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A B S T R A C T

High productivity freight vehicles (HPFVs) are used in many countries to address increasing freight demand. However, it is then necessary to assess the safety of
existing bridge structures subjected to HPFVs because of their increasing mass and dimension. A critical part of this work is to assess the dynamic amplification of
such vehicles, without undue conservatism, often based on vehicle–bridge interaction (VBI) modelling. In the VBI problem, the vehicle model is usually derived
using the Principle of Virtual Work or Euler–Lagrange methods. However, HPFVs are characterized by multiple bodies and articulation points and these techniques
quickly become intractable. Alongside the vehicle model, the bridge is often assumed to be a single simply-supported span, or a few continuous spans, whereas
many urban bridge viaducts, in particular, have multiple prestressed concrete (PSC) girder simply-supported spans. Furthermore, these bridges typically have an
upwards hog as a result of the prestress and it is hypothesized that certain combinations of vehicle, hog, span length, and number of spans, could produce a large
dynamic amplification of static load effects. In this work, Kane’s Method is applied to heavy vehicle with multi-trailers combinations which provides a relatively
easy, systematic, and numerical manipulation means of determining the vehicle dynamic equations. The 9-axle B-Double vehicle, common in Australia, is used
as an example to illustrate the procedure of deriving the vehicle dynamic equations. We apply the resulting vehicle models in a comprehensive VBI model to
consider the dynamic amplification of PSC girder viaducts. The results indicate that the studied PSC girder viaducts experience higher amplification than the
equivalent single-span simply-supported bridges. Recommendations for future studies and practice, such as the number of spans in the viaduct to obtain the
‘convergence’ of dynamic amplification, are given.
1. Introduction

Due to the continuously growing freight demand, many countries
have introduced high productivity freight vehicles (HPFVs) to accom-
modate the increasing freight demand. The large freight capacity of
HPFVs, such as semi-trailers and B-doubles, can improve the transport
efficiency by reducing the vehicle volumes for a given freight task. The
B-double is a common HPFV type with a prime mover and two trailers
in Australia, South Africa, and is increasingly used in Europe [1].
According to the Truck Impact Chart published by the Australian
Trucking Association [2], heavier vehicles with more trailers reduce
the number of trips, consume less fuel, release less carbon dioxide,
and are a safer alternative compared with traditional freight vehicles,
such as semi-trailers. However, not all existing bridges can provide
safe access to HPFVs due to the larger mass and dimensions, especially
for heavy trucks of complex configuration with tractor and trailers. A
critical aspect of the assessment of existing bridges, and the design
of new bridges, for such new vehicle configurations, is the Dynamic
Amplification Factor (DAF) [3], defined as:

DAF =
𝜀T
𝜀S

, (1)
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where 𝜀T is the maximum total load effect (e.g. bending moment)
considering both the static and dynamic effects, and 𝜀S is the maximum
static-only equivalent load effect noted during the traverse at mid-
span [4–6]. Consequently, the evaluation of the DAF for these truck-
trailer combinations for the entire bridge stock is vital for ensuring
optimal freight productivity and structural safety.

In the Vehicle–Bridge-Interaction (VBI) problem, the dynamic equa-
tions of the bridge and vehicle can be derived separately and coupled by
the compatibility conditions at the contact points between vehicle tyres
and bridge surface [7]. This very useful separation of the vehicle and
bridge models, allows for high-fidelity modelling of each component
separately.

The simply supported beam is widely used to study the dynamic
response of the bridge subject to external force. The one-dimensional
(1-D) beam can be modelled by finite element method (FEM) with
both vertical translation and rotation on each node [8,9]. Nikkhoo
et al. [10] considered the simply supported bridge as a 2-D plate
element, and simulated a vehicle meeting event by two series of moving
inertial loads. González [11] made a literature review on VBI and
indicated that bridges can be modelled by 2-D plate and grillage and
three-dimensional (3-D) solid elements by using FEM. A continuous
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3-span bridge was examined by Zhu & Law [12] using the Rayleigh–
Ritz method in which the bridge deck is simulated as an orthotropic
thin rectangular plate. Liu et al. [13] investigated the impact effect
of extra heavy vehicle on the continuous finite beam element bridge.
Rezaiguia and Laefer [14] proposed a semi-analytical solution of con-
tinuous multi-span bridge decks by modal superposition, and they also
suggested [15] the dynamic response of the model matches with that
of Rayleigh–Ritz and finite element models.

Prestressed concrete bridges are extensively used in highway bridge
networks. The time-dependent camber of the PSC beam is influenced
by factors such as creep, shrinkage, and the loss of prestress force [16].
Indeed, the Australian code AS 5100.5 [17] requires an upward cam-
ber (hog) at long-term to avoid an undesirable sag deflection under
permanent loads. This is not unique as, for example, the existence of
hog deflections is an important consideration in the serviceability of
high-speed rail bridges [18]. It is interesting then, that even though
a variety of types of bridge models have been considered in VBI
studies, the hog, a basic characteristic of PSC girders, has not been
explicitly considered [19]. Finally, although many bridges or viaducts
are multiple-span and simply-supported (especially in urban areas), this
form of bridge structure has not yet been examined.

In previous VBI investigations, a wide variety of sprung vehicle
models have been used to simulate heavy-vehicles. The truck with
rigid configuration can be simulated as a half-car planar model [8]
or extended to three dimensions allowing for roll rotation [12,20].
Kirkegaard et al. [21] derived a 6-axle articulated heavy lorry to
study the interaction between heavy vehicles and highway bridges.
Cantero et al. [22] provided generic equations of motions of artic-
ulated track-trailer configurations. Meyer et al. [9] applied a long
multi-trailer heavy B-double vehicle with two articulations and seven
axles configuration. However, all of these vehicle models were derived
using the Principle of Virtual Work or Euler–Lagrange methods, which
require a priori a choice of the dependent quantities. Consequently,
these methods become increasingly intractable as more trailer bodies or
different types of trailers with axle configuration [23] are introduced to
satisfy the specific freight loading. Thus, there is a need for a general
way of modelling such vehicles, that can be automated. Indeed, this
problem has been previously recognized by Cantero [24], but has yet to
be addressed through a single comprehensive modelling methodology.

This paper addresses the combined problem of the development
of the heavy-vehicle dynamic model, and the analysis of PSC girder
viaducts. A novel approach deriving equations of motion of heavy
vehicle by using Kane’s method [25] is introduced in Section 2. The
typical Australian 9-axle B-double truck is set as an example to show
the derivation procedure, and this method can be easily applied to rigid
trucks, semi-trailers, and other types of more complicated tractor-trailer
combinations. Comparison is made to previous multi-body vehicle mod-
els in literature as validation. In Section 3, the simply-supported bridge
with hog is simulated by using superposition technique, where the
hog is added to the road profile. The coupled VBI considering hog is
presented and validated by comparing the dynamic bending moment
and acceleration at the mid-span with a previous study. In Section 4, a
numerical experiment is carried out to explore the influence of hog, ve-
hicle velocity, and bridge span length on the simply supported bridge.
Then, a multi-span simply-supported viaduct is examined in detail and
discussed in Section 5. Finally, the maximum dynamic amplification
of fifteen types of viaducts from one to fifteen spans are considered
to investigate the distinction of DAF between single- and multi-span
simply-supported viaducts in Section 6. It suggests the number of spans
in the viaduct to obtain the ‘convergence’ of amplification.

2. Vehicle model

Kane’s method – also known as the Lagrange form of d’Alembert’s
principle [26] – is often applied in the field of multi-body dynamics.
For example, Pal [27] derived the underslung dynamic equations of
588
a helicopter connecting multiple rigid bodies by cables and Gomez
et al. [28] developed the mathematical model of a rotor-centrifugal-
pendulum-vibration-absorber system. However, Kane’s method has not
been applied to derive the multi-body vehicle models in the VBI prob-
lem, most likely because it is only in recent years that multi-body
vehicles have been studied in this field, as noted previously. For multi-
body dynamic problems, compared with the virtual work and Euler–
Lagrange methods, Kane’s method provides a simpler way to derive
these equations, through the introduction of partial velocities and
accelerations. The method facilitates automation and numerical manip-
ulation [29], and so is less error-prone [30] and has an open-source
mature application [31]. Thus it is highly-suited for the multi-body
systems characteristic of HPFVs.

The general procedure of deriving heavy vehicle’s equations of
motion using Kane’s method is shown in Fig. 1 and the steps are:

• Specify the vehicle’s geometry and define the masses of the
tractor, trailers, and axles. In doing so, usually large bodies like
the tractor and trailers are assumed as rigid bodies with both
displacement and rotation considered, while the axle is often
taken as a particle when its rotational motion is negligible. With
this, the DOFs corresponding to the translational and rotational
motions in the system can be defined and described as generalized
coordinates 𝑞𝑗 . The generalized velocity 𝑢𝑗 = �̇�𝑗 is the first
derivative of 𝑞𝑗 with respect to time.

• Set local frames for rigid bodies and define the inertial (Newto-
nian) frame 𝑁 , where the orientation of local frames is described
by the rotations of rigid bodies.

• Describe the position, velocity 𝑣, acceleration 𝑎 and angular ve-
locity 𝜔 and acceleration 𝛼 of joints and the centre of mass of
tractor, trailers and axles in the inertial frame. Then generate the
partial velocities and partial angular velocities of the rigid bodies
and particles, 𝑁 �̃�∗ . The articulation joints between trailer bodies
give nonholonomic constraints to reduce the number of DOF and
the dependent generalized quantities 𝑞𝑟, 𝑢𝑟 and �̇�𝑟 are replaced by
other selected independent quantities.

• Determine the contacting forces 𝐑, torques 𝐓, and inertial forces
𝐓∗ applied to the tractor, trailers, and axles.

• Based on the contact and inertial forces, �̃�∗ and �̃�, generate the
generalized active force 𝐹𝑖 and inertial force 𝐹 ∗

𝑖 . The number
of 𝐹𝑖 or 𝐹 ∗

𝑖 equals to the number of independent generalized
coordinates 𝑞𝑖 and the 𝑖th partial velocity and angular velocity
are defined by the coefficient for generalized velocity 𝑢𝑖.

• Finally, Kane’s dynamic equation can be obtained from 𝐹𝑖 and 𝐹 ∗
𝑖

from which, after linearization, the equation of motion of vehicle
can be presented in matrix form.

