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Abstract— While existing algorithms for open water naviga-
tion typically address path following and COLREGS compliant
collision-avoidance, the unique challenges of inland waterways
require a more tailored approach. We propose a two-level
control strategy that employs Model Predictive Control (MPC)
and Scenario-Based Model Predictive Control (SB-MPC) for
path following and collision-avoidance. The algorithm proposes
integrated strategies for handling riparian land, static obstacles,
and dynamic obstacles. The method is tested in simulation.

I. INTRODUCTION

A. Background
There are two major objectives that need to be addressed

when developing a control algorithm for autonomous ves-
sels, namely, path following and collision-avoidance. While
certain algorithms in the literature distinctly differentiate
between path following and collision-avoidance, there are
those that do not and instead aim to address both issues using
interconnected components [1]. Furthermore, the majority
of these algorithms are designed for autonomous surface
vehicles that navigate in open waters.

Due to the increase in interest in using inland waterways
such as navigable rivers and canals for cargo transportation,
autonomy in inland waterway transportation has become
a separate research area of interest over the recent years.
Inland waterway navigation comes with its own set of
unique challenges that limit the capability to apply the said
algorithms designed for open waters as is. Therefore, it is
vital to specifically cater towards addressing these challenges
when developing algorithms for autonomous navigation and
collision-avoidance in inland waterways. The authors identify
the following aspects as required to be addressed by an
algorithm designed for autonomous ship navigation in inland
waterways.

• Static obstacle avoidance capability: It is more likely
for inland waterways to encounter static obstacles such
as reeks, wrecks, navigational aids, fishing zones, small
islands and other static obstacles found in harbor envi-
ronments e.g., moored vessels, that are unmapped.

• Dynamic obstacles: Inland waterways are often con-
gested and densely trafficked compared to open waters.

• Riparian land aware navigation capability: In this paper,
the term riparian land is used to refer to the grounding
hazard on either side of the waterbody e.g., riverbank.
Unlike open waters, inland waterways are narrow wa-
terbodies which force the vessel to frequently encounter
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land when de-routing from the pre-planned path to avoid
dynamic obstacles. Therefore, if possible, it is better
to handle riparian land as a separate entity from the
other static obstacles mentioned above, and implement
a collision-avoidance strategy specifically catered for it
to improve the overall performance of the algorithm.

• Traffic rule compliance: It is necessary for the algorithm
to adhere to applicable local traffic rules when navigat-
ing and performing collision-avoidance maneuvers.

• Adaptability of the algorithm for secondary objectives:
Such as use of minimum time and/or least amount of
energy.

The initial step in designing such an algorithm starts with
determining a set of global waypoints between the current
position and the destination during the mission planning
stage which is carried out before sailing. However, this is
beyond the scope of this research thus, it is assumed that a
sequence of waypoints is available.

B. Literature Review
There has been ample research carried out on autonomous

path following and collision-avoidance over the years. The
articles [1], [2] and [3] summarize many of the said al-
gorithms. These include evolutionary algorithms, sampling-
based algorithms, cell decomposition methods, directional
approaches, and road map methods. Several of the algorithms
also comply with Convention on the International Regula-
tions for Preventing Collisions at Sea (COLREGS) [4].

The SB-MPC algorithm [5], proposes a reactive collision-
avoidance method based on simulation and receding horizon
optimization. It enforces compliance with the main rules
of COLREGS and collision hazard avoidance through the
evaluation of a cost function along the predicted ship and
obstacle trajectories. Since the introduction, there have been
many modifications and additions suggested to improve the
performance of the algorithm. One such research is [6]
where the authors present an additional cost component
which they call a COLREGS-transitional cost that penalize
control behaviors that abort a COLREGS compliant ma-
neuver. Research was also carried out to handle kinematic
uncertainty present when relying on track estimates of nearby
dynamic obstacles for collision-avoidance (COLAV) using
SB-MPC [7]. The authors have named this modified al-
gorithm as Probabilistic Scenario-Based Model Predictive
Control (PSB-MPC). The article [8] proposes a parallelized
implementation of the PSB-MPC on a Graphical Processing
Unit (GPU) that reduces the computational speed of the
algorithm, allowing the MPC problem to scale linearly with
increasing the number of control behaviors, static and dy-
namic obstacles and prediction scenarios. In [9], the authors
suggest a Dynamic Bayesian Network (DBN) to model and
infer the intentions of other ships. Similarly, [10], proposes
two-stage trajectory prediction (2-STP) algorithm to help



