
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Bjerken, Benjamin Letnes
Holter, Lars Blütecher
Huynh, Daniel Hao
Wangerud, Lillian Alice

Fish Detection in Underwater Video

Bachelor’s thesis in Programming
Supervisor: Pedersen, Marius
May 2023

Bjerken, Benjamin Letnes
Holter, Lars Blütecher
Huynh, Daniel Hao
Wangerud, Lillian Alice

Fish Detection in Underwater Video

Bachelor’s thesis in Programming
Supervisor: Pedersen, Marius
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Benjamin Letnes Bjerken,
Daniel Hao Huynh,
Lars Blütecher Holter,
Lillian Alice Wangerud

Fish Detection in Underwater Video

Bachelor’s thesis in Programming
Supervisor: Marius Pedersen
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Technology and Informatics

ABSTRACT

Studying wildlife entails the collection and analysis of a vast amount of data, which
can be a time-consuming and laborious task. The Norwegian Institute of Nature
Research (NINA) has conducted extensive research on aquatic animals using tradi-
tional methods, such as manual observation and data extraction from underwater
footage. However, this process is both tedious and inefficient, prompting NINA to
explore the possibility of using Artificial Intelligence (AI) to create an automatic
detection and clipping tool for underwater videos. This tool would aid researchers
by eliminating the need for manual sorting of irrelevant video segments, thereby
streamlining the research process.

To this end, the present project undertakes an in-depth examination of various
approaches to developing a fully-functional solution for NINA. The proposed so-
lution leverages a deep learning-based object detection model known as You Only
Look Once (YOLO) to detect aquatic life in underwater environments. The mod-
ule is trained on a dataset of relevant species to ensure the accuracy and reliability
of the results. The processed data is then stored in a SQLite database, and the
user can select the location of the video clips via a User Interface (UI).

The UI provides the user with a range of options to adjust the settings of
the model, clips, and report. The proposed solution offers a comprehensive tool
for use in NINA’s continued research on aquatic animals. The use of AI-based
technology has the potential to significantly improve the efficiency and accuracy
of data collection and analysis, paving the way for new insights into the behavior
and ecology of aquatic species.

i

SAMMENDRAG

Studier av dyreliv krever innsamling og analyse av store mengder data, som kan
være en tidkrevende og arbeidskrevende oppgave. Det norske instituttet for natur-
forskning (NINA) har gjennomført omfattende forskning på akvatiske dyr ved hjelp
av tradisjonelle metoder, som manuell observasjon og datautvinning fra under-
vannsopptak. Denne prosessen er både kjedelig og ineffektiv, noe som har ført til
at NINA har utforsket muligheten for å bruke kunstig intelligens (AI) til å lage et
automatisk deteksjons- og klippeverktøy for undervannsvideoer. Dette verktøyet
vil hjelpe forskerne ved å eliminere behovet for manuell sortering av irrelevante
videosegmenter og dermed effektivisere forskningsprosessen.

For å oppnå dette gjennomfører prosjektet en grundig undersøkelse av ulike
tilnærminger for å utvikle en fullt fungerende løsning for NINA. Den foreslåtte
løsningen benytter en objektdeteksjonsmodul basert på dyplæring kjent som "You
Only Look Once" (YOLO) for å oppdage akvatisk liv i undervannsmiljøer. Mod-
ulen er trent på et datasett av relevante arter for å sikre nøyaktighet og pålitelighet
av resultatene. De bearbeidede dataene lagres deretter i en SQLite-database, og
brukeren kan velge plasseringen av videoopptakene via et brukergrensesnitt (UI).

UI gir brukeren en rekke alternativer for å justere innstillingene til modellen,
opptakene og rapporten. Den foreslåtte løsningen tilbyr et omfattende verktøy
for bruk i NINAs forskning på akvatiske dyr. Bruken av AI-basert teknologi har
potensial til å betydelig forbedre effektiviteten og nøyaktigheten av datainnsamling
og analyse, og åpne for nye innsikter i atferden og økologien til akvatiske arter.

ii

PREFACE

This bachelor’s thesis is authored by Benjamin Letnes Bjerken, Daniel Hao Huynh,
Lars Blütecher Holter, and Lillian Alice Wangerud. The study was conducted at
the Department of Computer Technology and Computer Science at the Norwegian
University of Science and Technology (NTNU) in Gjøvik.

The research project was undertaken with the support and involvement of sev-
eral individuals and institutions. Firstly, we express our gratitude to our supervi-
sor, Marius Pedersen, for providing consistent guidance and feedback throughout
the research process. We also extend our appreciation to our client, the Norwegian
Institute for Nature Research (NINA), and specifically to Knut Marius Myrvold
and Tobias Holter, for entrusting us with a compelling research task. Their regu-
lar bi-weekly meetings and contributions were instrumental in driving our project
forward. Additionally, we would like to thank Francesco Frassinelli from NINA’s
IT department for his valuable assistance in performing integration tests and his
contributions to the project. His expertise and support was greatly appreciated.

Furthermore, we wish to acknowledge the assistance provided by our peers,
friends, and family, who assisted in reviewing and ensuring the quality of our
work.

Lastly, we would like to acknowledge our own significant contributions and
effective collaboration during the course of the research project.

iii

CONTENTS

Abstract i

Sammendrag ii

Preface iii

Contents vii

List of Figures viii

List of Tables x

Code Listings xi

Glossary xii

Abbreviations xxi

1 Introduction 1
1.1 Project Description . 2
1.2 Group Background . 3

1.2.1 Academic Background . 3
1.2.2 Group Motivation . 4

1.3 Delimitations . 4
1.4 Organizing . 4

1.4.1 Project Roles . 5
1.4.2 Professional Areas of Responsibilities 6

1.5 Thesis Structure . 6

2 Requirement Specifications 9
2.1 Project Goals . 9

2.1.1 Result Goals . 10
2.1.2 Impact Goals . 10
2.1.3 Learning Objectives . 11

2.2 Use Case . 11
2.2.1 Functional Specification . 12

iv

CONTENTS v

3 Development Process 15
3.1 Development Model . 15

3.1.1 Choice of Software Development Model 15
3.1.2 Our Software Development Model 16

3.2 Meetings . 17
3.2.1 Client Meetings . 18
3.2.2 Supervisor Meetings . 18
3.2.3 Sprint Planning Meetings 18
3.2.4 Daily Scrum . 19

4 Tools and Technologies 21
4.1 Tool Overview . 21

4.1.1 Collaboration . 22
4.1.2 Documentation . 24
4.1.3 Programming Language . 24
4.1.4 Prototyping . 25
4.1.5 Poetry . 25
4.1.6 Pre-commit . 26
4.1.7 Annotation . 27

4.2 Technologies . 29
4.2.1 Quality Assurance . 29
4.2.2 GUI . 29
4.2.3 Local Database . 30
4.2.4 File Generation . 31
4.2.5 Video Processing . 32
4.2.6 Artificial Intelligence . 32

4.3 Technology Integration and Interaction 35

5 System Architecture 37
5.1 Disk . 38
5.2 Front-end . 38
5.3 Back-end . 38

5.3.1 Data Manager . 38
5.3.2 Report Manager . 39
5.3.3 Video Processor . 39

5.4 AI . 39

6 Implementation 41
6.1 Development tools . 41

6.1.1 Poetry . 41
6.1.2 Pre-commit . 42

6.2 Front-end . 43
6.2.1 Initialization and Main Function 43
6.2.2 MainWindow and User Interface 43
6.2.3 Processing and Output . 44
6.2.4 Settings . 44

6.3 Back-end . 45
6.3.1 Data Manager . 46
6.3.2 Report Manager . 47

vi CONTENTS

6.3.3 Video Processor . 49
6.3.4 The Video Processing Pipeline 51
6.3.5 Time Estimation in Video Processing 52

6.4 AI Model . 53
6.4.1 Image Loader . 54
6.4.2 BatchYolov8: A Custom Object Detection Model 55

7 Graphical User Interface 57
7.1 Prototyping . 57
7.2 Ergonomics . 58
7.3 GUI-Elements . 59

7.3.1 File Manager . 59
7.3.2 Tool Tips . 60
7.3.3 Progress Bar and Feedback Window 61

7.4 GUI-Evolution . 61

8 Object-detection 63
8.1 Dataset Creation and Utilization 63

8.1.1 Gathering the Dataset . 64
8.1.2 Annotation Rules . 66
8.1.3 Dataset Generation Script 67
8.1.4 Distribution of Annotations per Class Script 68

8.2 Model Training and Optimization 69
8.2.1 Training Setup . 69
8.2.2 Data Splits and Class Definitions 70
8.2.3 Training Details and Rationale 70
8.2.4 Model Augmentations and Hyperparameters 71
8.2.5 Training Resource Considerations 73
8.2.6 Training and Evaluation Metrics 73

8.3 Performance Evaluation . 77
8.3.1 Validation Metrics . 77
8.3.2 Evaluation Videos . 78
8.3.3 Fish Ranges of Videos . 80
8.3.4 Average Recall over Confidence 82

8.4 Challenges and Limitations . 84
8.4.1 Issues During Training . 84
8.4.2 Performance Evaluation Limitations 85

9 Quality Assurance 87
9.1 Source Code Quality Assurance . 87
9.2 Logging . 88
9.3 Git Branching . 88
9.4 Documentation . 89
9.5 Testing . 89

9.5.1 Continuous Integration: Build and Unit Testing 89
9.5.2 User Testing . 90
9.5.3 Integration Testing . 90

9.6 Group Work . 91

CONTENTS vii

10 Discussion 93
10.1 Preparatory Work . 93

10.1.1 Project Plan . 93
10.1.2 Goals . 93

10.2 Cooperation . 94
10.2.1 Meetings . 94
10.2.2 Work Allocation . 95

10.3 Flexibility of Development . 96
10.3.1 Change in Task Description by Client 96
10.3.2 Report Structure Changes 96
10.3.3 CVAT . 97
10.3.4 Windows Python . 98

10.4 Process Critique . 98

11 Conclusion 101
11.1 Project Achievements . 101

11.1.1 Implementation and Interface 101
11.1.2 Performance . 102

11.2 Future Work . 103
11.3 Final Words . 104

Bibliography 105

Appendices: 109
A Project Agreement . 109
B Task Description . 116
C Project Plan . 118
D Prototype . 150
E User Test Form . 152
F Timekeeping . 155
G Meeting Logs . 178
H Annotation Guide . 203
I Code . 208

A - Github repository 247

LIST OF FIGURES

1.0.1 Example Pictures from Video. 1
1.1.1 Original Idea of Application . 2
1.4.1 Group Organization with External Partners and Supervisor 5

2.1.1 Original draft of the application. 9
2.2.1 Use Case Diagram of Front-end GUI 11
2.2.2 Functional Specifications Layed out. 12

3.1.1 Our Kanban Board . 17

4.1.1 Tools Used in the Project . 21
4.1.2 Discord Threads . 24
4.2.1 Example of the Annotation Overlay on an Output Video. 33
4.2.2 YOLOv8 Compared to Other YOLO Models 33
4.3.1 Specifications with Libraries . 36

5.0.1 Full System Architecture . 37

6.2.1 Front-end Layout . 44
6.3.1 Back-end Flowchart . 45
6.3.2 Local Database ER Diagram . 46
6.3.3 CSV Report Structure . 47
6.3.4 XLSX Report Structure of Summary 48
6.3.5 XLSX Report Structure of Detections 48
6.4.1 Image Loader System . 55

7.1.1 Prototype of the GUI . 58
7.3.1 Directory Window . 60
7.3.2 Tool Tip Example. 60
7.3.3 Progress Bar and Feedback Window. 61
7.4.1 Final Version of the GUI. 62

8.1.1 Google Sheet for Tracking Annotated Videos 66
8.1.2 Table and Graph: Annotation Distribution per Class 68
8.2.1 Example Training Batch. 73
8.2.2 Performance Metrics. 74
8.2.3 Confusion Matrix. 75
8.2.4 Precision and Recall Curve. 76

viii

LIST OF FIGURES ix

8.3.1 Acceptable Conditions for Evaluation. 79
8.3.2 Invalid Conditions for Evaluation. 79
8.3.3 IoU for Valid Videos . 81
8.3.4 IoU for Invalid Videos . 82
8.3.5 Recall over Confidence . 83

10.2.1Work Distribution. 95

LIST OF TABLES

3.2.1 Visualization of Meetings . 18

4.1.1 Self-hosted Server Specifications . 28
4.2.1 Pros and Cons of PyQt and TKinter 30
4.2.2 YOLOv8 Model Sizes . 34

8.1.1 Combined Annotation Distribution 64
8.1.2 Annotation Distribution from Previous Group 64
8.2.1 Hardware Specifications of Personal Computer 69
8.2.2 Hardware Specifications of the School-Allocated Computer 70
8.2.3 Final and Default Configurations for Hyperparameters 71
8.2.4 Model Augmentations Comparison 72

x

CODE LISTINGS

6.1 PyTorch CUDA Installation Configuration 42
6.2 Example Usage of the Ultralytics Annotation Implementation . . . 49
6.3 Example Usage of our Annotator Implementation 50
6.4 Ultralytics Prediction Benchmark 53
6.5 Our Prediction Benchmark . 53
Code/video_processor.py . 208
Code/video_processor_first_iteration.py 214
Code/fun_detected_frames_to_ranges.py 216
Code/fun_add_buffer_to_ranges.py . 217
Code/fun_update_time_prediction.py 218
Code/timer.py . 219
Code/vdi_test.py . 219
Code/settings.py . 221
Code/generate_dataset.py . 224
Code/find_annotation_distribution.py 233
Code/find_overlapping_videos.py . 234
Code/logger.py . 239
Code/batchyolov8.py . 240

xi

GLOSSARY

Adobe XD A user experience design tool for creating interactive prototypes and
wireframes. 25

Agile A project management methodology focused on flexibility and collabora-
tion. 15–17

Back-end The back-end refers to the server side of a software application respon-
sible for handling data storage, application logic, and processing. 13, 38, 39,
44, 45, 47, 95

background frame An image without any object of interest, used to help the
model distinguish between objects and background noise.. 67

Balsamiq A software tool for creating quick wireframes and mockups. 25

Batch Size Batch size refers to the number of data samples or inputs processed
together in a single iteration or forward pass through a machine learning
model. It affects the trade-off between computational efficiency and model
accuracy, with larger batch sizes generally offering faster training but poten-
tially sacrificing some level of generalization performance.. 60, 62

Black Black is a Python code formatter that automatically reformats code to a
consistent style and formatting using default rules. 29, 87, 89

ChatGPT An AI language model capable of generating natural language text.
24, 89

CNN Convolutional Neural Network (CNN) is a type of deep learning model com-
monly used for analyzing visual data. It is specifically designed to process
grid-like structures, such as images, by employing convolutional layers that
automatically learn and extract relevant features. CNNs have revolutionized
computer vision tasks, including object detection and image classification..
32

COCO Large-scale dataset for object detection, segmentation, and captioning in
computer vision. 28

xii

Glossaryxiii

commitlint Commitlint enforces conventional commit messages in software de-
velopment to ensure consistency and clarity, analysing messages to ensure
compliance with predefined rules and conventions.. 90

