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Abstract

The vast and unexplored ocean holds tremendous potential resources, yet sus-
tainable and environmentally friendly harvesting of these requires a deeper un-
derstanding of the ocean’s ecosystem. The advancement of autonomous capabilit-
ies of robotics presents new opportunities for effectively exploring and gathering
valuable information about the ocean.

This thesis aims to develop and analyze an underwater simultaneous localiz-
ation and mapping (SLAM) pipeline for autonomous underwater vehicles (AUV)
that utilizes side scan sonar for navigation purposes. The goal is to improve nav-
igation accuracy that, in turn, will extend the operational capabilities of AUVs,
enabling long-time underwater missions.

The proposed SLAM pipeline consists of several key steps, including: • swath
processing techniques that are employed to remove artifacts in the side-scan sonar
data; • a novel probabilistic algorithm to generate a 2D cartesian map of the pro-
cessed swaths; • a novel landmark detector that combines intensity thresholding,
geometric filtering, classification, and height estimation to identify landmarks; •
a probabilistic data association algorithm, that is utilized to associate the land-
marks detected as the mission unfolds and data is collected; and • a multimodal
inference scheme to generate new state and landmark estimates.

The proposed pipeline is also evaluated using real-world data, demonstrating
promising results. Nevertheless, the results also show that the pipeline is improv-
able in some key steps: • the proposed landmark detector shows to be lacking
robustness in detecting landmarks at different ranges and in detecting the full ex-
tent of the landmarks; • the swath processing shows a discrepancy between the
measured and calculated first backscatter, potentially reducing the correctness of
the pipeline; • loop closures do not have the expected effect on the estimated
trajectory of states, and the approximations of the odometry and measurement
uncertainty are thought to be the reason.

By developing a SLAM pipeline for side scan sonar, this thesis advances the
field of underwater SLAM and lays the foundation for further development of a
robust and accurate pipeline.

iii



Sammendrag

Det enorme og uutforskede havet inneholder betydelige potensielle ressurser. Im-
idlertid krever bærekraftig og miljøvennlig utnyttelse av disse en dypere forståelse
av havets økosystem. Fremskritt innen roboters autonome egenskaper åpner nye
muligheter for effektiv utforskning og innhenting av verdifull informasjon om
havet.

Denne masteroppgaven har som mål å utvikle og analysere en SLAM (simultan
lokalisering og kartlegging) arbeidsflyt for autonome undervannsfarkoster (AUV)
som bruker side-skannende sonar til navigasjonsformål. Målet er å forbedre navi-
gasjonsnøyaktigheten, som igjen vil utvide AUV-ers operative evner og muliggjøre
langvarige undervannsoppdrag.

Den foreslåtte SLAM-arbeidsflyten består av flere nøkkeltrinn, inkludert: •
metoder for prosessering av sonarmålinger for å fjerne artefakter i dataen; • en
ny probabilistisk algoritme for å generere et 2D kartesisk kart av de behandlede
sonarmålingene; • en ny tilnærming for gjenkjenning av landemerker som kom-
binerer intensitetsterskling, geometrisk filtrering, klassifisering og høydeestimer-
ing for å identifisere landemerker; • en probabilistisk dataassosiasjonsalgoritme
som brukes til å knytte sammen landemerkene som oppdages når oppdraget ut-
folder seg og data samles inn; og • en multimodal inferens metode for å generere
nye tilstander og landemerke estimater.

Den foreslåtte arbeidsflyten blir også evaluert ved hjelp av virkelige data og
viser lovende resultater. Likevel viser resultatene også at arbeidsflyten kan for-
bedres på noen nøkkeltrinn: • den foreslåtte landemerkedetektoren viser seg å
mangle robusthet ved deteksjon av landemerker på forskjellige avstander og de-
teksjon av hele landemerkets utstrekning; • prosesseringen av sonarmålinger viser
et avvik mellom målt og beregnet første mulige refleksjon, noe som potensielt re-
duserer nøyaktigheten til arbeidsflyten; • lukkinger av sløyfer har ikke den for-
ventede effekten på de estimerte tilstandene, og antakelsene gjort ved utregning
av odometri og målingsusikkerhet antas å være årsaken.

Ved å utvikle en SLAM-arbeidsflyt for side-skannende sonar fremmer denne
masteroppgaven feltet for undervanns-SLAM og legger grunnlaget for videreutvik-
ling av en robust og nøyaktig arbeidsflyt.
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Chapter 1

Introduction

This thesis builds on the work in [1] and [2], where the latter is the project thesis
written at NTNU by the author. Because of the close relationship with this thesis,
some parts of [2] will be similar or identical to the introduction, theories, and
methods presented in this thesis.

This chapter will first present the motivation of the thesis, from the problems
we want to solve to the means for solving them. Next, the chapter will introduce
the problem formulation and the contributions made by this thesis. Lastly, the
outline of the thesis is presented.

1.1 Motivation

Throughout history, humans have relied on the vast ocean for sustenance, com-
merce, and exploration, recognizing its immense potential. However, despite this,
it is astonishing to note that a mere five percent of the ocean has been explored
and charted [3]. This remarkable statistic highlights the vastness and complexity
of the ocean, emphasizing the need for increased efforts in exploring and map-
ping it. The ocean affects all life forms on the planet, and knowing more about
it can help safeguard its ecosystem and biodiversity. As the activity in the ocean
increases, the balance of the ecosystem can the threatened by, for example, ocean
pollution, and the more we know about the ocean, the more efficiently we can
protect it.

The world is turning to the oceans for more resources as more and more land
is occupied, increasing marine activity and, hand in hand, the demand for know-
ledge about the ocean. A significant increase in green energy and aquaculture pro-
duction in the ocean is expected in the future [4]. One example of aquaculture
production is fish farming, where the newest trend is to move the fish farms from
the protected fjords and into the open ocean [5]. The establishment of fish farms
in fjords has been shown to disrupt ecosystems, such as the threat posed by sal-
mon lice to the wild salmon population and the ecological impact of fish farming
waste on the ocean ecosystem [6]. However, the potential effects of offshore fish
farming on surrounding ecosystems in the open ocean remain largely unknown.
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Chapter 1: Introduction 2

Moreover, the emergence of offshore wind farms, exemplified by Hywind Tampen
[7], and deep-sea mining, which offers the potential to extract rare-earth metals
for electronic devices and vehicles [8], represents novel approaches to resource
exploitation in the ocean. Consequently, a deeper understanding of the ocean and
its ecosystems is crucial in these emerging contexts.

Autonomous underwater vehicles (AUVs) are widely used for monitoring and
surveying the ocean and are more cost-effective and environmentally friendly than
manned vessels [9, 10]. However, even though they are used in commercial ap-
plications, there are still challenges to solve to enhance their usability and per-
sistence in underwater operations. One of the most significant hindrances to their
use is the need for an increased ability to execute long-time operations without
surfacing. More specifically, one of the main challenges left to solve is accurate
underwater navigation.

Accurate underwater navigation poses a challenge due to the limitations of
electromagnetic wave propagation in an underwater environment. As a result of
the limitations, the global navigation satellite system (GNSS) is unavailable in
underwater applications [9]. GNSS provides global position measurements, and
without it, accurate navigation either needs expensive inertial sensors or an ex-
ternal position system, such as acoustic beacons for localization, that is expensive
to install and restricts the operating area. However, a promising solution and a
current research topic is simultaneous localization and mapping (SLAM).

SLAM has significantly impacted mobile robotics, improving the localization
and mapping of unknown environments, making a large leap forward in their
autonomous capabilities [11]. SLAM combines inertial navigation with the per-
ception of the local environment to build a global representation of the envir-
onment and increase navigation and localization accuracy. It has primarily been
applied to land and air vehicles, where cameras and/or lidars are typically used
for perceiving the environment [12–14]. SLAM has also been utilized in several
different underwater applications [15]. However, without the true position of the
AUV and true maps of the seabed, or in other terms, a lack of ground truth, it is
difficult to evaluate the performance of the different underwater SLAM methods.
In addition, using a camera underwater is problematic because of the turbidity
in the water and the lack of light at greater depths, significantly reducing sight,
making it harder to utilize the same methods under water as above water [16].

Sonar is, for many purposes, the "eyes" of underwater robotics and uses acous-
tics to sense the robot’s surroundings. A sonar transmits acoustic waves and "senses"
the echoes reflected to give a perception of the environment. A great advantage of
sonars compared to cameras is that it is not affected by turbidity and light condi-
tions, making them an excellent alternative for underwater applications. Because
of this, much of the research focuses on SLAM using sonars to perform long-time
operations [15].
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1.2 Problem formulation

The thesis attempts to investigate and explore the problem of performing under-
water SLAM utilizing a side scan sonar as a whole. In other terms, it puts together
all the pieces that are needed to transform raw data from a side scan sonar into
a map that can actually be used for navigation purposes. This is a large and com-
plex problem with several interconnected moving pieces. Since, to the best of our
knowledge, there is no existing off-the-shelf complete solution on which we can
build on top of, the main goal has thus been to fill this gap and develop a whole
SLAM pipeline that other researchers may improve upon. This "initial" pipeline has
no performance goal regarding real-time performance or accuracy, except that it
should be able to perform loop closures. The secondary goal has been to iterate on
the different parts of the solution as needed to increase computational perform-
ance and accuracy.

1.3 Thesis contributions

This thesis’s main contribution is to build an underwater SLAM pipeline for side
scan sonar and test it on real-world data. Besides this, the thesis advances the
swath processing algorithm developed in [1]. More precisely, that algorithm is
further developed to incorporate pitch and roll corrections to increase the over-
all performance. A novel probabilistic map generation algorithm is presented,
based on the works in [17]. Importantly, the map generation algorithm achieves
a computational performance that is compatible with an online real-time SLAM
pipeline. Furthermore, a novel landmark detector is presented, building on the
landmark detector from [18], tested in [2]. The novel landmark detector uses
intensity thresholding, geometric filtering, landmark classification, and height es-
timation to perform landmark detection. Lastly, the work in [19] is implemented
and adapted to perform probabilistic data association and multimodal inference
for completing the SLAM pipeline.

1.4 Outline

This thesis will present the developed underwater SLAM pipeline utilizing side
scan sonar and will test the pipeline on real-world data. This chapter has in-
troduced the underwater navigation problem, presented the motivation for the
thesis, and, lastly, the thesis contributions. Chapter 2 introduces the sonar and
the concepts used to perceive the underwater environment using acoustic waves.
Chapter 3 presents the foundations of state estimation. Chapter 4 explains how
the sonar measurements are processed in the pipeline. Chapter 5 concerns how
processed sonar measurements can be combined to build 2D cartesian maps of
the seabed, and Chapter 6 presents how landmarks can be found in the maps
generated. Chapter 7 concerns the last part of the SLAM pipeline, mainly the
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Sonar
Chapter 2

Swath processing
Chapter 4

State estimation
Chapter 3

Map generation
Chapter 5

Landmark detection
Chapter 6

SLAM with PDA
Chapter 7

Inertial sensors

Figure 1.1: Flowchart of the different parts of the SLAM pipeline. Inertial sensors
are not treated in this thesis but are needed for the state estimation. The pipeline
output is new state estimates and landmark position estimates.

SLAM algorithm and an algorithm for probabilistic data association. Chapter 8 will
present a review of the SLAM pipeline and discuss its strengths and weaknesses.
In addition, the suggested further work will be put forward. Lastly, the thesis is
concluded in Chapter 9. Figure 1.1 shows a flowchart of the SLAM pipeline and
in which chapters the different parts of the pipeline are presented.



Chapter 2

Sonar

Sonar is a vital sensor for underwater robotics. It utilizes acoustics to "scan" the
seabed, gathering information that can be used for further processing, such as
creating a 2D map of the seabed. This chapter will treat the introductory physics
of underwater acoustic, the sonar, and its measurement principle, and introduce
the side scan sonar used in this thesis. Lastly, the dataset used in this thesis is
presented.

2.1 Acoustic waves

Sonars utilize acoustic waves to obtain an "acoustic scan" of the seabed, and there-
fore acoustic waves and their properties must be examined to understand the
sonar characteristics. Waves are, in their general physical form, propagating dy-
namical disturbances of one or more quantities and can be described by the two-
way wave equation, stemming from the work of J. d’Alembert [20]

∂ 2u
∂ t2

= k2(
∂ 2u
∂ x2

1

+
∂ 2u
∂ x2

2

+ . . .+
∂ 2u
∂ x2

n
) (2.1)

where u = u(x1, x2, . . . , xn; t) describes scalar functions of time and space, and k
is a real coefficient. For acoustic waves, the dynamical disturbance is a pressure
wave propagating through the water column and can be described by the acoustic
wave equation [21]

∇2φ −
1
c2

∂ 2φ

∂ t2
= S f (t), (2.2)

where c is the phase speed of the acoustic wave, S = S(x , y, z) is the source
strength of the acoustic wave, f (t) is the time signature of the acoustic wave.
φ = φ(x , y, z; t) is defined as the velocity potential given by

û= −∇φ, (2.3)

where û is the particle velocity vector. It is important to note that the particle
velocity is not the same and is not necessarily related to the phase speed c.
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Chapter 2: Sonar 6

Figure 2.1: Figure showing a visualization of the intensity loss from an acoustic
point source with intensity I0, following the inverse square root law. Figure from
[1], used with permission from the author.

The general description of an acoustic wave is given by (2.2), and depending
on the wave type, different solutions of the wave equation can be found. In addi-
tion to the wave equation that describes the physics of the acoustic wave, we need
to examine three important phenomena for underwater acoustics to understand
the sonar’s measuring principle and characteristics.

Firstly, as acoustic waves propagate the water collum, they experience trans-
mission loss stemming from various sources, where the main one is acoustic in-
tensity loss due to the geometrical spreading of the acoustic wave [21]. An acous-
tic wave stemming from an omnidirectional point source will spread uniformly in
all directions, giving a spherical spreading and intensity loss. Assuming a refer-
ence range of 1 m from the source with a reference intensity of I0, the intensity at
range R is given by

I(R) =
I0

R2
, (2.4)

also known as the inverse square root law. A visualization of the acoustic intens-
ity loss is shown in Figure 2.1. In addition to acoustic intensity loss, scattering
by inhomogeneities in the propagation path and frequency-dependent absorption
caused by viscosity, heat conductivity, and relaxation effects attenuate the acoustic
wave, thus contributing to transmission loss.

Secondly, a critical phenomenon experienced by acoustic waves is refraction
and reflection at the boundary between two different mediums, also called an in-
terface [22]. An example of such an interface can be the boundary between two
water layers with different sound speeds, where the sea’s sound speed will vary
with parameters such as water temperature, water salinity, and whether it con-
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tains heterogeneities (e.g., bubbles or suspended sediments). At such interfaces,
acoustic waves will follow Snell-Descartes’ laws of reflection and refraction at the
interface. Examining an acoustic wave in 2D, it follows from Snells’s law that the
reflection is given by

θi = θr , (2.5)

and that the refraction is given by

ci

sinθi
=

ct

sinθt
, (2.6)

where θi is the angle of incidence, ci the speed of sound of the incoming wave, θr is
the angle of reflection, θt the angle of the refracted wave and ct the speed of sound
of the refracted wave. This is shown in Figure 2.2a. Because of the phenomenon
of refraction, an acoustic wave can experience bending as it traverses through
the water collum [22]. However, since the distances measured by the sonar in
this thesis are relatively short, an assumption of a constant sound speed is made,
hence we assume no bending of the acoustic waves.

Lastly, for rough surfaces, such as the seabed, scattering of the acoustic wave
occurs, in addition to refraction and reflection [21]. Because of the rough surface,
the wave is not coherently reflected as for a planar interface, but rather a part of
the acoustic wave is scattered in all directions. Figure 2.2b shows an example of
scattering of an acoustic wave on a rough surface. The part of the acoustic wave
scattered in the direction of the acoustic source is named back scatterer, and the
part scattered away from the source is named forward scatter.

Further, the scattered intensity depends on several parameters, such as the
surface’s roughness and the incidence angle, where for example, a lower incident
angle on the surface increases the backscattered intensity. The backscattering of
the acoustic wave is one of the main principles sonars use to create an "acoustic
scan" of the seabed.

2.2 SONAR - SOund Navigation And Ranging

SONAR, which stands for "Sound Navigation and Ranging," is a sensor specifically
designed for navigation and range measurement. It utilizes the backscattering of
acoustic waves, or sound, on the seabed to generate an "acoustic scan" of the un-
derwater environment. The fundamental principle of sonar involves transmitting
an acoustic wave from a sonar transducer and subsequently measuring the intens-
ity of the portion of the acoustic wave scattered by the surrounding objects. This
measurement process forms the basis of the sonar’s capability to gather informa-
tion about the underwater surroundings.

Sonar systems where the transmitter and receiver are located in different po-
sitions are called bistatic and, depending on the receiver’s position relative to the
transmitter, can measure waves scattered in all directions [21]. Monostatic son-
ars have the transmitter and receiver in the same position and can only meas-
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Medium 1

Medium 2

θi θr

θt

(a) Reflection and refraction of a 2D acoustic wave at an interface, following Snell’s law.
The figure is remade from [23].

(b) Scattering and reflection of an acoustic wave on a rough surface. The grey arrows
show how the scattering of the acoustic wave is happening in all directions.

Figure 2.2: Refraction and reflection together with reflection and scattering of
an acoustic wave.
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Figure 2.3: A illustrative figure showing an AUV with a side-scan sonar. Figure
from [1], used with permission from the author.

ure backscattering. Monostatic sonars are the most common type and are used
throughout this thesis. Hence, bistatic sonars will not be treated further.

Next, a differentiation between continuous and pulsed sonar has to be made,
where the former continuously transmits an acoustic wave, and the latter trans-
mits acoustic waves in pulses [24]. The continuous sonar is typically used for anti-
submarine warfare, and since this is outside the scope of this thesis, continuous
sonars are not treated further.

The sonar used in this thesis is a pulsed monostatic sonar. However, differ-
ent types of pulsed monostatic sonars with different characteristics exist, such as
single-beam, multi-beam, and side-scan sonar. A side-scan sonar mounted on an
AUV is shown in Figure 2.3. Even though the different sonar types have differ-
ent characteristics depending on their intended use, the same basic measurement
principle applies to them all. The sonar characteristics are mainly governed by the
transducer’s design, used for transmitting the acoustic wave and measuring the
backscatter, and govern both the frequency and the direction of the transmitted
and measured acoustic wave.

The sonar transducers are typically made up of piezoelectric ceramics that can
convert electric energy into acoustic pressure (for transmitting acoustic waves)
and visa versa (for measuring the backscattering) [22]. A voltage is applied to
the piezoelectric element to create acoustic waves, making the element stretch
or contract, depending on the polarity of the voltage. The piezoelectric element’s
stretching and contraction generate pressure waves transmitted into the water
surrounding the element to form an acoustic signal [21]. Figure 2.4 shows the
principle of contraction and stretching of a piezoelectrical element.

