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Abstract

This thesis looks at improving software development for bare-metal RISCV sys-
tems with MultiGo. MultiGo is a modification of Embeddedgo. MultiGo adds
support for parallel execution of threads, something Embeddedgo lacks. Em-
beddedgo is, in turn, a modification of regular Go that adds support for running
Go on bare-metal systems. Go is a relatively new and interesting programming
language. Go offers many features, such as garbage collection and a novel way of
handling threads, namely with goroutines. The thesis will explain how Embed-
dedgo works, what changes were made to create MultiGo, and compare MultiGo
with C to figure out the pros and cons of both languages.
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1 Introduction

Most software development today is about creating applications that are in-
tended to run on top of an Operating System. Operating Systems, or OS for
short, is a collection of software that control all the underlying physical struc-
tures of a computer and the processes that are being executed on the machine.
The reasons why all personal computers today and for the last 30–40 years have
come equipped with an OS is due to the fact that it makes both the usage of
the computer so much more convenient and easy and also simplifies the process
of software development for such systems. An OS is able to abstract away all
kinds of tasks that would be tedious to deal with, such as memory management
and dealing with all kinds of hardware interfaces. Operating Systems also offer
more security for applications, such as by providing virtual memory, and make
it so that applications do not need to worry about what architecture they’re
running on; they only need to interact with the OS.

Operating Systems are a great thing, so why are we not using operating
systems for everything all the time on all computers? An OS is not a small piece
of software. They’re often several gigabytes in size and have quite a large number
of processes they’re running themselves to make the OS work properly. For some
systems, primarily microcontrollers, there are very strict resource restrictions.
These can come in the form of having a very small memory or requiring an
enormously fast response time when dealing with an event. In these situations,
we simply cannot have an OS installed for such systems, as it would eat up
too much of the systems’ resources. If we’re going to create software for such
systems, we cannot rely on an OS and have to develop for what is called a
bare-metal system, namely systems without any OS.

The question is then: How do we develop software for a bare-metal system?
You find a programming language that has a compiler that’s able to compile
your code into an executable for the targeted system. One problem here is that
most programming languages are not very well suited for bare-metal software
development. Languages that are suited for this are often either cumbersome
to use, such as Rust[1], or they’re very old, such as C.

Golang[2], or just Go for short, is a language created by Google back in
the early 2010s. It offers a good mix of being easy to use while also not being
so resource-demanding that it can’t be used for bare-metal systems. Go is a
garbage-collecting language, which is convenient and makes memory manage-
ment simpler. Go presents a novel solution for dealing with concurrent program-
ming by introducing something called goroutines. Goroutines can be thought
of as very light weight threads with a dynamically sized stack. This means that
Go is able to have a lot of very small threads running at the same time, even
on memory-constrained systems. Go does not have support for compiling code
to work on bare-metal system. Embeddedgo[3][4] is a patch for the Go runtime
that adds support for execution on bare-metal systems. This means that Go is
now an option for embedded software development.

One of the systems Embeddedgo has support for is RISCV[5]. RISCV is a
very popular architecture for embedded software development. Because of this,
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it made a lot of sense to develop for this type of architecture in this project.
I’m using a version of Embeddedgo from early 2022. Embeddedgo is based

on the 1.16 version of Go.

1.1 The Goal of the Thesis

The vanilla Go runtime is not able to run on bare-metal systems as it depends
on system-specific code for making necessary system calls. The runtime requires
specific support for both the architecture and OS to work properly. Modifying
the Go runtime to work with bare-metal systems is not an easy task, as it
normally relies on the OS process scheduling system. Bare-metal support for
Go requires the implementation of these features in the runtime itself. The
Embeddedgo project implements support for a number of different architectures
running without any OS. There are, however, a lot of missing features for bare-
metal systems in Embeddedgo. My primary goal for this thesis is to implement
support for parallel execution for multi-core systems, as this is an important but
lacking feature in Embeddedgo. A secondary goal of the thesis is to explain how
Embeddedgo works and provide some documentation for it. I will also compare
Go and C to figure out what is better for Embedded software development.

1.2 Contributions

I develop a new Go runtime system for bare-metal systems, namely MultiGo,
which is based on Embeddedgo, but has the following new contributions:

• Has support for parallel execution of threads in a multi core system.

• Has increased support for features in the standard library.

• Has a light weight printing feature, suitable for embedded environments
with fairly strict memory restrictions.

1.3 Structure

The structure of the thesis is as follows:

• Chapter 2 presents features in the Go runtime that are relevant for this
project. The goal of this chapter is for the reader to understand how the
scheduling process works.

• Chapter 3 presents the changes made to the runtime to enable support for
parallel execution.

• Chapter 4 demonstrates the tools used in the project and the methodology
for how I conducted the experiments in chapter 5.

• Chapter 5 evaluates the performance of MultiGo and also compares C
and Go for bare-metal software development to figure out what the up
and downsides with both languages are.
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• Chapter 6 concludes this thesis.
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2 The Go Runtime

Golang requires a very large runtime in order to provide all of the features
the language offers. It is quite complicated for bare-metal systems, where the
runtime needs to do the work that it would be processed by an OS. On top of
this the runtime has to do all of its other tasks too, such as garbage collection
and scheduling goroutines. In this chapter I will explain how the runtime starts
up new threads. This is important to understand what needs to be changed for
parallel execution of goroutines to be supported.

2.1 A Birds Eye View Of Go

Embeddedgo has many moving parts, and it spans many tens of thousands lines
of code over many files. To help make sense of the structure of the Go runtime,
I’ll go through the parts most important for this project. These are the boot
file rt0, the scheduler, the tasker and the traphandler. The relationship between
these are show in figure 1.

Figure 1: An overview of the most important parts of the runtime.

2.1.1 What Is rt0?

The entry point for execution in programming languages that use runtimes are
called rt0, or runtime0. These files contain the boot sequence of the runtime
and they’re system specific. Being system specific means that these rt0 files
care about the architecture and OS of the system they’re executed in. In this
project rt0 noos riscv64.s is used since I’m developing on a bare-metal RISCV
system. The important thing to know about rt0 is that it sets up the system in
the state it’s expected to be in for normal execution. CPU0 is used for running
main, and additional CPUs are put to sleep in the traphandler. I go into further
detail on the boot process in chapter 2.5.
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2.1.2 What Is proc.go?

The scheduler is an important concept in the Go runtime. It lives inside
proc.go. The scheduler is responsible for creating, scheduling and executing
threads. This include the main thread as well. Much of the code relating to
garbage collection is also in proc.go. This code is not system specific and is
used in vanilla Go as well as Embeddedgo. I go into further detail about the
contents of proc.go and how the scheduling system works in chapter 2.6.

2.1.3 What Is The Tasker?

The tasker is responsible for dealing with hardware specific tasks in the schedul-
ing process. Tasks that proc.go would normally hand over to an OS are instead
handed over to the tasker in Embeddedgo. The tasker is the most important
addition made by Embeddego to enable bare-metal execution. Obviously the
tasker is system specific, and I use the tasker noos riscv64.go tasker in this
project. I write about the contents of the tasker in relation to the scheduling
process in chapter 2.6.

2.1.4 What Is The Traphandler?

The traphandler is responsible for handling interrupts and environment calls.
What is important to understand about the traphandler is that it is used for
changing the context code is executing in. The traphandler is able to do this
because it is written in Goassembly and it increases the machine privilege level
when entered. What all of this means is explained in later chapters 2.3 and 2.4.
The traphandler is system specific.