In this paper, the typical 9-axle B-Double heavy vehicle in Aus-
ralia is used as an application example to show the procedure of
eriving the vehicle model using Kane’s method. However, the method
emonstrated here can be generally applied to other types of vehicles
nd tractor-trailer combinations. The dynamic prototype of a 9-axle
-Double vehicle is illustrated in Fig. 2, and the vehicle consists of
ne tractor, two semi-trailers, and 9 axles. The tractor and trailers are
imulated as lumped mass rigid bodies, and the axles are considered
s concentrated mass particles. The tractor and trailers are connected
o the axle masses by the suspension system, and the axle is supported
y the tyre system above the road surface. Both suspension and tyre
ystems are assumed only to provide compression and tensile forces,
hich are always parallel to the vertical axis. Note that all dimensions
re measured relative to the module axis origin, e.g. the 𝑠𝑖 are positive
uantities, the 𝑟𝑖 are negative quantities, and 𝑙𝑖 are a mixture, but
ostly negative.
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Fig. 1. The procedure for deriving the heavy vehicle dynamic model using Kane’s method.
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.1. Development

The DOFs of the 9-axle B-Double are determined by the tractor
nd trailers’ vertical displacements 𝑞1, 𝑞3, 𝑞5, pitch rotations 𝑞2, 𝑞4, 𝑞6,

and vertical axle displacements 𝑞𝑖, 𝑖 = 7,… , 15. Therefore there are 15
eneralized coordinates in the system, in total. Four reference frames
ncluding one inertial frame and three local frames are set for the
ehicle system which are shown in Fig. 2(a): the Newtonian (inertial)
rame 𝑁 (𝐧𝟏,𝐧𝟐,𝐧𝟑), which has the origin fixed at the centre of gravity
f the trailer 𝐶 on the ground surface; Frame 𝐴 (𝐚𝟏, 𝐚𝟐, 𝐚𝟑), where
he origin is fixed at the centre of gravity of the tractor 𝐴; Frame 𝐵
𝐛𝟏,𝐛𝟐,𝐛𝟑), where the origin is fixed at the centre of gravity of the
railer 𝐵, and; Frame 𝐶 (𝐜𝟏, 𝐜𝟐, 𝐜𝟑), where the origin is fixed at the centre
f gravity of the trailer 𝐶. The angles between Frames 𝑁 and 𝐴, 𝑁
nd 𝐵, and 𝑁 and 𝐶 are denoted as 𝑞2, 𝑞4 and 𝑞6 respectively, and the
ransformation from frames 𝑁 to 𝐴 can be expressed by:

𝐧1
𝐧2
𝐧3

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

cos 𝑞2 sin 𝑞2 0
− sin 𝑞2 cos 𝑞2 0

0 0 1

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝐚1
𝐚2
𝐚3

⎫

⎪

⎬

⎪

⎭

. (2)

The transformation matrices from Frames 𝑁 to 𝐵 or 𝐶 can be derived
imilarly by replacing 𝑞2 to 𝑞4 or to 𝑞6. The tractor and two trailers
re connected by two articulation (fifth wheel) constraints 𝑃1 and 𝑃2,
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where the positions of 𝑃1 in frames 𝐴 and 𝐵, and 𝑃2 in frames 𝐵 and
, with respect to Newtonian frame, are described as:

𝐏𝐴
1 = (𝑠3 cos 𝑞6 − 𝑟2 cos 𝑞4 + 𝑠2 cos 𝑞2)𝐧1 + (𝑞1 + 𝜏𝐴 − 𝑟1 sin 𝑞2)𝐧2, (3a)

𝐏𝐵
1 = (𝑠3 cos 𝑞6 − 𝑟2 cos 𝑞4 + 𝑠2 cos 𝑞2)𝐧1 + (𝑞3 + 𝜏𝐵 − 𝑠2 sin 𝑞4)𝐧2, (3b)

𝐏𝐵
2 = (𝑠3 cos 𝑞6)𝐧1 + (𝑞3 + 𝜏𝐵 − 𝑟2 sin 𝑞4)𝐧2, (3c)
𝐶
2 = (𝑠3 cos 𝑞6)𝐧1 + (𝑞5 + 𝜏𝐶 − 𝑠3 sin 𝑞6)𝐧2, (3d)

here the initial height from the ground to the centre of mass of tractor
and trailers 𝐵 and 𝐶 are 𝜏𝐴 = 𝜏𝐵 = 𝜏𝐶 .
If we define the generalized velocity as:

𝑗 = �̇�𝑗 , 𝑗 = 1, 2,… , 15, (4)

hen the velocities of points 𝑃1 and 𝑃2 with respect to tractor 𝐴, trailers
and 𝐶 are:

𝑣𝑃
𝐴1 = (−𝑠3 sin 𝑞6𝑢6 + 𝑟2 sin 𝑞4𝑢4 − 𝑠1 sin 𝑞2𝑢2)𝐧1

+ (𝑢1 − 𝑟1 cos 𝑞2𝑢2)𝐧2, (5a)

𝑣𝑃
𝐵1 = (−𝑠3 sin 𝑞6𝑢6 + 𝑟2 sin 𝑞4𝑢4 − 𝑠1 sin 𝑞2𝑢2)𝐧1,

𝑁𝑣𝑃
𝐵2 = (−𝑠3 sin 𝑞6𝑢6)𝐧1 + (𝑢3 − 𝑟2 cos 𝑞4𝑢4)𝐧2, (5b)

𝑁𝑣𝑃
𝐶2 = (−𝑠3 sin 𝑞6𝑢6)𝐧1 + (𝑢5 − 𝑠3 cos 𝑞6𝑢6)𝐧2 (5c)

+ (𝑢3 − 𝑠2 cos 𝑞4𝑢4)𝐧2. (5d)
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Fig. 2. Multi-body vehicle dynamic models: (a) Schematic diagram of B-double vehicle; (b) Suspension–axle–tyre system of the first axle of tractor.
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Similarly, the accelerations of points 𝑃1 and 𝑃2 are obtained as:
𝑁𝑎𝑃

𝐴1 = (−𝑠3 sin 𝑞6�̇�6 + 𝑟2 sin 𝑞4�̇�4 − 𝑠1 sin 𝑞2�̇�2 − 𝑠3 cos 𝑞6𝑢26
+ 𝑟2 cos 𝑞4𝑢24 − 𝑠1 cos 𝑞2𝑢22)𝐧1

+ (�̇�1 − 𝑟1 cos 𝑞2�̇�2 + 𝑟1 sin 𝑞2𝑢22)𝐧2, (6a)

𝑁𝑎𝑃
𝐵1 = (−𝑠3 sin 𝑞6�̇�6 + 𝑟2 sin 𝑞4�̇�4 − 𝑠1 sin 𝑞2�̇�2 − 𝑠3 cos 𝑞6𝑢26

+ 𝑟2 cos 𝑞4𝑢24 − 𝑠1 cos 𝑞2𝑢22)𝐧1, (6b)

𝑁𝑎𝑃
𝐵2 = (−𝑠3 sin 𝑞6�̇�6 − 𝑠3 cos 𝑞6𝑢26)𝐧1

+ (�̇�3 − 𝑟2 cos 𝑞4�̇�4 + 𝑟2 sin 𝑞4𝑢24)𝐧2
+ (�̇�3 − 𝑠2 cos 𝑞4�̇�4 + 𝑠2 sin 𝑞4𝑢24)𝐧2, (6c)

𝑁𝑎𝑃
𝐶2 = (−𝑠3 sin 𝑞6�̇�6 − 𝑠3 cos 𝑞6𝑢26)𝐧1

+ (�̇�5 − 𝑠3 cos 𝑞6�̇�6 + 𝑠3 sin 𝑞6𝑢26)𝐧2. (6d)

Supposing that there is no slippage at the articulation points (fifth
wheels), then the position, velocity, and acceleration of the articulation
points in each local frame with respect to the 𝑁 frame are equiva-
lent. Therefore the nonholonomic constraint equations can be obtained
from Eqs. (3), (5) and (6) as:

𝑞3 = 𝑞1 − 𝑟1 sin 𝑞2 + 𝑠2 sin 𝑞4, (7a)

𝑞5 = 𝑞1 − 𝑟1 sin 𝑞2 + (𝑠2 − 𝑟2) sin 𝑞4 + 𝑠3 sin 𝑞6, (7b)

𝑢3 = 𝑢1 − 𝑟1 cos 𝑞2𝑢2 + 𝑠2 cos 𝑞4𝑢4, (7c)

𝑢5 = 𝑢1 − 𝑟1 cos 𝑞2𝑢2 + (𝑠2 − 𝑟2) cos 𝑞4𝑢4 + 𝑠3 cos 𝑞6𝑢6, (7d)

�̇�3 = �̇�1 − 𝑟1 cos 𝑞2�̇�2 + 𝑠2 cos 𝑞4�̇�4 + 𝑟1 sin 𝑞2𝑢22 − 𝑠2 sin 𝑞4𝑢24, (7e)
590

�̇�5 = �̇�1 − 𝑟1 cos 𝑞2�̇�2 + (𝑠2 − 𝑟2) cos 𝑞4�̇�4 + 𝑠3 cos 𝑞6�̇�6
+ 𝑟1 sin 𝑞2𝑢22 − (𝑠2 − 𝑟2) sin 𝑞4𝑢24 − 𝑠3 sin 𝑞6𝑢26. (7f)

In this case, vertical displacements of trailers 𝐵 and 𝐶 (𝑞3 and 𝑞5) are
selected as the dependent generalized coordinates.

