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Abstract 
Global seaweed aquaculture production makes up over one quarter of the total 

aquaculture production, with a production volume up to 35.1 million tons in 2020. In 

Norway, there is an increasing effort towards developing seaweed aquaculture as a new 

bioeconomy. Production is based on two kelp species, Saccharina latissima and Alaria 

esculenta, due to their high growth rates. However, Norwegian seaweed aquaculture is 

not profitable and is a small-scale industry. Biomass monitoring is one of the processes 

that today is inaccurate, time-consuming, labor-intensive and destructive. Hence, 

automated biomass monitoring is identified as one of the principainnovation needs. 

Parallelly, there has been in a rapid development in recent years related to the use of 

underwater robotics and image processing techniques. State-of-the-art technology is 

widely researched and applied in marine operations. Hence, there is potential to apply 

new methods for monitoring of cultivated kelp. 

The aim of this study was to investigate proof of concept for in situ biomass estimation of 

cultivated kelp. The proposed concept was to use underwater RGB imagery and computer 

vision techniques to estimate area as a proxy for biomass. In order to investigate proof 

of concept, the main goal was to have a preliminary assessment of: 1) Key 

environmental factors that might affect the quality of underwater RGB imagery of kelp. 

2) The feasibility of deriving quantifiable size information about kelp from underwater 

RGB imagery. 3) The feasibility of using computer vision-derived area estimation as a 

robust proxy for kelp biomass. 

We found that image quality was highly correlated with phytoplankton biomass in the 

water, with blooms resulting in lower quality. Our work further indicated that turbidity, 

possibly in the form of suspended matter (TSM), reinforced the negative effect, albeit 

appearing to have less importance in the study area. Accuracy of area detection was 

impacted by image quality. However, factors such as distance between camera and the 

kelp, and kelp movement due to water movement was of importance. As a result, we 

propose that kelp farmers should seek to understand and monitor environmental factors. 

Our work indicated high feasibility of deriving meaningful size information about kelp 

from human-supervised annotation, mostly independent of observed image quality. It 

was also possible to derive computer vision-derived area estimation of high accuracy, 

albeit the method was somewhat sensitive to image quality. Together, this indicated that 

underwater RGB imagery is a suitable concept for biomass estimation of kelp. 

We found a strong relationship between computer vision-derived area estimates and 

ground-truth weight measurements, indicating the feasibility of area as robust proxy for 

kelp biomass. Furthermore, using area estimation as proxy for biomass estimation, had 

the advantage of simplifying both data collection and processing. Hence, we propose 

further research based on using area estimation from underwater RGB imagery to build a 

model for accurate biomass monitoring at farm-scale. 

A future scheme for farm-scale monitoring could be based on autonomous collection of 

imagery and environmental data, and real-time biomass estimation and prediction with 

machine learning techniques. 
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Sammendrag (Norwegian abstract) 
Global produksjon i makroalgeoppdrett utgjør over en fjerdedel av total 

oppdrettsproduksjon, med et produksjonsvolum på opptil 35.1 millioner tonn i 2020. I 

Norge er det stadig økt innsats for å utvikle makroalgeoppdrett til en ny bioøkonomi. 

Produksjon er basert på to tarearter, Saccharina latissima og Alaria esculenta, grunnet 

deres høye vekstrater. Dog, norsk makroalgeoppdrett er ikke lønnsomt, og er en små-

skala industri. Overvåking av biomasse er en av prosessene som i dag er unøyaktig, 

tidkrevende, arbeidskrevende og destruktivt. Dermed er automatisert overvåking av 

biomasse identifisert som en av de viktigste innovasjonsbehovene. 

Parallelt har det vært en rask utvikling de siste årene relatert til bruk av 

undervannsrobotikk og bildeprosesseringsteknikker. Toppmoderne teknologi er bredt 

utforsket og anvendt i marine operasjoner. Dermed er det et potensial i å anvende nye 

metoder for overvåking av kultivert tare. 

Målet med denne studien var å undersøke konseptbevis for in situ biomasseestimering av 

kultivert tare. The foreslåtte konseptet var å bruke undervanns RGB-bilder og 

datasynteknikker for å estimere areal som en proxy for biomasse. For å undersøke 

konseptbevis, var hovedmålet å ha en innledende vurdering av: 1) Sentrale miljøfaktorer 

som kan påvirke kvaliteten på undervanns RGB-bilder av tare. 2) Gjennomførbarheten til 

å utlede kvantifiserbar størrelsesinformasjon om tare fra undervanns RGB-bilder. 3) 

Gjennomførbarheten til å bruke datasynutledede arealestimat som en robust proxy for 

tarebiomasse. 

Vi fant at bildekvalitet var i stor grad korrelert med fytoplanktonbiomasse i vannet, og at 

oppblomstringer resulterte i lavere kvalitet. Vårt arbeid indikerte videre at turbiditet, 

muligens i form av oppløst materiale (TSM), forsterker den negative effekten. Riktignok 

ser den ut til å ha mindre viktighet i studieområdet. Nøyaktigheten på arealdeteksjon var 

påvirket av bildekvalitet. Imidlertid var faktorer som distanse mellom kamera og taren, 

og tarebevegelse grunnet vannbevegelse, av betydning. Som et resultat foreslår vi at 

tareoppdrettere bør søke å forstå og overvåke miljøfaktorer. 

Vårt arbeid indikerte høy gjennomførbarhet til p utlede meningsfull størrelsesinformasjon 

om tare fra menneskeovervåket annotering, stor sett uavhengig av observert 

bildekvalitet. Det var også mulig å utlede datasynutledet arealestimat av høy 

nøyaktighet. Riktignok var metoden noe sensitiv for bildekvalitet. Samlet indikerte dette 

at undervanns RGB-bilder er et passende konsept for biomasseestimering av tare. 

Vi fant et sterkt forhold mellom datasynutledet arealestimat og reelle vektmål, noe som 

indikerte gjennomførbarheten til areal som robust proxy tarebiomasse. Dessuten, å 

bruke arealestimering som proxy for biomasseestimering har fordelen av å forenkle både 

datainnsamling og -prosessering. Derfor foreslår vi videre forskning basert på å bruke 

arealestimering fra undervanns RGB-bilder for å bygge en modell for nøyaktig 

biomasseovervåking på lokalitetskala. 

En fremtidig ordning for lokalitetsskala overvåking kan være basert på autonom 

innhenting av bilder og miljødata, og sanntid biomasseestimering og prediksjon med 

maskinlæringsteknikker. 
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1.1 Seaweed aquaculture 

Seaweed, also known as macroalgae, is a group of photosynthetic multicellular marine 

algae, traditionally defined into groups based on their pigment composition: green 

(Chlorophyta), red (Rhodophyta) and brown (Phaeophyta). For most seaweed, their 

structure consists of a holdfast that anchors the seaweed to a substrate, a stipe and 

lamina. These multicellular organisms inhabit hard, rocky substrates in the littoral zone 

down to depths where sufficient light for photosynthesis can penetrate (Hurd et al., 

2014). Belonging to the lowest trophic level, seaweed serve as the dominant primary 

producers in the coastal zone due to its abundance (Krause-Jensen & Duarte, 2016) and 

high respiratory rates (Middelburg et al., 2005). 

Global algae aquaculture production, dominated by seaweed, has exponentially increased 

for decades (Cai et al., 2021b), with a production volume up to 35.1 million tons, wet 

weight, in 2020. This accounts for 97 percent of total algae production, including wild 

harvest, and more than one quarter of the total aquaculture production (FAO, 2022a). 

Red and brown seaweed are the primary target groups in seaweed aquaculture, as well 

as the second and third-largest group, respectively, in aquaculture in general (FAO, 

2022b). Despite the large production, only 5.4 percent (in 2019) of the total aquaculture 

value comes from seaweed (Cai et al., 2021b). The large volume-low value correlation 

can be explained by the fact that 99.5 percent of the global seaweed production can be 

attributed to Southeast Asia, with China and Indonesia making up the bulk of it (FAO, 

2022a). The region has longstanding traditions for using a majority of production for 

direct human consumption and processed food components, traditionally yielding a lower 

price. Only a small percentage of biomass is used in non-food applications, such as feed, 

pharmaceuticals, cosmetics and fertilizers (Lange et al., 2020; Stévant et al., 2017).  