The nominal frequency, the directivity, and the desired source level of a trans-
ducer are determined by the geometrical shape of the piezoelectric element and
are essential design parameters [21]. The thickness of the transducer determines
the nominal frequency. Transducers are typically driven at their resonance fre-
quency, where half of the resonance frequency wavelength equals the thickness
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Figure 2.4: The figure shows how a piezoelectric ceramic changes shape or
voltage when a voltage or a pressure is applied. Figure from [1], used with per-
mission from the author.

of the transducer. Furthermore, the design of the transducer also governs the dir-
ectivity pattern of the acoustic wave and is an important design parameter adapted
depending on the intended use of the sonar [22].

The directivity pattern of a transducer typically exhibits a main lobe, accom-
panied by sidelobes on either side, which may not be symmetrically distributed
around the main lobe. An illustration of the directivity pattern for a side-scan
sonar is presented in Figure 2.5, demonstrating the presence of both the main
lobe and sidelobes for the two transducers. However, these sidelobes are gener-
ally undesired characteristics in sonar systems as they can introduce anomalies in
the recorded sonar data. Consequently, a common parameterization of the sonar
transducer is the beamwidth of the main lobe, which is quantified by the point at
which the transmitted signal drops by 3dB from its peak amplitude.

The waveform of the acoustic pulse in sonar systems is an integral part of a
system as it represents the "voice" of the system and will, to a great extent, de-
termine the amount and quality of the information in the measured scan [25].
Two important waveforms are the constant waveform (CW) and the linear fre-
quency modulated (LFM) waveform called chirp. The CW consists of a sinusoidal
with a constant frequency, whereas LFM uses a sinusoidal with a frequency that
varies linearly with time. Examples of both waveforms are shown in Figure 2.6.
The advantage of using LFM is that pulse compression can be performed, increas-
ing the range resolution of the sonar. Because of this, the LFM of chirp is common
in modern sonar systems.
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Figure 2.5: An exemplified directivity pattern of side-scan sonar. Each transducer
has a main lobe and two unsymmetrical side lobes.
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Figure 2.6: Example of the continuous waveform and the linear frequency mod-
ulated waveform.
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2.3 Side scan sonar

The side scan sonar consists of transducers with narrow horizontal and wide ver-
tical directivity, pointing perpendicular to the traveling direction [21]. A single-
row side scan sonar consists of two transducers pointing to the port and starboard,
as shown on an AUV in Figure 2.3. The transducer is tilted from the horizontal axis
towards the seabed, creating a swath-like pattern on the seabed because of the
narrow horizontal and wide vertical directivity. Because of this, a side scan sonar
scan is often referred to as a swath. Side scan sonars measure the backscattered
intensity at regular range intervals, where each intensity measurement is referred
ta as a bin.

Multi-row side scan sonar utilizes two or more transducers at each side to de-
termine the incidence angle of the backscattered acoustic wave and hence receive
bathymetric data about the seabed. The multi-row side scan sonar is not used in
this thesis and will not be examined further.

Since it’s not possible to decide the incidence angle of the backscatter on a
single-row side scan sonar, a flat seafloor assumption can be made to approxim-
ate the incidence angle of the echo returns [17, 26–28]. With the flat seafloor
assumption, the geometry of the measurement and important quantities, such as
the ground range and the slant range of the first bottom return, can be found.

Figure 2.7 shows the geometry of the starboard transducer of a side scan sonar
measurement seen in the direction of travel. Here, β is the angle between the
transducer’s y-axis and the acoustic axis, αv is the vertical beamwidth of the trans-
ducer, and ht is the altitude of the transducer. For a point on the seafloor with
height hp, a slant range from the transducer, rs, and a slant angle, βs, we have
that the ground range, rg , is denoted

rg(rs, ht , hp) =
q

r2
s − (ht − hp)2. (2.7)

With the flat seafloor assumption, we assume that all measured points have a
height of zero, reducing (2.7) to rg(rs, ht) =

q

r2
s − h2

t .
Another quantity of interest is the slant range of the first bottom return, r f br ,

given by

r f br =
ht

sin(β + αv
2 )

. (2.8)

This thesis defines the first bottom return as the first backscatter received inside
the transducer beamwidth opening, which does not necessarily coincide with the
measured first bottom return.

2.4 Sonar and navigation data in this thesis

In this thesis, the sonar and navigation data used was acquired in the Trondheim
fjord by AURLab using their vehicle LAUV Fridtjof [29]. Figure 2.8 shows where
in the Trondheim fjord the data was collected, where the origin of the navigation
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Figure 2.7: The geometry of the starboard transducer of a side scan sonar. β is
the angle between the transducer’s y-axis and the acoustic axis, αv is the vertical
beamwidth of the transducer, and ht is the altitude of the transducer. An object
with height hp, slant range rs, and slant angle βs is also displayed.

data is at N63◦24′16.685′′ E10◦24′5.8962′′. The LAUV is equipped with a side
scan sonar, consisting of two DeepVision DualChirp transducers [30] and a Deep-
Vision OSM2 sonar module [29]. The parameter values used when collecting the
data are shown in Table 2.1.

Only parts of the dataset are used in this thesis. The parts used are further
divided into a training and a test dataset of 4890 and 3000 swaths, respectively.
The training dataset is used for testing and tuning the different methods, whereas
the test dataset is only used to test the final parameters on unknown ground.
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Table 2.1: Parameters used by the LAUV when the data used in this thesis was
collected.

Parameter Symbol Value
Frequency 640 kHz
Horizontal mounting angle β 25◦

Horizontal beamwidth αh 0.5◦

Vertical beamwidth αv 60◦

Sonar range rsmax
30 m

Slant range resolution δs 0.03 m
Sound speed c 1500 ms−1

Figure 2.8: Map showing where in the Trondheim fjord the data used in this
thesis was collected. The zoomed-in path shows the path the AUV took during
the data collection. The origin of the data is at N63◦24′16.685′′ E10◦24′5.8962′′.
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State estimation

This chapter will present the state estimation part of the SLAM pipeline in Fig-
ure 1.1 and relevant background on three-dimensional geometry. State estimation
is an integral part of robotics and is used for estimating the location and orient-
ation of the robots. General knowledge of three-dimensional geometry is needed
to perform state estimation for AUVs. Therefore, the theoretical foundations of
poses and rotations, encompassing various parameterizations of rotations, as well
as key properties associated with rotations and poses, are presented. Furthermore,
three state estimation filters will be introduced to address the estimation of these
states.

State estimation filters come in many flavors, but the presented filters here
will be the Bayesian filter, the Kalman filter for linear systems, and the extended
Kalman filter for non-linear systems. There are also many other versions of the
Kalman filter, such as the error state Kalman filter, which is more suitable for
inertial navigation than the extended Kalman filter [31]. However, the data used
in this thesis was gathered with a LAUV [29] that implements an extended Kalman
filter for state estimation [32]. Because of this and since state estimation using
filters is not the main topic of this thesis, only the Bayesian filter, the Kalman
filter, and the extended Kalman filter are presented. Lastly, the state interpolation
implemented by the author in this thesis is presented.

3.1 Three-dimensional geometry

To perform state estimation in robotics, we need knowledge about three-dimensional
geometry, especially rotations, and the different ways of representing them. This
thesis presents a condensed summary with only selected themes in three-dimensional
geometry, and the reader is referred to [33] for a more thorough explanation.

Robots that can move freely, both in terms of translation and rotation, have,
mathematically speaking, six degrees of freedom. The combination of translation
and rotation is also known as the pose of the robot [33], and we can use the
concept of reference frames to represent them.

15



Chapter 3: State estimation 16

x

y

z
x

y

z

x

y
z

COG

Figure 3.1: An AUV with a NED world frame, a body frame centered in the center
of gravity (COG), and the starboard transducer frame shown. Note that the COG
is placed strangely far back on the AUV for a clear presentation. The red lines
show the relationship between the different frames.

A reference frame describes a reference coordinate system, and we use co-
ordinate frame transformations to describe the relative transformation and orient-
ation between two reference frames. For example, we typically define an inertial
frame, sometimes referred to as a world frame, that describes the reference frame
of the "world" for the robot. In addition, a body frame that presents the robot’s
reference frame and potentially several sensor frames are also defined. Using a
coordinate transformation, we can describe the relationship between the differ-
ent reference frames and transform poses and vectors represented relative to one
frame to be represented relative to another reference frame.

This thesis uses the north-east-down (NED) coordinate system, a geographic
coordinate system defined relative to the earth’s reference ellipsoid [34]. In the
world frame, the x-axis points north, the y-axis east, and the z-axis straight down.
The body frame is typically centered in the center of gravity with the x-axis point-
ing forward on the AUV, the y-axis to starboard, and the z-axis straight down. This
is shown in Figure 3.1 together with a sensor frame. It is important to note that
a NED-coordinate system uses a tangent plane to the earth and will only be valid
close to its origin.

Rotations have several different parameterizations, but this thesis will cover
rotation matrices, Euler angles, and quaternions. All parametrizations seek to de-
scribe the three degrees of freedom nature of rotations but do so with different
advantages and disadvantages. Rotation matrices are the most general represent-
ation and are defined as the dot product between the basis vectors of two frames
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[33]. Given two frames with origin in the same point and their basis vectors,
F1 = [b1,1, b1,2, b1,3] and F2 = [b2,1, b2,2, b2,3], the rotation matrix describing
the rotation from frame F1 to F2 is

R2
1 =F1 ·F T

2 (3.1)

We can use this relation to describe the rotation of vectors by v2 = R2
1v1. It is

important to note that the notation used in this thesis is vt o = Rt o
f r om

v f r om .
Further, some restrictions are imposed for a rotation matrix to be valid. First,

its determinant must equal one. Secondly, RRT = 1. This again leads to the rela-
tion R1

2 = (R
2
1)

T , which makes finding the inverse rotation very simple. The set
of all valid three-dimensional rotation matrices belongs to the special orthogonal
group SO(3), formally given as

SO(3) = {R ∈ R3x3 | RRT = 1, detR = 1}. (3.2)

Principal rotations are rotations around one axis and are given by only one
angle [33]. Let the rotation angle around the x-axis be φ, the y-axis θ , and the
z-axis beψ. The principal rotations around the axis in the NED-coordinate system
are [34]

Rx (φ) =





1 0 0
0 cφ −sφ
0 sφ cφ



 (3.3)

Ry(θ ) =





cθ 0 sθ
0 1 0
−sθ 0 cθ



 (3.4)

Rz(ψ) =





cψ −sψ 0
sψ cψ 0
0 0 1



 , (3.5)

where s(·) and c(·) is abbreviations for sin(·) and cos(·).
Euler angles combine three principal rotations to form a three degree of free-

dom rotation [33]. The first rotation is a rotation around the original axis. The two
next rotations, however, will not be around the original axes but rather around
intermediate axes. Depending on the order of the rotations, the different axes are
rotated in different orders. This thesis uses a Z-X-Y sequence, giving the following
rotation matrix [34]

Rz,y,x (ψ,θ ,φ) = Rz(ψ)Ry(θ )Rx (φ) =




cψcθ −sψcφ + cψsθ sφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθ sψ −cψsφ + sθ sψcφ
−sθ cθ sφ cθ cφ



 . (3.6)

When φ, θ , and ψ are used to denote the roll, pitch, and yaw of a robot in
the NED-coordinate system, the rotation from world to the body frame is Rb

w =
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Rz,y,x (ψ,θ ,φ). An important drawback of using Euler angles is that all combin-
ations of principal rotations have singularities, meaning that the orientation at
the singularity is undefined. The sequence used in this thesis has a singularity at
θ = ±π2 . This is chosen because AUVs typically won’t have an orientation close to
the singularity.

Another parametrization of rotations, using four parameters and without sin-
gularities, is the quaternion representation [33]. The quaternion can be found the
following way. First, let us denote the axis of rotation by a = [a1, a2, a3]T and
restrict a to be a unit vector. Next, let the angle of rotation be φ. The rotation
matrix for the axis and angle of rotation is given by

R(φ, a) = cosφ1+ (1− cosφ)aaT − sinφax , (3.7)

where ax is the skew matrix of a. The quaternion is then given by

q =

�

η

ε

�

=







η

ε1
ε2
ε3






, (3.8)

where

η= cos
φ

2

ε= a sin
φ

2
=





a1 sin φ2
a2 sin φ2
a3 sin φ2



=





ε1
ε2
ε3



 .
(3.9)

The quaternion must be unit-length, q T q = 1, to be valid.
As shown earlier, the special orthogonal group SO(3) contains all valid rota-

tion matrices. Poses, i.e., rotations and translations, are elements of the special
Euclidean group SE(3) [33] and are given by

SE(3) =

�

T =

�

R t
0T 1

�

∈ R4x4 | R ∈ SO(3), t ∈ R3

�

(3.10)

where T is the transformation matrix, R the rotation matrix and t is the trans-
lation vector. The transformation matrix has nice properties in terms of present-
ing transformation between frames. If we use augemented coordinate vectors v =
[v1, v2, v3, 1]T , the transformation between two frames can be calculated by

v2 = T2
1 v1, (3.11)

effectively performing the calculation v2 = R2
1v1+t1, where the translation vector,

t1, is given in the coordinates of the reference frame of v1 and t1, v1 and v2 is
ordinary coordinate vectors.
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SO(3) and SE(3) are not vector spaces but can be shown to be matrix Lie
groups [33]. A matrix Lie group is a differential manifold, and operations on a
differential manifold differ from those in vector spaces. However, associated with
each Lie matrix group is a Lie algebra, consisting of a vector space where we can
use ordinary operations from other vector spaces.

Matrix Lie groups are a great tool for robotics, especially in the context of
SLAM, where it is used for inference. However, since the inner workings of the
inference part of SLAM are outside the scope of this thesis, matrix Lie groups are
not treated any further, and the reader may refer to [35] for a short introduction
and to [33] for a more thorough presentation.

As the maps used in this thesis are 2D, we are also interested in two-dimensional
poses. They make out the special Euclidian group SE(2), which is defined by

SE(3) =

�

T =

�

R t
0T 1

�

∈ R3x3 | R ∈ SO(2), t ∈ R2

�

(3.12)

where R is the rotation matrix and t the translation vector [35]. If we define the
rotation by the yaw angle ψ, the rotation matrix is given by

R =

�

cψ −sψ
sψ cψ

�

, (3.13)

where s(·) and c(·) are abbreviations for sin(·) and cos(·).

3.2 Bayes filter

In the context of state estimation, the goal is to estimate the state of a stochastic
dynamic system from a series of noisy measurements, also described as the filter-
ing problem [31]. Furthermore, the state of a system is defined as all information
needed to describe a system fully. A state vector, x , containing all the states, is of-
ten used to denote the full state of a system. For robots, the state vector typically
consists of its pose and velocities.

The filtering problem is formulated in terms of two models [31]. The first
concerns how the state evolves in time and is called the kinematic prior. Let xk−1
be the state of the system at t = k − 1. The state transition from t = k − 1 to
t = k is the kinematic prior and is specified as p(xk |xk−1). The second model is
known as the measurement model and concerns how the measurements observed
are related to the state vector and is specified by p(zk |xk).

The solution to the filtering problem in the Bayesian approach is considered
to be the posterior distribution p(xk |z1:k) [31]. The cyclic filtering consists of
a prediction and an update step that is solved iterable to find the solution. The
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prediction step is given by

p(xk |z1:k−1) =

∫

p(xk , xk−1|z1:k−1)dxk−1

=

∫

p(xk |xk−1)p(xk−1|z1:k−1)dxk−1,

(3.14)

and the update step follows from Bayes’s rule and is given by

p(xk |z1:k) =
p(zk |xk)p(xk |z1:k−1)

p(zk |z1:k−1)
∝ p(zk |xk)p(xk |z1:k−1). (3.15)

The prediction step and update step are known as the Bayes filter and are the
foundation for the Kalman filter and extended Kalman filter.

3.3 Kalman filter

It is not expected to always find closed-form solutions to the Bayes filter. However,
when the system at hand is linear and has a Gaussian noise model, a closed-form
solution can be found in terms of the Kalman filter [31]. The kinematic prior, the
measurement model, and the prior density in a Kalman filter are given by

p(xk |xk−1) =N (F xk−1,Q)

p(zk |xk) =N (Hxk ,R)

p(x0) =N (x̂0, P0),
(3.16)

where F is the state transition matrix and H is the measurement matrix. Q is the
kinematic prior noise, and R is the measurement noise, where both are assumed to
be symmetric positive definite matrices. x̂0 and P0 are the initial state and initial
covariance of the system, respectively.

Only the closed-form solution of the Kalman filter will be stated here, and the
reader is referred to [31] for the proof. The prediction step of the Kalman filter is

p(xk |z1:k−1) =N (x̂k|k−1, Pk|k−1)

=N (F xk−1, FPk−1F T +Q),
(3.17)

and the update step is

p(xk |z1:k)∝N (x̂k , Pk)

=N (x̂k|k−1 +Wk(zk −Hx̂k|k−1), (I −Wk H)Pk|k−1),
(3.18)

where Wk is the Kalman gain at t = k , given by

Wk = Pk|k−1H T (HPk|k−1H T +R)−1. (3.19)

The Kalman filter is an optimal solution to the filtering problem but only ap-
plies to linear systems with Gaussian noise models. Other types of Kalman filters,
such as the extended Kalman filter, are needed for non-linear systems.
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3.4 Extended Kalman filter

The extended Kalman filter (EKF) builds on top of the Kalman filter and can be
used for state estimation of a non-linear system with Gaussian noise models [31].
The central concept behind the EKF is to linearize the system around the most
recent estimate for the prediction step and the most recent prediction for the
update step to be able to use the Kalman filter equations.

Typically, the kinematics prior, measurement model, and the prior density for
the EKF are given by

p(xk |xk−1) =N ( f (xk−1),Q)

p(zk |xk) =N (h(xk),R)

p(x0) =N (x̂0, P0),
(3.20)

where f is the non-linear state transition function and h is the non-linear meas-
urement function [31].

To linearize f and h, error variables are first introduced as

∆xk−1 = xk−1 − x̂k−1

∆xk = xk − x̂k|k−1.
(3.21)

Then, Taylor expansions in terms of the error variables are performed

f (xk−1)≈ f (x̂k−1) + F(x̂k−1)∆xk−1

h(xk)≈ h(x̂k|k−1) +H(x̂k|k−1)∆xk .
(3.22)

F and H are the Jacobians of f and h with respect to xk−1 and xk and are given
by

F(x̂k−1) =
∂

∂ xk−1
f (xk−1)

�

�

�

�

xk−1=x̂k−1

H(x̂k|k−1) =
∂

∂ xk
h(xk)

�

�

�

�

xk=x̂k|k−1

.

(3.23)

Using the same equations as for the Kalman filter, the prediction step is then
given as

p(xk |z1:k−1) =N ( f (xk−1), FPk−1F T +Q), (3.24)

where F now is the jacobian of f . Furthermore, the update step is

p(xk |z1:k)∝N (x̂k|k−1 +Wk(zk − h(x̂k|k−1)), (I −Wk H)Pk|k−1), (3.25)

where H is the jacobian of h. Wk is the Kalman gain in (3.19) calculated with F
and H as found in (3.23).