2.2 Important Go Structs: G, M and P

After having quickly gone through what the most important files are, there
are several objects and structures used by the runtime that need to be intro-
duced. It is critical to understand what these structures are and does for you to
know what is going on in the scheduler. The three most important structures
are Goroutines (G), Machine Threads (M) and Processors (P). In addition to
this, bare-metal systems also use a structure cpuctx, or CPU context, to hold
some additional information needed for scheduling in bare-metal environments
to work. Examples of these stucts are provided in the appendix.

2.2.1 Goroutines (G)

Goroutines are used to hold information about a function which can be executed
in a thread. It is also provided with a stack that the function should use when
executing. The gorouinte stack is quite novel in that it starts out very small and
is able to grow in case more stack space is needed. The key idea to understand
about goroutines is that they contain all information about a specific function
needed for execution of said function. When starting a new thread, the special
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go call is used and it requires a function as input. In proc.go, the function
pointer, input variables and other relevant information is put inside a goroutine
object. This object is then put in a queue, where it can later be picked up and
executed. Threads able to execute a G are represented by the M struct.

2.2.2 Machine Threads (M)

A machine thread is a structure representing a regular thread. M is responsible
for fetching goroutines and then executing them. A single M is able to execute
several goroutines concurrently. Because of this each core only ever needs a sin-
gle M, since no more is required for concurrent execution of code. The contents
of stacks held by a G is subject to being garbage collected. It could be the
case that sometimes certain code should not be garbage collect. Because of this
M also has its own stack called the machine stack. This stack is not garbage
collected, and certain sensitive code has to execute with a non-garbage collected
stack. To use this stack area, each M holds a private goroutine denoted as G0.
A private goroutine is required, as M has no way of holding function information
by itself without a G. M use resources P for executing a function stored on G.

2.2.3 Processors (P)

P can be thought of as representing the resources that are used to execute code
with, which would be the processor and it’s resources. If an M does not have an
associated P, it can not execute goroutines. Each P hold a local queue of ready-
to-execute goroutines called runq. When an M wants to find a G to execute, it
starts by looking in the runq of it’s own P. P acts as a sort of lock for the right
of use to each processor. If an M does not have the P representing a processor,
it can’t execute on that given processor. In this way P can be used as a tool
to stop all executing of goroutines by taking P from all M that may have one.
This is how the garbage collector stops M from executing G when memory is
being garbage collected. It is called stopTheWorld when a garbage collector
does this. When handing back P after garbage collection, it is referred to as
startTheWorld, and normal execution of G can resume.

2.2.4 CPU Contexts (cpuctx)

CPU contexts are objects representing each physical core in the system. If no M
has yet started on a given core, that core is considered to be running in a CPU
context. The most important thing to note about CPU contexts is that they’re
an Embeddedgo structure, they’re only used in bare-metal code and that they
exist to make it possible for a CPU to do things when it does not possess an
M yet. CPU context’s responsibilities are to put the CPU to sleep, wake other
CPUs up and acquire an M if awoken. Each CPU context contains a list of M
objects it can use called runnable.

There is exactly one CPU context for a each core in use, and other CPUs
can’t be in the context of another core’s cpuctx object. This is prohibited.
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Although other cores are allowed to interact and change things about other
cores cpuctx, such as adding machine threads to other run queues.

2.2.5 The Tasker and Scheduler Objects

Both the tasker and proc.go each has a global object representing them. These
are thetasker and scheduler respectively. Each object holds important infor-
mation that needs to be globally available in all contexts of the system. For us
the most important thing to know about these objects is that thetasker has a
list over all CPU context objects and the scheduler contains lists of all M and
P objects, as well as having a global list of executable G objects.

2.3 Goassembly

Goassembly[6] is a proprietary assembly language specifically made to be used
with the Go runtime. Goassembly code is required in the Golang runtime in
order to perform low level operations on special register, such as the g register
and CSR registers. There is no way for normal Go code to write to these
registers, therefore calls to Goassembly code is required. The g register is what
determines the context in which the runtime is currently executing go code. I
go into further detail about execution context in chapter 2.4.1. Certain parts
of the Go runtime is written in Goassembly because they need to perform tasks
not possible in normal Go code, such as rt0 and the traphandler.

2.4 Runtime Context and Privilege Levels

The Go runtime contains a lot of context-sensitive code. I will explain what
the different contexts in the runtime are and where they’re used. In addition
to this, RISCV can operate at different hardware privilege levels. The privilege
level determines what sorts of instructions the system is allowed to perform.
Knowing how the different Go contexts work is important for understanding
the Go runtime. Knowing how the RISCV privilege levels work is not essential
to understanding what is going on in this project, but I will explain it regardless
because it will provide a more thorough understanding of what is going on in
the traphandler.

2.4.1 Go Runtime Context

The context of the runtime is determined by whatever the g register is pointing
to. The function getg() is used to fetch the pointer in the g register. The
usage of this command is what causes the system to be context-sensitive. The
g register holds a pointer to a goroutine object, and the system is defined to
be running inside of the goroutine that g points to. There are three types
of goroutines: regular goroutines, m.g0 and cpuctx.g0. User code is always
running in the context of a regular goroutine. As explained in chapters 2.2.2
and 2.2.4, M and cpuctx objects have their own private G. This G is used to
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execute code while in the scheduling and wake-up process. While an M is looking
for another G to run, it has to temporarily be in a m.g0 context. When a CPU
is doing stuff in the tasker and finds itself outside of proc.go, it has to be in a
CPU context. CPU context structs contain a G as their field, meaning that a
pointer to cpuctx.g0 is also the pointer for the cpuctx object itself. What the g
register is pointing to can only be changed in Goassembly, and usually happens
in the traphandler.

2.4.2 The Hardware Privilege Levels

For RISCV there exist different privilege levels, namely Machine mode(M), Su-
pervisor mode(S) and User mode(U). In a system with an OS, the OS is running
in the S mode, the kernel is running in M mode, and user applications run in
U mode. On this bare-metal runtime only M mode and U mode are used, as
the runtime is run as a kernel and not so much as an OS. When entering the
runtime on boot, the privilege level is set to M automatically. Although at this
point the control and system registers(CSR) are not set up yet. The first thing
happening in the runtime is to set up the CSRs correctly, and after this, it is the
state of the CSRs that determine what privilege level the runtime is in. There
exist special instructions, which will switch the state in the CSRs in order to
change the privilege level the runtime is in. Usually MRET and ECALL are the
most common instruction’s that are used to change the privilege level. MRET will
change the privilege from M mode back to whatever mode called into M mode,
in our case this would always be from U mode, and then It jumps to whatever
address is specified in mepc, which is a CSR. ECALL is an environmental call
instruction, which will change the mode into M and call into the traphandler.
Where the traphandler is located is determined by what the address stored on
mtvec is, which is also a CSR.

2.5 The Go Boot Process

To understand how the runtime ends up in the state it is in under normal
execution, we have to go through the boot process. All of this happens in
rt0 noos riscv64.go. Figure 2 shows the boot process in a simple manner.
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Figure 2: The Go boot process.