For seaweed cultivation, there is no need for input factors such as feed, fertilizers or 

freshwater, so-called extensive aquaculture (Padam & Chye, 2020). Consequently, the 

production costs are low compared to intensive aquaculture. This, fueled by a growth 

rate far exceeding that of terrestrial crops and plants (Kraan, 2020), enable seaweed 

aquaculture to be profitable despite traditionally low product value (Neori & Nobre, 

2012). A growing seaweed cultivation industry can replace or become additive to current 

wild harvesting, supplying the hydrocolloid industry with biomass. Moreover, seaweed 

cultivation supplies a growing opportunity for biorefinery industry by utilizing seaweed as 

a source of food, feed additive, pharmaceuticals, cosmetics, biomaterials and bioenergy 

(Kraan, 2020). Additionally, seaweed aquaculture has value related to climate change 

mitigation and adaptation. This includes the ability to sequester carbon, mitigate ocean 

acidification and eutrophication (Lange et al., 2020), and protect coastal areas against 

flooding and erosion. Furthermore, seaweed can be utilized for biofuels and other 

products, representing a carbon neutral alternative to traditional fossil fuels and raw 

materials such as soy and palm oil (Duarte et al., 2013; Krause-Jensen et al., 2018; 

Sondak et al., 2017). Also, by moving production from terrestrial fields and wild harvest 

to coastal regions, conflict regarding land overexploitation and dispute can be avoided. In 

1 Introduction 
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summary, seaweed aquaculture can provide a significant contribution to reaching the 

United Nations Sustainable Development Goals (UNSDGs).  

Outside of Asia, seaweed production is still incipient, despite the increasing interests in 

recent years due to the growing awareness of sustainability and wide range of application 

of this marine resource, fueled by the growing realization that seaweed is a highly 

sustainable marine resource that can be adapted and utilized in a range of applications, 

both as food components and in other products. Additionally, it has added environmental, 

economic and societal benefits (Kraan, 2020). A growing interest is recognized in tropical 

and sub-tropical waters in Africa, Asia, Chile and the Caribbean, in temperate waters in 

Morocco, France and Portugal, and in cold waters in the Nordic countries, Canada and 

Chile (Lange et al., 2020). A rapid growth is predicted, especially in parts of Europe and 

the Americas, where industry, government and academia are eventually pulling in the 

same direction (Kraan, 2020). The growing seaweed interest throughout the world, 

prompted Lloyd’s Register Foundation, with active support of the United Nations (UN) 

Global Compact, to publish a “Seaweed Manifesto”, envisioning how seaweed can be a 

part of delivering on the UNSDGs (Lloyd's Register Foundation, 2020). The current 

optimism is further proved by some of the leading academic, governmental and 

entrepreneurial institutions on the field envisioning a “Seaweed Revolution” in the 

making (Financial Times Live, 2023).  

1.2 Seaweed aquaculture in Norway 

In Norway, seaweed as a food resource can be traced back to the Viking age, where, 

according to the sagas, seaweed was used as a snack during overseas exploitation, as 

the high iodine level is preventative against scurvy (Hallsson, 1964; Mouritsen et al., 

2013). However, seaweed is not considered an important food ingredient today, as the 

only significant application is manufacturing of alginate from wild harvested seaweed. 

Norway is a significant wild harvester of seaweed, second largest in harvested volume 

after Chile (Cai et al., 2021a). Yet, wild harvest seems to have reached its potential 

years ago, and production has declined in later years. Hence, it is not equipped to 

provide the wanted increase in production volume for a developing seaweed industry. 

Seaweed aquaculture is therefore seen as the way forward (Kraan, 2020).  

The total production of cultivated seaweed in Norway was limited to 246 tons at a value 

of NOK 6.2 million in 2020 (Fiskeridirektoratet, 2023). Seaweed aquaculture in Norway is 

focused on two brown seaweed, or kelp, species, namely Saccharina latissima and Alaria 

esculenta, due to their high growth rates (Cai et al., 2021a; Skjermo et al., 2014). 

Biomass is primarily used for human consumption, with a broadening range of products, 

including animal feed, biofuel, pharmaceuticals and bio-packaging, being developed. In 

recent years, relatively small-size kelp farms have been deployed based mostly on Asian 

cultivation techniques. This involves seeding the ropes with kelp spores and letting them 

fertilize and grow into sporophytes in tanks. Further, the ropes are deployed in 

predetermined patterns, distances and depths at a sea farm, preferably above 10 meters 

depth (Skjermo et al., 2014). The sea farm itself is typically structured as a square made 

up of ropes and buoys, held in place by a mooring system (Sulaiman et al., 2015). 

Alternative techniques include wrapping pre-seeded twine around ropes, or substituting 

the ropes altogether with nets or flat sheets as growth substrate (Kraan, 2020).  

There is a growing interest and effort towards developing seaweed aquaculture as a new 

Norwegian bioeconomy (Olafsen et al., 2012; Skjermo et al., 2014). Norway is identified 

as a highly suitable region for productive seaweed cultivation due to the long coastline 
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characterized by nutrient-rich inflow of Atlantic water and favorable climate. 

Furthermore, Norway is world-leading in marine aquaculture and offshore operations, 

combined with a strong tradition in marine research. In addition, Norway is actually the 

ninth largest (and second outside Asia) global seaweed producer (if wild harvest is 

included), indicating the availability of relevant competence (Cai et al., 2021a). This lays 

the foundation for a significant development, including offshore seaweed production. 

Optimistic assessments points towards the fact that seaweed production potential will be 

as high as 20 million tons by 2050 (Olafsen et al., 2012). 

1.3 Needs of the industry 

Today, Norwegian seaweed aquaculture is not profitable and is a small-scale industry. 

This means that cultivation and processing techniques are still at a basic stage, with little 

to no industry-grade technology. However, recent growing interest in this field of 

aquaculture on both governmental and industrial level, means that the needs and 

possibilities for technological advancement is on the rise. Technological advancement is 

needed to upscale the industry, as ineffective and labor-intensive methods serve as 

bottlenecks for higher yield and greater biomass quality. The challenges towards 

upscaling the seaweed cultivation industry is somewhat complex. A primary challenge is 

the development of cost-effective production techniques for large volumes of seaweed, a 

prerequisite for reaching profitability (Kraan, 2020). Consequently, there is a pressing 

need for research and development (R&D) to enable seaweed aquaculture to become a 

viable industry. A number of fields of R&D has been identified as prerequisites for an 

industry scale seaweed production. These include cost effective production lines at sea 

and land, predictable chemical composition and biomass yield, biofouling control, and 

upscaling strategies from experimental to commercial phase. Towards making the 

production at sea more cost efficient, automated biomass monitoring is one of the 

principal technological innovations needed (Skjermo et al., 2014). 

1.4 Biomass monitoring 

One of the main advantages of seaweed production is the high growth rate of some 

species (e.g. S. latissima). At the same time, this necessitates accurate and effective 

biomass monitoring to ensure successful deployment and growth development to 

optimize production (Bell et al., 2020; Skjermo et al., 2014). Kelp farmers today have no 

accurate and efficient way of monitoring kelp biomass. Traditionally, biomass has been 

measured manually by visual inspection of a sub-population and extrapolating the results 

for the whole farm. However, this method can be time-consuming, inaccurate, labor-

intensive and destructive. Accurate biomass monitoring is important because the farmers 

want a predictable control of standing biomass and growth throughout production. 

Knowledge of growth patterns are key to further optimize conditions and methods for 

higher yield. Furthermore, it is valuable to know, yearly, how much biomass can be 

expected to harvest and sell, in order to deliver predictable yield for the processing 

industry. Implementing non-destructive monitoring is valuable in the sense that 

harvested kelp for biomass estimation is a direct loss of yield. Automation of farm 

monitoring can be more efficient timewise, reduce the costs and increase health and 

safety. These are important factors towards building a profitable production. 

Development towards an offshore-based seaweed industry amplifies the need for remote 

monitoring. The share scale of envisioned seaweed cultivation (Olafsen et al., 2012) itself 

requires that automated monitoring is available, accurate and effective (Skjermo et al., 

2014). A monitoring method that can provide relevant and objective information for farm 
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management and operation would serve as a step towards more knowledge-based and 

automated practices (Føre & Alver, 2022). 

The first part of the challenge of monitoring kelp biomass is to collect data about the 

kelp. One possible method is to use an underwater robot mounted with a camera that 

can capture imagery of the kelp (Bell et al., 2020). This can streamline the data 

collection, as one no longer is dependent on going by boat to physically lift up the lines 

for visual inspection or harvesting samples, and thus making monitoring more effective. 

The second part of the problem is to extract information from the collected data. By 

applying computer processing to the image data collected by the underwater vehicle, it is 

possible to extract numerical information about the size of the kelp (Jin et al., 2023). 

Additionally, it can increase the accuracy of the extracted information compared to visual 

inspection, as one no longer is dependent on a pair of eyes, thus making monitoring 

more accurate. 