2.2. Generalized rates

The angular and linear velocities and accelerations of tractor 𝐴 with
respect to the Newtonian (𝑁) frame are given by:
𝑁𝜔𝐴 = −𝑢2𝐧𝟑, (8a)
𝑁𝛼𝐴 = −�̇�2𝐧𝟑, (8b)

𝑣𝐴
∗
= 𝑢1𝐧𝟐, (8c)

𝑁𝑎𝐴
∗
= �̇�1𝐧𝟐. (8d)

n the same way, the angular and linear velocities and accelerations of
railer 𝐵 with respect to 𝑁 are:
𝑁𝜔𝐵 = −𝑢4𝐧𝟑, (9a)
𝑁𝛼𝐵 = −�̇�4𝐧𝟑, (9b)

𝑣𝐵
∗
= 𝑢3𝐧𝟐, (9c)

𝑁𝑎𝐵
∗
= �̇�3𝐧𝟐, (9d)

here 𝑢3 and �̇�3 are given in Eqs. (7c) and (7e), and the angular and
inear velocities and accelerations of trailer 𝐶 with respect to 𝑁 are:
𝑁𝜔𝐶 = −𝑢6𝐧𝟑, (10a)
𝑁𝛼𝐶 = −�̇�6𝐧𝟑, (10b)

𝑣𝐶
∗
= 𝑢5𝐧𝟐, (10c)

𝑁𝑎𝐶
∗
= �̇�5𝐧𝟐, (10d)
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where 𝑢5 and �̇�5 are given in Eqs. (7d) and (7f). Finally, the velocities
and accelerations of the axles on the tractor and trailers are, for 𝑗 =
, 2, 3, given by:

𝑣(𝐴𝑗) = 𝑢6+𝑗𝐧2, (11a)
𝑁𝑣𝐵𝑗 = 𝑢9+𝑗𝐧2, (11b)
𝑁𝑣𝐶𝑗 = 𝑢12+𝑗𝐧2, (11c)
𝑁𝑎𝐴𝑗 = �̇�6+𝑗𝐧2, (11d)
𝑁𝑎𝐵𝑗 = �̇�9+𝑗𝐧2, (11e)
𝑁𝑎𝐶𝑗 = �̇�12+𝑗𝐧2. (11f)

.3. Contact and inertial forces

The constraint force between tractor 𝐴 and trailer 𝐵 at point 𝑃1
nd that between trailers 𝐵 and 𝐶 are denoted as 𝑅𝑃1𝐧1 and 𝑅𝑃2𝐧1
espectively. Thus, the external forces and torques acting on the centre
f mass of tractor 𝐴 are:

𝐴 =

( 3
∑

𝑗=1
𝑊 𝑗

𝐴,𝑠 + 𝑅𝑃1

)

𝐧2, (12a)

𝐓𝐴 =

(

cos 𝑞2
3
∑

𝑗=1
𝑊 𝑗

𝐴,𝑠𝐿
𝑗
𝐴 + 𝑅𝑃1𝑟1 cos 𝑞2

)

𝐧3, (12b)

n which,
𝑗
𝐴,𝑠 = 𝑘𝑗𝐴,𝑠

[

𝑞6+𝑗 − 𝑞1 + 𝐿𝑗
𝐴 sin 𝑞2

]

+ 𝑐𝑗𝐴,𝑠
[

�̇�6+𝑗 − �̇�1 + 𝐿𝑗
𝐴 sin �̇�2

]

.

Similarly, the external forces and torques acting on trailers 𝐵 and 𝐶
are:

𝐑𝐵 =

( 3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠 − 𝑅𝑃1 + 𝑅𝑃2

)

𝐧2, (13a)

𝐓𝐵 =

(

cos 𝑞4
3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠𝐿
𝑗
𝐵 − 𝑅𝑃 1𝑠2 cos 𝑞4 + 𝑅𝑃2𝑟2 cos 𝑞4

)

𝐧3, (13b)

and

𝐑𝐶 =

( 3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠 − 𝑅𝑃2

)

𝐧2, (14a)

𝐓𝐶 =

(

cos 𝑞6
3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠𝐿
𝑗
𝐶 − 𝑅𝑃 2𝑠3 cos 𝑞6

)

𝐧3, (14b)

in which,

𝑊 𝑗
𝐵,𝑠 = 𝑘𝑗𝐵,𝑠

[

𝑞9+𝑗 − 𝑞3 + 𝐿𝑗
𝐵 sin 𝑞4

]

+ 𝑐𝑗𝐵,𝑠
[

�̇�9+𝑗 − �̇�3 + 𝐿𝑗
𝐵 sin �̇�4

]

,

and

𝑊 𝑗
𝐶,𝑠 = 𝑘𝑗𝐶,𝑠

[

𝑞12+𝑗 − 𝑞5 + 𝐿𝑗
𝐶 sin 𝑞6

]

+ 𝑐𝑗𝐶,𝑠

[

�̇�12+𝑗 − �̇�5 + 𝐿𝑗
𝐶 sin �̇�6

]

.

The contact forces acting on the axles for the tractor and trailers are:

𝐑𝐴𝑗 =
(

−𝑊 𝑗
𝐴,𝑠 − 𝑘𝑗𝐴,𝑡𝑞6+𝑗𝐧2

)

, (15a)

𝐑𝐵𝑗 =
(

−𝑊 𝑗
𝐵,𝑠 − 𝑘𝑗𝐵,𝑡𝑞9+𝑗𝐧2

)

, (15b)

𝐑𝐶𝑗 =
(

−𝑊 𝑗
𝐶,𝑠 − 𝑘𝑗𝐶,𝑡𝑞12+𝑗𝐧2

)

. (15c)

The inertial torques are:

𝐓∗ = −𝛼 ⋅ 𝐈 − 𝜔 × 𝐈 ⋅ 𝜔, (16)

where 𝐈 is the central inertial dyadic, and 𝛼 and 𝜔 are the angular ac-
celerations and velocities respectively. Substitute Eq. (8) into Eq. (16),
and transform the local coordinates frame to 𝑁 frame by Eq. (2) to find:

𝐓∗
𝐴 = �̇�2𝐧𝟑 ⋅ (𝐼1𝐴𝐚𝟏𝐚𝟏 + 𝐼2𝐴𝐚𝟐𝐚𝟐 + 𝐼3𝐴𝐚𝟑𝐚𝟑)

1 2 3
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− 𝑢2𝐧𝟑 × (𝐼𝐴𝐚𝟏𝐚𝟏 + 𝐼𝐴𝐚𝟐𝐚𝟐 + 𝐼𝐴𝐚𝟑𝐚𝟑) ⋅ 𝑢2𝐧𝟑
= �̇�2𝐼
3
𝐴𝐧𝟑. (17)

Similarly, the inertial torque of trailers 𝐵 and 𝐶 can be obtained by
substituting Eqs. (9) and (10) into Eq. (16) to get:

𝐓∗
𝐵 = �̇�4𝐼3𝐵𝐧𝟑, (18a)

𝐓∗
𝐶 = �̇�6𝐼3𝐶𝐧𝟑. (18b)

2.4. Generalized active and inertial forces

The generalized active forces of the nonholonomic system can be
expressed generally as:

𝐹𝑖 = 𝑁 �̃�𝐴
𝑖 ⋅ 𝐓𝐴 + 𝑁 �̃�𝐴

∗
𝑖 ⋅ 𝐑𝐴 + 𝑁 �̃�𝐵

𝑖 ⋅ 𝐓𝐵 + 𝑁 �̃�𝐵
∗

𝑖 ⋅ 𝐑𝐵 + 𝑁 �̃�𝐶
∗

𝑖 ⋅ 𝐑𝐶

+
3
∑

𝑗=1

𝑁𝑣𝐴𝑗𝑖 ⋅ 𝐑𝐴𝑗 +
3
∑

𝑗=1

𝑁𝑣𝐵𝑗𝑖 ⋅ 𝐑𝐵𝑗 +
3
∑

𝑗=1

𝑁𝑣𝐶𝑗
𝑖 ⋅ 𝐑𝐶𝑗 ,

(19)

where 𝑖 = 1,… , 15 but 𝑖 ≠ 3, 5, which are the dependent coordinates,
Eq. (7). In Eq. (19) the contact forces 𝐑 and torque 𝐓 can be obtained
from Eqs. (12) to (15); the 𝑖th partial velocity �̃�𝑖 and partial angular
velocity �̃�𝑖 are the coefficients for 𝑢𝑖 and can be obtained from Eqs.
(8) tp (11). The generalized active forces of tractor and trailers then
become:

𝐹1 = 𝐑𝐴𝐧2 + 𝐑𝐵𝐧2 + 𝐑𝐶𝐧2

=
3
∑

𝑗=1
𝑊 𝑗

𝐴,𝑠 +
3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠 +
3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠, (20a)

𝐹2 = −𝐧3 ⋅ 𝐓𝐴 − 𝑟1 cos 𝑞2 𝐧2 ⋅ 𝐑𝐵 − 𝑟1 cos 𝑞2 𝐧2 ⋅ 𝐑𝐶

= −cos 𝑞2
3
∑

𝑗=1
𝑊 𝑗

𝐴,𝑠𝐿
𝑗
𝐴 − 𝑟1 cos 𝑞2

( 3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠 +
3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠

)

, (20b)

𝐹4 = −𝐧3 ⋅ 𝐓𝐵 + 𝑠2 cos 𝑞4 𝐧2 ⋅ 𝐑𝐵 +
(

𝑠2 − 𝑟2
)

cos 𝑞4 𝐧2 ⋅ 𝐑𝐶

= −cos 𝑞4
3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠𝐿
𝑗
𝐵 + 𝑠2 cos 𝑞4

3
∑

𝑗=1
𝑊 𝑗

𝐵,𝑠

+ (𝑠2 − 𝑟2)
3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠, (20c)

𝐹6 = −𝐧3 ⋅ 𝐓𝐶 + 𝑠3 cos 𝑞6 𝐧2 ⋅ 𝐑𝐶

= −cos 𝑞6
3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠𝐿
𝑗
𝐶 + 𝑠3 cos 𝑞6

3
∑

𝑗=1
𝑊 𝑗

𝐶,𝑠. (20d)

The generalized active forces of axles are derived for 𝑗 = 1, 2, 3, as
follows:

𝐹6+𝑗 = 𝐧2 ⋅ 𝐑𝐴𝑗 = −𝑊 𝑗
𝐴,𝑠 − 𝑘𝑗𝐴,𝑡 𝑞9+𝑗 , (21a)

𝐹9+𝑗 = 𝐧2 ⋅ 𝐑𝐵𝑗 = −𝑊 𝑗
𝐵,𝑠 − 𝑘𝑗𝐵,𝑡 𝑞12+𝑗 , (21b)

𝐹12+𝑗 = 𝐧2 ⋅ 𝐑𝐶𝑗 = −𝑊 𝑗
𝐶,𝑠 − 𝑘𝑗𝐶,𝑡 𝑞15+𝑗 . (21c)

The generalized inertial forces can be expressed as:

𝐹 ∗
𝑖 = 𝑁 �̃�𝐴

𝑖 ⋅ 𝐓∗
𝐴 −𝑀𝐴

𝑁𝑎𝐴
∗
⋅ 𝑁 �̃�𝐴

∗
𝑖 + 𝑁 �̃�𝐵

𝑖 ⋅ 𝐓∗
𝐵 −𝑀𝐵

𝑁𝑎𝐵
∗
⋅ 𝑁 �̃�𝐵

∗
𝑖

+ 𝑁 �̃�𝐶
𝑟 ⋅ 𝐓∗

𝐶 −𝑀𝐶
𝑁𝑎𝐶

∗
⋅ 𝑁 �̃�𝐶

∗
𝑖 −

3
∑

𝑗=1
𝑚𝑗
𝐴
𝑁𝑎𝐴

∗
𝑗 ⋅ 𝑁 �̃�

𝐴𝑗
𝑖

−
3
∑

𝑗=1
𝑚𝑗
𝐵
𝑁𝑎𝐵

∗
𝑗 ⋅ 𝑁 �̃�

𝐵𝑗
𝑖 −

3
∑

𝑗=1
𝑚𝑗
𝐶
𝑁𝑎𝐶

∗
𝑗 ⋅ 𝑁 �̃�

𝐶𝑗
𝑖 , (22)

where 𝑖 = 1,… , 15 but as before 𝑖 ≠ 3, 5, which are the dependent
coordinates, Eq. (7).

