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Equations describing acoustic streaming in soft porous media driven by focused ultrasound
are derived based on the assumption that acoustic waves pass through the porous material
as if it were homogeneous. From these equations, a model that predicts the time-averaged
flow on the macroscopic scale as well as the advective transport of the trace components is
created. The model is used to perform simulations for different shapes of the focused ultra-
sound beam. For a given shape, and using the paraxial approximation for the ultrasound, the
acoustic streaming is found to be linearly proportional to the applied ultrasound intensity,
to the permeability of the porous material and to the attenuation coefficient, and inversely
proportional to the liquid viscosity. Results from simulations are compared to a simplified
expression stating that the dimensionless volumetric liquid flux is equal to the dimensionless
acoustic radiation force. This approximation for the acoustic streaming is found to be rea-
sonable near the beam axis for focused ultrasound beam shapes that are long in the axial
direction, compared to their width. Finally, a comparison is made between the model and
experimental results on acoustic streaming in a gel, and good agreement is found.
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I. INTRODUCTION

In the treatment of cancer, ultrasound has been
found to improve the delivery of therapeutic agents
into tumors, thereby improving the therapeutic re-
sponse (Snipstad et al., 2021). There are many proposed
mechanisms for this improvement, among them is acous-
tic streaming which is the net movement of fluid gener-
ated by propagation of sound waves (Afadzi et al., 2020;
Nieminen et al., 2012, 2015; Raghavan, 2018). However,
to understand and assess the role of acoustic streaming,
and to compare its effect relative to other possible mech-
anisms for improved delivery, it would be of great advan-
tage to have an experimentally validated model.

The extracellular matrix of a tumor, which consists
of a collagen network embedded in a gel of glycosamino-
glycans, can be considered a porous medium (Snipstad
et al., 2021). We will therefore in this work derive equa-
tions describing acoustic streaming in soft porous media
driven by focused ultrasound. The derivations are based
on the assumption that acoustic waves pass through the
porous material as if it were homogeneous. The resulting
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equations for the time-averaged flow on the macroscopic
scale are, even though they represent a different physical
situation, on the same form as Darcy’s law (Whitaker,
1986) for an incompressible flow field. These equations
seem to be a natural extension of Darcy’s law to the
case of acoustic streaming. They do not seem, however,
to have been employed very often in the literature. We
are also not aware of any previously published detailed
derivation of these equations such as the one presented
here. Presentation of the derivation is important because
it makes the physical interpretation of the variables in-
volved and the underlying assumptions clear and thus
makes it possible to test the model and its assumptions
against experiments.

Since one of the main motivations for studying acous-
tic streaming in soft, porous media is its potential impact
on transport of drugs in tissue, we also include a time-
and volume-averaged equation for advective transport of
trace components.

There have been other recent contributions to the
theoretical description of acoustic streaming in soft
porous media from e.g. Raghavan (2018), Wessapan and
Rattanadecho (2020), Manor (2021) and Yuan (2022).
Interestingly, our equations are not the same as those
of Raghavan (2018). While he emphasizes the impor-
tance of a conservation force, this term is not present
in our equations. This stems from a different assump-
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tion about the second-order velocity of the solid phase
and constitutes an important difference, since the con-
servation force is stated to be a dominating factor in
Raghavan (2018) and Yuan (2022). Raghavan (2018)
compared his model to results from different experiments
on ultrasound-enhanced delivery in tissue and obtained
fair agreement in some cases, e.g., when comparing it
to the results of Lewis et al. (2012) and Olbricht et al.
(2013) for ultrasound-assisted convection-enhanced de-
livery to the brain of rodents. Yuan (2022) derived a
model for acoustic streaming in soft porous media, which
includes a conservation force similar to that in Ragha-
van (2018). Furthermore, he proposed a new mechanism,
the squeezing interstitial fluid via transfer of ultrasound
momentum, to be the main contributor to the stream-
ing. By this mechanism, the ultrasound beam generates
interstitial fluid streaming from squeezing the tissue in
the focal volume. Wessapan and Rattanadecho (2020)
numerically calculated the acoustic streaming field in a
porous tissue during exposure to high-intensity focused
ultrasound by employing the Brinkman-extended Darcy
model (Brinkman, 1949). They did not, however, go into
any details on how they arrived at their equations. Manor
(2021) presented a comprehensive theoretical treatment
where he considers the effect of wavelength with respect
to pore size and the effect of similar and different acous-
tic properties in the fluid and solid phases. His equations
were, however, based on flow in tubes and therefore not
as general as those presented here. A formal volume-
averaging approach, such as the one used here, was not
applied.

Manor (2021) suggested a simplified equation to es-
timate the acoustic streaming which can be evaluated
directly from knowledge of the acoustic radiation force
and does not require the solution of a partial differen-
tial equation. In practice, the same approach was also
used by Afadzi et al. (2020) and Løvmo et al. (2020).
They used a Darcy-type equation to estimate the acous-
tic streaming, but replaced the pressure gradient with
the acoustic radiation force as the only driving force for
the flow. In our work, we test the validity of this simpli-
fied approach against numerical solutions to the derived
model equations and provide new insight as to when the
approximation is valid and when it is not.