1.5 Underwater robotics 

Robotic systems designed for underwater use include a range of technologies, such as 

submarines, submersibles, remotely operated vehicles (ROVs) and autonomous 

underwater vehicles (AUVs) (Sørensen et al., 2020). ROVs are underwater vehicles that 

are operated by an operator on the surface using a remote-control system. They are 

typically tethered to the surface by a cable that provides power and communication 

between the vehicle and the operator. Typically, ROVs can be used in underwater 

environments where it is difficult or impossible for humans to access, such as underwater 

inspection, maintenance, and repair, as well as scientific research, data collection and 

exploration. For this purpose, they can be equipped with a variety of payload sensors, 

including optical, acoustic and environmental sensors that allows for data collection by 

either remote sensing or direct measurements in field (in situ). In addition, navigation 

sensors can be equipped for control of positioning, depth, heading and velocity (Sørensen 

et al., 2020). ROVs come in a range of sizes, from small handheld devices to large 

vehicles capable of carrying heavy equipment and conducting complex operations 

(Ludvigsen & Sørensen, 2016). AUVs are advanced underwater vehicles that can operate 

at different levels of autonomy, meaning they can perform pre-programmed tasks with 

minimal, too no, human intervention (Ludvigsen & Sørensen, 2016; Sørensen et al., 

2020). Both ROVs and AUVs represent sensor-carrying platforms that is extensively used 

in collection of underwater imagery by utilizing optical sensors (Johnsen et al., 2020b). 

1.6 Underwater imagery 

Underwater imagery refers to the use of optical sensors to capture images or videos 

underwater. Optical sensors can collect high-resolution qualitative data about underwater 

objects of interest (OOIs). Water visibility is a constraint to the possibility for quantitative 

data collection with optical sensors (Ludvigsen & Sørensen, 2016), a constraint that can 

be summarized as the apparent optical properties (AOP) of the water. Photons that travel 

through water can either be scattered or absorbed by water molecules, and by 

compounds such as phytoplankton, colored dissolved organic material (cDOM) and total 

suspended matter (TSM). These properties are the inherent optical properties (IOP) of 

water, and will not change based on the light conditions (IOCCG, 2000; Johnsen et al., 

2009). On the other hand, the apparent optical properties (AOP) of water depend on both 

IOPs and light conditions. This means that the AOPs are altered and regulated by light 

condition-affecting factors such as sun angle, albedo, surface waves, changes in cloud 
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cover, rain, snow and air humidity (Sakshaug et al., 2009). The AOPs alter the spectral 

light absorption and backscatter, negatively affecting the range of which optical sensors 

can detect and measure OOIs (Sørensen et al., 2020). As a result, the range must be 

adjusted according to the size and complexity of the OOI, as well as the required 

resolution, to obtain data of satisfactory quality (Johnsen et al., 2020b). 

RGB (red, green, blue) imagery with digital cameras constitutes the most available and 

simple method for optical underwater data collection. Digital cameras capture imagery 

that produce images by assigning each pixel with an intensity value for red, green and 

blue. The color channels largely correspond to the three wave bands the human eye is 

sensitive to, and when combining the intensity of each, the result is the color the human 

eye perceive (Johnsen et al., 2020b). Underwater imagery can with these properties be 

relevant in applications such as measuring of geological conditions, archaeological 

features and biological identification and attributes (Sørensen et al., 2020). As RGB 

imagery can only render information about three wave bands, it has constraints 

compared to other multispectral and hyperspectral optical sensors. However, the 

combination of availability, simplicity and affordability makes RGB imagery an important 

method in, for example, biomass estimations of both terrestrial crops (Wang et al., 2021) 

and cultured fish (Saberioon et al., 2017). 

Two digital cameras can be combined into a stereo camera by mounting them in a setup 

next to each other. They need to be aligned at a known, fixed distance and be 

synchronized by cable or other connection. The stereo setup will function similar to the 

human eyes by giving a binocular (two-eyed) vision that can render estimations about 

depth to objects through use of point triangulation (Johnsen et al., 2020b). 

Consequently, stereo imagery can allow for three-dimensional (3D) modelling of a 

number of different OOIs, with some of the most groundbreaking underwater applications 

being modelling of ship wreck sites (Diamanti et al., 2021) and complex benthic habitats 

(Nevstad, 2022). There has been remarkable advancements in the usage of underwater 

imagery in later years due to the occurrence of new processing techniques, driven by 

developments in computer capacity and computer vision software (Sørensen et al., 

2020). 

1.7 Computer vision 

Computer vision is a field of science that enables computers to interpret and understand 

visual information, such as images or videos. The technology uses advanced algorithms 

and mathematical models to analyze and collect meaningful information from visual data, 

for example, detecting objects and their attributes, identifying patterns or tracking 

movement (Yan, 2022). Computer vision algorithms have greatly increased the ability to 

non-invasively measure organisms through image analysis (Weinstein, 2018). Possible 

applications of computer vision techniques are numerous and ever increasing. 

Furthermore, with the recent exponential advancements of artificial intelligence, including 

the vast sub-field of machine learning, computer vision is destined to become an 

increasingly important field of R&D (Yan, 2022). As in-depth reviewed by Zion (2012) 

and Saberioon et al. (2017), computer vision application in aquaculture has been in the 

R&D stage for more than 30 years already. Yet, only recently have some concepts taken 

the step into commercially viable products (Føre & Alver, 2022). 
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1.8 Underwater operations in aquaculture 

Underwater operations have become an increasingly important tool in aquaculture (Føre 

& Alver, 2022). In aquaculture farms, ROVs can be used for inspection of nets and 

structures for early detection of damage or wear (Kelasidi et al., 2020). In combination 

with optical sensors and computer vision techniques, underwater robotics have several 

usages (Zion, 2012). This includes, for example, real-time detection and monitoring of 

welfare indicators such as lice, disease, injury and deformity, and monitoring of individual 

feed pellets or the feeding behavior of fish (Føre et al., 2018). Biomass monitoring of fish 

is another application already in extensive use in fish aquaculture (Saberioon et al., 

2017). Size is estimated based on parameters such as area, length, width and pose, and 

can provide high accuracy estimates of biomass (Coro & Walsh, 2021; de Verdal et al., 

2014; Viazzi et al., 2015; Zion et al., 1999). Optical sensors and computer vision 

techniques enable development of more accurate, effective and remote monitoring of 

kelp biomass. The potential is constantly increasing on account of the rapid development 

in camera technology and speed of computer processing (Saberioon et al., 2017). 

Overall, do the implementation of underwater robotics and imagery in combination with 

computer vision techniques in aquaculture, have the potential to drastically improve the 

efficiency and sustainability of aquaculture (Føre & Alver, 2022). 

Significant research has been undertaken related to remote monitoring of both wild and 

cultivated kelp, although with varying focus and aims. Studies have looked into the use 

of satellite imagery to detect and quantify kelp (Bell et al., 2015; Bell et al., 2020; Jin et 

al., 2023), and also with unmanned arial vehicles (UAVs) (Cavanaugh et al., 2021b). 

These methods show promise towards detecting canopy forming kelps, however they are 

largely limited to monitoring at large spatial scales, nor do they provide underwater 

information about kelp not forming canopies. Underwater mapping of wild kelp has been 

conducted using ROV (Summers et al., 2022) and AUV (Bewley et al., 2012; Mahmood et 

al., 2020). Bell et al. (2020) applied a ROV in combination with acoustic and optical 

sensors to gather information about cultivated kelp biomass. With the use of sidescan 

sonar and RGB camera, imagery of cultivated kelp was collected, and then a machine 

learning model was trained to automatically detect individual kelp specimens. Similar 

research was conducted by Stenius et al. (2022), testing an AUV for autonomous image 

collection at a kelp farm. These studies show the potential that underwater imagery can 

be used for monitoring of cultivated kelp with high spatial resolution. However, no 

previous studies, to the authors knowledge, has validated the accuracy of kelp estimation 

by collecting ground-truth measurements and investigating the relationship. 
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1.9 Aim of research 

The aim of this study was to investigate proof of concept for in situ biomass estimation of 

cultivated kelp. The proposed concept was to use underwater RGB imagery and computer 

vision techniques to estimate area as a proxy for biomass. 

In order to investigate proof of concept, the main goal was to have a preliminary 

assessment of: 

1. Key environmental factors that might affect the quality of underwater RGB 

imagery of kelp.  

2. The feasibility of deriving quantifiable size information about kelp from 

underwater RGB imagery.  

3. The feasibility of using computer vision-derived area estimation as a robust proxy 

for kelp biomass. 
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2.1 Study area and design 

The study area was located at Frøya island, of the coast off Mid-Norway. Frøya is part of 

a biodiversity-rich area with significant water mixing due to strong winds and tidal 

currents (Fragoso et al., 2021). The oceanography is characterized by the Norwegian 

Coastal Current mixed with freshwater runoffs from Norwegian fjords (Skagseth et al., 

2011). Furthermore, the area is exposed to occasional upwelling of warm and nutrient-

rich waters of the North Atlantic Current (Sætre, 2007). Consequently, the area is highly 

productive regarding seafood production, including both wild harvest and aquaculture 

(Ervik et al., 2018; Tiller et al., 2015). 

The field work was conducted at Måsskjæra seaweed farm (63°44.617'N 8°52.756'E) 

owned and operated by Seaweed Solutions (SES), located close to Sistranda, Frøya (Fig. 