2.5.1 Booting CPU0

The first thing that happens is that all excess cores that have an ID higher than
maxHarts are parked. These cores are irretrievable and cannot be used by any
following code. maxHarts is a constant defined in the tasker that sets the upper
limit of cores the system is able to make available.

Afterwards, all CPUs that are not CPU0 will wait for CPU0 to initialize the
system. CPU0 will clear memory and start to put itself together. It will create
its cpuctx object and link it to the g register. Doing this means that CPU0 is
now running inside a defined context within the runtime.

CPU0 will then have to set up M0 manually. M0 is a special type of machine
thread that runs the background processes in the runtime, such as the garbage
collector and sysmon(). M0 is what tells other threads that it is time to yield
their goroutine and find another one to work on, or to stop execution to allow
garbage collection. M0 is the only thread that is allowed to execute code without
needing a P. In practice, it will always be running on CPU0, since this is the
CPU that does the initialization of shared components.
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After M0 is created and hooked up to the cpuctx, CPU0 will be able to
initialize the tasker and scheduler. M0 will have to borrow the cpuctx’s G
because the taskerinit() will assume that the system is running in a CPU
context, and schedinit() assumes the system is running in a machine thread
context. Setting M0’s G0 to be the cpuctx’s G0 works due to the fact that the
scheduler and tasker figures out the association between G0 and their respective
owners in different ways. The tasker figures out the association through casting
G0 to a cpuctx object, and the scheduler finds the association between a G and
an M by looking at g.m. In this way, G0 can be associated with M0 and the
cpuctx at the same time. A proper G0 for M0 is then created, allowing the
system to run in a machine thread context, without being in a cpuctx. Doing
this is important because it frees up the cpuctx for use when creating the main
thread. Remember that two different threads can not exist in the same context
at the same time, this is disallowed.

After initialization, CPU0 will signal other harts that they may continue
their own boot process. After doing this, CPU0 will start to build the main
thread. This is done by creating a goroutine containing the main function,
followed by a call to startm(). This will create a new normal M that picks up
the main goroutine and executes it. Execution of user-created code then starts,
and the boot process is complete.

2.5.2 Booting Other Harts

All harts/CPUs with an id higher or equal to maxHarts are permanently parked
and not made available. Harts with an id lower than maxHarts, but higher than
0 have to wait for CPU0 to finish initialization before booting.

After initialization, other CPUs get a signal to continue their own boot
sequence. Additional CPUs does not create a thread yet, as only the main
thread will be running at boot time. These extra CPUs will be sent to the
tarphandler, where there will be an attempt to find an M for them in the tasker.
Since there is no work for them at boot time, they will all be put to sleep and
be in an idle state.

2.6 The Go Scheduling System

When starting a new goroutine in Go, it can end up on any available CPU on
the system. In the event that there are no idle CPUs in the system, all that
needs to be done to create the goroutine object and hand it to one of the queues
it should be in. The scheduler will be able to pick it up whenever an M becomes
available to pick up new work. In a situation where a CPU is sleeping, it has to
be awoken before it can pick up and execute a goroutine. I will first present the
situation where a new CPU has to be awakened before it can start executing a
gorutine. When the system arrives at the scheduling() function, the course of
events is the same in both scenarios and will therefore be presented afterwards.
Figure 3 shows the execution flow of this process.
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2.6.1 How Machine Threads (M) Are Started

Starting new threads in Go code is done by using the go call. The go call has to
be followed by a function that is to be run by the new goroutine. The compiler
will translate the go key word to be a call to the newproc() function found in
the proc.go file. In newproc(), a new goroutine is created containing a pointer
to the function provided to the newproc() function call. The newly created
goroutine will then be put in the runq of the current P, which is the P with id
0 if we call go from CPU0. All of this happens in the context of the G, which
is called go to begin with.

Inside proc.go

After a new G has been created and put in the current P.runq, wakep() is
called. This function will try to wake an idling P, if there exist one. It will return
without doing anything if either there is no idle P or if there is a spinning M
that can pick up and execute the newly created G. If there is no sleeping P, there
is no need to do anything more since CPU’s are able to schedule themselves as
long as they’re awake, and it will return back to user code in this case.

If a new CPU has to be awoken, startm() is called. This function will find
an idle P, or use one assigned to it in the function call, and create a new M
to be used with that P. startM() will call newm(). This will allocate memory,
create a new M object, and connect it to the input P.

Afterwards, newm() will call newosproc which is a system call function lo-
cated in the asm riscv64.go file. The newosproc call is going to do an ECALL

into the traphandler. After entering the traphandler we’re going to find our-
selves in a trapped context. In a trapped context, the g register is going to
point to G0 of the current cpuctx object. This context switch will make calls
to tasker functions valid, as they require the system to be running in a CPU
context to be valid.

Going to the tasker through the traphandler

The traphandler will handle the newosproc ECALL and send the program to
the sysnewosproc() function in the tasker. All of these calls have forwarded the
new M through arguments, and sysnewosproc() will also have been provided
with the new M as an argument. Since the proc.go file is not architectural or
OS specific, there are still some things that have to be done for M to function
in a bare-metal setting. This is done through the newarchm() function, which
will add a few more fields to add information about relevant return and stack
pointers. These are used to put the CPU back to sleep.

After M has been turned into something capable of running in a bare-metal
setting, taskerSetrunnable() will be called. This is going to put M into the
run queue of the cpuctx associated with the P that M is pointing to. Meaning
that the CPU that is about to be woken up is going to get linked with the
newly created machine thread object. If the CPU context assigned with M is
different than the current CPU context we’re in, a signal is sent to that CPU
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context. If the CPU is sleeping, this signal will wake it up. This is done by
calling newwork(). After the singal has been sent, The current CPU will return
back to user code. Now we will see what happens in the sleeping CPU.

The old CPU returns back to the user code, and we enter a new CPU

Each CPU starts off in a sleeping state, where it is sleeping on a wait for
interrupt(WFI) instruction. The call stack for the sleeping CPU at this time
is as follows: the current CPU context has called the EnterSchedule function
into the traphandler (this is done directly on boot or through a system call
otherwise). From within the trap handler, curcpuRunScheduler() is called.
curcpuRunScheduler() tries to find an M to run. If no M’s are found, as is the
case at boot time, curcpuSleep() is called from within the scheduling function.
When the CPU is awoken, it returns from curcpuSleep(), it will jump back up
to the start of the scheduling process within curcpuRunScheduler() and then
finds an M from its runnable list. Then it will set M as cpuctx.exe = M. This
means that M is now the next M that will be running on the CPU. It will now
return from curcpuRunScheduler() back to the traphandler.

The CPU now has the M it needs for executing gorutines, and all that needs
to be done is to start the M. The M provided contains the function mstart().
This is the entry point for any newly created M. After having switched over to
an M context, mstart() will be called.