CRF Constant Rate Factor: A quality setting used by the H.264 video codec that
controls the trade-off between video quality and file size. Lower values result
in higher quality but larger file sizes, while higher values produce smaller file
sizes at the cost of video quality.. 50, 102

CSV Simple file format used to store tabular data in plain text. 31, 39, 47, 49,
62, 68, 101

CVAT Open-source tool for annotating images and videos for computer vision
tasks. 27, 28, 66, 67, 97

Daily scrum Short daily meeting in Scrum / Scrumban software development
for team synchronisation. 18, 19

Dark mode User interface setting that displays a dark colour scheme. 61

Decoding The process of converting a compressed video bitstream back into a
usable format for playback. It involves interpreting the encoded data and
reconstructing the original video frames. Decoding requires a compatible
video codec that can interpret the compression format and produce the un-
compressed video data for playback.. 51

Directed Acyclic Graph (DAG) A Directed Acyclic Graph (DAG) is a finite
directed graph that contains no directed cycles. It consists of a set of vertices
(or nodes) and edges, where each edge has a direction and connects two
vertices. In the context of video processing, a DAG is used to represent the
video processing pipeline, depicting the flow of operations and dependencies
between them. Each operation or step in the pipeline is represented as a
node, and the edges indicate the order of execution. The DAG ensures
that the operations are performed in a specific sequence without circular
dependencies, allowing efficient and parallel processing of video data.. 50

Discord Discord is a VoIP and instant messaging social platform. Users have the
ability to communicate with voice calls, video calls, text messaging, media
and files in private chats or as part of communities referred to as discord
servers. A discord server is a collection of persistent chat rooms and voice
channels which can be accessed via internalised invite links. Discord runs on
Windows, macOS, Android, iOS, iPadOS, Linux, and in web browsers.. 22

Docker A containerization platform for applications.. 23

Docstring A docstring is a string literal that occurs as the first statement in
a module, function, class, or method definition. It is used to explain the
purpose of the code.. 89

Drop-down Graphical user interface element for selecting an item from a list. 59

xiv Glossary

Encoding The process of compressing raw video data to reduce file size while pre-
serving visual quality. It involves converting the data into a codec-specific
bitstream for storage, transmission, or decoding. Parameters like bitrate,
resolution, and codec selection impact video quality, file size, and compati-
bility. Common video codecs include H.264, HEVC, and VP9.. 51

FFmpeg FFmpeg is a powerful multimedia framework used for processing audio
and video files. It provides a command-line tool and a set of libraries that
can handle various multimedia formats and perform tasks such as encoding,
decoding, transcoding, and streaming. FFmpeg is widely used in the indus-
try and has extensive capabilities for multimedia processing.. 32, 39, 50,
51

Figma Cloud-based design tool for creating and collaborating on user interfaces.
25, 57

FK (foreign key) A field in a database table that refers to the primary key of
another table, used to establish a relationship between the two tables. 46

FPDF A Python library for creating PDF documents. 31, 39, 47

Front-end Front-end refers to the part of a website or application that users
interact with, including the UIuser interface, design, and UXuser experience..
13, 29, 30, 38, 39, 43, 90, 98

Git Git is a popular distributed version control system used to track changes in
source code during software development, enabling collaboration and coor-
dination between team members working on the same project. 22, 27, 43,
89–91, 96

GitHub A web-based platform for hosting and collaborating on code repositories.
22, 42, 43, 56, 89

GitKraken A premium Source Code Management Application for version control
systems such as Git, for Windows, linux and Mac platforms. It provides an
expansive and improved graphical interface for repositories, between users
and Git, in which it often updates its application, this makes the workflow
go more efficiently for those who haven’t mastered Git in its terminal state,
and the experts, who can be more productive focusing solely on the code.
22

H.264 H.264 is a widely-used video codec standard, also known as AVC (Ad-
vanced Video Coding). It offers efficient compression of video data while
maintaining good video quality. H.264 is commonly used for video stream-
ing, video conferencing, and video storage applications.. 50

high fidelity prototype A high-fidelity prototype is a detailed and interactive
prototype of a design that closely resembles the final product, created using
advanced materials and tools, for thorough testing and evaluation before
launch.. 25

Glossaryxv

isort isort is a Python utility for sorting and organizing import statements in
Python code files. It ensures consistent and standardized import ordering,
improving code readability and maintainability. isort automatically ana-
lyzes Python source code files, detects import statements, and sorts them
according to defined rules and conventions. It can handle imports from both
standard library modules and external third-party packages. By using isort,
developers can enforce a consistent import style across their Python projects,
reducing merge conflicts and making the codebase more manageable.. 29,
88

Jupyter An open-source web application that allows you to create and share
documents that contain live code, equations, visualizations and narrative
text.. 23

Kanban A project management methodology that emphasises visualisation of
work and limiting work in progress. 15–17

Letterboxing Letterboxing is a technique used in image or video processing to
maintain the original aspect ratio of the content when displaying it on a dif-
ferent aspect ratio screen or frame. It involves adding black bars to the top
and bottom (or sides) of the image or video to fill the unused space and main-
tain the correct proportions. Letterboxing is commonly used when adapting
content from one aspect ratio to another, such as displaying widescreen con-
tent on a standard 4:3 screen without distorting or cropping the image.. 54,
56

Light mode A user interface display setting that uses a lighter colour scheme.
61

Linter A linter is a tool used to detect and correct errors in LaTeX code. It can
be used to check for syntax errors, typos, and other issues that can affect
the output of the code.. 89

Linting Linting is the process of analyzing source code for errors, bugs, and stylis-
tic inconsistencies using a specialized tool called a linter. It helps improve
code quality, maintainability, and readability by enforcing coding standards
and identifying common programming mistakes. Popular linters include ES-
Lint for JavaScript, Pylint for Python, and RuboCop for Ruby.. 41

low fidelity prototype A low-fidelity prototype is a basic and rough prototype
of a design created using simple materials and tools to validate design con-
cepts before investing significant resources in prototypes of higher fidelity or
the final product. 25

Matplotlib A Python library for creating 2D plots and graphs.. 24

Minidom A Python module for working with XML documents. 31, 32, 39, 47

xvi Glossary

MP4 MP4 (MPEG-4 Part 14) is a popular digital multimedia container format
used for storing audio and video files. It supports efficient compression,
making it suitable for streaming, distribution, and playback of multimedia
content. MP4 files can contain video streams encoded with codecs like H.264
and audio streams encoded with codecs such as AAC. It also supports fea-
tures like subtitles, metadata, and interactive menus.. 39

Muxing Muxing, short for multiplexing, is the process of combining multiple
data streams into a single stream or file. In the context of video processing,
muxing involves combining audio and video data, along with any other nec-
essary streams, into a single container format, such as AVI, MP4, or MKV.
The resulting muxed file contains all the synchronized data streams, allow-
ing for simultaneous playback or storage. Muxing is commonly performed
during video encoding or transcoding to create a final video file that can be
easily played or shared.. 51

mypy Mypy is a static type checker that analyses the code for potential errors
and inconsistencies, allowing early detection of bugs and improving code
quality and maintainability. 29, 88, 89

NextCloud A cloud storage and collaboration platform. 23

NMS Non-Maximum Suppression (NMS) is a post-processing technique com-
monly used in object detection algorithms. It is used to remove duplicate
or overlapping bounding box predictions generated by the detection model.
NMS works by comparing the confidence scores of the bounding boxes and
suppressing the boxes that have a high overlap with other boxes and lower
confidence scores. This helps to eliminate redundant detections and keep
only the most relevant and accurate bounding boxes. NMS is an important
step in improving the precision and reducing duplicate detections in object
detection systems.. 55, 56

Outlook Microsoft Outlook is a part of Office package that can be used as its
own standalone application. It helps you access Microsoft Exchange Server
email. Additionally, it provides contacts, calendaring, and task management
functionality. This advanced email application is widely used for business
purposes. 23

Overleaf An online LaTeX editor for collaborative writing and publishing. 24

PASCAL VOC A benchmark dataset for object recognition and detection in
computer vision. 28

PDF Portable Document Format, a file format used for representing documents
in a manner that is independent of the software, hardware, and operating
system. It provides a consistent visual representation of the document, in-
cluding text, fonts, images, and formatting, making it widely used for sharing
and distributing documents across different platforms.. 39, 47

PEP 8 A style guide for Python code that provides guidelines for code formatting
and organisation. 29, 87

Glossaryxvii

phash Short for perceptual hash, phash is a technique used for generating a com-
pact representation of an image based on its visual features. It aims to
capture the essential characteristics of an image in a fixed-size hash value.
phash algorithms analyze the frequency and spatial information of the im-
age to create a hash that remains relatively unchanged even if the image
is subjected to minor alterations, such as scaling, rotation, or compression.
By comparing the phash values of two images, it is possible to determine
their similarity or dissimilarity. phash has applications in various areas, in-
cluding image retrieval, duplicate image detection, and content-based image
identification.. 65

PIL Python Imaging Library (PIL) is a library that adds image processing capa-
bilities to the Python interpreter. PIL supports a wide variety of image file
formats and provides powerful image processing and graphics capabilities,
such as resizing, cropping, and drawing.. 49

Poetry A Python packaging and dependency management tool. 25, 26, 41, 42,
89

Prediction threshold Prediction threshold, in the context of machine learning,
is a value that determines the boundary or cutoff for classifying a prediction
as a positive or negative outcome. It is used in binary classification tasks
where the model’s output probability needs to be compared to the threshold
to make a final prediction decision. Adjusting the prediction threshold can
impact the trade-off between precision and recall in the classification results..
60, 62

PyAV PyAV is a Python library that provides bindings for FFmpeg, allowing
seamless integration of FFmpeg’s multimedia processing capabilities into
Python applications. PyAV enables developers to work with audio and video
files, perform tasks like decoding, encoding, and transcoding, and access
metadata and other information about multimedia content. By leveraging
FFmpeg’s functionality, PyAV provides a powerful and flexible solution for
multimedia processing in Python.. 32, 39, 51

Pylint A Python static code analysis tool to identify potential errors and issues.
29, 87, 89

pyproject.toml A file used in Python projects to specify various project set-
tings and configurations. It is written in TOML (Tom’s Obvious, Minimal
Language) format, which is a human-friendly configuration file format. The
pyproject.toml file commonly includes information such as project metadata,
build configurations, tool settings, and most importantly, project dependen-
cies managed by tools like Poetry. It provides a centralized location for
defining project-specific settings and simplifies the management of depen-
dencies and build processes. The file is often located at the root directory
of a Python project and is recognized by various tools and build systems in
the Python ecosystem.. 41, 42

PyQt A Python binding for the Qt application framework to build desktop ap-
plications. 24, 29, 30, 43, 44, 59, 96

xviii Glossary

R-CNN Region-Based Convolutional Neural Network (R-CNN) is an object de-
tection model that combines selective search with a convolutional neural
network. R-CNN first generates a set of region proposals using selective
search, which are then classified and refined using a CNN. R-CNN improved
the accuracy of object detection by utilizing region-based processing and
sharing convolutional features across different regions. However, R-CNN
has a relatively slow inference speed due to its multi-stage pipeline.. 32

Scrum A project management framework that emphasises iterative development,
adaptability, and team collaboration. 5, 6, 15–17

Scrum master A role in the Scrum framework responsible for facilitating and
guiding the Scrum process and the team. 5

Scrumban A hybrid project management methodology that combines elements
of Scrum and Kanban. 15–17, 96

SourceTree A free Source Code Management Application for version control
systems such as Git, for Windows and Mac platforms. It provides a graphical
interface for repositories, between users and Git, in which simplifies its use
for beginners, who haven’t mastered Git, and experts, who can be more
productive focusing solely on the code.. 22

Spin-box A graphical user interface element for selecting a numerical value within
a range. 59

Sprint planning A Sprint Planning Meeting is a meeting in the Scrum frame-
work that sets the goals, defines the work, and plans the tasks for the next
sprint, involving the entire Scrum team.. 17, 18, 95

Sprint Retrospective A meeting in the Scrum framework where the team re-
flects on the previous sprint and identifies opportunities for improvement.
18

Sprint Review A meeting in the Scrum framework where the team demonstrates
the completed work from a sprint and gathers feedback. 18

SQL Structured Query Language, a standardized programming language used
for managing and manipulating relational databases. It provides a set of
commands and statements for querying data, modifying database structures,
and controlling access and security.. 46

SQLite A lightweight, open-source, SQL-based relational database management
system. 30, 31, 46

Teams Microsoft Teams is an application used for collaboration with Microsoft
365. The service enables instant messaging, audio and video calls, rich online
meetings, mobile experiences, and extensive web conferencing capabilities.
Additionally, Teams provides file and data collaboration and extensibility
features and integrates with Microsoft 365 and other Microsoft and partner
applications. 22

Glossaryxix

TeamViewer A remote access and support software for desktop sharing and on-
line meetings. 23

TKinter A Python binding for the Tk GUI toolkit to build desktop applications.
29, 30

Toggl A cloud-based time tracking tool for individuals and teams that allows
users to track the time spent on tasks and projects, generate reports, and
analyse productivity. 22, 24

VRAM VRAM (Video Random Access Memory) is a dedicated type of memory
used in graphics processing units (GPUs). It serves as a high-speed buffer
for storing and accessing graphical data, including textures, shaders, and
frame buffers. VRAM is optimized for parallel data processing, allowing
for efficient rendering and display of graphics-intensive applications, such as
video games and 3D modeling. By having its own memory separate from
the system RAM, VRAM helps improve overall graphics performance and
responsiveness.. 69, 70

Waterfall The Waterfall development model is a linear sequential software de-
velopment approach that follows a strict set of phases in which each phase
must be completed before moving on to the next.. 15, 16

Widget A graphical user interface element that displays information or allows
user interaction. 25, 43, 44

X11 forwarding A feature of the X Window System (X11) that allows appli-
cations running on remote computers to be displayed on a local computer..
96

XCB X Window System protocol client library. 96

XLSX XLSX is a file extension used for spreadsheets created with Microsoft
Excel, which is a popular spreadsheet software used for data management
and analysis.. 31, 39, 48, 62, 101

xlsxwriter XlsxWriter is a Python module used to create Excel XLSX files, which
allows the creation of spreadsheets with formatting, charts and images using
Python code.. 31, 39, 47

XML XML (Extensible Markup Language) is a markup language used to store
and transport data, which is both human-readable and machine-readable,
making it a common format for the exchange of information between different
systems and applications.. 31, 32, 39, 47, 67

YAML YAML (YAML Ain’t Markup Language) is a human-readable data se-
rialization format. It stands for "YAML Ain’t Markup Language" and is
commonly used for configuration files and data exchange between languages
with different data structures. YAML’s simple and intuitive syntax makes
it easy for humans to read and write, while its flexibility allows for complex
data structures and hierarchical data representations. YAML files typically
use the .yaml or .yml file extension.. 67, 89

xx Glossary

YOLOv8 A real-time object detection system that uses deep neural networks to
detect and locate objects in images and videos. It is the eight-version of the
YOLO (You Only Look Once) system and features improved accuracy and
speed compared to previous versions. . viii, 32–35, 39, 49, 51, 53–56, 63, 69,
70, 96, 103

ZIP ZIP is a file compression format commonly used for creating smaller-sized
archive files. It employs lossless compression algorithms to reduce file size
without losing data. ZIP archives are easily extractable and widely sup-
ported by operating systems and file compression tools.. 67

ABBREVIATIONS

AI Artificial Intelligence. 3, 4, 6, 11, 23, 27, 38, 39, 78, 96, 104

CI Continuous Integration. 42, 43, 89, 90

CPU Central Processing Unit. 55

CV Computer Vision. 11

GPU Graphical Processing Unit. 42, 53–56, 69, 102

GUI Graphical User Interface. 3, 7, 13, 22, 41, 43, 57–62, 96, 98, 101

NINA Norwegian Institute for Nature Research. 1–4, 6, 10, 11, 16, 18, 22, 23,
27–29, 33, 34, 47, 50, 52, 57, 65, 85, 88, 90, 94, 96, 97, 101–104

NTNU Norwegian University of Science and Technology. 3

OS Operating System. 23, 30, 59, 61, 96

UI User Interface. xiv, 6, 11, 27, 38, 44

UX User Experience. xiv, 11, 60

VDI Virtual Desktop Infrastructure. 23, 90, 91, 96, 102

VoIP Voice over Internet Protocol. xiii

YOLO You Only Look Once. 33

xxi

CHAPTER

ONE

INTRODUCTION

This project was commissioned by the Norwegian Institute for Nature Research
(NINA) and was undertaken with the guidance of Tobias Holter and Knut Marius
Myrvold, our contact persons at NINA. NINA is an autonomous foundation dedi-
cated to nature research and investigating the connection between human society,
natural resources, and biodiversity [1].