the own ship to be aware of intention changes of target
vessels and avoid collision risks. Another study [11] aims to
improve the SB-MPC algorithm by including collaboration,
i.e., information exchange between ships. Overall, in our
opinion, SB-MPC has proven to be a successful COLAV
strategy for autonomous vessels in open waters and intend
to adapt it for inland waterways as well. In particular, when
utilizing SB-MPC for navigation in inland waterways, the
following challenges may arise:

• Resolution insufficiency of the solutions due to being
derived from a descretized finite solution pool.

• Erratic solutions due to abrupt changes in the state of
the hazardous environment as a result of congestion in
inland waterways.

In this research, a hybrid algorithm consisting of Model
Predictive Control (MPC) and Scenario-Based Model Predic-
tive Control (SB-MPC) [5] is therefore proposed to overcome
these issues by distributing the responsibilities between the
two algorithms. The proposed algorithm also fulfills the
autonomous path following and collision-avoidance tasks
of an inland waterway vessel identified in Section I-A as
follows:

• Strategies have been proposed to handle static obstacles,
dynamic obstacles and riparian land.

• The SB-MPC algorithm is COLREGs compliant.
• Even though a secondary control objective is not dis-

cussed in this paper, the proposed algorithm can easily
incorporate one by adding an additional cost compo-
nent.

The idea of exploiting the complimentary strengths of
multiple algorithms has been previously explored by [12],
[13]. In both references, two different three-layered archi-
tectures for real-time path planning and obstacle avoidance
are proposed. However, these algorithms do not utilize the
SB-MPC algorithm nor consider riparian land separate from
the static obstacles since they are primarily developed for
vessels that navigate in open waters. Moreover, [12] does
not consider the COLREGS.

C. Contribution
The main contribution of this paper is enabling the adap-

tation of SB-MPC for COLAV to inland waterways by
incorporating it in a two level hybrid control architecture.
Furthermore, the riparian land is taken into consideration by
proposing a novel concept of a cross-track error corridor,
which serves as the limits of the maneuverable area for
the vessel at a given instance. In addition, a modification
to the Constant Velocity Model (CVM) is introduced for
target vessel trajectory prediction that takes into account the
riparian land. Finally, the proposed algorithm was verified
with realistic situations by choosing simulation scenarios
from Electronic Navigational Charts (ENC).

II. OVERVIEW

The hybrid control algorithm proposed in this paper is
a two-level control strategy. On the top level, an MPC
controller generate desired course (χd) and speed (Ud) com-
mands considering the destination waypoint, static obstacles,
and riparian land. Next, the SB-MPC would consider the
outputs given by the MPC, χd and Ud, and suggest course
and speed modifications χm and Um, to avoid dynamic
obstacles. Then, χm and Um will be used to calculate the

final course and speed commands χc and Uc (as explained
in Section V) that is sent to the autopilot to drive the vessel.
This system is shown in Figure 1.

Fig. 1. Control system architecture

III. SHIP MODEL

A. Own-ship model
A mathematical model of the own vessel is required by

the MPC and SB-MPC controllers. For this research we have
decided to adapt the kinematic model used in [8] as,

xk+1 = xk + Uk cos (χk)

yk+1 = yk + Uk sin (χk)

χk+1 = χk +
1

Tχ
(χinput,k − χk)

Uk+1 = Uk +
1

TU
(Uinput,k − Uk)

(1)

which describes the own-ship state, xk = [xk, yk, χk, Uk]
T

at time tk, that consists of East and North position in
Cartesian coordinates, course over ground (COG), and speed
over ground (SOG). Tχ and TU are course and speed time
constants that can be derived from a system identification
methodology. The χinput and Uinput are the course and
speed commands that serve as the inputs to the system.

