
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Eirik Jaccheri Høydalsvik

Circular dichroism in cavities coupled
to ferromagnetic metals and
superconductors

Master’s thesis in Applied Physics and Mathematics
Supervisor: Sol H. Jacobsen
Co-supervisor: Henning Goa Hugdal
June 2023





Eirik Jaccheri Høydalsvik

Circular dichroism in cavities coupled
to ferromagnetic metals and
superconductors

Master’s thesis in Applied Physics and Mathematics
Supervisor: Sol H. Jacobsen
Co-supervisor: Henning Goa Hugdal
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Abstract

In this Master thesis, we investigate the possibility of using circularly polarized
light in electromagnetic cavities to study superconductors and ferromagnetic
metals. An electromagnetic cavity is an enclosed space with conductive walls.
When placing a material in a cavity, the interaction between the material and
the cavity photons can change the effective photon spectrum. This renormalized
spectrum can be measured using transmission and reflection experiments. Re-
cently, electromagnetic cavities that can reliably excite circularly polarized pho-
tons have been developed. These cavities open up the possibility of performing
polarization-dependent transmission experiments. Right- and left-handed pho-
tons transform into each other under time reversal, making circularly polarized
light an important tool to study time-reversal symmetry-breaking systems. This
Master thesis will examine the extent to which polarization-dependent trans-
mission experiments can be used to probe ferromagnetic metals, ferromagnetic
superconductors and time-reversal symmetry-breaking superconductors.
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Sammendrag

I denne masteroppgaven undersøker vi muligheten for å bruke sirkulært polaris-
ert lys i elektromagnetiske kaviteter for å studere superledere og ferromagnetiske
metaller. En elektromagnetisk kavitet er et lukket område med elektrisk ledende
vegger. Når et materiale plasseres i en kavitet, vil interaksjonen mellom mate-
rialet og kavitetfotonene endre det effektive fotonspekteret. Det effektive foton-
spekteret kan måles ved hjelp av transmisjons- og refleksjonseksperimenter. Det
har nylig blitt utviklet elektromagnetiske kaviteter som pålitelig kan eksitere
sirkulært polariserte fotoner. Disse kavitetene muliggjør polarisasjonsavhengige
transmisjonseksperimenter. Høyre- og venstrehendte fotoner transformeres til
hverandre under tidsreversering. Dermed er sirkulært polarisert lys et viktig
verktøy for å studere systemer som bryter tidsinversjonsymmetri. I denne mas-
teroppgaven undesøker vi muligheten for å bruke polarisasjonsavhengige trans-
misjonseksperimenter til å studere ferromagnetiske metaller, ferromagnetiske su-
perledere og superledere som bryter tidsinversjonsymmetri.
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Chapter 1

Introduction

A circularly polarized light wave has an electromagnetic field with a constant
amplitude that is rotating at a constant rate ω, and can either be right or
left-handed [2]. Taking the propagation direction of the light wave to be the z-
direction, a right-handed light wave rotates counterclockwise while a left-handed
light wave rotates clockwise. The magnetic field of a right- and a left-handed
light wave is illustrated in fig. 1.1. Time-reversal is a symmetry operation that
reverses the direction of time t → −t and momentum q → −q. Under time-
reversal, right- and left-handed light waves transform into each other [3]. This
property makes experiments involving circularly polarized light an important
method to study time-reversal symmetry-breaking systems. One such technique
is polarization-dependent absorption experiments, which measure the difference
in absorption of left and right-handed light waves [4, 5]. A material that has
a different absorption of left and right-handed light is said to display circular
dichroism.

An electromagnetic cavity is an enclosed space with reflective material on the
boundary. The reflective boundaries cause the electromagnetic field inside the
cavity to form standing waves. Materials placed inside the cavity have a coupling
with the standing waves which is inversely proportional to the volume of the
cavity [6]. This property allows for much stronger light-matter coupling than
in free space. Electromagnetic cavities where circularly polarized light can be
excited reliably have been developed recently [7–9]. In this thesis, we investigate
the possibility of using these cavities to probe time-reversal symmetry-breaking
superconductors and ferromagnetic metals.

1.1 Superconductivity
Superconductivity is a phenomenon where a material displays zero resistivity and
perfect diamagnetism under a certain critical temperature Tc [10]. In BCS the-
ory, named after Bardeen, Cooper and Schrieffer who developed it, superconduc-
tivity is caused by a phonon-mediated attractive interaction between electrons
close to the Fermi surface. Under the critical temperature Tc, this interaction
causes pairs of electrons to condense into a collective state described by ∆Q

σσ′(k).

9
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Figure 1.1: Arrow illustrates the magnetic field at z = 0 and time t for a right(a)-
and left(b)-handed light wave propagating in the z-direction, with frequency ω.

The spin indices σ and σ′ denote the spin direction of the electrons that make up
the Cooper pair, while Q and k give the center of mass and relative momentum,
respectively. In mean-field theory, the condensation is approximated as constant
across the superconductor by setting Q = 0. Using this approximation, the su-
perconductor is described as quasiparticles with an energy gap ∆σσ′(k). The gap
parameter ∆σσ′(k) is an important quantity in the study of superconductors, as
it gives information about the microscopic mechanism of the superconductor.

The first known superconductors had s-wave gap parameters ∆↑↓. In a s-
wave superconductor, the Cooper pairs are formed from electrons with opposite
spin and the gap parameter is constant around the Fermi surface. In s-wave su-
perconductors, the superconductivity is stable under impurity scattering, which
means that it is easier to access experimentally in real samples [11]. Interest
in non s-wave superconductivity increased with the discovery that the high-
temperature cuprate superconductors had a d-wave pairing. d-wave supercon-
ductors are also formed with opposite spin electrons, but the gap parameter
varies around the Fermi surface. The dependence of the relative momentum k
for s-, p- and d-wave pairing is shown in fig. 1.2.

In contrast to s- and d-wave superconductors, p-wave superconductors are
triplet superconductors. Triplet superconductors are even under the interchange
of spins, and can either be composed of two electrons with the same spin or a
symmetric superposition of electrons with opposite spin [12]. Several super-
conductors have been theorized to be p-wave superconductors that break time-
reversal symmetry [11–15]. One such class of superconductors are the ferro-
magnetic superconductors. Ferromagnetic superconductors are materials where
superconductivity and ferromagnetism coexist. The time-reversal symmetry is
then broken below the Curie temperature, where the ferromagnetic phase tran-
sition occurs. Ferromagnetic order tends to align the electron spins, favoring
triplet pairing [15]. Ferromagnetism and superconductivity have been shown
to coexist experimentally in the uranium-based compounds UGe2, URhGe, and
UCoGe [16–18].

Chiral superconductors are another class of superconductors that break time-

10
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Figure 1.2: Polar plot of gap symetries plotted for (a) s-, (b) p- and (c) d-wave
gap symmetry. The absolute value of the amplitude is given by the distance
from the origin. Positive gaps are plotted in red while negative gaps are plotted
in blue with a dashed line.

reversal symmetry [3, 12]. Chiral superconductivity is a topological state, where
the time-reversal symmetry is spontaneously broken at the critical temperature
of the superconductor. The chiral states studied in this Master thesis have the
gap parameter ∆k ∝ kx ± iky ∝ e±iφ. When moving on a closed path around
the kz-axis, φ ∈ [0, 2π], the phase of the gap parameter precesses by ±2π [19].
The two states e±iφ have opposite directions of precession, defining the chirality
of the state. Under time reversal, the two gap parameters transform into each
other. The time-reversal symmetry is therefore broken by the orbital part of the
gap parameter, in contrast to ferromagnetic superconductors, where the time-
reversal symmetry is broken by the spin degrees of freedom.

1.2 Electromagnetic cavities
An electromagnetic cavity is an enclosed space with reflective material on the
boundary. The electromagnetic field inside of the cavity has standing wave
solutions called mode functions. In the quantum regime, the amplitudes of
the mode functions are quantized into photons [20]. In recent years, there has
been great interest in studying the coupling between these photon modes and
condensed matter systems [6, 21–27]. Coupling condensed matter systems and
cavities can have applications in quantum information [28, 29]. This is because
quantum information can be stored in a condensed matter system, and the cavity
can be used to transmit the information over much greater distances than a
proximity-coupled system [26, 27, 29]. One of the key advantages of studying
light-matter coupling inside a cavity is that the coupling of the cavity to the
material becomes inversely proportional to the cavity volume. Decreasing the
cavity size can increase the light-matter coupling by several orders of magnitude,
compared to its free space value [6]. Using this property, strong coupling between
electromagnetic cavities and ferromagnets [23] and ferrimagnets [22], has been
achieved experimentally. The strong coupling manifests itself as an anticrossing

11



in the photon dispersion, at the resonance frequency of the magnetic system.
Another advantage of electromagnetic cavities is the possibility of performing

transmission and reflection experiments. Irradiating the cavity with a pulse of
light, and recording the transmitted and reflected light gives information about
the spectrum of the photons inside the cavity. If the photon modes interact with
a condensed matter system, the photon dispersion gets modified, for example
by forming anticrossings in the spectrum. In this way, transmission experiments
can be used to study condensed matter systems. Unlike absorption experiments,
transmission experiments do not rely on driving the system with periodic light
waves. Therefore, transmission experiments allow you to study a system without
disturbing it. For this reason, cavities are routinely used to study chemical
reactions [7].

Previously, transmission and reflection experiments have been performed by
exciting linearly polarized light [22, 23]. One of the inspirations for this Master
project is the development of electromagnetic cavities where circularly polarized
light can be excited reliably [7–9]. Such an electromagnetic cavity was already
developed in 1974 to perform spin-sensitive electron paramagnetic resonance
experiments [8]. In electron paramagnetic resonance experiments, a material
is placed inside an electromagnetic cavity. A strong constant magnetic field
is applied to the material, and the transition between the spin-up and spin-
down state of the electron is excited using the cavity field. More recently, a
cross resonator has been developed. A cross resonator [7–9] is composed of two
rectangular microcavities which are placed orthogonal to each other to form a
cross. By exciting the two microcavities 90-degrees out of phase, the light in the
overlapping region becomes approximately circularly polarized [7, 9]. The cross
resonator gives more precise control over the photon polarization. In addition,
the microcavities allow for smaller cavity sizes which can increase photon-matter
coupling and be included in miniaturized circuitry.

1.3 Circular dichroism
A material exhibits circular dichroism if the absorption of light is polarization
dependent. In an absorption experiment, a material is driven by an external
light wave. The transmitted intensity of the light wave is recorded, which gives
the proportion of the intensity that is absorbed by the material. Measuring the
differential absorption of left and right-handed light is a popular experimental
technique, giving information about the spin and angular momentum of the elec-
trons [5]. Circular dichroism in superconductors has also been studied [30–35].
Capelle et al. studied the conditions under which a conventional s-wave super-
conductor would give rise to dichroism [30, 31]. Yip and Sauls studied dichroism
in unconventional superconductors and concluded that for the effect to exist,
particle-hole symmetry must be broken in the superconductor [34]. Wysokiński
et al. showed theoretically that a multiband chiral kx + iky superconductor
would give rise to dichroism [32, 33].