Every year, NINA deploys underwater cameras in Mjøsa, Norway’s largest lake,
to capture video footage of underwater wildlife. NINA informs that these cameras
operate continuously for approximately 17 hours per day, starting from May 15th
until August 1st, and then for 12 hours per day from August 1st to October 15th.
Consequently, a substantial amount of video content is generated, totaling approx-
imately up to 2175 hours or around 90.5 days of footage annually. The manual
inspection of this extensive video collection for wildlife analysis is an arduous and
resource-intensive task. Recognizing the need to overcome this challenge, NINA
sought to find a solution that could significantly reduce the time required for man-
ual video inspection. The creation of such a solution enables NINA to effectively
monitor and study fish populations, aligning with the objectives of United Nations
Sustainable Development Goal 14 [2].

(a) In the day. (b) In the evening.

Figure 1.0.1: This figure presents two examples of the videos acquired by NINA.
Image (a) depicts a daytime scene with ample lighting, while image (b) captures an
evening setting after sunset. The camera placement encompasses various locations,
leading to a diverse range of environmental conditions and the quality of the videos
can significantly vary. Certain environments may exhibit challenges such as algae
accumulation obscuring the camera lens, as depicted in image (a).

1

2 CHAPTER 1. INTRODUCTION

In 2022, NINA issued a bachelor’s project that entailed the development of
a program that would allow the elimination of parts of videos where fish are
not present, leaving only video footage where fish appear. A previous bachelor’s
group had designed a system that employed machine learning and computer vision
to detect fish species in a video, but it did not include the functionality to cut
the video to include only pertinent data. Therefore, considerable manual work
remained for the researchers at NINA.

The objective of this project is to develop a software that could be used to
automate the process of processing recorded videos. They wanted an easy-to-use
program linked to a object detection model which could scan through the videos
for fish and remove unusable dead time. NINA has also requested that the system
includes a wide range of settings to alter the output received and incorporate other
modifications. Furthermore, we strive to enhance the accuracy of the fish detection
and produce a relevant report that NINA can actively use in their research. The
complete task description is presented in Appendix B.

1.1 Project Description

+

video video

buffer time

Old video duration

New video duration

fish fish

Figure 1.1.1: Original ideation sketch of application, this was drawn in the first
meeting with our supervisor

The project consisted of developing a software that could be used to automate
the process of processing recorded video. The software would specifically be used
to scan through underwater video of fish to remove unusable dead time. In order
to meet the end-users’ needs, the application was developed to be straightforward.
This is such that researchers with little technological experience are able to utilize
the program.

CHAPTER 1. INTRODUCTION 3

As per the project plan (see Appendix C) and description, these are some of
the features that were planned to be part of the application:

• Gather data from an external hard disk

• Process large data sets

• Recognize and determine when fish or other underwater life is seen in a
pre-recorded video.

– Through the use of AI or other movement detection methods

• Process footage by cutting out and removing the clips where wildlife is not
within the frame.

– Save the processed data in a configurable format

• Allow configuration for the processing of the data input(video clips), this
refers to; keep or delete the original data, add a customizable amount of
dead time before and after the created clip, merge the clips, etc.

– Everything that is not configurable is likely to be set by NINA prior,
such as a filename standard, video length standard, etc.

• Have an intuitive and well formed GUI that allows for a good user experience
with the program.

– This should allow the user to easily choose the input folder, the output
destination and customization to the clips.

1.2 Group Background

This section intends to provide an overview of our academic background and the
rationale behind our selection of this bachelor’s project.

1.2.1 Academic Background

The members of this bachelor project are all enrolled in the Bachelor in Program-
ming program at the NTNU in Gjøvik. Collectively, we possess a similar academic
background, with a few variations in elective courses. Specifically, three of us have
completed the AI course, while the remaining member has taken courses in Reverse
Engineering and Malware Analysis.

The AI course has equipped us with foundational knowledge on various types
of models and research methods, which are highly relevant to the present project.
Additionally, courses such as Advanced Programming, Software Development, and
Cloud Technologies have provided us with a strong foundation in the relevant areas
to undertake this bachelor’s thesis.

4 CHAPTER 1. INTRODUCTION

1.2.2 Group Motivation

Upon review of all available bachelor theses proposals, the project description
outlined in Appendix B stood out as particularly intriguing and promising. The
project presents itself as both challenging and expansive, while still maintaining an
element of excitement and novelty that drew our attention. Moreover, the project’s
multi-faceted approach aligns well with our academic pursuits, as it encompasses
various fields of study such as AI, design principles, and software development
throughout the program’s entire life cycle.

While we possess some degree of familiarity with the technologies required for
this project, this thesis offers a unique opportunity to acquire more comprehensive
knowledge and practical experience. This endeavor enables us to employ our
theoretical knowledge in a practical setting and push ourselves to acquire new
skills and expertise.

In addition, our interactions with NINA, conveyed a strong sense of commit-
ment to ensuring the success of the project. This was demonstrated through their
prompt email responses and their enthusiasm for the project’s potential. As a
result, we are confident in our ability to develop a high-quality thesis with NINA’s
support.

1.3 Delimitations

In order to ensure that the present bachelor’s thesis is completed within a feasible
timeframe, certain delimitations have been established. Within the scope of this
project, the following elements have been excluded:

Real-time processing of videos will not be implemented in the final product.
This decision has been made due to limitations in the client’s on-field equipment,
which may not be adequate to perform image recognition and data processing, and
has restricted network access, thereby preventing the transmission of data across
the network for processing.

Improvements to onsite hardware will not be considered as part of this project,
as it falls outside the scope of our relevant research area.

The counting, classification and tracking of fish will not be prioritized in the
final application. This is due to these features not being part of the planned core
software, and also because NINA already possesses software that can classify fish
in recordings, which we may integrate with our project.

1.4 Organizing

Organizing a group can be a challenging task, especially when it involves different
individuals with diverse skills, experiences, and perspectives. However, effective
organization is essential for achieving the objectives of the group and ensuring
successful outcomes. This section aims to display how we organize our group
for the bachelor thesis project. The section covers the key aspects of organizing,
including project roles, professional areas of responsibilities, conflict management,
and decision-making.

CHAPTER 1. INTRODUCTION 5

1.4.1 Project Roles

At the inception of the project, a comprehensive delineation of roles was formulated
to ensure that each group member had a clear sense of ownership and responsibility
for specific aspects of the project. This strategy was implemented to optimize
work efficiency and ensure that all critical elements of the project were adequately
followed up. The roles assigned to each member are presented below for clarity
and transparency.

External partners

Project leader

Communications
responsible

Documentations
responsible Scrum master

Supervisor

Figure 1.4.1: Organization of the group with external partners and supervisor

• Project leader - Lars Blütecher Holter

– Ensures that every member contributes to the project and that the
project follows the project plan

– Responsible for taking decisions during group disputes

• Communications responsible - Benjamin Letnes Bjerken

– Responsible for keeping communication out of and in to the group

– Set up meetings between group and client

• Documentations responsible - Lillian Alice Wangerud

– Writes reports for meetings

– Responsible for ensuring that the project is adequately documented

• Scrum master - Daniel Hao Huynh

– Responsible for summoning all members for Scrum meetings

6 CHAPTER 1. INTRODUCTION

– Leads Scrum meetings and ensures that every thing on the agenda is
brought up during the meeting

• External partners - Tobias Holter, Knut Marius Myrvold, and Francesco
Frassinelli

– Provide information from NINA needed for the thesis

– Provide feedback

• Supervisor - Marius Pedersen

– Provide guidance and suggestions

In addition to the assigned project roles, each member of the group assumes the
additional responsibility of serving as a developer.

1.4.2 Professional Areas of Responsibilities

Throughout the course of the bachelor’s thesis project, the group members opted
to divide the various technology areas while maintaining a willingness to provide
assistance where necessary. This strategy aimed to enhance each member’s immer-
sion into specific areas of the project by dedicating sufficient time and resources
to each area.

The decision to divide the different areas was based on each member’s per-
sonal interests and unique skill sets. Each member selected the area that most
piqued their interest and where they could best leverage their expertise to con-
tribute meaningfully to the project. This approach facilitated the development
of a comprehensive understanding of the various technology areas, fostering a
sense of ownership and accountability among the group members. By dedicating
ample time and resources to specific areas, the group members could work more
efficiently, leveraging their strengths to deliver optimal project outcomes.

The areas of responsibilities assigned to each member are presented below.

• User Interface - Lars Blütecher Holter and Lillian Alice Wangerud

• Report output from program - Lillian Alice Wangerud

• Final report structure - Lars Blütecher Holter

• AI - Benjamin Letnes Bjerken and Daniel Hao Huynh

1.5 Thesis Structure
The thesis report is intended to be read sequentially, with each chapter building
upon the preceding one to provide a comprehensive overview of the project. How-
ever, for those seeking to isolate specific parts of the report, this section serves as
a brief summary of each chapter’s content.

The report begins with a list of abbreviations and a glossary of key terms
and concepts, providing readers with a comprehensive understanding of the ter-
minology used throughout the thesis. This section helps ensure that readers are

CHAPTER 1. INTRODUCTION 7

equipped with the requisite background knowledge to understand the more com-
plex concepts and ideas presented in subsequent chapters.

1. Introduction
This chapter introduces the thesis project and presents the group’s organi-
zation and backgrounds, providing context for the research question.

2. Requirement Specifications
Any requirements related to the project are specified within this chapter.
This includes the project goals, such as result goal, impact goal and learning
objectives, but also functional requirements and use cases.

3. Development Process
The development process of the project is introduced and discussed within
this chapter. It provides context to the chosen development model and
explains choices made about how we performed meetings throughout the
process.

4. Tools and Technologies
This chapter introduces and presents context to choices made regarding li-
braries, packages, models and other technologies that were utilized in order
to develop the product.

5. System Architecture
This chapter provides an overview of the entire system and it’s architecture
and explains the components of the system.

6. Implementation
The implementation of the technologies used and the development will be
introduced and explained within this chapter. It provides a more detailed
look at how components are built and interacts with each other.

7. Graphical User Interface
This chapter explores the thought process behind designing the GUI, focus-
ing on ergonomics and the selection of GUI elements from prototyping to
the final version.

8. Object-detection
The use of object detection is an integral part of the application and the
usage of it will be discussed within this chapter. This chapter thus covers
the utilization, performance and challenges of the object detection algorithm
and creation of datasets to train, test and validate said algorithm.

9. Quality Assurance
The measures performed to ensure the quality of the application are detailed
within this chapter. This includes explanation of how we utilized the quality
assurance tools, the importance of documentation and the testing performed.

10. Discussion
This chapter gives a thorough discussion on choices that was made through-
out the development process and of the following results. It will also provide

8 CHAPTER 1. INTRODUCTION

insight on the success of the planned development process and changes that
was made or should have been made during the process.

11. Conclusion
This chapter concludes our bachelor’s thesis by summarizing our goals, out-
lining their achievement, discussing potential future work, and providing our
final thoughts on the project.

CHAPTER

TWO

REQUIREMENT SPECIFICATIONS

To ensure our product aligns with the client’s requirements, it is imperative to
establish clear goals and objectives. Additionally, anticipating and addressing
potential challenges and uncertainties allows us to develop effective contingency
plans. Several of these aspects were discussed and defined within the project plan,
as outlined in Appendix C.

2.1 Project Goals
This section presents an overview of the objectives pursued throughout the course
of the project. The objectives are classified into three categories: result goals,
impact goals, and learning objectives. These classifications serve as a framework
to outline the specific aims and intentions that guided our project endeavors.

+
video video

Old video duration

New video duration

Buffer time added

Prediction from AI

Output
folder

fish fish

Report

video
 data

local
database

formatted
report

Figure 2.1.1: Based on the original draft of the Application, as seen in the
Project plan.

9

10 CHAPTER 2. REQUIREMENT SPECIFICATIONS

2.1.1 Result Goals

Following further analysis at the onset of development and after insightful consul-
tations with NINA, we revised our project goals from the initial plan presented in
Appendix C to better cater to the specific requirements of fish detection.

In our project, our primary objective is now to accurately identify the ranges
within the videos where fish are present, aiming to detect at least 95% of the ranges
where fish are actually present. Unlike our initial goal, we are no longer focused on
a balanced measure of precision and recall, as quantified by the F1-score. Instead,
we are now more concerned with achieving a high recall rate, primarily focusing
on detecting the presence of fish within specific ranges in the videos, regardless of
whether every single frame with fish is identified or not.

Recall has become a more critical measure as it evaluates the model’s capability
to identify all ranges with fish present in the video. This change aligns better with
NINA’s requirements as it emphasizes the importance of minimizing false negatives
- missing a fish is now considered a more significant issue than falsely detecting
a fish. Consequently, we are more interested in ensuring that the model captures
the existence of fish within a certain range, even if it mistakenly predicts fish in a
few frames where there are none.

We complement the recall metric with the Intersection over Union (IoU) metric,
which measures how accurately the model’s predicted range of frames aligns with
the actual range where fish are present.

To account for potential variations in frame quality and to allow for some level
of inaccuracy in detection, we will incorporate a buffer of a few seconds before
and after the detected fish instances in the output video. This approach ensures a
more robust detection process, reduces the risk of missing any fish due to specific
frames not being detected accurately, and aligns well with our focus on identifying
ranges with fish, rather than individual frames.

Furthermore, we continue to aim for a reduction in the amount of human ef-
fort required for video processing tasks. We maintain our goal to decrease the
processing time to only 25 minutes for a 30-minute video, allowing human opera-
tors to focus on critical tasks and enhance their overall productivity.