The inertial torque 𝐓∗ is introduced from Eqs. (17) to (18), where
𝑎∗ is the acceleration of rigid body or particle. The generalized inertial
forces of the tractor and trailers are then obtained as:

𝐹 ∗
1 = −𝑀𝐴

𝑁𝑎𝐴
∗
⋅ 𝐧2 −𝑀𝐵

𝑁𝑎𝐵
∗
⋅ 𝐧2 −𝑀𝐶

𝑁𝑎𝐶
∗
⋅ 𝐧2
= −(𝑀𝐴 +𝑀𝐵 +𝑀𝐶 )�̇�1 + (𝑟1 cos 𝑞2 𝑀𝐵 + 𝑟1 cos 𝑞2 𝑀𝐶 )�̇�2
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𝑦

−
[

𝑠2 cos 𝑞4 𝑀𝐵 + (𝑠2 − 𝑟2) cos 𝑞4 𝑀𝐶
]

�̇�4 −
(

𝑠3 cos 𝑞6 𝑀𝐶
)

�̇�8
−
(

𝑟1 sin 𝑞2 𝑀𝐵 + 𝑟1 sin 𝑞2 𝑀𝐶
)

𝑢22
+
[

𝑠2 sin 𝑞4 𝑀𝐵 + (𝑠2 − 𝑟2) sin 𝑞4 𝑀𝐶
]

𝑢24 + (𝑠3 sin 𝑞6 𝑀𝐶 )𝑢26, (23a)
𝐹 ∗
2 = −𝐧3 ⋅ 𝐓∗

𝐴 +𝑀𝐵
𝑁𝑎𝐵

∗
𝑟1 cos 𝑞2𝐧2 +𝑀𝐶

𝑁𝑎𝐶
∗
𝑟1 cos 𝑞2𝐧2

= (𝑟1 cos 𝑞2 𝑀𝐵 + 𝑟1 cos 𝑞2 𝑀𝐶 )�̇�1
− (𝐼3𝐴 + 𝑟21 cos

2 𝑞2 𝑀𝐵 + 𝑟21 cos
2 𝑞2 𝑀𝐶 )�̇�2

+ cos 𝑞2 cos 𝑞4 ⋅
[

𝑟1𝑠2𝑀𝐵 + 𝑟1(𝑠2 − 𝑟2)𝑀𝐶
]

�̇�4
+ cos 𝑞2 cos 𝑞6 ⋅ 𝑟1𝑠3𝑀𝐶 �̇�6
+
(

𝑀𝐵 +𝑀𝐶
)

𝑟21 cos 𝑞2 sin 𝑞2 𝑢22
− cos 𝑞2 sin 𝑞4 ⋅

[

𝑟1𝑠2𝑀𝐵 + 𝑟1(𝑠2 − 𝑟2)𝑀𝐶
]

𝑢24
− cos 𝑞2 sin 𝑞6 ⋅ 𝑟1𝑠3𝑀𝐶𝑢

2
6, (23b)

𝐹 ∗
4 = −𝐧3 ⋅ 𝐓∗

𝐵 −𝑀𝐵
𝑁𝑎𝐵

∗
𝑠2 cos 𝑞4𝐧2 −𝑀𝐶

𝑁𝑎𝐶
∗
(𝑠2 − 𝑟2) cos 𝑞4𝐧2

= −[𝑠2 cos 𝑞4𝑀𝐵 + (𝑠2 − 𝑟2) cos 𝑞4𝑀𝐶 ]�̇�1
+ cos 𝑞2 cos 𝑞5 ⋅ [𝑟1𝑠2𝑀𝐵 + 𝑟1(𝑠2 − 𝑟2)𝑀𝐶 ]�̇�2
− cos2 𝑞4[𝐼3𝐵 + 𝑠22𝑀𝐵 + (𝑠2 − 𝑟2)2𝑀𝐶 ]�̇�4
− cos 𝑞4 cos 𝑞6 ⋅ 𝑠3(𝑠2 − 𝑟2)𝑀𝐶 �̇�8
+ sin 𝑞2 cos 𝑞4 ⋅ [𝑟1𝑠2𝑀𝐵 + 𝑟1(𝑠2 − 𝑟2)𝑀𝐶 ]𝑢22
+ sin 𝑞6 cos 𝑞4 ⋅ 𝑠3(𝑠2 − 𝑟2)𝑀𝐶𝑢

2
6, (23c)

𝐹 ∗
6 = −𝐧3 ⋅ 𝐓∗

𝐶 −𝑀𝐶
𝑁𝑎𝐶

∗
𝑠3 cos 𝑞6 𝐧2

= −(𝑠3 cos 𝑞6 𝑀𝐶 )�̇�1 +
[

cos 𝑞2 cos 𝑞6 𝑟1𝑠3𝑀𝐶
]

�̇�2
− cos 𝑞4 cos 𝑞6 ⋅ 𝑠3(𝑠2 − 𝑟2)𝑀𝐶 �̇�4 −

[

𝐼3𝐶 + cos2 𝑞6 𝑠23𝑀𝐶
]

�̇�6
+ sin 𝑞2 cos 𝑞6 ⋅ 𝑟1𝑠3𝑀𝐶𝑢

2
2 − sin 𝑞4 cos 𝑞6 ⋅ 𝑠3(𝑠2 − 𝑟2)𝑀𝐶𝑢

2
4

− sin 𝑞6 cos 𝑞6 ⋅ 𝑠3𝑀𝐶𝑢
2
6. (23d)

And finally, the following set of generalized inertial forces for the axles
are derived for 𝑗 = 1, 2, 3 as:

𝐹 ∗
6+𝑗 = −𝑚𝐴𝑗

𝑁𝑎𝐴
∗
𝑗 𝐧2 = −𝑚𝐴𝑗 �̇�6+𝑗 , (24a)

𝐹 ∗
9+𝑗 = −𝑚𝐵𝑗

𝑁𝑎𝐵
∗
𝑗 𝐧2 = −𝑚𝐵𝑗 �̇�9+𝑗 , (24b)

𝐹 ∗
12+𝑗 = −𝑚𝐶𝑗

𝑁𝑎𝐶
∗
𝑗 𝐧2 = −𝑚𝐶𝑗 �̇�12+𝑗 . (24c)

2.5. Dynamic equations

Considering the dependent coordinates, Kane’s dynamic equation is
expressed as:

𝐹𝑖 + 𝐹 ∗
𝑖 = 0, 𝑖 = 1,… , 15; 𝑖 ≠ 3, 5, (25)

By substituting Eqs. (20), (21), (23) and (24) into Eq. (25), thirteen
second-order differential equations for the B-Double vehicle are de-
rived. Note that the vertical displacements 𝑞3 and 𝑞5 and velocities
𝑢3 = �̇�3 and 𝑢5 = �̇�5 of the trailers in the generalized active forces
can be replaced by other independent generalized rates through the
constraints Eq. (7). It can be seen that the interaction forces at hinges
𝑃12 and 𝑃22 are eliminated automatically by calculating the generalized
active forces in Eq. (19) via Kane’s method. In comparison, the inter-
action forces need to be derived explicitly in terms of a function of
other forces in Newton–Euler method. Compared to previous methods,
the equations of motion of the vehicle can be systematically and
numerically derived, even though the non-linearity of the dynamic is
taken into account.

By truncating the higher order terms and assuming small rotations
(i.e. sin 𝑞 = 𝑞 and cos 𝑞 = 1), the linearized second-order differential
equations can be expressed in matrix form as:
[

𝐌𝐯
] {

�̈�
}

+
[

𝐂𝐯
] {

�̇�
}

+
[

𝐊𝐯
] {

𝐪
}

=
{

𝐅𝐯
}

, (26)

where the mass, stiffness and damping matrices are expressed in Ap-
pendix A. The DOFs are defined by the generalized coordinates as:

[ ]𝑇
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𝐪 = 𝑞1 𝑞2 𝑞4 𝑞6 𝑞7 𝑞8 𝑞9 ⋯ 𝑞15 , (27)
Table 1
Mechanical properties of the tractors and trailers.

Unit B-double SA6 SA5

Tractor A

𝑟1 m −2.427 −3.000 −2.600
𝑠1 m – – –
𝑀𝐴 kg 6550 6420 4891
𝐼3
𝐴 kgm2 6604 6955 5955
𝐿1

𝐴 m 1.523 1.000 1.000
𝐿2

𝐴 m −1.727 −2.300 −2.600
𝐿3

𝐴 m −3.127 −3.700 –
drive axle loads kg 5664 6130 3846
steering axle loads kg 7714 6715 8266

Trailer B

𝑟2 m −2.931 – –
𝑠2 m 5.369 5 5
𝑀𝐵 kg 18397 25374 19759
𝐼3
𝐵 kgm2 10488 44933 34990
𝐿1

𝐵 m −1.531 −2.700 −2.000
𝐿2

𝐵 m −2.931 −4.100 −3.400
𝐿3

𝐵 m −4.331 −5.500 −4.800
trailer axle loads kg 6479 5580 5511

Trailer C

𝑟3 m – – –
𝑠3 m 5.895 – –
𝑀𝐶 kg 27375 – –
𝐼3
𝐶 kgm2 15488 – –
𝐿1

𝐶 m −1.705 – –
𝐿2

𝐶 m −3.105 – –
𝐿3

𝐶 m −4.505 – –
trailer axle loads kg 6397 – –

and the force vector is given by:

𝐅𝑣 =
[

𝟎(4×1) 𝑓1 𝑓2 ⋯ 𝑓9
]𝑇 , (28)

where 𝑓𝑖 is the contact force caused by the road roughness 𝑟𝑖 and bridge
displacement 𝑦𝑏𝑖 at the 𝑖th wheel of vehicle, which is defined by:

𝑓𝑖 = 𝑘𝑖𝑡
(

𝑟𝑖 + 𝑦𝑏𝑖
)

+ 𝑐𝑖𝑡
(

�̇�𝑖 + �̇�𝑏𝑖
)

, (29)

where 𝑘𝑖𝑡 and 𝑐𝑖𝑡 are the 𝑖th tyre stiffness and damping.