B. Target ship model
Target ships in the vicinity of the own ship are identified

as dynamic obstacles. To generate the optimum desired
course and speed modifications for the own-ship, the SB-
MPC algorithm predicts the future trajectory of the dynamic
obstacles. For this, we are proposing a ground-avoiding
constant velocity model as follows, by assuming a narrow
channel.

(2)

xtargetk+1 = xtargetk + U target
k cos

(
χtarget
k

)
ytargetk+1 = ytargetk + U target

k sin
(
χtarget
k

)
χtarget
k+1 =

{
χtarget
k , if dLOSg

≥ dcritical
χ̃target
k , otherwise

χ̃target
k =

{
χtarget
k + β, if dβ+LOSg

≥ dLOSg

χtarget
k − β, otherwise

where, xtargetk = [xtargetk , ytargetk , χtarget
k , U target

k ]T de-
scribes the target ship state at time tk. The variable dLOSg

is
the distance from target ship to the closest point on ground
along the course angle χtarget

k . The variable dβ+LOSg
is the

distance from target ship to the closest point on ground
along the direction defined by the course angle (χtarget

k +β).
The parameters dcritical and β are turning parameters that



depend on the required ground clearance and maneuvering
capabilities of each target vessel, respectively. The model
assumes a straight-line trajectory for the target vessel while
dLOSg ≥ dcritical. When dLOSg is less than the critical
range, the target vessel course angle is assumed to change
direction by ±β depending on the course angle that gives
the least line of sight distance to the ground.

C. Path coordinate system
The proposed algorithm is executed in a local coordinate

frame referred here as the Path Coordinate System denoted
by {Pj} (j = 1, 2, . . .) based on the connected waypoint
paths. This formation is adapted from [14] as follows.

As shown in Figure 2, in the path coordinate system
{Pj} (j = 1, 2, . . .), Xpj is along the line connecting ad-
jacent waypoints, and Ypj

is orthogonal to that line pointing
π/2 counterclockwise. Opj is the origin of the jth path
coordinate system located at the jth waypoint connecting
reference path j and j + 1. The angle with respect to the
East-North-Up (ENU) inertial frame {n}, of reference path
j is denoted as ψj .

Fig. 2. Inertial coordinate system and path coordinate system in the
horizontal plane

The ENC data and outputs of the mission planning stage
i.e., waypoints will be made available in the inertial co-
ordinate frame. Therefore, these data points need to be
transformed from {n} to {Pj}. Equation 3 can be used to
transform a single point:[

xpj

ypj

]
=

[
cosψj sinψj

− sinψj cosψj

] [
x− xWP j

y − yWP j

]
(3)

where, (xWP j
, yWP j

) is the coordinate of the waypoint j,
being the origin of {Pj} in {n}, (x, y) is a point in {n} that
needs to be transformed to {Pj} coordinate system.

When switching from {Pj} to {Pj+1}, the angle differ-
ence between the two adjacent x axes is ψj+1 − ψj . Since
{Pj} and {Pj+1} are connected, the new origin OPj+1 has
coordinates (lj , 0) relative to the old coordinate system {Pj}.
Therefore, a coordinate can be transformed from {Pj} to
{Pj+1} (when the waypoints switch) as follows,[

xpj+1

ypj+1

]
=

[
cos (ψj+1 − ψj) sin (ψj+1 − ψj)
− sin (ψj+1 − ψj) cos (ψj+1 − ψj)

] [
xpj − lj
ypj − 0

]
(4)

IV. MPC CONTROLLER

In our control algorithm, the MPC controller serves as
the top-level guidance controller that generates the desired
course and speed angles depending on the destination coor-
dinates, static obstacles, and riparian land limits. The MPC is
used to solve the optimal control problem (OCP) repeatedly
[15]. The continuous-time OCP is formulated as,

min
x(.),u(.)