There is a decent amount of literature on experi-
ments studying ultrasound-enhanced delivery in tissue.
However, to use these to validate a model is often diffi-
cult. One reason for this difficulty is that tissue prop-
erties, such as permeability and porosity, are not always
known accurately for the particular samples used in the
experiments. They may also vary considerably between
different samples, making it difficult to look them up from
other sources. For the purposes of validating a model, it
is of great advantage to have experimental results from
a more controlled environment where important model
parameters are independently measured. El Ghamrawy
et al. (2019) performed experiments studying acoustic
streaming induced by focused ultrasound of different in-
tensities in a macroporous gel. The porosity and perme-

ability of the gel was independently measured. We show
that the model derived here agrees with the experimen-
tal results of El Ghamrawy et al. (2019). This is, as far
as we know, the first comparison of a model for acoustic
streaming in soft porous media with results from experi-
ments in an environment with this level of control.

The rest of the article is structured as follows. In Sec-
tion II we derive equations for the time-averaged acous-
tic streaming on the macroscopic scale. In Section III
we briefly comment on the numerical solution procedures
used to solve the equations and, in Section IV, we present
results from simulations and comment on the validity
of the simplified equation from e.g. Manor (2021). Fi-
nally, in Section V, we compare the experimental results
of El Ghamrawy et al. (2019) to results from our model
and, in Section VI, we conclude.

II. ACOUSTIC STREAMING IN A POROUS MEDIUM

We will here derive the equations necessary to de-
scribe acoustic streaming, and the associated advective
transport of trace components, through a general soft
porous medium driven by focused ultrasound. In Section
V we will apply the equations on the specific case of a
macroporous gel. At the pore scale, we distinguish be-
tween the solid phase (s), the liquid phase (ℓ) and their
interface (ℓs). This is illustrated in FIG. 1. On this
scale, the fluid flow is governed by well-known equations
for mass conservation and momentum balance, see e.g.
(Landau and Lifshitz, 1987). However, to solve these
equations and thus resolve the interstitial flow through
every pore in, e.g., the extracellular matrix of a large
piece of tissue, is impractical and computationally dif-
ficult. The same is true for a piece of gel that is large
compared to the pore size. We will therefore first de-
rive the equations that describe the steady-state, time
averaged flow of liquid on the pore scale and, thereafter,
perform a volume averaging of the pore-scale equations
and treat the porous medium as a continuum. The vol-
ume averaging procedure is a widely adopted strategy in
porous media science (Gjennestad et al., 2020; Whitaker,
1985, 1986).

A`s

liquid (`)

solid (s)

FIG. 1. Illustration of a porous material at the pore scale

indicating the solid phase (s), the liquid phase (ℓ) and the

liquid-solid interfacial area Aℓs.
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A. Acoustic streaming on the pore scale

In this section we will derive the equations that de-
scribe acoustic streaming on the pore scale, i.e., the flow
field inside the pore space. The goal is to arrive at equa-
tions for time-averaged, steady-state fluid flow that can
be volume-averaged in Section II B 2. We will start with
some general considerations and then proceed with the
conservation of mass and the balance of momentum.

To discuss sound propagation and acoustic stream-
ing, we employ the well-established (Lighthill, 1978; Ny-
borg, 1953) perturbation approach and expand the fluid
density, pressure and velocity as, respectively,

ρ = ρ0 + ρ1 + ρ2 + ..., (1)

p = p0 + p1 + p2 + ..., (2)

v = v1 + v2 + ... (3)

The constants ρ0 and p0 represent the undisturbed equi-
librium state with no acoustic waves and no flow. The
density ρ1, pressure p1 and velocity v1 are the first-order
disturbances due to the acoustic wave. We assume here
that these average to zero over a whole number of peri-
ods.

The acoustic streaming is represented by terms in
the mass flux ρv which are non-zero after time-averaging
over a whole number of periods of the sound field os-
cillations. Keeping terms up to second order, the time-
averaged mass flux is

ρv =
1

τ

∫ τ/2

−τ/2

ρv dt = ρ1v1 + ρ0v̄2. (4)

We have here used that the first-order term ρ0v̄1 will be
zero and the net mass flux is therefore represented by the
two second-order terms.

While there is acoustic streaming of the liquid phase,
the time-averaged mass flow of solid must vanish in
steady state. We can employ a similar expansion as
shown in (1) and (3) for the solid and the second-order
mass flux then has the same form as (4),

ρsvs = ρs1v
s
1 + ρs0v̄

s
2 = 0. (5)

The second-order solid velocity must therefore be

v̄s
2 = −ρ

s
1v

s
1

ρs0
. (6)

The intensity of the acoustic field is the time-average
of p1v1,

I = p1v1. (7)

1. Conservation of total liquid mass

Conservation of total mass, i.e., the sum of all chem-
ical components, in a compressible liquid is described by
(Landau and Lifshitz, 1987)

∂t {ρ}+∇ · {ρv} = 0. (8)

We insert the perturbation expansion, (1) and (3), and
gather terms of first and second order. Subsequently,
we take the time average of the resulting second-order
equation and get

∇ · v̄2 = −∇ · ρ1v1

ρ0
. (9)

In subsequent analysis we will use the velocity field
ū2 defined by

ū2 = v̄2 +
ρ1v1

ρ0
. (10)

This is convenient because inserting it into (9), we im-
mediately get that

∇ · ū2 = 0, (11)

i.e. that ū2 is incompressible. Furthermore, the time-
averaged fluid mass flux in (4) becomes

ρv = ρ0ū2, (12)

when expressed in terms of ū2.