In this thesis, we will modify the definition of dichroism to the cavity-material
system having polarization-dependent transmission coefficients. Such a defini-
tion of dichroism has already been used in the context of chiral biomolecules [36].

12



The paper showed that chiral biomolecules coupled to electromagnetic cavities
in the strong coupling regime, form hybrid photon-matter polariton states. The
left and right-handed photons hybridize differently with the molecules, leading
to a polarization-dependent transmission spectrum. The goal of this thesis is to
apply the same principles to superconductors with broken time-reversal symme-
try.

1.4 Structure of the thesis
The first five chapters introduce the necessary prerequisites to study circular
dichroism in electromagnetic cavities. In chapters 2 and 3 we introduce top-
ics related to electromagnetic cavities. First, we derive the expression for the
quantized electromagnetic field inside a cavity. This expression is then applied
to derive interaction Hamiltonians between circularly polarized photons inside
the cavity and materials placed inside the cavity. The input output-formalism
is also introduced to derive expressions for reflection and transmission coeffi-
cients. In chapters 4 and 5 we introduce the functional integration formalism,
and the time reversal-symmetry breaking superconducting states that are stud-
ied in chapter 6. Finally, the main results are summarized and discussed in
chapter 7.
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Chapter 2

Electromagnetic cavities

In this thesis, we study systems that combine electromagnetic cavities and con-
densed matter systems, like ferromagnetic metals and superconductors. In order
to study the combined system in the quantum regime, we first need a descrip-
tion of the quantized photon modes inside an electromagnetic cavity. We start
this chapter by deriving an expression for the quantized vector potential inside
a rectangular cavity with periodic boundary conditions in the xy-plane. In the
following sections, we use the expression for the vector potential to derive cou-
pling Hamiltonians between the cavity photons and condensed matter systems
placed inside the cavity. These couplings are expressed in terms of circularly po-
larized photon modes. We conclude the chapter by discussing the time reversal
of circularly polarized photon modes.

2.1 Quantization of cavity modes

We follow the derivation of Kakazu and Kim for the quantization of the electro-
magnetic modes inside a rectangular cavity with side lengths Lx, Ly, and Lz [20].
The walls in the z-direction are assumed to be perfectly conducting, leading to
the boundary conditions E|tan = B|norm = 0 at z = 0 and z = Lz. E|tan is the
component of the electric field tangential to the cavity wall, and B|norm is the
component of the magnetic field that is normal to the cavity wall. Furthermore,
we assume that Lx, Ly � Lz, allowing us to impose periodic boundary condi-
tions in the x and y-directions. This cavity geometry is depicted in fig. 2.1, and
the boundary conditions are satisfied by the vector potential

A =
∑
q,i

√
~

2εε0V wq

(
bq,iuq,i + b∗q,iu

†
q,i

)
, (2.1)
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with the mode functions

uq,x = uq,y =

√
2

V
eiqxxeiqyyi sinQzz,

uq,z =

√
2

V
eiqxxeiqyy cosQzz . (2.2)

When nz = 0 the definition of uq,z is modified to be

uq,z =

√
1

V
eiqxxeiqyy . (2.3)

Here V is the volume of the cavity, ~ is the reduced Planck constant, ε0 is the vac-
uum permittivity, ε is the relative permittivity inside the cavity, c0 is the speed of
light in vacuum, c = c0/

√
ε is the speed of light inside the cavity, ωq = |cq| is the

frequency of the electromagnetic wave and bq,i is the field amplitude in the êi di-
rection. The wave vector can take the values q = (2πnx/Lx, 2πny/Ly, πnz/Lz),
with nx, ny = 0,±1,±2... and nz = 0, 1, 2....

Because of the gauge freedom in the vector potential A, the field amplitudes
bq,i are not independent. Choosing the Coulomb gauge, the vector potential
must be transversal to its propagation direction, Aq · q = 0. To take advantage
of the transversality, we rotate to a new basis ēq,s, s ∈ (1, 2, 3), where the new
z-axis (labeled by 3) is parallel to q. The new basis vectors are given by ēq,s =∑
iO

q
siêi, with

Oq =

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sinφ cosφ sin θ sinφ cos θ

 , (2.4)

where the angles θ and φ depend on q. The field amplitudes in this basis
become aq,s =

∑
iO

q
s,ibq,i and a∗q,s =

∑
iO

q
s,ib

∗
q,i. Written in this basis, the

vector potential becomes

A =
∑
q,s

√
~

2εε0V ωq

(
aq,sūq,s + a∗q,sū

†
q,s
)
, (2.5)

where we have defined the new mode functions ūq,s =
∑
i ēq,iO

q
s,iuq,i. Using the

facts that the field amplitudes are now independent and that the mode functions
are orthogonal

∫
c
ūq,s · ūq′,s′ = δs,s′δq,q′ , the field amplitudes can be quantized

using the canonical quantization procedure [10]

A =
∑
q,s

√
~

2εε0V ωq

(
aq,sūq,s + a†q,sū

†
q,s
)
. (2.6)

In the last line, a† and a are operators with the bosonic commutation relations

[aq,s, aq′,s′ ] =
[
a†q,s, a

†
q′,s′

]
= 0,[

aq,s, a
†
q′,s′

]
= i~δq,q′δs,s′ .

(2.7)
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Using the expression for the quantized vector potential given in eq. (2.6), we can
proceed to derive the quantized Hamiltonian for the electromagnetic cavity, in-
cluding interactions between the cavity photons and condensed matter systems.

When deriving these interactions, we will make the approximation that nz =
1 in eq. (2.6). Each increment of nz has an associated energy cost of ~cπ/Lz.
Since Lz � Lx, Ly, high nz excitations are energetically costly. However, the
nz = 0 modes have zero in-plane electric field which would make the param-
agnetic coupling discussed in section 2.5 vanish. As for the Zeeman coupling
discussed in section 2.4, the nz = 0 mode only couples to one of the linear po-
larization’s s [37] and can therefore not give rise to circular dichroism. The in-
plane electric and magnetic field for the nz = 1 modes are illustrated in figs. 2.1
and 2.2. We now change the definition of q to be the in-plane momentum
q = (2πnx/Lx, 2πny/Ly), the z-component Qz = π/Lz and the frequency

ωq = c
√

q2 +Q2
z . (2.8)

2.2 Quantized Hamiltonian
Classically the Hamiltonian for an electromagnetic field without interactions is
given by [38]

H0 =
ε0
2

∫
dr
[
(∂tA(r, t))

2
+

1

µ0
(∇× A(r, t))

2

]
. (2.9)

Inserting the expression for the quantized vector potential eq. (2.6) and using
the identity

∫
c
ūq,s · ūq′,s′ = δs,s′δq,q′ , gives the quantized Hamiltonian

H0 =
∑
q,s

~ωqa
†
q,saq,s , (2.10)

where s ∈ {1, 2} gives the linear polarization of the photon mode. As expected,
the Hamiltonian is composed of independent harmonic oscillators for each mo-
mentum q and linear polarization s.

In order to study circular dichroism, it is necessary to change to a basis of
circularly polarized light. A circularly polarized photon is a linear combination
of two linearly polarized photons, with a ±π/2 phase difference between the
polarizations. Written as a matrix equation, the relation between circularly and
linearly polarized light is given by[

aq,L
aq,R

]
=

1√
2

[
1 −i
1 i

] [
aq,1
aq,2

]
, (2.11)

Where aq,L is the annihilation operator for a left-handed photon and aq,R is
the annihilation operator for a right-handed photon. Using the fact that this
transformation is unitary, we can perform a basis change in eq. (2.10)

H0 =
∑
q,l

~ωqa
†
q,laq,l , (2.12)
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where l ∈ {R,L}. In this thesis, we want to consider an electromagnetic cavity
interacting with an electronic system. The Hamiltonian for an electronic system
interacting with the electromagnetic cavity is given by

H =
∑
q,l

~ωqa
†
q,laq,l +

∑
kσσ′

εkσσ′C†
kσCkσ′ +Hint(C

†, C, a†, a) . (2.13)

In the last line C† and C are electron creation/annihilation-operators, the sec-
ond term gives the non-interacting electron theory, and Hint is the Hamiltonian
describing the interaction between the photons and the electrons. For a free
electron gas, εkσσ′ = ~2|k|2

2me
δσσ′ − µ, where µ is the chemical potential. When

the electronic system is a superconductor, additional C†C† and CC terms must
be added to eq. (2.13). The non-interacting superconductor theories will be
considered in chapter 5.

The following sections are devoted to the interaction Hamiltonian Hint. First,
we show how to convert Hint to a basis of circularly polarized light. In the
following sections, we present the specific coupling terms that we will consider
in this thesis.

2.3 Circularly polarized basis
In this thesis, we consider the paramagnetic and Zeeman coupling. The Hamil-
tonian for both these couplings can be written in the form

Hint =
∑

kk′σσ′s

gkk′

σσ′sC
†
k,σCk′,σ′

(
ak−k′,s + a†k′−k,s

)
, (2.14)

where s gives the linear polarization of the photon mode, σ gives the electron spin
and gkk′

σσ′s is the coupling parameter. In order to investigate circular dichroism,
we convert eq. (2.14) to a basis of circularly polarized light using eq. (2.11)

Hint =
∑

kk′σσ′

[gkk′

σσ′1√
2

(
ak′−kL + ak′−kR + a†k−k′L + a†k−k′R

)
+ i

gkk′

σσ′2√
2

(
ak′−kL − ak′−kR − a†k−k′L + a†k−k′R

) ]
C†

kσCk′σ′

=
∑

kk′σσ′

[ 1√
2

(
gkk′

σσ′1 + igkk′

σσ′2

)(
ak′−kL + a†k−k′R

)
+

1√
2

(
gkk′

σσ′1 − igkk′

σσ′2

)(
ak′−kR + a†k−k′L

) ]
C†

kσCk′σ′ .

(2.15)

or written more compactly

Hint =
∑

kk′σσ′l

gkk′

σσ′l

(
ak′−kl + a†k−k′−l

)
C†

kσCk′σ′ , (2.16)

where l ∈ {L,R}, we take −l to be the opposite handedness of l and

gkk′

σσ′L/R =
1√
2

(
gkk′

σσ′1 ± igkk′

σσ′2

)
. (2.17)
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Figure 2.1: Electromagnetic cavity composed of two large sheets of reflecting
material placed at z = 0 and z = Lz. Condensed matter system placed at z ≈ 0.
In-plane magnetic field B for nz = 1 mode illustrated, showing maxima at the
top and bottom of the cavity z = 0 and z = Lz.