2.6. Vehicle parameters

The parameters of B-double vehicle used in this study are taken here
to be in conformance with the Heavy Vehicle National Law provided by
Heavy Vehicle National Regulator (NHVR) in Australia [23,32,33]. In
addition, two types of semi-trailers are introduced as comparison: the
5-axle single articulated truck (SA5) and the 6-axle single articulated
truck (SA6) studied previously, [9]. The linear vehicle models of SA5
and SA6 derived by Kane’s method are identical to that of in [9,34].
The parameters of tractors and trailers of three vehicles are presented
in Table 1, while the mechanical vehicle properties of axles for three
vehicles types are the same and shown in Table 2.

3. Bridge model

3.1. General development

The simply supported Euler–Bernoulli beam of length 𝐿𝑏 is assumed
to represent the bridge model. The governing equation for the beam is:

𝜌
𝜕2𝑦𝑏(𝑥, 𝑡)

𝜕𝑡2
+ 𝜇

𝜕𝑦𝑏(𝑥, 𝑡)
𝜕𝑡

+ 𝐸𝐼
𝜕4𝑦𝑏(𝑥, 𝑡)

𝜕𝑥4
= 𝑝(𝑥, 𝑡), (30)

where 𝜌 is the mass per unit length; 𝜇 is the damping per unit length;
𝐸 is the elastic modulus; 𝐼 is the second moment of area; 𝑦𝑏(𝑥, 𝑡)
s the displacement of beam on point 𝑥 at time 𝑡, and; 𝑝(𝑥, 𝑡) is the
orce on point 𝑥 at time 𝑡. By using modal superposition the vertical
isplacement of beam can be expressed by a set of 𝑛 vibration modes:

𝑏(𝑥, 𝑡) =
𝑛
∑

𝜙𝑖(𝑥) 𝜂𝑖(𝑡), (31)

𝑖=1
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Table 2
Mechanical properties of the axles.

Suspension stiffness kNm−1

drive axles 1000
steering axles 400
trailer axles 1000

Suspension damping kN sm−1

drive axles 20
steering axles 10
trailer axles 20

Tyre stiffness kNm−1

drive axles 3500
steering axles 1750
trailer axles 3500

Axle mass kg

drive axles 1100
steering axles 700
trailer axles 750

where 𝜙𝑖(𝑥) are the vibration mode shapes and 𝜂𝑖(𝑡) are the modal
coordinates. The 𝑗th mode shape at position 𝑥 can be rewritten as:

𝜙𝑗 (𝑥) =

√

2
𝜌𝐿𝑏

sin
(

𝑗𝜋𝑥
𝐿𝑏

)

. (32)

Considering the force as a point load, the force caused by a 9-axle
vehicle can be expressed as:

𝑝(𝑥, 𝑡) =
9
∑

𝑖=1
𝐹𝑏(𝑥𝑖, 𝑡)𝜙𝑗 (𝑥𝑖) 𝐼(𝑥𝑖), (33)

in which 𝑥𝑖 is the position of the 𝑖th tyre. When the tyre is on the
beam the indicator function 𝐼(𝑥𝑖) is 1, otherwise it is 0. The dynamic
interaction force 𝐹𝑏 for wheel 𝑖 can be expressed as:

𝐹𝑏(𝑥𝑖, 𝑡) = 𝑊𝑖 − 𝑓𝑖(𝑥𝑖, 𝑡), (34)

in which 𝑊𝑖 is the static wheel force, and 𝑓𝑖(𝑥𝑖, 𝑡) is the dynamic contact
force. With this arrangement, the 𝑗th mode equation of motion for the
bridge can be expressed in the simple form:

�̈�𝑗 + 2𝜉𝑗𝜔𝑗 �̇�𝑗 + 𝜔2
𝑗 𝜂𝑗 =

9
∑

𝑖=1

[

𝑊𝑖 − 𝑓𝑖(𝑥𝑖, 𝑡)
]

𝜙𝑗 (𝑥𝑖) 𝐼(𝑥𝑖). (35)

3.2. Consideration of hog

According to the design code AS 5100.5 [17], at long-term, an
upward hog is required for deflection serviceability, and this is a
common situation in practice for many bridges. For this work, the hog
is taken to have a sinusoidal curve, which has the same format of the
first mode shape, although any profile can be taken. The hog height at
mid-span is denoted as ℎ0 as shown in Fig. 3(a), and so the deflected
profile of the bridge without external loading is:

𝑟ℎ(𝑥) = ℎ0 sin
(

𝜋𝑥
𝐿𝑏

)

. (36)

For the VBI problem, consideration of the hog can be done similar to
the road roughness profile, which contributes to dynamic contact force
𝑓𝑖(𝑥𝑖, 𝑡). Then the corresponding road roughness, 𝑟(𝑥𝑖), in Eq. (29) can
e expressed as the sum of pavement variation and hog:

(𝑥) = 𝑟𝑝(𝑥) + 𝑟ℎ(𝑥). (37)

.3. Single vehicle on a single span bridge

The complete VBI system equations are formed by the equations of
otion of the vehicle(s) and bridge, coupled by the dynamic interaction
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orces at the contact points between the tyres and bridge surface. The
oupled VBI system for a single vehicle on a single bridge is:
[

𝐌𝐜
] {

�̈�𝑐
}

+
[

𝐂𝐜
] {

�̇�𝑐
}

+
[

𝐊𝐜
] {

𝐪𝑐
}

=
{

𝐅𝑐
}

, (38)

where 𝐅𝑐 is the coupled force vector, 𝐌𝐜 is the coupled mass matrix,
nd 𝐊𝐜 and 𝐂𝐜 are the coupled stiffness and damping matrices, which
ary with time. The displacement vector 𝐪𝑐 = (𝐪, 𝜼)𝑇 consists of the

displacement of the vehicle and the modal coordinates of bridge. These
matrices and vectors can be found in Appendix C.

3.4. Single vehicle on a discontinuous multi-span bridge

The multi-span discontinuous bridge is taken to be composed of
multiple simply-supported beams. When the vehicle is moving on a
𝑁-spans viaduct, the coupled equation of motion is given by:
[

𝐌𝐜𝐍
] {

�̈�𝑐𝑁
}

+
[

𝐂𝐜𝐍
] {

�̇�𝑐𝑁
}

+
[

𝐊𝐜𝐍
] {

𝐪𝑐𝑁
}

=
{

𝐅𝑐𝑁
}

, (39)

n which,

𝐜𝐍 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝑣 0 ⋯ 0
0 𝐌𝑏1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐌𝑏𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, (40)

𝐜 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐂𝑣 𝐂𝑣𝑏1 𝐂𝑣𝑏2 ⋯ 𝐂𝑣𝑏𝑁
𝐂𝑏1𝑣 𝐂𝑏1 + 𝐂𝑏1𝑏1 0 ⋯ 0
𝐂𝑏2𝑣 0 𝐂𝑏2 + 𝐂𝑏2𝑏2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐂𝑏𝑁𝑣 0 0 ⋯ 𝐂𝑏𝑁 + 𝐂𝑏𝑁𝑏𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

𝐜 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊𝑣 𝐊𝑣𝑏1 𝐊𝑣𝑏2 ⋯ 𝐊𝑣𝑏𝑁
𝐊𝑏1𝑣 𝐊𝑏1 +𝐊𝑏1𝑏1 0 ⋯ 0
𝐊𝑏2𝑣 0 𝐊𝑏2 +𝐊𝑏2𝑏2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐊𝑏𝑁𝑣 0 0 ⋯ 𝐊𝑏𝑁 +𝐊𝑏𝑁𝑏𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (42)

nd

𝐅𝑐
}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝟎(4×1)
𝐅𝑣

[

𝐍𝑏1
] {

𝐅𝐛𝟏
}

⋮
[

𝐍𝑏𝑁
] {

𝐅𝐛𝐍
}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (43)

here the mass matrix 𝐌𝑏, stiffness matrix 𝐊𝑏, damping matrix 𝐂𝑏,
ode shape matrix 𝐍𝑏, and force vector 𝐅𝑏 are given in Appendix B. The

ime-dependent matrices and vectors can be obtained in Section 3.3,
here the 𝑗th mode shape matrix 𝐍𝑏𝑗 turns zero once the vehicle

s not in contact with the 𝑗th span of the viaduct. The coupled VBI
ystem can be solved by any step-by-step integration method and the
ewmark–Beta algorithm is applied in this study.

.5. Validation

Fig. 4 shows a validation of the VBI model by comparing the
ynamic bending moment and acceleration at the mid-span with [9],
here the same bridge and vehicle properties are selected. It shows

hat the bridge model derived by the modal superposition method has a
ood match with the finite element model used [9]. Small discrepancies
re likely because the pitch moment of inertia and centre of gravity
re not provided in [9] and were estimated. The first ten modes are
onsidered for superposition model which makes strong agreement
ith finite element model when all the parameters are same.
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Fig. 3. Consideration of hog: (a) Simply supported bridge; (b) Discontinuous multi-span viaduct.
Fig. 4. Mid-span acceleration for SA6 vehicle crossing 28 m bridge at speed 80 kmh−1 from the present model and [9].
4. Influence of bridge hog

To investigate the influence of hog of PSC girder-type bridges on
VBI, the bridge is taken as a simply-supported beam, as is typical
for this structural form. As noted above, the hog is treated with the
road profile and so does not change any structural properties. The
hog height, ℎ0, considered ranges from 0 to 𝐿𝑏∕400. The interaction
between the simply-supported bridge and the three vehicles considered
are compared to understand the effect of the hog on the DAF. We
consider first the link between DAF, vehicle speed and hog, for a fixed
span length. Then, we consider, for a fixed vehicle speed, the influence
of span length and hog on DAF.