As mentioned in Section 2.4, the data used in this thesis is collected with a
LAUV [29], where the LAUV implements an EKF as its state estimation filter [32].
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The EKF implemented is a standard EKF and uses measurements from global pos-
itioning system (GPS), long baseline (LBL) acoustic positioning, inertial measure-
ment unit (IMU), attitude, heading and reference system (AHRS), and Doppler
velocity logger (DVL) to estimate the state of the LAUV.

The GPS is only available when the AUV is surfaced, and the LBL acoustic po-
sitioning needs two baseline transponders fixed at known locations, where both
are able to provide global position measurements. However, staying on the sur-
face or relying on external transponders is not always an option, and in the case
of no global position measurements, the filter will drift over time. This is the
main reason for performing SLAM: correcting drift by reobserving landmarks and
achieving accurate navigation over longer timespans.

3.5 State interpolation

The state estimation filters presented above are discrete-time state estimation fil-
ters, meaning they estimate the state at discrete timesteps and are run at a con-
stant rate. But what if the state at the time between two timesteps is needed?
This could be the case for sensor measurements, such as sonar measurements,
that aren’t synchronized with the discrete-time state estimation and where the
pose at sonar measurement time is needed for further processing. Different solu-
tions exist, such as continuous-time estimation or interpolating discrete-time state
estimates.

In [33], continuous-time estimation utilizing Gaussian processes are outlined,
providing means to query the filter for the state at any time. The filtering problem
is formulated as a Gaussian process and then solved at the time of measurements
as an optimization problem. With the continuous-time formulation, Gaussian pro-
cess interpolation can find the state at any given time and is not restricted to
discrete timesteps.

Another solution to unsynchronised measurements is to use a polynomial in-
terpolation scheme to interpolate the state estimates obtained from the discrete-
time state estimation. One solution would have been to use cubic spline inter-
polation to interpolate the pose [36]. Since the cubic spline is continuous in its
second-order derivative, this would yield a continuous and smooth acceleration.
However, for simplicity, a linear interpolation scheme was implemented for this
thesis.

The linear interpolation scheme used in this thesis to find the state x at time
t is given by

x = xn−1 +
t − tn−1

tn − tn−1
xn, (3.26)

where xn−1 is the state at time tn−1, xn is the state at tn, and t is restricted to
tn−1 ≤ t ≤ tn. This simple linear interpolation scheme gives a piecewise constant
velocity but a non-defined acceleration. An example of linear interpolation in the
xy-plane is shown in Figure 3.2, where the figure shows interpolation of state
estimates with long timesteps. The state estimation during the data collection was
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x

y

Figure 3.2: The figure shows how linear interpolation is performed on a trajectory
in the xy-plane. The blue line is the true trajectory, and the blue dots are the
state estimates. The red trajectory shows how linear interpolation leads to a non-
smooth trajectory, where the red dots are the interpolated positions.

performed at 20 Hz, and the AUV moved slowly during the course of the collection.
Hence, the errors from the linear interpolation will be much smaller than those
shown in the figure.

The non-smooth trajectory is not optimal and should be considered to be re-
vised in further work, for example, implementing a cubic spline interpolation
method. The linear interpolation scheme is used to interpolate the position of
the AUV and the altitude between available state estimates. However, due to ro-
tations not being a vector field, as mentioned in Section 3.1, interpolation of the
rotation is handled differently.

To interpolate the rotation of the AUV, spherical linear interpolation of qua-
ternions, or slerp in shorthand, is used [37]. Slerp is also a linear interpolation
scheme, but the interpolation is performed on the sphere of quaternions. The in-
terpolated quaternion q at time t is given by

q = qn−1(q
−1
n−1qn)

u, (3.27)

where qn−1 is the attitude at time tn−1, qn is the attitude at tn, and u, similar to
the linear interpolation above, are found by

u=
t − tn−1

tn − tn−1
. (3.28)
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The slerp interpolation scheme is linear, yielding a piecewise constant angular
velocity and a non-defined angular acceleration, and should be considered to be
improved in further work.

In addition to the state of the AUV, the covariance of the states from the
discrete-time state estimation has to be interpolated. The only data available in
the dataset is the variance of the states and no covariances. This is not optimal
since the covariance information is omitted, but it makes the interpolation simpler
as the states become independent.

The interpolation of the variance is done in the same manner as with the linear
state interpolation and is given by

σ2 = σ2
n−1 +

t − tn−1

tn − tn−1
σ2

n, (3.29)

where σ2
n−1 is the variance at time tn−1, σ2

n is the state at tn, and we must have
tn−1 ≤ t ≤ tn. This is done for all states, where the resulting variances are put
together in a diagonal matrix.
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Swath processing

Before a sonar measurement can generate a cartesian map, unwanted artifacts
must be removed, and equations for mapping the sonar measurement to the co-
ordinates on the seabed from which it originates need to be derived. This chapter
will present the three steps used in this thesis to correct the sonar measurements
and derive the abovementioned equations. These three steps for processing the
sonar measurements build on the methods presented in [1], but an additional roll
and pitch correction is derived and added. Throughout the chapter, the methods
are tested on the real-world training dataset.

4.1 Pitch and roll correction

An assumption of zero roll and pitch is sometimes made for AUVs mapping the
seafloor, as this is simple and often a valid assumption [17, 26]. However, this
thesis derives swath processing steps that consider a pitch and roll different from
zero for increased accuracy. This section will derive the equations for pitch and
roll correction, also considering a sensor offset between the sonar transducers and
the body frame of the AUV. In addition, equations for finding the world coordinate
of each bin are derived.

Firstly, we find the transformation between the body frame and the sonar
transducers. We assume that the acoustic axis of both transducers lay in a plane
parallel to the yz-plane of the AUVs body frame and that the transducers are moun-
ted symmetrically around the xz-plane of the body frame. First, looking at the
starboard transducer, the transformation between the body frame and the star-
board transducer, such that the acoustic axis lies in the xz-plane of the transducer
frame, is

T ss t b

b
=







0 1 0 xs
−1 0 0 ys
0 0 1 zs
0 0 0 1






. (4.1)

25
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For the port transducer, the same transformation is

T
spor t

b
=







0 −1 0 xs
1 0 0 −ys
0 0 1 zs
0 0 0 1






. (4.2)

In these transformations, xss t b
= [xs, ys, zs]T is defined as the sonar offset, the

translation between the origo of the body frame and the starboard transducer.
Since the transducers are assumed to be mounted symmetrically around the xz-
plane of the AUV, the translation between the origo of the body frame and the port
transducer is xspor t

= [xs,−ys, zs]T .
Secondly, the altitude of the transducers, ht , has to be corrected for pitch and

roll. The altitude of the AUV is typically measured in the direction of the body’s
z-axis, as this is typical for DVLs. Therefore, the measured altitude, hm, should
be transformed from the body frame to world coordinates, and the z-coordinate
extracted. Using the transformation defined in (3.6), here denoted as Rw

b
, the true

altitude of the AUV is given by

h= (Rw
b zh)

T e3 = hm cos(φ) cos(θ ), (4.3)

where zh = [0,0, hm]T is the altitude measurement vector, e3 ≡ [0, 0,1]T , φ is
the roll angle and θ the pitch of the AUV. Using the sensor offset xs , the height of
the transducers can then be found by

htst b
= hm − (Rw

b xss t b
)T e3 = (R

w
b (zh − xss t b

))T e3, (4.4)

and
htpor t

= (Rw
b (zh − xspor t

))T e3. (4.5)

Thirdly, a change in roll angle will affect the ground range rg and the range
of the first bottom return r f br . Equations for calculating these quantities under
the influence of roll have to be derived. The roll angles are assumed to be small,
making the derived ranges both positive and finite. The situation is shown for the
starboard transducer in Figure 4.1, where Figure 4.1a shows the situation with
zero roll. Figure 4.1b shows the situation with a non-zero roll, and it is evident
from the figure that the ground range of the acoustic axis is shorter than in the
situation with zero roll. If we use the corrected transducer altitude in (4.4) and
(4.5), the calculation of the ground range in (2.7) is still valid. However, (2.8) has
to be corrected for roll. Looking at Figure 4.1b and making geometrical consider-
ations, the corrected slant range of the first bottom return for port and starboard
can be written as

r f brst b
=

htst b

sin(φ + β + αv
2 )

, (4.6)

and

r f brpor t
=

htpor t

sin(−φ + β + αv
2 )

, (4.7)
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where φ is the roll angle of the AUV, β is the mounting angle from the body y-axis
of the sonar, and αv is the vertical beamwidth of the sonar.

Lastly, we want to find the world coordinates on the seafloor of each of the
bins in the sonar. To do this, we define a reference frame, ps ∈ SE(3), for the
starboard and port transducer, such that we only need the pose of the AUV and
the ground range of each bin to find its world coordinates on the seabed.

The frame, ps, is found by first projecting the pose of the transducer in the
direction of the z-axis of the world frame in the xz-plane of the sonar. Secondly, a
projection in the direction of the sonar’s z-axis in the sonar’s yz-plane is performed.
This is shown in Figure 4.1 and Figure 4.2, respectivly. In addition, the frame ps
is transformed to have zero roll and pitch. This way, the ground range of a bin
will coincide with the x-axis of the ps frame. Using geometrical considerations
when looking at Figure 4.2b, it is evident that the area on the seabed covered by
the sonar beam changes with the pitch of the AUV. However, since both the pitch
angle and the vertical beamwidth, αv , are assumed to be small, we approximate
this area to be constant with changes in pitch. The transformation psst b

to the
starboard transducer is

T s
pss t b

=

�

R(θ)R(φ) 0
0T 1

�







1 0 0 0
0 1 0 ht tan(θ )
0 0 1 −ht
0 0 0 1






, (4.8)

and for the port, we have

T s
pspor t

=

�

R(θ)R(φ) 0
0T 1

�







1 0 0 0
0 1 0 −ht tan(θ )
0 0 1 −ht
0 0 0 1






. (4.9)

Then, the world coordinate of a bin from the starboard transducer, given its ground
range, rg , is

bw = T w
b T b

ss t b
T ss t b

pss t b
zrg

, (4.10)

where zrg
= [rg , 0, 0, 1]T , and T b

ss t b
= (T ss t b

b
)−1.

4.2 Blind zone removal

The sonar starts to record the backscatter as soon as the sonar pulse is transmitted.
Hence, the first bins will only contain background noise, as some time will be
needed for the acoustic pulse to travel to the seabed and for the backscatter to
travel back to the transducer. These bins are often referred to as the blind zone
and are characterized by low intensity. Since the bins only contain background
noise, we want to remove them before further processing the swath.
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(a) Starboard transducer and AUV with zero roll.
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(b) Starboard transducer and AUV with non-zero roll.

Figure 4.1: The figure shows the sonar’s measurement geometry with a zero and
non-zero roll angle of the AUV. Note how the ground range is shorter in Fig-
ure 4.1b.



Chapter 4: Swath processing 29

x

z

h ht

αh

ps
zy

(a) Side scan sonar mounted on AUV with zero pitch.

x

z

h ht

αh

θ

ps
zy

(b) Side scan sonar mounted on AUV with non-zero pitch.

Figure 4.2: The figure shows the sonar’s measurement geometry with a zero and
non-zero pitch angle of the AUV. Note how the frame ps changes position with the
pitch angle θ .
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The blind zone starts in the first measured bin and ends with the first bottom
return. It is, therefore, typical to remove the blind zone by detecting the first
bottom return and removing the bins up to this point.

In [38], two different methods are proposed for finding the first bottom return,
both relying on the sonar measurement itself. In the first method, a cubic spline
regression is applied to the log of the measured intensity to estimate the nadir
center. The first bottom return is found as the first bin above a tuning threshold.
The second method utilizes a moving average filter and a tuning threshold similar
to the first method.

In [17], instead of relying on the data itself, a pure geometrical blind zone
removal algorithm is presented. The method presented calculates the range of
the first bottom return, similar to (2.8). However, instead of the slant range of
the first bottom return, the ground range of the first bottom return is used, as the
blind zone removal is performed on slant range corrected swaths. Such blind zone
removal, based on purely geometrical considerations, has the advantage of being
robust against errors and anomalies in the sonar data and is therefore used in this
thesis.

In this thesis, the blind zone removal algorithm presented in [17] is adopted
for swaths that are not slant range corrected, and pitch and roll correction is im-
plemented. First, (4.6) and (4.7) are used to calculate the slant range of the first
bottom returns for port and starboard. Then, bins with a slant range shorter than
r f brst b

in the starboard part of the swath and r f brpor t
in the port part of the swath

are removed. This is performed by simply changing out the intensity values in the
bins with an invalid value.

The results of both roll and pitch corrected and non-corrected blind zone re-
moval of the 1000 first swaths in the training dataset are shown in Figure 4.3. The
actual removal is not performed; rather, the area to be removed is displayed with
the red and green lines in the plot. In addition, two light blue colored lines are
shown in the image. These lines represent the bins where we expect the first backs-
catter to appear. These bins are found by calculating the bin corresponding to a
slant range that equals the altitude of the AUV. As the figure shows, the calculation
of the first possible backscatter does not match the first measured backscatter.

The reason for the discrepancy between the calculated first possible backscat-
ter and the measured first backscatter return in Figure 4.3 was sadly not possible
to find. First, the calculation was thoroughly tested by contacting the LAUV manu-
facturer to verify the sonar offsets and mounting angles. Secondly, the sound speed
was investigated. The LAUV is not measuring the sound speed, but the gathered
data was used to estimate it. It was found to be approximately 1 % below the
constant sound speed used by the sonar of 1500 m s−1. If the sound speed were
the reason for the discrepancy, the actual sound speed would need to be higher
than the constant sound speed used by the sonar. Since that was not the case, the
sound speed is unlikely to be the reason for the discrepancy. Lastly, the sonar man-
ufacturer was contacted, but unfortunately, they could not point out any plausible
reason for the results.
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Figure 4.3: The figure shows the part of the sonar image to be removed by the
blind zone removal, both with and without pitch and roll correction. The sonar
image is constructed from the 1000 first swaths of the training dataset. In addition
to the blind zone removal, the light blue line represents the bin where we expect
the first backscatter to appear. This is done by finding the bin corresponding to a
slant range that equals the altitude of the AUV.

The natural next step would have been to test the setup in a pool to verify the
results in a controlled environment. However, as AURLab collected the data and
the author has no knowledge of how to operate the LAUV, this step would demand
a lot of time and the possibility that no solution would be found. Therefore, this
was not performed.

As the error appears to be constant or close to constant, a solution could have
been to correct the blind zone removal by a constant. However, as we don’t know
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the reason for the error, the solution would have needed to be verified for different
altitudes. Therefore, further investigation of the problem is left as further work,
and the method is kept as presented.

Investigating the blind-zone removal with and without pitch and roll correc-
tion in Figure 4.3, we find the pitch and roll correction to give the best results.
Examining the sonar image at the light blue line in the left portion of the zoomed-
in image, we see a darker line appearing after the first backscatter return. The
hypothesis is that this darker line stems from a directivity that lies between the
side lobe and the main lobe of the sonar, something also suggested by the sonar
manufacturer [30]. This is not evident in the right part of the image, but this
is most likely due to a small roll angle of the AUV stemming from the spinning
propeller’s torsion forces.

Again examining the left portion of the image, the bright bins on the left side
of the darker strip most likely stem from the main lobe. If a right translation of
the starboard blind zones were to be performed, we see that the corrected blind
zone is a better fit for the pattern appearing. This shows that the pitch and roll
corrected blind zone is likely to better represent the actual first bottom return than
the non-corrected one. Therefore, pitch and roll correction is used in the rest of
this thesis.

4.3 Intensity normalization

Intensity attenuation of the acoustic wave is an unwanted artifact in the measured
signal that we want to counteract with intensity normalization. Intensity normal-
ization can be performed on both a sonar image and an individual swath, where
the latter is performed in this thesis. The framework presented next is for general
sonar images but applies to individual swaths by considering one swath as a sonar
image with a height of one. Some of the methods presented would not work, as
they are considering pixels from several swaths simultaneously, but some are also
possible to adapt to work on a single swath.

In [39], it is proposed that the sonar image I(x , y) can be decomposed into a
reflectance map R(x , y) and an illumination map L(x , y), resulting in I(x , y) =
R(x , y)∗L(x , y), where the operator ∗ denotes element-wise multiplication. Since
the information about the seabed lies in the reflectance map, we want to find it
by estimating the illumination map and combining it with the original image.
Thus for some estimated illuminance map L̂(x , y), the intensity normalized sonar
image can be found by

I ′(x , y) =
I(x , y)

L̂(x , y)
. (4.11)

In [39], it is proposed to estimate the illuminance map by L̂(x , y) = I(x , y)⊗
F(x , y) + a, where F is a smoothing filter function and a is a constant. A mean
filter and a bilateral filter are proposed as the filtering function. This was adapted
to work on individual swaths in this thesis and briefly tested. However, the initial
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results did not improve compared to the chosen intensity normalization method,
and further testing was halted. The work in [17] proposed to model the seabed as
a Lambertian surface and use the resulting equation to estimate the illuminance
map.

This thesis uses smoothing cubic splines to approximate the illuminance map,
as proposed by [38]. Unlike the abovementioned methods, the method uses poly-
nomial fitting to estimate the illuminance map and is performed on individual
swaths. The illuminance map is estimated by minimizing

p
n
∑

i=1

|I(i)− L(i)|2 + (1− p)

∫ n

1

|D2 L(t)|2d t, (4.12)

where the first term is the error measure and the second the roughtness measure.
Furthermore, p is the smoothing parameter, D2 L denotes the second derivative of
L, and n is the number of bins. The smoothing cubic spline intensity normalization
was tested for the same transducer used to collect the data in this thesis by [1].

Figure 4.4 shows the result of performing intensity normalization using smooth-
ing cubic splines on the blind-zone removed sonar image from the 1000 first swath
of the training dataset. As in [1], we use p = 1 · 10−6 since the implementation
uses the same sonar transducer as in this thesis. The normalized image at the
bottom appears to have normalized intensities, and the horizontal lines in the un-
normalized top image are almost invisible. These artificial lines stem from acoustic
communication with a surface vessel from when the data was collected. For the
experienced eye, it is also evident that the dynamic range in the normalized image
is lower, further away from the AUV, than close to the AUV. This is natural, as the
dynamic range in the original data also changes depending on the across-track
distance to the AUV and the fact that the method cannot estimate the reflectance
map perfectly.

4.4 Slant range correction

The final step of the swath processing pipeline is to perform slant range correction
of the swaths. The swaths in the earlier steps, and hence the displayed sonar
images, have their bins equally spaced in their slant range with the slant range
resolution δs. To be able to map the swaths to the seabed, we want to correct the
swath such that the bins are equally spaced relative to their ground range, i.e.,
transform the spatial spacing between the bins to a ground range resolution δg .

