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A B S T R A C T   

In life-cycle impact assessment, currently available characterisation factors (CF) for climate change impacts on 
biodiversity are highly simplified and do not consider spatial and taxonomic differentiation of species or local 
climate variability. We develop the first spatially and taxonomically specific CFs for the impacts of 20 GHGs on 
biodiversity considering 26,648 species across terrestrial and marine ecosystems. Generally, CFs are higher in the 
tropics, and marine species are affected more severely than terrestrial ones. When global GHG emissions from 
2020 are assessed in a scenario with a global temperature rise of 3 ◦C by 2100, an average of 0.25%, 0.15% and 
0.03% of species are negatively affected in 2100 from CO2, CH4, and N2O emissions, respectively, across the 
globe. The new CFs can be used at different levels of spatial and taxonomic aggregation to quantify co-benefits 
for biodiversity of climate change mitigation in tools such as life-cycle assessment, input-output analyses, or 
integrated assessment models.   

1. Introduction 

Climate change is amongst the main threats for biodiversity loss 
(Bongaarts, 2019; Warren et al., 2013) and its effects are expected to 
accelerate as greenhouse gas (GHG) emissions continue to increase 
(Masson-Delmotte et al., 2021). About 5% of species are estimated to be 
at risk of climate-related extinction at 2 ◦C warming, which rises to 16% 
at 4 ◦C warming (Díaz; et al., 2019). To prevent this, global targets and 
agreements for protecting biodiversity, including those related to 
climate change, have been developed (Tittensor et al., 2014). 

Strategies to achieve biodiversity targets depend on our capacity to 
measure impacts of human activities on biodiversity. Life cycle assess
ment (LCA) is a standardised method to quantitatively assess cradle-to- 
grave environmental impacts of products and processes (Hellweg and 
Milà i Canals, 2014) and it is commonly used to quantify potential 
environmental impacts and effects of mitigation strategies (Finnveden 
et al., 2009). 

Currently, available life cycle impact assessment (LCIA) methods for 
the impacts of GHG emissions on biodiversity are heavily simplified, in 
terms of both simulated GHG-induced temperature impacts and species 

responses (Huijbregts et al., 2017; Joos et al., 2013; Urban, 2015; Ver
ones et al., 2020). Existing characterisation factors (CFs) rely on tem
perature change estimated using a global average temperature increase 
that is assumed to be equal for all GHGs, after their conversion to 
CO2-equivalents with Global Warming Potentials (GWP100) (Verones 
et al., 2020). This approach ignores the specific time and spatial 
dimension of the climate system response to different GHGs, for which 
the temperature response can vary from a few years to centuries. The 
response of terrestrial biodiversity to temperature changes is also 
simplified, as it is estimated with a global average damage factor rep
resenting the potentially disappeared fraction (PDF) of species per de
gree temperature increase (0.037 PDF/◦C). This average factor is based 
on the results of a meta-analysis (Urban, 2015) and does not distinguish 
vulnerability gradients across species and regions. Further, these CFs are 
based on data from a limited number of species (i.e., a selection of 
terrestrial vertebrates, butterflies, and plants) and geographical regions 
(i.e., Australia, Mexico, South Africa, Brazil and Europe). Marine eco
systems are also vulnerable to climate change (Bongaarts, 2019) but 
they are not covered by current LCIA models. Local-specific species re
sponses to temperature increases, as well as regional changes in 
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near-surface temperature, may differ substantially, making some regions 
and corresponding species assemblages more vulnerable to climate 
change than others, and some GHGs more impactful on biodiversity than 
others (Nunez et al., 2019; Trisos et al., 2020). Very recently, freshwater 
fishes have been considered in a spatially-explicit model for impacts 
from increasing river water temperatures (Li et al., 2022). 

The inability to capture the regions or species groups that are likely 
to be impacted first and most severely, as well as the exclusion of certain 
environments and species groups, limits the capability to accurately 
quantify effects on biodiversity while assessing the implications of GHG 
emissions, and to take targeted and effective conservation measures. In 
LCA, biodiversity impacts from GHG emissions are frequently combined 
at an endpoint level with other impact categories (exemplified in 
(Dorber et al., 2020) with land and water use), which are then used to 
assess the total potential biodiversity impact of a product or process. An 
incomplete characterization of GHG impacts on biodiversity impedes a 
comprehensive assessment of global biodiversity footprints. For 
example, as most of the renewable energy options (solar PV, hydro
power, bioenergy) usually have larger land occupation than fossil fuels, 
which on the other hand are associated with larger emissions of GHGs, 
improper characterization of biodiversity impacts from GHGs can lead 
to unbalanced and suboptimal assessments. Furthermore, incomplete 
impact characterization may lead to problem-shifting from pressures, 
species groups, or regions that are comprehensively evaluated to those 
for which only part of the impacts is considered. 