2.4 Zeeman coupling
The Zeeman coupling describes the interaction between the electron spin and a
magnetic field. When looking for circular dichroism, the Zeeman coupling is a
natural choice when the time-reversal symmetry is broken for the spin degrees
of freedom. Examples of such systems are ferromagnets and non-unitary super-
conductors. In the center of the cavity, the magnetic field points purely in the
z-direction [20]. For a magnetic field in the z-direction, it can be verified that
the coupling of left- and right-handed photons only differs by a phase, which
would not lead to dichroism. The coupling is therefore computed at the bottom
of the cavity where the in-plane magnetic field is maximal [20]. An illustration
of the setup is given in fig. 2.1. The Hamiltonian for the Zeeman interaction is
given by

HZeeman =
∑
i

µ · Bi

=
∑

kk′iσσ′

µBσσσ′ei
(
k−k′)·riC†

kσCk′σ′ · ∇× Ai .
(2.18)

Using eq. (2.6) we can compute the cross product giving

∇× A =(∂yAz − ∂zAy) êx + (∂zAx − ∂xAz) êy

=
∑
q,s

√
~

2ε0ωq

(
aq,s + a†−q,s

)
×
((
Oq
s,z∂yuq,z −Oq

s,y∂zuq,y
)
êx +

(
Oq
s,x∂zuq,x −Oq

s,z∂xuq,z
)
êy
)

=
∑
q,s

√
~

ε0V ωq

(
aq,s + a†−q,s

)
eiq·ri

×
((
Oq
s,ziqy −Oq

s,yiQz
)
êx +

(
Oq
s,xiQz −Oq

s,ziqx
)
êy
)
.

(2.19)
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Now we can simplify the expression by noting that Qz >> qx, qy. The dominant
part of the magnetic field is therefore given by

∇× A =iQz
∑
q,s

√
~

ε0V ωq

(
aq,s + a†−q,s

)
ei(qxx+qyy)

×
(
−Oq

s,y êx +Oq
s,xêy

)
,

(2.20)

which gives the Hamiltonian

HZeeman =iQz
∑

q,k,k’,s

√
~µ2

B

ε0V ωq
δq,k′−k

(
−Oq

s,yσ
x
σσ′ +Oq

s,xσ
y
σσ′

)
×
(
aq,s + a†−q,s

)
C†

kσCk′σ′ .

(2.21)

Introducing the coupling coeficient gq
σσ′s, defined as

gq
σσ′1 = iQz

√
~µ2

B

ε0V ωq

(
−Oq

1,yσ
x
σσ′ +Oq

1,xσ
y
σσ′

)
= −Qz

√
~µ2

B

ε0V ωq

[
0 −e−iφ
eiφ 0

]
,

(2.22)

similarly for s = 2 we get

gq
σσ′2 = iQz

√
~µ2

B

ε0V ωq

(
−Oq

2,yσ
x
σσ′ +Oq

2,xσ
y
σσ′

)
= −iQz

√
~µ2

B

ε0V ωq

[
0 e−iφ

eiφ 0

]
.

(2.23)

Written in terms of the coupling coeficients eq. (2.22) and eq. (2.23) the Hamil-
tonian becomes

HZeeman =
∑

kk′σσ′s

gk′−k
σσ′s

(
ak′−ks + a†k−k′s

)
C†

kσCk′σ′ . (2.24)

We proceed to change eq. (2.24) to a circularly polarized basis using eq. (2.16)
and eq. (2.17)

gq
σσ′l =

1√
2

(
gk′−k
σσ′1 ± igk′−k

σσ′2

)
= Qz

√
~µ2

B

2ε0V ωq

([
0 e−iφ

−eiφ 0

]
±
[
0 e−iφ

eiφ 0

])
= g̃z

[
0 e−iφδl,L

−eiφδl,R 0

]
,

(2.25)
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Lz/2

êz
êy

êx

Lz

E

Figure 2.2: Electromagnetic cavity composed of two large sheets of reflecting
material placed at z = 0 and z = Lz. Condensed matter system placed at
z = Lz/2. In-plane electric field E for nz = 1 mode illustrated, showing a
maximum in the center of the cavity z = Lz/2.

where we have defined g̃z = Qz

√
2~µ2

B

ε0V ωq
. Written in this basis the action becomes

HZeeman =
∑

kk′σσ′l

gkk′

σσ′s

(
ak′−kl + a†k−k′−l

)
C†
kσCk′σ′ . (2.26)

From the coupling in eq. (2.25), one can see that right-handed photons can flip
the spin of the electron from up to down, while left-handed photons can flip
the spin from down to up. Since total angular momentum is conserved in the
process, one can deduce that the left-handed photons have angular momentum
+~ while the right-handed photons have angular momentum −~ [2].

2.5 Paramagnetic coupling
The paramagnetic coupling describes the interaction between the photons in the
cavity and the flow of charge in a metal. The in-plane electric field is maximal
in the center of the cavity [20, 27], the material is therefore placed at the center
of the cavity to maximize the coupling. The setup is illustrated in fig. 2.2. The
derivation of the paramagnetic coupling is left out of this thesis but can be found
in [1, 6]. The Hamiltonian for the paramagnetic coupling is given by

Hint =
∑
kqσl

glk,k′

(
ak−k′,l + a†k′−k,−l

)
C†

k,σCk′,σ , (2.27)

where C† and C are the electron creation/annihilation operators and the cou-
pling coefficient is given by

g
L/R
k,k′ = ig̃p

(
Ok−k′

1,i ± iOk−k′

2,i

)
ki+k′

i

2(
1 +

(
ck−k′

ω0

)2)1/4
. (2.28)

In the last line Ok−k′

s,i is an element of the matrix given in eq. (2.4), we de-
fined ω0 = cπ/Lz, and the constant g̃p =

√
4α/(V

√
ε), where α equals the fine
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structure constant and V is the volume of the cavity. We note that gl−k′,−k =

−glk,k′ = glk′,k.
Unlike the Zeeman coupling, the left and right-handed coupling has the same

spin structure. The spin structure is not forced by conservation of angular
momentum, because the photons are coupled to the orbital part of the wave
function. Conservation of angular momentum is then insured by the orbital
angular momentum of the electrons, and not the spin.

2.6 Time reversal symmetry
We conclude the chapter with a discussion of time-reversal symmetry. To il-
lustrate the effect of time-reversal symmetry we calculate the magnetic field at
the bottom of the cavity for a circularly polarized mode with momentum q. By
changing the basis of eq. (2.1) using eq. (2.11), we get the vector potential of a
circularly polarized mode

AR/L(r, t) =

√
~

2εε0V ωq

(
aq,R/L(t)ūq,R/L + a∗q,R/L(t)ū

∗
q,R/L

)
, (2.29)

where the mode functions are defined as

ūq,R/L =
ūq1 ∓ iūq2√

2
. (2.30)

The field amplitudes aq,R/L(t) must solve the wave equation and are therefore
given by aq,R/L(t) = aq,R/L(0)e

−iωqt [20]. We take aq,R/L(0) to be real by
fixing the initial phase and expanding eq. (2.29) in the linearly polarized mode
functions

AR/L(r, t) =aq,R/L(0)

√
~

4εε0V ωq

(
e−iωqtūq,1 + eiωqtū∗q,1

+ e∓iπ/2−iωqtūq,2 + e−(∓iπ/2−iωqt)ū∗q,2

)
,

(2.31)

The dominant part of this magnetic field can be calculated in the same way
as eq. (2.20). Performing the calculation gives

BR/L =B0 (cos (ωqt− q · r)ẽ1 ± sin (ωqt− q · r)ẽ2) , (2.32)

where we defined B0 = QzaqR/L

√
~

2ε0V ωq
and the new basis is given by ẽs =(

−Oq
s,y êx +Oq

s,xêy
)
. We note that the new basis is orthogonal ẽs · ẽs′ = δss′ .

Time reversal has the effect of changing the sign of the time and the wave
vector t,k → −t,−k [3]. Applying the time reversal operation to eq. (2.32), and
using the identities cos (−x) = cosx and sin (−x) = − sinx gives

BTR
R/L =B0 (cos (ωqt− q · r)ẽ1 ∓ sin (ωqt− q · r)ẽ2) . (2.33)
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From eq. (2.33) it is clear that time reversal switches the handedness of a cir-
cularly polarized light wave. This fact has the consequence that a system must
break time-reversal symmetry in order to display circular dichroism. This is be-
cause of the fact that if the system possesses time-reversal symmetry, switching
left and right-handed photons would not change the Hamiltonian, and therefore
left and right-handed photons must behave in exactly the same way.

Time-reversal symmetry can be broken both explicitly and spontaneously.
An example of explicitly breaking time-reversal symmetry is applying an ex-
ternal magnetic field. Classically F = v × B, time reversal changes the sign
of v and therefore changes the sign of the force. Examples of systems with
spontaneously broken time-reversal symmetry are ferromagnets and chiral su-
perconductors. The possibility of circular dichroism in these systems will be
considered in chapter 6. It is important to note that time-reversal symmetry
breaking is a necessary but not sufficient condition for dichroism. As we will see
in chapter 6, many systems with broken time-reversal symmetry do not display
dichroism.
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Chapter 3

Input-output formalism

The input-output formalism is a useful tool from quantum optics where the
cavity is coupled to an external field, and where one can calculate the output
state of the external field based on the input state [39]. Crucially for this mas-
ter thesis, the input-output formalism allows us to calculate transmission and
reflection coefficients. These coefficients give the proportion of light that is re-
flected and transmitted when the cavity is irradiated with a light pulse of a given
frequency. Reflection and transmission experiments are a common way to study
the coupling between cavities and matter [22, 23]. In this chapter, we derive
the reflection and transmission coefficients and discuss how they can be used to
study dichroism. All the derivations in this chapter are based on [39].

3.1 Reflection coefficient
The simplest illustration of the input-output formalism is the calculation of the
reflection coefficient for a one-sided cavity. A one-sided cavity is the same as the
two-sided cavity shown in fig. 3.1 but with only one interface coupling the cavity
to the environment, where the input and output field is given by bOUT/bIN. The
cavity is modeled as a single mode a. This approximation corresponds to taking
the dipole approximation q = 0 in eq. (2.12). The cavity mode a is governed
by Hsys, the environment is modeled as a heat bath HB and the cavity and
environment are coupled by Hint

H = Hsys +HB +Hint ,

HB = ~
∫
dωb†(ω)b(ω) ,

Hint = i~
∫
dωg

(
b(ω)a† − ab†(ω)

)
, (3.1)

where g :=
√
γ/2π is the coupling constant between the system and the envi-

ronment. The Heisenberg equation of motion for the bath reads

ḃ(t, ω) = −iωb(t, ω) + g(ω)a(t) , (3.2)
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bOUT

bIN
aOUT

aIN

a

Figure 3.1: Cavity mode a coupled to two input fields aIN/OUT and bIN/OUT

which has the solution

b(t, ω) = e−iω(t−to)b0(ω) + g

∫ t

t0

e−iω
(
t−t′

)
a(t′)dt′ . (3.3)

The equation of motion of the cavity mode reads

ȧ = − i

~
[Hsys, a]− g

∫
dωb(t, ω) , (3.4)

inserting the solution for the bath eq. (3.3) gives

ȧ =− i

~
[Hsys, a]− g

∫ ∞

−∞
dωe−iω(t−t0)b0(ω) (3.5)

+ g2
∫ ∞

−∞
dω

∫ t

t0

e−iω
(
t−t′

)
a(t′)dt′ . (3.6)

