extension could be to use similar methods as in Chapter 5 to achieve
global asymptotic stability also for the path-following controller. Further-
more, a coupled stability analysis with an inner-loop attitude controller is
a natural next step, including saturation limits on the normal acceleration
(and thus on the angle of attack).

Part III: Deep Reinforcement Learning Attitude Control of
Fixed-Wing UAVs

Further work in this direction should investigate if DRL solutions to more
complex flight control problems also transfer well to the field, e.g. deep-stall
landings or end-to-end path following. The problem of limited integral ac-
tion should also be further investigated. Moreover, learning from real data,
be it historical or generated online by the learning controller, is an intrigu-
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ing research direction that would alleviate the need for accurate nonlinear
models. The data efficiency of our method shows that this should, in fact,
be feasible.
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