2. Balance of momentum

Balance of momentum for a compressible fluid may
be expressed as (Landau and Lifshitz, 1987)

∂t {ρv} − F =−∇p+
{
ξ +

1

3
η

}
∇{∇ · v}

+ η∇2v, (13)

where η the dynamic viscosity and ξ the bulk viscos-
ity. The momentum flux term is written as F =
−ρv {∇ · v} − v∇ · {ρv}. We now insert the perturba-
tion expansion (1)–(3) into the momentum equation (13).
Gathering the second-order terms, and taking the time
average, yields the second-order momentum equation

∇p̄2 − F̄2 =

{
ξ +

1

3
η

}
∇{∇ · v̄2}+ η∇2v̄2, (14)

where F̄2 is the acoustic radiation force. Subsequently,
using (9) and introducing ū2 in place of v̄2 gives

∇p̄2 − F̄2 − η∇2ū2 =− 1

ρ0

{
ξ +

1

3
η

}
∇{∇ · ρ1v1}

− η

ρ0
∇2ρ1v1. (15)

By some order-of-magnitude arguments, it is possible to
show that the terms on the right hand side are expected
to be relatively small for focused ultrasound in tissue-like
materials. We then get

∇p̄2 − F̄2 − η∇2ū2 ≈ 0. (16)
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3. Conservation of liquid component masses

The liquid may be considered a mixture of differ-
ent chemical components. For purely advective trans-
port, with no diffusion, the mass conservation equation
for component i in the mixture is

∂t
{
ρzi

}
+∇ ·

{
ρziv

}
= 0, (17)

where zi is the mass fraction of component i.
We now insert the perturbation expansions of v (3)

and ρ (1), discard resulting terms of order larger than
two, use the expanded mass equation (8), and get

{ρ0 + ρ1 + ρ2}∂t
{
zi
}
+ {ρ0v1 + ρ1v1 + ρ0v2} · ∇zi = 0.

(18)

Next, we apply time-averaging over a whole number of
periods of the acoustic oscillations. We assume that vari-
ations in zi are slow with respect to the period of the
oscillations. The derivatives of zi can therefore be ap-
proximated as constant in the time-averaging. Also using
(10) to eliminate v̄2, the time-averaged mass equation for
component i becomes

{ρ0 + ρ̄2}∂t
{
zi
}
+ ρ0ū2 · ∇zi = 0. (19)

Since ū2 is incompressible and ρ̄2 ≪ ρ0, this can also be
expressed in conservation form as

∂t
{
ρ0z

i
}
+∇ ·

{
ρ0z

iū2

}
= 0. (20)

The transport of component i in the pore space due
to acoustic streaming may thus be approximated by an
equation on the same form as (17). Note, however, that
it is the divergence-free velocity ū2 which enters (20) and
not the second-order velocity v̄2.

B. Upscaling approach to porous media

In this section, we derive the continuum equations for
acoustic flow in a porous medium. To obtain these from
the pore-scale equations in Section IIA, we first make
use of the assumption of an acoustically homogeneous
medium and then apply volume-averaging.

1. Homogeneous medium assumption

We make use of the key assumption that the acous-
tic waves, i.e. the first-order fields, propagate through
the porous material as if it were a homogeneous mate-
rial. This assumption was also employed by Raghavan
(2018) and Manor (2021) and was called imaging com-
munity assumption in the work of Raghavan (2018) and
was called the special case of equal acoustic properties
by Manor (2021). The phase velocity c0 and the acous-
tic impedance Z = ρ0c0 are then assumed the same in
the solid and the fluid. This means that ρ0 = ρs0 and
v1 = vs

1 (Manor, 2021). Another consequence is that
the no-slip condition on the liquid-solid boundary implies
that

ū2 = 0, on Aℓs. (21)

This result is derived in Appendix A.

2. Volume averaging

In this section, we use a volume-averaging approach
to get the continuum equations for acoustic flow in a
porous medium. This procedure uses the averaging
theorems included in Appendix B and was applied by
Whitaker (1986) on equations that, even though they de-
scribe a different physical situation, are mathematically
identical equations being volume averaged here.

We consider a finite volume of averaging V of the
porous medium. This volume contains a liquid phase of
volume V ℓ and a solid phase of volume V s, such that
V ℓ + V s = V . The porosity is ϕ = V ℓ/V . Inside V ,
there is a certain liquid-solid interfacial area Aℓs. The
characteristic pore size is ℓp. We now wish to volume
average the governing equations for ū2, p̄2 and zi over
the volume V ∼ {ℓa}3 to obtain macroscopic equations
for the flow on the macroscopic length scale L, where
the variations on the pore scale ℓp are averaged out. We
must therefore, at the outset, demand that the length
scale of averaging ℓa is much smaller than the linear size
of the entire porous medium L and that the length scale
of averaging ℓa is much larger than the pore length scale
ℓp. This may be expressed as

ℓp ≪ ℓa ≪ L, (22)

and is also illustrated in FIG. 2.

L

`a

`p

FIG. 2. Illustration of the length scales used in the volume-

averaging approach. Framed in red is the entire porous ma-

terial, which represents the macroscopic length scale L. Cut

out from this, and framed in blue, is the volume of averaging

V ∼ {ℓa}3. The averaging volume contains many pores and

is large compared to the typical pore size ℓp. The dark gray

grains represent the solid phase and the liquid phase is shown

in white.

In the volume occupied by the liquid phase V ℓ we
have, from our time-averaging procedure, that ū2 and p̄2
are governed by equation (16) subject to the constraint
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that ū2 be divergence-free (11). Furthermore, there is
a no-slip boundary condition on ū2 at the liquid–solid
interface, see Eq. (21).