2.6.2 How Gorutines (G) Are Scheduled

At the end of mstart(), schedule() will be called. At this point, the system is
in the same state as it would be if it had already been running goroutines and
needed to schedule a new goroutine. The wake-up process is complete at this
point, and regular scheduling of goroutines has started.

schedule() will try to schedule a G to run on M. There are three areas in
which goroutines can be stored. Either it is on the local queue of the associated
P, or it is on the global queue held by the scheduler object, or it is on the local
queue of another P. The priority for where to look is to first try to look in the
local queue of our own P. If nothing is found there, try to look at the global
queue. If there is nothing found there either, findrunnable() is called.

findrunnable() will try to steal a G from another processor’s local queue
of goroutines. There will be a number of attempts (this can be tweaked, but is
currently 4) to go through a list of all P and look for a G on their local queue. If
no goroutine is found, there are some further attempts to look for work on the
global queue for goroutines. While M is looking for work this way, it is defined
as being in a spinning state, where it is ready for work and actively looking for
it, but it is not executing any G. If a G is found, findrunnable() will return
to schedule(). If no G is found, M will eventually start to tear itself down,
which is its exiting process. When exiting, it will yield P, which will set P in
an idle state. After this, it will make some last-ditch attempts to see if a new
G is available at the last moment, but if there are none, M will stop being in a
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spinning state, and it will become a dead M. It then unwinds, and the memory
used by M is freed.

When M has found a G to execute, execute() is called. execute() will make
a system call to the gogo function. gogo will change the context of the system by
making the g register point to the G that is about to execute. Afterwards, the
program will jump to the function pointer held by G, and the function provided
to the go call as an argument will then start to run in this new thread. We now
find ourselves back in user code on a different goroutine.

2.6.3 Quick Explanation

As can be seen, the process of starting a new goroutine is quite messy and all
over the place. A very quick explanation of what happens is that when calling
go a new goroutine will be created in any case. If there are no idle P in the
system, nothing more will happen, and the goroutine will be picked up and
executed at a later time.

If there is an idle P, a new M will be crated, and a sleeping CPU will be
awoken. The new M will then start to run on the newly awakened CPU and
go looking for goroutines to execute. The problem with Embeddedgo is that it
only provides a single P, meaning that only one CPU can run at a time. This
will be changed in MultiGo.

Figure 3: The process of starting and scheduling a new thread.
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3 MultiGo

MultiGo supports parallel execution of goroutines, which normal Embeddedgo
does not. In addition, there has been more support added for printing on
embedded systems. The task proved to be more about knowing where to tweak
the existing code than writing a lot of new code. In this chapter, I will explain
in detail what non-trivial modifications I have made to MultiGo to solve the
issues.

3.1 Supporting Parallel Execution

The bare-metal RISCV runtime would originally only allow for a single P object
to be created. This is no problem if only one CPU is running, as having a single
P for the entire system would reflect the underlying structure. However, if we
try to run a multi-core system with only a single P, things will not work as they
should. If there is only one P, the system would only be able to execute code
on one CPU at a given moment. M’s require a P to execute a G; therefore, if
an M running on CPU 1 has the only P, no other M’s are allowed to execute
at that time, even if there is an idle CPU. In Embeddedgo, only a single P is
created, allowing the system to only use one CPU at a time.

3.1.1 Changes In rt0

The solution to this problem is, of course, to have the number of Ps reflect the
exact number of CPUs available for executing code. Normally the Go runtime
relies on system calls to the OS for figuring out how many CPUs are available,
but since there are no OS in bare-metal RISCV, the runtime has to figure out
by itself at boot time how many CPUs are used in the system.

Near the start of rt0 noos riscv64.s, all CPUs are counted in a sequential
manner. This happens after excess harts have been parked, as they’re not going
to be used anyway. The counted number of CPUs is stored in a global variable
numberOfCPU defined in rt0 noos riscv64.s. What happens in the code below
is that the address of numberofCPU is loaded into register A0. Then the content
that is on that address, that is, the current number of counted CPUs, is loaded
into register S1. Earlier in the runtime, all CPU’s write their id into register S0.
To ensure that CPUs are counted sequentially in order to avoid a race condition,
an id check is added. If the number of counted CPU’s is equal to the id of this
CPU, it can be counted; otherwise, do the check until that time. The counting
is done by adding 1 to the value in S1, which contains the number of already
counted CPUs. S1 is then written back to the address in A0, which holds the
address of numberOfCPU at this time.
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1 MOV $numberOfCPU(SB), A0

2 MOVW (A0), S1

3 BNE S0, S1, -1(PC)

4 ADD $1, S1

5 MOVW S1, (A0)

Listing 1: Number of CPU’s in use are counted.

All of this is done in Goassembly, but normal Go code can’t directly use vari-
ables defined here. It is therefore required to have a get function. This TEXT

get numberOfCPU(SB),NOSPLIT|NOFRAME,$0-0 function is at the end of the rt0
file. An interface function written in a regular .go file is required to make a func-
tion call to a Goassembly file. The function signature needs to be the same for
the interface function and the corresponding Goassembly function. The inter-
face function in this case is placed in tasker noos riscv64.go.

1 TEXT get_numberOfCPU(SB),NOSPLIT|NOFRAME ,$0 -0
2 MOV $numberOfCPU(SB), A0

3 MOV $runtime.numbcpu(SB), A1

4 MOVW (A0), S1

5 MOVW S1, (A1)

6 RET

Listing 2: Get function for numberOfCPU.

3.1.2 Changes In proc.go

There are a few things that need to be changed in proc.go for all of this to
work. The only change is that the number of counted Ps has to be called
in schedinit() right before procresize() is called. The two things that
are important here are that ncpu is set to the counted number of available
CPUs and that procresize() is provided with the same number as input. In
procresize() all of the scheduling structures that use P’s are set up, and if it
does not get the correct number of CPU’s as input, the system will not initialize
correctly. These things need to happen at this point. If these things are done
afterwards, the system will already have moved past its initialization phase and
will just break.

1 if noos {

2 // getNumbcpu is a function in rt0_noos_riscv64.s which gets the

number of registered CPU’s

3 procs = getNumbcpu ()

4 ncpu = procs

5 }

6 if procresize(procs) != nil {

7 throw("unknown runnable goroutine during bootstrap")

8 }

Listing 3: The number of avlaible CPU’s are fetched from rt0 by calling
getNumbcpu() and provied to procresize().
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3.1.3 Why This Works

There are two big questions that should be asked about the changes made, and
those would be number one: ”Does this work?” and number two: ”If it works,
then why does it work?”. It does in fact work, as can be seen in figure 4 in the
appendix. These relatively small changes allow the runtime to start up and use
multiple CPUs at the same time.

This leaves that last question to be answered: why does it work? It works
because if the system has an idle P when creating a new goroutine, it will cause
wakep() to call startm(). In startm(), there is going to be an attempt at
fetching an idle P if one exists, but if there are no available P, startm() will
just return and prevent any new Ms from being created. However, if there is an
idle P, there are no problems with creating new Ms, as there are Ps that they can
use for execution. When creating the main thread, rt0 calls startm() to make
the main thread; therefore, all of the necessary changes made to the process
of creating and starting up new M’s are already implemented by Embeddedgo.
Because of this, MultiGo can just use the existing procedure for creating and
starting M’s as Embeddedgo does; all it has to do is make more P’s available
and have the number of P’s reflect the number of CPU’s in the system.

3.1.4 Possible Problems

MulitGo has only been tested for a 1 and 2 core system. It is possible that there
are more bugs if more than two CPUs are in use at the same time.

CPUs rely on the MSIP registers in the CLINT to send wakeup calls to other
sleeping CPUs. If there are multiple CPUs in use, there has to be at least one
MSIP register available for each of them. In total, there are 4096 such registers,
which makes this number the absolute hard cap for the number of CPUs that
can be in use at the same time. Make sure that maxHarts is not lower than
the desired amount of CPUs. The runtime will only allow maxHarts number of
CPUs to be available and will park any excess harts.