Further to the general definition of Eq. (1), the specific DAF taken
here, following [34], is:

DAF =
𝑀𝑇
𝑀𝑆

, (44)

where the total bending moment (𝑀𝑇 ) is the sum of the static and
dynamic bending moments, 𝑀𝑇 = 𝑀𝑆 +𝑀𝐷.

4.1. Vehicle velocity and bridge hog

The simply-supported bridge used has length 𝐿𝑏 = 28 m, mass
per unit length 𝜌 = 19 929 kg/m, and flexural rigidity 𝐸𝐼 = 6.6 ×
1010 Nm2. The hog height ℎ0 ranges from 0 to 70 mm (𝐿𝑏∕400) in 1 mm
intervals, and the vehicle travels at a range of speeds from 20 kmh−1

to 140 kmh−1 in 1 kmh−1 intervals. The vehicle parameters are as
shown in Table 1, and the three types of vehicle have the same axle
properties, as shown in Table 2. Both a smooth profile and a Class B
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road profile [35], randomly generated for each hog and speed, are used
for comparison.

4.1.1. Results
Fig. 5(a) shows the hog has less influence on the B-Double vehicle

system if the vehicle speed is lower than 60 kmh−1. When the B-
double travels faster than 60 kmh−1, two critical speeds are observed
at around 74 kmh−1 and 116 kmh−1 where a significant increase of
amplification around the resonance speed due to hogging is obtained.
It can be seen from Fig. 5(c) that the hog amplifies the DAF caused by
SA6 when the speed is over about 64 kmh−1, and a significant increase
is observed at high velocities nearing 140 kmh−1. However, the hog
slightly reduces the DAF at a low resonant speed around 52 kmh−1.
Increasing hog slightly increases the DAF when SA5 crosses the bridge
at higher speeds from 120 kmh−1 to 140 kmh−1 and at the resonant
speed around 57 kmh−1 as shown in Fig. 5(e). Interestingly, the DAF
reduces notably with the increase of hog height at the resonant speed
around 99 kmh−1 and anti-resonant speed around 77 kmh−1. As road
roughness Class B is taken into account, Figs. 5(b), 5(d) and 5(f) show
that the increased and reduced DAF caused by the hog is still observed
at the respective speed ranges.

4.1.2. Discussion
For the vehicles with 3-axle tractors like the B-double and SA6,

the hog is more likely to cause an increased DAF for most of the
velocity range. In contrast, hog has less influence on the SA5 truck
which has a 2-axle tractor, and it even reduces the amplification at
mid-span for some velocities. To understand the reason behind that,
the dynamic bending moment (DBM) of mid-span induced by the SA5
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Fig. 5. DAF of 28 m simply supported bridge at mid-span, hog height vs vehicle velocity: (a) B-Double, smooth road condition; (b) B-Double, Class B road; (c) SA6, smooth road
condition; (d) SA6, Class B road; (e) SA5, smooth road condition; (f) SA5, Class B road.
driving on a smooth road at speed 100 kmh−1 is shown as an example
in Fig. 6. It shows the DBM of the 28 m bridge at mid-span without
hog, where the DBM is determined by the acceleration at mid-span. It
can be seen that due to the configuration of SA5 vehicle, the maximum
total bending moment occurs at 0.88 s, while the maximum dynamic
moment is earlier, which is also the case for a 70 mm hog. Despite
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the maximum DBMs occurring in both cases at the same time (0.63 s),
and the magnitude of the negative crest increasing from 107 134 Nm
to 129 428 Nm, the DBM at the instance when maximum total bending
moment is obtained reduces from 91 376 Nm to 74 233 Nm. So it seems
that the hog can amplify the dynamic response of all three vehicles, but
it has different effect on DAFs due to the vehicle configurations.
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Fig. 6. Dynamic bending moments of 28 m simply supported bridge at mid-span induced by SA5 vehicle, vehicle speed = 100 kmh−1. The solid and dashed lines represent
response at: hog height = 0 mm and hog height = 70 mm. The red circles indicate the times of maximum dynamic and total bending moment.
Table 3
DAF of each span in the 15-span viaduct, with the
single-span results for comparison.
Span index B-double SA6 SA5

Single-span 1.128 1.128 1.054

1 1.128 1.128 1.054
2 1.179 1.199 1.045
3 1.172 1.206 1.044
4 1.169 1.208 1.044
5 1.169 1.209 1.045
6 1.168 1.207 1.045
7 1.168 1.208 1.045
8 1.168 1.208 1.045
9 1.168 1.207 1.045
10 1.168 1.208 1.045
11 1.168 1.208 1.045
12 1.168 1.208 1.045
13 1.168 1.208 1.045
14 1.168 1.208 1.045
15 1.168 1.208 1.045

4.2. Span length and bridge hog

A common stock of simply-supported bridges from short- to
medium-span lengths (15–40 m) is selected from [36] to investigate
the dynamic behaviour of the VBI system subject to the hog, where the
vehicle velocity is set to a typical highway speed of 100 kmh−1. The
results are shown in Fig. 7.

4.2.1. Result
Fig. 7(a) indicates that B-Double truck produces higher levels of

DAF at short span range from 16 m to 20 m and medium span length
from 28 m to 38 m, where three peaks are observed at 18 m, 20 m
and 31 m. The B-Double experiences lower levels of amplification from
21 m to 25 m, with the lowest at 23 m. From Fig. 7(c), it can be seen
that the DAF of the SA6 truck increases for spans from 18 m to 20 m and
reaches the largest at 20 m but quickly drops to the smallest at 21 m,
then it increases with the increasing span length from 21 m to 29 m.
The SA5 truck produces higher levels of amplification at medium spans
from 32 m to 40 m as shown in Fig. 7(e). However, the amplification
caused by SA5 is slightly reduced by hogging for most spans less 32 m,
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especially at lower spans around 15 m to 20 m. Considering the Class B
road profile results, it is clear that hogging both increases and reduces
the DAF (compared to a smooth profile) at different spans, as can be
seen in Figs. 7(b), 7(d) and 7(f).

4.2.2. Discussion
Larger hog of the bridge beam leads to higher levels of amplification

at most of the spans for the B-Double and SA6 trucks, but lower or
similar for the SA5 truck. The effect of hog on DAF is more significant
at the respective critical spans for B-Double and SA6 vehicle types. For
the SA5 case, DAFs ≤ 1.0 are obtained for spans 15 m to 17 m which
indicates that a large dynamic moment counteracts the maximum total
bending moment at the critical instant.

5. Dynamic amplification in viaducts

The viaduct is modelled as a discontinuous multi-span bridge con-
sisting of simply-supported PSC girder bridge decks with hog as shown
in Fig. 3(b). All spans are considered to have the same parameters,
resulting in them having the same natural frequency. However, when
considering road roughness, a random road profile is generated for each
span separately, as is reasonable.

A 15-span viaduct was selected from an initial parametric study,
as it has a sufficient number of spans for the DAF responses to be
practically stable. Table 3 shows that the DAF of the first span in
the viaduct is substantially different to that of the remaining span
indices, and that the DAF becomes stable with increasing span index
for each vehicle considered. In the following, we first consider the DAF
of different span indices, for a fixed span length, and how it varies with
vehicle speed. We then consider, for a fixed vehicle speed, the influence
of span length for each span index.

5.1. Span index and vehicle speed

The numerical experiment is carried out at a range of speed from
20 kmh−1 to 140 kmh−1 with a 1 kmh−1 interval on a 15-span viaduct,
where the single span properties are the same as that in Section 4.1.
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Fig. 7. DAF of simply-supported bridges from 15–40 m at mid-span, vehicle speed = 100 kmh−1, hog height vs span length: (a) B-Double, Smooth road condition; (b) B-Double,
Class B road; (c) SA6, Smooth road condition; (d) SA6, Class B road; (e) SA5, Smooth road condition; (f) SA5, Class B road.
5.1.1. Results
Fig. 8(a) suggests that the higher resonant speeds of the B-Double

truck for the first span are obtained at around 73 kmh−1 and
115 kmh−1, while those of the remaining spans are very close to each
other and occur at around 77 kmh−1 and 124 kmh−1. It is shown from
Fig. 8(c) that the highest resonant speed of the second–fifteenth spans
caused by SA6 is around 137 kmh−1. However that critical speed of
the first span exceeds 140 kmh−1, which is out of the speed range
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considered. For both the B-Double and SA6 trucks, the resonant speed
found at the first span is similar to that of a simply-supported bridge,
and higher levels of amplification in the remaining spans are found, as
compared to the simply-supported case. The highest resonant speed of
SA5 occurs at around 136 kmh−1 from the third span to the last span,
while the lower critical speeds of all spans in the viaduct almost remain
the same at around 95 kmh−1 and 58 kmh−1 as shown in Fig. 8(e). For
the viaduct, Figs. 8(b), 8(d) and 8(f) indicate that the resonant speeds
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Fig. 8. DAF of a 15-span discontinuous viaduct at mid-span, span length = 28 m, hog height = 70 mm for the span index and vehicle speed: (a) B-Double, smooth road condition;
(b) B-Double, Class B road; (c) SA6, smooth road condition; (d) SA6, Class B road; (e) SA5, smooth road condition; (f) SA5, Class B road.
of the three truck types can still be observed when the road roughness
is considered. This is despite each span having a different road profile
due to road irregularity.

5.1.2. Discussion
The results indicate that the first span in the viaduct has the same

DAF as for a single-span, which may be expected. However, the DAF of
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subsequent spans differs substantially: for the B-Double and SA6 trucks,
they are higher, whereas for the SA5 truck they are lower. The first
and second spans have different DAF typically to the third–fifteenth
spans. One possible reason for this behaviour is that during the time
the vehicle enters a subsequent span and leaves the previous span, it
not only captures an excitation caused by the previous span but also
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Fig. 9. DAF of a 15-span discontinuous viaduct at mid-span, hog height = 𝐿𝑏∕400, vehicle speed = 100 kmh−1, for span index and length: (a) B-Double, smooth road condition;
(b) B-Double, Class B road; (c) SA6, smooth road condition; (d) SA6, Class B road; (e) SA5, smooth road condition; (f) SA5, Class B road.
interacts with both spans. This would help explain the distinction in
observed DAFs between a viaduct and single-span beam.