We now introduce two different volume averages, the
bulk average (Whitaker, 1986)

⟨ψ⟩ = 1

V

∫
V ℓ

ψ̄ dV ℓ, (23)

and the phase average

⟨ψ⟩ℓ = 1

V ℓ

∫
V ℓ

ψ̄ dV ℓ. (24)

The difference between the two averages is the volume of
normalization and the two are thus related by

⟨ψ⟩ = ϕ⟨ψ⟩ℓ. (25)

In a porous medium where the quantity ψ is constant in
the pore space, the phase average will be equal to this
constant pore-space value, while the bulk average will
not. For this reason, we wish that our final equations
involve the phase averages ⟨p2⟩ℓ and ⟨F2⟩ℓ. For ū2, on
the other hand, we want the bulk average since the vol-
umetric flux is

q = ⟨ρv/ρ0⟩ = ⟨u2⟩. (26)

Applying the spatial averaging theorem (B2) to ū2,
and using the constraint that ū2 is divergence free (11)
along with the no-slip boundary condition (21) on Aℓs,
gives

∇ · q = 0. (27)

The volumetric flux resulting from acoustic streaming is
thus divergence-free.

The spatial average of the second-order momentum
equation (16) is

⟨η∇2u2⟩ = ⟨∇p2⟩ − ⟨F2⟩. (28)

As alluded to initially, our goal is to write this in terms
of ∇⟨p2⟩ℓ, ⟨F2⟩ℓ and q. The bulk average of F̄2 is easily
related to the phase average by (25), i.e., ⟨F2⟩ = ϕ⟨F2⟩ℓ.
For the pressure, we introduce the decomposition p̄2 =
⟨p2⟩ℓ + p̃2, and use the spatial averaging theorem (B1)
and also (B3), to get

⟨∇p2⟩ = ϕ∇⟨p2⟩ℓ +
1

V

∫
Aℓs

p̃2n dAℓs, (29)

where n is a unit vector normal to the liquid-solid inter-
face. For the Laplacian term in the averaged momentum
equation, we apply the averaging theorem (B2) twice and
use the no-slip condition (21) to eliminate the resulting
integral of ū2 over the liquid-solid interface. This gives

⟨η∇2u2⟩ = η∇2⟨u2⟩+ η
1

V

∫
Aℓs

n · ∇ū2 dAℓs, (30)

≈ η
1

V

∫
Aℓs

n · ∇ū2 dAℓs. (31)

In the final approximation, we have used the fact that
⟨u2⟩ varies on the macroscopic scale L and that ū2 varies
on the much smaller pore scale ℓp to neglect the Laplacian
of ⟨u2⟩. With the above results [Eqs. (29) and (31)] for
⟨∇p2⟩ and ⟨η∇2u2⟩, the spatially averaged momentum
equation becomes,

1

V

∫
Aℓs

{ηn · ∇ū2 − p̃2n} dAℓs = ϕ∇⟨p2⟩ℓ − ϕ⟨F2⟩ℓ.
(32)

A closure relation for the integral in this equation
may be obtained following a mathematically identical
procedure to that taken by Whitaker (1986). For an
isotropic medium, we get

1

V

∫
Aℓs

{ηn · ∇ū2 − p̃2n} dAℓs ≈ −ηϕ
κ
⟨u2⟩, (33)

where κ is the permeability of the porous material. This
result may also be obtained by arguing that the integral
represents the force exerted on the solid by the slow, aver-
age movement of the liquid relative to the solid. Inserting
the closure relation into (32) and solving for ⟨u2⟩ = q,
we get an equation on the same form as Darcy’s law,

q = −κ
η

{
∇⟨p2⟩ℓ − ⟨F2⟩ℓ

}
, (34)

for the volumetric flux due to acoustic streaming.
We apply spatial averaging also to the compo-

nent mass balance equation (20). This procedure is,
again, mathematically identical to that used by Whitaker
(1985). We therefore state the result,

∂t
{
ϕρ0⟨zi⟩ℓ

}
+∇ ·

{
ρ0⟨zi⟩ℓq

}
= 0, (35)

and refer to (Whitaker, 1985) for further details. We shall
not consider dispersive effects here and have therefore
neglected the dispersive terms in (35).

C.Model for the acoustic radiation force

The equations (27) and (34) for the time-averaged
acoustic streaming on the macroscopic length scale re-
quire the acoustic radiation force to be known. This is
given by the first-order acoustic fields and there are many
ways to estimate them with varying levels of sophistica-
tion and complexity. It is not within the scope of this
work to perform a sophisticated calculation of ultrasound
propagation. We opt instead for a relatively simple ap-
proach that relies on a number of assumptions. This is
done for the sake of simplicity, but it is not strictly neces-
sary. The model equations for the acoustic streaming are
equally valid with first-order fields and acoustic radiation
forces calculated by more advanced methods.

For fields that are adequately directional and not
highly focused, the paraxial (or parabolic) approxima-
tion is valid in the vicinity of the main propagation axis.
The acoustic radiation force is then commonly approxi-
mated as (Raghavan, 2018)

⟨F2⟩ℓ =
2αI

c0
, (36)
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where α is the acoustic attenuation coefficient. Further-
more, we assume that the attenuation of the applied
sound wave is relatively slow and combine the plane-wave
relation v1 = p1/(ρ0c0) x̂ with (7), to approximate the
intensity as

I =
|p̄1|2
2ρ0c0

x̂. (37)

We assume here that the first-order fields are time-
harmonic fields with a spatially varying amplitude and
consider first-order pressure fields to take the form

p1 =
P1

2
exp (−iωt) + P ∗

1

2
exp (iωt) , (38)

where ω is the angular frequency of the sound wave, i is
the imaginary unit, asterisks denote complex conjugates
and P1 is the spatially varying complex amplitude of the
acoustic pressure.