In this study, we present the first set of spatially and taxonomically 
explicit LCIA CFs for impacts on biodiversity from GHG emissions, 
covering both terrestrial and marine ecosystems. This new approach 
integrates effects of 20 different GHG emissions on temperature changes 
at a grid-level with the grid-specific response of 26,648 species (grouped 
into nine species groups) to temperature changes to estimate the 
potentially affected fraction of species per grid cell and kg of GHG 
emitted. A range of future climate scenarios are considered to explicitly 
model differences in 2050 and 2100 in terms of background climatic 
conditions (RCP2.6, 4.5, and 8.5). These CFs are ready for use in foot
print studies and made publicly available at different levels of spatial 
(individual grid, biogeographical realm or global average) and taxo
nomic (individual or combined species groups) aggregation to facilitate 
their application in the most common tools used in environmental 
impact assessments, such as LCA, environmentally extended input 
output analyses (EEIOA) or integrated assessment models (IAMs). 

2. Methods 

2.1. Effects of GHG emissions on temperature change 

The impact of GHG emissions on temperature change is computed 
using the Absolute Global Temperature change Potential (AGTP) for 20 
GHGs (CO2, CH4, N2O; chlorofluorocarbons: CFC-11, CFC-12, CFC-13, 
CFC-113, CFC-114, CFC-115; hydrofluorocarbons: HFC-125, HFC- 
134a, HFC-152a, HFC-23, HFC-32; fluorinated species: NF3, PFC-116, 
PFC-14, SF6, SF5CF3, SO2F2). AGTP is a commonly used metric to 
assess instantaneous changes in surface temperature of an emission and 
is measured in K per kg GHG emitted (Myhre et al., 2013; Shine et al., 
2005). AGTPs until a time horizon (TH) of 100 years are computed ac
cording to the method used in the IPCC Assessment Report (Joos et al., 
2013; Myhre et al., 2013) (more information in Supplementary Infor
mation (SI) Eq. S1–4). First, the fraction of the pulse of a GHG remaining 
in the atmosphere at a certain time after emission is calculated using the 
perturbation lifetimes of each gas (see the coefficients used in Table S1 
and S2 in SI) (Boucher and Reddy, 2008; Joos et al., 2013). The asso
ciated radiative forcing (RF) profile is computed according to the spe
cific radiative efficiencies of the gas, typically assumed to be 
time-invariant in the calculation of emission metrics (Aamaas et al., 
2012). Then, the effect of each specific emission on the global temper
ature is estimated by combining the RF profile with a temperature 

response function until the intended TH (2050 or 2100, in our study). 
Annual-average near-surface temperature data (2-m air temperature 

for terrestrial species and surface ocean temperature for marine species) 
are produced as the mean of five climate models (CESM1(CAM5), 
HadGEM2-ES, IPSL-CM5A-MR, MIROC5, and MPI-ESM-MR) (Collins 
et al., 2008; Dufresne et al., 2013; Jungclaus et al., 2013; Kay et al., 
2015; Watanabe et al., 2010) at a 1.875◦ resolution (~200 km at the 
equator) for the years 2010–2100 (5-year intervals) for three future 
climate scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5). These tempera
ture changes are used to calculate the number of species affected per grid 
cell due to the temperature change in a specific year and climate sce
nario (Section 2.2). The proportion of the AGTP for each GHG emission 
is then used to estimate how much of the temperature change (and 
species affected) for each grid cell at the given year in the different RCPs 
can be attributed to each specific GHG emitted (Section 2.3). 

2.2. Effects of near-surface temperature change on biodiversity 

The effect of temperature change on biodiversity is defined as the 
fraction of a species group whose realised near-surface temperature 
niche limit has been exceeded in a climate scenario. Realised species 
temperature niche limits are obtained from a study (Trisos et al., 2020) 
that overlaid species ranges with historical (annual-average) 
near-surface temperature data to estimate niche limits, defined as the 
maximum temperature a species has experienced across its range over 
the period 1850–2005. 