1). Sampling occurred seven times from March to June 2022 (Table 1), on kelp that was 

deployed at sea in November 2021. Selection of sampling days and work schedule was 

partially dependent on wind and tidal conditions. Data sampling consisted of three 

individual methods: 1) Continuous measurements of environmental data (temperature, 

turbidity and phytoplankton) throughout the sampling period. 2) Ground truthing of kelp 

measurements (wet weight biomass and lamina length and width) was collected by 

physical harvest after image sampling. 3) Image sampling of kelp performed using RGB 

cameras on a ROV. Thereafter, image data were processed using computer vision 

techniques. Finally, statistical analysis was performed on processed image, ground truth 

and environmental data. 

2 Materials and methods 
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Fig. 1: a) Map showing the location of Måsskjæra seaweed farm, Trondheim city and Sula 

meteorological station (where wind data were collected) on b) the coast of Trøndelag county (mid-

Norway). c) Illustration of the Måsskjæra seaweed farm, showing the collection site (station MI) 

where the sampling was conducted (blue X). 
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The field work occurred at the spring, as it is the primary growth-period of the cultivated 

kelp before biofouling settles (Førde et al., 2016). This enabled us to sample during 

distinct development stages of the kelp, from young sporophytes in March to ‘bushy 

canopy” in June, to test the method on kelp of different size and growth density. As 

mentioned, sampling was aimed to be done under as optimal environmental conditions as 

possible, such as low tides (slack water) and weak wind conditions, as to experience less 

kelp movement by the currents, where the kelp is kept vertically in the images. However, 

in practice, several times the tide was turning from low to rising, and the wind was 

shifting during sampling due of the short time window and the dynamic weather 

conditions of the study area (Table 1). 

Table 1: Field campaign date (2022) and image sampling time. Tidal conditions (Måsskjæra), 

average and maximum wind speed (Sula metrological station) and cloud cover (Ørland metrological 

station) for the image sampling time period. Source: www.kartverket.no for tides and www.yr.no 

for wind and cloud cover conditions. 

Field 

day 

Date Time Tide (cm) Wind 

(m/s) 

Wind 

direction 

Weather 

1 March 22 10:30-

12:00 

103-181 (Rising) 5,0 (6,7) 
 

 

2 April 5 12:30-

14:00 

178-232 (Rising) 1,9 (8,7) 

 
 

3 April 20 07:50-

09:30 

37-39 (Low) 2,4 (3,7) 
 

 

4 May 4 08:30-

09:30 

50-63 (Low/rising) 6,1 (8,5) 
 

 

5 May 27 10:20-

12:10 

231-199 

(High/receding) 

6,7 (8,5) 
 

 

6 June 3 08:40-

09:20 

61-64 (Low) 5,1 (7,9)  

 

7 June 15 08:40-

09:50 

84-145 (Rising) 7,9 (11,0) 
 

 

2.2 Environmental data 

Environmental data was collected in order to investigate whether, and to what extent, 

they affect observed image quality, and consequently, the possibility for satisfactory area 

detection yielding meaningful output. We took measurements of three factors affecting 

the inherent optical properties (IOPs) of the water: 1) Turbidity, a measure of optical 

clarity of water caused by scattering and absorption of photons. 2) Phytoplankton, 

measured as chlorophyll a fluorescence (FChla), with chlorophyll a being the main 

compound of phytoplankton (Fragoso et al., 2021). 3) Temperature. A C3 submersible 

fluorometer sensor (Turner Designs, USA) was attached to a buoy at Station MI (Fig. 1c), 

at 3 meters depth. The sensor collected data of FChla (calibrated later to concentration in 

mg m-3), turbidity (FTU) and temperature (°C) every 10 min from February 16 to June 

15. 
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2.3 Sensor-carrying platform and optical sensor 

A Blueye X3 (Blueye Robotics, Norway) (Fig. 2) was used as the sensor-carrying platform 

for the image sampling. It is a mini-ROV which can be carried and operated by one 

person, with the internal camera providing vision for the operator during dive operations. 

It can reach great depths, operate for a reasonable amount of time in differing 

conditions, and light up its own environment. The ROV was chosen for this study due to it 

being small and maneuverable enough for easy operation in the tight spaces of a kelp 

farm, while at the same time providing sufficient power to operate in coastal conditions 

with sensor payloads. It is also relatively easy to operate and affordable, making it an 

available alternative. The internal camera of the ROV was used as the optical sensor for 

the image sampling. It is a digital RGB camera equipped with 30° tilt up and down, which 

can collect imagery with Full High-Definition (FHD) resolution and 115° field of view 

(FOV). 

 

Fig. 2: a) A Blueye X3 ready for deployment, and b) deployed underwater with the tether linking it 

to the surface unit. Photos: Benjamin Thomason, 2022. 

2.4 Image sampling 

For image sampling (Fig. 3), a 50-meter-long line of cultivated S. latissima at station MI 

(Fig. 1c) was chosen. A checkerboard, used for size reference, was attached to the start 

of the cultivation line. Red plastic strips were attached to the line at one-meter intervals, 

indicating that each meter represents a replicate of the kelp attached to the line. 

Adjacent triplicates of one-meter kelp replicates were selected for imaging, and image 

sampling was conducted by maneuvering the ROV sidewards along the cultivation line. 

For that, the internal camera was pointed in the direction of the kelp and at a sufficient 

distance to ensure that the whole length of the kelp and width of the one-meter replicate 

was captured in the frame. The same method was repeated at each field day (Table 1), 

where adjacent triplicates of one-meter kelp replicates was imaged. 
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Fig. 3: Illustration of the image sampling method, where a checkerboard is used for size reference, 

and red strips indicates one-meter replicates of kelp samples. A ROV with internal RGB camera is 
used to collect triplicate imagery of replicates. Illustration: Martin Molberg Overrein (Adapted from 

Glaucia M. Fragoso). 

2.5 Image processing 

Image processing consisted of two different methods: (I) Manual annotation of length 

performed using a basic image processing program and (II) Area estimation performed 

using computer vision techniques. After first overview of the sampled image data, it was 

apparent that the red plastic strips used as one-meter markers was not sufficiently 

visible to be used as size reference. This meant that image data used in further 

processing was restricted to the first replicate from each sampling, where strips in 

combination with the checkerboard could be used as size reference. 

2.5.1 Manual annotation of length 

Manual annotation, meaning supervised length estimation of the kelp in the image data, 

was performed using the image processing program ImageJ (Image Processing and 

Analysis in Java) (Fig. 4). The pipeline started with extraction of six frames of the first 

kelp replicate from the image data collected by the internal ROV camera (Fig. 4.1). The 

six frames were selected based on having the checkerboard visible, and with different 

distances and poses to the kelp, in order to capture some variability in the image data. 

The selected frames were then uploaded to ImageJ. The checkerboard in the frame was 
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used as size reference to set a scale of pixels per centimeter (pixels/cm) for the 

corresponding frame (Fig. 4.2). Then, ten kelp specimens in the frame were randomly 

selected, and length in centimeters (cm) was measured by drawing a line from tip to 

holdfast of the specimen, using the “line” and “measure” tools in ImageJ (Fig. 4.3). The 

mean of the measurements is presented as manual annotation length (MAL) hereafter. 

The pipeline was repeated using image data from each field day. 

 

Fig. 4: Pipeline for manual annotation of length performed using ImageJ. 1) Extraction of frames 

from image data. 2) Using checkerboard to set scale of pixels per centimeter (pixels/cm). 3) 

Drawing and measuring length from tip to holdfast of ten randomly selected kelp specimens, 

resulting in manual annotation length (MAL). 

2.5.2 Computer vision estimation of area 

Computer vision estimation of area was performed using OpenCV (Open Source 

Computer Vision Library) (Fig. 5), a library of programming functions used for real-time 

computer vision. Python was the chosen programming language due to its compatibility 

with OpenCV. 

The pipeline started with extraction of six frames of the first kelp replicate from the 

image data collected by the internal ROV camera (Fig. 5.1). The six frames selected, 

were the same frames used in manual annotation. The selection was based on having the 

checkerboard visible, and with different distances and poses to the kelp, in order to 

capture some variability in the image data. The region of interest (ROI) in the frame was 

defined as the width of the one-meter replicate and height sufficient to capture the full 

length of the kelp. ROI was extracted in order to limit area detection to the wanted kelp 

replicate (Fig. 5.2). Further, clustering of pixel values was applied as a pre-processing 

step to allow more accurate distinction of color (Fig. 5.3), before color segmentation was 

applied to distinguish the kelp as the object of interest (OOI) from the surrounding 

background in the frame (Fig. 5.4). Next, adaptive thresholding was applied to mask out 

the OOI from the background (Fig. 5.5), allowing detection of the contour of the OOI 

(Fig. 5.6). Lastly, the number of individual pixels in the contour area was counted. The 

pixel count was converted to square decimeters (dm2) by using the known pixel width 

and real-world width (one meter) of the frame as size reference, presented as computer 

vision area per meter (CVA) hereafter. The pipeline was repeated using image data from 

each field day. 
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Fig. 5: Pipeline for the computer vision area estimation performed with OpenCV. 1) Extraction of 
frames from image data. 2) Extraction of region of interest (ROI) from frame. 3) Meanshift 

clustering of pixel values. 4) Segmentation of object of interest (OOI) based on color. 5) Masking 

out OOI from the background using adaptive thresholding. 6) Detection of the contour of the OOI 

and counting of area pixels, converted to square decimeters (dm2) using known pixel width and 
real-world width (one meter) of the frame as size reference, resulting in computer vision 

area(CVA). 