There are many different models to use for the first-
order pressure field (Marston, 2011a,b; O’Neil, 1949;
Treeby et al., 2018), but in order to have a simple ex-
pression to model the acoustic radiation force we follow
the work of Prieur and Sapozhnikov (2017); Sapozhnikov
(2012) who, as a solution to the Helmholtz equation, de-
fined an axisymmetric beam with a quasi-Gaussian pres-
sure distribution. The complex amplitude is described
as

P1 =
P0xd

2 sinh2(kxd)

{
ekxd

sin
(
k
√
D−

)√
D−

− e−kxd
sin

(
k
√
D+

)√
D+

}
, (39)

where

xd = kw2
0/2, (40)

D− = (x− ixd)
2
+ y2 + z2, (41)

D+ = (x+ ixd)
2
+ y2 + z2, (42)

w0 is a parameter characterizing the spatial extension of
the beam in the plane x = 0 and k = 2πf/c0 is the
wavenumber, given by the ultrasound frequency f and
the sound speed c0 in the medium. We let P0 be P0 =√
2ρ0c0I so that the maximum value of the maximum

intensity magnitude will be given by the intensity I.

D. Dimensionless equations

It is useful to cast the governing equations (27) and
(34) in dimensionless form. This can be done using the
three dimensionful quantities, e.g., the length w0, the
hydraulic conductivity of the porous material K = κ/η
and the maximum magnitude of the acoustic radiation
force in the domain Fmax

2 = maxx,y,z
(∣∣⟨F2⟩ℓ

∣∣).
The relations between the dimensionless and dimen-

sionful volumetric flux, second-order pressure and acous-

tic radiation force are thus

q = KFmax
2 q′, (43)

⟨p2⟩ℓ = w0F
max
2 ⟨p′2⟩ℓ, (44)

⟨F2⟩ℓ = Fmax
2 ⟨F′

2⟩ℓ, (45)

where the dimensionless quantities are indicated with a
prime. Furthermore, the dimensionless versions of (27)
and (34) are, respectively,

∇′ · q′ = 0, (46)

q′ = −
{
∇′⟨p′2⟩ℓ − ⟨F′

2⟩ℓ
}
. (47)

If we consider a domain that is large enough com-
pared to the focal spot, the solution to the dimensionless
equations only depend on ⟨F′

2⟩ℓ, i.e., the spatial variation
of the acoustic radiation force relative to its maximum
value. For the model force field used here (Section IIC)
this spatial variation is determined by the dimensionless
parameter kw0. From (43) and the choice of model for
the acoustic radiation force in Section IIC, we then get
that the dimensionful flux, for a particular value of kw0,
is linearly proportional to the applied intensity I, linearly
proportional to the permeability κ of the porous mate-
rial, linearly proportional to the attenuation coefficient
α and inversely proportional to the liquid viscosity η.

III. NUMERICAL SOLUTION PROCEDURE

Since the volumetric flux field q is divergence free
[Eq. (27)] and is described by Eq. (34), on the same
form as Darcy’s law, the numerical solution procedure
for calculating it is relatively straightforward.

Combining (27) and (34) gives a Poisson-type equa-
tion for ⟨p2⟩ℓ,

∇ ·
{
κ

η

{
∇⟨p2⟩ℓ − ⟨F2⟩ℓ

}}
= 0, (48)

where ⟨F2⟩ℓ is assumed known and modeled as described
in Section IIC. This equation is discretized on a spatial
grid using the finite volume method. The discretization
procedure produces a linear system of equations that can
be solved numerically for ⟨p2⟩ℓ when appropriate bound-
ary conditions are set. Here, we shall use only homo-
geneous Dirichlet boundary conditions, i.e., ⟨p2⟩ℓ = 0.
With (48) solved and ⟨p2⟩ℓ known, q can be calculated
from (34).

In this work, we consider only cases that are rota-
tionally symmetric around the beam axis, i.e., the x-axis.
To save computational time, we therefore discretize and
solve (48) in cylindrical coordinates.

IV. SIMULATIONS

In this section, we present and discuss results from
simulations in a domain that is large compared to the
focal spot of the beam. Also, we compare the results from
the simplified expression for the acoustic streaming, used
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by e.g. Manor (2021), to numerical solutions to the full
equations. Following the arguments from Section IID,
we present simulation results in dimensionless quantities
and vary only kw0.

Simulations were performed for different shapes of
the acoustic radiation force, corresponding to a range of
different values of kw0. Two examples with kw0 = 3 and
kw0 = 6 are shown in FIG. 3. As kw0 increases, the focal
point becomes longer in the axial direction, compared
to its width, which corresponds to increasing F-number
and weaker focusing of the ultrasound beam. Volumetric
fluxes are shown in FIG. 4. For both force fields, the flux
is largest at the focal point and quickly becomes small
in magnitude away from the focal point. Near the beam
axis, flow is in the axial direction, while the fluid off-
axis is drawn towards the focal point on the upstream
side and is pushed away from it at the downstream side.
The maximum in the flux, found near the focal point,
increases with kw0.
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FIG. 3. Dimensionless acoustic radiation force fields with

(a) kw0 = 3 and (b) kw0 = 6. The white arrows shows

the direction of the acoustic radiation force and the contour

indicates the magnitude.