∫ T

0

ϕ(x (τ) , u(τ))dτ

s.t. ẋ (t) = f (x (t) , u (t)) ∀ t ∈ [0, tmax]

h (x (t) , u (t)) ≤ 0

x (0) = x̄(t0)

(5)

where, ϕ is the objective function, x(.) is the own-ship
states; x = [x, y, χ, U ]T , u(.) contains control actions;
u = [χd, Ud]

T , f(x(t),u(t)) is the ship model described in
Equation 1, h(x(t),u(t)) represents inequality constraints,
and x̄(t0) denotes the current state of the ship.

Next, the OCP is discretized and converted to a numerical
Nonlinear Programming Problem (NLP) for Np number of
steps (horizon) using the multiple shooting method [16].

min
w

ϕ(w)

s.t. g (w) = 0

h (w) ≤ 0

(6)

where, w =
[
xT0 ,uT

0 , . . . , xTNp−1,uT
Np−1, xTNp

]T
∈ R6Np+4

denotes the decision variables in the discretized-time formu-
lation. The cost function ϕ is formulated as,

ϕ (w) =

Np∑
k=1

∥xk − xrefk ∥
2

Q
+ ∥uk − uk−1∥2M (7)

where, xk and xref
k denote the current state and reference

state respectively. xref is the vessel state consisting the
coordinates of the next waypoint, and expected course angle
and speed of the ownship at that waypoint. Here, ∥Z∥2Q
denotes the Euclidean norm of a vector Z, i.e., ZTQZ. The
first part of the Equation 7 penalizes the error in ship state
while the second part penalizes the control effort. Matrices
Q and M consist of tuning parameters. We have used the
Runge-Kutta Order 4 (RK4) method to calculate the next
ship state.

The equality constraints g(w) are used to close the shoot-
ing gaps from the integration steps.

g (w) =


x̄− x0

F (x0,u0)− x1
F (x1,u1)− x2

...
F
(
xNp−1,uNp−2

)
− xNp

 (8)

The inequality constraints h(w) are used to specify control
input constraints (hu), static obstacle avoidance constraints
(hsobs) and riparian land constraints (hrland). First,

hu (w) =

 χlb − χd

−(χub − χd)
Ulb − Ud

−(Uub − Ud)

 (9)



where χlb, χub, Ulb and Uub denote the minimum and
maximum allowable course angles and speed of the vessel
respectively. Next,

hsobs

(
w, Li

)
=


Li − di1
Li − di2

...
Li − diNp

 (10)

where dik is the Euclidean distance between own-ship and the
static obstacle i at a given time, while Li is the minimum
allowable distance between the two as further explained in
Section IV-A. Finally,

hrland

(
w, glh1:Np

, grh1:Np

)
=



y1 −max(glhy1
, grhy1

)
−(y1 −min(glhy1

, grhy1
))

y2 −max(glhy2
, grhy2

)
−(y2 −min

(
glhy2

, grhy2

)
)

...
yNp −max(glhyNp

, grhyNp
)

−(yNp
−min

(
glhyNp

, grhyNp

)
)


(11)

where yk is the y-axis coordinate of the own-ship in the
path coordinate system {Pj} and glhyk

, grhyk
are the y-axis

coordinate of the corresponding ground positions on the
riparian land on either side, in the path coordinate system
{Pj}. These parameters are further explained in Section IV-
B.

A. Static obstacle avoidance

In this research, reeks, wrecks, navigational aids, fishing
zones and small islands are identified as static obstacles. We
propose to handle these as constraints on the MPC problem
by considering these obstacles as circular regions.

Fig. 3. Creating static obstacle constraints.