In [17], a slant range correction algorithm using interpolation is suggested,
and the algorithm is adapted to use in this thesis with pitch and roll correction. As
showed in Section 2.3, the ground range, assuming a flat seafloor, can be found
by rg(rs, ht) =
q

r2
s − h2

t . Flipping the equation, the slant range can be found by

rs(rg , ht) =
Ç

r2
g + h2

t . The algorithm presented here performs slant range correc-
tion individually on the port and starport part of the swath, as the range of the
first bottom return r f br , and the transducer height ht , are not necessarily equal
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Figure 4.4: The top image shows the blind-zone removed sonar image with raw
intensity constructed from the 1000 first swaths of the training dataset. The bot-
tom image shows the same image normalized using smoothing cubic spline nor-
malization. Note how the artificial lines are almost invisible in the normalized
image.
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for each side. Providing either the starboard or port portion of the swath as S, the
corresponding first bottom return r f br , transducer height ht , and the sonar range
rsmax

, the slant range corrected swath S′ can be found by Algorithm 1.
Figure 4.5 shows the sonar image before and after the slant range correction,

and it is evident the image has been decompressed close to the sonar. We again
see how the pitch and roll correction affects the image. However, as there is no
ground truth of the seabed, it is not possible to say anything more about the cor-
rectness of the image. Two banana-formed shapes can be seen by examining the
image around swath 900. As we will see in the next chapter, the AUV is turning
at this point, and we need cartesian map generation to more accurately represent
the map of the seabed.

Algorithm 1 Slant range correction

Input: S, r f br , rsmax
, ht

Output: S′

1: S′←∅
2: rgmin

← rg(r f br , ht)
3: rgmax

← rg(rsmax
, ht)

4: δg ← δs
5: for rg ← rgmin

to rgmax
step δg do

6: r ← rs(rg ,ht )
δs

7: w1← r − ⌊r⌋
8: w2← 1−w1
9: S′(| rg

δg
|)← w2S(⌊r⌋) +w1S(⌈r⌉)

10: end for
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Figure 4.5: The top image shows the normalized image constructed from the
1000 first swaths of the training dataset. The lower image shows the result of
slant range correction on the top image. Note how each side of the image is de-
compressed towards the middle.



Chapter 5

Cartesian map generation

This chapter will present a motivation about why we want cartesian maps com-
pared to traditional waterfall images, three different cartesian map generation
algorithms, and a comparison of the algorithms. The first algorithm is based on
Kd-trees and nearest neighbors search. The second algorithm makes probabilistic
considerations when building a cartesian map. The last algorithm is a novel prob-
abilistic map generation algorithm that builds on the second algorithm. It has
improved computational time and is capable of real-time performance. Lastly, all
three algorithms are compared against each other.

5.1 Why cartesian map generation?

Traditionally, waterfall sonar images have been widely used in side scan sonar ap-
plications, typically disregarding sonar data when heading changes are performed
[40–43]. This is simple, and as AUVs usually travel in a lawnmower pattern as
they survey the seabed, only a small portion of the trajectory is disregarded due
to turning. Waterfall images are created by stacking swaths together, one after the
other, to create an image, as shown in Figure 5.1.

Further, good-quality waterfall images also depend on a constant altitude,
speed, roll, and pitch, where small deviations from constant values can lead to
anomalies in the waterfall image. However, if AUVs are to be used not just for
surveying but also in more general applications, putting such constraints on the
movement of the AUV may not be optimal from a navigation point of view. This
thesis, therefore, seeks a solution that does not depend on constant states for good
results.

Reconstruction of the seafloor’s bathymetry, or the elevation of the seafloor,
has been performed [44, 45], and is a possible solution for map generation. How-
ever, the reconstruction typically involves several steps that might be computation-
ally intensive, and a reconstruction method runs the risk of not being fast enough
in a SLAM pipeline. Therefore, reconstruction of the seafloor’s bathymetry is not
chosen to generate maps for the SLAM pipeline.

37
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Swath 0
Swath 1
Swath 2

Swath n - 1

Swath n + 1

Swath n

Figure 5.1: The figure shows how swaths are stacked together to form a waterfall
image.

Cartesian map generation in this thesis is the process of generating a 2D map of
the seabed from side scan sonar swaths. Unlike waterfall sonar images, Cartesian
map generation does not require a steady survey heading, speed, altitude, pitch,
or roll. Instead, it maps each bin to its corresponding geometric position on the
seafloor to create a 2D cartesian intensity map. Figure 5.2 shows how one swath
maps into the seafloor and the overlayed map cells.

For Cartesian map generation, the mapping of each bin to the seafloor is per-
formed by combining the state estimation with the measurement geometry and
the flat seafloor assumption presented in Section 4.2. It is important to note that
since the map generation relies on the state estimation, so does the correctness
of the generated map. In addition to mapping the bins to the seafloor, some type
of interpolation or filtering is needed to find the intensity of the map cells. It is
first needed to determine the cell intensity in scenarios where several bins map to
the same cell, and second, to fill in the visual gaps between swaths where no bin
covers the cells.

Figure 5.3 shows both a cartesian map and a waterfall sonar image constructed
by the 1000 first swaths of the training dataset. As we can see, there is a big
difference in the parts of the trajectory where turning occurs. In addition, the
scaling is drastically different, making it much easier to infer the scale of objects
in the Cartesian map as the axes are in meters.

Looking at the waterfall image at around swath number 900, two banana-like
shapes appear. Examining the top of the cartesian map, we see that the banana-
like form has been mapped to the straight, almost horizontal line spanning around
40 m. From the author’s perspective, inferring the cartesian map’s geometrical
information is easier than for the waterfall image. The following sections will
present different methods of generating such cartesian maps.
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Figure 5.2: The figure shows how the starboard portion of the swath maps to the
seabed and to the 2D grid on the seafloor that represents the cells of the cartesian
map.

5.2 k nearest neighbor cartesian map generation

In [1], a k Nearest Neighbor (kNN) cartesian map generation algorithm is presen-
ted. The algorithm involves two main steps. First, a K-d tree consisting of the world
coordinates of the bins in all swaths is built. Second, the knn nearest neighbors are
found for each cell in the map. To only include intensities spatially close intens-
ities, only the nearest neighbors inside each cell’s range threshold, rmax , are con-
sidered. Further, a maximum variance threshold, σ2

max , is imposed on the nearest
neighbors inside the range threshold. If the variance is above the threshold, the
intensity is set to the nearest neighbors’ 10th percentile. This is done to prevent
high-intensity outliers in the map. On the contrary, if the variance is below the
threshold, the resulting intensity value of the cell is found as the mean of the
nearest neighbors inside the range threshold. Let the map M be defined by its
number of rows nr , the number of columns nc , its origin M0, and its resolution
δm. Furthermore, let S be the set containing all swaths to generate a map from.
The cartesian map can then be generated by Algorithm 2.

Computational time is essential when a cartesian map generation algorithm is
to be used in a real-time online SLAM pipeline, and a computational complexity
analysis can help analyze the algorithm at hand. A central element of the kNN
cartesian map generation algorithm is the K-d tree [46]. A K-d tree represents a
set of N points in a K-dimensional space. In the case of the tree being semidynamic,
meaning that only deletion and undeletion of points are allowed, we can build the
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(a) The figure shows a waterfall sonar image processed by the swath processing in
Chapter 4.
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(b) The figure shows an example of a cartesian map generated with swaths processed by
the methods in Chapter 4.

Figure 5.3: The figure shows both a waterfall sonar image and a cartesian map
constructed from the same first 1000 swaths of the training dataset. There is a
great difference between the two maps, even though they are both generated
from the same swaths, especially in how the scale differs. In addition, it is easier
to infer the geometry of the seabed in the cartesian map.
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Algorithm 2 kNN map genaration

Input: S, M0,δm, nr , nc , rmax ,σ2
max , , knn

Output: M
1: Q←∅
2: V ←∅
3: M ←∅

4: for m ∈ S do
5: for b ∈ m do
6: Q←Q∪ GETBINWORLDPOS(b, m) ▷ Get pos. of bin in world.
7: V ← V∪ GETBININTENSITY(b)
8: end for
9: end for

10: T ← BUILDKDTREE(Q)

11: for r ← 1 to nr do
12: for c← 1 to nc do
13: q← GETCELLWORLDPOS(r,c,M0,δm) ▷ Get pos. of cell in world.
14: N ← GETNEARESTNEIGHBOURS(T ,q,knn)
15: L←∅
16: for n ∈ N do
17: if GETDISTANCE(n,r,c)< rmax then
18: L← V (n)
19: end if
20: end for
21: if GETVARIANCE(L)< σ2

max then
22: M(r, c) = GETMEAN(L)
23: else
24: M(r, c) = GETQUANTILE(L,0.1)
25: end if
26: end for
27: end for
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tree with a computational complexity of O(KN+N log(N)) and perform a nearest
neighbors search in constant time, O(1).

In the first step of the kNN map generation algorithm, a kNN tree is built. Be-
fore the tree is built, data vectors of all the bin coordinates and intensities are put
together. Because both obtaining the bin coordinates and intensity are constant in
time, the computational complexity of this step is O(SB), where S is the number
of swaths, and B is the number of bins per swath. The number of points in the
K-d tree built of the coordinates found is then N = SB. Additionally, as the kNN
map generation algorithm generates 2D seabed maps, we have K = 2. Typically
the number of swaths needed to build a meaningful map is a minimum of ten
and typically larger, and we expect each swath to contain more than ten bins.
Therefore, we can safely assume that log(SB)> K and, hence, the computational
complexity of setting up the data vectors and building the K-d tree in the kNN
map generation algorithm reduces to O(SB + SB log(SB)) = O(SB log(SB)).

The second step of the kNN map generation algorithm is to perform a nearest
neighbor search for each cell in the map. In addition, range thresholding and
variance calculation of the nearest neighbors are performed. Since the number
of nearest neighbors used is small (in [1], knn = 4 is used), these operations,
performed for each cell, are assumed to have constant time complexity. Then, the
second step of the algorithm has a computational complexity of O(RC), where R
is the number of rows, and C is the number of columns in the map. To sum up,
combining the computational complexity of the first and second sted results in
a computational complexity of O(SB log(SB) + CR) for the kNN map generation
algorithm.

Figure 5.4a shows a map generated with the kNN map generation algorithm.
The first 500 swaths of the training data were used together with a map resolution
of δm = 0.1m, a range threshold of rmax = 0.3m, a variance threshold of σ2

max =
5 · 10−3 and knn = 4. Since the same sonar transducer is used, the three latter
parameters are identical to those used in [1]. Furthermore, a variance map is
shown in Figure 5.4b. Each cell in the map corresponds to the variance of the
nearest neighbors in the intensity map.

In Figure 5.5, maps generated with two different resolutions of δm = 0.05 m
and δm = 0.2m are shown. Comparing the two with the intensity map in Fig-
ure 5.4a, there is a minimal visual difference between a resolution of δm = 0.05 m
and δm = 0.1 m. However, for a resolution of δm = 0.2m, the decreased resolution
leads to a visually poorer map.

Since the number of cells, and potentially the computation time, increases
quadratically with the map resolution, a tradeoff between computation time and
resolution has to be made. In this thesis, a map resolution of δm = 0.1m is chosen
as the preferred resolution and is used for the rest of the maps shown in this
chapter.
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5.3 Probabilistic map generation

Buguera et al. [17] present a method of probabilistic generation of a cartesian
map, where a probabilistic map is created, and the information in it is combined
with the measured intensity to form an intensity map. In this algorithm, the map
consists of nr rows and nc columns of cells, where each cell, q, is a square with
sides of size δm. Each cell has four corners, q0, q1, q2, and q3, starting with q0
in the upper left corner, going clockwise around the corners. This is shown in
Figure 5.6.

The probability map generated represents the probability of a cell being ob-
served by the sonar [17]. It assumes that the slant range is deterministic and that
the only stochastic variable is the horizontal observation angle, θobs. The intensity
map represents the intensity of the cells. The different parts of the probabilistic
map generation algorithm will be presented below.

The first step is to find an expression for the probability of measurement m
observing cell q [17]. Let qm

i = (r
m
g,i ,θ

m
i ) be the polar coordinates describing the

position of corner i relative to the body frame of the AUV at the time measurement
m was acquired. The algorithm here assumes that the sonar offset, as presented
in Section 4.1 is zero, such that pss t b

= pspor t
. The situation is shown in Figure 5.6

where the maximum observation angle, θm
obsmax

, and minimum observation angle,
θm

obsmin
of a cell, are shown. In addition, the minimum ground range, rm

gmin
, and the

maximum ground range rm
gmax

are denoted in the figure.
Since the probability of observation only depends on the minimum and max-

imum observation angle of a cell, the probability of measurement m observing a
cell, q, can be written as

Pm(q) =

∫ θm
obsmax

θm
obsmin

p(θobs)dθobs. (5.1)

where p(θobs) is the probability distrbution of θobs. In some situations, one or
more of the corners of a cell can fall outside the minimum or maximum ground
range. However, as long as one of the corners is inside the observed range, the
cell is considered to have been observed and should therefore be considered.

Different probability distributions can be used for θobs. A Gaussian, triangu-
lar, and uniform distribution is suggested in [17]. The simpler triangular and uni-
form distributions are suggested to reduce the computational cost. However, in
the work of this thesis, calculating the probability of observation using a Gaussian
distribution had minimal impact on the computation time, so only a Gaussian
distribution is presented and used.

The Gaussian distribution presented in [17] is centered around the acoustic
axis, and the standard deviation is set to be αh/2. The distribution is then given
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(a) Intensity map generated with kNN map generation algorithm.
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(b) Variance map from kNN map generation algorithm, where the color bar
maps colors and variance.

Figure 5.4: The figure shows the resulting intensity and variance map generated
from the 500 first swaths of the training dataset. The maps were generated with
a map resolution of δm = 0.1m, a range threshold of rmax = 0.3 m, a variance
threshold of σ2

max = 5 · 10−3 and knn = 4.
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(a) Intensity map generated with a map resolution of δm = 0.05 m.
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(b) Intensity map generated with a map resolution of δm = 0.2 m.

Figure 5.5: The figure shows the resulting intensity maps generated with the kNN
map generation algorithm, using the 500 first swaths of the training dataset and
two different map resolutions. The maps were generated with a range threshold
of rmax = 0.3m, a variance threshold of σ2

max = 5 · 10−3 and knn = 4.
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Figure 5.6: The figure shows an AUV from above, how its starboard transducer
maps to the seabed, and the definitions used when generating cartesian maps
using the probabilistic map generation algorithms. Remade from [17].

by

p(θm
obs) =

2

αh
p

2π
exp

�

−2(θm
obs)

2

α2
h

�

. (5.2)

As the Gaussian distribution is defined to have a non-zero probability on the inter-
val [−∞,∞], only cells with a probability of observation above a small threshold
ε are considered to make the problem computationally tractable. Hence, if the ob-
servation probability falls below ε, the probability is set to zero. It is important to
note that this is an assumption, and choosing a different ε could yield a different
result.

Next, we want to find the probability of cell q being observed by all measure-
ments used to generate the map [17]. This step is not actually needed to build the
intensity map and is simply used for building the probability map. As described
above, the probability of measurement m observing cell q is Pm(q). Let all swats
with a probability of observing cell q greater than ε be the set Sq. Considering all
measurements in Sq and denoting the event that measurement m has observed cell
q with Em

q , where the probability of the event occurring is Pm(q), the probability
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of cell q being observed is given by

P(q) = P

�

⋃

m∈Sq

Em
q

�

. (5.3)

Assuming that the events Em
q are mutually independent but not mutually exclus-

ive, the probability in (5.3) can be rewritten as

P(q) = P

�

⋂

m∈Sq

(Em
q )

c

�c

= 1−
∏

m∈Sq

(1− Pm(q)), (5.4)

where c denotes the complementary event. The probability map is created by
calculating P(q) for all cells in the map.

The intensity map uses the probabilities found by (5.1) and the measured
intensities to generate a cartesian intensity map [17]. First, the measured intensity
Im in measurement m is linearly interpolated for each of the four corners of cell
q, resulting in

V m(q) =
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(5.5)

where δg is the ground resolution of the measurements, w1 =
rm

g,i

δg
− ⌊

rm
g,i

δg
⌋, and

w2 = 1−w1.
The resulting intensity of cell q is given by

V (q) =
�∑

m∈Sq

Pm(q)
�−1∑

m∈Sq

Pm(q)V m(q), (5.6)

where the normalization factor is not part of the algorithm presented in [17], but
was found to be essential to get reasonable results. Picture the AUV being station-
ary, meaning that the number of measurements observing cell q grows linearly
with time. Without the normalization factor, the same would happen to the cell
intensity, giving an unreasonable high intensity. This is prevented by adding the
normalization factor. The resulting intensity is a weighted average of the meas-
urements that have observed the cell q, where the weight is the probability of
observation.

The last step of the map generation is to fill the visual gaps in the map. Some
cells have a probability of being observed below ε but lie in between two swaths,
and hence, their intensity can be interpolated from the surrounding cells. In [17],
this is done by creating polygonal meshes between the acoustic axis of all consec-
utive swaths. The cells inside the polygons that haven’t been assigned an intensity
value get interpolated. This is done by projecting a cell’s four corners to the in-
volved acoustic axes, and an intensity value is computed for each of them through
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linear interpolation. In addition, the perpendicular distance from each corner to
the acoustic axes is computed, and the resulting intensity is the weighted mean of
the intensities, where the weights are inversely proportional to the corresponding
perpendicular distance.

The implementation of the map generation algorithm from [17] in this thesis
has a few differences from the original implementation. Firstly, the sonar offset
is not assumed to be zero, and roll- and pitch-corrected swaths are used in the
algorithm. Secondly, instead of the presented way of filling the visual gaps, this
is done by using a Kd-tree and nearest neighbor search to all the non-assigned
cells inside the min and max ground range, similar to the kNN map generation
algorithm. This was chosen to save time in implementing the algorithm. Although
it’s probably not the most efficient way of filling the visual gaps, the total com-
putation time spent on filling them is mostly small compared to the rest of the
probabilistic map generation algorithm. Let the map M , as earlier, be defined by
its number of rows nr and columns nc , its origin M0, and its resolution δm. Fur-
thermore, let all the swaths used to generate a map be the swaths in the set S.
Then, the cartesian intensity map can be generated using Algorithm 3.

As with the kNN map generation algorithm, we want to analyze the compu-
tational complexity of the probabilistic map generation algorithm. We see from
Algorithm 3 that the algorithm contains three nested for loops. The innermost
contains two for loops, but both are at most performed S times, where S is the
number of swaths used to generate the map. The two outer for loops are governed
by the number of rows, R, and columns, C . Hence the computational complexity
of the three nested for loops is O(RCS). In addition, a KNNFILL procedure is used
to fill the visual gaps in the map. The procedure has the same computational com-
plexity as the kNN map generation algorithm, O(N log(N) + RC), where N is the
number of cells to be filled. However, as only a small part of the map needs to be
filled, it is assumed that N log(N)< RCS. Therefore the computational complexity
of the probabilistic map generation algorithm is O(RCS).