Manor (2021) uses a simplified expression to estimate
the acoustic streaming directly from the acoustic radia-
tion force, without solving any equations. According to
him, the contribution from the gradient in pressure will
often be small compared to that from the acoustic radia-
tion force in (34). Dropping the pressure gradient term,
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FIG. 4. Dimensionless volumetric fluxes with (a) kw0 = 3,

(b) kw0 = 6. The white arrows shows the direction of the

volumetric flux and the contour indicates the magnitude.

(34) becomes

q ≈ κ

η
⟨F2⟩ℓ, (49)

which is equivalently stated in dimensionless quantities
as

q′ ≈ ⟨F′
2⟩ℓ. (50)

We now investigate how this approximation compares to
solutions to the full equations.

FIG. 5 shows the difference in x-component of the
dimensionless volumetric flux, from the above solutions
to the full equations, and the x-component of the dimen-
sionless acoustic radiation force. FIG. 5 thus represents
the errors in the x-component of (50). The simplified
expression overestimates the flux at the focal point in
both cases. The error decreases, however, with increas-
ing kw0. At kw0 = 3, the maximum error is 0.1, and
quite significant, while at kw0 = 6 the maximum error is
only 0.03.

With the simplified expression in (49), the direction
of the flow is always the same as the force. Here, this
is a good approximation near the beam axis, but it is
qualitatively wrong further away from the axis and, e.g.,
in the region of back-flow seen e.g., in FIG. 4 (b), entirely
in the wrong direction. The reason is that in the solutions
to the full equations, (27) and (34), ⟨p2⟩ℓ is determined
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such as to make q divergence free. However, when the
simplified equation (49) is used, the contribution to q
from ⟨p2⟩ℓ is neglected and a zero divergence of q is not
generally obtained. In such cases, the solution does not
satisfy mass conservation.
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FIG. 5. Errors in x-component of (50) for (a) kw0 = 3 and

(b) kw0 = 6. The contour indicates the magnitude.

In summary, we may conclude that (49) represents a
reasonable approximation to the acoustic streaming near
the beam axis for kw0-values that are sufficiently large,
corresponding to high F-numbers. For low F-numbers,
Eq. (49) over-estimates the flow near the focal point
and, away from the beam axis, it may predict flow in the
wrong direction.

V. COMPARISON WITH EXPERIMENT

In this section we shortly summarize the experimen-
tal setup by El Ghamrawy et al. (2019) and then compare
their results to predictions from our model. The exper-
iments are described in detail in (El Ghamrawy, 2019)
and we base our comparison on this description.

A. Experimental setup

El Ghamrawy (2019) performed experiments where
a gel was subjected to focused ultrasound. The effect
of the resulting acoustic streaming of water in the gel
was assessed by observing the gradual removal of a dye
injected near the ultrasound focal spot.

The experimental setup is illustrated in FIG. 6. A
dye of 0.025mL 0.1% bromophenol blue was injected
into a region with thickness h = 2.42mm at the sur-
face of a piece of macroporous polyalcrylamide (MPPa)
gel. The gel had porosity ϕ = 0.88, permeability
κ = 6.43 × 10−12 m2 and was assumed to have a den-
sity ρ0 = 1000 kgm−3. Furthermore, the speed of sound
was c0 = 1480m s−1 and the ultrasound attenuation coef-
ficient was α = 0.63Npm−1 at the transducer frequency
f = 5MHz. The gel was immersed in a tank with de-
gassed water and the dyed MPPa surface was placed nor-
mal to the beam axis, 35mm away from the transducer.
Thus, the gel occupied the proximal half of the focal vol-
ume while water was in the distal half. The size of the
focal region was given by the full width half maximum,
FWHMx = 3.2mm and FWHMy = 0.45mm.

Using this setup for three different spatial peak time
average intensities ISPTA of 159Wcm−2, 646W cm−2

and 1317Wcm−2, El Ghamrawy (2019) captured the
change in light intensity transmitted through the dyed
region, the dye clearance, with a camera over a period of
30 s of ultrasound exposure. The resulting dye clearance
curves are shown in FIG. 7.

ultrasound

transducer

gel water

dye focal spot

FIG. 6. An illustration of the experimental setup by El Gham-

rawy (2019). The MPPa gel is shown as the light gray area

with a localized area of a dye indicate by dark gray. The wa-

ter tank is shown in blue. The setup was sonicated with a

5MHz focused ultrasound transducer illustrated on the left-

hand side.

B. Extracting volumetric fluxes from the experimental data

The experiments by El Ghamrawy (2019) do not
measure acoustic streaming directly, but rather the
change in optical intensity in the area of the dyed region
corresponding to the FWHMy of the ultrasound pressure
field. In this section, we give a procedure to extract vol-
umetric fluxes from the experiments using the transport
equation (35). We also give the values of the extracted
volumetric fluxes.

Consider a cylindrical control volume aligned with
the beam axis and with cross-sectional area A, given by
the beam FWHMy, and length h along the beam axis
equal to the thickness of the injected layer of dye. Inte-
grating the volume-averaged mass equation (35) for the
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dye (d) over this control volume gives

1

Ah

∫ {
ρ0∂t

{
ϕ⟨zd⟩ℓ

}
+ ρ0∇ ·

{
⟨zd⟩ℓq

}}
dV = 0. (51)

We approximate ϕ⟨zd⟩ℓ as spatially uniform within the
control volume so that

1

Ah

∫
ρ0∂t

{
ϕ⟨zd⟩ℓ

}
dV ≈ ∂t

{
ρ0ϕ⟨zd⟩ℓ

}
. (52)