We overlay species spatial range maps with maps of near-surface 
temperature projections (per year, y) and identify parts of the species 
range in grid cell k where the species temperature niche limit has been 
exceeded for at least five consecutive years. This results in maps of 
species with surpassed temperature niche limits per grid cell and year. 
These maps of species with surpassed niche limits are grouped into 
species groups g and are subsequently aggregated to quantify the num
ber of species whose niche limit has been surpassed in grid cell k and 
year y (Sk,y,g,niche surpassed), where the number of species increases over 
time as temperatures increase as a result of cumulative CO2 emissions to 
the atmosphere. We used six climate scenarios for future temperature 
projections in 2050 and 2100 (RCP2.6, RCP4.5, and RCP8.5). The 
analysis includes 26,648 species, considering various terrestrial and 
marine species groups, such as birds (n = 7177), terrestrial mammals (n 
= 5160), terrestrial reptiles (n = 4599), amphibians (n = 5998), marine 
mammals (n = 117), marine reptiles (n = 61), marine fish (n = 1822), 
benthic marine invertebrates (n = 916), and corals and seagrasses (n =
798). We calculate at the grid cell level the potentially affected fractions 
of species (PAF) per year for each group separately, before aggregating 
them to the marine or terrestrial (including freshwater) groups. The PAF 
per grid cell is defined as the number of the species (S) whose niche limit 
has been exceeded relative to the total number of species in the grid cell 
(based on species spatial range maps without considering surpassed 
temperature niches): 

PAFk,y,g =
Sk,y,g, niche surpassed

Sk,g
(1) 

The PAF per species group (g) is aggregated to terrestrial and marine 
PAFs by considering all species groups within the realm r (i.e., r: 
terrestrial or marine): 

PAFk,y,r =

∑
gSk,y,g,r,niche surpassed

∑
gSk,g,r

(2) 

The global average PAF is calculated as the species-richness-weighed 
mean of all grid cells: 

PAFy,g =

∑n
kPAFk,y,g⋅Sk,g
∑n

kSk,g
(3) 

The PAF/ΔT is then calculated by dividing the global average PAF by 
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the global mean temperature change. The PAF per unit global temper
ature change (PAF/ΔT) is calculated by dividing the PAF by the increase 
in temperature between the global average near-surface temperature in 
2010 and the global average near-surface temperature in the respective 
climate scenario (global average temperatures are calculated based on 
the area-weighted mean of the grid cells across the globe). 

Species ranges are obtained from the International Union for Con
servation of Nature (Oliver, 2019) and BirdLife International (Allinson, 
2018). Extinct species were omitted from the analysis, as well as parts of 
the species ranges where presence is uncertain, species have been 
introduced, or that are used as passages or during non-breeding seasons 
only. Species temperature niche limits are defined as the multi-model 
mean of niche limits estimated by (Trisos et al., 2020). Species for 
which no niche limits have been estimated were omitted from the 
analysis. Species are considered affected in locations where their real
ised temperature niche limit (i.e., highest historical temperature in their 
range) is exceeded for five consecutive years. In LCIA methodology, 
impacts on biodiversity are assessed based on species richness losses 
(Huijbregts et al., 2017) and the same modelling approach is followed 
here. LCA is a tool that traditionally assesses the negative environmental 
impacts of anthropogenic activities. Hence, positive impacts (such as 
larger ranges for certain species) are not assessed and are also dis
regarded here. 

2.3. CFs for GHG impacts on biodiversity 

We calculated the CFs across the nine marine and terrestrial species 
groups for 2050 and 2100 in PAF/kg GHG by multiplying the temper
ature response to GHG emissions, namely the AGTP (measured in K/kg 
GHG) from Section 2.1 with the PAF per unit global temperature change 
(PAF/ΔT) from Section 2.2 (Eq. (4)). This results in CFs indicating the 
PAF per kg GHG emitted (PAF/kg GHG). This can be interpreted as the 
fraction of species that will be affected by warmed climate conditions 
due to the emission of a kg of a GHG. We use the AGTP40 and AGTP90 to 
compute the impacts on biodiversity in the years 2050 and 2100. 