We now define the input field as the state of the environment at t = t0

aIN(t) = −g
∫ ∞

−∞
dωe−iω(t−t0)b0(ω) . (3.7)

Using this definition, changing the order of integration and using Dirac delta
function identities gives the equation

ȧ = − i

~
[Hsys, a] +

γ

2
a(t) +

√
γaIN(t) . (3.8)

One can in a similar way derive an equation for the outgoing field. Using these
two equations one can derive

aIN(t) + aOUT(t) =
√
γa(t) . (3.9)
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Taking Hsys = ~ω0a
†a in eq. (3.8), gives the equation

ȧ = −iω0a+
γ

2
a(t) +

√
γaIN(t) . (3.10)

Going to Fourier space gives

[i (ω − ω0)− γ/2] a(ω) = −√
γaIN(ω) . (3.11)

Using eq. (3.9) to get a similar expression for the outgoing field and using it to
eliminate a(t) gives the relation between the incoming and outgoing field

aOUT(ω) =
γ/2 + i(ω − ω0)

γ/2− i(ω − ω0)
aIN(ω) . (3.12)

3.2 Transmission coefficient
Now we want to compute the transmission coefficient for a cavity with two sides
that are coupled to the environment, as shown in fig. 3.1. We will consider the
situation where the coupling is equal on both sides of the cavity and where only
the b fields have a non-zero input bIN. In this case, the equation of motion for
the cavity generalizes to

ȧ = − i

~
[Hsys, a] +

γ

2
a(t) +

√
γ [aIN(t) + bIN(t)] , (3.13)

with the boundary conditions

aIN(t) + aOUT(t) =
√
γa(t) ,

bIN(t) + bOUT(t) =
√
γa(t) .

(3.14)

Changing equation eq. (3.13) to frequency space and setting aIN = 0 gives

aOUT (ω) =
γ

γ − i (ω − ω0)
bIN (ω) , (3.15)

When performing a transmission experiment the ratio of the output signal to
the input signal is given by [22]

|S|2 =

∣∣∣∣ γ

γ − i (ω − ω0)

∣∣∣∣2 . (3.16)

The transmitted signal is then composed of a sharp peak around the resonance
frequency of the cavity ω = ω0. The width of this peak is given by the coupling
of the cavity to the environment γ. For cavities with losses, the losses would also
affect the width of the peaks [22]. Cavity photons interacting with a condensed
matter system can have several resonance frequencies corresponding to their
effective theory. In this case, the transmission coefficient will have a peak for all
the resonances [22].
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3.3 Input-output with circular polarization
The effective photon theories that we will encounter in chapter 6, contain terms
that mix left and right-handed photons hLRa†LaR and hRLa

†
RaL. In a trans-

mission experiment, these terms open up the possibility of a right-handed input
giving rise to a left-handed output and vice versa. In order to describe these
processes in the input-output formalism, we must generalize the formalism to
include two polarizations of light

H = Hsys +
∑
i∈L,R

Hi
B +Hi

int ,

Hi
B = ~

∫
dωb†i (ω)bi(ω) ,

Hi
int = i~

∫
dωg

(
bi(ω)a

†
i − aib

†
i (ω)

)
,

Hsys =
∑

i,j∈R,L
hija

†
iaj .

(3.17)

In this model, both the heat bath and cavity contain left and right-handed
photons and the coupling between the cavity and the heat bath conserves the
handedness. This model gives the equations of motion

ȧi(t) =− i
∑
j

hijaj(t)−
γ

2
ai(t) +

√
γaIN,i(t) ,

ȧi(t) =− i
∑
j

hijaj(t) +
γ

2
ai(t)−

√
γaOUT,i(t) .

(3.18)

We now want to specialize to the case where only one of the input fields is
non-zero. We start by computing the case where aIN,R = 0, and calculated the
relation between aIN,L and aOUT,R. Starting with the three relevant equations

ȧL(t) =− i (hLLaL(t) + hLRaR(t))−
γ

2
aL(t) +

√
γaIN,L(t) ,

ȧR(t) =− i (hRRaR(t) + hRLaL(t)) +
γ

2
aR(t)−

√
γaOUT,R(t) ,

ȧR(t) =− i (hRRaR(t) + hRLaL(t))−
γ

2
aR(t) ,

(3.19)

and transforming to frequency space gives(
ihLL − iω +

γ

2

)
aL(ω) + ihLRaR(ω) =

√
γaIN,L(ω) ,(

ihRR − iω − γ

2

)
aR(ω) + ihRLaL(ω) =−√

γaOUT,R(ω) ,(
ihRR − iω +

γ

2

)
aR(ω) + ihRLaL(ω) =0 .

(3.20)

Solving the equation gives

aOUT,R(ω) =
γihRL

−
(
ihLL − iω + γ

2

) (
ihRR − iω + γ

2

)
− |hRL|2

aIN,L(ω) , (3.21)
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where we have used the fact that h∗RL = hLR for a Hermitian Hamiltonian. By
an analogous calculation, the coefficient for transforming the handedness from
right to left is

aOUT,L(ω) =
γihLR

−
(
ihLL − iω + γ

2

) (
ihRR − iω + γ

2

)
− |hRL|2

aIN,R(ω) (3.22)

Since the transmission coefficient equals the absolute value of this prefactor and
that hLR = h∗RL, the transmission from right to left equals the transmission from
left to right. These processes are therefore symmetric between left and right-
handed photons and can not detect dichroism. The conclusion of this chapter
is therefore that detecting dichroism in an input-output experiment requires the
left and right-handed photon bands to have different dispersions.
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Chapter 4

Functional integration
methods

The functional integral formalism is a powerful formulation of quantum field
theory. In quantum field theory, the functional path integral is used to calcu-
late correlators between fields [2]. In condensed matter physics, the statistical
partition function can be formulated as a path integral [10]. The formalism has
the advantage of replacing operators with numbers. In the bosonic case, the
operators get replaced with complex numbers and in the fermionic case, they
become anticommuting Grassmann numbers. The use of numbers avoids com-
plicated combinatorial arguments. Another advantage of the functional integral
formalism is that it simplifies the construction of effective field theories [10, 37].

This chapter presents relevant topics in the functional integral formalism,
which will be applied in chapter 6. In the first section, the functional field inte-
gral for the quantum partition function is introduced. The frequency represen-
tation of the field integral is also discussed. In the following sections, functional
Gaussian integration and a method to determine renormalized dispersions are
introduced. These techniques are useful for constructing and analyzing effective
field theories. For an in-depth introduction to the topic, a good source is Altland
and Simon [10].

4.1 Field integral for quantum partition function
In thermal equilibrium, much of the information about a physical system is given
by the partition function

Z = tr

{
e
−β

(
Ĥ−µN̂

)}
=
∑
n

〈n| e−β
(
Ĥ−µN̂

)
|n〉 . (4.1)

Here β = ~/kBT , kB is the Boltzmann constant, T is the temperature of the
system, Ĥ is the Hamiltonian of the system, µ is the chemical potential, N̂ is
the number operator and the sum goes over all possible states of the system |n〉.
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For problems with a large number or infinite degrees of freedom, it is conve-
nient to rewrite the partition function as a path integral [10]. The path integral
is constructed in an analogous way to the path integral for correlators in quan-
tum mechanics, by noting that the propagator in quantum mechanics e−itĤ/~
becomes the statistical weight function e−βĤ , when evaluating at the imaginary
time t = −iβ. Details of the derivation are given in [10]. Written as a path
integral, the partition function becomes

Z =

∫
ψ(0)=±ψ(β)

D(ψ†, ψ)e−S[ψ
†,ψ]/~ , (4.2)

where ψ† and ψ are the bosonic or fermionic fields, D(ψ†, ψ) is the functional
integral measure, and the action is given by

S[ψ†, ψ] =

∫ β

0

dτ
[
ψ†∂τψ +H(ψ†, ψ)− µN(ψ†, ψ)

]
.

For bosonic fields, the ψ and ψ† fields are complex numbers and ψ is periodic
ψ(β) = +ψ(0). Fermionic fields are Grassman numbers, and ψ is anti-periodic
ψ(β) = −ψ(0).

We now apply this general procedure to constructing the path integral rep-
resentation of the Hamiltonian given in eq. (2.13), with Hint given by eq. (2.16).
This Hamiltonian describes the interaction between an electromagnetic cavity
and an electronic system. The Hamiltonian contains both bosonic photon oper-
ators and fermionic electron operators. The partition function is then written
as a path integral over the bosonic fields a† and a and the fermionic fields C†

and C

Z =

∫
C(0)=−C(β)

D(C†, C)

∫
a(0)=+a(β)

D(a†, a)e−S[C
†,C,a†,a]/~ . (4.3)

We note that the fermionic electron fields are anti-periodic C (τ = 0) =
−C (τ = β), while the bosonic photon fields are periodic a (τ = 0) = a (τ = β).

The action in eq. (4.3) is given by

S[C†, C, a†, a] =∫ β

0

dτ
[∑

ql

a†qτl (~∂τ + ~ωq) aqτl +
∑
kσσ′

C†
kτσ (~∂τ + εkσσ′)Ckτσ′

+
∑

kk′σσ′l

gkk′

σσ′lC
†
kτσCk′τσ′

(
ak−k′,τl + a†k′−k,τ−l

) ]
.

(4.4)

It is convenient to rewrite this action as a frequency representation. In order
to change representation, we introduce the Fourier-transformed fields. In the
frequency representation, the photon fields are given by

aqτl =
1√
β

∑
n

aqle
−iΩnτ , aql =

1√
β

∫ β

0

dτaqτle
iΩnτ , (4.5)

32



where n ∈ Z, Ωn = 2nπ/β and q = (−iΩn,q). Similarly, the electron fields are
given by

Ckτσ =
1√
β

∑
n

Ckσe
−iωnτ , Ckσ =

1√
β

∫ β

0

dτCkτσe
iωnτ , (4.6)

where n ∈ Z, ωn = (2n+ 1)π/β and k = (−iωn,k). The definition of Ωn
and ωn ensure that the periodic/anti-periodic boundary conditions are fulfilled.
Using eq. (4.5) and eq. (4.6), we can rewrite eq. (4.4)

S[C†, C, a†, a] =
∑
ql

(−i~Ωn + ~ωq) a
†
qlaql +

∑
kσσ′

εkσσ′C†
kσCkσ′

+
∑

kk′σσ′l

gkk′

σσ′l√
β
C†
kσCk′σ′

(
ak−k′l + a†k′−k−l

)
.

(4.7)

In the last line we defined k′ =
(
−iωn′ ,k′), εkσσ′ = −i~ωn + εkσσ′ and used

the identity
∫ β
0
dτe−i

(
x−x′)τ = βδxx′ . The action given in eq. (4.7) will be

the starting point when constructing effective photon theories in section 4.3
and chapter 6. To construct effective photon theories, we will utilize Gaussian
integrals. The next section is therefore devoted to giving a brief introduction to
this topic.