MultiGo is set up to associate a P with a specific CPU, where the id of
P should match the id of the CPU it is used on. When a thread exits and
concedes P, the CPU must either go to sleep or acquire the specific P it yielded
if it decides it wants to start doing some more work.

3.2 Issues with curcpu()

curcpu() is the tasker’s method for fetching a pointer reference to the currently
running CPU context object. What curcpu() does is call getg(), which will
fetch the G object referenced in the g register. The G pointer returned from
getg() is then cast into a cpuctx pointer. This works as the cpuctx struct has
a G as its first data type. Casting a G in this way is only valid if that G is the
G0 of a CPU context; otherwise, it is invalid. Anywhere curcpu() is called, it’s
assumed that the G register is pointing to the G0 of the currently running CPU
context. The g register is always set to point to the G0 associated with the
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CPU we’re on when entering a trapped context. When making changes to the
tasker or the trap handler, getting the g register context right is very important
for making the runtime work correctly.

I found out that using curcpu() often did not work correctly when used in
tasker code. For whatever reason, the compiler would compile the code related
to the curcpu() function to not be where it should be in relation to the .go file.
Compilers rewrite code all of the time, and this is no issue as long as you get the
same behavior as your written code. The issue here is that curcpu() related
code would end up executing after the pointer it returns was used elsewhere.
The workaround to this problem was to try to avoid using curcpu() where
possible. An example is shown in the appendix.

3.3 Issues With The Standard Library

Several of the packages that are part of Go’s standard library contain code that
is system-specific. This means that if we want to add support for more systems,
code from the standard library might not support those systems. Packages
such as io and os rely on making system calls to the OS for them to function.
There is some support added by the Embeddedgo patch for bare-metal RISCV
systems, but not that much.

3.3.1 Implementing noos fmt

I’ve added support for printing on bare-metal systems. The fmt package orig-
inally relied on the OS to tell it where to write to for the printed text to end
up in stdout. Since there is no OS to ask for in bare-metal RISCV, it has to
somehow get this information elsewhere. The solution is to add a configuration
file with the UART address. These config files are located in the embedded
package under arch const. In noos fmt, these architecture-specific addresses are
used to figure out where to write to.

3.3.2 Memory Limitations

Knowing where to write to is not the only problem. Go code uses an awful lot
of memory, to the point where it becomes a real problem for embedded software
developing. If all of fmt’s functionality is going to be supported, the executable
it would create would simply be too big to work on the system I’m using in this
project. I have therefore created a more lightweight version of fmt, in addition
to the bare-metal modifications. noos fmt has a subpackage called simple. This
package only supports the simple.Println() call. It only offers basic printing
of strings and nothing more. It does not have support for utf8 characters, only
ASCII, and it does not support formatting. This makes it far lighter in terms
of memory usage and, therefore, a lot more usable in a bare-metal system.
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4 Tools and Method

When working on an embedded project, it is always a question of whether to
work on a physical microcontroller or just develop on a virtual machine. I chose
to go with the virtual machine option. In this project, I used Qemu[7] as the
VM platform and GDB[8] as the debugging tool. In this section, I will explain
how to use all of these tools, including Go itself.

4.1 Qemu

Out of convenience, Qemu is used to simulate a RISCV 64-bit Virtio[9] machine,
which is used as the development platform for this project. To start the right
kind of machine, use this command:

qemu-7.0.0-rc3/build/qemu-system-riscv64 -serial stdio -machine virt
-smp 2 -m 128M -bios none -kernel test code -s -S

The particular command in this case is qemu-system-riscv64, found under
the bulid directory. This will start a RISCV64 machine, which is what we want.
In addition to this, there are some extra flags that are required.

- serial stdio This flag will make the virtual machine forward what is output to
its own stdio to the stdio of the machine that started the virtual machine.

-machine virt This flag will start a Virtio machine. RISCV does not define
everything about the layout of RISCV machines, such as the memory
regions. A specific RISCV machine must therefore be chosen, which is a
Virtio machine in this case.

-smp 2 SMP is an abbreviation for Symetric MultiProccesing. This means that
the system is simulated with several cores that all run the same executable
as their kernel. The number after the flag is the number of cores to be
simulated.

-m 128M This flag specifies the amount of memory the system has. 128M
means that the system is simulated with 128 megabytes of memory.

-bios none This will disable the default BIOS for the Virtio machine. We
want to run the user-made code as the kernel in a completely bare-metal
system.

- kernel test code This will start the user-created executable as the system
kernel. Here test code is just used as a place holder name, the executable
will of course have whatever name it was compiled as. The executable must
obviously be compiled for the system that is simulated; otherwise, it will
not work. An x86 binary can’t run on a RISCV system.

-s -S These flags are used for debugging. The -s flag will start a GDB server for
the virtual machine on localhost:1234. The -S flag will prevent the kernel
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from immediately starting execution, enabling the user to start GDB and
control execution from there.

4.2 GDB

Usually, Delve[10] is used for debugging Go code. Delve understands what goru-
tines are better than GDB; however, Delve cannot be used for debugging the
runtime itself. GDB is the best debugger for working with the runtime. Qemu
has support for setting up a GDB server that can connect a host machine that
runs GDB to the virtual machine where the Go code is being run. SiFive[11]
offers a version of GDB that has support for debugging on a bare metal RISCV
system, and this version of GDB is what I’m using for this project. To start
debugging, use this command:

riscv-tools/riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86 64-linux-
ubuntu14/bin/riscv64-unknown-elf-gdb test code

It is important that the version of GDB being used supports the setup you
want to use it on. In this case, I’m running GDB on an x86 machine using
Linux as the OS, and I want to debug a RISCV64 binary. This means that
GDB has to be able to be executed on a x86 Linux system while also being
able to work with a RISCV64 binary. Not all versions of GDB can do this, and
therefore it is important to use one that can, like SiFive’s mentioned earlier.
When using GDB to remotely debug on the virtual machine, use the command
target remote:1234. This command will connect it to the GDB server on the
virtual machine if Qemu is started with the -s flag. After all of this, GDB should
find itself at the start of the runtime. From here, normal GDB commands can
be used to navigate the code.

GDB is not in any way perfect for debugging Go code. There are several
calls and objects in Go that confuse GDB and cause it to be somewhat awkward
to use sometimes. If you try to step through certain calls in Goassembly code,
it causes GDB to lose track of where the program pointer is. If the CALL or
MRET instructions are used, this happens. One solution to overcoming this
problem is to look at the jump address in the instruction, followed by setting
a break point at that address. Then use the c command to continue to that
specific break point, as opposed to just stepping through the instruction.

4.3 Go

Golang is a compiled language, much like C. This means that you write your
code in a .go file, which is essentially just a text file. If the file has a .go at
the end, the Go compiler knows that this file is to be compiled; otherwise, it
will ignore it. Go can either be asked to just compile your file by calling go-
root/bin/go bulid ”your .go file”. This will create an executable target
for whatever system the compiler was called from. The other option is to call
goroot/bin/go run ”your .go file”. This will compile and start executing
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the code immediately on the machine the compiler was called from. To compile
the type of executable that is needed in this project, use this command:

GOOS=noos GOARCH=riscv64 goroot/bin/go build -a -tags ”k210
noos” -ldflags ”-M 0x80000000:128M” test code.go

As can be seen, to compile the .go file into an executable that will work on
the correct target system, quite a lot of information has to be provided to the
compiler. This is what each of the inputs means:

GOOS=noos GOOS is an environment variable used by the runtime to know
what OS it is running on. If the GOOS is set to be noos, it means that
the runtime is running on a bare-metal system, hence no OS.