Figure 5.7 shows the resulting map using the probabilistic map generation
algorithm on the 500 first swaths of the training dataset. For the map generation,
a map resolution of δm = 0.1m and a probability threshold of ε = 0.1 was used.
For the KNNFILL procedure, a distanse threshold of rmax = 0.2m and a variance
threshold of σ2

max = 5 · 10−3 was used. Comparing with the result in Figure 5.4a,
it is not easy to spot any difference.

In Figure 5.8, the intensity map before interpolation by KNNFILL and the prob-
ability map are shown. The probability threshold of ε = 0.1 gave good results. A
higher probability threshold than ε = 0.1 led to many cells being interpolated.
This is unwanted, as it, in sharp turns, can lead to missing intensities. On the con-
trary, a lower probability led to either none or only a few cells being interpolated.
This is also unwanted because we do not want the swath to cover too many cells.
Therefore, a probability threshold of ε= 0.1 was chosen.
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Algorithm 3 Probabilistic map generation

Input: S, M0,δm, nr , nc
Output: M

1: M ←∅

2: for r ← 1 to nr do
3: for c← 1 to nc do
4: V ←∅
5: P ←∅
6: qw← GETCELLWORLDPOS(r,c,δm, M0) ▷ Get pos of cell in world.

7: for m ∈ S do
8: mw← GETLOCALIZATION(m) ▷ Get pos. of AUV at meas. time.
9: q← GETCELLBODYPOS(qw, mw) ▷ Get pos of cell in body.

10: if Pm(q)> ε then
11: P ← P ∪ Pm(q)
12: V ← V ∪ V m(q)
13: end if
14: end for

15: Vc ← 0
16: Pc ← 0
17: for v ∈ V, p ∈ P do
18: Vc ← Vc + vp
19: Pc ← Pc + p
20: end for
21: M(r, c)← P−1

c Vc
22: end for
23: end for

24: M ← KNNFILL(M)
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Figure 5.7: The figure shows the resulting intensity map generated from the
500 first swaths of the training dataset using the probabilistic map generation
algorithm. The map was generated with a map resolution of δm = 0.1m and a
probability threshold of ε= 0.1.
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(a) The map before the interpolation is performed.
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(b) The probability map, where the color bar maps colors and probabilities.

Figure 5.8: The figure shows the intensity map before interpolation is performed
and the probability map. The missing cells in the intensity map occur because
the cells do not achieve a probability of being observed by a swath above the
probability threshold ε and hence are not assigned an intensity value. The map is
generated from the 500 first swaths of the training dataset using the probabilistic
map generation algorithm, with a map resolution of δm = 0.1 m and a probability
threshold of ε= 0.1.
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5.4 Probabilistic map generation with decreased compu-
tational complexity

To achieve a probabilistic map generation algorithm that can be used in online
real-time applications, improvements in the computational complexity of the prob-
abilistic map generation algorithm in Section 5.3 have to be derived.

Examining Algorithm 3, we see that for each swath, the transformation from
the body frame to a cell has to be calculated for every corner in each cell in the
map. However, as the swath only covers a smaller portion of the map, great im-
provements can be achieved by reducing the number of transformations needed
to be found.

In addition, neighboring cells share corners, meaning that the number of trans-
formations can be further reduced for all neighboring cells by not calculating
the transformations for all four corners for all cells but rather sharing the results
between the cells. Using these observations, this section presents a novel probab-
ilistic map generation algorithm with reduced computational complexity, building
on the ideas from [17], to achieve a far better computational time.

The novel map generation algorithm presented turns the computation proced-
ure of Algorithm 3 inside out, and instead of iterating the cells, calculating one
and one intensity, one and one swath are iterated. The intermediate results from
iterating the swaths are saved for calculating the resulting intensities at the end of
the map generation. This is achieved by making use of the observations presented
above.

Firstly, a flood fill method is utilized to only calculate the transformations
between cells and the body frame for the cells with a probability of observation
greater than ε (and the border around them). The calculated transformations are
saved in a 2D array of size (nr + 1) · (nc + 1), representing all the corners in the
map. In this way, no corner transformations are calculated more than once, as
opposed to Algorithm 3.

Secondly, the novel map generation algorithm also considers the offset between
the body and transducer frames. Lastly, since linear interpolation is done both for
the bins in the slant range correction presented in Section 4.4 and in (5.5), the
former interpolating step is dropped.

By dropping the slant range correction in Section 4.4, (5.5) has to be refor-
mulated. Using the slant range to each of the four corners instead of the ground
range, (5.5) is reformulated to

V m(q) =
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where δs is the slant range resolution of the measurements, w1 =
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w2 = 1−w1.
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Removing the slant range correction step is not done to speed up the algorithm
itself but rather to remove one unnecessary interpolation step. Let the map M ,
as earlier, be defined by its number of rows nr and columns nc , its origin M0,
and its resolution δm. Furthermore, let all the swaths used to generate a map be
the swaths in the set S. Probabilistic map generation can then be performed by
Algorithm 4.

In Algorithm 4, see that the flood fill gets initialized in both the starboard and
the port side, as the two portions of the swath aren’t connected. The initialization
is done with an 8-connectivity to the initial cell to ensure that border cases don’t
make the algorithm fail, but during the flood fill, a 4-connectivity is used to add
new cells. The probability map can be generated similarly as for Algorithm 3.

Algorithm 4 Probabilistic map generation - optimized

Input: S, M0,δm, nr , nc
Output: M

1: M ←∅
2: T ←∅
3: V ←∅
4: P ←∅

5: for m ∈ S do
6: Q←∅
7: Q←Q∪ GETINITIALCELLSSTB(m, M0, δm)
8: Q←Q∪ GETINITIALCELLSPORT(m, M0, δm)
9: while Q ̸=∅ do

10: q← pop(Q)
11: T (q)← GETCELLBODYPOS(q, m, M0, δm) ▷ Get pos. of cell in body.
12: if Pm(q)> ε then
13: V (q)← V (q) + Pm(q)V m(q)
14: P(q)← P(q) + Pm(q)
15: Q←Q∪ GETFOURCONNECTEDCELLS(q)
16: end if
17: end while
18: end for

19: for r ← 1 to nr do
20: for c← 1 to nc do
21: q← GETCELL(r,c)
22: M(r, c)← P(q)−1V (q)
23: end for
24: end for

25: M ← KNNFILL(M)
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Again, we want to analyze the computational complexity of the algorithm. For
the first part of the algorithm, calculating all intensities and probabilities of the
swaths, we have an outer for loop that iterates swaths S times. The number of it-
erations on the inner while loop depends on the number of cells with a probability
greater than ε. However, the number of cells a swath will cover is upper-bounded,
and the exact upper limit depends on the sonar range, ε, and the map resolution
δm. This is found to be proportional to the number of bins per swath B, such that
the computational complexity of the algorithm’s first part is O(SB).

For the last part of the algorithm, the same arguments as for Algorithm 3
applies. The double for loop has a computational complexity of O(CR), where C is
the number of columns, and R is the number of rows, as both operations inside the
loops can be completed in constant time. Further, the KNNFILL procedure is only
performed on a small number of cells such that it is assumed that N log(N)< SB+
RC . The resulting computational complexity of the algorithm is then O(SB+CR),
a great improvement from the original algorithm.

In Figure 5.9, we see the generated intensity and probability map using the
probabilistic map generation algorithm with reduced computational complexity.
The 500 first swaths of the training dataset were used to generate the map, to-
gether with δm = 0.1m, ε = 0.1, knn = 2, rmax = 0.2m and σ2

max = 5 · 10−3.
Comparing the resulting intensity map in Figure 5.4a and Figure 5.7 with the
intensity map in Figure 5.9a, we again find little difference.

As the number of cells in the flood fill depends on the map resolution δm and
the probability threshold ε, different parameters are tested in Table 5.1 to ex-
amine how they affect the computation time. The sonar range would also affect
the results, but it was not tested as it is constant for the dataset used. Only the
computations of the algorithm were measured, meaning that all objects possible
were preallocated, as would be the case for a real-time implementation of the
algorithm. The algorithm was implemented in Julia [47], and only the intensity
map was generated when the computational time was measured, not the probab-
ility map. The implementation ran on an Intel i5 CPU with Ubuntu 22. The tests
were performed using the 100 first swaths of the training dataset, and each map
was generated ten times, such that the presented results are the average of the
ten runs. The results are presented in Table 5.1.

From Table 5.1, it is evident that increasing or decreasing the map resolution
with a factor of two has a bigger impact on the computational time than doing the
same for the probability threshold. It is also important to note that some combina-
tions of parameters could not fully generate a map, displayed with "-" in Table 5.1.
Examining the computation times and requiring a map resolution of at least 0.1 m,
we see that a probability threshold of ε= 0.1 gives the lowest computational time.
Therefore, a probability threshold of ε= 0.1 is used for the rest of this thesis.
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(a) The intensity map.
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(b) The probability map, where the color bar maps colors and probabilities.

Figure 5.9: The figure shows the intensity map and the probability map gener-
ated from the 500 first swaths of the training dataset using the probabilistic map
generation algorithm with reduced computational complexity. A map resolution
of δm = 0.1m and a probability threshold of ε= 0.1 was used.
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Table 5.1: Table showing the average computation times using different paramet-
ers for the probabilistic map generation algorithm with reduced computational
complexity. The 100 first swaths of the training dataset are used, and for each
setting, the map was generated ten times, such that the results displayed are the
average over the ten runs. The missing values are due to the current parameters
failing to produce a full map, leaving some or all cells out. The computation time is
only measured for the computation, meaning that all objects possible were preal-
located, as would be the case for a real-time implementation of the algorithm.

Prob. threshold δm = 0.05m δm = 0.10m δm = 0.20m
ε= 0.05 353ms 74.9 ms 23.1ms
ε= 0.10 − 67.1ms 20.7 ms
ε= 0.15 − − 19.6ms

Table 5.2: The table shows the computation time used for generating a map of
ns swaths from the training data set. All three algorithms presented in this thesis
are tested and use a map resolution of δm = 0.1m. The map was generated ten
times for each number of swaths, such that the results displayed are the average
computation time over the ten runs. The computation time is only measured for
the computation, meaning that all objects possible were preallocated, as would
be the case for a real-time implementation of the algorithm

Algorithm ns = 100 ns = 500 ns = 1000 ns = 4890
kNN [1] 236ms 596ms 842 ms 2.65 s
Probabilistic [17] 3.92 s 30.9 s 91 s 615s
Proposed probabilistic 67.1ms 322ms 908 ms 5.53 s

5.5 Comparison of map generation algorithms

This section will present an evaluation and comparison of the performance of the
presented algorithms. Although the computational complexity can indicate the
performance, it’s not enough to determine if an algorithm is fast enough for an
online SLAM pipeline, and we, therefore, measure the computational time. The
properties of the algorithms will also be discussed in this section.

The same procedure as in Section 5.4 was used to compare computation time.
All objects possible were preallocated, as would be the case if the algorithm ran in
an online SLAM pipeline. The three algorithms were implemented in Julia [47],
and only the intensity map was generated when the computational time was meas-
ured, not the variance or probability maps. The test was run on an Intel i5 CPU
with Ubuntu 22. The tests were performed on ns swaths from the training data-
set with a map resolution of δm = 0.1m. The other parameters are the same as
the ones found earlier in Section 5.2, Section 5.3 and Section 5.4. The results
presented are the average over ten runs and are stated in Table 5.2.

Examining the results in Table 5.2, we see, as expected, that the probabilistic
map generation algorithm takes significantly longer to generate the map than the
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other algorithms. Comparing the computational times between the novel prob-
abilistic algorithm and the kNN map generation algorithm, we see that the novel
probabilistic algorithm is faster up to ns = 500 swaths and that the kNN map
generation algorithm is faster for ns = 1000 and ns = 4890. Looking at the com-
putational complexity of the algorithms, we would expect the novel probabilistic
algorithm to be faster. However, as several significant constants could be embed-
ded in the computation complexity expression, testing like this might not be dir-
ectly comparable to the computational time. For example, is log(SB) ≈ 7 for the
number of swaths S = 4890 and bins B = 2000, a constant that could be a part of
the computational complexity for the novel probabilistic algorithm.

As we will see in Section 6.8, ns = 100 is chosen as the map size to perform
landmark detection, together with an overlapping of no = 50 swaths, generating
a new map for every 50th swath. To be able to perform this in an online fashion,
we need a map generation algorithm that has a low enough computation time.
From Table 5.2, we see that the novel probabilistic algorithm is the fastest for the
chosen parameters and hence the most promising. Examining the measurement
times in the dataset, we find that it takes 3.67 s to generate 50 new swaths. With
a computation time of 67.1 ms, the novel probabilistic algorithm only uses only
1.83% of the total time, leaving the rest to landmark detection, data association
and inference.

Examining the resulting intensity maps in Figure 5.4a, Figure 5.7 and Fig-
ure 5.9a, it is hard to spot any difference. However, the three map generation
algorithms have two important properties in common that have to be discussed.

The first property is how the algorithms, as they all rely on the state estimation,
are vulnerable to drift in the state estimates. This means that generating maps
from long trajectories and revisiting the same areas within the same map will
likely produce poor results in the revisited areas due to the drift. However, the
maps generated from 100 swaths used in the SLAM pipeline are affected to a very
small extent. This is because the drift in state estimates is negligible due to the
small timeframe.

The second property is how the non-homogeneous dynamic range of the swaths,
as discussed in Section 4.3, propagates to the maps. This is not a property of the
map generation algorithms themselves but rather a property propagated from the
individual swaths. As we will see in Section 6.8, this property reduces the land-
mark detector performance.

This chapter has presented three cartesian map generation algorithms and
compared them against each other. The novel optimized map generation algorithm
is found to have the fastest computational time for the number of swaths used in
the pipeline. It is, therefore, the preferred method for map generation in the SLAM
pipeline. The next chapter will present how landmarks are detected in the gener-
ated maps.
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Landmark detection

Landmark detection is a critical part of a landmark-based SLAM pipeline, and a
robust and accurate landmark detector is the main goal for landmark detection in
this thesis. This chapter will first present what a landmark is, regarding landmarks
in side scan sonar cartesian maps, some different techniques to detect landmarks,
and lastly, the landmark detection method used in this thesis. The landmark de-
tector used in this thesis has earlier been utilized for waterfall images but is here
adapted to be used on 2D cartesian maps. In addition, several steps are taken
to improve its robustness, like height estimation and height filtering of the land-
marks.

6.1 What is a landmark and how to detect it?

What makes out a landmark on a cartesian map generated from side scan sonar
data, and how should we choose landmarks to ensure robust navigation? This is
an important question to answer before diving into the landmark detector.

In the context of sparse landmark-based (or feature-based) SLAM, landmarks
are considered salient and distinct environment features that can be reliably re-
cognized [11]. This contrasts dense spatial SLAM, which aims to build descriptors
of surfaces or occupied space. With the era of machine learning, semantic land-
mark detection has become an active field of research [11], where a landmark is
no longer just a distinct environmental feature; it can also be assigned a semantic
class, improving the ability to recognize it reliably.

What characteristics define landmarks in Cartesian maps generated from side-
scan sonar data? For visual SLAM, SIFT [48], SURF [49], and ORB [12] features
are widely used. In [18], SIFT, among others, is tested for landmark detection in
waterfall images and is found to generate a high number of false positives and
false negatives. This indicates that directly applying visual SLAM techniques to
side-scan sonar maps may not produce satisfactory results, necessitating the use
of alternative approaches.

Examining the maps in Chapter 5, we see that the maps are mostly homo-
genous, except for smaller regions with increased intensity, decreased intensity,

58
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Figure 6.1: The figure shows how an elevated object and a pothole can create
shadows when observed by a side scan sonar. It should also be noted how the same
elevated object, observed with two different ground ranges, will give shadows of
different lengths.

or both. These regions typically stem from elevated or lowered objects, such as
boulders and potholes. Elevated objects are characterized by a high intensity, or
echo, due to the decrease in the incidence angle of the acoustic beam, followed
by an area of low intensity, a shadow. This is typically the opposite for potholes;
we get a shadow followed by an echo. In addition, other inhomogeneities in the
seabed can also create shadows and echoes in sonar maps, such as sand ripples,
wrecks, and other objects. A pothole and two identical objects, observed by a side
scan sonar, are shown in Figure 6.1.

Shadows and echoes are distinct environmental features and hence are can-
didates for use as landmarks. It is important to consider that objects on the seabed
exhibit varying shadow lengths when observed by sonar at different ranges, as can
be seen in Figure 6.1. Consequently, this creates shadows with different areas in
the 2D map. In addition, their appearance on the map differs depending on the ob-
served range. This is due to the incident angle changing together with the range.
Therefore, reliably recognizing them across various ranges may prove challenging.
Nevertheless, in the lack of other good alternatives, echoes, and shadows remain
the most viable choice for landmarks and are therefore selected for this thesis. The
next step is to find a landmark detector that can reliably detect the landmarks.

In side scan sonar images, shadows alone or in combination with echoes are
widely used as landmarks. The shadows and echoes are either found by directly
examining the intensity in the image [18, 40, 50, 51] or by using machine learning
to detect the landmarks [43, 52, 53]. In addition to landmark position, a land-
marks semantic class can be classified. In [53], machine learning is utilized to
detect boulders on the seabed.

For simplicity, a landmark detector that directly examines the intensity in the
map was chosen. Such landmark detectors generally consist of two steps. The first
one is to use an intensity threshold, either found online or chosen offline, to filter
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the sonar image to find landmark candidates. The second step is to use different
techniques to filter the landmark candidates to be left with detected landmarks.
The next section will present the landmark detector used in this thesis.

6.2 Landmark detection using intensity threshold, geo-
metric filtering, and height estimation

In [18], a landmark detector for waterfall images using intensity thresholding
and geometric filtering to find shadow landmarks is proposed. The method is also
recreated and tested on the data used in this thesis in [2].

The first step of the method is to use an intensity threshold, chosen offline, to
find landmark candidates in the sonar image. In [2], a morphological closing oper-
ation was performed on the landmark candidates found by the intensity threshold
and was found to increase the method’s robustness.

The second step of the landmark detector is to perform a series of geometric
considerations to filter the landmark candidates. Firstly, the landmark candidates
are filtered on their along-track length. Secondly, a threshold on the area of the
image a landmark covers is imposed. To counteract the fact that the length of the
shadow depends on the observation range, each area gets corrected by the land-
mark candidates’ observation range. Thirdly, the landmark candidates are filtered
concerning the percentage of the bounding box surrounding the landmark that
is covered by the detected landmark. This is done to filter out thin landmarks or
landmarks containing holes.

This thesis adapts the detector in [18] to detect landmarks in cartesian maps,
adds filtering with two thresholds for improved robustness, and adds height ap-
proximation, filtering, and correction to the landmark detector for increased per-
formance.