2.1.2 Impact Goals

Our impact goals for the project include improving the efficiency of NINA’s op-
erations by reducing the time it takes to process video footage. By achieving our
result goals of accurate fish detection and faster video processing, we can help
NINA to quickly analyze and make use of the video data without building up a
backlog of unprocessed video. This will help NINA to more effectively monitor
and study fish populations.

Another impact goal is to reduce the amount of harddrives required to store
video data. By processing and removing unnecessary footage, we can help NINA
to save storage space and reduce the cost of video data storage.

We also aim to focus on future development so that it is easy for others to
work on it, maintain it, and add new features. This will make it easier for NINA
to continue to improve and update the software as new technologies and methods
become available.

CHAPTER 2. REQUIREMENT SPECIFICATIONS 11

The research conducted by NINA, in conjunction with our software, contributes
to advancing the United Nations’ Sustainable Development Goals, with a particu-
lar focus on Goal 14, "Life Below Water" [2]. The primary objective of this collabo-
ration is to conserve and sustain marine wildlife, fostering sustainable development
and facilitating a deeper understanding of marine ecosystems. By leveraging our
software solution, NINA aims to enhance their research efforts and contribute to
the overarching goal of achieving a sustainable and thriving marine environment.

2.1.3 Learning Objectives

Even though the bachelor thesis is about showing what we have learned thus far
in our study, it is also about learning new subjects needed to complete our thesis.
These learning objectives are far between each other but all are relevant to be-
coming a software engineer. The learning objectives we strive to become proficient
in throughout the thesis consists of but are not limited to; the complete devel-
opment life cycle of a software on a commercial project, implementing Artificial
Intelligence (AI) and/ or Computer Vision (CV), User Experience (UX) and User
Interface (UI), processing of video data and how to connect all aspects we create
through coding in different languages.

2.2 Use Case

User

Open App

Backend

Save/Load
directories

<<Includes>>

Change
Settings

Save data

<<Extends>>

<<Includes>>

<<Includes>>

<<Extends>>

Press Run

Run backend script

<<Extends>>

Appends data
to backend

Get output in
output folder

<<Includes>>
Close App

<<Extends>>

Figure 2.2.1: Use Case Diagram of Front-end GUI

To ensure that we capture the fundamental functionalities of our system and il-
lustrate the interactions between various actors, we have chosen to utilize a use
case diagram that includes both high-level and low-level use cases. This approach
enables us to keep the system requirements at the forefront of our development
process, making it easier to track progress and identify any necessary modifica-
tions.

The use case diagram illustrated in Figure 2.2.1 provides a broader perspective
of the system, facilitating important decisions during the requirement phase. By
visualising the bigger picture, we can gain a comprehensive understanding of the

12 CHAPTER 2. REQUIREMENT SPECIFICATIONS

system’s functionalities and identify any potential issues or conflicts. Overall,
the use case diagram serves as a valuable tool in enhancing the efficiency and
effectiveness of our development process.

2.2.1 Functional Specification

The functional specification figure underneath, see Figure 2.2.2, includes a de-
scription of the intended capabilities of our product. The figure is based on the
requirements detailed within this chapter, and includes how the user interfaces
with the application and how that affects different aspects of the planned func-
tionalities.

User

Open App

Change Settings

Run

GUI

Frontend

Local
Persistent Storage

PERSISTANT STORAGE
HANDLER

Save settings

Load settings

Backend

Local
database

VIDEO PROCESSOR

Process videos

Manage report

Output
folder

Detect fish

AI MODEL

CREATE DATABASE

FORMATTER

Manage data

Add detection
boxes

If settings enable
detection boxes

If settings enable
report generation

Figure 2.2.2: Functional Specifications Layed out.

Figure 2.2.2, shows how different aspects of the system interact. Thus the list
underneath if an explanation of each actor shown within the figure. In the current
model shown, we have not included which technologies are going to be utilized,
however that will be expanded upon in Chapter 4 Figure 4.3.1

CHAPTER 2. REQUIREMENT SPECIFICATIONS 13

• User: Works in the field and will use the application to cut down the dead
time in the videos.

• Front-end: The GUI of the application; this is where the interaction with
the application happens.

• Back-end: The backbone of the application, this is where all the processing
and outputting of the files happens.

14 CHAPTER 2. REQUIREMENT SPECIFICATIONS

CHAPTER

THREE

DEVELOPMENT PROCESS

This chapter outlines the methodology and tools employed in the execution of the
project from initiation to completion. The software development model chosen
for the project is discussed in detail, alongside the meeting protocols established
to facilitate the smooth running of the project. Additionally, the tools utilized in
the project’s execution are elaborated upon. This section serves as a sequel to the
project plan and provides a comprehensive summary of the development process.

3.1 Development Model
The software development process is reliant on the choice of an appropriate devel-
opment model. The industry offers various models, such as the Waterfall, Kanban,
Scrum, Scrumban and Agile model. Each model presents its own advantages and
disadvantages in the development process, emphasizing the importance of care-
fully evaluating these factors to determine the optimal model for the project’s
requirements. In this section, we discuss our thoughts in choosing a model as well
as how we used our chosen model.

3.1.1 Choice of Software Development Model

The Waterfall model is a linear, sequential approach to software development
that follows a predetermined set of steps, from conception to deployment. The
model’s benefit lies in its simplicity, enabling easy understanding of the project’s
requirements and process flow. This clarity of process makes it easier to plan and
schedule the project, and it is also easier to manage. However, its drawback lies
in its rigidity, which makes it challenging to incorporate changes in the project’s
lifecycle. In essence, the model follows a "one size fits all" approach, which may
not suit all projects. Changes to requirements or scope may require starting the
project from scratch, which can be costly and time-consuming.

The Kanban model emphasizes continuous delivery and focuses on creating a
highly efficient system. Its strength lies in its focus on workflow management,
allowing teams to visualize the entire development process, identify bottlenecks,
and address them accordingly. This approach enables faster product releases and
reduces waste, enhancing productivity and quality. However, the Kanban model
lacks the necessary structure to handle large-scale projects, presenting a notable

15

16 CHAPTER 3. DEVELOPMENT PROCESS

disadvantage. Without clear guidelines, there may be confusion regarding what
tasks should take priority, and how to manage dependencies between tasks.

The Scrum model is a flexible and adaptable approach that prioritizes collabo-
ration and feedback. It enables teams to quickly adapt to changes in the project’s
requirements and deliver value incrementally. Its significant advantage lies in its
adaptability, with its flexibility enabling it to accommodate evolving requirements
in the project. However, its lack of clear requirements documentation can cause
confusion during development. Additionally, the Scrum model requires a highly
skilled team to be successful, which can be challenging for some projects.

Scrumban is a hybrid approach that combines elements of both Scrum and
Kanban. Its main advantage lies in its flexibility, enabling teams to customize
their development process to suit their specific project’s needs. Scrumban allows
teams to manage their workflow with a Kanban board while maintaining the struc-
ture of Scrum’s time-boxed iterations. This approach allows teams to prioritize
tasks effectively and make changes to the project’s requirements when necessary.
However, Scrumban’s flexibility can also be a disadvantage, as it may lack clear
guidelines, making it challenging to manage large-scale projects effectively. Ad-
ditionally, implementing Scrumban requires teams to have a deep understanding
of both Scrum and Kanban, which may require additional training and resources.
Overall, Scrumban can be an effective development model for teams that require
the flexibility of Kanban but also need the structure of Scrum.

The Agile model is an iterative approach to software development that fo-
cuses on delivering high-quality products while enhancing team collaboration. It
is highly adaptable to changes in project requirements, ensuring that the prod-
uct delivered meets the customer’s needs. Its primary benefit is its ability to
respond quickly to changing requirements and deliver a quality product within a
shorter timeframe. However, implementing the Agile model requires a significant
investment in resources and expertise, making it challenging to adopt for small
projects. Additionally, its emphasis on team collaboration may not work for all
organizations, particularly those with a hierarchical structure.

In conclusion, the choice of a software development model plays a critical role
in the success of a project. Each model has its own set of advantages and dis-
advantages, and careful consideration of these factors is necessary when selecting
the optimal model for a project. It is also essential to recognize that a model that
works for one project may not work for another, and adaptability is crucial when
making changes to the project’s requirements or scope. Ultimately, the success
of a project is dependent on the effective implementation of the chosen software
development model and the team’s ability to work collaboratively and adapt to
changes throughout the development process.

3.1.2 Our Software Development Model

After analyzing the project description provided by NINA, it became apparent
that the lack of flexibility in the Waterfall was unsuitable for the project. The
description was open-ended and allowed for various approaches to the project,
making the Waterfall too rigid to accommodate such a dynamic process. While
Kanban can provide a good structure for smaller projects, we believed that the
scope of our project was too large, encompassing various subject areas, which made

CHAPTER 3. DEVELOPMENT PROCESS 17

it unsuitable for the model. A pure Scrum model for a project of this size was
also not ideal since it was imperative to be clear in the documentation and reduce
possible confusion throughout the development process. Although the Agile model
seems appropriate, we decided not to use it since it would take time to master and
implement it correctly. Instead, we opted for a model that combined two models
we were more familiar with from previous projects.

The Scrumban model was chosen for our software development project after
careful consideration of the advantages and disadvantages of various development
models. The flexibility of Scrumban, combining the best of both Scrum and Kan-
ban, was the main motivation for our decision. The best of Scrumban for our
group include the following. A visual board to track the progress of the project
and identify tasks to be worked on next was critical for our team’s efficiency. Ad-
ditionally, we found that having regular Scrum meetings to keep everyone updated
and plan for each sprint was essential for collaboration and achieving our project
goals. By using the Scrumban model, we were able to adapt to changes in project
requirements and deliver a quality product within a shorter timeframe.

Bachelor Oppgave Nina

New ViewView 1

Backlog 1

Add item

Todo 1

Add item

In Progress 4

Add item

Ready for review 6

Add item

Stuck 0

Add item

Done 39

Add item

bachelor-oppgave-nina #71

Pipeline detection and video processor

bachelor-oppgave-nina #105

Write about ai in report

bachelor-oppgave-nina #39

Unit test

bachelor-oppgave-nina #86

Improve "installation guide"

bachelor-oppgave-nina #81

Second Iteration UI

bachelor-oppgave-nina #104

Write minimum 2 chapters in final report

bachelor-oppgave-nina #15

Labelling dataset

bachelor-oppgave-nina #90

Fix frame grabber

bachelor-oppgave-nina #43

Create user test of UI with video processing
capabilities

bachelor-oppgave-nina #88

Update report format based on NINA's
specifications

bachelor-oppgave-nina #44

Analyze usertest feedback

bachelor-oppgave-nina #87

Create script for dataset generation

bachelor-oppgave-nina #82

Create an Installation guide for first iteration

bachelor-oppgave-nina #84

Find overlapping datasets in supplied NINA
videos

bachelor-oppgave-nina #58

Configure school computer for training

bachelor-oppgave-nina #85

Create a script to find annotation distribution
in the supplied NINA yolo dataset

bachelor-oppgave-nina #3

Set up environment and install everything
needed

bachelor-oppgave-nina #2

Research different object/movement detection
methods

bachelor-oppgave-nina #1

Project Plan

bachelor-oppgave-nina #8

Create a demo UI with python

bachelor-oppgave-nina #14

Decide whether to use Tkinter or pyQt

Discard Save

Filter by keyword or by field

Figure 3.1.1: Our Kanban board towards the end for demonstration

3.2 Meetings

With the use of Scrumban we had a clear view of how we wanted to organize
our meetings. We ended up having four different kind of meetings throughout
the development of the project. These meetings were a weekly meeting with our
supervisor Marius on Tuesdays at 14:00, which usually lasted an hour, a Sprint
planning meeting right after our supervisor meeting was done with only the group
members, a meeting with our client every other week on Mondays at 14:00 and

18 CHAPTER 3. DEVELOPMENT PROCESS

lastly we had a Daily scrum meeting at 12:00 on weekdays. The decision for this
scheduling is discussed in following sections.

Table 3.2.1: This is a visualization of the meetings planned over each two week
period throughout the development process.

Week Monday Tuesday Wednesday Thursday Friday

1 Daily scrum
Client meeting

Supervisor meeting
Sprint planning Daily scrum Daily scrum Daily scrum

2 Daily scrum
Supervisor meeting
Sprint Retrospective

Sprint Review
Daily scrum Daily scrum Daily scrum

3.2.1 Client Meetings

The client meetings were conducted every other week as previously noted. This
was because we mostly used these meetings to showcase our progress to NINA and
gather feedback. We also occasionally used some time to get some questions we
were pondering answered. Besides these meetings, we used mail actively to get
smaller questions answered by NINA. These meetings were scheduled on Mondays.
This decision was made based on the understanding that any concerns, issues or
new information gained during the meeting could be reflected upon by team mem-
bers before the subsequent supervisor and Sprint planning meeting. By doing so,
the team was able to engage in timely discussions and receive input from their
supervisor regarding how to resolve issues or improve processes moving forward.
Additionally, the meetings allowed for a more comprehensive and integrated ap-
proach to Sprint planning, ensuring that any new insights or developments were
taken into account in the planning process. Ultimately, this approach supported
the team’s efforts to optimize productivity, enhance communication, and deliver
high-quality software products.

3.2.2 Supervisor Meetings

By having weekly meetings with our supervisor, it allowed us to ask key questions
in a orderly and efficient way at a regular basis. It also made it possible to bring up
problems and questions no matter how large or small they were. These meetings
were physical meetings at campus.

3.2.3 Sprint Planning Meetings

By conducting the Sprint planning meetings immediately after the supervisor
meetings, we had just gained important informations which we used to plan the
week ahead. The information and viewpoints received from our supervisor could
be everything from what needed more refinement, to which specific parts needed
to be developed next. This was done to optimize our advances and make sure we
build the foundations before add-on features. The purpose was to ensure that we
never had to go back and rework our software.

CHAPTER 3. DEVELOPMENT PROCESS 19

3.2.4 Daily Scrum

The last kind of meeting we had, the Daily scrum meeting, happened at 12:00
every weekday. These meetings were intended to make sure everyone made a
habit to work throughout the day such that if we worked alone, we could still
be sure that the other group members were available to help each other if ever
needed. Additionally we used these meetings to showcase and talk about what we
had worked on the day before and plan the current day. These meetings usually
lasted about 30 minutes. It was the group leaders role to adjour the meeting. If
any group members had any remaining questions, wanted to discuss or needed
help, this was then done after the meeting was over. These meetings was an
excellent way to keep every group member on the same page through the entire
development cycle.

20 CHAPTER 3. DEVELOPMENT PROCESS

CHAPTER

FOUR

TOOLS AND TECHNOLOGIES

In this chapter, we will talk about what kind of tools and technologies are used in
our project to achieve our goals.

4.1 Tool Overview

In this bachelor’s project, we have carefully selected and planned the tools and
environments that we intend to use in the development, documentation, quality
assurance, core libraries and collaboration aspects of the project. An overview
of the tools and environments selected is presented in Figure 4.1.1. By selecting
and using these tools and environments effectively, our goal is to optimise our
project development process, ensure high-quality results, and facilitate effective
collaboration among team members.

Documentation

Collaboration tools

Development environment

Core libraries

Languages

Quality Assurance

Poetry

Development tools

Video annotation tool

Figure 4.1.1: Tools used in the project and how they are linked.