As shown in Figure 3, both the static obstacle and the own
ship are considered as circular constraints. riobs and ros are
the radius of the circles enclosing the ith static obstacle and
own ship, respectively. One can select appropriate margins
when determining said radius. Therefore, Li and di in
Equation 10 can be calculated as follows,

Li = risobs + ros

di = ∥pi
sobs − pos∥

(12)

where, pi
sobs and pos are center position of the enclosing

circles of ith static obstacle and own ship respectively.

Even though this method is suitable for most cases,
deducing the shape of a static obstacle to a single circle can
be a waste of navigable area depending on how the circular
area is formulated. The SeaCharts package introduced in
[17], proposes an algorithm called ‘EnclosingCircles’ which
calculates local polygon approximation circles, based on the
currently visible shoreline or depth contour corresponding to
the ship draught, from any given ship position, which can be
used to address this issue.

B. Cross-track error corridor
The main difference between navigating inland waters

compared to open sea is the presence of riparian land. The
riparian land is not considered as a static obstacle above,
and is therefore handled using a different strategy. We call
it the Cross-track Error Corridor. If this is to be handled by
SBMPC alone, it would require careful consideration when
developing the cost components and tuning of the weights
of respective cost components. Furthermore, the difference
between consecutive course and speed commands generated
at an area with high traffic density could be too drastic
for inland waters due to the volatility of the environment.
However, since information about the riparian land on the
planned route is available well ahead as ENC data, it is
possible to handle this as constraints of the MPC problem
for the considered horizon.

To calculate the cross-track error corridor, we need to
extract ENC chart data. More details on how ENC chart data
were extracted for this research is explained in Section VI-A.
Once extracted, it would provide riparian land as polygons
which can be used to calculate the cross-track error corridor
using Algorithm 1.

The input S to Algorithm 1 is an array with points of
the predicted ship trajectory. This is usually derived by
finding a predetermined number of intermediate waypoints
on a straight-line connecting two subsequent waypoints. The
parameter RG is a single polygon (sequence of points)
created by merging the individual polygons representing
riparian land within a predetermined radius from own ship.
Figure 4 shows the error corridor generated for a part of
the Beitstadsundet Fjord, Norway. Notice the red dotted line
(the generated corridor) slightly inwards from the polygon
boundaries. This margin is a buffer zone against navigation
inaccuracies.

Fig. 4. Cross-track error corridor generated for a part of Beitstadsundet
Fjord, Norway.

The input ∆d is the maximum width of the corridor on
either side of the ship if riparian land is not present. The
function would return two arrays consisting of points of the
corridor boundaries on either side of the ship. These points
are generated w.r.t the inertial coordinate system. Next, they



Algorithm 1: Calculating cross-track error corridor
Data: Riparian land polygon data RG, an array of

points S, that consists of intermediate points
between two adjacent waypoints sampled at a
predetermined length interval, and maximum
corridor width ∆d

Result: Two arrays of points, glhk and grhk that mark
the error corridor on either side of the vessel

glhk ← 0;
grhk ← 0;
while i < length(S) do

perp line← perpendicular line to the line
connecting two adjacent points in S;
point maxWidth rh← point on perp line at
a+∆d distance along the y axis (cross-track
distance) from the corresponding point on S;
point maxWidth lh← point on perp line at
a−∆d distance along the y axis (cross-track
distance) from the corresponding point on S;
line rh← line connecting point maxWidth rh
and the corresponding point on S;
line lh← line connecting point maxWidth lh

and the corresponding point on S;
if line rh intersect with RG then

grhi ← coordinate of the intersection point
else

grhi ← point maxWidth rh
end
if line lh intersect with RG then

glhi ← coordinate of the intersection point
else

glhi ← point maxWidth lh
end

end

are transformed to the path coordinate system introduced in
Section III-C. Finally, the transformed coordinate points are
then used to obtain glhyk

, grhyk
parameters of Equation 11. The

coordinate system transformation is performed, as it allows
directly setting constraints for the position along the y-axis
of the MPC solution. Figure 5 illustrates the generated error
corridor for a situation where only one side of the vessel has
riparian land present.