CFk,y,g,x = PAFk,y,g
/

kg GHGx =
(
PAFk,y,g

/
ΔTy

)
⋅
(
ΔTy

/
kg GHGx

)
(4) 

We calculated CFs for impacts for each marine and terrestrial species 
group separately and for all species groups combined (based on sums of 
cell-level number of affected species and cell-level species richness 
across the species groups), similar to calculating realm aggregated PAFs 
(Eq. (2)) (Olson et al., 2001) (see Figure S1 in SI). We also developed 
biogeographical realm and global aggregated CFs, based on the spatially 
aggregated PAFs (Eq. (3)). Regional averages are calculated as the 
richness-weighted CFs of the grid cells within the region. 

3. Results and discussion 

3.1. Spatially explicit characterization factors 

The spatially explicit PAF in 2050 and 2100 per Gt CO2 emitted 
under RCP4.5 for all nine species groups combined are shown in Fig. 1 (a 
and b). There is a spatial heterogeneity in the number of potentially 
affected species. The highest impacts are generally located in the trop
ical band and are larger in 2100 than 2050, as the number of species 
affected by global warming cumulates over time. The difference be
tween 2050 and 2100 concerns both an increase in intensity and spatial 
expansion of the potentially affected regions, especially in the North and 
across the oceans in the tropical band (Fig. 1c). In 2050, mid- and high- 
latitude areas of the boreal hemisphere have a lower number of affected 
terrestrial species than the rest of the globe. For a global average tem
perature increase of 3 ◦C (which is the mean projected global temper
ature change in 2100 in RCP4.5), about one out of every 357 species in 
the most impacted areas can be potentially affected by the emission of 1 
Gt CO2. 

Figures S2-S4 in the SI show the spatially explicit number of affected 
species in 2100 for the major GHGs (CO2, CH4 and N2O) emitted under 
RCP4.5 scenario for all nine individual species groups (and all species 
groups combined). Corals and seagrasses are the group with the largest 
number of species affected for all three GHGs, while marine reptiles 
show the lowest number of species affected on a global scale. In general, 
terrestrial and marine mammals are most vulnerable in the tropics. 
Birds, amphibians and terrestrial reptiles are also primarily sensitive 
around the equator, while the vulnerability of benthic invertebrates, 
corals and seagrasses, marine reptiles and fishes is the highest in South- 
East Asia and North Oceania. Owing to the larger warming efficiency, 
impacts per unit of emissions are higher for N2O and CH4 than CO2. 

3.2. Aggregated characterization factors 

CFs of combined species groups (e.g., terrestrial species) are calcu
lated based on the sum of the cell-level number of affected species and 
cell-level species richness of combined species groups (see Table S3 in 

Fig. 1. Global potentially affected fraction of species (PAF) in 2050 (a), 2100 
(b), and the difference between 2050 and 2100 (c) per Mt CO2 emitted under 
RCP4.5, averaged over all species groups. In (c), positive values indicate that 
PAF is larger in 2100 than 2050. 

C.-M. Iordan et al.                                                                                                                                                                                                                              



Resources, Conservation & Recycling 198 (2023) 107159

4

SI). In 2050, global average affected fractions of species differ by a factor 
of two between different climate scenarios. This increases to about a 
factor of four in 2100, indicating that over time the differences between 
climate scenarios become more pronounced (i.e., climate impacts on 
species increase less steeply in RCP2.6 than RCP8.5). For example, under 
mitigation (RCP4.5 versus RCP8.5), we find the largest potential re
ductions of the PAF per kg GHG emitted in 2100 to be of a factor of 1.58 
for N2O, while with more stringent mitigation (RCP2.6 versus RCP8.5), 
the largest potential reductions are for CO2 with a factor of 3.31 
(Table S3 in SI). Being successful in mitigating climate change thus leads 
to significantly smaller biodiversity impacts. 