The proposed algorithm consists of five steps. The first step is to perform bi-
lateral filtering, intensity thresholding with two thresholds, and morphological
operators to find two sets of landmark candidates in the 2D cartesian map. The
second step is to filter these two sets of landmark candidates geometrically before
an intersection operation between the two sets is performed, only keeping the
landmarks detected in both sets. The third step is classifying the landmark can-
didates as either elevated or lowered objects. The fourth step is to estimate the
height of the landmark candidates and perform a final filtering based on the es-
timated height. The last step is to use the information available to find the position
of the landmark, both in the world frame and relative to the AUV. The following
sections will explain the different steps of the landmark detector in depth.

6.3 Step 1: Finding landmark candidates

The first step of the landmark detector is to find initial landmark candidates in
the generated map. The map is filtered with a bilateral filter [54] to smooth out
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the intensities but keep the sharp edges characterizing the boundary between the
map’s background and the shadows. The bilateral filter takes two parameters, σs
for the similarity term of the filtering andσc for the closeness term. The reason for
the filtering is that we are only interested in relatively large shapes, and filtering
will remove small areas or single pixels with low intensity, reducing the number
of false positives in the landmark candidates and hence the number of landmark
candidates needed to process.

Intensity thresholding with two different thresholds, followed by a morpholo-
gical opening and a morphological closing, is then performed on the filtered map.
The intensity thresholds Ti,l and Ti,h are simply checked against the intensity of
each cell in the map. Using a kernel size of K · K , the morphological operations
are performed on all the cells below the threshold. The result is the two initial
sets of landmark candidates used in the rest of the landmark detector, where one
landmark candidate is the cluster of all neighboring cells that results from the
intensity threshold and morphological operators.

The idea of using two thresholds in parallel came from a duality when tuning
the method with only one intensity threshold. A low threshold would yield very
few false positives, but it also left out some pixels that belonged to the landmark.
The opposite was the case for a higher threshold. False positives were generated,
but the true positives were a larger extent detected. Combining the thresholds
should give the best of both, resulting in better performance.

Figure 6.2 shows the resulting landmark candidates performing intensity threshold-
ing and morphological operators on the 100 first swaths of the training data-
set. The map is filtered by a bilateral filter using σs = 2.0 and σc = 2.0. The
green landmark candidates are then generated using a high-intensity threshold of
Ti,h = 0.97, and a kernel size of K ·K = 3 ·3. In addition, the projected path of the
AUV is displayed in grey. As pitch and roll correction is used, the path is slightly
offset compared to the blind zone in the map.

6.4 Step 2: Geometric filtering of landmark candidates

The second step of the landmark detector is to perform geometric filtering on the
two landmark candidate sets and combine the results. Using the landmark candid-
ates, the geometric filtering consists of two steps, filtering the area of the landmark
and the percentage of the bounding box covered by the landmark candidate.

First, the landmark candidate area gets filtered against a minimum area threshold,
Amin, and a maximum area threshold, Amax . No correction of the shadow area is
done, in contrast to [18], as this step is only used to prune out the smallest and
largest landmark candidates and rather rely on other filtering steps for the detailed
filtering of landmarks.

Second, the landmark candidates are filtered based on the percentage of the
bounding box of the landmark candidate covered by the landmark. The bounding
box filtering uses a threshold Tbb. This thesis uses a square bounding box to em-
phasize circular or circular-like shadows. The hypothesis is that circular shadows
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Figure 6.2: The figure shows the resulting landmark candidates after perform-
ing bilateral filtering, intensity thresholding, and morphological operators on the
map generated from the 100 first swaths of the training dataset. The resulting
landmark candidates are shown in green, and the path of the AUV is in grey. For
the bilateral filter, σs = 2.0 and σc = 2.0 was used. The intensity threshold was
performed with a high-intensity threshold of Ti,h = 0.97, and for the morpholo-
gical operations, a kernel size of K · K = 3 · 3 was used.
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Figure 6.3: The result of performing geometric filtering on the landmark can-
didates in Figure 6.2. The pink and green landmark candidates make out the
initial landmark candidates from Figure 6.2, where the pink is the kept land-
mark candidates after the geometric filtering. Note how small and thin land-
marks are filtered out. For the geometric filtering, the parameters Amin = 0.5m2,
Amax = 10.0 m2 and Tbb = 0.3 was used.

stem from circular objects, such as boulders and potholes, and that their circular
form makes the form and size of the shadow less dependent on the angle of ob-
servation. This, again, should lead to the landmarks being easier to recognize and
detect reliably from different viewing angles.

Figure 6.3 shows the resulting landmarks candidates after performing geo-
metric filtering on the landmark candidates in Figure 6.2. The parameters Amin =
0.5m2, Amax = 10.0 m2 and Tbb = 0.3 was used. The pink and green landmark
candidates make out the initial landmark candidates from Figure 6.2, where the
pink is the kept landmark candidates after the geometric filtering.

The same thresholds and parameters are used for geometrically filtering both
sets of landmark candidates, and an intersection of the two sets is performed only
to keep the landmark candidates detected by both the low and high thresholds. As
the high-intensity threshold is thought to be best for picking up all the pixels of the
landmark, the pixels found by the high-intensity landmarks are used to represent
the landmark further in the detector.

Figure 6.3 shows the result of performing the intersection of the two sets of
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Figure 6.4: Geometric filtered landmarks from high and low-intensity threshold-
ing showed in the same figure. The green landmark candidates are the kept land-
marks of Figure 6.3, and the pink landmark candidate stems from a low-intensity
threshold of Ti,h = 0.95 geometric filtered with the same parameters as the high-
intensity landmark candidates. The landmark detector performs an intersection
between the two sets, and here is only one landmark candidate kept.

genetically filtered landmark candidates. Again the first 100 swaths of the training
dataset are used, together with a low-intensity threshold of Ti,h = 0.95, and a
high-intensity threshold of Ti,h = 0.97. The green landmarks are found with the
high-intensity threshold, and the pink ones with the low-intensity threshold. Both
are geometric filtered with Amin = 0.5m2, Amax = 10.0m2 and Tbb = 0.3. As can
be seen, only one landmark candidate has overlapping detection and is the only
one kept.

6.5 Step 3: Landmark classification

The third step of the landmark detector is to perform landmark classification. Two
extra steps are performed when the map is generated to do this. First, a range
map is computed, where each cell contains the average ground range between
the cell and the body frame of the AUV for the swaths used to generate the cell.
Secondly, the swaths used to generate each cell are saved. Using this information,
a minimum ground range, rgmin

, and a maximum ground range, rgmax
of each
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landmark candidate can be obtained by iterating over the cells in the landmark
candidate. In addition, a set of all the swaths used to generate the cells of the
landmark candidate, Sl , can be found.

As presented in Section 6.1, elevated or lowered objects are categorized by
order of the echo and shadow, where an elevated object first will have an echo,
followed by a shadow, and a lowered object the opposite. Here "first" points to the
attribute with the lowest ground range. The landmark detector uses these proper-
ties to classify the object type. The object type is then used for height estimation
of the landmark candidate. We assume a flat seafloor everywhere on the map,
except for the landmark itself, such that both the seabed in front of and behind
the landmark are assumed to have the same elevation.

The classification of the landmark candidates is performed by estimating the
order of the echo and the shadow in each individual swath used to generate the
landmark. This is performed by fitting a Gaussian derivative to the swath using
non-linear least squares fitting to estimate the order of the shadow and echo.
Furthermore, the estimates are combined into an ensemble score for classifying
the landmark candidate.

To fit a Gaussian derivative to the swath, a portion of the swath around the
landmark has to be chosen to use for the fitting. The maximum slant range, rsmax

,
and minimum slant range rsmin

of the landmark candidate are found using the

minimum and maximum ground range found earlier together with rs =
Ç

r2
g + h2

t .
Here, ht is the transducer height. Let the slant length of the landmark candidate
be ls = rsmax

− rsmin
. We then choose to include the bins with a slant range of

[rsmin
− ls, rsmax

+ ls], such that we include bins equal to the slant length of the
landmark, both before and after the actual landmark. Since the individual swaths
are not filtered, we filter the chosen bins with a Gaussian low-pass filter with a
standard deviation of σ f to reduce noise in the swaths.

The Gaussian derivative has the same form as an object that appears in a
swath, a top followed by a low or opposite, depending on the sign. For function
fitting, we use the Gaussian derivative given by

ac
p

2π
(x − b)exp

�

−(c(x − b))2

2

�

+ d, (6.1)

where a, b, c, and d are shape parameters to be determined by the non-linear
least squares function fitting. We bound c ≥ 0 such that the sign of a gives the
order of the top and the bottom and hence does the sign if a becomes the estimate
of the classifier.

The fitting of the Gaussian derivative is done for each swath used to generate
the landmark. Figure 6.5 shows the result of fitting the Gaussian derivative in
(6.1) to one of the swaths in a landmark candidate. If the function fittings fail, the
swath is dropped. Each swath’s results are combined to create an ensemble score
for estimating the object’s class. The class with the most "votes" are chosen. In the
case of an equal amount of votes, it is not possible to determine the landmark
class, and the landmark candidate is dropped.
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Figure 6.5: The results on fitting the function in (6.1) to a part of a filtered swath
with a slant range of [rsmin

− ls, rsmax
+ ls]. The low-pass filtering is performed with

σ f = 2.0. The resulting parameters from the function fitting were a = −0.182,
b = 15.540, c = 0.214, and d = 0.986. Since a ≤ 0, the results "vote" for the
landmark candidate to be an elevated object.
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It is important to note that the only element missing to be able to use the land-
mark detector in a semantic SLAM pipeline is to reason about the uncertainty of
the classification. This could, for example, be done by finding the detector’s con-
fusion matrix by running the detection on several datasets and finding the prob-
abilities for detection and misdetections. However, finding the confusion matrix
requires both time and data and since especially the former was limited, finding
the confusion matrix is left as further work.

6.6 Step 4: Height estimation of landmark candidates

The fourth step of the landmark detector is to perform height estimation and fil-
tering of the landmark candidates. For this step, a "reference" pose and altitude of
the AUV for each landmark candidate are needed. However, there are several can-
didate poses and altitudes in the set Sl . One solution would have been to average
over the swaths in Sl , but since averaging over attitudes are not straightforward,
a simpler solution is used in this thesis.

To find the "reference pose" for a landmark, we first assume that the AUV
maintains a constant speed and heading rate for the short time the landmark is
observed. Then the swaths in Sl are sorted by the time of measurement, and the
reference pose and altitude are chosen as the pose and altitude of the AUV when
the middle swath of Sl was acquired. The middle swath is chosen because, given
the assumptions, this middle swath will be the one observing the middle of the
landmark. Choosing the middle of the landmarks should lead to the same refer-
ence position being chosen when the landmark is observed from a different head-
ing. To simplify, the first of the two middle swaths are used for an even number
of swaths, but an interpolation would have been more accurate.

To estimate the height of the landmark, we use the retrieved minimum and
maximum slant ranges together with the triangle similarity of the measurement
geometry. The following relation holds for elevated objects

hl

ht
=

rsmax
− rsmin

rsmax

. (6.2)

where hl is the height of the landmark. The estimated height can then be found
by

ĥl = ht

�

1−
rsmin

rsmax

�

. (6.3)

For lowered objects, we have the relation

hl

ht
=

rsmax
− rsmin

rsmin

, (6.4)

such that the height estimation becomes

ĥl = −ht

�

rsmax

rsmin

− 1

�

, (6.5)
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where the sign of the landmark height estimate is changed such that the height
of lowered objects becomes negative.

It is important to note that the slant range and not the ground range have
to be used for estimating landmark height. To be able to create a shadow, a land-
mark has to violate the flat seafloor assumption locally. Hence, the landmark cells’
ground range has not been correctly calculated. However, by retracing back to the
original slant range, the height of the landmark can be correctly estimated.

Using the absolute of the estimated landmark height, the landmarks candid-
ates get filtered, removing landmarks below a height threshold, Th. The height
filtering is the final filtering step, and the resulting landmarks are the detected
landmarks.

6.7 Step 5: Where in the world is the landmark?

The last step of the landmark detector is to find both the position of the land-
mark in the world frame and relative to the AUV. In addition, for use in the SLAM
pipeline, we reason about the uncertainty of the position of the landmark relative
to the AUV.

First, we need to determine the reference point for each landmark. Examining
Figure 6.1, the best guess for an elevated object is thought to be at the position
of the start of the shadow. For a lowered object, it is thought to be at the end of
the shadow. It is important to note that this is not exact, but rather the best guess
with the information available. Again recognizing that an elevated object with a
height different from zero violates the flat seafloor assumption, we can find the
correct landmark position by recalculating the ground range using the obtained
minimum and maximum slant ranges. For an elevated landmark, its ground range
is

rg,l =
Ç

rsmin
− (ht − ĥl)2, (6.6)

and for a lowered landmark, it is

rg,l =
Ç

rsmax
− (ht + ĥl)2. (6.7)

Then, using (4.10), the position of the landmark in the world frame can be found.
Figure 6.6 shows the result of performing landmark detection on the map of

the first 100 swaths of the training dataset. The landmark height, the landmark
area, and the fill rate of the bounding box are also shown. The black "x" denotes
the landmark position.

In addition to the position of the landmark in the world frame, the range and
bearing of each detected landmark and the uncertainty of the range and bearing
are calculated. Using the range and bearing instead of the world or body position
of the landmarks has two reasons. The first one is that the nature of the sonar
measurement is a range-bearing measurement. Even though the map generation
does not conserve the range-bearing measurement, the landmark detector uses
the raw swaths for several of the steps, and we, therefore, want to use range
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Figure 6.6: The figure shows the resulting landmark after performing landmark
detection on the 100 first swaths of the training dataset. Here, the landmark can-
didate from Figure 6.4 is classified as an elevated landmark, and its height is
estimated as ĥl = 0.25m. The height threshold was set to Th = 0.2 m, so the
landmark was kept. In addition, the figure shows the landmark areal Al and the
fill rate of the bounding box ρbb. The "x" denotes the landmark position.
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and bearing when reasoning about the uncertainty of the range and bearing. The
second is that range-bearing measurements are used in the chosen probabilistic
data association method in Chapter 7.

The range of a landmark is

zr =
Æ

(x l − xb)2 + (yl − yb)2, (6.8)

where x l and xb are the x-component of the landmark position and the AUV pose,
respectively. The same applies to the y-components. The bearing of the landmark,
relative to the heading of the AUV, is given by

zb = atan2(yl − yb, x l − xb)−ψ, (6.9)

whereψ is the AUV heading for the reference pose. Together (6.8) and (6.9) make
out the landmark measurement function

h(x , l) =

�
p

(x l − xb)2 + (yl − yb)2
atan2(yl − yb, x l − xb)−ψ

�

, (6.10)

where x is the AUV pose, l is the landmark position in the world frame and z =
[zr , zb]T .

We need to consider the sonar measurements, map generation, and the land-
mark detector to reason about the uncertainty in the range-bearing measurement.
For range-bearing measurements, it is common to use a Gaussian measurement
model [19], something this thesis also does.

For the range measurement, we have uncertainty contribution from the sonar
measurement, the map generation, and the landmark detector. As the slant resol-
ution of the sonar bins is 0.03m, the related uncertainty is assumed to be small
relative to the other uncertainties and is therefore disregarded. The map genera-
tion has a resolution of δm = 0.1m, and we assume a standard deviation equal
to the map resolution. The landmark detection has several steps, each contrib-
uting to the uncertainty. However, as it is hard to reason about the uncertainty
in each step, we want to relate it to the length of the landmark. We assign each
range measurement an additional standard deviation of 50% of the total land-
mark length. The total standard deviation of the range measurement is then

σr =

√

√

√

δ2
m +

�

rgmax
− rgmin

2

�2

. (6.11)

For the bearing uncertainty, there is also a contribution from the sonar meas-
urement, the map generation, and the landmark detector. However, the main con-
tribution is related to the landmark detector and choosing the reference point of
the landmark. We again want to relate the measurement to the map’s sizes; in this
case, the arc length stemming from the standard deviation of the bearing meas-
urement and the mean range measurement is used. The uncertainty in the bearing
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measurement is approximated as the bearing resulting in arclength to five times
the map resolution such that the bearing standard deviation becomes

σb =
5δm

z̄r
, (6.12)

where z̄r is the mean of the range measurement. This means that landmarks with a
shorter range measurement will have a larger bearing uncertainty than landmarks
with a longer range measurement. This concludes the landmark detector, and the
next section will present the results from performing landmark detection on the
training and test dataset.

6.8 Landmark detection on the training and test dataset

This section tests the proposed landmark detector on the training and test data-
sets. To use the landmark detector in a SLAM pipeline, the landmark detection is
done on batches of nb swaths where each batch corresponds to a timestep t in
the SLAM pipeline. A batch of swaths is used mainly because the map generation
and landmark detector only operate on batches of swaths. In addition, this also
reduces the number of timesteps that have to be inferred.

By using batches of swaths, we run the risk that one landmark can be split in
the boundary between two consecutive batches. To help against this, we introduce
an overlap of no swaths between each batch of swaths. The size of each batch is
still nb swaths, but the first no swaths at time t are the last no swaths of the swath
batch at time t − 1, where the swaths are sorted according to their measurement
time.

When choosing the size of nb and no several factors have to be considered
as they are important parameters of the landmark detector. Firstly, we want the
overlap to be large enough to ensure that all landmarks are fully displayed in at
least one timestep. Secondly, the size of nb and no governs the time between two
consecutive timesteps, and hence how large the delay for new pose estimates is.
Regarding the delay, we want nb and no to be as small as possible, but this has to
be weighed against the extra time needed for inference. In this thesis nb = 100
and no = 50 are used.

The detected landmarks of the training dataset’s 2000 swaths are shown in
Figure 6.7, where the parameters in Table 6.1 were used. The parameters were
found by repeatedly tuning the landmark detector, examining the detected land-
marks, and testing the detected landmarks in the full SLAM pipeline.

Examining Figure 6.7, several low-intensity areas with round shapes appear.
These are potential landmarks that are not detected. During the tuning, it be-
came evident that a conservative landmark detector gave the best results for the
pipeline, and the potential landmarks that are not detected are, therefore, a choice
made during the tuning. In addition, it became evident that the landmark detector
had two main weaknesses during the tuning process.
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Table 6.1: The resulting parameters after tuning the landmark detector on the
training dataset.

Parameter Value
σs 2.0
σc 2.0
Ti,l 0.95
Ti,h 0.97
K 3
Amin 0.5m2

Amax 10.0m2

Tbb 0.3
σ f 2.0
Th 0.2 m
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Figure 6.7: Resulting landmarks after running the proposed landmark detector
on the 2000 first swaths of the training dataset using the parameters in Table 6.1.
The landmarks are shown as "x" on the map, and the path of the AUV is shown
in grey.
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The first weakness of the landmark detector is that it lacks robustness in de-
tecting the same landmark at different ground ranges. Two properties of the land-
mark detector are identified as potential reasons for this. The first property is how
the size of the landmark shadows changes when the landmarks are observed from
different ranges, as shown in Figure 6.1. The second property is how the dynamic
range of the map differs at different ranges, as discussed in Section 5.5. The first
property is handled by the filtering process and should not be the main reason for
this.