V. SB-MPC CONTROLLER

The SB-MPC algorithm that acts as the reactive controller
in our approach is based on [5]. The main objective of
the SB-MPC controller is to compute modifications to the
nominal course (χd) and speed (Ud) generated from the top-
level MPC controller to avoid dynamic obstacles. In SB-
MPC, the following discrete control actions are commonly
used:

• Course offset in degrees (χm): -90, -75, -60, -45, -30,
-15, 0, 15, 30, 45, 60, 75, 90.

• Speed factor (Um): 0, 0.5, 1.
The modifications are in turn applied to the desired deci-

sions from the MPC (χd, Ud) to obtain final course and speed
commands (χc, Uc) using χc = χd +χm and Uc = Ud ·Um

equations. Therefore, choosing χm = 0 and Um = 1
simply recovers the nominal course and speed (χd, Ud). This

Fig. 5. Example for cross-track error corridor generation.

parametrization leads to a total of Ns = 13×3 = 39 possible
control behaviors to be simulated and evaluated over a time
horizon to obtain the optimum course and speed commands
(χ∗

c , U∗
c ) for each time step. It is also worth noting that when

evaluating certain course and speed combination, the course
offset and speed factor (χm, Um) are assumed to remain
constant over the time horizon.

The internal objective of the SB-MPC is to evaluate the
control behaviors k ∈ {1, 2, . . . , Ns} for each obstacle vessel
i ∈ {1, 2, . . . , No} (No represents the number of obstacles)
at time t0 and select the control behavior with index k that
minimizes the cost Hk(t0). Specifically,

k∗ (t0) = argmin
k

Hk(t0) (13)

where,

Hk(t0) = max
i

max
t∈D(t0)

(Ck
i (t)Rk

i (t) + κiµ
k
i (t) + ζk(t))

+ Γ(Uk
m, χ

k
m)

(14)

The terms of the cost function in Equation 14 are defined
as follows,

• The cost associated with collision with obstacle i at
time t in scenario k, is Ck

i (t), and the corresponding
collision risk factor, Rk

i (t).
• The COLREGS rules violation cost is κiµk

i (t), where
µk
i (t) is a binary indicator of COLREGs rule violation

and κi is a tuning parameter.
• The cost of maneuvering effort associated with scenario
k is considered from Γ(Uk

m, χ
k
m).

Each scenario is evaluated at discrete sample times over
the prediction horizon T using the discretization interval Ts,
as D (t0) = {t0, t0+Ts, . . . , t0+T}. More information about
each cost component in detail can be found in [5].

Even though static obstacles and riparian land is handled
by the constraints of the MPC controller, when modifying the
desired course and speed commands (χd, Ud), the SB-MPC
algorithm is not aware of them. Therefore, it needs its own
way of handling this in case a collision-avoidance maneuver
for dynamic obstacle suggested by the SB-MPC drive the
vessel towards the ground. Therefore, authors of this paper
propose adding an additional cost component inspired by [8]
to the cost function mentioned above.



The grounding cost associated with control behavior k at
time t is,

ζk (t) =

{
e−(η1|dk

i (t)−dsafe|+η2(t−t0)), if dki (t) ≤ dclose
0, otherwise

(15)
where, dki (t) is distance to the ground and dsafe is the circu-
lar own-ship safety margin around the ship. Only obstacles
within the cicular region with radius dclose is considered a
hazard, and η1 and η2 are tuning parameters.

VI. RESULTS

A. Test setup
For the purpose of this research, we have parametrized

ENC map data as two-dimensional polygons, read from
shape files using the MATLAB built-in API. Each polygon
encompasses a land segment in the map. The said shapefiles
are generated using ENC charts corresponding to the relevant
map region considered. Each shapefile in the regions of
interest is read individually and merged to create a single
polygon. However, a more general approach would be to
use the SeaCharts library [17]. For this research, we have
used the shapefiles in the Norwegian Fjord Catalog from the
Norwegian Mapping Authority (NCA) [18].