21

22 CHAPTER 4. TOOLS AND TECHNOLOGIES

4.1.1 Collaboration

• Git[3] - Git is a DevOps tool used for version control and source code man-
agement. It is a free and open-source version control system used to handle
small to very large projects efficiently. Git is used to tracking changes in the
source code, enabling multiple developers to work together on non-linear
development. And it is also an industry standard. We use Git because of
its relevancy throughout our bachelor degree, where it is the only tool of its
kind we have been taught to use, as well as how its been internalized for
everyone in our group.

• GitHub[4] - GitHub is an Internet hosting service for software development
and version control with the aforementioned Git. It provides the distributed
version control of Git[Git], plus access control, bug tracking, software fea-
ture requests, task management, continuous integration, and wikis for every
project. We use it because we are very familiar with its use and it fits
the scope of our open-source project, especially with the features mentioned
earlier.

• SourceTree[5] - A free Source Code Management Application for version
control systems such as Git. Some of us use this tool because its been
introduced to us through previous courses.

• GitKraken[6] - A Source Code Management Application for version control
systems such as Git. Some of us use this tool because of its more intuitive
GUI and user support through regular updates.

• Discord[7] - Discord is a free communication tool used by people to commu-
nicate in chat channels in the form of text, images, video and audio. Discord
is our main tool for communicating with group members, and is used to share
resources, documents, and just collaborating in general. The reason for this
choice of communication tool is because of our constant use of Discord to
communicate during the bachelor degree. All of our group members use Dis-
cord regularly and have become familiarised and adept in its use, and have
been in constant contact with each other prior to the bachelor project. This
makes communication between group members operate smoothly while us-
ing this platform. Discord also features threads and channels for our project
where we have differentiated threads and channels for working and resource
sharing and management. See Figure 4.1.2.

• Toggl[8] - Toggl track is a great tool to track and manage time. Its intu-
itive and user-friendly design makes it easy to use, and its comprehensive
reporting features provide valuable insight into how you spend your time.
Toggl track allows its users to label and visualise their work and provides
cooperation workspaces to register and report the users’ work.

• Teams[9] - Microsoft Teams is a communication tool for us to communicate
in real time. We only use it to communicate with NINA and their delegated
tech representatives. We used Teams because of how standardised it is today.
This choice was made because Microsoft Teams is recognized as a "default"
tool for communicating between organisations/workgroups. Seeing as NINA

CHAPTER 4. TOOLS AND TECHNOLOGIES 23

already had it configured, it can even be recognised as a standard. We did
not question to use another tool, this was because everyone, including NINA,
had it configured. This made it easier to plan the meetings for us due to
Teams cross-compatibility with Outlook, thus setting up meetings was as
easy as sending a mail, with a planned date and time.

• TeamViewer - TeamViewer would be used in tandem with NINA meetings
when showcasing the different iterations in order to perform user testing and
get valuable feedback.

• VDI - Virtual desktop infrastructure, or VDI is in essence virtualisation tech-
nology that hosts desktop environments on a central server or datacenter.
Through this centralised server, the VDI will deploy the desktop environ-
ments to end clients or users over a network through a virtual desktop image
to an endpoint device, defaulted to the researchers at NINA. This is what
NINA will use to host our application.

• Docker[10] - Docker is an open source platform that enables developers to
build, deploy, run, update and manage containers—standardised, executable
components that combine application source code with the OS libraries and
dependencies required to run that code in any environment. We would use it
in tandem with one of NINA’s technical representatives in order to help them
test our application for deployment using docker for their VDI environment.
This would be done mostly in collaboration with one of the representatives,
Francesco Frassinelli.

• Jupyter [11] - Jupyter is an open source web application that you can use to
create and share documents that contain live code, equations, visualisations,
and text. We used this to contain our work for AI.

• NextCloud [12] - Nextcloud is an open-source, self-hosted file share and
communication platform. It allows users to store and share files, contacts,
calendars, and more, ensuring privacy and data security. In our project,
we leveraged Nextcloud to share files from the disks we received from NINA
(detailed in Section 8.1.1) among our team members. This service was hosted
on the home server of one of our members, providing us with a centralized
and secure platform to access and manage these crucial data files.

24 CHAPTER 4. TOOLS AND TECHNOLOGIES

Figure 4.1.2: A list of all threads created, the recently used are the threads that
are still relevant for use, and the others are relevant for documentation

4.1.2 Documentation

Throughout the development process it was important that the process was prop-
erly documented. In order to keep the quality of the work persistent over the
period, it was therefore integral that we would decide upon which documentation
tools we would use before starting the process. For writing the reports we de-
cided on utilizing Overleaf, which is a online Latex editor, useful to collaborate on
creating scientific documents. Other than Overleaf for creating reports, we used
other tools such as ChatGPT as a language checker, Toggl as a time tracker and
draw.io for figures. These were used due to their out-of-the-box functionality and
our familiarity with these tools. For plotting figures based on data gained from
the AI model, we used the library Matplotlib [13], because it is compatible with
PyQt [14] as a GUI for the data presented in Section 8.3.

4.1.3 Programming Language

Python is an important language for AI programming, especially in machine learn-
ing. Its popularity surpasses other programming languages for machine learning
such as Java, or C++ due to the numerous advantages it offers. Python has a
comprehensive library ecosystem and provides excellent data visualization options,
making it a powerful tool for AI development. It also has low entry barriers, mak-
ing it accessible to beginners and benefits from strong community support. Python

CHAPTER 4. TOOLS AND TECHNOLOGIES 25

is highly flexible, allowing developers to customize it to a variety of requirements,
and its code-readability simplifies the development process. Furthermore, Python
is platform independent, allowing for seamless deployment across all operating
systems. It is widely used for constructing regression models and rendering visu-
ally appealing graphs, making it an essential choice for effective data visualisation
in AI applications.

4.1.4 Prototyping

To reduce the amount of time needed to redesign the program, a good prototype is
crucial. Therefore, under the project planning stage, we started looking for tools
which would enable us to create a prototype with ease. We had a few demands
when it came to choosing a prototype tool. Some of those demands were that
it had to be easy to get into and learn, could create a wide set of different size
programs and offer a great option of different Widgets, customisation and intuitive
ways to create it. We also wanted the tool to be able to create both high- and low
fidelity prototypes. Some of the tools we considered were Figma, Adobe XD, and
Balsamiq.

After conducting extensive research and evaluating various prototyping tools,
our project team ultimately chose Figma as our prototyping tool. We identified
several key factors that influenced our decision. First, Figma is a versatile tool
that can create both high fidelity prototype and low fidelity prototypes, whereas
Balsamiq is primarily suitable for low fidelity prototypes. Second, we selected
Figma over Adobe XD because of its cost-effectiveness, since Figma is a free tool,
whereas Adobe XD is not. Third, our team had prior experience using Figma
extensively throughout our bachelor’s program, making it easier for us to quickly
start creating the prototype without investing significant time in learning a new
tool.

4.1.5 Poetry

In any software development project, managing dependencies and their versions is
crucial to ensure consistent and reliable execution of the application. To address
this requirement in our project, we chose to utilize Poetry as our dependency
management tool.

Poetry is a powerful Python packaging and dependency management tool [15]
that simplifies the process of managing project dependencies, including both run-
time dependencies and development dependencies. It offers several advantages
over other dependency management tools, such as pip and virtualenv:

• Dependency Resolution: Poetry provides robust dependency resolution
algorithms that ensure compatibility between different packages and their
versions. It resolves complex dependency graphs and helps avoid conflicts or
compatibility issues that can arise when multiple dependencies are involved.

• Virtual Environments: Poetry integrates virtual environment manage-
ment seamlessly. It automatically creates and manages project-specific vir-
tual environments, isolating the project’s dependencies from the global Python

26 CHAPTER 4. TOOLS AND TECHNOLOGIES

environment. This ensures that the project’s dependencies are consistent and
independent of other Python projects running on the same machine.

• Lock File: Poetry generates a lock file, ‘poetry.lock‘, which pins the ex-
act versions of all dependencies used in the project. This guarantees re-
producibility and stability of the application, as subsequent installations or
deployments will use the same versions specified in the lock file.

• Build and Packaging: Poetry provides tools for building and packag-
ing Python projects, making it easier to create distributable packages. It
supports generating source distributions (sdist) and binary distributions
(wheel), which are commonly used for sharing and deploying Python ap-
plications.

• Ease of Use: Poetry simplifies the process of managing dependencies and
configuring project settings. Its intuitive command-line interface allows de-
velopers to add, remove, and update dependencies with ease. It also provides
clear error messages and helpful documentation, making it user-friendly for
both experienced and novice Python developers.

• Integration with PyPI: Poetry seamlessly integrates with the Python
Package Index (PyPI), the official repository for Python packages. It allows
easy installation of packages from PyPI, and it can also publish packages to
PyPI for sharing with the broader Python community.

Given these advantages, Poetry was the ideal choice for managing dependencies
in our project.

4.1.6 Pre-commit

Ensuring high-quality code throughout the project is a top priority. It minimizes
bugs, improves readability, and facilitates collaboration among developers. To
aid us in this effort, we incorporated pre-commit, a framework for managing and
maintaining multi-language pre-commit hooks, into our development workflow.

Pre-commit provides a standardized way to automatically check and enforce
code quality standards before changes are committed to the repository [16]. Some
of the key features of pre-commit that made it a valuable addition to our project
are:

• Consistency: Pre-commit helps ensure consistent coding standards across
the project, making it easier for developers to understand and work with
each other’s code.

• Automation: Pre-commit checks are automatically run before every com-
mit, catching potential issues before they are committed to the repository.
This reduces the likelihood of bad code making it into the codebase and saves
time that would otherwise be spent reviewing and fixing code manually.

• Flexibility: Pre-commit supports a wide range of pre-built hooks for various
languages and tools, and also allows custom hooks to be defined. This makes
it adaptable to the specific needs of the project.

CHAPTER 4. TOOLS AND TECHNOLOGIES 27

• Integration: Pre-commit integrates seamlessly with Git, our chosen version
control system. This ensures that the checks are run at the appropriate point
in the version control workflow.

The tools we run through pre-commit is detailed later in subsection 4.2.1.

4.1.7 Annotation

In the context of training and deploying a suitable detection model for NINA,
annotation played a crucial role. Annotation refers to the process of labeling or
marking specific objects or regions of interest in a dataset. In this project, the
dataset provided by NINA was unannotated, requiring us to annotate the data
ourselves for training the AI model. To facilitate this process, we sought out
an annotation tool that was user-friendly, functional, and capable of effectively
annotating the data to train the AI model.

CVAT (Computer Vision Annotation Tool)[17] is a powerful tool for annotating
images and videos to create custom datasets with bounding boxes, polygons, and
labelling for said images and videos. The need for CVAT is there because it
simplifies annotating data, and adds several quality of life features such as:

• Tracking across frames: CVAT allows users to activate assisted tracking
where it adds bounding boxes around the tracked element and moves the
box the next frames afterwards. This is not a perfect tracking method;
however, it is very helpful.

• Backups and transfers: CVAT allows users to backup their jobs and transfer
jobs from one CVAT service to another.

• Shared labels: CVAT allows users to share labels with others in the same
workspace, as well as exporting those labels as files.

There is a lot more than just this; however, these features were particularly helpful
for us, which makes annotating data a more pleasant experience and improves
efficiency in itself. There are several reasons why CVAT is a considerably great
tool for annotating the activity of fish in murky water:

• Flexibility: CVAT allows users to define custom annotation labels, which is
important when working with a complex and modular underwater environ-
ment, which may contain a variety of underwater species.

• Collaborative: CVAT is designed to support collaborative work on annota-
tion projects. This means that it currently allows multiple users to work
together on the same data set. This can be particularly useful when working
with large volumes of underwater video footage that needs to be annotated
and labelled correctly.

• Ease of use: CVAT has a user-friendly interface that makes it easier to
annotate images and videos. Users with limited computer vision experience
will be able to quickly grasp the UI of CVAT. The tool also includes features
such as auto-annotation, video playback, and frame-by-frame annotation,
which makes the annotation process faster, easier, and more accurate.

28 CHAPTER 4. TOOLS AND TECHNOLOGIES

• Compatibility: CVAT supports a wide range of annotation formats, includ-
ing popular formats such as YOLO [18], PASCAL VOC and COCO, as well
as custom formats. This makes it easier to integrate with other tools and
set better workflows.

• Accuracy: CVAT allows users to adjust the automated tracking, which is
important when working with complex and difficult-to-annotate underwater
images. This ensures that the scope of the annotations always accurately en-
compasses objects of interest, reflecting the activity of fish and other species
that might be of interest to NINA.

We did consider other tools such as: Encord Annotate, Scale, Labelbox, V7
Labs and Dataloop however most of them were not free to use, and did not offer
the same out-of-the box experience such as CVAT. We were able to deploy CVAT
on our own and able to start annotating almost immediately after deployment
after all. The other tools were also too advanced for our use case as well seeing
as they offered functionality not necessary for our scope, which would have added
overhead to our workflow.

To better facilitate the annotation process and increase our control over the
process, we decided to self-host CVAT on a powerful private server rather than
using the provided CVAT service. Self-hosting offered several advantages, includ-
ing:

• Storage: With self-hosting, we had virtually unlimited storage space, as
the server included multiple high-capacity drives. This facilitated the stor-
age and management of our large datasets without worrying about space
constraints.

• Processing Power: Our server boasted a powerful CPU and GPU, giving
us the possibility of deploying our own models for automatic annotation.

• Cost Efficiency: Self-hosting saved us from subscription costs for auto-
mated annotation services. We were able to utilize the robust features of
CVAT without additional expenditure.

The hardware specifications of our self-hosted server are provided in Table 4.1.1.

Table 4.1.1: Hardware specifications of the self-hosted server

Component Specification

CPU Intel Core i7-7700K 8-Core Processor
GPU NVIDIA GeForce GTX 1070
RAM 32.0 GB
SSD 2x 1TB NVMe SSD, 1x 250GB SSD
HDD 2x 10TB HDDs

In general, CVAT is a great tool for annotating fish in murky water due to its
flexibility, collaborative features, ease of use, compatibility with other tools and
workflows, and precision. It can help researchers and practitioners identify and
study fish species and other objects of interest in underwater environments and
develop more effective strategies for managing and protecting these ecosystems.

CHAPTER 4. TOOLS AND TECHNOLOGIES 29

4.2 Technologies
The application utilizes several different libraries and modules. These are em-
ployed to implement functionality such as video processing, file manipulation,
local database, and the movement detection. Some of the libraries and modules
does not provide functionality for the application, but rather are used to ensure
the quality of the program. The selection of these tools and reasoning behind it
are detailed below.

4.2.1 Quality Assurance

In order to ensure the quality of the code we wrote, we utilized a set of different
tools. These are shown in the list below. For more information on the usage of
these tools see Chapter 9.

• PEP 8 is a widely accepted Python code formatting guide emphasizing read-
ability and maintenance.

• Black is a strict Python code formatter that follows PEP 8 guidelines and
reduces decision fatigue.

• Pylint is a comprehensive Python linter that enforces coding standards and
performs in-depth code analysis.