GOARCH=riscv64 GOARCH is also an environment variable, but it speci-
fies the architecture of the system instead of the OS. Setting GOARCH=riscv64
means that the code is compiled for a RISCV64 machine.

goroot/bin/go build The go build command is what starts the compiler.
When called with build, it will just compile the provided .go file into a
binary, but does not run it. The key word run can be used instead of
build to both compile and run the code on the same system that calls the
compiler.

-a This flag will just force a recompilation of all packages used by the .go file,
even if there are no changes made to them.

-tags ”k210 noos” The -tags flag is used to provide the compiler with certain
tags that it will use to decide which files to compile. In Go, you can add a
command like this at the top of the file: // +build "tag name". This will
only compile that file if the tag specified in the +build field is provided
to the compiler. A file may have several such tags that are required for
the compiler to compile it. In this case, we provide the tags "k210" and
"noos" to the compiler. The "noos" tag is used since it is a bare metal
system, and "k210" means that we compile for a Kendryte machine. I
use a Virtio machine in this project, but Kendryte has a similar layout to
Virtio machines, so using this layout works fine.

-ldflags ”-M 0x80000000:128M” This tells the linker that the stack starts
at 0x80000000 and is of size 128 megabytes. The start of the stack is
something that is not defined by RISCV and is therefore vendor-specific.
In a Virtio machine, memory starts at 0x80000000.

-gcflags ”-N -m -l” Using -gcflags is optional. It provides the garbage col-
lector and Go’s memory system with flags that can change their behavior.
The ”-m” flag will print all variables that end up on the heap. The
Go memory management system performs an operation known as escape
analysis[12]. This means that at compile time, everything that is placed
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in the heap, such as global, variables are analysed to see whether or not
they escape the scope in which they were first used. If the variable does
not escape, it can effectively be used as just a local variable for that spe-
cific scope, and the variable is placed on the stack instead of the heap.
Using ”-m” is useful when trying to understand what is going on in Go’s
memory management system, and it can be used to see if something in
fact ends up on the heap or if it is just put on the stack. The ”-N” and
”-l” flags turn off optimization. This can be useful when running simple
tests.

test code.go This is the user-crated .go file that is to be compiled.

4.4 Method

Embeddedgo has very limited support for packages that rely on system-specific
functions. Vanilla Go offers quite a lot of different tools to benchmark code
with, such as tracing of what has been executed and profiling with pprof[13].
None of this is supported in bare-metal RISCV. At the start of the project,
not even the fmt package used for simply printing to stdout had support for
bare-metal RISCV. There was also no support for the Time package, meaning
that the program could not provide you with the execution time itself.

As has already been written about in chapter 3.3, I implemented a simple
form of printing that works for MultiGo. This will at least allow for printing, but
it does not solve the timing issue. The solution for this problem was to record
the computer screen when benchmarks were executed, followed by analyzing
the footage. Print statements were used to determine when execution of the
benchmark both started and stopped. To figure out the timing between start
and stop, the frames between the print statements were counted. Knowing
that the recording was done at 10 frames per second, the execution time of the
benchmarks can be calculated from the number of frames between the beginning
and the end of execution.

For this project, I used SimpleScreenRecoder[14] to record my screen and
DJV[15] to analyze the footage. Both programs can be freely downloaded for
Linux. Any other software that can do screen recording and step between frames
can also be used to perform these benchmarks.

24



5 Benchmarks and Results

I will be looking at the performance differences between Go in a 1 versus 2 core
system as well as the performance differences between Embeddedgo and C. C is
the most obvious language for embedded software development, and it will be
interesting to see how Embeddedgo compares to it as an alternative language.

5.1 The Benchmark

The benchmarking between a 1 vs. 2 core system was done with the bench-
mark benchmark simple arithmatic.go found in the benchmarks direc-
tory. This benchmark is quite simple in that it starts a specified number of
goroutines, each of which runs a for-loop a specified number of times, where all
that happens is a simple addition.

1 for i:=0; i<numbGorutines; i++{

2 wg.Add(1)

3 go func(){

4 temp := 0

5 for j:=0; j<numbAdditionsBase*test; j++ {

6 temp += 1

7 }

8 result += temp

9 wg.Done()

10 }()

11 }

12 wg.Wait()

Listing 4: Contents inside the gortuine in simple arithmatic.

It is easy and simple, and it can test and benchmark the most interesting
differences between a 1 and 2 core system. There are four variables that can
be tweaked to test different aspects of MultiGo. The first one is numbAd-
ditionsBase, this will decide how many times the addition instruction inside
the gorutine happens. It is used to scale up the number of instructions in the
benchmark such that the execution time takes enough time to be observable in
a screen recording. The addition should happen over one hundred million times
by each core for the execution of the benchmark to last over one second and be
observable through screen recording.

The second variable is numbGorutines. This specifies the number of gor-
outines that are to be started. It can be increased to start more goroutines.
If the benchmark is running on a two-core system, increasing the number of
goroutines to more than two will not increase the performance. However, it can
be turned up to test how many goroutines can exist at the same time.

The two last variables are numbTests and iterations. These are not used
at the same time, and one will be set to 1 if the other is not 1. The numbTests
variable is used to run the benchmark a number of times equal to numbTests.
For each time the benchmark is run, the number of additions is increased by the
number of tests that have been run multiplied by numbAdditionsBase. This
means that if numbTests is 3, then the benchmark is run 3 times, first doing 1
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times numbAdditionsBase number of additions, then doing 2 times as many
additions, and lastly doing 3 times as many additions. This can be useful when
gathering data for the execution time of different numbers of instructions.

The iterations variable can be changed to decide how many times the bench-
mark will be run without changing the number of additions done in the bench-
mark. It can be used to determine the average execution time of a given number
of additions, as the execution time for the same benchmark is not always the
same for a multi core system.

5.2 1 Versus 2 Core Go

To test the performance between a 1 core and a 2 core system, I run the sim-
ple arithmetic benchmark with numbAdditionsBase set to one hundred mil-
lion, numbGorutines set to 2, numbTests set to 10, and iterations set to 1.
I run the benchmark first with -smp 2 in Qemu to simulate a 2-core system and
with -smp 1 to simulate a 1-core system. The video recording of this benchmark
can be found inRecordings/Go simple arithmetic benchmark test1.mp4.
I use the notation a → b = c. This means that the measurement starts at frame
a and ends at frame b and has an execution time of c frames. The measurement
of one round of additions is considered to start at the moment ”new test” is
printed and end when either ”correct result” or ”wrong result” is printed.