The difference in the dynamic range of the map is probably the cause of the
lacking re-detection of landmarks from different ground ranges. This is because
different dynamic ranges imply that different intensity thresholds should be used
in different places on the map. Therefore, tuning the constant intensity thresholds
in the landmark detector involves a tradeoff. By increasing the thresholds, land-
mark candidates can be detected over the entire map, but this may result in an
increased number of false positives. On the other hand, reducing the thresholds
may help minimize false positives, but it may also make it challenging to detect
landmarks in regions with a low dynamic threshold. The latter was chosen during
the tuning as it gave the best results when performing SLAM.

The second weakness is that the landmark detector sometimes picks up only
parts of landmarks. This can happen in two different situations. The first situation
occurs when a landmark is cut off due to the batching of swaths. This is the case
for the pink landmark in Figure 6.8a. If the landmark candidate is filtered out,
this is not a problem. However, if the landmark is kept, this can give erroneous
landmark detections as both the detected size and middle position are not the
landmark’s true size and middle position.

The other situation where the landmark detector only partially detects land-
marks is probably due to the different dynamic ranges of the map. This is shown
in Figure 6.8b, where the large landmark in the middle of the right portion of the
map is only partially detected. If the map is examined closely, it can be seen that
the landmark has a large tail that is not picked up by the landmark detector.

These two weaknesses should be asses and improved in further work as this
would increase the performance of the landmark detector and potentially the en-
tire SLAM pipeline. An improvement might be achieved by changing the process
of generating landmark candidates in Section 6.3 to a soluting inferring on the
geometry of the landmarks instead of their intensity. Machine learning could, for
example, be utilized to perform this. Furthermore, a homogenous dynamic range
of the map would improve the ability to re-detect and fully detect landmarks.
Lastly, an online adaption of the batch size nb and no would be able to solve the
weaknesses stemming from performing batch-wise detection.

Figure 6.10 shows the detected landmarks when the proposed landmark de-
tector was tested on the full test dataset. Again, the parameters in Table 6.1 were
used. The low number of detected landmarks and the number of non-detected
intensities suggest that the landmark detector is conservatively tuned.

This chapter has presented a novel landmark detector for 2D cartesian maps
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(a) The resulting landmark candidates after geometric filtering of the landmark candid-
ates stemming from the high-intensity threshold. Here the landmark detector is performed
of swaths from swath number 1200 to 1300.
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(b) The resulting landmark candidates after geometric filtering of the landmark candid-
ates stemming from the high-intensity threshold. Here the landmark detector is performed
of swaths from swath number 1250 to 1350.

Figure 6.8: The figures show the detected landmarks in two consecutive and
overlapping batches of swaths. The green landmark candidates are discarded,
and the pink one is kept. Not how the same landmark is detected on both plots,
resulting in a double detection of the same landmark observation.
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(a) The detected landmark in the batch of swaths consisting of swaths from swath number
900 to 1000.

(b) The detected landmark in the batch of swaths consisting of swaths from swath number
950 to 1050.

Figure 6.9: The figures show the result after landmark detection in two consec-
utive and overlapping batches of swaths. The landmark positions are displayed
with an "x." The landmark height ht , landmark areal Al , and the percentage of
the bounding box covered by the landmark ρbb are also shown. Note how only
one of the landmarks detected in the top map is re-detected in the bottom map.
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Figure 6.10: Resulting landmarks after running the proposed landmark detector
on the entire test dataset using the parameters in Table 6.1. The landmarks are
shown as "x" on the map, and the path of the AUV is shown in grey.

generated from side-scan sonar data and tested the landmark detector on the test
and training dataset. The results show that it is able to detect landmarks, but two
weaknesses were identified that are reducing its performance. The next chapter
will present the method for associating the detected landmarks and a method of
inference as the final step of the SLAM pipeline.



Chapter 7

Multimodal SLAM with
probabilistic data assosiation

The last step of the SLAM pipeline is to perform data association on the detected
landmarks and inference on the landmarks and the odometry measurements. This
thesis utilizes probabilistic data association and multimodal incremental smooth-
ing and mapping for data association and inference. This chapter will present
the relevant background, the methods used, and the results of performing SLAM
on underwater side scan sonar data processed by the former steps of the SLAM
pipeline.

7.1 Factor graphs

Factor graphs are the backbone of modern SLAM algorithms and are a simple yet
powerful graphical model that is the de-facto standard for modeling SLAM [19].
A factor graph, G ≡ V,F , is a bipartite graph, where the vertices, V, consists of
factors f and variables V . The graph represents the factorization of a function
and can be written as

f (V) = f1(V1) f2(V2)... fn(Vn), (7.1)

where fi represents a function that takes all its neighboring vertices Vi . In the
context of inference, we typically let the factor graph represent the unnormalized
joint probability over V

p(V)∝
n
∏

i=1

fi(Vi). (7.2)

Furthermore, in the context of SLAM, we often let the variables, Vi , represent
poses, X , and landmarks, L and the factor’s the probabilistic constraints between
them. The factor graph formulation then becomes

p(X , L | Z)∝
n
∏

i=1

fi(Vi), Vi ⊆ X , L. (7.3)

77
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Figure 7.1: A simple factor graph consisting of three poses x t and two landmarks
li . p0 is a prior factor containing prior information about the pose x0. ut are
odometry factors generated from state estimation and z i

t landmark measurement
factors.

Figure 7.1 shows an example factor graph representing a simple slam problem
with two landmarks and three poses in addition to a prior factor, odometry factors,
and range-bearing factors for the landmark measurements. It is evident that the
factor graph is a powerful graphic tool and that the structures in the SLAM prob-
lem are easily visible, at least in the simple example. However, as factor graphs
can contain cycles, another graphical model is used for inference.

7.2 Bayes tree

As factor graphs can contain cycles, they are often refactored into a Bayes tree
to make inference on them computationally tractable [55, 56]. A Bayes tree is a
tree-structured graph consisting of cliques, Ck = Fk ,Sk , where F and S are subsets
of V [19]. The subset F are named the "frontal" variables, and the subset S are
named the "separator" variables, and the resulting factorization is

p(V)∝
∏

k

p(Fk | Sk). (7.4)

Figure 7.2 shows an example Bayes tree, where the Bayes tree is refactored from
the factor graph in Figure 7.1.

Two algorithms are of great importance for marginalization on Bayes trees:
the sum-product and max-product algorithms [19]. Given the observed variables,
they are used for inferring the distribution of latent variables or, in other words,
the marginal distribution. The algorithms will not be stated in this thesis, and
the reader is referred to [19] for a presentation of the algorithms. The import-
ant takeaway from the two algorithms is their key differences. The max-product
algorithm is used for maximum a posteriori (MAP) inference. In the case of a
multimodal distribution, for example, a sum of Gaussians, will the max-product
algorithm only choose the most dominant mode; hence the resulting marginal is
a "max-marginal" distribution. This is a reasonable approximation in the case of
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x1,x2

l1:x2l0,x0:x1

Figure 7.2: A Bayes tree generated from the example factor graph in Figure 7.1.
The root clique contains only the frontal variables x1 and x2, whereas the leaf
cliques contain both frontal and separator variables.

one clearly dominant mode. However, valuable information can get lost if the pos-
terior distribution contains several dominant modes with small differences. Using
the sum-product algorithm solves this problem by exactly recovering the marginal
distribution, hence being able to keep more than one mode. As we will see later,
this can be valuable for probabilistic data association and inference in the context
of SLAM.

7.3 Simultaneous localization and mapping

Simultaneous localization and mapping is a procedure of acquiring a map of an
unknown environment as a mobile platform explores it and, at the same time, loc-
alizes the mobile platform on the same map [57]. SLAM has been one of the key
enabling technologies of mobile robot navigation and is so for mobile robot nav-
igation in the underwater environment as well [15]. In the context of landmark-
based SLAM, the map is not a 2D cartesian map of intensity, like in Chapter 5, but
rather a map of landmarks and poses, together with their probability distributions.

The SLAM procedure generally performs inference in the factor graph in (7.3).
The factors used in the factor graph consist of sensor measurements and (poten-
tial) priors for the variables. Firstly, we have the odometry factors, ut , repres-
enting the evolution of the pose, or in other terms, the probability distribution
p(x t | x t−1, ut ). These can be obtained by motion models or sensor measure-
ments, and this thesis calculates the odometry factors using the pose estimate
stemming from the state estimation. Secondly, landmark measurement factors are
factors that represent landmark sightings and are given by p(li | zi

t , x t ), where zi
t

is the measurement of landmark i at the time t. The measurement factors can be
of different types, but the landmark measurements are treated as range-bearing
factors in this thesis. We have here associated measurement zi

t with landmark li ,
and we will in the next section present how the data association is performed.
Figure 7.1 shows a factor graph representing a SLAM problem.

Suppose we assume Gaussian measurement models and focus on the MAP
solution of the SLAM problem. In that case, we can formulate the inference as a
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non-linear least-square optimization problem [19]

X̂ , L̂= argmax
X ,L

p(X , L | Z), (7.5)

where we still represent p(X , L | Z) as the factor graph in (7.3). Since we are
assuming Gaussian measurement models, the factors in the factor graph become

fi(Vi) =
1
p

2πdetΣi

exp

�

−
1
2
||hi(Vi)−µi||2Σi

�

, (7.6)

where µi is the mean and Σi is the covariance of variable Vi , and || · ||2Σ is the
squared Mahalanobis distance. Removing the normalization constant, we are left
with

p(X , L | Z)∝
∏

i

exp

�

−
1
2
||hi(Vi)−µi||2Σi

�

. (7.7)

Since the goal is to recover the most probable assignment to poses and landmarks,
removing the normalization constant does not affect the result, as it’s not depend-
ent on the poses or the landmarks. Using the same reasoning, we can transform
the optimization problem in (7.5) by taking the log of the joint probability and
inserting (7.7), resulting in

argmax
X ,L

p(X , L | Z),= argmin
X ,L

∑

i

||hi(Vi)−µi||2Σi
. (7.8)

The result in (7.8) can be recognized as a nonlinear least-squares problem that
can be optimized using methods such as Gauss-Newton and Levenberg-Marquadt.
A widely used method SLAM with Gaussian measurement models is iSAM2 [55],
which does inference using the Bayes tree and uses the general method presented
above.

In the case of a non-Gaussian measurement model or other factors contain-
ing non-Gaussian distributions, other solutions must be used. One solution is to
use mm-iSAM [56], allowing for a wide range of (potentially) multimodal meas-
urement models and factors. The method uses approximate belief propagation, ex-
ploiting the Bayes tree structure to perform marginalization. For approximating
the non-gaussian and multimodal beliefs in each of the variables, kernel density
estimation is used

�

X̂
�

=
N
∑

i=1

w(i)N
�

x (i),Λ(i)
�

, (7.9)

where
�

X̂
�

is the estimated probability density over X , Λ(i) the bandwidth para-
meter, x (i) the center of, and w(i) the weighting factor for each of the N kernels.

7.4 Data association

When new landmark measurements arrive, we don’t know which landmarks it
stems from or if it is a measurement of a new landmark, and the process of de-
termining this is called data association. This is an important part of the SLAM
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pipeline, where one wrong association can cause an otherwise correct solution
to deviate from the ground-truth solution [19]. Let dk

t denote the data associ-
ation of measurement k, at pose x t , where dk

t = j associates the measurement
with landmark l j . Furthermore, let D ≡ {dt }Tt=1 be the set of all associations. The
data association at each time, dt , can be incorporated in the factor graph and will
appear as latent variables. The factor graph from (7.3) can now be written

p(X , L, D | Z)∝
n
∏

i=1

fi(Vi), Vi ⊆ X , L, D. (7.10)

An important distinction must be made between lazy data and proactive data
association. Lazy data association allows for revision of previous decisions, whereas
proactive data association makes a data association only based on the prior in-
formation available and does so without revision. This thesis uses the latter.

As mentioned above, we don’t know if a landmark measurement stems from
an existing or new, unobserved landmark. A common and simple method to de-
termine this is measurement gating [19]. The process of measurement gating uses
a threshold τ to determine whether to create a new landmark. The method cal-
culates the likelihood of a measurement belonging to a known landmark. This
likelihood is calculated for each known landmark, where a new landmark is cre-
ated if no likelihood falls above the threshold τ.

Maximum-likelihood (ML) data association is one of the most common solu-
tions to the data association problem [19]. It uses initial estimates of the poses
X (0) and landmarks L(0) and optimalization to find the ML data association. The
ML data association is given by

D̂ = argmax
D

p(D | X (0), L(0),Z). (7.11)

Methods like the Hungarian algorithm [58] and joint compatibility branch and
bound [59] are examples of ML data association methods.

Probabilistic data association (PDA) is an alternative solution that finds the
probability of the data associations to be able to marginalize them out of the
factor graph when finding the solution to the SLAM problem [19] and is given
by

X̂ , L̂= arg max
X ,L

∑

D

p(X , L, D | Z)

= arg max
X ,L

∑

D

p(X , L | D,Z)p(D | Z)

= arg max
X ,L
ED[p(X , L | D,Z) | Z].

(7.12)

It is important to note that the approximate marginal distribution is almost al-
ways multimodal. Specifically, in the context of Gaussian measurement models,
the multimodal distribution becomes a sum of Gaussians. Since the traditional
least squares method used for SLAM does not handle multimodal distributions,
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we are left with two options. The first option is to use a method that can utilize
the traditional least squares method, such as the method in [60].

The PDA in [60] performs expectation-maximization iteration on the sum of
Gaussians to replace it with a geometric mean, preserving the Gaussian posterior
assumption. The second option is to use the mm-iSAM algorithm in [56] to rep-
resent the actual multimodal distributions in the data association variables, like
the works in [61]. In this thesis, the latter is used.

In [19, 61], a sum-marginalization PDA method for semantic range-bearing
landmarks is presented. As the name implies, the method performs sum-marginalization
of the data associations variables, resulting in multimodal measurement factors,
which are solved using the state-of-the-art non-Gaussian solver mm-iSAM [56].
The method is proactive and uses measurement gating to decide whether to cre-
ate a new landmark or associate a measurement with the existing landmarks.

The main concern of the PDA in [61] is how to find the multimodal semantic
factors for each measurement k that links a pose x t and all candidate landmarks
l j in a set H ⊆ 1, ..., M of candidate landmarks

f (x t , lH) =
∑

j∈H
p(zk

t | x t , l j )p(dk
t = j | Z−), (7.13)

where Z− are all measurements prior to the measurements at time t. The meas-
urement model is assumed to be a factorized semantic range-bearing model with
p(z | x , l) = p(zr | x , l)p(zb | x , l)p(zs | l). zr and zb are the estimated range and
bearing, respectively, from the landmark detector, and are both assumed to be
Gaussian distributed. zs are the semantic class prediction from the landmark de-
tector, and p(zs | l) corresponds to the confusion matrix of the detector, assumed
to be known a priori.

To determine the association probabilities, a Monte Carlo approximation is
performed to find the joint-compatibility probability of the data associations [19].
Let Dt denote the set of all possible associations of measurements at time t to
known landmarks. Also, define Dk

t ( j) ≡ {dt ∈ Dt |dk
t = j}, the set of all possible

sets of data associations at time t in which measurement k is associated to land-
mark j. Then, assuming a uniform prior for data associations

p(dk
t = j | Z−)∝

∑

dt∈Dt
t ( j)

Kt
∏

i=1

p(zi
t | dt ,Z−), (7.14)

where Kt is the number of landmark measurements at time t.
The likelihood of each measurement zk

t given its association dk
t is found by
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marginalization

p(zk
t | dt ,Z−) = p(zk

t | d
k
t = j,Z−)

= p(zs
t | d

k
t = j,Z−)p(zr

t , zb
t | d

k
t = j,Z−)

=

�

∑

c

p(zs
t | l

s
j = c)p(l s

j = c | Z−)
�

× ...

...

�∫ ∫

p(zr
t , zb

t | d
k
t = j, x t , l j )p(x t , l j | Z−)dx t d l j

�

,

(7.15)

where c is the landmark class, and the superscript k for the measurement is
dropped to make the dependence on the range, bearing, and semantic compon-
ents explicit.

To simplify the calculation of the integrals, two approximations are performed.
First, a Monte Carlo approximation approximates the marginalization over the
pose x t . This is done by using a set of pose samples x [n]t , n= 1, ..., N drawn from
p(x | Z−). This results in (7.15) being approximated as

p(zk
t | dt ,Z−)≈
�

∑

c

p(zs
t | l

s
j = c)p(l s

j = c | Z−)
�

× ...

...

�

1
N

N
∑

n=1

∫

p(zr
t , zb

t | d
k
t = j, x [n]t , l j )p(x

[n]
t | Z−)p(l j | Z−)d l j

�

.

(7.16)

Secondly, the Gaussian measurement model is approximated with an ML es-
timate, i.e., p(z | x , l) are approximated as δ(h(x , l); z), where δ(·) is the Dirac
delta function equal to one only where h(x , l) = z and zero elsewhere. The integ-
ral over the landmark is then simplified to a single term, and (7.16) then becomes

p(zk
t | dt ,Z−)≈
�

∑

c

p(zs
t | l

s
j = c)p(l s

j = c | Z−)
�

× ...

...

�

1
N

N
∑

n=1

p(x [n]t | Z−)p(l j = l̂[n]
j
| Z−)
�

,

(7.17)

where still dk
t = j and l̂[n]

j
= x [n]t + h−1(zk

t ). h−1(·) is the inverse measurement
function, converting from range bearing to cartesian coordinates, and is used for
finding the "implied" landmark position l̂[n]

j
.

The latter part of (7.17) is used for both measurement gating and to decide
the landmark candidates in the set H. In other words, if the likelihood

1
N

N
∑

n=1

p(x [n]t | Z−)p(l j = l̂[n]
j
| Z−) (7.18)

is above the measurement gating threshold τ, the landmark is added to the set of
landmark candidates H. If, after iterating through all the known landmarks, H is
empty, a new landmark is created.
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7.5 Multimodal SLAM with probabilistic data association

This thesis implements multimodal SLAM with PDA, utilizing landmark detections
from the proposed landmark detector in Chapter 6, the state estimates in the data-
set, a sum-marginalization PDA [19, 61], and mm-iSAM [56] for inference. Since
no confusion matrix is found for the proposed landmark detector in Chapter 6, we
here use only one landmark class in which all detected landmarks belong. This ef-
fectively removes all terms related to the semantic class of the landmark since all
related probabilities become equal to one.

The choice of using PDA comes from examining the results from the landmark
detector and realizing that since the landmark detector is not able to detect the
same landmark observed from different ranges reliably, the data association has
to handle missing re-detections. Since the PDA presented in Section 7.4 does not
make deterministic associations but can incorporate several possible associations
in one multimodal factor, it is chosen for data association. Since the PDA yields
multimodal factors, mm-iSAM [56] is used for inference.