4.2 Gaussian integration
One of the most powerful and useful tools in the functional integral formalism
is the Gaussian integral. Gaussian integrals can be used to flexibly construct
effective theories of a single field in a system where several fields are present.
The effective theory is constructed by integrating out the unwanted fields using
Gaussian integrals. Examples of such effective theories will be given in chapter 6.

For a complex boson field v, the Gaussian integral formula becomes [10]∫
D(v†, v)e−v†Av+w†·v+v†·w =

1

det{A}
ew†A−1w , (4.8)

where A is a postivie operator and w is a arbitrary function. For a fermion field
φ, the Gaussian integral formula reads [10]∫

D(φ†, φ)e−φ
†Aφ+η†·φ+φ†·η = det{A} eη

†A−1η , (4.9)

where η is an arbitrary function. The determinant in eqs. (4.8) and (4.9) is usu-
ally not analytically soluble. To approximate the expression for the determinant,
the following identity is often useful

det{A}ζ = eζ Tr{lnA} . (4.10)

This identity will be applied in the next section when deriving an effective photon
theory.
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4.3 Renormalized spectrum
An application of the path integral formalism is to calculate the renormalized
spectrum of one field when it is interacting with other fields. For specificity, we
calculate the renormalized spectrum of the right-handed photon fields a†R and
aR in eq. (4.7) when they are interacting with electron fields C† and C. We also
take the electronic system to be a free electron gas

εkσσ′ = εkδσσ′ = −iωn +
~2k2

2me
− µ . (4.11)

Using eq. (4.11) and rewriting eq. (4.7) gives the action

S[C†, C, a†, a] =
∑
ql

(−i~Ωn + ~ωq) a
†
qlaql +

∑
kk′σσ′

[
G−1

]kk′
σσ′ C

†
kσCk′σ′ . (4.12)

In the last line, we defined

[
G−1

]kk′
σσ′ = εkδkk′δσσ′ +

∑
l

gkk′

σσ′l√
β

(
ak−k′l + a†k′−k−l

)
. (4.13)

We can now construct an effective photon theory by integrating out the electron
fields using the Gaussian integral formula given in eq. (4.9). Performing this
integral gives the action

Seff =
∑
ql

(−i~Ωn + ~ωq) a
†
qlaql +Tr

{
lnG−1

}
, (4.14)

where the trace is over the momentum and spin indices. To continue with this
expression analytically, we assume that the coupling gkk′

σσ′l is small and expand
the logarithm. The first-order terms contain only one photon field a† or a.
Momentum and energy conservation restrict the fields to having q = 0, giving
rise to a space- and time-independent vector potential. Such a vector potential
does not have physical meaning, since it does not give rise to electric or magnetic
fields. We therefore only include the second-order contribution of the expansion

Seff ≈
∑
ql

(−i~Ωn + ~ωq) a
†
qlaql

− 1

2β

∑
qk′σσ′ll′

εk′+qεk′g
(
k′+q

)
k′

σσ′l g
k′(k′+q

)
σ′σl′

(
aql + a†−q−l

)(
a−ql′ + a†q−l′

)
.

(4.15)

In the last line we defined the relative coordinate q = k−k′ := (−iΩn,q). The
second-order contribution to the effective action is depicted diagrammatically
in fig. 4.1.

We have now successfully constructed the effective photon theory. The action
in eq. (4.15) contains terms that mix left and right-handed photons. To calculate
the renormalized spectrum of only right-handed photons, we need the effective
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Figure 4.1: Second order correction to photon propagator given by photon-
electron interaction.

theory of the right-handed photons. In order to get this effective theory, we
must integrate out the left-handed photons using eq. (4.8). We will discuss
this step in section 6.1. For the present discussion, it suffices to know that to
second order in the coupling constant gkk′

σσ′l, the effective theory for right-handed
photons becomes

S =
∑
q

(−i~Ωn + ~ωq +Σ(q, iΩn)) a†qRaqR . (4.16)

The exact expression for Σ(q, iΩn) is not important for the present discussion
and will be given in section 6.1. The new spectrum of the right-handed photons
is given by the solutions of the equation

−~ω − iδ + ~ωq +Σ(q, ω + iδ/~) = 0 , (4.17)

which is related to the action by the analytic continuation iΩn → ω + iδ/~,
where δ = 0+ [10]. There can be several solutions to eq. (4.17), corresponding
to the resonances of the quasiparticles in the system that include the original
photon mode aq [27]. In the second quantized formulation of quantum field
theory, acquiring the quasiparticle spectrum would require an explicit diagonal-
ization of the system. For complex systems, an explicit diagonalization can be
intractable [27]. This method, therefore, highlights an advantage of the func-
tional integral formalism.

Taking the inverse of eq. (4.17) gives the renormalized Greens function for
the cavity photons

G(ω) = 1

−iδ − ~ω + ~ωq +Σ(q, ω + iδ/~)
. (4.18)

Plotting eq. (4.18) against the frequency gives resonances for the solutions of
eq. (4.17). This is a practical way to solve eq. (4.17) numerically. The resonance
frequencies of the Greens function equals the resonance frequency in a transmis-
sion experiment given by eq. (3.16). However, the amplitude of the transmission
coefficient would be different. With the amplitude in a transmission experiment
being determined by the coupling of the cavity to the environment, the losses in
the cavity and the losses in the condensed matter system [22].
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Chapter 5

Superconductivity

The goal of this chapter is to introduce time-reversal symmetry-breaking triplet
superconductors. In order to describe triplet superconductors, we introduce the
d-vector formalism. This formalism describes superconducting correlations in
terms of a three-dimensional vector quantity. Using the d-vector formalism, we
present the time-reversal symmetry-breaking states which will be studied in the
following chapter.

5.1 Mean-field action
In mean-field, a general superconductor is described by the action

S =
∑
kσ

εkσC
†
kσCk′σ +

1

2

∑
kσσ′

(
C†
kσC

†
−kσ′∆σ′σ(k) + ∆̄σσ′(k)C−kσ′Ckσ

)
. (5.1)

Starting with the last term in eq. (5.1), using the fact that the electron fields
anticomute and relabeling the summation variables k → −k and σ, σ′ → σ′, σ
gives the symmetry requirement ∆σ′,σ(k) = −∆σ,σ′(−k) [10]. The gap param-
eter ∆σσ′(k) must then be odd under the total transformation of interchanging
the spins σ, σ′ → σ′, σ, and reversing the frequency iωn → −iωn and the mo-
mentum k → −k. Considering frequency-independent gap parameters gives two
possibilities, the gap parameter can be even in momentum and odd in spin or
vice versa. It is therefore useful to divide the gap parameter into a triplet which
is even under the interchange of spin and a singlet which is odd. This will be
done in the next section using the d-vector formalism.

5.2 d-vector formalism
Converting eq. (5.1) to a Nambu spinor representation gives

S =
1

2

∑
kk′

Ψ̄kG−1
kk′Ψk′ , (5.2)
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with

G−1
kk′ =


ε↑ (k) 0 ∆↑↑ (k) ∆↓↑ (k)
0 ε↓ (k) ∆↑↓ (k) ∆↓↓ (k)

∆̄↑↑ (k) ∆̄↑↓ (k) −ε↑ (−k) 0
∆̄↓↑ (k) ∆̄↓↓ (k) 0 −ε↓ (−k)

 δkk′ , (5.3)

where we have defined the Nambu spinor

Ψk =


Ck,↑
Ck,↓
C†

−k,↑
C†

−k,↓

 . (5.4)

We now write the matrix of gap parameters in terms of the d-vector [12, 40][
∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

]
= i (d0(k) + d(k) · σ̂) σ̂y , (5.5)

where σ̂ is the vector of Pauli matrices d0(k) = ∆S
↑,↓(k) and

d(k) = 1

2

 ∆T
↓↓(k)−∆T

↑↑(k)

−i
(
∆T

↓↓(k) + ∆T
↑↑(k)

)
2∆T

↑↓(k)

 , (5.6)

where the superscripts S and T denote the singlet and triplet states respectively.
One of the advantages of this formalism is that d(k) transforms as a vector
under spin rotations. The average spin of the Cooper pair is given by 〈Sk〉 =
i (d(k)× d∗(k)). A cooper pair with a preferred spin direction is associated
with a magnetic field. As discussed in section 2.6, a magnetic field breaks time-
reversal symmetry. Therefore, if i (d(k)× d∗(k)) 6= 0 the Cooper pairs break
time-reversal symmetry and are characterized as non-unitary. However, as we
will see in the next section, states with i (d(k)× d∗(k)) = 0 can also break
time-reversal symmetry.

5.3 Time-reversal symmetry breaking
In this master thesis, we will consider three p-wave gap parameters that break
time-reversal symmetry. In order to simplify the discussion we specialize to
states that are compatible with a tetragonal lattice structure with a cylindrical
Fermi surface [12]. The gap parameters considered in this thesis are not meant
to exhaust the possible time-reversal symmetry-breaking states, but to analyze
if time-reversal symmetry breaking in the gap parameter can lead to dichroism.

The simplest time-reversal symmetry-breaking state is given by the d-vector

d(k) = (x̂+ iŷ) (kx + iky) /|k| , (5.7)

or written as a matrix

i (d · σ̂) σ̂y =

[
∆0 (kx + ky) 0

0 0

]
. (5.8)
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In this state, only the spin-up band is superconducting. With all the Cooper
pairs being spin up, the state is non-unitary. The next state we consider is also
non-unitary and is given by the d-vector d(k) = x̂kx + iŷky, which corresponds
to the matrix

i (d · σ̂) σ̂y =

[
−∆0 (kx + ky) 0

0 ∆0 (kx − ky)

]
. (5.9)

In both the preceding states, the time-reversal symmetry breaking occurred in
the spin part of the action. However, the time-reversal symmetry breaking
can also occur in the orbital part of the gap parameter. One such example,
is described by the d-vector d(k) = (kx + iky) ẑ, or written as a matrix

i (d · σ̂) σ̂y =

[
0 ∆0 (kx + iky)

∆0 (kx + iky) 0

]
. (5.10)

This gap function is an example of a topological chiral state, meaning that the
phase changes by ±2π as k follows a closed path around the Fermi surface [3,
19]. Since the d-vector only has one component, d × d∗ = 0 and the state
is unitary. Under time reversal, the state transforms to d = − (kx − iky) ẑ [3]
and is therefore not invariant. This state was a leading candidate for the gap
symmetry of strontium ruthenate [12], but later experiments have cast doubts
on this claim [41].
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Chapter 6

Circular dichroism in cavity
systems

In this chapter, we analyze if interactions between electromagnetic cavities and
electronic systems can give rise to circular dichroism in a transmission experi-
ment. In the first section, we derive a general condition for when an effective
photon theory can give rise to circular dichroism. This condition is used in the
following sections to analyze possible circular dichroism in a ferromagnetic metal,
ferromagnetic superconductor, and the superconductors discussed in chapter 5.

6.1 Effective theory for one polarization
As discussed in chapter 3, transmission experiments probe the effective theory
of the cavity photons. The goal of this section is to determine the conditions
for which an effective photon action will give rise to circular dichroism in a
transmission experiment. To aid in the discussion, we consider the effective
action calculated in section 4.3. This effective action is calculated for the cavity
photons interacting with a normal metal. However, the conclusion of this section
is independent of the specific electronic system.