5.2.1 Results

Number of
Additions

2 Core Exec Time In
Frames At 10 FPS

1 Core Exec Time In
Frames At 10 FPS

1× 108 155 → 171 = 16 frames 1078 → 1093 = 15 frames
2× 108 171 → 202 = 31 frames 1093 → 1124 = 31 frames
3× 108 202 → 248 = 46 frames 1124 → 1171 = 47 frames
4× 108 248 → 310 = 62 frames 1171 → 1233 = 62 frames
5× 108 310 → 388 = 78 frames 1233 → 1310 = 77 frames
6× 108 388 → 480 = 92 frames 1310 → 1403 = 93 frames
7× 108 480 → 589 = 109 frames 1403 → 1511 = 108 frames
8× 108 589 → 712 = 123 frames 1511 → 1634 = 123 frames
9× 108 712 → 851 = 139 frames 1634 → 1774 = 140 frames
10× 108 851 → 1007 = 156 frames 1774 → 1928 = 154 frames

Table 1: Benchmark results from test1.

From looking at the data in table 1 it can be concluded that both a 1 core and
2 core system have the same execution time for this benchmark. The expected
result would be that the 2-core system would have half the execution time of a
1-core system. How can this result be explained?

When a new goroutine is started, it has the possibility of being executed
by any machine thread using any available core. A goroutine is not tied to
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a particular core. It is therefore possible that several goroutines are executed
by the same core. This is seemingly what has happened in this run of the
benchmark, providing the same execution time in both the 1 and 2 core systems.

Taking another look at theGo simple arithmetic benchmark test1.mp4
footage, it can be observed that there was an initial attempt to run the bench-
mark on a 2-core system. The first test with 1× 108 additions is successful and
has an execution time of 47 → 55 = 8 frames. This is half the execution time
for the same amount of additions in a 1-core system, and it is what would be
expected when running a 2-core system. Immediately afterwards, though, the
program crashes, and I have to make a second attempt to run the benchmark.
From all of this, there seem to be a few insights to gather.

- In a multi-core system, goroutines can be executed by any core.

- If multiple cores are used, the program may crash.

- Execution is seemingly more stable if only a single core is used.

- The longer the amount of time spent using two cores at the same
time, the greater the chance of the program crashing.

5.2.2 Reliability

Since where goroutines end up is not deterministic, it would be interesting
to look at the average execution time of a benchmark with a given number
of additions. By changing the iterations variable, the benchmark can be
run multiple times with the same number of additions. For this test, itera-
tions is set to one hundred and numbAdditionsBase is set to one million.
This will give us a total number of additions equal to one hundred million,
which is the starting value in the previous measurements. From the footage in
Recordings/Go simple arithmetic benchmark test2.mp4 it can be seen
that there are two successful attempts at running the benchmark from start to
finish. The result from these are 215 → 232 = 17 frames and 280 → 297 = 17
frames. The execution time is about the same as one core doing 1 × 108 addi-
tions. This indicates that through the entire test, only one core was used. This
shows that the system can end up in a situation where only one single core is
used all of the time, regardless of how many new gorotuines are created. This
behavior is not deterministic, though. Sometimes both cores are used, which is
demonstrated at the beginning of the test1 footage.

Through experience, I have found that MulitGo runs more reliably if it is
executed with GDB. For whatever reason, setting a break point at the start of
the program and at the end of the program usually increases the success rate of
a complete execution of the benchmark. Originally, it was suspected that maybe
the garbage collection could be the cause of the crashing, but turning this off
will not make the crashing go away. Therefore, the most likely reason for the
crashing are race conditions arising between code executed by multiple cores.
The nondeterministic nature of this happening also supports this hypothesis.
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In the case that it is a race condition happening, tracking it down and solving
it would be very difficult, as it happens once every few ten million instructions.
On top of this, Embeddedgo does not print any error messages when it crashes,
making it extremely hard to debug.

5.3 Go Versus C

C is a very popular choice of language when developing software for embedded
systems. C is very light in terms of memory usage; it is a compiled language,
and it does not require any additional software at runtime to work. It also has
a very fast execution time. It is therefore interesting to see how Embeddedgo
compares to C in terms of what the languages offer. To compile a C file for
bare-metal RISCV, use this command:

riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86 64-linux-ubuntu14
/bin/riscv64-unknown-elf-gcc -g -ffreestanding -O0 -Wl,–gc-sections
-nostartfiles -nostdlib -nodefaultlibs -Wl,-T,riscv64-virt.ld -o test c
crt0.s test c.c

It assumes you’re doing this from the cstuff directory. This directory con-
tains everything needed for compiling a RISCV64 binary. There are many great
internet resources[16] that explain every part of this command.

5.3.1 Execution Time

For testing and comparing the execution times, I created two identical matrix
multiplication benchmarks, both in C and in Go. The C benchmark can be
found under cstuff/test c.c, and the Go benchmark can be found in test-
s/test matrixmultiplication.go. When compiling C for bare-metal RISCV,
the standard library is omitted, as it is not supported for bare-metal execution.
Because of this, the benchmarks cannot be printing. To then be able to know
when they finish execution, I start both benchmarks in GDB and set a break
point when main() is about to exit. As before, I record my screen and count
the frames from start to finish to figure out the execution time. The footage
of this test can be found in Recordings/Go vs C test.mp4. I consider the
start of the execution when continue is prompted in GDB, and the end of exe-
cution is when the break point is hit. The execution time of the Go benchmark
is 591 → 660 = 69 frames, and for C it is 1331 → 1373 = 42 frames. The
footage was recorded at 10 FPS. From this, it can be concluded that C is quite
a bit faster than Go, with Go using 64% more time. The difference is not huge,
though, with C being less than twice as fast as Go.

5.3.2 Features

Both C and Go are compiled languages, and neither requires additional software
to work. This is probably the most important attribute for a language to have
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to be suitable for bare-metal software development to begin with. In this regard,
they are the same.

C’s standard library does not have native support for bare-metal systems and
is reliant on an OS. You can, of course, find libraries that work with bare-metal
RISCV, but they are not shipped with the compiler. This is an area where Go
has an advantage. Go has native support for many features, such as garbage
collection and thread support. With MultiGo, it even has support for parallel
execution and basic printing. In terms of features and ease of use, Go is clearly
superior to C. C, however, provides a bit more access to low-level functionality.
C and Go do not treat pointers in the same way. Go pointers do not normally
support pointer arithmetic and are more strict when it comes to casting. There
is a workaround in Go, though, where, by using the unsafe package, pointers
can be cast into an unsafe.Pointer. These types of pointers are effectively the
same as a C pointer, and they allow for pointer arithmetic. Function pointers
cannot be held by a variable in Go, though.

5.3.3 Memory Usage

Probably the biggest difference between Go and C is memory usage. Go uses
far more memory than C, to the point where running bare-metal Go can be a
big problem in most embedded systems. Comparing the test matrix and test c
executable, it can be seen that test c use 9.1 kilobytes of instruction memory
and test matrix use 1.0 megabytes of instruction memory. This is over a one
hundred time difference, even though the code these binaries are compiled from
is pretty much identical.

Most of the packages in Go’s standard library add several hundred kilobytes
to the size of the executable if they are used. All of this becomes a real problem
when using Go for embedded software development and will outright make Go
unusable for this if the target system is too memory-restricted. Go requires at
least several megabytes of instruction memory to work well. If the system has
less than a megabyte of instruction memory, Go will not work for it at all, as
the runtime requires at least that much. In the field of memory usage, C is a
clear winner over Go, and in fact, it is the only option of the two in very small
systems.
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6 Conclusion

The clear limitation for software development with Go is the heavy memory
usage by Go’s runtime and its libraries. Go was never really designed with
embedded development in mind. Although in situations where memory is less
restricted, using Go for embedded development works very well.