5.2. Span index and length

The results of Section 5.1 indicate that the critical speed for a
viaduct could differ to that of a single-span bridge. In this section, the
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vehicle speeds are kept at fairly typical highway speed of 100 kmh−1
and the span lengths varied; all other properties are as before.

5.2.1. Results
Fig. 9(a) suggests that there is a higher amplification of the third–

fifteenth spans than that of the first span in the viaduct under the
B-Double truck at lengths 18 m to 40 m. Similarly, for SA6, it is seen
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Fig. 10. Variation of DAFs of simply-supported single-span bridges and the first and second viaduct spans with span length: (a) BD vehicle ; (b) SA6 vehicle; (c) SA5 vehicle.
from Fig. 9(c) that the higher index spans produce higher DAFs than
that of first span over the whole range of lengths considered. From
Fig. 9(e), it is seen that for span lengths 16 m to 17 m and 25 m to
28 m, SA5 imparts lower amplifications at the 2nd–15th spans than
the first span. For the three vehicles, all spans in the viaduct share a
similar critical span length range, which is also similar to the single-
span bridge. Once considering road roughness, the critical span lengths
match well with the smooth road assumption as shown in Figs. 9(b),
9(d) and 9(f).
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5.2.2. Discussion
It is shown from Figs. 9(a), 9(c) and 9(e) that the 2nd–15th spans

share similar DAF results cover the whole range considered (15 m to
40 m). Therefore the amplification of the second span is selected to
represent the DAF in spans other than the first span. Fig. 10(a) shows
that the first span of the viaduct produces the same amplification results
to the single-span case for the B-Double vehicle for span lengths from
19 m to 40 m. However, for 15 m to 18 m, the first span in the viaduct
experiences higher DAFs than the single-span bridge. For SA6, from
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Fig. 11. The Viaduct Amplification Factor (VAF) (Eq. (45)) for 𝑁-span 28 m viaducts for the vehicles and speed range considered, for a smooth road profile.
Fig. 10(b), it can be seen that the DAF of the first span is the same
as a single-span bridge over the full length range except the 15 m
length. And for the SA5 truck, Fig. 10(c) shows that the first span
almost has the same DAF as a single-span bridge over the lengths from
15 m to 40 m. This behaviour could be because the B-Double truck has
the longest body, while SA5 is the shortest (Table 1). Nevertheless, it
does seem that the second and subsequent spans in viaducts experience
higher levels of dynamic amplification than equivalent single-span
bridges. Indeed, this difference in DAFs is most significant at relatively
higher span lengths range: 29 m to 40 m for B-Double; 17 m to 40 m
for SA6; and 34 m to 40 m for SA5.

6. 𝑵-Span viaducts

It is shown in Section 5 that spans with higher indices experience
higher amplification than the first span at most vehicle speed and span
length ranges for the three vehicles considered. This indicates that
the maximum DAF in any of the spans in the viaduct may increase
with an increasing number of spans. To investigate the maximum DAF
in any spans of the 𝑁-span viaduct, we consider fifteen viaducts of
𝑁 = 1,… , 15 equal spans each and identify a Viaduct Amplification
Factor (VAF):

VAF =
max𝑖=𝑁𝑖=1 DAF𝑖

DAFSS
, (45)

where DAFSS is the DAF for the equivalent single-span, and DAF𝑖 is the
DAF of the 𝑖th span in a 𝑁-span viaduct.

6.1. Influence of vehicle velocity

With the same bridge properties Section 5.1, the maximum DAF of
each viaduct, considering a velocity range of 20 kmh−1 to 140 kmh−1, is
used to represent the DAF of viaducts with different numbers of spans.
The VAF of Eq. (45) is shown in Fig. 11. It shows that the for the
B-Double and SA6 vehicle types, that some spans in the viaduct expe-
riences a higher DAF than an equivalent single span bridge, especially
when it subjected to the B-Double heavy vehicle. Further, the maximum
viaduct DAF does not increase once 𝑁 > 4. However, viaducts subjected
to SA5 experience similar or even lower levels of amplification than an
equivalent single span bridge.

6.2. Influence of span length

The span length of the fifteen viaducts considered ranges from 15 m
to 40 m, and the vehicle speeds of parametric vehicles are kept at
100 kmh−1. From Fig. 12(a), it can be seen that the maximum DAF
‘converges’ when 𝑁 ≈ 5, and so the 5-span viaduct can sufficiently
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represent viaducts with a higher number of spans subjected to a B-
Double truck. For SA5, Fig. 12(c) indicates that the maximum DAF
‘converges’ with when 𝑁 ≈ 3. Interestingly, the maximum DAF of SA6
‘converges’ only when the span length is from 15 m to 32 m as shown
in Fig. 12(c). For span lengths over 32 m, the maximum DAF seems to
continue increasing with 𝑁 .

7. Conclusions

A 9-axle B-Double heavy tuck is taken as an example to demon-
strate a novel approach deriving the multi-body truck by using Kane’s
method. Distinct from the previous vehicle model derivation methods
used, the formulation based on Kane’s method could be easily applied
to complex types of truck and trailer combinations. With the introduc-
tion of generalized rates, the interaction forces at the joints between
rigid tractor and trailers can be eliminated implicitly and automatically,
leading to a straightforward derivation of the vehicle model equations.
The linearized equations of motion derived by the new approach are
validated with previous formulations.

This study examines the influence on dynamic amplifications of
the upward camber (or hog), characteristic of many PSC girder-type
bridges. The hog curve is assumed to be sinusoidal and is considered
in addition to the road roughness in the dynamic system. For the
simply-supported single-span bridge, the hog is found to increase the
amplification induced by B-Double and SA6 vehicles, especially around
the high resonant speeds and at critical span length range. In contrast,
the hog has less effect on the DAF for SA5 which has a different tractor
axle configuration. The reason behind the different hog effect on the
three vehicles considered is likely due to the different number and
weight distributions in the trailers.

Multi-span discontinuous viaducts are considered as a common form
of bridge construction, especially in urban areas. We examine viaducts
of up to 15 independent simply-supported spans of the same properties
and hog height. Compared to single-span bridges, the DAFs induced by
the B-Double and SA6 trucks on viaducts presents a different dynamic
response with respect to the vehicle speed and span length. The first
span in the viaduct has the similar resonant velocity to the single-
span beam, while the second to fifteenth spans have similar critical
speeds which differ from those of the first span in the viaduct. For 3-
axle tractor vehicles like the B-Double and SA6, the second to fifteenth
spans of the viaduct experience higher DAFs at mid-span compared to
that of the first span and single-span bridge at most velocities. For all
three vehicles, despite a similar result for DAF and span length for
the first span in the viaduct and a single-span beam, the second to
fifteenth spans experience a higher level of amplification compared to
the single-span bridge.
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Fig. 12. DAFs of 𝑁 = 1,… , 15-span viaducts of varying span lengths for a speed of 100 kmh−1: (a) BD vehicle; (b) SA6 vehicle; (c) SA5 vehicle.
Finally, fifteen viaducts of one to fifteen spans are investigated.
For all three vehicle types, the viaduct experiences higher levels of
dynamic amplification than the single span bridge. The DAF increases
with increasing span numbers, but the amplification ‘converges’ when
the span number is up to some values: five for B-Double; three for SA5.
602
When the span length is less than 32 m, the 2-axle tractor vehicle SA6
‘converges’ when the span number is up to four. However, for longer
span length range from 32 m to 40 m, the amplification increases with
increasing span number, and more than fifteen spans may be needed to
obtain the ‘convergence’.
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Appendix A. Mass, damping and stiffness matrices of B-double
vehicle

The mass matrix is expressed as:

𝐌𝐯 =
[

𝐌𝐯𝐯 𝟎
𝟎 𝐌𝐆𝐆

]

, (A.1)

where the tractor and trailers masses associated sub-matrix 𝐌𝐯𝐯 and
axles associated sub-matrix 𝐌𝐆𝐆 are described by:

𝐌𝐯𝐯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑀 (1,1)
𝑣𝑣 𝑀 (1,2)

𝑣𝑣 𝑀 (1,3)
𝑣𝑣 𝑀 (1,4)

𝑣𝑣
𝑀 (2,2)

𝑣𝑣 𝑀 (2,3)
𝑣𝑣 𝑀 (2,4)

𝑣𝑣
𝑀 (3,3)

𝑣𝑣 𝑀 (3,4)
𝑣𝑣

𝑠𝑦𝑚. 𝑀 (4,4)
𝑣𝑣

⎤

⎥

⎥

⎥

⎥

⎦

, (A.2)

and

𝐌𝐆𝐆 = diag[𝑚𝐴1,… , 𝑚𝐴3, 𝑚𝐵1,… , 𝑚𝐵3, 𝑚𝐶1,… , 𝑚𝐶3], (A.3)

in which,

𝑀 (1,1)
𝑣𝑣 = 𝑀𝐴 +𝑀𝐵 +𝑀𝐶 , (A.4a)

𝑀 (1,2)
𝑣𝑣 = −𝑟1𝑀𝐵 − 𝑟1𝑀𝐶 , (A.4b)

𝑀 (1,3)
𝑣𝑣 = 𝑠2𝑀𝐵 + (𝑠2 − 𝑟2)𝑀𝐶 , (A.4c)

𝑀 (1,4)
𝑣𝑣 = 𝑠3𝑀𝐶 , (A.4d)

𝑀 (2,2)
𝑣𝑣 = 𝐼3𝐴 + 𝑟21𝑀𝐵 + 𝑟21𝑀𝐶 , (A.4e)

𝑀 (2,3)
𝑣𝑣 = −𝑟1𝑠2𝑀𝐵 − 𝑟1(𝑠2 − 𝑟2)𝑀𝐶 , (A.4f)

𝑀 (2,4)
𝑣𝑣 = −𝑟1𝑠3𝑀𝐶 , (A.4g)

𝑀 (3,3)
𝑣𝑣 = 𝐼3𝐵 + 𝑠22𝑀𝐵 + (𝑠2 − 𝑟2)2𝑀𝐶 , (A.4h)

𝑀 (3,4)
𝑣𝑣 = 𝑠3(𝑠2 − 𝑟2)𝑀𝐶 , (A.4i)

𝑀 (4,4)
𝑣𝑣 = 𝐼3𝐶 + 𝑠23𝑀𝐶 . (A.4j)