The contribution to the effective photon action Seff from the electron-photon
interaction is given by eq. (4.15)

Se−peff = − 1

2β

∑
qk′σσ′ll′

εk′+qεk′g
(
k′+q

)
k′

σσ′l g
k′(k′+q

)
σ′σl′

(
aql + a†−q−l

)(
a−ql′ + a†q−l′

)
.

(6.1)
The terms in this action can be rearranged into three types

Se−peff =
∑
q

[
CLL
q

(
aqL + a†−qR

)(
a−qL + a†qR

)
+ CRR

q

(
aqR + a†−qL

)(
a−qR + a†qL

)
+ CLR

q

(
aqL + a†−qR

)(
a−qR + a†qL

) ]
,

(6.2)
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where we have defined the coefficients

CLL
q = − 1

2β

∑
k′

εk′+qεk′g
(
k′+q

)
k′

σσ′L g
k′(k′+q

)
σ′σL ,

CRR
q = − 1

2β

∑
k′

εk′+qεk′g
(
k′+q

)
k′

σσ′R g
k′(k′+q

)
σ′σR ,

CLR
q = − 1

2β

∑
k′σσ′

εk′+qεk′
(
g
(
k′+q

)
k′

σσ′L g
k′(k′+q

)
σ′σR + g

(
k′−q

)
k′

σσ′R g
k′(k′−q

)
σ′σL

)
.

(6.3)

The effective photon actions encountered in the next sections can also be written
in the same form as eq. (6.2).

The CLL
q - and CRR

q -terms do not directly contribute to number operators
for left or right-handed photons a†q,Raq,R and a†q,Laq,L. To leading order, these
terms will not contribute to transmission experiments involving a single circular
polarization. These terms do include the products of photon fields a†q,Raq,L and
a†q,Raq,L. These combinations describe processes that transform the polarization
of the photon. As discussed in chapter 3, these processes do not give rise to
circular dichroism. We will therefore focus on the CLR

q -terms in our discussion
of circular dichroism.

The CLR
q -terms contain number operators for left and right handed photons

a†q,Raq,R and a†q,Laq,L. A transmission experiment involving only one polarization
probes the effective theory of that polarization. To leading order, this effective
theory is achieved by neglecting the other polarization. These effective theories
are

Se−peff,L =
∑
q

CLR
q a†qLaq,L ,

Se−peff,R =
∑
q

CLR
−q a

†
qRaq,R .

(6.4)

From eq. (6.4) it is clear that to first order in CLR
q , dichroism can only occur

when CLR
q 6= CLR

−q . In the dipole approximation q = 0, dichroism relies on CLR
q

not being even in the frequency q0 = − (iωn − iωn′) = −iΩn. For the coefficients
defined in eq. (6.3), CLR

q = CLR
−q . Therefore, interactions with a normal metal do

not give rise to circular dichroism. This fact also follows from the time-reversal
symmetry of a normal metal.

In the next section, we consider if interactions with a ferromagnetic metal
will give rise to circular dichroism. A ferromagnetic metal is a simple time-
reversal symmetry-breaking system, making it an ideal system to test the method
which has been developed in this section and in chapter 4. The ferromagnetic
metal is also a good precursor to the ferromagnetic superconductor which will
be discussed in section 6.3.

6.2 Ferromagnetic metal
A ferromagnetic metal is described as a free electron gas with spin-split bands.
The spin split bands give the ferromagnet a net magnetization which breaks
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time-reversal symmetry. The ferromagnet is placed at the bottom of the cavity
and interacts with the cavity modes through the Zeeman interaction eq. (2.26).
The action describing this setup is

S =
∑
k,σ

(−i~ωn + εkσ − µ)C†
kσCkσ

+
∑
q,l

(−i~Ωn + ωq) a
†
qlaql

+
∑

kk′σσ′l

gk
′−k
σσ′s√
β

(
ak′−kl + a†k−k′−l

)
C†
kσCk′σ′ ,

(6.5)

where l ∈ {L,R}, gk
′−k
σσ′l is given by eq. (2.25) and εk,↑, = εk,↓ − h, where h is

the spin splitting. The system can be described more compactly in terms of the
spinor Ψk =

(
Ck,↑ Ck,↓

)T
S =

∑
ql

(−iΩn + ωq) a
†
alaql +

∑
kk′

Ψ†
k[G

−1]kk′Ψk′ , (6.6)

with [G−1]kk′ = [G−1
0 ]kk′ + χkk′ ,

[G−1
0 ]kk′ =

[
ε↑ (k) 0
0 ε↓ (k)

]
δk,k′ , (6.7)

and

χkk′ = g̃z

 0 −
(
ak′−kL + a†k−k′R

)
e−iφ(

ak′−kR + a†k−k′L

)
eiφ 0

 . (6.8)

Integrating out the electron fields and expanding the resulting logarithm to
second order gives

Seff ≈
∑
q,l

(−iΩn + ωq) a
†
a,laq,l −

1

2
Tr
{
(G0χ)

2
}
, (6.9)

Using these expressions we can calculate the contribution to the effective photon
action, from the interaction with the electrons

Se−peff =− 1

2
Tr
{
(G0χ)

2
}

=− g̃2z
∑
k,k′

(
ak−k′L + a†k′−kR

)(
ak′−kR + a†k−k′L

) 1

ε↑ (k) ε↓ (k′)

=− g̃2z
∑

q

(
aqL + a†−qR

)(
a−qR + a†qL

)
×
∑
k’n′

1(
−i~ωn′ − i~Ωn + ε↑,k′+q

) (
−i~ωn′ + ε↓,k′

) .
(6.10)
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Using the notation from the previous section we have

CLRq = −g̃2z
∑
k’n′

1(
−i~ωn′ − i~Ωn + ε↑,k′+q

) (
−i~ωn′ + ε↓,k′

)
= −g̃2z

∑
k’

[
nF↑

(
k′ + q

)
i~Ωn − ε↑,k′+q + ε↓,k′

+
nF↓

(
k′)

−ε↓,k′ − i~Ωn + ε↑,k′+q

]
.

(6.11)

In the last line, we computed the Matsubara sum over ωn′ and introduced the
Fermi-Dirac distribution nFσ (k) = 1/

(
eβεkσ + 1

)
. We now take the dipole ap-

proximation by setting q = 0. In the dipole approximation one assumes that
q � kF, where kF is the Fermi wave-vector. Taking the dipole approximation
and using εk′,↑, = εk′,↓ − h gives

CLR
iΩn

= −g̃2z
∑
k′

nF,↑
(
k′)− nF,↓

(
k′)

i~Ωn + h

= −g̃2z
βδN

i~Ωn + h
,

(6.12)

where we have defined

δN =
∑
k′

nF,↑
(
k′)− nF,↓

(
k′) . (6.13)

At zero temperature, the constant becomes δN = AFMmeh
2π~2 , where AFM is the

area of the ferromagnet.
Using eq. (6.4) the effective action for the left/right-handed modes can be

computed

Sleff =
∑
iΩn

[
−i~Ωn + ~ω0 − g̃2zδN

1

i~Ωnsl + h

]
a†(−iΩn,0)l

a(−iΩn,0)l , (6.14)

where sL = 1 and sR = −1. Using eq. (4.17), the renormalized photon dispersion
is given by the solutions of the equation

−iδ − ~ω + ~ωq − Ch

sl~ω + sl~iδ + h
= 0 . (6.15)

In the last line, we performed the analytic continuation iΩn = ω + iδ/~ and
defined the constant C = g̃2zδN/h. This equation has the solution

ω =
ωq

2
+ sl

h

2~
± sl

2

√
(slωq + h/~)2 − 4Chsl/~2 . (6.16)

In the zero temperature limit, the constant becomes

C =
µ2
Bme

πLzε0c2~2
~ω0 = 2.82 · 10−15m/Lz~ω0 . (6.17)

In the last equality, we expressed the constant in terms of ~ω0 = ~c πLz
and

inserted the value for the Bohr magneton µB, electron mass me, vacuum perme-
ability ε0 and the speed of light c. For a realistic cavity size Lz, the coupling is
too small to be detected.
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There are several ways to enhance the coupling. First, we will consider the
effect of giving the ferromagnetic metal a finite thickness. Assuming that the
magnetic field is approximately constant across the ferromagnetic metal, the only
effect of considering a finite thickness is to increase the difference in occupation
between spin up and spin down electrons given by eq. (6.13) [21, 37]. Calculating
δN for a three-dimensional free electron gas gives

δN3D =
2
√
2

3π

αLz
√
me

~
(µ+ h)

3/2 − µ3/2

h
δN2D , (6.18)

where we have written δN3D in terms of the two dimensional electron gas
δN2D = AFMme

2π~2 . The ratio between the ferromagnetic metal’s thickness and
the cavity’s width Lz is denoted by α. From eq. (2.2), it is clear that the z-
dependence of the magnetic field is given by cosπz/Lz. At z = 0 the magnetic
field is therefore at a maximum and we can set α = 0.1, which only gives a five
percent change in the magnetic field across the ferromagnetic metal. This gives
the coupling

C =

√
2αµ2

Bm
3/2
e

√
µ

ε0c2~3
~ω0 = 5.70 · 10−7~ω0 , (6.19)

where we have assumed µ� h and set µ = 1 eV. The coupling could be increased
further if the effective electron mass was higher than the free electron mass or
if the chemical potential was larger than µ = 1 eV. In addition to increasing
the coupling strength, we can enhance the effect of the ferromagnetic metal by
tuning the resonance frequency of the cavity to equal the spin-splitting, ~ω0 = h.

The amplitude of the resonance is given by the absolute value of the Green’s
function eq. (3.16) and becomes

|G(ω)| =

∣∣∣∣∣ 1

−iδ − ~ω + ~ωq − Ch
s~ω+siδ+h

∣∣∣∣∣ , (6.20)

where δ is a small imaginary part, which is added to ~ω to regularize the ex-
pression. Using eq. (6.20), using C from eq. (6.19) and tuning the resonance
frequency to equal the spin splitting ~ω0 = h, gives the Greens functions for
circularly polarized light shown in fig. 6.1. In fig. 6.1, the Greens function
is multiplied by δ, to normalize the expression. The analytic solutions given
by eq. (6.16) are also shown.

The resonance for the left-handed photons is not affected by the coupling to
the ferromagnet and stays at ω0. For right-handed photons, the interaction with
the ferromagnetic metal induces an anti-crossing in the photon dispersion. The
non-interacting resonance splits into two resonances symmetric about ω = ω0.
From eq. (2.26), one can see that a right-handed photon can flip the spin of
an electron from up to down. Because of the spin splitting, flipping the spin
absorbs the energy εk,↓ − εk,↑ = h. Since the cavity frequency is tuned to the
spin splitting ~ω0 = h, this process is on-shell. On the other hand, the left-
handed photons can flip the spin of an electron from down to up. This process
frees the energy h and is therefore not on shell. Mathematically, this fact can
be seen from the denominator in eq. (6.12) approaching zero for sR = −1.
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Figure 6.1: Resonances for left (L) and right (R) handed photons plotted against
the frequency of the input signal. Resonances calculated using eq. (6.20), with
δ = 5 · 10−6~ω0. Analytic solutions calculated with eq. (6.16) marked with
horizontal lines.