2.6 Ground truthing 

In order to validate the estimates from the processing of image data and evaluate the 

accuracy of the method, ground truthing of the same kelp samples was performed. 

Triplicate ground truthing was conducted by harvesting each replicate separately and 

measuring wet weight, presented as ground-truth weight per meter (GTW) hereafter. 

Then, ten kelp specimens from each replicate were measured for lamina and stipe length, 

as well as lamina width at widest point (Fig. 6). Ground-truth lamina length is presented 

as GTL hereafter. The same method was repeated at each field day. 

 

Fig. 6: Ground truthing of Saccharina latissima a) lamina length, b) lamina width at widest point 

and c) stipe length. Photo: Martin Molberg Overrein. 
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The image and ground-truth data of the kelp included, initially, only S. latissima. 

However, from visual inspections of the line, settling and growth of A. esculenta was 

observed to occur on the cultivation line around field day 5 (May 27), amounting to 

around 30 percent towards the end of the field campaign (June 15). Hence, specimens of 

A. esculenta were measured for lamina and stipe length, and lamina width at widest 

point, on field days 6 (June 3) and 7 (June 15). 

On field days 6 (June 3) and 7 (June 15), growth density of the kelp samples was 

measured to collect additional data for validation. This was done by harvesting the first 

25 cm of each replicate separately, counting the number of kelp specimens within that 

sub-sample and extrapolating the count to get density of the whole one-meter replicate. 

2.7 Statistical analysis 

Statistical analyses were performed using NumPy, SciPy, scikit-learn and Matplotlib, 

libraries for data analysis and visualization in Python.  

Relationships between MAL versus GTL, and CVA versus GTL, was investigated by 

applying linear regression and evaluated by their coefficient of determination (R2). 

Relationships between CVA versus GTW, and GTL versus GTW, was investigated by 

applying exponential regression and evaluated by their coefficient of determination (R2). 

Precision of GTL, MAL and CVA was investigated by calculating standard deviation. 

Accuracy of MAL and CVA was investigated by calculating relative accuracy compared to 

GTL, and GTL and GTW, respectively. 

Relationships between turbidity versus CVA relative accuracy, serving as proxies for 

water visibility and CVA accuracy, respectively, was investigated by applying linear 

regression and evaluated by their coefficient of determination (R2). 
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3.1 Environmental data 

Environmental conditions showed significant variation throughout the field period. 

Average wind speed varied significantly between field days (Fig. 7a). Seawater 

temperature showed a steady increase throughout the season, varying from 5.6 °C to 

9.4 °C (Fig. 7b). 

It was observed several peaks in FChla throughout the field campaign (Fig. 7c), with a 

short peak in late March (~2.5 mg m-3), a long peak around mid-April (up to 5.72 mg m-

3) and variable values from late May until mid-June (<4mg m-3). The overall trend was 

towards higher concentrations in the second half of the field campaign. The FChla serve 

as a proxy for phytoplankton biomass and, thus, indicates when phytoplankton blooms 

took place. 

Turbidity showed significant variability throughout the field campaign (Fig. 7c). A 

relatively similar trend compared to FChla concentration up until late May was observed, 

with a long peak in mid-to-late April (>0.2 FTU). A short peak was observed in mid-June 

(>0.2 FTU).  

3 Results 
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Fig. 7: a) Average wind speed (m s-1) at Sula metrological station, and b) seawater temperature 
(°C) and c) chlorophyll a fluorescence (FChla)(mg m-3) and turbidity (FTU) at Måsskjæra farm 

(station MI) from February 16 to June 15. Lines indicate field days. 1: March 22, 2: April 5, 3: April 

20, 4: May 4, 5: May 27, 6: June 3, 7: June 15. 
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3.2 Image quality and area detection 

Notable differences in observed image quality of the frames used in image processing 

were discovered in the data sampled at different timepoints (Fig. 8) throughout the field 

campaign. On field days 1 (March 22) and 4 (April 5), the observed image quality was 

very high, indicating good water visibility. On field day 2 (April 5), it was slightly lower, 

but still high, indicating relatively good water visibility. On field day 7 (June 15), the 

observed image quality was low, indicating relatively bad water visibility. On field days 3 

(April 20), 5 (May 27) and 6 (June 3), the observed image quality was very low, 

indicating bad water visibility. Summarized, the trend in observed image quality was 

towards lower quality in later parts of the field campaign. The observed image qualities 

are summarized in Table 2. 

 

Fig. 8: Example image frame before computer vision processing, showing observed image quality, 

from each of the field days. 
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Notable differences in area detection from the frames used in image processing were 

discovered in the data sampled at different timepoints (Fig. 9) throughout the field 

campaign. It is important to note that accuracy of detected area varied in between 

frames from the same day. The area detection was accurate in all frames on March 22, 

April 5 and May 4. On April 20, the area detection was moderately partial, but more 

accurate in other frames from the same day. Area detection was moderately partial in all 

frames on May 27 and June 3. On June 15, area detection was significantly partial in 

some frames, while mostly accurate in other frames from the same day. 

 

Fig. 9: Example image frame after computer vision processing, showing detected area of the kelp, 
from each of the field days. Important to note that accuracy of detected area varied in between 

frames from the same day. 
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The observed image quality and squared residuals (SR) of GTW plotted against CVA, are 

summarized with mean FChla concentration and mean turbidity on individual field days in 

Table 2. The SRs varied between 0.001 kg/m on April 20, and 2.310 kg/m on June 15, 

with a clear trend towards higher SRs in later stages of the field campaign (>0.3 kg/m). 

Both FChla concentration and turbidity peaked on April 20, with measurements of 4.485 

mg m-3 and 0.249 FTU, respectively. High measurements of FChla were observed also on 

May 27 (3.110 kg m-3), June 3 (3.085 kg m-3) and June 15 (2.563 kg m-3). Another peak 

in turbidity was observed on May 4 (0.184 FTU), while the remaining measurements 

were similar (~0.060 FTU). 

Table 2: Summary of observed image quality of the frames used in image processing and squared 

residuals (SR)(kg/m) between computer vision area (CVA)(dm2/m) and ground-truth weight 

(GTW)(kg/m). Mean chlorophyll a fluorescence (FChla)(mg m-3) and mean turbidity (FTU) at 

Måsskjæra farm (station MI) on individual field days. 

Field day Date Observed 

image quality 

Squared residuals 

(kg/m) 

FChla 

(mg m-3) 

Turbidity (FTU) 

1 March 22 Very high 0.002 1.203 0.051 

2 April 5 High 0.005 0.896 0.060 

3 April 20 Very low 0.001 4.485 0.249 

4 May 4 Very high 0.009 0.679 0.184 

5 May 27 Very low 0.426 3.110 0.069 

6 June 3 Very low 0.317 3.085 0.064 

7 June 15 Low 2.310 2.563 0.063 
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3.3 Ground-truth length (GTL) versus ground-truth weight 

(GTW) 

The relationship between GTL and GTW was investigated, with GTW being a function of 

GTL (Fig. 10). 

A strong positive exponential relationship (r2 = 0.93) was observed between GTL and 

GTW, showing statistical significance (p < 0.05). Field day 7 (June 15) had a somewhat 

lower GTL (65.9 cm) than the exponential trend, while field day 5 (May 27) had a 

somewhat higher GTL (93.5 cm) than the exponential trend. 

 

Fig. 10: Exponential relationship between ground-truth length (GTL)(cm) and ground-truth weight 

(GTW)(kg/m). Error bars show the standard deviation of GTL for each field day (n = 6). 
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3.4 Manual annotation length (MAL) versus ground-truth 

length (GTL) 

The relationship between MAL and GTL was investigated, with GTL being a function of 

MAL (Fig. 11). A wide range in lamina length was observed among specimens and 

sampling timepoints, both for MAL and GTL. MAL ranged from 33.9 cm to 95.7 cm. GTL 

ranged from 37.4 cm to 93.5 cm. 

MAL showed a varying standard deviation between sampling timepoints, ranging from 2.8 

cm to 14.0 cm. GTL showed a more similar standard deviation, ranging from 12.4 cm to 

19.5 cm. 

A strong positive linear relationship (r2 = 0.96) was observed between MAL and GTL. The 

result was statistically significant (p < 0.05). 

 

Fig. 11: Linear relationship between manual annotation length (MAL)(cm) and ground-truth length 

(GTL)(cm). Error bars show the standard deviation of MAL and GTL for each field day (n=6 for MAL 

and n=10 for GTL). 
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3.5 Computer vision area (CVA) versus ground-truth length 

(GTL) 

The relationship between CVA and GTL was investigated, with GTL being a function of 

CVA (Fig. 12). Both CVA and GTL showed a wide range of variation between sampling 

timepoints. CVA ranged from 32.2 dm2 to 79.3 dm2, and GTL ranged, as mentioned 

above, from 37.4 cm to 93.5 cm. 