The stiffness matrix is expressed as:

𝐊𝐯 =
[

𝐊𝐯𝐯 𝐊𝑇
𝐆𝐯

𝐊𝐆𝐯 𝐊𝐆𝐆

]

. (A.5)

The sub-matrix 𝐊𝐯𝐯 is defined as:

𝐊𝐯𝐯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐾 (1,1)
𝑣𝑣 𝐾 (1,2)

𝑣𝑣 𝐾 (1,3)
𝑣𝑣 𝐾 (1,4)

𝑣𝑣
𝐾 (2,2)

𝑣𝑣 𝐾 (2,3)
𝑣𝑣 𝐾 (2,4)

𝑣𝑣
𝐾 (3,3)

𝑣𝑣 𝐾 (3,4)
𝑣𝑣

𝑠𝑦𝑚. 𝐾 (4,4)
𝑣𝑣

⎤

⎥

⎥

⎥

⎥

⎦

, (A.6)

in which,

𝐾 (1,1)
𝑣𝑣 =

3
∑

𝑗=1
𝑘𝑗𝐴,𝑠 +

3
∑

𝑗=1
𝑘𝑗𝐵,𝑠 +

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠, (A.7a)

𝐾 (1,2)
𝑣𝑣 = −

3
∑

𝑗=1
𝑘𝑗𝐴,𝑠𝐿

𝑗
𝐴 − 𝑟1

3
∑

𝑗=1
𝑘𝑗𝐵,𝑠 − 𝑟1

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠, (A.7b)

𝐾 (1,3)
𝑣𝑣 =

3
∑

𝑗=1
𝑘𝑗𝐵,𝑠(𝑠2 − 𝐿𝑗

𝐵) + (𝑠2 − 𝑟2)
3
∑

𝑗=1
𝑘𝑗𝐶,𝑠, (A.7c)

𝐾 (1,4)
𝑣𝑣 =

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠(𝑠3 − 𝐿𝑗

𝐶 ), (A.7d)

𝐾 (2,2)
𝑣𝑣 =

3
∑

𝑘𝑗𝐴,𝑠(𝐿
𝑗
𝐴)

2 + 𝑟21

3
∑

𝑘𝑗𝐵,𝑠 + 𝑟21

3
∑

𝑘𝑗𝐶,𝑠, (A.7e)
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𝑗=1 𝑗=1 𝑗=1
𝐾 (2,3)
𝑣𝑣 = −𝑟1

3
∑

𝑗=1
𝑘𝑗𝐵,𝑠(𝑠2 − 𝐿𝑗

𝐵) − 𝑟1(𝑠2 − 𝑟2)
3
∑

𝑗=1
𝑘𝑗𝐶,𝑠, (A.7f)

𝐾 (2,4)
𝑣𝑣 = −𝑟1

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠(𝑠3 − 𝐿𝑗

𝐶 ), (A.7g)

𝐾 (3,3)
𝑣𝑣 =

3
∑

𝑗=1
𝑘𝑗𝐵,𝑠(𝑠2 − 𝐿𝑗

𝐵)
2 + (𝑠2 − 𝑟2)2

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠, (A.7h)

𝐾 (3,4)
𝑣𝑣 = (𝑠2 − 𝑟2)

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠(𝑠3 − 𝐿𝑗

𝐶 ), (A.7i)

𝐾 (4,4)
𝑣𝑣 =

3
∑

𝑗=1
𝑘𝑗𝐶,𝑠(𝑠3 − 𝐿𝐶 )2. (A.7j)

The sub-matrix 𝐊𝐆𝐯 is defined as:

𝐊𝐆𝐯 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑘1𝐴,𝑠 𝑘1𝐴,𝑠𝐿
1
𝐴 0 0

⋮ ⋮ ⋮ ⋮
−𝑘3𝐴,𝑠 𝑘3𝐴,𝑠𝐿

3
𝐴 0 0

−𝑘1𝐵,𝑠 𝑟1𝑘1𝐵,𝑠 𝑘1𝐵,𝑠(𝐿
1
𝐵 − 𝑠2) 0

⋮ ⋮ ⋮ ⋮
−𝑘3𝐵,𝑠 𝑟1𝑘3𝐵,𝑠 𝑘3𝐵,𝑠(𝐿

3
𝐵 − 𝑠2) 0

−𝑘1𝐶,𝑠 𝑟1𝑘1𝐶,𝑠 (𝑟2 − 𝑠2)𝑘1𝐶,𝑠 −𝑘1𝐶,𝑠(𝐿
1
𝐶 − 𝑠3)

⋮ ⋮ ⋮ ⋮
−𝑘3𝐶,𝑠 𝑟1𝑘3𝐶,𝑠 (𝑟2 − 𝑠2)𝑘3𝐶,𝑠 −𝑘3𝐶,𝑠(𝐿

3
𝐶 − 𝑠3)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.8)

and the diagonal sub-matrix 𝐊𝐆𝐆 is defined as:

𝐊𝐆𝐆 = diag

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘1𝐴,𝑠 + 𝑘1𝐴,𝑡
⋮

𝑘3𝐴,𝑠 + 𝑘3𝐴,𝑡
𝑘1𝐵,𝑠 + 𝑘1𝐵,𝑡

⋮
𝑘3𝐵,𝑠 + 𝑘3𝐵,𝑡
𝑘1𝐶,𝑠 + 𝑘1𝐶,𝑡

⋮
𝑘3𝐶,𝑠 + 𝑘3𝐶,𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.9)

The damping matrix 𝐂𝐯 has an identical format to stiffness matrix,
and the sub-matrices 𝐂𝐯𝐯, 𝐂𝐆𝐯 and 𝐂𝐆𝐆 can be derived from the corre-
sponding stiffness matrices by substituting the corresponding damping
term 𝑐 for the stiffness 𝑘.

Appendix B. Mass, damping, stiffness and mode shape matrices
and force vector of bridge

The mass and stiffness matrices are:

𝐌𝐛 = 𝐈(𝑛×𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦

, (B.1)

and

𝐊𝐛(𝑛×𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔2
1 0 ⋯ 0
0 𝜔2

2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜔2

𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, (B.2)

and the damping matrix can be developed using proportional damping,
as usual.

The mode shape matrix 𝐍𝑏 can distribute the contacting forces on
the beam and is given by:

𝐍𝑏(𝑛×9) =

⎡

⎢

⎢

⎢

⎢

𝜙1(𝑥1)𝐼(𝑥1) 𝜙1(𝑥2)𝐼(𝑥2) ⋯ 𝜙1(𝑥9)𝐼(𝑥9)
𝜙2(𝑥1)𝐼(𝑥1) 𝜙2(𝑥2)𝐼(𝑥2) ⋯ 𝜙2(𝑥9)𝐼(𝑥9)

⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

. (B.3)
⎣

𝜙𝑛(𝑥1)𝐼(𝑥1) 𝜙𝑛(𝑥2)𝐼(𝑥2) ⋯ 𝜙𝑛(𝑥9)𝐼(𝑥9)⎦
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𝐅

A

𝐌

𝐂

𝐊

i

𝐂

𝐂

𝐂

The bridge force vector 𝐅𝐛 is:

𝑏(9×1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊1 − 𝑓1(𝑥1, 𝑡)
𝑊2 − 𝑓2(𝑥2, 𝑡)

⋮
𝑊9 − 𝑓9(𝑥9, 𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (B.4)

ppendix C. Matrices and vectors for single span VBI system

The coupled mass, damping, and stiffness matrices are:

𝐜 =
[

𝐌𝑣 0
0 𝐌𝑏

]

, (C.1)

𝐜 =
[

𝐂𝑣 𝐂𝑣𝑏
𝐂𝑏𝑣 𝐂𝑏 + 𝐂𝑏𝑏

]

, (C.2)

𝐜 =
[

𝐊𝑣 𝐊𝑣𝑏
𝐊𝑏𝑣 𝐊𝑏 +𝐊𝑏𝑏

]

, (C.3)

n which the sub-matrices are given by:

𝐛𝐯(𝑛×13) =

⎡

⎢

⎢

⎢

⎢

⎣

𝟎𝑛×4 −𝐍𝑛×9

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑡1 0 ⋯ 0
0 𝑐𝑡2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑐𝑡9

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦𝑛×13

, (C.4)

𝐯𝐛 = 𝐂𝑇
𝐛𝐯, (C.5)

𝐛𝐛(𝑛×𝑛) = 𝐍

⎡

⎢

⎢

⎢

⎢

⎣

𝐍

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑡1 0 ⋯ 0
0 𝑐𝑡2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑐𝑡9

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

, (C.6)

𝐊𝐛𝐯(𝑛×13) =

⎡

⎢

⎢

⎢

⎢

⎣

𝟎𝑛×4 −𝐍𝑛×9

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑡1 0 ⋯ 0
0 𝑘𝑡2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑘𝑡9

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦𝑛×13

, (C.7)

𝐊𝐯𝐛 = 𝐊𝑇
𝐛𝐯, (C.8)

and

𝐊𝐛𝐛(𝑛×𝑛) = 𝐍

⎡

⎢

⎢

⎢

⎢

⎣

𝐍

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑡1 0 ⋯ 0
0 𝑘𝑡2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑘𝑡9

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

. (C.9)

The combined force vector is:

{

𝐅𝑐
}

=

⎧

⎪

⎨

⎪

⎩

𝟎(4×1)
𝐅𝑣

[

𝐍
] {

𝐅𝐛
}

⎫

⎪

⎬

⎪

⎭

, (C.10)

in which

𝐅𝐛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊1 − 𝑘𝑡1𝑟𝑥1 − 𝑐𝑡1 �̇�𝑥1
𝑊2 − 𝑘𝑡2𝑟𝑥2 − 𝑐𝑡2 �̇�𝑥2

⋮
𝑊9 − 𝑘𝑡9𝑟𝑥9 − 𝑐𝑡9 �̇�𝑥9

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (C.11)

and

𝐅𝐯 =

⎧

⎪

⎪

⎨

⎪

⎪

𝑘𝑡1𝑟𝑥1 + 𝑐𝑡1 �̇�𝑥1
𝑘𝑡2𝑟𝑥2 + 𝑐𝑡2 �̇�𝑥2

⋮
𝑘𝑡9𝑟𝑥9 + 𝑐𝑡9 �̇�𝑥9

⎫

⎪

⎪

⎬

⎪

⎪

. (C.12)
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