In a transmission experiment, the resonance frequencies would be the same as
in fig. 6.1. The amplitude would be given by eq. (3.16), and would be determined
by the coupling of the cavity to the environment, the losses in the cavity, and
the losses in the ferromagnet [22].

The splitting shown in fig. 6.1 could be observable in a real transmission ex-
periment. For a spin splitting of h = 1meV [42], the resonance condition ~ω0 =
h, decides the energy scale ω0/2π = h/(2π~) = 243GHz. With this energy scale,
the splitting between the resonance frequencies equals (ω − ω0) /2π ≈ 243MHz.
When considering the coupling between a ferrimagnet and an electromagnetic
cavity, Huebl et al. resolved frequencies on the 10MHz-scale [22]. Observing the
anti-crossing would also require sufficiently small losses in the cavity and ferro-
magnetic metal. In the system studied by Huebl et al., the spin relaxation rate
in the ferrimagnet was 50MHz while the cavity relaxation rate was 3MHz [22].
If our present system had similar loss rates, the losses would be sufficiently small
to observe the anti-crossing. Meeting the resonance condition would require a
cavity with a spacing in the z-direction given by Lz = (π~c)/h = 0.602mm.
These cavity dimensions are achievable [6]. The mode-splitting in our present
setup could therefore be observable.

46



6.3 Ferromagnetic superconductor
The possibility of dichroism in a ferromagnetic metal leads naturally to the ques-
tion of dichroism in a ferromagnetic superconductor. We model the ferromag-
netic superconductor as a metal with spin-split bands where the up and down
electrons have acquired gaps ∆↑↑ and ∆↓↓. In addition to the time-reversal sym-
metry breaking because of the spin-split bands, the gap parameters ∆↑↑ and ∆↓↓
can also spontaneously break time-reversal symmetry [12]. Such gap parameters
will be considered in sections 6.4 to 6.6. In this section, the gap functions will
be taken to be constant to simplify the numeric calculation of the resonances.

Placing the ferromagnetic superconductor at the bottom of the cavity and
using the Zeeman interaction eq. (2.26) gives the action of the superconduc-
tor/electromagnetic cavity system

S =
∑
ql

(−iΩn + ωq) a
†
alaql +

∑
kk′

Ψ†
k[G

−1]kk′Ψk′ , (6.21)

where [G−1]kk′ = [G−1
0 ]kk′ + χkk′ ,

G−1
0 =


ε↑ (k) 0 ∆↑↑ (k) 0
0 ε↓ (k) 0 ∆↓↓ (k)

∆̄↑↑ (k) 0 −ε↑ (−k) 0
0 ∆̄↓↓ (k) 0 −ε↓ (−k)

 δk,k′ , (6.22)

and

χkk′ = g̃z


0 −Ak′−kLe

−iφ 0 0
Ak′−kRe

iφ 0 0 0
0 0 0 Ak′−kRe

+iφ

0 0 −Ak′−kLe
−iφ 0

 . (6.23)

In the last line we defined Ak′−kR =
(
ak′−kR + a†k−k′L

)
, Ak′−kL =(

ak′−kL + a†k−k′R

)
and used the Nambu spinor eq. (5.4).

Performing the integral over the Nambu spinor and expanding the logarithm
to second order, gives the effective photon action

S ≈
∑
q,s

(−iΩn + ωq) a
†
a,saq,s −

1

4
Tr
{
(G0χ)

2
}
, (6.24)

where there is an extra factor  1
2 in front of the trace because the nambu spinor

double counts the electron degrees of freedom [43, 44].
Computing the trace using Mathematica [45], and organizing the terms

like eq. (6.2), gives us the expression for the coefficient

CLR
q =− g̃2z

4

∑
k′

4
(
(−iΩn − iωn′ + ε↓,k′+q

)
(−iωn′ + ε↑,k’)(

E↓(k′ + q)2 − (i (Ωn + ωn′))
2
)(

E↑(k′)− (iωn′)
2
) . (6.25)
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In the last line we defined the quasiparticle energies E↑ =
√
|∆↑↑|2 + ε2k,↑ and

E↓ =
√
|∆↓↓|2 + ε2k,↓. Taking the dipole approximation q = k − k′ = 0 and

performing the matsubara summation over ω′
n gives

CLR
iΩn

=− g̃2z
4

∑
k

[
2 (E↓(k)− ε↓,k) (−iΩn + E↓(k)− ε↑,k)nF (E↓(k))

E↓(k) (−iΩn + E↓(k)− E↑(k)) (−iΩn + E↓(k) + E↑(k))

− 2 (−E↓(k)− ε↓,k) (−iΩn − E↓(k)− ε↑,k)nF (−E↓(k))
E↓(k) (−iΩn − E↓(k)− E↑(k)) (−iΩn − E↓(k) + E↑(k))

+
2 (iΩn + E↑(k)− ε↓,k) (E↑(k)− ε↑,k)nF (E↑(k))

E↑(k) (iΩn + E↑(k)− E↓(k)) (iΩm + E↑(k) + E↓(k))

− 2 (iΩn − E↑(k)− ε↓,k) (−E↑(k)− ε↑,k)nF (−E↑(k))
E↑(k) (iΩm − E↑(k)− E↓(k)) (iΩm − E↑(k) + E↓(k))

]
.

(6.26)

We now make the simplifying assumption that ∆↑↑ and ∆↓↓ are constants. As-
suming constant gap functions allows us to convert the sum over k to an integral
over ε↓

CLR
iΩn

=− 1

4
g̃2zCk

∫
dε↓
[

2 (E↓(ε↓)− ε↓) (iΩn + E↓(ε↓)− ε↓ + h)nF (E↓(ε↓))

E↓(ε↓) (−iΩn + E↓(ε↓)− E↑(ε↓)) (−iΩn + E↓(ε↓) + E↑(ε↓))

− 2 (−E↓(ε↓)− ε↓) (−iΩn − E↓(ε↓)− ε↓ + h)nF (−E↓(ε↓))

E↓(ε↓) (−iΩn − E↓(ε↓)− E↑(ε↓)) (−iΩn − E↓(ε↓) + E↑(ε↓))

+
2 (iΩn + E↑(ε↓)− ε↓) (E↑(ε↓)− ε↓ + h)nF (E↑(ε↓))

E↑(ε↓) (iΩn + E↑(ε↓)− E↓(ε↓)) (iΩm + E↑(ε↓) + E↓(ε↓))

− 2 (iΩn − E↑(ε↓)− ε↓) (−E↑(ε↓)− ε↓ + h)nF (−E↑(ε↓))

E↑(ε↓) (iΩm − E↑(ε↓)− E↓(ε↓)) (iΩm − E↑(ε↓) + E↓(ε↓))

]
.

(6.27)

Using eq. (6.4) the effective action for a single circular polarization is given by

Sleff =

(
−i~Ωn + ~ω0 −

1

4
g̃2zCk

∫
dε↓[...]iΩn→sliΩn

)
a†q,iaq,i . (6.28)

Using eq. (4.17), the renormalized dispersion of the cavity is determined by the
solutions of the equation

−~ω + ~ω0 −
1

4
g̃2zCk

∫
dε↓[...]iΩn→sl(ω+iδ/~) = 0 , (6.29)

where we have made the substitution iΩn → ω + iδ/~ inside the integral. This
equation is to complicated to be solved analytically, but the solutions can be
found numerically by plotting the Greens function

G(ω) = 1

−~ω − iδ + ~ω0 − 1
4 g̃

2
zCk

∫
dε↓[...]iΩn→sl(ω+iδ/~)

, (6.30)
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where the solutions of eq. (6.29) will appear as sharp peaks in the frequency
plot.

The Greens function for the ferromagnetic Superconductor calculated with
eq. (6.30) is shown in fig. 6.2. In order to verify the numeric calculation, fig. 6.2a
shows a plot of eq. (6.30) for ∆↑↑ = ∆↓↓ = 0. As expected, the Greens function
spectrum is identical to the ferromagnet shown in fig. 6.1. Greens function for
non-zero gaps are shown in figs. 6.2b to 6.2d. In fig. 6.2b, both the gap param-
eters are set to 0.05~ω0. In fig. 6.2c, ∆↑↑ = 0.05~ω0 and ∆↓↓ = 0 while fig. 6.2d
shows the plot for ∆↑↑ = 0 and ∆↓↓ = 0.05~ω0.

When the electrons acquire a gap, the resonances for the left-handed pho-
tons remain virtually unchanged. For the right-handed photons, the resonance
peak which resides above the bare photon resonance frequency ~ω0 vanishes
and the resonance peak below the bare photon resonance moves closer to the
bare resonance. This effect is related to the fact that the difference between
the gapped quasiparticle spectra stops being in resonance with the photons
E↓ − E↑ 6= h = ~ω0. The effect of the ferromagnetic metal on the photon
dispersion, therefore stops being a simple anti-crossing.
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Figure 6.2: Green’s functions for left and right-handed photons plotted against
the frequency of the input signal. Calculated with eq. (6.29). Horizontal lines
show analytic solutions for ∆↑↑ = ∆↓↓ = 0 calculated with eq. (6.16). Gap
parameters given in units of ~ω0 and δ = 5 · 10−6~ω0.
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6.4 One superconducting band
Time-reversal symmetry can also be broken by the superconducting gap. The
simplest way to break the symmetry in this way would be if superconductivity
only occurred in one of the spin bands. One possible gap symmetry where only
spin-up electrons are superconducting is given by eq. (5.8). Taking only the Ck,↑
electrons to be superconducting and integrating out all the electrons gives the
effective photon theory

S[C†, C, a, a†] ≈
∑
q,s

(−i~Ωn + ~ωq) a
†
q,saq,s −

1

2
Tr

{(
Ĝχ̂
)2}

, (6.31)

where Ĝ−1 = Ĝ−1
0 + χ̂, with

[
G−1
0

]
kk′

=


εk 0 ∆0

↑↑(k) 0

0 εk 0 0
∆̄0

↑↑(k) 0 −ε−k 0

0 0 0 −ε−k

 δkk′ (6.32)

and where χ̂ is the same matrix as for the ferromagnetic superconductor, given
by eq. (6.23). Computing the trace in eq. (6.31) using Mathematica [45] gives
the coefficient

CLR
q = 2

∑
k′

1

∆k′
uu∆̄

k′
uu + ε−k′εk′

(
εk′

ε−k′−q
+

ε−k′

εk′+q

)
. (6.33)

This coefficient is invariant under the reversal of q, since reversing q and chang-
ing the order of summation k′ → −k′ leaves the expression invariant. Having
superconductivity in only one of the spin bands is therefore not sufficient to get
circular dichroism.