• mypy is a seamless static type checker for Python with comprehensive capa-
bilities.

• isort organizes and sorts imports in Python code, improving readability and
ensuring correct placement and formatting.

4.2.2 GUI

In the development of an application, the Front-end is the component the users
interact with. Accordingly, its design must prioritise the target user group. In our
case, the target users are the researchers at NINA, who have been identified to
have limited technological expertise. Therefore, it was crucial to create a Front-
end interface that is visually and practically intuitive, while also providing clear
and concise information. It was also important for our group (the development
team) to utilise this process as an opportunity to facilitate learning.

After extensive research and consideration, our group identified two primary
options for consideration in the development of the Front-end, namely PyQt and
TKinter. Both options presented viable possibilities given our goal. However, it
was necessary to evaluate the respective advantages and disadvantages of each
package before choosing one, which can be seen in Table 4.2.1.

In conclusion, we have opted to make use of PyQt for the Front-end of our
application. This decision was based on a few factors. For one PyQt seemed
to be more prevalent within the industry as mentioned in pythonGUIs [19]. It
also proved to be more configurable compared to TKinter and can facilitate the
execution of external processes when needed. These advantages would allow us
to use this project to learn and expand our abilities with Front-end development
tools in Python.

30 CHAPTER 4. TOOLS AND TECHNOLOGIES

Table 4.2.1: Table with pros and cons for the Front-end options PyQt and
TKinter

PyQt TKinter (customTKinter)

Pros
• More widely used in the

industry, thus it might be
relevant later

• It may execute external
programs

• Qt designer allows for
more visual design of ap-
plication

• Includes many useful
frameworks and tem-
plates

• Simple to understand
• Included in python (cus-

tomTKinter is not)
• Available for commercial

use, however this is not
relevant for our project

Cons
• Considered more compli-

cated to learn
• Need licence for commer-

cial use, however this
is not relevant for our
project

• Lacks some python-
specific documentation

• Struggles with scaling
and customization

• TKinter need third-party
package to have a native
and intuitive look and feel

• Custom TKinter is not
official

4.2.3 Local Database

When planning the application we figured that a local database would assist the
functionality of the program. The implementation of this would allow for efficient
and organised management of data across the program and enabling the program’s
components to have easy access to the necessary data. The database is also useful
to grant the user the ability to view and analyse all the data that will be saved
within the database.

The choice of tool that we made for our database was SQLite. SQLite is a
lightweight and portable database management system that is used to develop local
databases. It can therefore create self-contained and server-less databases, and it
does not require a separate server process or installation software. This makes
it easy to deploy and manage. Furthermore, SQLite is platform independent,
meaning that it can be used on different OS. SQLite has also been designed to be
efficient and have low memory usage.

There were however a few different other options that we did consider, such
as MySQL, TinyDB, MongoDB and MariaDB. However even if they were vi-
able alternatives they were not as optimal to our application as SQLite. MySQL

CHAPTER 4. TOOLS AND TECHNOLOGIES 31

and MariaDB requires a separate database server, which SQLite doesn’t require,
thus complicating and increasing the resources consumed during the setup of the
database. Considering the self-contained nature and scale of the application, Mon-
goDB would neither be the most favorable for our system as it’s large scale and
distribution is not required. TinyDB is a useful module for small-scale projects
and databases which appeared promising. However on closer inspection it ap-
peared too small-scale and it did not include the comprehensive SQL feature set
needed for relational data modeling that we needed for our database.

In summary, SQLite is a popular and efficient database management system
that is ideal for local databases. Furthermore, the library allowed us to efficiently
create a server-less local database that would not take too much computing power
from the rest of the program, which is what we needed. Thus, deeming the other
options less suitable for the purposes of our application.

4.2.4 File Generation

For the purpose of our program it was known that it would need to generate a file
with the application’s findings. To generate a file containing the collected data, it
was essential to employ specialised libraries.

No specified file format was requested during the project planning. It was thus
decided to allow the user to choose from a set of preset choices. The preset choices
were CSV, XLSX, FPDF and XML. All of these choices are flexible and has each
their accommodations for what the user may need from the report. The PDF
format were chosen due to it preserving its layout across devices and files in this
format are easily shared and printed. XML is a format that is highly customizable
and allows for the storing of metadata along side the data. Where the XLSX and
CSV are both able to be opened and altered as spreadsheets, which makes them
suitable for their readability and the possibility to do further in depth analysis of
the data presented.

The libraries necessary to implement reading and writing of these file formats
are as follows.

• csv module: This is a built-in Python module for working with comma
separated values (CSV) files. Provides functionality for reading and writing
CSV files. CSV files are a common file format to store tabular data, and the
CSV module makes it easy to read and write these data using Python.

• xlsxwriter: This is a third-party Python library for working with Microsoft
Excel files in XLSX format. This provides functionality for creating, reading,
and modifying Excel files. XLSX files are a common file format to store
spreadsheet data, and the xlsxwriter library makes it easy to work with
these files using Python.

• FPDF: This is a third-party Python library for creating PDF files. Pro-
vides functionality for adding text, images, and other elements to a PDF
document. PDF files are a common file format for sharing documents, and
the FPDF library makes it easy to create PDFs using Python.

• Minidom: This is a built-in Python module for working with XML files.
This also provides functionality for parsing and creating XML documents.

32 CHAPTER 4. TOOLS AND TECHNOLOGIES

XML files are a common file format to store structured data, and the Minidom
module makes it easy to work with these files using Python.

4.2.5 Video Processing

Video processing was an essential component of the project application. This is
to implement the crucial features of eliminating non-interesting portions of video,
and overlaying annotations on output videos. It was therefore important to find a
tool which could perform these tasks. For this we found the tools detailed in the
list below to be suitable for this purpose.

• FFmpeg [20] is a widely-used and powerful multimedia framework that can
be employed to process video and audio files in various formats. it is also
a powerful open-source tool for processing video files, as it provides a wide
range of features for manipulating, converting, extracting, resizing, cropping,
applying various elements(such as images, text and sound), and reformatting
video files. It also supports a wide range of codecs.

• PyAV [21] is a powerful and versatile tool for processing videos. It pro-
vides a comprehensive set of functions which provides Python bindings for
FFmpeg intended for manipulating video files, including encoding, decoding,
transcoding, and streaming. It also supports a wide range of video formats,
including AVI, MP4, and MKV. In addition to being highly efficient, allow-
ing for fast and efficient video processing. PyAV is also open source and free
to use.

We decided to utilize these two libraries due to the combination enhancing
the integration of the video processing functionality. The PyAV library, which
provides Python bindings for FFmpeg, would allow for seamless integration of the
video processing capabilities of FFmpeg into our project. This integration would
ensure the facilitation of video cutting and overlaying of annotations on the output
video while maintaining performance and flexibility for our application.

4.2.6 Artificial Intelligence

To detect fish- and other underwater life activity we have to use a tool specifically
made for object detection. In this project, we have chosen YOLOv8 [22] as our
object detection model over other detection models, including other Convolutional
Neural Network (CNN)s and Region-Based Convolutional Neural Network (R-
CNN)s, and non-AI motion or object detection algorithms. The rationale behind
this decision is based on the following key factors:

• Unified Detection Framework: Unlike R-CNNs that employ a two-stage
detection process (region proposal and classification), YOLOv8 follows a
single-stage detection approach. This allows YOLOv8 to perform both local-
ization and classification simultaneously, making it faster and more efficient
than two-stage detectors [23].

CHAPTER 4. TOOLS AND TECHNOLOGIES 33

Figure 4.2.1: Example of the annotation overlay on an output video. The anno-
tations, including the labels of the detected objects and its associated confidences,
are overlaid on the video frame.

• Speed: The You Only Look Once (YOLO) approach is known for its excep-
tional speed [23], which allows for real-time object detection in video streams.
This is crucial for our application, as NINA accumulates a large backlog of
videos, and the detection process must be efficient. It also improves on speed
over its predecessor yolov5 [24] as illustrated in Figure 4.2.2

• Accuracy: YOLOv8 maintains a good balance between speed and accu-
racy. While it may not be the most accurate object detection model, its
performance is sufficient for our application, where the primary focus is on
detecting the presence of fish rather than identifying species, and detecting
ranges rather than individual frames. See Figure 4.2.2 to see a performance
comparison.

Figure 4.2.2: YOLOv8 compared to other YOLO models. Figure from Ultra-
lytics repository [22].

• Lower Epochs: YOLOv8 requires fewer epochs for training compared to its
predecessor, YOLOv5, which enables faster iteration when training, which
allows for more tweaking and experimentation to improve performance.

34 CHAPTER 4. TOOLS AND TECHNOLOGIES

• Partial Object Detection: The model is robust to occlusion, meaning
that YOLOv8 can detect partially visible objects, which is important for our
application, as fish may not always be entirely visible in the video frames
[23]. In murky water environments, where fish can be partially hidden by
plants or other debris, this is an important feature that can improve the
accuracy of fish detection. This is also an important feature we had in mind
when deciding on our annotation rules discussed later in Section 8.1.2.

• Scalability: YOLOv8 can be easily scaled to different resolutions and is
available in various sizes (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x), providing options for trade-offs between speed and accuracy
based on the specific requirements of the project and what NINA requires
at any time.

Table 4.2.2: YOLOv8 Model Sizes. Source: Ultralytics repository [22]

Model Size
(pixels)

mAP
(val 50-95)

Speed
(CPU ONNX, ms)

Speed
(A100 TensorRT, ms)

Params
(M)

FLOPs
(B)

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

• State of the Art and Ongoing Development: YOLOv8 is a brand
new state-of-the-art (SOTA) object detection model, and it is still under
active development. This ensures that the model benefits from the latest
research advancements and optimizations. As a result, YOLOv8 is likely to
receive continuous improvements in terms of speed, accuracy, and robustness,
making it a future-proof choice for the project [22].

• Superiority over Non-AI Algorithms: Traditional non-AI object detec-
tion methods, such as background subtraction, optical flow, feature-based
detection, Gaussian mixture model (GMM), and template matching, en-
counter challenges in the complex underwater environment for various rea-
sons:

– Background Subtraction: Background subtraction methods rely on es-
timating a static background and detecting moving objects by compar-
ing the current frame with the background model [25]. In underwater
environments, background subtraction methods struggle due to rapid
and drastic background changes caused by water currents, moving ma-
rine plants, or floating debris. Additionally, low visibility and varying
illumination conditions can lead to inaccurate background modeling,
resulting in false detections or missed objects.

– Optical Flow : Optical flow methods estimate the motion of objects
based on the apparent motion of their intensities in consecutive frames
[26]. However, these methods can be sensitive to noise, which is often

CHAPTER 4. TOOLS AND TECHNOLOGIES 35

present in underwater environments. They may also fail in areas with
low texture, common in underwater scenes, since optical flow relies on
the presence of distinguishable features to compute motion [27].

– Feature-based Detection: Feature-based detection methods identify ob-
jects by detecting and matching distinctive features, such as corners or
edges, between frames [28]. Underwater environments, characterised
by low visibility, varying illumination, and floating debris, can alter the
appearance of these features, making them difficult to detect and match
accurately.

– Gaussian Mixture Model (GMM): GMM-based methods model the back-
ground using a mixture of Gaussian distributions to identify moving
objects [29]. Although these methods can handle some level of dy-
namic backgrounds, they struggle with rapidly changing underwater
backgrounds due to water currents, moving marine plants, or float-
ing debris. Furthermore, low visibility and varying illumination can
cause GMM-based methods to incorrectly model the background or
foreground, resulting in false detections or missed objects [30]. GMM
methods usually require a period of training on a stable background,
which can be challenging to obtain in underwater environments.

– Template Matching : Template matching methods search for a prede-
fined template in an image by comparing the template with local regions
in the image [31]. These methods struggle in underwater environments
due to several factors, including low visibility, varying illumination,
and the presence of similar-looking objects or floating debris, which
can cause false detections. Additionally, template matching methods
are not robust to changes in object scale, rotation, or perspective, which
are common in dynamic underwater environments [31].

Compared to these traditional non-AI object detection methods, CNN-based
models such as YOLOv8 are better suited to handle the challenges posed
by underwater environments. They can learn to recognise and generalise
essential object features, despite low visibility, varying illumination, floating
debris, dynamic backgrounds, or changes in object scale, rotation, or per-
spective. This robustness and adaptability make them more accurate and
reliable in detecting objects in underwater environments [23, 32].

Given the aforementioned advantages, YOLOv8 was deemed the most suitable
choice for our fish detection task in murky underwater environments. Its combi-
nation of speed, robustness, and accuracy makes it an ideal choice for the specific
challenges presented by this project.

4.3 Technology Integration and Interaction

After considering and choosing the technologies for developing the application, it
was important to map out how these libraries and modules would be integrated
within the system and how they were going to interact. Figure 4.3.1 below is an

36 CHAPTER 4. TOOLS AND TECHNOLOGIES

expanded version of Figure 2.2.2, which visualizes the how the technology discussed
within this chapter was going to be integrated into the system.

User

Open App

Change Settings

Run

PyQt6

Frontend

Local
Persistent Storage

QSettings

Save settings

Load settings

Backend

Local
database

FFMPEG

Process videos

XLSX - XML.DOM - CSV

Manage report

Output
folder

Detect fish

YOLOv8

SQLlite

Manage data

Add detection
boxes

If settings enable
detection boxes

If settings enable
report generation

Figure 4.3.1: The functional specifications laid out, and integrated with the
intended technologies.

CHAPTER

FIVE

SYSTEM ARCHITECTURE

MP4Processed MP4

Hard disk

Mp4 videos

Reports

Front-end

UI

pyQt

d

Back-end

Video Processor

Ffmpeg

Report
manager xlsxwriter

Data manager

cvs

Report

Path to directory

Preferences
MP4Pre-processed

MP4

Preferences
& Prediction

AI

Yolo v8

MP4Pre-processed
MP4

Prediction

Figure 5.0.1: The full system architecture, for an in depth view of each part of
the figure, see Figure 6.2.1 and 6.3.1.

Prior to program development it was important to establish the architecture of
the full application. This was to provide clear understanding between all group
members of each components’ purpose and interdependencies. This facilitated
effective communication about the system between group members and expedited

37

38 CHAPTER 5. SYSTEM ARCHITECTURE

the development process. The system architecture, as visualized in Figure 5.0.1,
comprises of the four primary components: Front-end, Back-end, AI, and disk,
each which is integral to the overall system.

5.1 Disk

The disk component within Figure 5.0.1 represents the storage in which the user
stores the preprocessed videos, the processed videos and the process report. This
conceptual storage encompasses both the directory from which the preprocessed
videos are fetched and the directory to which the processed videos and reports
are saved. This may thus be the computer’s local storage and or external storage
devices.

To run the process the application provides, an input and output directory
must be defined. The user interface interacts with the disk component through
user input, where the user specifies the directory paths prior to their transfer
to the Back-end component. The Back-end utilizes the input path to gather the
preprocessed videos to send to the AI and video processor, while it uses the output
path to save the process video from the video processor and the report from the
report manager.