CVA showed a significant variation in standard deviation among sampling timepoints, 

ranging from 23.4 dm2 to 91.7 dm2. GTL showed a more similar standard deviation, 

ranging, as mentioned above, from 12.4 cm to 19.5 cm. 

A strong positive linear relationship (r2 = 0.81) was observed between CVA and GTL, 

showing statistical significance (p < 0.05) (Fig. 12a). Field day 7 (June 15) had a notably 

lower CVA (35.6 dm2) than the linear trend. If data from June 15 was removed from the 

statistical analysis, an even stronger linear relationship (r2 = 0.98) was observed, 

showing statistical significance (p < 0.05) (Fig. 12b). 

 

Fig. 12: a) Linear relationship between computer vision area per meter (CVA)(dm2/m) and ground-

truth length (GTL)(cm). b) Linear relationship without data from field day 7 (June 15). Error bars 

show the standard deviation of CVA and GTL for each field day (n=6 for CVA and n=10 for GTL). 
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3.6 Computer vision area (CVA) versus ground-truth weight 

(GTW) 

The relationship between CVA and GTW was investigated, with GTW being a function of 

CVA (Fig. 13). A wide range in GTW was observed between sampling timepoints, ranging 

from 0.24 kg to 4.97 kg. 

A strong positive exponential relationship (r2 = 0.84) was observed between CVA and 

GTW, showing statistical significance (p < 0.05) (Fig. 13a). Field day 7 (June 15) had a 

notably lower CVA (35.6 dm2) than the exponential trend. If data from June 15 was 

removed from the statistical analysis, an even stronger exponential relationship (r2 = 

0.95) was observed, showing statistical significance (p < 0.05) (Fig. 13b). 

 

Fig. 13: a) Exponential relationship between computer vision area per meter (CVA)(dm2/m) and 

ground-truth weight (GTW)(kg/m). b) Exponential relationship without data from field day 7 (June 

15). Error bars show the standard deviation of CVA for each field day (n=6). 
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Manual monitoring of kelp biomass is not sufficient to meet the future needs for accuracy 

and efficiency in upscaled kelp aquaculture. Hence, we aimed to investigate proof of 

concept for in situ biomass estimation of cultivated kelp, towards future automated 

monitoring of commercial kelp-farms. The concept we investigated was to collect RGB 

imagery of cultivated kelp, and apply manual annotation and computer vision techniques 

to detect and derive meaningful size information that could be used as a proxy for 

biomass. Area was used as proxy, hypothesized to show a strong relationship with 

biomass. Additionally, we investigated which environmental factors might affect the RGB 

imagery. Our work indicates that the concept is, in fact, promising as a tool to estimate 

biomass of cultivated kelp in the future. The concept fits in well with the emerging 

concept of Precision Aquaculture (PA), which aims to move aquaculture operations from 

manual and experience-based methods to more automated and knowledge-based 

methods based on targeted technology and automation principles (Føre & Alver, 2022). 

Size assessment using computer vision for kelp-farm monitoring is especially mentioned 

for PA, validating the state-of-the art and relevance of our work.  

4.1 Effect of environmental factors on image quality 

We measured phytoplankton biomass and turbidity throughout the field campaign to 

investigate whether they affected observed image quality, and consequently the accuracy 

of area detection derived from computer vision processing. Our work indicates that 

phytoplankton can explain, if not all, at least parts of the variation and trend observed in 

image quality. This is displayed by the fact that we found a significant relationship 

between the two parameters throughout the field campaign, with higher FChla yielding 

lower observed image quality, and vice versa. We further observed a green hue in the 

image frames on days with high FChla in later stages of the campaign, which, according 

to existing literature, is a normal result of phytoplankton blooms (IOCCG, 2000; Johnsen 

et al., 2009; Kjerstad, 2014). The correlation with previous work serves as a validation of 

our findings. Hence, phytoplankton blooms seem to have an important impact on the 

ability to collect underwater imagery of satisfactory quality.  

Our work further indicate that turbidity might, in combination with phytoplankton 

blooms, have a negative effect on observed image quality. This is displayed by the 

exceedingly low image quality observed on April 20, when the turbidity and 

phytoplankton measurements were both high. Turbidity could not explain the variability, 

nor trend, in observed image quality the rest of the field campaign. However, this could 

be explained by the fact that turbidity levels were relatively low on field days, rendering 

the potential effect of turbidity somewhat inconclusive. Furthermore, we found indication 

that a notable portion of the high turbidity around April 20 might be attributed to high 

levels of suspended matter (TSM), indicating that TSM has a significant effect on 

observed image quality. Imagery from April 20 produced as somewhat more blue hue 

compared to the green hue observed later in the field campaign, on days with low 

turbidity and high phytoplankton biomass. These findings coincide well with existing 

literature, stating that a combination of phytoplankton bloom and high content of TSM 

result in a dark blue hue (Johnsen et al., 2009; Kjerstad, 2014). Furthermore, TSM 

4 Discussion 
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represent the most importance substances for underwater scattering of photons, and is 

highly correlated with turbidity (IOCCG, 2000; Kari et al., 2017).  

Therefore, we presume that a combination of phytoplankton blooms and high TSM levels 

render low observed image quality, but that TSM is of less importance in the studied 

area. The presumption is backed by literature, stating that the Frøya region, being 

located of the coast off Mid-Norway, is characterized as a highly productive region. 

(Fragoso et al., 2019; Fragoso et al., 2021). High primary production means relatively 

higher levels of phytoplankton. A different situation could possibly be identified in other 

bodies of waters, such as a more closed fjord system, where different compound 

composition could alter the underwater conditions (Johnsen et al., 2009). Absorption in 

general, and phytoplankton especially, seem to be the main driver of light attenuation in 

the Frøya region during spring. That being said, future research should include 

measurements of TSM, as well as cDOM, to fully understand the complex optical 

properties of water.  

An interesting aspect in this regard, is that the primary season for phytoplankton blooms 

coincide with the primary growth season for cultivated kelp, namely the spring. 

Phytoplankton deplete macronutrients in competition with kelp, inhibiting kelp growth 

(Johnsen et al., 2020a). Moreover, they likely influence bryozoan settlement on the kelp, 

which consequently degrade the quality of kelp lamina and reduce the ability to grow 

(Førde et al., 2016; Njåstad, 2018; Winston, 1977). Considering the impact of 

phytoplankton on both kelp growth, biofouling and biomass monitoring, it seems 

apparent that phytoplankton biomass is one of the most important parameters to 

thoroughly understand and monitor in kelp farming. Furthermore, Frigstad et al. (2020) 

suggested the implementation of several parameters, including phytoplankton, for a 

more holistic understanding of light attenuation in the sea. All this points toward 

phytoplankton being a very important factor for several parts of kelp farming and, thus, 

representing a factor that is important to understand and monitor. 

Measurements of light conditions was not conducted in our study. Yet, by observation of 

the sampled image data and derived area detections, we can surmise that ambient light 

did affect image quality. Incident sunlight did, in some cases, seem to help distinguish 

the kelp from the surrounding water, while in other cases, it seemed to overexpose the 

images, causing partial area detection. Shadows cast by the kelp from incident light, did 

in the later stages of the season, hinder or constrain full area detection. This was 

especially well displayed on June 15, where dark areas of the kelp due to shadowing, 

rendered significant partial area detection. Weather conditions are the main driver of 

ambient light variation in shallow waters (Preisendorfer, 1976) and, thus, similar 

problems have been experienced in other applications (Føre et al., 2018). 

Our work indicates that range to the object of interest is important for sufficient image 

quality and resulting area detection. We observed that detection accuracy was better on 

imagery at closer range than longer range. On field day 3, area detection was 

successfully performed with satisfactory accuracy, despite a phytoplankton concentration 

peak resulting in suboptimal image quality. While on field day 5 and 6, processing 

rendered partial area detection under similar conditions. One notable difference between 

the imagery, was that imagery was sampled at longer range on day 5 and 6 due to the 

longer length of the kelp, indicating that range is a limiting factor to optimal sampling. 

The literature state that environmental conditions, especially light attenuation, limit the 

range at which data of satisfactory quality can be obtained (Johnsen et al., 2020b; 
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Sørensen et al., 2020). Other studies also indicate that quality of RGB imagery is limited 

by range. Kjerstad (2014) found that range was important for object detection, on 

account of lowered spatial resolution and light attenuation. Furthermore, this coincides 

Cavanaugh et al. (2021b), which found that RGB imagery collected with UAV render 

moderate detection accuracy (67 %). Artificial light might be a solution, although, as our 

work indicates, light attenuation is a limitation that might reduce the feasibility. 

Alternatively, choice of camera could be of importance to collect imagery of high quality. 