For each GHG, marine species show a larger relative increase in PAF 
from 2050 to 2100 than terrestrial species. While terrestrial species are 
more affected in the years up to 2050, marine species will be more 
affected after that. As most of the GHGs increase more than 100% be
tween 2050 and 2100, and the oceans need more time than land areas to 
increase its temperature due to the thermal inertia, this indicates the 
larger sensitivity of the marine species to long term warming. From 
Table S3 in SI, a difference in the temporal evolution of PAF between 
short-lived (i.e., CH4 and HFC32) and long-lived gases (all the others) 
emerges. Short-lived climate pollutants have a much lower percent in
crease in PAF values between 2050 and 2100 than long-lived gases. For 
example, for terrestrial species the increase is between 7% (HFC32, 

lifetime: 5.2 years) and 14% (CH4, lifetime: 12.4 years) for short-lived 
GHGs, and between 74% (CFC12, lifetime: 100 years) and 101% (SF6, 
lifetime: 3200 years) for long-lived GHGs. The same is valid for marine 
species, although increases are slightly higher. As the number of 
potentially affected species increases over time, this indicates that the 
powerful but (relatively) time-limited effect of short-lived GHGs mostly 
influences the rate of climate change and it has a large effect on species 
groups by 2050. As the climate forcing from short-lived GHGs remark
ably declines over time, lower additional effects are registered by 2100. 

3.3. Trends across species groups and geographic realms 

In general, there are species groups that are relatively resilient to 
climate change (i.e., marine mammals, birds, terrestrial mammals, and 
marine reptiles) and groups that are relatively vulnerable (i.e., marine 
fish, amphibians, benthic-invertebrates, corals and seagrasses, and 
reptiles) (Fig. 2a, b, c). Amongst the terrestrial species groups, am
phibians and reptiles are the most vulnerable to emissions of GHGs. 
Amongst the marine groups, higher CFs are typically associated with 
corals and seagrasses and marine fish. This is consistent with previous 
research showing that these species groups are the most affected by 
global temperature changes (Carvalho et al., 2010; Gibbons et al., 2000; 
Urban, 2015; Wake, 2007). This may be due to their lower long-term 

Fig. 2. Average potentially affected fraction (PAF) of species per group (a, b, c) and geographic realm (d, e, f) in 2050 (red bars) and 2100 (red plus orange bars) per 
Gt GHG for the three main gases (CO2, CH4 and N2O) emitted under RCP4.5. The PAF per Gt GHG for RCP 2.6 (lower end) and RCP 8.5 (higher end) are presented as 
error bars in black for 2050 and in green for 2100. For the PAF per Gt GHG for CO2, CH4 and N2O per species groups see Table S3–5 in SI (here we shorten the names 
of the species groups Corals and seagrasses to Corals, Benthic invertebrates to Benthic, and Terrestrial/Freshwater to Terrestrial). For the PAF per Gt GHG for CO2, 
CH4 and N2O for geographic realms see Table S6 in SI. 
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dispersal rates relative to the speed of temperature increases (Warren 
et al., 2013). The relative difference amongst the species groups does not 
change substantially between 2050 and 2100, but the increase in the 
average affected fraction of species over time is more pronounced for 
some groups (e.g., corals and seagrasses) than others (e.g., amphibians) 
(Table S4 and S5 in SI). 

For CO2, the average PAF impact per unit of emission nearly doubles 
between 2050 and 2100 for almost all the species. In the case of CH4, 
which contrarily to CO2 is a short-lived GHG, the number of potentially 
affected species shows relatively smaller differences between 2050 and 
2100, as most of the CH4-induced warming occurs in the couple of de
cades following the emission. In the case of N2O, which is a long-lived 
GHG (lifetime: 128 years), the temporal distribution of potentially 
affected species is more similar to that of CO2, with an impact that in
creases over time. 

On average, species in Antarctic, Palearctic, and Nearctic biogeo
graphical realms are the least affected, followed by those in the Neo
tropics, Oceania, and Afrotropics (Fig. 2d, e, f). Species in the Indomalay 
and Australasia are the most affected amongst the terrestrial realms by 
the temperature increases due to CO2 and N2O emissions while in the 
case of CH4, the Afrotropics is the most impacted realm, as it includes the 
species that are more vulnerable to short-term changes in temperature 
(Table S6 in SI). Even if the temperature increase is higher in the Arctic 
area than the global average due to the polar amplification effect, the 
species living in the Arctic regions generally have larger ranges when 
compared to the species at lower latitudes, resulting in larger temper
ature tolerances. The temperature niches are derived from overlaying 
the species ranges with historical temperature maps, and Arctic species 
can cover a larger temperature range compared to small-ranged species. 
Larger temperature tolerances make species more resilient to climate 
change, resulting in lower general impacts in the Arctic region (although 
individual species can be more vulnerable, but when normalized to the 
number of species per grid cells they become a small fraction). 