The SLAM algorithm process consists of five steps performed iteratively for
each timestep. Firstly, the new landmark measurements are found using the land-
mark detector in Chapter 6. Secondly, a new pose variable and odometry factor
are added to the factor graph for the current timestep. Thirdly, measurement gat-
ing is performed to decide whether or not to create a new landmark. Fourthly,
probabilistic data association is performed if no landmark is to be created and a
new measurement factor is added. However, if a new landmark is to be added,
the fourth step creates a new landmark variable, and its measurement is added
as a factor. Lastly, in step number five, the inference is performed on the factor
graph. The following paragraphs will describe the different steps in depth.

The first step is to perform landmark detection on a batch of nb swaths, util-
izing the landmark detector presented in Chapter 6 to generate new landmark
measurements. Each new batch of swaths is registered as a new timestep t in the
factor graph, and a reference pose is needed to do so. We here choose the pose
of the last swath in the batch as the reference pose for the timestep. This way, no
landmark measurements concerning the reference pose are performed "forward"
in time. Using this reference pose for the timestep, the range-baring measure-
ments and their uncertainty have to be transformed. Transforming the mean of
the measurement is trivial using (6.10). However, transforming the uncertainty is
not straightforward. Instead of performing any transformation of the uncertainty,
it is left unchanged. This is far from optimal, but as it is an open problem, a more
accurate solution should be considered in future work.

The second step is to add the new pose variable and odometry factor for each
new timestep, i.e., we want to find p(x t | x t−1). In the case of pure inertial meas-
urement unit (IMU) measurements, this distribution can be found by preintegra-
tion of the IMU measurements [62]. However, as the AUV is equipped with an
additional DVL, we instead want to use the estimated pose from the state estima-
tion. First, let∆x t = x t − x t−1 be the change in x-coordinate (and likewise for y).



Chapter 7: Multimodal SLAM with probabilistic data assosiation 85

Since both x t ∼ N (µt ,σ
2
t ) and x t−1 ∼ N (µt−1,σ2

t−1) are Gaussian distributed,
∆x t is also Gaussian [63], with mean

µ∆ = µt −µt−1, (7.19)

and variance
σ2
∆ = σ

2
t +σ

2
t−1 − 2σt,t−1, (7.20)

where σt,t−1 is the covariance between x t−1 and x t . This covariance is unknown,
and in lack of a better option, we assume it to be σt,t−1 = σ2

t−1, such that σ2
∆ =

σ2
t − σ

2
t−1. It is important to note that this is, at best, a coarse approximation.

Because the data in this thesis is missing the covariance and the variance of the
estimate of both the x- and y-coordinates are increasing linearly with time, this
still gives a positive and hence a valid variance. For the heading, the variance in
the data is constant, and the same type of estimate will not give a valid variance.
A coarse overestimate is to let the variance of the odometry heading ψ∆ be equal
to the variance of ψt .

The third and fourth step is to perform measurement gating and create a new
landmark or associate the measurements with the existing landmarks. Both are
performed the same way as in [19] and described in Section 7.4, using only one
landmark class. (7.18) is used for the measurement gating. Since we only have
one landmark class, (7.17) reduces to

p(zk
t | dt ,Z−)≈

1
N

N
∑

n=1

p(x [n]t | Z−)p(l j = l̂[n]
j
| Z−), (7.21)

the same as (7.18), and is used for calculating the association probabilities.
The last step is to perform inference on the factor graph, and as in [19, 61],

the state-of-the-art multimodal inference algorithm mm-iSAM [56] is used.

7.6 SLAM on the training and test dataset

The PDA and SLAM algorithm presented above was tested on the test dataset and
parts of the training dataset, where the main goal was to achieve loop closure for
at least one of the landmarks. This was achieved for both the training and test
dataset.

The results from the first 2000 swaths of the training dataset are shown in
Figure 7.3, where the blue dots represent poses, and the red dots the landmarks.
The dark blue rings surrounding the poses and landmarks (several are small and
therefore hidden by the dots) are the level plots of their probability distribution,
where the color bar on the right denotes the value. The gray path represents the
original poses from the dataset at each timestep and shows how the SLAM solu-
tion differs from the state estimate in the dataset. It is not possible to assess the
performance without ground truth, and the most important information from the
plot is to see that the solution is finite and that the solution appears probable,
given that it deviates some from state estimates in the dataset.
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Figure 7.3: The plot shows the result performing PDA and inference on the first
2000 swaths of the training dataset. A measurement gating threshold of τ =
1 ·10−7 was used. The blue dots represent poses, and the red dots the landmarks.
The dark blue rings surrounding the poses and landmarks (several are small and
therefore hidden by the dots) are the level plots of their probability distribution,
where the color bar on the right denotes the value. The gray path represents the
original poses from the dataset at each timestep.
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Figure 7.4: Parts of the factor graph from performing PDA and inference on the
first 2000 swaths of the training dataset. The ellipses represent variables in the
factor graph, and the squares represent the factors. Note how l2 are connected
through factors to two poses.

Examining the results in Figure 7.3, a sudden deviation from the original path
can be seen around timestep 25. In Figure 7.4, a part of the resulting factor graph
is shown, and as we can see, a loop closure is happening at timestep 25. A meas-
urement gating threshold of τ= 1 ·10−7 was used. It was found by examining the
detected landmarks from the landmark detector and realizing that it was highly
likely that the landmark detected at timestep 7 and the one detected at timestep
25 were the same landmark. Using this information, the associated likelihood cal-
culated by (7.18) was found, and the threshold set slightly lower.

Further examining the factor graph resulting from PDA and inference on the
first 2000 swaths of the training dataset, an example of how the PDA can assign
multimodal factors can be found. This is shown in Figure 7.5. We can see that
both landmark l4 and l5 are detected at timestep 19, but only one of them at
timestep 20. The results from landmark detection at timestep 19 and 20 be found
in Figure 6.9. This is an example of how the PDA is capable of solving a missing
landmark detection from a non-robust landmark detector. This is done by, instead
of choosing to associate the new measurement at timestep 20 to one of the existing
landmarks, the PDA creates a multimodal factor containing two modes. One mode
represents the likelihood of the measurement stemming from l4, and the other
represents the likelihood of the measurement stemming from l5.

Figure 7.5 also shows how the double detection discussed in Section 6.8 are
being transferred to the factor graph and hence the SLAM solution. This double
detection will add information about the pose and should lead to a more certain
pose estimate. It is important to note that the extra information is wrongfully
added because it stems from the same observation, detected two times by the
landmark detector. However, examining the barely visible level curve around x20
in Figure 7.3, it can be observed that its uncertainty is larger than for the former
and latter poses. This probably stems from the data association not being sure
about which landmark to associate the landmark with, and the situation would
probably be as expected if there was only one landmark and one measurement to
associate. This wrongful adding of information is, however, not thought to be a
problem of the SLAM algorithm but rather of the landmark detector.
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Figure 7.5: Parts of the factor graph from performing PDA and inference on the
first 2000 swaths of the training dataset. The ellipses represent variables and the
squares factors in the factor graph. Note how the factor in red is a multimodal
factor, connecting the pose x20 to both landmark l4 and landmark l5.

To test if it was possible to achieve the same results using an unknown dataset,
PDA and inference were performed on the entire test dataset. The results are
shown in Figure 7.6. Since no ground truth is available, assessing the performance
is not possible. However, the solution appears probable, given the state estimates
in the dataset. The most interesting is investigating whether a loop closure has
been made. By examining the resulting factor graph, a loop closure was found
for the last possible timestep, shown in Figure 7.7. It also shows how the double
detection of landmarks again is wrongfully added as the factors connecting the
landmark to both x30 and x31. However, as achieving a loop closure was the main
goal of the thesis, the results are deemed a success.

This chapter has presented the PDA and the SLAM algorithm used, and, as
it is the last step, it concludes the pipeline. The results show that the pipeline is
capable of performing loop closures, both in the training and test dataset. Further-
more, the results also show that the lack of robustness in the landmark detector is
brought on to the inference, for example, by the double detection of landmarks.
The next chapter will asses the full pipeline, discuss its strengths and weaknesses,
and propose further work.
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Figure 7.6: The plot shows the result performing PDA and inference on the en-
tire test dataset. A measurement gating threshold of τ = 1 · 10−7 was used. The
blue dots represent poses, and the red dots the landmarks. The dark blue rings
surrounding the poses and landmarks (several of them are small and therefore
hidden by the dots) are the level plots of their probability distribution, where the
color bar on the right denotes the value. The gray path represents the original
poses from the dataset at each timestep.

Figure 7.7: Parts of the factor graph from performing PDA and inference on the
test dataset. The ellipses represent variables in the factor graph, and the squares
represent the factors. Note how l2 are connected through factors to three poses.



Chapter 8

Review of the SLAM pipeline

This chapter will review the SLAM pipeline proposed in this thesis, examining the
contributions from the different parts of the pipeline from a broader perspective.
It will present how batches of swaths start as raw sonar measurements and end up
as two landmark measurements, achieving a loop closure in the SLAM algorithm.
The main strengths and weaknesses of the pipeline will also be discussed. The
final section will draw from this and present the suggested further work for the
pipeline.

8.1 From swaths to loop closure

This section will examine the loop closure in the training dataset, also discussed
in Section 7.6, from raw swaths to inference. The loop closure happened between
timestep 7 and 25 and concerns the swaths with swath numbers 300 to 400 and
1200 to 1300 in the training dataset. Figure 8.1 shows the intermediate steps
of the SLAM pipeline for timestep 7 and Figure 8.2 the intermediate steps for
timestep 25. We will below present the intermediate processing steps the batches
of swaths undergo, from swath processing to inference and loop closure, discuss-
ing the weaknesses and strengths of the different steps as we go.

Swath processing

The first step of the SLAM pipeline is to perform swath processing on the batches
of swaths, as presented in Chapter 3. It is important to note that these steps are
not performed batch-wise but swath-wise as soon as a new swath arrives.

In Figure 4.3, the results show that the calculated first possible backscatter is
not coinciding with the measured first backscatter. This is not a ground truth, as
the calculated first possible backscatter is based on the estimated altitude. How-
ever, it points in the direction that something is wrong. Since it, unfortunately,
was not possible to find the reasons for the mismatch, the errors were accepted,
and the methods were used in the SLAM pipeline.
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Figure 8.1: The pipeline from raw swaths with swath number 300 to 400 of the
training dataset at the top to inference for timestep 7 at the bottom.
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Figure 8.2: The pipeline from raw swaths with swath number 1200 to 1300 of
the training dataset at the top to inference for timestep 25 at the bottom.
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In the context of the full SLAM pipeline, assessing how the errors found in the
swath processing might affect other parts of the pipeline is important. If either the
estimated altitude or the slant range of the bins is wrong, the correctness of the
map generation is affected because both are used for generating the map. This,
again, will affect the performance of the entire SLAM pipeline as the correctness
of the landmark detector relies on a correct map. However, as there is no ground
truth, it is unfortunately not possible to assess the pipeline’s performance without
testing in a controlled environment.

Another aspect pointed out in Section 4.3 about the swath processing is how
the intensity normalization produces swaths with a dynamic range that changes
with the slant range of the bins. This artifact is brought onto the map genera-
tion and further to the landmark detector, making the detection using intensity
thresholds more difficult.

Map generation

In the second step of the SLAM pipeline, the batches of swaths undergo map gen-
eration with the optimized probabilistic map generation algorithm presented in
Section 5.4. The algorithm shows good performance in terms of computation time,
where a map from a batch of 100 swaths with a map resolution of 0.1 m, like the
maps in Figure 8.1 and Figure 8.2, is generated in 67.1 ms.

One aspect to note with the map generation used in the context of the pipeline
is that, because of the overlap between batches, it performs the calculations twice
for a large portion of the swaths. A proposal to minimize extra computations can
be found by examining Algorithm 4 and realizing that the for-loop in line 5 to 18
only needs to be performed once per swath. This portion of the algorithm can then
be performed on a smaller batch of swaths, for example, 50 swaths. To generate
the final map, results from several batches can be combined by performing lines
19 to 25. This way, the first portion of the algorithm would only be performed
once per swath, reducing the total computation time.

Landmark detection

The third step of the SLAM pipeline is to perform landmark detection on the gen-
erated maps, as presented in Chapter 6. The first thing to notice in the Figure 8.1
and Figure 8.2 is how the estimated landmark height ĥl , landmark areal Al and
fill rate of the bounding box ρbb differs, even though it is found to be the same
landmark by the PDA. The landmark areal Al and the fill rate of the bounding box
ρbb should differ, as the landmark is observed by different ranges and, therefore,
will produce a different-sized shadow. In addition, it can be observed that both
landmarks have cells at the border of the map, and it is reasonable to assume that
parts of the landmark are cut off by the batching of swaths for both detections.

The height difference is assumed to stem from the landmarks being cut off.
The landmark at timestep 25 is already shown on an earlier stage in the landmark
detection in Figure 6.8 and discussed in Section 6.8. It was found that it was



Chapter 8: Review of the SLAM pipeline 94

cut off and that the shadow, in reality, had a long tail that was not picked up by
the landmark detection in timestep 26. Since the height of the full landmark has
not been estimated, the actual difference in the height estimation is unavailable.
However, as the extra tail would add to the depth of the landmark, this would be
closer than the estimates in Figure 8.1 and Figure 8.2.

The cutoff of the landmarks is again an example of one of the weaknesses of
the landmark detector, as discussed in Section 6.8. One simple solution to remove
the cutoff of landmarks would be to discard all landmark candidates with a pixel
at the map’s border. However, this leads to the second important problem: how
landmarks are sometimes only partially detected. Discarding the landmark at time
step 25 means we would have to rely on the landmark being detected in the next
time step. But, as Figure 6.8b shows, only some parts of the landmark are picked
up, and the landmark is filtered out by geometric filtering. Unfortunately, this
weakness has no obvious and simple solution and should be revised in further
work.

Probabilistic data association and inference

The final step of the pipeline is to perform PDA and inference on the detected
landmarks, as presented in Section 7.5. As no ground truth is available, it is not
possible to assess the accuracy in Figure 8.1 and Figure 8.2.

One important aspect to note is how only the pose at timestep 25 seems to
deviate from the trajectory of the dataset. One reason for this could be the course
approximations of the probability of the odometry factors. Especially the heading
uncertainty is thought to be an overestimate of the true uncertainty and could
explain how only the pose at timestep 25 seems to be affected by the loop closure.
There was little time left to revise this part of the SLAM algorithm, and the coarse
approximation of odometry uncertainty should be a topic for further work.

The range bearing measurement uncertainty is also approximated by not trans-
forming it from the pose found to observe the middle of the landmark to the refer-
ence pose, here chosen as the last pose in the batch of swaths. This is an important
part of the SLAM algorithm and should, therefore, also be revised in further work.

Computation time and summary

Except for the map generation algorithm, the pipeline has not been implemented
or tested for computation time, and it has not been a part of the discussion in this
thesis. However, it is important to note that the current implementation cannot
process the swaths and perform inference in real time. The steps in the pipeline up
to inference is possible to streamline and implement more efficiently. The infer-
ence, however, takes a substantial amount of time, and the mm-iSAM algorithm
may not be mature enough to function in a real-time application, something also
pointed out in [19]. One option would be to change the inference algorithm to
the iSAM2 [55], which has a more mature implementation but would remove the
possibility of using multimodal factors in the factor graph.
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To sum up, this section has examined the loop closure happening in the train-
ing dataset and discussed the SLAM pipeline’s different strengths and weaknesses.
The swath processing is experiencing unexpected results in the calculated and
measured first backscatter return that affect its correctness and potentially affect
the correctness of the entire pipeline. In addition, the intensity normalization pro-
duces swaths with a dynamic range that varies with the slant range of the bins,
which is bought into map generation and landmark detection. The map genera-
tion shows good results, but overlapping batches lead to performing computation
on most swaths twice. Furthermore, the landmark detector is able to detect land-
marks but shows two main weaknesses, both affecting the two timesteps. Lastly,
the coarse approximations made to calculate the odometry and measurement un-
certainty are discussed, together with how the latter is thought to influence how
the loop closure affects the trajectory. Regardless, the PDA and inference result in
a loop closure, fulfilling the thesis goal.

8.2 Further work

Three main parts are pointed out as further work, as these are considered the most
important ones to revise for increasing performance, correctness, and accuracy. In
addition, other minor points of improvement of the thesis are discussed as well.

The first main part that should be assessed in further work is the blind-zone
removal and discrepancy between the measured and calculated first backscatter.
It is important for the correctness of the swath processing, but it could also affect
the correctness of the entire pipeline. The results should be verified in a controlled
environment, and potential solutions should be searched.

The second part is the landmark detector and the weaknesses found in it. The
landmark detector could be further revised with the rest of the pipeline to improve
on these, or the detector could be replaced with a different solution, for example
utilizing machine learning. For the former, discarding landmarks with pixels at
the map’s border and performing steps to achieve a homogeneous dynamic range
in the swaths, and following the map, would be a natural first step to perform.

The last part is to revise the uncertainty approximation performed in the SLAM
algorithm, as these are an integral part of the final solution found by the infer-
ence algorithm. For the odometry uncertainty, performing preintegration of the
IMU measurements or finding better approximations using the uncertainty from
the state estimation could be performed. In addition, adding the semantic class
and the height estimate of the landmark in the data association and the SLAM
algorithm could also be investigated.

To conclude, the main three points to improve on the work in this thesis are the
correctness of the blind zone removal, the robustness of the landmark detector,
and the accuracy of calculating the measurement and odometry uncertainty. This
concludes the review of the SLAM pipeline.
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Conclusion

This thesis successfully implemented and evaluated an underwater multimodal
SLAM pipeline for side scan sonars using real-world data, thereby establishing a
groundwork for future advancements in underwater SLAM for side scan sonar.

The thesis made contributions by enhancing swath processing techniques to
incorporate roll and pitch correction. A novel approach was developed for gener-
ating 2D cartesian probabilistic maps, achieving notable computational efficiency
(for example, achieving computational demands of only 67.1ms for creating a
map from 100 swaths at a resolution of 0.1m). Additionally, a novel landmark
detector was proposed, employing intensity thresholding, geometric filtering, and
height estimation and filtering techniques. While the landmark detector success-
fully identified landmarks, it exhibited certain weaknesses (for example, the full
extent of landmarks are not always detected). The detected landmarks were as-
sociated using probabilistic data association, and the inference was performed
using the state-of-the-art mm-iSAM algorithm. The evaluations carried on in the
thesis suggest moreover that the underwater multimodal SLAM pipeline is able to
perform loop closures in side-scan sonar data as intended.

Nevertheless, the landmark detector’s weaknesses constitute a key challenge
for the SLAM pipeline and suggest the need for further investigation and improve-
ments in future work. Additionally, the accuracy of blind-zone correction should
be verified in a controlled environment due to unexpected results encountered
during the evaluation. Lastly, it is recommended to re-evaluate the course approx-
imations made in the SLAM algorithm for odometry and measurement uncertainty
to ensure more accurate results.

By addressing these aspects, future research can build upon this thesis’s achieve-
ments and advance the underwater SLAM field for side scan sonar, ultimately
contributing to improved underwater navigation capabilities for AUVs.
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