Go comes with far more features than a language such as C. Go has native
support for concurrent programming, and with MultiGo, it also has support
for parallel programming. MultiGo is, however, far from perfect. It works well
if the gorutines are not too large, but because of weird race conditions, it can
unexpectedly crash if provided with too large a work load. There is still work
to be done with MultiGo for it to run reliably under all circumstances.
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A Appendix

In appendix, I show some results and code.

A.1 Screenshots

Figure 4: Example of multiple CPUs being used at once.

A.2 Code

1 type m struct {

2 g0 *g

3 morebuf gobuf

4 divmod uint32

5

6 procid uint64

7 gsignal *g

8 goSigStack gsignalStack

9 sigmask sigset

10 tls [6] uintptr

11 mstartfn func()

12 curg *g
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13 caughtsig guintptr

14 p puintptr

15 nextp puintptr

16 oldp puintptr

17 id int64

18 mallocing int32

19 throwing int32

20 preemptoff string

21 locks int32

22 dying int32

23 profilehz int32

24 spinning bool

25 blocked bool

26 newSigstack bool

27 printlock int8

28 incgo bool

29 freeWait uint32

30 fastrand [2] uint32

31 needextram bool

32 traceback uint8

33 ncgocall uint64

34 ncgo int32

35 cgoCallersUse uint32

36 cgoCallers *cgoCallers

37 doesPark bool

38 park note

39 alllink *m

40 schedlink muintptr

41 lockedg guintptr

42 createstack [32] uintptr

43 lockedExt uint32

44 lockedInt uint32

45 nextwaitm muintptr

46 waitunlockf func(*g, unsafe.Pointer) bool

47 waitlock unsafe.Pointer

48 waittraceev byte

49 waittraceskip int

50 startingtrace bool

51 syscalltick uint32

52 freelink *m

53

54 mFixup struct {

55 lock mutex

56 used uint32

57 fn func(bool) bool

58 }

59

60 libcall libcall

61 libcallpc uintptr

62 libcallsp uintptr

63 libcallg guintptr

64 syscall libcall

65

66 vdsoSP uintptr

67 vdsoPC uintptr

68

69 mOS
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70 mqkey uintptr

71

72 preemptGen uint32

73

74 signalPending uint32

75

76 dlogPerM

77

78 locksHeldLen int

79 locksHeld [10] heldLockInfo

80 }

Listing 5: The entire M struct

1 type g struct {

2 stack stack

3 stackguard0 uintptr

4 stackguard1 uintptr

5

6 _panic *_panic

7 _defer *_defer

8 m *m

9 sched gobuf

10 syscallsp uintptr

11 syscallpc uintptr

12 stktopsp uintptr

13 param unsafe.Pointer

14 atomicstatus uint32

15 stackLock uint32

16 goid int64

17 schedlink guintptr

18 waitsince int64

19 waitreason waitReason

20

21 preempt bool

22 preemptStop bool

23 preemptShrink bool

24

25 asyncSafePoint bool

26

27 paniconfault bool

28 gcscandone bool

29 throwsplit bool

30

31 activeStackChans bool

32

33 parkingOnChan uint8

34

35 raceignore int8

36 sysblocktraced bool

37 sysexitticks int64

38 traceseq uint64

39 tracelastp puintptr

40 lockedm muintptr

41 sig uint32

42 writebuf []byte

43 sigcode0 uintptr

44 sigcode1 uintptr
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45 sigpc uintptr

46 gopc uintptr

47 ancestors *[] ancestorInfo

48 startpc uintptr

49 racectx uintptr

50 waiting *sudog

51 cgoCtxt [] uintptr

52 labels unsafe.Pointer

53 timer *timer

54 selectDone uint32

55

56 gcAssistBytes int64

57 }

Listing 6: The entire G sturct.

1 type p struct {

2 id int32

3 status uint32

4 link puintptr

5 schedtick uint32

6 syscalltick uint32

7 sysmontick sysmontick

8 m muintptr

9 mcache *mcache

10 pcache pageCache

11 raceprocctx uintptr

12

13 deferpool [5][]* _defer

14 deferpoolbuf [5][32 / noosScaleDown ]* _defer

15

16 goidcache uint64

17 goidcacheend uint64

18

19 runqhead uint32

20 runqtail uint32

21 runq [256 / noosScaleDown]guintptr

22

23 runnext guintptr

24

25 gFree struct {

26 gList

27 n int32

28 }

29

30 sudogcache []* sudog

31 sudogbuf [128 / noosScaleDown ]* sudog

32

33 mspancache struct {

34

35 len int

36 buf [128 / noosScaleDown ]*mspan

37 }

38

39 tracebuf traceBufPtr

40

41 traceSweep bool

42
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43 traceSwept , traceReclaimed uintptr

44

45 palloc persistentAlloc

46

47 _ uint32

48

49 timer0When uint64

50

51 timerModifiedEarliest uint64

52

53 gcAssistTime int64

54 gcFractionalMarkTime int64

55

56 gcMarkWorkerMode gcMarkWorkerMode

57

58 gcMarkWorkerStartTime int64

59

60 gcw gcWork

61

62 wbBuf wbBuf

63

64 runSafePointFn uint32

65

66 statsSeq uint32

67

68 timersLock mutex

69

70 timers []* timer

71

72 numTimers uint32

73

74 deletedTimers uint32

75

76 timerRaceCtx uintptr

77

78 preempt bool

79

80 pad cpu.CacheLinePad

81 }

Listing 7: The entire P struct.

1 type cpuctx struct {

2 gh g

3 t *tasker

4 exe muintptr

5 newexe bool

6 schedule bool

7 runnable mq

8 waitingt msl

9 wakerq [fbnum]notelist

10 pp puintptr

11 mh m

12 }

Listing 8: The entire cpuctx struct.
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1 var (

2 bestcpu *cpuctx

3 bestn int

4 )

5 // bug: bestcpu is set to curcpu , and then it refuses to chage no

matter what.

6 // curcpu := curcpu ()

7 allcpu := thetasker.allcpu

8 var a int

9 var b int

10

11

12 p := m.nextp

13 if p != 0 { // for some reason , bestcpu is set to be the same as

curcpu at this point.

14 goto byid

15 }

16 p = m.p

17 if p != 0 {

18 goto byid

19 }

20 p = m.oldp

21 if p != 0 {

22 goto byid

23 }

24 // naive search for the less loaded cpu

25 bestcpu = curcpu ()

26 bestn = bestcpu.runnable.atomicLen ()

27 // this should not be done incase p is 0 and there are idle p’s.

(as it would wake a cpu without having awoken a p)

28 for _, cpu := range allcpu {

29 if n := cpu.runnable.atomicLen (); n < bestn { // just declear

the cpu with the shortest runnable queue to be the best cpu to

run m.

30 bestcpu = cpu

31 bestn = n

32 }

33 }

34 goto end

35 byid:

36 // bestcpu = allcpu[int(p.ptr().id)%len(allcpu)] // use the cpu

with the same id as the any p attached to m.

37 a = int(p.ptr().id)

38 b = len(allcpu)

39

40

41 bestcpu = allcpu[a%b]

Listing 9: Example of omiting the use of curcpu() at the start of
taskerSetrunnable() in tasker noos.go

Link to the MultiGo Git repository: https://github.com/BondeKing/MultiGo
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