6.5 Non-unitary with two superconducting
bands

We continue by analyzing the gap parameter given by eq. (5.9). This gap pa-
rameter is non-unitary but has superconductivity in both spin bands. In terms
of the Nambu spinor eq. (5.4), the action of this superconductor is given by

[
G−1
0

]
kk′

=


εk 0 −∆0 (kx + ky) 0
0 εk 0 ∆0 (kx − ky)

−∆̄0 (kx + ky) 0 −ε−k 0
0 ∆̄0 (kx − ky) 0 −ε−k

 δkk′
(6.34)

Calculating Tr
{(

[G−1
0 χ̂

)2} for the Zeeman coupling at the bottom of the cav-
ity (2.25) with mathematica [45], gives the expression for the coeficient

CLR
q =

∑
k′

4εk′+qεk′

Eqk′
. (6.35)
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In the last line, we defined

Eqk′ =

1((
k′x + k′y + qx + qy

)2 |∆|20 + εk′+qε−(k′+q)

)((
k′x − k′y

)2 |∆|20 + εk′ε−k′
) .
(6.36)

The coefficient in eq. (6.35) is not invariant when reversing the photon momen-
tum and frequency, CLR

q 6= CLR
−q . The x̂kx + iŷky gap symmetry could therefore

give rise to circular dichroism.
In the dipole approximation q = k − k′ = 0, the coefficient becomes inn

variant, CLR
iΩn

= CLR
−iΩn

. This can be verified by performing a π/2 rotation of k′

and shifting the frequency iωn′ by iΩn in the sum over k′. The combination of
the small coupling constant for the Zeeman interaction discussed in section 6.2,
and the effect vanishing in the dipole approximation means that the x̂kx + iŷky
gap symmetry would most likely give rise to a small dichroic signal.

6.6 Chiral superconductor
The chiral states with d-vectors ẑ (kx ± iky) given in eq. (5.10) break time-
reversal symmetry in the orbital part of the wave function [12]. The paramag-
netic coupling describes the interaction between the electric field and the motion
of the electrons in the crystal, making it the natural coupling to probe this chiral
state. Using the paramagnetic coupling given in eq. (2.27) and integrating out
the electron fields, gives the effective photon action

S[a, a†] ≈
∑
q,l

(−i~Ωn + ~ωq) a
†
qlaql −

1

2
Tr


(∑

l

Ĝ0χ̂l

)2
 , (6.37)

Where we have defined Ĝ−1 = Ĝ−1
0 +

∑
s χ̂

s,

[
Ĝ−1
0

]
kk′

=


εk 0 0 ∆0 (kx + iky)
0 εk ∆0 (kx + iky) 0
0 ∆̄0 (kx − iky) −ε−k 0

∆̄0 (kx − iky) 0 0 −ε−k

 δkk′ ,
(6.38)

and

[
χ̂l
]
kk′

=
glk,k′Ak−k′,l√

β


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (6.39)

In the last line, we picked the state ẑ (kx + iky) for convenience. When deriving
the matrix χ̂s we used the identity gs−k′,−k = −gsk,k′ . The trace in eq. (6.37)
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becomes

Tr

{(
Ĝ0χ̂

)2}
=

∑
k,k′,s,s′

Tr
{[

Ĝ−1
0

]
k
[χ̂s]kk′

[
Ĝ−1
0

]
k′

[
χ̂s

′
]
k′k

}

=
∑

k,k′,s,s′

gsk,k′Ak−k′,s√
β

gs
′

k′,kAk′−k,s′√
β

Tr
{[

Ĝ0

]
k

[
Ĝ0

]
k′

}
,

(6.40)

giving the coeficient

CLR
q =

1

β

∑
k′

(
gR
(k′+q)k′gL

k′(k′+q) + gL
(k′+q)k′gR

k′(k′+q)

)
Tr

{[
Ĝ0

]
k′+q

[
Ĝ0

]
k′

}
.

(6.41)

This coefficient is symmetric when reversing q. This can be seen by reversing
q, shifting the summation variable k′ → k′ + q, and using the trace identity
Tr{AB} = Tr{BA}. Therefore, this system does not give rise to circular dichro-
ism.

The inversion symmetry of eq. (6.41), does not depend on the explicit form of
Ĝ−1
0 given in eq. (6.38). The result is therefore not specific to chiral superconduc-

tors but holds for all electronic systems, coupled by the paramagnetic coupling in
the center of the cavity. The paramagnetic coupling can therefore not give rise
to dichroism in an input-output experiment. This is in contrast to dichroism
in differential absorption experiments, where the paramagnetic coupling gives
dichroism for several systems [30, 31]. For example, a metal with spin-orbit
coupling in an external magnetic field would give rise to dichroism [30, 31].

The result in eq. (6.41) relies on using the identity gs−k′,−k = −gsk,k′ in
the paramagnetic coupling coeficient eq. (2.27). As shown in section 2.5, this
identity holds when modeling the metallic state as a free electron gas. Similarly,
it holds when using a tight binding model on a square lattice [1, 25]. For a
tight binding model on a lattice without inversion symmetry, this identity would
not hold. Coupling the cavity and a material with such a lattice through the
paramagnetic coupling could therefore give rise to circular dichroism. This is
left as further work.
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Chapter 7

Conclusion and outlook

In this thesis, we showed how one can extend the definition of circular dichroism
from polarization-dependent absorption to polarization-dependent transmission
in an electromagnetic cavity. In a transmission experiment, a condensed matter
system is placed inside the electromagnetic cavity. Transmission experiments
measure the renormalized dispersion of the cavity photons. The renormalized
dispersion is calculated by constructing an effective theory for one polarization
of light. Without the interaction with the condensed matter system, the left
and right-handed photon dispersions are degenerate. In order to get circular
dichroism in a transmission experiment, the effective photon theory resulting
from the electron interactions must break this degeneracy. For interactions of
the same form as the Zeeman and paramagnetic coupling, the left and right-
handed photon bands split when the CLR

q -part of the effective photon theory as
defined by eq. (6.3) is not even under the reversal of q = (−iΩn,q).

As a first application of the procedure outlined above, we calculated the
renormalized dispersion for a cavity interacting with a ferromagnetic metal
placed at the bottom of the cavity. A ferromagnetic metal is a simple time-
reversal symmetry-breaking system, which made it possible to calculate the
renormalized dispersion analytically to second order. The calculation showed
that a ferromagnetic metal would give rise to circular dichroism when interact-
ing through the Zeeman coupling eq. (2.26). The renormalized photon spectrum
for left-handed photons becomes unchanged. On the other hand, the renormal-
ized photon spectrum for right-handed photons displays an anti-crossing with
the ferromagnetic metal. The difference between left- and right-handed pho-
tons is caused by the right-handed photon processes being on-shell. For a two-
dimensional ferromagnetic metal, this effect is too small to be detected. When
considering a ferromagnetic metal of a finite thickness, the coupling increased
by five orders of magnitude, making it feasible to detect the dichroism. The
effect of the ferromagnetic metal can also be increased by tuning the resonance
frequency of the cavity to equal the spin splitting in the ferromagnetic metal
~ω0 = h. These two techniques highlight the advantage of looking at light-
matter coupling inside an electromagnetic cavity.

After studying the coupling between a cavity and a ferromagnetic metal, we

53



moved on to time-reversal symmetry-breaking superconductors. The first super-
conductor we considered was a ferromagnetic superconductor. The ferromag-
netic superconductor is modeled as a metal with spin-split bands, with constant
gaps ∆↑↑ and ∆↓↓. In contrast to the ferromagnetic metal, the difference be-
tween the quasiparticle energies can no longer be tuned to equal the spin splitting
E↑(k

′) − E↓(k
′) 6= h. For this reason, the photon dispersion no longer displays

an anti-crossing for the right-handed photons. Instead, the right-handed pho-
tons exhibit one resonance, which is below the non-interacting resonance. The
left-handed photons are not affected by the interaction, in the same way as the
ferromagnetic metal. As further work, one interesting possibility is to consider
the effect of a ferromagnetic superconductor with a gap parameter that varies
around the Fermi surface.

In the ferromagnetic superconductor, the time-reversal symmetry is bro-
ken in the ferromagnetic phase transition. Another possibility is for the time-
reversal symmetry to be broken in the superconducting phase transition. In
this case, the time-reversal symmetry is broken by the gap parameter ∆σσ′(k).
A simple example of such a superconducting state is given by the d-vector
d(k) ∝ (x̂+ iŷ) (kx + iky). In this state, only the spin-up electrons are su-
perconducting. However, this state does not give rise to dichroism in transmis-
sion experiments. Another state which breaks time-reversal symmetry is given
by d(k) = x̂kx + iŷky. This state has gaps for both spin-up and spin-down
electrons but with different variations around the Fermi surface. The effective
photon theory for this state is not symmetric under the reversal of q, meaning
that it could give rise to dichroism. However, the effect vanishes in the dipole ap-
proximation q = 0. This has the consequence that the polarization dependency
of the transmission experiment would be small.

In all the preceding cases, the time-reversal symmetry breaking occurred in
the spin part of the state. In the ferromagnetic metal and ferromagnetic super-
conductor, the electron spins have a preferred direction. Similarly, the Cooper
pairs in the states discussed in the previous paragraph also have a preferred
spin direction. Therefore, the Zeeman coupling is the best choice to study these
states, because it describes the interaction between the electron spins and the
magnetic field. The chiral superconductor ∆(k) ∝ kx ± iky, is an example of a
state that breaks time-reversal symmetry in the orbital part of the wavefunction.
The paramagnetic coupling describes the interaction between the electric field
and the motion of the electrons in the material. This makes it a logical choice to
study the chiral superconductor. However, the calculation showed that the para-
magnetic coupling does not give rise to dichroism in a transmission experiment.
Furthermore, the result was valid for all electronic states interacting with the
electromagnetic cavity through the paramagnetic coupling. This points to a limi-
tation of polarization-dependent transmission experiments because polarization-
dependent absorption experiments can give rise to dichroism for certain states,
like a metal with spin-orbit coupling wich is placed in a constant magnetic field.
The result is dependent on having the symetry gs−k′,−k = −gsk,k′ in the param-
agnetic coupling coeficient. This symmetry holds for a free electron gas and a
tight-binding model on a square lattice. However, for tight binding models with-
out inversion symmetry, the symmetry does not hold. Studying time-reversal
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symmetry-breaking systems on these lattices is therefore an interesting possibil-
ity.

The main result of this thesis is the possibility of circular dichroism when
an electromagnetic cavity is interacting with a ferromagnetic metal or supercon-
ductor. Since coupling electromagnetic cavities and condensed matter systems
is a relatively new field of research, there are many possibilities to build on these
results. In this thesis, we considered the paramagnetic- and Zeeman-coupling,
which both couple the electromagnetic field to the quasiparticles in the super-
conductor. Another possibility is to couple the cavity to the Higgs mode, which
is the field that describes the oscillations in the superconducting order param-
eter [1]. Moving away from superconductors, one possibility is to couple the
cavity to a ferromagnetic insulator and to break the time-reversal symmetry
with a spin-polarized spin current [46]. This time-reversal symmetry breaking
could give rise to circular dichroism. Considering the spin current would require
treating the system out of equilibrium.
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