When the acoustic streaming starts, we assume q to be
roughly aligned with the beam axis within the control
volume and the flux of dye is then non-zero only through
the downstream end. Using the divergence theorem, we
then get

1

Ah

∫
ρ0∇ ·

{
⟨zi⟩ℓq

}
dV = − 1

Ah

∫
ρ0⟨zi⟩ℓq · dA, (53)

≈ −ρ0ϕ⟨z
i⟩ℓqA

ϕh
(54)

where qA is the averaged volumetric flux across the down-
stream end of the control volume,

qA =
1

A

∫
q · x dA. (55)

We now define the density of dye in the control volume
as ζ = ρ0ϕ⟨zd⟩ℓ. With the assumptions above, (51) then
becomes an ordinary differential equation (ODE) for ζ,

∂tζ = − qA
ϕh
ζ. (56)

This ODE has the solution

ζ (t) = ζ0 exp

(
−qAt
ϕh

)
, (57)

where ζ0 is the initial density of dye in the control volume.
The optical intensity measured in the FWHM may

be assumed to be linearly proportional to the density
of dye in our control volume. The dye clearance curves
presented in El Ghamrawy (2019), i.e., the reduction in
optical intensity at time t relative to the initial optical
intensity, should therefore be equal to

ζ0 − ζ (t)

ζ0
= 1− exp

(
−qAt
ϕh

)
. (58)

Since ϕ and h are known, we can fit this equation to the
dye clearance curves by adjusting the single parameter
qA. Fitted curves for each of the three different ultra-
sound intensities applied are shown in FIG. 7 and they
agree very well with the measured curves. The fitting
procedure thus gives the value of qA for each intensity
and the resulting values are 5.96 µms−1 21.1 µms−1 and
63.9 µms−1 for intensities of 159W cm−2, 646W cm−2

and 1317Wcm−2, respectively.
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FIG. 7. Dye clearance curves measured by El Ghamrawy

(2019) for different ultrasound beam intensities (black lines).

To each experiment a fit to (58) was made and these are shown

as blue, orange and green lines. The shaded areas represent

the uncertainties in the fitted lines due to the experimental

uncertainties given in (El Ghamrawy, 2019).

C. Comparison between experimental and predicted fluxes

In this section we compare the FWHM-averaged vol-
umetric fluxes qA, as predicted by the model we have
presented, with those extracted from the experiments of
El Ghamrawy (2019) in the preceding section.

We neglected any temperature and non-linear effects
and used the quasi-Gaussian beam (36) again as the
model force field for the simulations. The wavenumber
k = 2πf/c0 is given by the ultrasound frequency f and
the sound speed c0 in the gel. The parameter w0 was set
such that the experimentally measured value of FWHMy

was obtained for the model field. With w0 determined,
FWHMx for the model beam was found to be 2.6mm.
This represents a relatively small deviation of about 19%
from the experimental value of 3.2mm. The resulting
kw0-value for the model field was 5.6. The parameter
P0 was set such as to get the same intensity used in the
experiments, as described in Section IIC. In this case it
was the same as ISPTA from the experiments since the
duty cycle was at 100%. The dynamic viscosity η was
not given in the work of El Ghamrawy (2019), and we
assumed the value to be similar to that of water and set
it to η = 0.001Pa s.

Since the attenuation coefficient α is much lower in
the water than in the gel (El Ghamrawy, 2019), we expect
the acoustic radiation force and the gradients in ⟨p2⟩ℓ in
the water to be small compared to the gel. The compu-
tational domain in the simulations was therefore limited
to the gel and a Dirichlet boundary condition ⟨p2⟩ℓ = 0
was set on the gel-water boundary. The other boundaries
were placed far away from the focal point and ⟨p2⟩ℓ = 0
was set there also.

The simulated acoustic radiation force, second-order
pressure and volumetric flux fields for the 646W cm−2
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case are shown in FIG. 8. The acoustic streaming shown
in FIG. 8 (c) is fastest near the focal point and is, in much
of the domain shown, closely aligned with the beam axis.
The second-order pressure field as shown in FIG. 8 (b),
however, contributes to some movement of fluid towards
the focal point.
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FIG. 8. Simulation results for (a) acoustic radiation force,

(b) second-order pressure and (c) volumetric flux for the

El Ghamrawy (2019) case with ISPTA = 646Wcm−2.

The x-component of the dimensionless volumetric
flux q′

x from this case, along the gel-water interface at
x = 0, is shown in FIG. 9. Also shown is the dimension-
less acoustic radiation force ⟨F′

2⟩ℓx which represents the

approximation of the dimensionless volumetric flux given
by (50). The lines representing q′

x and ⟨F′
2⟩ℓx agree well

and indicate that (50) is a reasonable approximation to
the volumetric flux in this case.

From each of the curves representing q′
x and ⟨F′

2⟩ℓx,
shown in FIG. 9, the dimensionless FWHM-averaged vol-
umetric flux was calculated by numerical integration of
(55) over the FWHM. The averaged values obtained by
this procedure are indicated by solid lines in FIG. 9. The
dimensionless fluxes were subsequently translated to di-
mensionful fluxes by multiplying with KFmax

2 , see Eq.
(43).
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FIG. 9. The x-component of the dimensionless volumetric

flux (black dashed line) and the dimensionless acoustic radi-

ation force (red dashed line) along the y-axis at x = 0. The

black and red horizontal lines indicate the FWHM-averaged

values of the volumetric flux and the acoustic radiation force

respectively.