5.2 Front-end

The Front-end component of the system consists of a User Interface such that
the user can interact with the application. The User Interface is utilized by the
Back-end to collect data from the user, such as processing preferences, and input
and output directories. Once the data is gathered, it is then passed on to the
Back-end component for processing. The Front-end thus plays a crucial role in
the system architecture by facilitating communication between the user and the
Back-end component.

5.3 Back-end

The Back-end component is the connection point of all the other components
within the system, which can be seen in Figure 5.0.1. This component is respon-
sible for ensuring that data is stored and transferred to the correct components,
that the AI prediction and video processing procedure runs smoothly and that
the information about the process is recorded and written to a report. In order
to perform these duties the Back-end component is further divided into a data
manager, a report manager, and a video processor.

5.3.1 Data Manager

The data manager component is a script within the Back-end, that manages the
data within the system. It ensures the preferences and the directories from the
Front-end is transferred to the corresponding components of the system. Such as
the preprocessed videos are sent to the AI model, and the prediction from the

CHAPTER 5. SYSTEM ARCHITECTURE 39

model and preferences from the Front-end are sent to the report manager and
video processor. The local database, referenced within Section 4.2.3, is created
and managed by this part of the Back-end, to save the data about the videos and
predictions.

5.3.2 Report Manager

The report manager is another script within the Back-end. This script writes a
file into the output directory based on the findings of the AI model through a
connection with the local database managed by the data manager. The format
of the report is based on the user preferences, as the user decides on a format
among a set of preset choices. Originally it was planned for there to be four preset
choices, XML, PDF, CSV and XLSX, thus utilizing the Minidom, FPDF, CSV
module and xlsxwriter libraries. However due to changes per request these choices
was cut into only CSV and XLSX, thus only utilizing the CSV and xlsxwriter
libraries within the final product.

5.3.3 Video Processor

The video processor is a component that processes the videos using FFmpeg
through the PyAV library. The component edits a video by cutting out frame-
ranges based on the AI’s predictions and assemble the cuts into a new processed
video. Thus creating a processed video that does not have all the dead time that
the original video had in between wildlife. The video processor uses FFmpeg to
process the video and apply any additional options specified by the user in the
Front-end.

5.4 AI
The AI component is an AI model that is used to detect when there is fish present
in a video. This component uses the YOLOv8 model with our weights. The way in
which the model detects the fish within an MP4 video file is by sifting through all
frames of the video. For each frame the model processes the frame and predicts
whether it contains aquatic life or not. When it has performed prediction on
all the frames, it will create frame-ranges based on when it detects activity over
multiple frames close to each other thus building up a prediction dataset consisting
of several frame-ranges that will later be used in the video processor. The model
then returns the prediction data to the Back-end component to be stored by the
data manager.

40 CHAPTER 5. SYSTEM ARCHITECTURE

CHAPTER

SIX

IMPLEMENTATION

This chapter provides a comprehensive overview of the implementation process,
focusing on essential components of our software. It encompasses the selection of
libraries and functions, the tools employed to facilitate project advancement, and
an explanation of the overall solution. For a more detailed exploration of the GUI,
please refer to Chapter 7. Similarly, Chapter 8 delves into the intricacies of object
detection, providing an in-depth analysis of the underlying mechanisms.

6.1 Development tools

In this section we will delve into the implementation of various development tools.
These tools were used throughout the development process to enhance the project’s
integrity and quality.

6.1.1 Poetry

To leverage the benefits of Poetry [15], we followed the following workflow for
dependency management:

1. Dependency Specification: We defined our project dependencies by adding
them to our ‘pyproject.toml‘ file, which Poetry uses to manage project set-
tings and dependencies. We specified both direct dependencies required for
our application and any development dependencies needed for testing, Lint-
ing, or other development-related tasks.

2. Environment Setup: Poetry automatically created a virtual environment
for our project and isolated it from the system’s global Python environment.
This ensured that our project’s dependencies were contained and did not
interfere with other Python projects or system-wide packages.

3. Dependency Installation: We used the ‘poetry install‘ command to fetch
and install all the project dependencies specified in the ‘pyproject.toml‘ file.
Poetry resolved the dependencies, downloaded the required packages from
PyPI, and installed them into our project’s virtual environment.

41

42 CHAPTER 6. IMPLEMENTATION

4. Dependency Updates: As we worked on the project, we occasionally
needed to update or add new dependencies. Poetry made this process
straightforward. We used the ‘poetry add‘ command to add new depen-
dencies and the poetry update command to update existing dependencies.
Poetry automatically resolved any conflicts and ensured the compatibility of
the dependencies.

5. Lock File Management: Poetry generated and maintained the poetry.lock
file, which locked the exact versions of all dependencies. This file was com-
mitted to version control, ensuring that all developers and deployment en-
vironments used the same dependency versions. When deploying the ap-
plication, we used the poetry install –no-dev command to install only the
runtime dependencies, excluding any development dependencies.

In addition to these standard use cases, we also utilized Poetry in our GitHub
Continuous Integration (CI) workflow to install dependencies for running tests and
pre-commit checks, which we will discuss more in Section 9.5.1. By incorporating
Poetry into our CI pipeline, we ensured that the correct versions of dependen-
cies were installed and used during the automated testing and quality assurance
processes.

Furthermore, Poetry played a crucial role in managing the installation of Py-
Torch [33] with CUDA [34] on Windows. While PyTorch does not come bundled
with CUDA support on Windows, its Linux counterpart does. To overcome this
limitation, we leveraged a tool called poethepoet (poe) [35] within the Poetry
ecosystem. We added the following configuration to our ‘pyproject.toml‘ file:

1 [tool.poe.tasks]
2 torch -cuda = "pip install torch torchvision torchaudio --force -

reinstall --no-deps --no -cache -dir --extra -index -url https ://
download.pytorch.org/whl/cu117"

Listing 6.1: PyTorch CUDA Installation Configuration

This configuration instructed Poetry to execute the pip install command with
the specified parameters, ensuring the installation of PyTorch with CUDA support
on Windows. We then used the command poetry run poe torch-cuda to install
PyTorch with CUDA via Poetry.

By incorporating these additional aspects into our usage of Poetry, we en-
hanced our development workflow, ensured compatibility with GPU acceleration
on Windows, and streamlined the installation of project dependencies within our
CI environment. Poetry’s flexibility and extensibility made it a valuable tool for
managing our project’s dependencies and ensuring smooth development and de-
ployment processes.

6.1.2 Pre-commit

We integrated pre-commit [16] into our development process as follows:

1. Configuration: We defined a configuration file, ‘.pre-commit-config.yaml‘,
specifying the hooks we wanted to use. This file was committed to the
repository, ensuring that all developers were using the same set of checks.

CHAPTER 6. IMPLEMENTATION 43

2. Installation: Developers installed pre-commit locally by running ‘pre-commit
install‘. This set up the necessary Git hooks to automatically run the checks
before each commit.

3. Automatic Checks: Whenever a developer attempted to commit changes,
pre-commit automatically ran the specified checks on the changed files. If
any checks failed, the commit was blocked and the developer was shown an
error message detailing the issues.

4. Manual Checks: Developers could also run the checks manually at any
time using the ‘pre-commit run‘ command. This was useful for checking
code quality during development, before attempting to commit changes.

5. Updates: We occasionally updated the pre-commit configuration to add,
remove, or adjust checks as the project evolved. Developers could pull the
latest configuration from the repository and update their local setup using
the ‘pre-commit autoupdate‘ command.

Furthermore, we integrated pre-commit into our GitHub CI workflow. This
ensured that the checks were run on every pull request before it could be merged,
providing an additional layer of quality assurance. You can read more about that
in section 9.5.1.

By incorporating pre-commit into our development process and CI pipeline, we
were able to automatically enforce consistent coding standards and catch potential
issues early, improving the overall quality of our codebase and facilitating effective
collaboration among developers.

6.2 Front-end
The Front-end of the application was implemented utilizing the PyQt6 [14] library
as discussed in the Technologies chapter in Section 4.2.2. This library was useful
in order to create a GUI that satisfied the requirements in which we had for the
user interface.

6.2.1 Initialization and Main Function

The main function is the entry point of the application, it creates a custom logger
(Section 9.2) and sets up application settings using our custom settings module,
detailed in subsection 6.2.4.

After this, the main function creates an instance of the QApplication class
and sets up the theme of the application, which is automatic based on the default
theme on the computer. Finally, it creates an instance of the MainWindow class
and shows it.

6.2.2 MainWindow and User Interface

The MainWindow class is responsible for creating the main window of the ap-
plication. The constructor of the class sets the default settings for the window,
such as its title, size, and icon. It also creates the layout for the central Widget

44 CHAPTER 6. IMPLEMENTATION

and adds several sub-Widgets, such as file browsers, options panels, and buttons.
These sub-Widgets are grouped collections of Widgets from the PyQt6 library
that are created within their own classes. The user interface elements also reflect
user-defined settings, ensuring a personalized user experience.

Figure 6.2.1, visualizes the setup of the widgets for the user interface. See
Chapter 7, for a more in depth explanation of widget placement.

Front-end

Input/output directory Layout Widget

Main Window Widget

Checkbox widget &
Label Widget

Preferences

Figure 6.2.1: A visualization of the front-end widget layout.

6.2.3 Processing and Output

A run method of the MainWindow class is called when the "Run" button is clicked.
This method checks whether the input and output folders exist and shows an error
dialog if they don’t. If the folders exist, it creates a DetectionWindow object and
executes it. The DetectionWindow class calls upon the Back-end processes of the
DataManager, ReportManager and VideoProcessor. These processes detect fish
within the video and process the detections into new clipped videos, while the UI
of the DetectionWindow shows the progress of the detection and video processing.

6.2.4 Settings

In order to provide customizable experience to the users and save their preferences,
we designed and implemented a custom settings module in our application. This
module holds variables for settings related to window dimensions, file handling,
advanced parameters, and more. It utilizes QSettings from PyQt6, a built-in
method for storing settings in PyQt applications, to persist these settings to disk,
ensuring that user preferences are remembered across sessions.

CHAPTER 6. IMPLEMENTATION 45

To avoid manually writing code for each setting, we took a dynamic approach
by automatically generating settings based on module-level variables. The mod-
ule’s default values for the settings are provided as module-level variables which
are dynamically added to the settings entries. When a value is set to an entry,
it’s stored using QSettings, allowing it to be recalled even after the application is
restarted. Moreover, the module ensures the integrity of the settings by checking
the data types of the values being set, hence avoiding potential application errors.

The detailed script for our custom settings module is included in Appendix I.

6.3 Back-end

This section details the implementation of the Back-end components. This in-
cludes the three components; data manager, report manager and video processor.
Figure 6.3.1 shows a close up of the back-end from the System Architecture seen
in Figure 5.0.1. It visualizes how functions within and in between the components
interact with each other. The following sections contains further details on each
component’s implementation within the system.

Back-end

Video Processor

ReportManager

write_report()
If: TRUE

check_can_write_report()

__init__()

Saved to output directory
write_csv_file() write_xlsx_file()

write_xml_file()write_pdf_file()

Report writer methods

Saved to output directory

If: bounding box wanted

process_packet()

cut_video()

process_frame_ranges()

RETURNS: annotations

Annotator

annotate()

DataManager

add_video_data()

add_detection_data()

video_check()

detection_check()

create_tables() If: NOT existing

tables_check()

RETURNS: video's metadata

get_metadata()

RETURNS: timestamp of detection

get_timestamp()

__init__()

Called Within DetectionWorker

RETURNS: duration of video get_video_duration()

get_video_data()

get_data()

RETURNS: data from database

Gets data from database

Called Within DetectionWorker

If: NOT existing

If: NOT existing

Called Within DetectionWorker

Figure 6.3.1: A visualization of the flow between components in the Back-end

46 CHAPTER 6. IMPLEMENTATION

6.3.1 Data Manager

One of the data manager responsibilities is to save information about videos and
their corresponding detections in a local database. The database consists of two
tables: the video table and the detection table. The video table contains infor-
mation about the video, such as the title, date saved, duration, and number of
detections. The detection table contains a FK (foreign key) to the video it origi-
nated from, as well as the start and end times of the detection. See Figure 6.3.2
for the entity relation diagram.

Video

PK id (text)

title (text)

date (datetime)

total detections (integer)

videolength (time)

output Videolength (time)

Detection

PK id (autoincrement integer)

FK videoId (text)

startTime (time)

endTime (time)

Figure 6.3.2: The entity relation diagram for the local database consists of
mainly two tables which are connected through the video id.

The data manager script mainly consists of a class called DataManager. The
class utilizes the SQLite library that was introduced within Section 4.2.3, in order
to interact with the local SQL database. As it is initialized it connects to the local
.db file, or creates one if it is not present. The __init__() method ensures to
check if the necessary tables are within the file, if not the are generated through
the use of the .sql file. The class also has the automatic __exit__() method that
ensures that the SQL connection is closed after usage of the class. This makes
sure that the program doesn’t timeout at any point during run time due to too
many connections happening at the same time.

The DataManager class consists of several methods that interacts with the lo-
cal SQL database. The methods add_video_data() and add_detection_data()
appends new data about the videos that are being processed within the tables
of the database. It makes sure to check if the data already exists within the
database first before fully appending the data. In the case of the data already
existing within the add_video_data() method stops the inputting process, while

CHAPTER 6. IMPLEMENTATION 47

the add_detection_data() method will override the existing data with the new
data to ensure that the data is updated. These ’add’ methods utilizes a few help-
ing methods that gathers or formats data before inputting it into the database.
These are methods such as get_metadata(), which gets a video’s metadata, and
get_timestamp, which finds the timestamps for when the detected frame ranges
starts and ends in the original video.

The data from the local database is retrieved through the two method methods
get_data() and get _video_data(). They are mainly utilized by the report
manager to write reports. These methods receive a list of videos, which is the
list of video’s that has been processed during run time, and they recover the data
connected to each of the videos. Each of these methods thus returns a list of data
from each of the tables within the database. Where get_data() returns a list of
data from the detection table, while the get_video_data() returns a list of data
from the video table.

6.3.2 Report Manager

One of the components planned and implemented for the project was the report
manager Back-end component. The report manager generates and saves a report
in a format that is determined by the user based on certain preset options. The
report includes comprehensive data pertaining the processed videos and any as-
sociated detections of fish within. The code used four different libraries; CSV,
xlsxwriter, FPDF, and Minidom. All of these libraries was explained within the
subsection 4.2.4. However, at a certain stage of the development process, two out
of the four methods was discarded. This was grounded in feedback from NINA,
who deemed it unlikely that they would utilize the file formats PDF and XML.

The report manager script is primarily made out of a singular class that handles
the writing of the file. This class is the ReportManager class. The class writes
a new file or override the previous file with the same name within the output
directory. When initiating the class it require an instance of the DataManager
class, the path to the output directory and the file format that has been saved
within the preferences. The DataManager instance is needed in order to utilize
the class’ get_data() and get_video_data() methods, as the data within the
local database is used to write the reports.

Figure 6.3.3: The structure of the CSV report

48 CHAPTER 6. IMPLEMENTATION

The report consists of two main parts; the summary and the list of detections,
see Figure 6.3.3. The summary within the report is a list for every video that was
processed during run time, and shows the video’s filename, video’s date, video
length and the length of the new video created after the process. This can be seen
in Figure 6.3.4. While the list of detections includes every ’frame range’ with fish
found by the model throughout the run time and consists of the data the detection
Id, the filename of the video the detection was found within, the start timestamp
within the video and end timestamp within the video. This is better visualized in
Figure 6.3.5.