Camera type, field of view and spectral resolution are some of the important factors for 

image collection and should, thus, be considered. 

To summarize, our work indicate that one will experience a trend towards lower image 

quality when sampling throughout the spring season, with variation mostly determined 

by phytoplankton blooms. High turbidity levels might further reduce observed image 

quality, although the importance is somewhat ambiguous. These findings are important 

to consider in future work. One possibility could be to adapt time of monitoring to periods 

with relative lower turbidity levels and between phytoplankton blooms, in order to collect 

higher quality imagery. Another possibility could be to understand the relationship 

between phytoplankton, turbidity and processing, towards developing methods to 

compensate for it. Similar challenges with image-based underwater monitoring are 

present for everyone operating in the marine environment. Our findings could therefore 

prove relevant beyond the scope of kelp farming. 

4.2 Size information about kelp from underwater RGB imagery 

Our work indicates that it is possible to detect and derive meaningful size information 

about kelp from RGB imagery. We successfully annotated kelp length from RGB imagery 

with high accuracy, indicated by the strong relationship between manual annotation and 

ground-truth measurements (r2 = 0.96). Hence, our study serves as strong indication 

that size estimation of kelp from underwater imagery is a feasible method, coinciding 

with numerous studies applying manual image processing in ecology (Weinstein, 2018). 

Our study is the first, to our knowledge, to quantify size information of kelp, and 

comparing it with ground-truth measurements. The fact that we successfully derived 

accurate size information about kelp from RGB imagery, serves as important 

complementation to existing research. Previous studies has managed, with the use of 

machine learning principles, to derive detection of both wild and cultivated kelp from 

underwater RGB, as well as acoustic, imagery (Bell et al., 2020; Bewley et al., 2012; 

Stenius et al., 2022). Bell et al. (2020) found relevant results, in the sense that they 

managed to detect individual kelp juveniles based on underwater RGB imagery. With the 

use of deep learning models, they detected kelp with 91% accuracy and 7% error 

compared to human-supervised annotation. Bewley et al. (2012) found similar results, as 

they detected kelp from RGB imagery of the seafloor using supervised learning, with 

promising results on detection. Bell et al. (2020), additionally, showed promising first 

steps towards detection of kelp with acoustic imagery, coinciding with the findings in 

Stenius et al. (2022). Hence, the potential for kelp detection from underwater RGB and 

acoustic imagery is apparent, and our findings build on this by indicating that size 

information can be derived after detecting the kelp. A combination of our findings with 

the mentioned machine learning-based techniques is therefore an interesting way 

forward.  

The strong relationship was observed between computer vision-derived area estimates 

and ground-truth length measurements (r2 = 0.98), indicating that it is possible to derive 
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meaningful size information about kelp by applying computer vision techniques on 

underwater RGB imagery. This coincides with the fact that underwater RGB imagery has 

already been successfully applied to estimate size of fish and other organisms in 

aquaculture (Saberioon et al., 2017; Zion, 2012). However, we found indication that 

observed image quality had significant importance for the accuracy of area detection. 

This was displayed by the fact that a relationship between observed image quality and 

accuracy of area detection was existing, with high accuracy derived from imagery of high 

observed quality, on March 22 (SR = 0.002 kg/m), April 5 (SR = 0.005 kg/m) and May 4 

(SR = 0.009 kg/m). Coinciding, low accuracy was derived from imagery of low observed 

quality, on May 27 (SR = 0.426 kg/m), June 3 (SR = 0.317 kg/m) and June 15 (SR = 

2.310 kg/m). Still, some degree of ambiguity was observed in the relationship, as April 

20 yielded high accuracy (SR = 0.001 kg/m) from imagery of very low observed quality. 

This is an indication that observed image quality do not explain the whole feasibility for 

accurate area detection. We found indication that area estimates constantly 

underestimate the length of the kelp. Mathematically, the relationship between area per 

meter and mean length should be direct in this context. Underestimation can, in the later 

stages of the field campaign, be explained by partial detection of area due to the effect of 

environmental factors, as discussed above. This do, however, not explain the trend in 

earlier stages, which rather is affected by kelp movement due to wave action and 

currents. This coincides with Summers et al. (2022), as they had water movement 

introducing error to the results. As a result, this indicate that the investigated concept is 

not mature enough to estimate length directly without further investigation.  

Our work indicates that RGB cameras mounted on or embedded in underwater vehicles is 

a suitable method for collecting imagery that can be used to derive meaningful size 

information about kelp from. By using a small-sized ROV we were able to sample data at 

close range of the kelp, rendering data with high spatial resolution. Additionally, the 

platform can be operated by one person, keeping the operational costs low. Our findings 

coincide with other fields of marine studies employing mini-ROVs with success to 

accurately collect detailed optical information (Føre et al., 2018; Kelasidi et al., 2020; 

Nevstad, 2022; Summers et al., 2022). On the other hand, recent studies have shown 

that kelp can be successfully monitored at larger spatial scales (Cavanaugh et al., 

2021a), with the use of available satellite imagery to map and monitor wild (Bell et al., 

2020; Tonion & Pirotti, 2022) and cultivated kelp (Jin et al., 2023; Zheng et al., 2019) 

representing the most widespread and mature methods. Furthermore, automated 

detection of kelp canopy with UAV has shown that RBG imagery render lower accuracy 

(67 percent) compared with multispectral imagery (93 percent) (Cavanaugh et al., 

2021b). Yet, the sampling methods applied in those studies have been limited to the 

study of whole farms or canopy-forming kelp from high altitudes, meaning that satellite 

imagery is highly restricted in temporal and spatial resolution, and AUV imagery is highly 

restricted in spatial resolution. These methods will have much lower spatial resolution, so 

maybe not useful for biomass estimation at less than farm scale (or accurate estimation 

at all). Our concept is consequently an important innovation for continuous and detailed 

kelp biomass monitoring.  

Image sampling with ROV as sensor-carrying platform has considerable constraints, such 

as the need for human operation, limited battery time and tether length. Consequently, a 

ROV can usually only collect data at a small spatial scale (Sørensen et al., 2020), as it 

happened in our study, since we only collected data from small sections of a cultivated 

kelp line. Thus, extrapolation will be required to estimate biomass for the whole line, or 
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multiple section of the farm. To be able to extrapolate for a whole farm, other types of 

mobile platforms equipped with cameras should be used on an autonomous mode.  

4.3 Computer vision-derived area estimation as a proxy for 

biomass 

In our work, computer vision-derived area estimation was used as proxy to develop a 

relationship for biomass estimation. This relationship showed considerable promise for 

robust estimation of cultivated kelp biomass at a broad temporal scale, spanning from 

mid-March to mid-June. This was displayed by the strong relationship (r2 = 0.95) found 

between derived area estimates and ground-truth weight measurements, both for kelp of 

different sizes and under differing conditions. Using area as a proxy for biomass left only 

5 percent (r2 = 0.95) of the variation unexplained. There is a number of relevant studies 

that provides methods for estimation of terrestrial crop biomass using RGB imagery and 

computer vision techniques. Walter et al. (2018) found a strong relationship (r2 = 0.79) 

between estimated volume and ground-truth biomass of wheat, using consumer level 

RGB cameras and processing software. Bendig et al. (2014) reported a strong 

relationship when using estimated plant height as a proxy for fresh (r2 = 0.81) and dry 

biomass (r2 = 0.82), using RGB camera on a small UAV. These studies provide indication 

that our findings are credible, and that the applied method is in fact feasible, using 

readily available and affordable technology with a number of documented applications, 

both for terrestrial and marine environment. The fact that area estimates showed a linear 

relationship with length, and exponential relationship with weight, serve as a validation 

of the feasibility of using area as a proxy for biomass. This is because our ground 

truthing, as well as previous studies (Gerard, 1982), show that length and weight of kelp 

has an exponential relationship. Consequently, our results indicate that a model using 

area estimates as proxy for biomass can be further developed and eventually applied to 

accurately predict kelp biomass in situ throughout the cultivation season. 

We found that using area estimation as proxy for biomass estimation, had the advantage 

of simplifying both data collection and processing, as imagery is only needed from a 

single side of the kelp. Volume is often applied as a proxy for biomass, given the close 

relationship between the two traits. This is especially prominent in terrestrial crop 

monitoring (Olsoy et al., 2014; Walter et al., 2018). However, significant research is 

existing with using 2D proxies. Bendig et al. (2014) used plant height for modelling 

biomass of barley crops, yielding promising results. Our findings also coincide with the 

findings of Viazzi et al. (2015), de Verdal et al. (2014), Balaban et al. (2010) and Zion et 

al. (1999), which all used area estimation as proxy for biomass of fish. They found strong 

relationships (r2 = 0.99), (r2 = 0.963), (r2 = 0.987) and (r2 = 0.954), respectively, when 

comparing area estimates and ground-truth measurements. Some of the strong 

relationship might be explained by the fact that shape of individual fish is closely related 

to biomass. Cultivated kelp hanging along a line has no shape that display apparent 

relation to the biomass, so the strong relationship identified in our work was somewhat 

unexpected. Anyway, our findings in comparison with other studies, indicate that area is 

a promising proxy for biomass estimation of kelp, as it is both robust and easy to collect 

imagery for. The opportunity to estimate biomass of cultivated kelp based on the 

investigated concept, is a significant improvement compared to today’s manual methods. 