B. Simulations
In Figures 6-13, blue region represents the water while the

white region represents the riparian land. White circles in the
middle of the water body represent artificially added static
obstacles. The red cross and square represent starting and
terminal waypoints, respectively. The solid red line bordering
the riparian land is the generated cross-track error corridor.
Own ship is denoted by a blue circle and target vessels are
denoted by black, magenta and orange. The solid and dashed
lines represent past and future trajectories of the vessels
respectively.

In the first test simulation we would like to demonstrate the
performance of the MPC controller on its own. For this, as
the test bed, we have chosen part of the Beitstadsundet Fjord,
Norway. In this test there are no dynamic obstacles present
and therefore, the SB-MPC algorithm has been turned off.
Figure 6 depict the simulation result of the test case. As
shown, the MPC is perfectly capable of navigating between
two waypoints avoiding static obstacles and riparian land.

Fig. 6. Simulation 1 result

Next, we created seven test scenarios where, artificially
added static obstacles, riparian land and dynamic obstacles
are present. These test cases put the hybrid algorithm in
challenging situations where different collision scenarios are

mimicked. As the test bed for these different scenarios, part
of the Trondheim Fjord, Norway was utilized. Figure 7-13
depict the results of the said test scenarios. In each of these
figures, sub-figure (a) depicts the overview of the vessel tra-
jectories while the sub-figure (b) show the distance between
the ownship and each target vessel from the beginning of the
simulation up to the instance showed in sub-figure (a).

Fig. 7. Results of the test Scenario 1 in Simulation 2

(a) Trajectory overview

(b) Distance between vessels

Fig. 8. Results of the test Scenario 2 in Simulation 2

In Figure 7, no dynamic obstacles were added, to test
the performance of the hybrid algorithm without any target
vessels and to obtain a reference trajectory to compare with
the rest of the test cases. In Figures 8a-13a, the green dashed
line mark the nominal own ship trajectory from Figure
7. In Figure 8 and 9, head-on and crossing scenarios are
simulated and it can be seen the own ship takes a starboard
turn correctly to avoid the collision situations. In Figure
10, the own ship is faced with both head-on and crossing
target vessels in close proximity. In Figure 11, an overtaking
situation is simulated immediately when the own ship passes
the second static obstacle, while in Figure 12 the complexity
of the situation was slightly elevated by adding a crossing
vessel to the same overtaking scenario. In the scenario
represented in Figure 13, the target vessel movements in
Figure 8-10 were combined to design a complex collision



(a) Trajectory overview (b) Distance between vessels

Fig. 9. Results of the test Scenario 3 in Simulation 2

(a) Trajectory overview (b) Distance between vessels

Fig. 10. Results of the test Scenario 4 in Simulation 2

(a) Trajectory overview (b) Distance between vessels

Fig. 11. Results of the test Scenario 5 in Simulation 2

(a) Trajectory overview (b) Distance between vessels

Fig. 12. Results of the test Scenario 6 in Simulation 2



(a) Trajectory overview (b) Distance between vessels

Fig. 13. Results of the test Scenario 7 in Simulation 2

risk situation for the own ship. It is worth mentioning that
in Figures 9,12 and 13, the ownship significantly deviates
from the green line to comply with COLREGs Rule 15
[4]. The above simulations prove that the proposed control
algorithm is capable of handling multiple target vessels and
static obstacles in close proximity while limited by a narrow
maneuverable area.

VII. CONCLUSION

In this paper, a novel collision-avoidance and guidance
control algorithm is proposed, comprising of two layers
that work in tandem to enable effective inland waterway
navigation. The top layer incorporates an MPC controller that
guides the vessel, performs path following and static obstacle
avoidance, while the bottom layer contains an SB-MPC
controller that modifies the output of the MPC to handle
dynamic obstacles. The proposed algorithm is tested on
several simulation scenarios, and simulation results show the
algorithm’s effectiveness in preventing collision scenarios.
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