Species in the marine environment are on average more vulnerable 
than their terrestrial counterparts when it comes to impacts from long- 
lived GHGs like CO2 and N2O, which tend to cumulate over time. 

The latitudinal distribution of potentially affected fractions of spe
cies normalized to the unit of temperature changes in the different RCPs 
is shown in Figure S5 in SI, which summarizes the ratio of species 
affected by temperature change per grid cell at each latitudinal step. 
Impacts in the RCP2.6 climate scenario are lower compared to the other 
scenarios, with only a few species groups slightly affected in the tropics. 
The situation differs for the other two RCP scenarios. As previously 
mentioned, the species most severely affected are those in tropical re
gions, but communities are also affected at higher latitudes (both 
northern and southern hemisphere). We also find that the number of 
affected species per degree temperature change and latitudinal step is 
generally the highest for RCP8.5, but there are evident exceptions. For 
example, some species groups (e.g., benthic invertebrates and marine 
fish) reach their maximum normalized impact per temperature change 
with RCP4.5. This means that for these groups further temperature in
creases do not remarkably affect new species, so that the denominator 
(temperature change) increases more than the nominator (number of 
species affected), thereby making the normalized score smaller for 
RCP8.5 than RCP4.5. This aspect is mainly observed in the tropics rather 
than at high latitudes. One of the reasons behind this could be that a 
large share of the species in these groups have a narrow temperature 
niche in the tropics, which is exceeded already with the temperature 
increase projected for RCP45. These results are generally in line with 
previously reported trends, which show the high sensitivity of tropical 
areas to climate warming (Román-Palacios and Wiens, 2020; Urban, 
2015). Similarly, marine species in the tropics have been previously 
indicated to be the most vulnerable to temperature increases (Comte and 
Olden, 2017), due to their lower physiological thermal tolerances 
(Deutsch et al., 2008; Tewksbury et al., 2008). 

3.4. Biodiversity impacts of GHG emissions in 2020 

The CFs produced in this study are applied to global emissions in 
2020 of the three most important GHGs, i.e., CO2 (34 Gt), N2O (12 Mt) 
and CH4 (570 Mt), to appreciate their relative contributions. When 
looking at the gridded impacts in 2100 from the combined effect of the 
three gases (Fig. 3a), on average 0.4% of the species will be negatively 
affected across the globe, with a maximum of 13% in the most sensitive 
locations in the tropics (concentrated around the central Indo-Pacific). 
When considering different evolutions of the background climate sys
tem (Figure S6 in SI), areas affected, and intensity of the impacts in
crease under RCP8.5 and decrease in RCP2.6. The resulting impacts and 
the benefits of stringent mitigation actions are not geographically uni
form, indicating the inherent limitations of using global average values. 
With no mitigation (RCP8.5), high PAF scores are found across Central 
Africa, Central and South America and the Indonesian hotspot, and 
marine areas in the tropics are severely affected. 

The breakdown of total potentially affected species from global 
emissions in 2020 of CO2, CH4 and N2O under all RCPs is shown in 
Fig. 3b (computed using the values in Table S3 in SI). The mean global 
PAF over the grid cells are 0.14%, 0.13%, and 0.01% for CO2, CH4 and 
N2O under RCP4.5 in 2050. In 2100, the global average PAFs are 0.25%, 
0.15% and 0.03%, respectively. The spread in the results due to different 
RCP scenarios increases over time. Under RCP2.6 and RCP4.5, CH4 has 
the same contribution to the potentially affected terrestrial species in 
2050, and slightly smaller for marine species. In 2100, the relative 
importance attributed to CH4 emissions declines to about 40% for 
terrestrial species and to 34% for marine species (under RCP4.5). As 
observed with the individual CFs, the longer TH increases the relative 
importance of long-lived gases more than that of short-lived gases 
(contributions from CO2 and N2O nearly double from 2050 to 2100, 
while those from CH4 remain relatively stable). 