Therefore, our findings lay the foundation for an initial understanding of the relationship 

between biomass and possible proxies, indicating the feasibility of a model for biomass 

estimation without directly estimating the third dimension. 
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Further developing a model for kelp biomass estimation using area as proxy, seems like 

a promising path. It simplifies the sampling to use a one-dimensional proxy, as imagery 

only has to be collected from one side. Statistical uncertainty will be negligible on farm-

level, as sampling size will be much larger. 

4.4 Future perspectives for biomass estimation of cultivated 

kelp 

The findings in our study can be built upon by quantifying and considering more of the 

variables affecting the relationship between area and weight. Olsoy et al. (2014) built on 

their model for estimation of shrub biomass by considering temporal, seasonal change, 

and spatial, different sites, variables, resulting in marginally stronger models. For a 

further development of a model based on our preliminary findings, it can be relevant to 

look at environmental factors, as indications are strong that water current, 

phytoplankton, turbidity and light conditions greatly impact the robustness of the 

concept, coinciding with Summers et al. (2022). A possible concept improvement could 

be to equip relevant sensors on the sensor-carrying platform or in strategic positions 

around the farm. The collected data could be feed into growth models based on known 

and presumed properties of the cultivated kelp (Broch & Slagstad, 2012; Peres et al., 

2021; Trancoso et al., 2005) and, thus, serve as a tool for indirect calibration and 

validation of our model. Consequently, potential is existing in combining established and 

generalized growth models with continuous biomass monitoring, towards gaining holistic 

control of growth development and. Alternatively, one could use a more direct approach. 

Kjerstad (2014) suggested that quantification of inherent optical properties (IOPs) of the 

water where monitoring is conducted, could be applied in pre-processing steps to render 

image data with more homogenous image values between frames. This could potentially 

allow for easier object detection and segmentation. However, the discussed aspects will 

certainly add complexity to the method and, thus, a relevant question is whether data of 

satisfactory quality can be obtained without adding unnecessary complexity. As stated by 

Johnsen et al. (2020b), careful consideration of sampling range and choice of sensor can 

go a long way to compensate for environmental conditions. Hence, going forward, a key 

consideration is to evaluate the value of increased accuracy and effectiveness, against 

the drawbacks of adding complexity to monitoring. 

The algorithm developed in our study segmented kelp based on color with high accuracy 

(r2 = 0.95). However, it demanded individual parameter tuning for different conditions 

and, thus, is still highly dependent on human intervention. The method is therefore 

readily available, yet currently low throughput. The goal is to enable us to surpass the 

human intervention, but for that we need to investigate how to apply computer vision, 

and then build models for automation in the future. Therefore, it seems apparent that a 

key next step will be to automate the processing stage through machine learning (ML), 

enabling the creation of algorithms that can learn from data and make predictions based 

on observed patterns (Yan, 2022). Increasingly advanced ML models are being developed 

and deployed in a number of applications, also underwater. Saberioon et al. (2017) and 

Zion (2012) has conducted a thorough mapping of applications of ML models in 

aquaculture. Promising research has shown that techniques for monitoring of fish is 

available and robust. In addition, similar techniques can be used in, for example, early 

detection of net wear and damage in fish aquaculture (Kelasidi et al., 2020). 

Aforementioned studies (Tonion & Pirotti, 2022) have applied ML techniques for large 

scale aerial mapping of wild kelp and whole kelp-farms, although higher spatial resolution 
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research is more limited. That being said, preliminary analysis by Bell et al. (2020) were 

able to detect kelp juveniles underwater with 91% accuracy and only 7% error, using ML 

techniques on RGB imagery, showcasing the considerable potential of automated 

processing. Still, restrictions of the method applied in Bell et al. (2020), is that they 

rendered no quantifiable estimates from the processing or ground-truth measurements. 

By combining a similar detection algorithm with the area estimation algorithm developed 

in our study, automated kelp area estimation is feasible. In order to upscale this method, 

larger sample datasets can be used as calibration and validation data, as to reduce the 

statistical uncertainty and provide cross- validation of the results (Bendig et al., 2014). 

As a result, accurate and effective large-scale processing of image data can be developed 

in the near future. 

As RGB imagery seem to have some limitations related to the effect of environmental 

factors, future research could investigate the use of other sensors, both optical and 

acoustic. Of them, optical sensors such as multispectral and hyperspectral imagers are of 

interest. Cavanaugh et al. (2021b) indicated that multispectral imagery might be more 

robust than RGB imagery. They found higher detection accuracy of canopy forming kelp 

with multispectral imagery (93 %) versus RGB imagery (67 %). The relevance is that our 

results using RGB imagery is promising, yet with some limitation in area detection. So, 

perhaps, multispectral imagery is an aspect to consider in the future. Hyperspectral 

imagers have been applied vastly and successfully for detection of wild kelp (Johnsen et 

al., 2016; Mogstad et al., 2019; Summers et al., 2022; Volent et al., 2007). However, 

when it comes to cultivated kelp, research is more limited. 

We tested high spatial resolution sampling of imagery of kelp at a broad temporal scale, 

as the first study to do so. Our work indicates that underwater methods are necessary to 

acquire image data of satisfactory quality. Yet, the study was conducted at a small 

spatial scale. Hence, going forward, we anticipate that our concept can be used as the 

foundation to upscale image sampling to a large spatial scale using automation, 

eventually covering whole kelp-farms. For example, (Stenius et al., 2022) developed a 

methodology where they deployed an AUV to monitor a whole kelp-farm autonomously 

and continuously. In their small-scale scheme, an AUV followed pre-programmed or self-

detected sampling patterns based on the outline of the farm and, thus, enabling sampling 

of detailed image data of a whole kelp-farm throughout the cultivation season. As the 

AUV navigates along the cultivation lines with the help of sidescan sonar, using area as a 

proxy for biomass seems like an apparent option. In addition to being employed as 

control sensor, the sonar has the ability to collect signals from the kelp, possible to 

derive size information from (Bell et al., 2020). Still, none of the aforementioned studies, 

has yet been able to quantify size estimates of the kelp, nor collect ground-truth 

measurements for validation of the estimates. This indicates that the findings in our 

study is highly relevant. In the future, upscaling of monitoring can be achieved by 

combining a refined version of the platform scheme in Stenius et al. (2022), with a 

refined version of the image sampling and processing in our study. Other possibilities 

could be moving the cameras along strategically structured cables throughout the farm, 

removing the need for underwater vehicles. Perhaps the cameras do not need to move 

around at all, but rather be placed in fixed positions where sufficiently coverage of the 

kelp can be achieved to obtain accurate estimates. Ultimately, the goal of the technology 

and method should be to optimize accuracy of biomass estimation, meaning providing 

sufficiently monitoring, while at the same time minimalize operational costs, risks and 

complexity.   
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We found that the ability to capture imagery of high quality is significantly related to 

phytoplankton biomass in the water, with blooms degrading the observed quality. 

Furthermore, our work indicates that high turbidity levels, possibly caused by suspended 

matter, further degrade image quality. Still, this effect seems less important in the 

studied area. Additionally, our work indicates that incident light is of some importance to 

the image quality. Given the importance of underwater conditions, especially 

phytoplankton, towards several aspects of kelp farming, we propose that it is of key 

importance to understand and monitor in the future. 

Our work indicate that low image quality can lead to lower accuracy of area detections, 

through partial detection. The accuracy of area detections is related to the quality of the 

imagery used in processing. However, detection accuracy is also dependent on factors 

such as range between camera and the kelp, and kelp movement due to wave action and 

currents. 

Underwater RGB imagery provides the opportunity to derive quantifiable size information 

of cultivated kelp with high accuracy. Both manual length annotation and computer 

vision-derived area estimation displayed promising results, indicating that robust biomass 

estimation is possible. RGB cameras on an underwater vehicle can provide imagery of 

high spatial resolution, a prerequisite for accurate biomass estimation. Hence, we 

propose that future biomass monitoring is based on upscaled and automated collection of 

underwater RGB imagery. 

Our work further indicate that computer vision-derived area estimation can serve as a 

robust proxy for biomass of cultivated kelp. Area and biomass displayed a promising 

relationship, that can be further validated by upscaled image collection and automated 

processing. 

This novel concept provides important first step findings and estimates towards 

developing an automated biomass monitoring scheme in kelp aquaculture. Based on our 

work, we predict a future scheme for farm-scale biomass monitoring based on 

autonomous data collection and real-time processing. This will be based on state-of-the-

art technology and machine learning principles. With new technological advances, a sea 

of opportunities will be unlocked in the coming years.  

5 Conclusion 
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