Since the dimensionful volumetric fluxes are linear
in Fmax

2 they are also linear in ISPTA. The model there-
fore predicts the linear dashed lines shown in FIG. 10
when plotting the FWHM-averaged volumetric fluxes
against the intensity. Also shown in FIG. 10 are the
FWHM-averaged fluxes extracted from the experiments
of El Ghamrawy (2019). The predictions from the full
model (dashed black lines) is within the uncertainty of
the experimental results and there is good agreement be-
tween them for the two lower intensities. The same is
also true when using the approximation (50) to get pre-
dictions from the model (dashed red lines). For the high
ultrasound intensity ISPTA = 1317Wcm−2 the model re-
sults are well within the experimental uncertainty, but
seem to underpredict the average experimental value.
This could be related to temperature effects of the ul-
trasound, e.g., a decrease in liquid viscosity when the gel
is heated, or non-linear effects of ultrasound propagation.
These effects have not been accounted for here, but in-
cluding them in the model could be a topic for future
work.
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FIG. 10. FWHM-averaged volumetric fluxes for different ul-

trasound beam intensities (blue, orange and green squares)

extracted from the experiments by El Ghamrawy (2019). The

FWHM-averaged volumetric fluxes predicted by the model

are shown as the dashed black line. The red dashed line in-

dicates the FWHM-averaged volumetric flux obtained using

the approximation (50).

In summary, the presented model for acoustic
streaming agrees well with the experiments of El Gham-
rawy (2019) and predicts results for the FWHM-averaged
volumetric flux that are well within the experimental un-
certainties.

VI. CONCLUSIONS

We have derived and presented equations describing
acoustic streaming in soft porous media driven by focused
ultrasound. The derivations were based on the assump-
tion that acoustic waves pass through the porous mate-
rial as if it were homogeneous and the resulting equations
predict the time-averaged flow on the macroscopic scale.
We have also stated a time- and volume-averaged equa-
tion advective transport of trace components.

Using the presented model, we performed simu-
lations for different shapes of the focused ultrasound
beam, characterized by the dimensionless parameter kw0.
Herein, k is the ultrasound wavenumber and w0 is a pa-
rameter characterizing the beam width. For a particu-
lar beam shape, and using the paraxial approximation
for the ultrasound, the acoustic streaming was linearly
proportional to the applied ultrasound intensity, to the
permeability of the porous material and to the attenua-
tion coefficient, and inversely proportional to the liquid
viscosity.

Results from simulations were compared to a simpli-
fied expression for the acoustic streaming stating that the
dimensionless volumetric flux is equal to the dimension-
less acoustic radiation force. This was found to repre-
sent a reasonable approximation to the acoustic stream-
ing near the beam axis for kw0-values that were suffi-

ciently large, corresponding to high F-numbers. For low
F-numbers, the simplified expression over-estimates the
flow near the focal point and, away from the beam axis,
it may predict flow in the wrong direction.

Finally, the presented model for acoustic streaming
was compared to experimental results from El Ghamrawy
et al. (2019) and was found to agree well. The model-
predicted volumetric fluxes, averaged over the beam
FWHM, were within the experimental uncertainties.

In the future, we hope that the model can be used to
interpret experimental results relevant for enhanced drug
delivery in tissue, and to assess the relative importance
of acoustic streaming compared with other effects.
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APPENDIX A: NO-SLIP ON LIQUID-SOLID BOUNDARY

Due to viscosity, the fluid and solid velocities must
be equal at their common interface, i.e. v = vs on Aℓs.
Since v1 = vs

1 everywhere by the homogeneous medium
assumption (Manor, 2021), then

v̄2 = v̄s
2 on Aℓs. (A1)

Using (6) and (10), we get

ū2 =
ρ1v1

ρ0
− ρs1v

s
1

ρs0
on Aℓs. (A2)

We will now argue that, under the homogeneous medium
assumption employed here, the right hand side of (A2)
is zero.

Within a small region in the immediate vicinity of
the interface we can assume isentropic first-order fields.
Attenuation of the sound wave occurs at a much larger
length scale. The density is then, to first order,

ρ = ρ0 + ρ1 = ρ0 +

(
∂ρ

∂p

)
s

p1, (A3)

The first-order perturbations in pressure and density are
therefore related through

p1 = c20ρ1, (A4)

where c0 =
√
(∂p/∂ρ)s is the speed of sound. The inten-

sity defined in (7) can be written as

I = c20 ρ1v1. (A5)
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According to the homogeneous medium assumption, the
sound waves propagate from the liquid to the solid as if
it were a homogeneous medium. Specifically, this means
that the intensity must be the same at a point close to
the interface and at a point immediately next to it, but
on the other side. Since we have also assumed ρ0 = ρs0
and c0 = cs0, then the right-hand-side of (A2) must be
zero.

We have here treated the solid as if it were a
fluid. This is reasonable under the approximation used
here, that shear waves are relatively unimportant, see
e.g., (LeVeque, 2002, pp. 498–499).

APPENDIX B: SPATIAL AVERAGING THEOREM

For reference, we here state the spatial averaging the-
orem used in Section II B 2. For a scalar ψ, this takes the
form (Whitaker, 1986)

⟨∇ψ⟩ = ∇⟨ψ⟩+ 1

V

∫
Aℓs

ψ̄n dAℓs, (B1)

and, for a vector A,

⟨∇ ·A⟩ = ∇ · ⟨A⟩+ 1

V

∫
Aℓs

n · Ā dAℓs. (B2)

A special case is obtained when averaging over the gra-
dient of the constant scalar 1. This gives

1

V

∫
Aℓs

n dAℓs = −∇ϕ. (B3)
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