Such dynamics and relatively high proportion of CH4 impacts differ 
from what is typically observed when aggregating climate effects of 
annual emissions for these three gases with common indicators such as 
GWP100 or GTP100, which usually highlight a large predominant role 
of CO2 when assessing climate impacts of today’s emissions. The results 
observed for biodiversity rather resemble those obtained by applying 
climate metrics with shorter time-horizons, e.g., GWP20 or GTP20, 
which attribute more weight to short-lived gases (Allen et al., 2016; 
Jolliet et al., 2018). Species affected can be regarded as a cumulative 
indicator that keeps memory of the time evolution of the impact, which 
accumulates over time and do not decrease while the atmospheric 
concentration following an emission of a gas declines and its tempera
ture impact gradually fades. There is a high sensitivity of the species to 
the rate of climate change, which in turn is highly sensitive to emissions 
of powerful (although short-lived) gases like CH4, which lead to irre
versible impacts on biodiversity. If from a climate change perspective 
abating emissions of CO2 is a clear priority for long-term temperature 
stabilization, from a biodiversity point of view reducing CH4 emissions is 
also key to prevent near-term extinction risks. 

4. Limitations 

With increased magnitude and speed of global warming, better tools 
are needed to quantify the impacts of climate change on biodiversity at 
the taxonomic and regional level. In this study, we develop the first set of 
spatially and taxonomically differentiated CFs to assess the impact of 
GHG emissions on biodiversity. The produced outcomes are in the form 
of tabularized values for biogeographic realm or global-average CFs or 
spatially gridded data. The CFs are made publicly available in a format 
that is suitable for integration in existing impact assessment frameworks 
and can be used to better represent effects of GHG emissions on biodi
versity in LCA, EEIO or IAMs. The large diversity of CFs availability is 
suitable to match different research questions and allows to explore how 
results can differ across different levels of aggregation. LCA practitioners 
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now have the opportunity to evaluate the biodiversity impacts in terms 
of impact on both terrestrial/freshwater species and marine species 
separately and across different locations, spatial scales, and time hori
zons, rather than using a single aggregated global value. Depending on 
the objectives of the individual study, each analyst has the flexibility to 
use different levels of spatial resolution and species group. Given the 
sensitivity of the CFs to different climate scenarios, the extent to which 
the results depend on the type of RCPs considered for the CFs should be 
explored and, if significant, results for different RCPs should be reported 
in a sensitivity analysis. 

A direct comparison of our CFs with those previously available in the 
literature is hindered by a variety of factors. Table 1 shows a summary of 
the comparison, highlighting the main differences in terms of method
ological approach and data coverage. From a numerical point of view, 
our values are generally lower by one order of magnitude, but the 
comparison can only be done for impacts aggregated as global averages 
for terrestrial species, as the previous method lacks both a character
ization of marine species and a higher resolution on species responses 
and climate impacts (Table S7 in SI). There are large methodological 
differences between the approaches, and our analysis specifically aimed 
to overcome the limitations and simplifications in the previous LCIA 
method using more sophisticated methods and higher spatial and tem
poral resolution. For example, we calculated grid-specific temperature 
impacts using AGTP for each GHG and under different RCPs instead of 
converting all GHGs to CO2-equivalents with GWP100 and then consider 
a global average temperature increase from CO2; or we estimated species 
affected using PAF/ ◦C for each of the 26,648 species at the grid level, 

instead of using a global average factor for terrestrial ecosystems only. 
The spatial patterns of species responses that emerged from this analysis 
show the large variations in both regions and species groups, which 
cannot be properly represented by an average global factor. 

Our analysis is not exempt from limitations and uncertainties, mostly 
associated with the integration of varying datasets and models into a 
common framework. Assessing the uncertainty level of the CFs is only 
possible to a limited extent, mostly because it depends on the original 
data for the species niche limits (Trisos et al., 2020), for which uncer
tainty ranges are not available, and to the computation of the climate 
metric. For the latter, we consider a multi-model mean to represent 
future temperature projections and alternative background climate 
scenarios as described by the RCPs. In addition, there are other quali
tative uncertainties that can be considered. The uncertainty in the AGTP 
is determined by the uncertainties in the perturbation lifetimes and 
radiative efficiency of the GHGs, as well as from the ocean heat uptake 
and climate sensitivity (Stocker, 2014). Impulse response functions and 
radiative efficiencies are based on a constant background climate, in line 
with the approach used in the IPCC reports to secure a transparent 
comparison (Forster et al., 2021; Myhre et al., 2013). The climate 
sensitivity used is 3.9 ◦C for a doubling of CO2 concentration. The latest 
IPCC assessment report has a best estimate of 3 ◦C, with a likely range of 
2.5 ◦C to 4 ◦C (Masson-Delmotte et al., 2021). Uncertainty is also found 
in the time evolution of the temperature response function, which has 
been shown to be model-dependant. We have used a function from the 
HadCM3 climate model (Boucher and Reddy, 2008; Masson-Delmotte 
et al., 2021) that is amongst the most applied in the emission metric 

Fig. 3. Characterized potentially affected fraction of 
species (PAF) due to global CO2, CH4 and N2O emis
sions in 2020. a) spatially explicit characterized PAF for 
all species groups combined under RCP4.5 in year 
2100. b) characterized PAF using the global aggregated 
PAFs for each realm: terrestrial (amphibians, birds, 
mammals, reptiles), marine (benthic invertebrate, 
corals and seagrasses, marine mammals, marine fish, 
marine reptiles) and global averages (all species groups 
combined) under RCP4.5 (main bar plots in yellow) 
with the error-bars showing results under RCP2.6 
(lower end) and RCP8.5 (higher end).   
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literature (Aamaas et al., 2016, 2012), and it falls within the range of 
various response functions tested in a multi-model intercomparison 
study (Olivié and Peters, 2012). Future climate change projections are 
also sensitive to individual model settings, but we used multi-model 
means of future temperature changes at a grid level to mitigate risks 
of dependence on specific model biases. 

The PAF is estimated as the fraction of species for which the tem
perature in a grid cell has exceeded for at least five consecutive years the 
maximum temperature that a species has experienced throughout its 
range. However, it is unclear whether all species will be affected by 
temperatures warmer than what they have experienced historically, so 
these results should be interpretated in terms of uncertainty about their 
persistence and potential risks to biodiversity. Data on the distribution 
of species is also associated with uncertainty and constant historical 
ranges were assumed for deriving the niche limits (Trisos et al., 2020), 
and possibilities of species adaptation at increasing warming levels are 
not taken into account. We use in this study species niche limits based on 
sea surface temperature which is a proxy for temperature effects on all 
marine species. 

Overall, this is a first attempt to quantify improved and more 
representative CFs for biodiversity impacts from emissions of GHGs, 
advancing the multiple limitations and low-resolution of the existing 
method. Future research can better explore how CFs are sensitive to the 
possible multiple sources of uncertainties and progressively refine the 
estimates when new datasets and approaches become available. 

5. Conclusions 

This study makes a step forward in modelling the impact of climate 
change on biodiversity. For the first time, it estimates characterization 
factors of biodiversity impacts from different GHGs in a spatially explicit 
way and for marine species, which were never covered before. Devel
oping advanced models to better include biodiversity impacts in tools 
used to support the decision-making process is an urgent priority to 
facilitate addressing the climate and biodiversity crises simultaneously, 
and to make sure that actions are taken where most needed. By explicitly 

linking GHG emissions to biodiversity impacts, we produced new in
dicators to estimate the temporal dynamics of climate-driven damages 
to biodiversity that contribute to better knowledge on region- and 
species-specific impacts of adaptation and mitigation measures. 
Reducing emissions and the rate of exposure to dangerous climate 
conditions contributes to reducing the risks of losses in ecological di
versity. However, temperature changes are not the only threat to 
biodiversity, which is also highly sensitive to habitat loss, pollution, 
invasive species and overexploitation (Harfoot et al., 2021). Advances in 
the characterization of these threats, and their consistent integration 
into impact assessment models, is key for the realization of a set of in
dicators for species response to multiple stressors simultaneously, 
thereby improving our capacity to develop strategies for a sustainable 
development that is not at the costs of species diversity. 
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Hellweg, S., Milà i Canals, L., 2014. Emerging approaches, challenges and opportunities 
in life cycle assessment. Science 344, 1109–1113. 

Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F., Stam, G., Verones, F., Vieira, M., 
Zijp, M., Hollander, A., van Zelm, R., 2017. ReCiPe2016: a harmonised life cycle 
impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 
22, 138–147. https://doi.org/10.1007/s11367-016-1246-y. 

Jolliet, O., Antón, A., Boulay, A.M., Cherubini, F., Fantke, P., Levasseur, A., McKone, T. 
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