Figure 6.3.4: The structure of the first sheet of the XLSX report, which contains
a summary of the videos processed

Figure 6.3.5: The structure of the second sheet of the XLSX report, which
contains the list of detections that where made within the videos processed

In order to utilize the ReportManager’s ability to write report the write_report()
method must be called. This method first checks if it is possible to write a file
within the output directory. This is done by using the helper method
check_can_write_report(), which attempts to open the file to write. In the
scenario in which the opening of the file fails, which usually is due to the file being
open, it returns an exception and logs a warning. Passing the check allows the
write_report() to continue by calling one of the methods corresponding with
the file formats that may be chosen by the user.

There are two methods that may be used to write files. These are the
write_csv_file() and write_xlsx_file(). Both functions utilize the Data-
Manager class’ get_data() and get_video_data() methods in such that the data
can be written into the report. Depending on the format chosen the file written
appears slightly different. The XLSX format allows for multiple sheets within the
workbook thus the report written out consists of two work sheets. One with the

CHAPTER 6. IMPLEMENTATION 49

summary, see Figure 6.3.4, while the second with the detections, see Figure 6.3.5.
On the other hand the CSV format does not allow for multiple sheets and does
therefore contain the full report within a single worksheet, see Figure 6.3.3.The
two methods write_pdf_file() and write_xml_file() still exists within the
script, but are not possible to access by the user.

6.3.3 Video Processor

The video processor module is responsible for cutting and annotating videos. It
contains several functions and classes that work together to achieve this task. Here
is a more detailed overview of the main components of the video processor module:

6.3.3.1 Annotator Class

The Annotator class is designed to annotate video frames with bounding boxes and
labels for detected objects. It takes a frame, a list of detections, and some optional
parameters, such as color, line width, and font size, and returns an annotated
frame. The Annotator class has been adapted from the Ultralytics [22] YOLOv8
implementation with some modifications to better suit our application.

In the Ultralytics version (Listing 6.2), the Annotator is initialized once for
every single frame, which is computationally expensive due to the loading of the
font (even with caching) and other resources. In our implementation (Listing 6.3),
we improved the performance by initializing the Annotator only once for the entire
video, resulting in significant performance improvements.

To quantify these improvements, we benchmarked the two implementations on
a test video that resulted in an output video with 6384 frames, or approximately 3
minutes and 12 seconds. The Ultralytics implementation took an average of 468.65
seconds over three runs, whereas our implementation required an average of 396.57
seconds over the same number of runs. This corresponds to a performance increase
of over 18% with our modified approach. The tests benchmarked the time it took
for the cut_video() function (detailed in subsection 6.3.3.4) to run using the two
different implementations.

Furthermore, we made some modifications to the original implementation to
enhance its functionality and flexibility. We removed unused features from the
Ultralytics version, streamlining the code for better efficiency. Additionally, we
opted to use the Python Imaging Library (PIL) instead of OpenCV for image
manipulation and drawing. PIL provides more flexibility and produces visually
appealing results.

Listing 6.2 demonstrates the annotation implementation in the Ultralytics ver-
sion, where the Annotator is initialized for each frame. In contrast, Listing 6.3
shows our implementation, where the Annotator is initialized once for the en-
tire video. Note: These examples are not representative of real code found in the
project.

1 def example_annotation_ultralytics(frames , detections):
2

3 for frame , detections in zip(frames , detections):
4

5 # expensive operation
6 annotator = UltralyticsAnnotator(frame)

50 CHAPTER 6. IMPLEMENTATION

7

8 for detection in detections:
9 annotator.box_label(detection.box ...)

10 frame = annotator.result ()
11

12 ...

Listing 6.2: Example Usage of the Ultralytics Annotation Implementation

1 def example_annotation_ours(frames , detections):
2

3 # expensive operation
4 annotator = OurAnnotator(video_width , video_height)
5

6 for frame , detections in zip(frames , detections):
7 for detection in detections:
8 annotator.annotate(detection.box ...)
9 frame = annotator.result ()

10

11 ...

Listing 6.3: Example Usage of our Annotator Implementation

6.3.3.2 Codec and CRF

The video processor module uses the H.264 codec for video encoding. The H.264
codec is widely supported and offers a good balance between compression efficiency
and video quality. The Constant Rate Factor (CRF) parameter is a quality setting
used by the H.264 codec. Lower CRF values result in higher quality but larger
file sizes, while higher CRF values produce smaller file sizes at the cost of video
quality.

The video processor module allows the user to adjust the CRF value to control
the quality and file size of the output video. By exposing this parameter, users can
fine-tune the trade-off between video quality and file size based on their specific
requirements. In the context of NINA, this is particularly helpful when dealing
with large-scale video analysis, where optimizing storage space is crucial without
sacrificing too much video quality. It can also depend on the type of video, clear
videos without much movement will naturally produce less compression artifacts,
so a higher CRF might be appropriate to save on storage space.

6.3.3.3 First Implementation: ffmpeg-python Library

The first implementation of the video processor (see Appendix I) used the FFm-
peg-python [20] library, a Python wrapper around the popular FFmpeg CLI tool.
The library simplifies the process of constructing FFmpeg command lines by pro-
viding a high-level API for working with video and audio streams. The initial
implementation involved generating a command for the FFmpeg CLI using the
FFmpeg-Python [20] library.

However, we encountered issues with this approach due to the slow compilation
of the command when processing videos with a large number of detections. The
Directed Acyclic Graph (DAG), which the library uses to represent the video
processing pipeline, could not finish sorting in a reasonable amount of time, or

CHAPTER 6. IMPLEMENTATION 51

would at times just crash without raising any exceptions. As a result, we decided
to switch to the PyAV library, which provides a more efficient, low-level interface to
the FFmpeg libraries, resulting in faster processing times and better performance
for videos with many detections.

6.3.3.4 Implementation Algorithm

The main function of the module, cut_video(), ties everything together. Here
are the steps performed by the function:

1. Open the input video file using the PyAV library.

2. Set up the output video file with the same dimensions and format as the
input.

3. Create an instance of the Annotator class for annotating frames.

4. For each frame range:

(a) Seek the input video to the starting frame of the range.

(b) Process packets in the range using the process_packet() function.

i. Decode (Decoding) the packet into a frame.
ii. Annotate the frame if necessary using the Annotator class.
iii. Encode (Encoding) and mux (Muxing) the frame into the output

video stream.
iv. Update the progress bar and notify the progress of the video pro-

cessing.

5. Close both the input and output video files.

The implementation details for the video processor can be found in Appendix
I.

6.3.4 The Video Processing Pipeline

Our application’s pipeline is a carefully orchestrated process involving a series of
components that work collaboratively. The pipeline starts with an input video,
which is analyzed frame by frame using the YOLOv8 model. The model is used
to predict the presence of fish in each frame, outputting a list of frames where fish
are detected. We will discuss this more in-depth in Chapter 8.

6.3.4.1 Turning Frames Into Ranges

One of the crucial steps in our pipeline is transforming the list of detected frames
into frame ranges. This process is implemented in the detected_frames_to_ranges()
function. It helps to compensate for potential inaccuracies in the YOLOv8 model’s
predictions. There could be instances where fish are present in consecutive frames,
but the model fails to detect them in a few. To handle such cases, we introduce
a concept of a frame_buffer. This frame_buffer allows for a certain number of
consecutive undetected frames to still be considered part of the ongoing range, as

52 CHAPTER 6. IMPLEMENTATION

long as the number of these ’dead’ frames does not exceed the defined threshold.
The implementation details of this function can be found in the code provided in
Appendix I.

6.3.4.2 Incorporating Buffer Time and Managing Overlapping Clips

To enhance the viewing experience and provide additional context in our output
videos, we incorporated a feature to add buffer time before and after each detected
range. This feature, requested by NINA, allows the viewers to see a bit of the scene
before a fish enters and after it exits the frame.

However, adding buffer time resulted in overlapping clips. To address this,
we developed the add_buffer_to_ranges() function. This function works in two
steps: first, it extends each range by adding the defined buffer time to the start
and end. Then, it merges any ranges that overlap as a result of this extension.
The detailed implementation of this function is available in Appendix I.

6.3.5 Time Estimation in Video Processing

An essential feature in the video processing pipeline is the estimation of the re-
maining time until the completion of the task. This feature, requested by NINA,
provides the user with a clear expectation of how long the processing task will
take, which is particularly useful when dealing with a large number of videos.

The function responsible for this calculation is the update_time_prediction()
function (see Appendix I). It is designed to provide a dynamic estimation of the
remaining processing time based on several factors.

The function is invoked during the processing of each video, where it computes
the remaining time based on three primary parameters:

• The progress of the current video: Calculated as the percentage of completed
frames out of the total frames.

• The elapsed time since the start of the video processing task.

• The total number of videos left to be processed.

The function operates by first determining the total elapsed time since the
start of the video processing task, and the elapsed time for the current video
being processed. The progress of the current video processing is computed as a
ratio and used to estimate the time remaining for the completion of the current
video.

If more than one video is being processed, the function calculates the average
time spent per video based on the videos processed so far. This average is then
used to estimate the time left for the remaining videos. If the current video is the
first one being processed, the total time estimated for the current video is used as
a benchmark for the remaining videos.

The total time left is the sum of the time left for the current video and the
estimated time for the remaining videos. The result of this calculation is then
converted into a human-readable format and displayed to the user in the upper
left corner of the worker window as visualized in figure 7.3.3.

CHAPTER 6. IMPLEMENTATION 53

This feature improves the overall usability of the application by giving users a
clearer expectation of the processing duration, allowing for better time manage-
ment and planning.

6.4 AI Model
To implement the YOLOv8 model, we use the ultralytics library [22], which al-
lowed us to import the model, initialise it with appropriate weights and use the
predict() function to obtain prediction results for a given image. However, the
initial performance of this implementation was not satisfactory, as it did not fully
utilise the GPU.

1 from ultralytics import YOLO
2

3 from tools.timer import Timer
4

5 model = YOLO("yolov8s.pt")
6 with Timer("Ultralytics predict"):
7 results = model.predict(
8 source=r"myggbukta.mp4", verbose=False
9)

Listing 6.4: Ultralytics Prediction Benchmark

Ultralytics predict took 46.28121638298035 seconds

The implementation details for the Timer class can be found in Appendix I.
The test video used for this benchmark was a 2-minute video, and the bench-

mark was run on the hardware detailed in Table 8.2.1.
To improve performance and better utilise the GPU, we developed a custom

implementation using a batch processing approach:
1 import threading
2 from pathlib import Path
3

4 from app.detection import detection
5 from app.detection.batch_yolov8 import BatchYolov8
6 from tools.timer import Timer
7

8 model = BatchYolov8(Path(r"yolov8s.pt"))
9

10 with Timer("Our predict"):
11 frames_with_fish , results = detection.process_video(
12 model=model ,
13 video_path=Path(r"myggbuktav2.mp4"),
14 batch_size =32,
15 max_batches_to_queue =4,
16 output_path=None ,
17 stop_event=threading.Event(),
18)

Listing 6.5: Our Prediction Benchmark

Our predict took 10.909997463226318 seconds

54 CHAPTER 6. IMPLEMENTATION

The benchmark results clearly demonstrate the significant performance im-
provements achieved with our custom implementation. The initial implementation
using the ultralytics library took 46.28 seconds to process a 2-minute video, which
was not optimal considering our hardware specifications detailed in Table 8.2.1.
However, through our custom implementation, leveraging a batch processing ap-
proach, we were able to reduce the processing time to just 10.91 seconds. This
substantial improvement showcases the efficiency gains obtained by optimizing the
utilization of the GPU. It highlights the importance of tailoring the implementa-
tion to our specific needs and demonstrates our ability to enhance the performance
of the AI model for real-time processing videos. Note: These examples are not
representative of real code found in the project.

6.4.1 Image Loader

The Image Loader is designed to efficiently load and preprocess video frames for
object detection. One of the primary issues with the Ultralytics implementation is
the inefficiency of their data loader, which processes single images in a sequential
manner, leading to waiting on the GPU between frame transfers. To overcome
these limitations, our solution uses a multithreaded approach with one frame load-
ing thread and multiple worker threads to process the loaded images.

• Frame Loading Thread: This thread continuously reads the video frames
and stores them in an array with a size of batch_size. Once the array is
filled, it adds the batch to an unprocessed_batch_queue.

• Worker Threads: Worker threads retrieve unprocessed batches from the
unprocessed_batch_queue and perform Letterboxing on each image in the
batch. After processing all images in the batch, the worker thread places
the processed batch into a processed_batch_queue.

• Batch Retrieval: A get_batch() function is available to request a pro-
cessed batch from the processed_batch_queue, returning either the batch
data or None if no batch is available.

This multithreaded solution allows a detection worker thread to fetch a ready
batch, transfer it to the GPU, and wait for data from the GPU while concurrently
loading and processing new images from the video in the background. It also
reduces the number of transfers to and from the GPU due to batching the images.
Figure 6.4.1 illustrates the Image Loader system.

The Image Loader employs the prepare_images() method from the BatchY-
olov8 class (detailed in subsection 6.4.2) to preprocess the images by Letterboxing
them before they are sent to the YOLOv8 model for inference. By integrating the
Image Loader with the BatchYolov8 class, the system achieves a streamlined and
efficient workflow for video frame processing and object detection.

CHAPTER 6. IMPLEMENTATION 55

Video Frame Loading
Thread

Unprocessed Batch
Queue

Worker Thread #1 Worker Thread #2 Worker Thread #3

Processed Batch
Queue

Detection Worker
Thread

GPU

Figure 6.4.1: Illustration of the image loader system with frame loading thread,
worker threads, and batch queues.

6.4.2 BatchYolov8: A Custom Object Detection Model

BatchYolov8 is a custom class designed for running inference on video streams
using the YOLOv8 object detection model. It is tailored to suit the specific re-
quirements of the project and offers several improvements over the default imple-
mentation provided by Ultralytics. In this subsection, we will discuss the struc-
ture, features, and benefits of the custom BatchYolov8 class. You can find the
implementation details in Appendix I.

• Initialization: The constructor of the BatchYolov8 class accepts several
parameters, including the path to the model weights, device to run on (CPU
or GPU), image size, confidence and IoU thresholds, and optional parame-
ters for data augmentation, agnostic NMS, classes, and colors. During ini-
tialization, the model is loaded, device selected, and image size checked for
compatibility. The class also supports half-precision inference on compatible
hardware for improved performance.

• Preparing Images: The prepare_images() method accepts a list of im-
ages or a single NumPy[36] array as input. It reshapes and pads the images

56 CHAPTER 6. IMPLEMENTATION

to the required size, normalizes them, and converts them into a torch tensor.
The prepared images are then sent to the YOLOv8 model for inference. This
method is utilized by the image loader to offload the work from the detection
worker thread, to the image loader worker threads mentioned in 6.4.1.

• Prediction: The predict_batch() method runs inference on a batch of
images and applies non-maximum suppression (NMS) to the model’s out-
put. It then processes the results and returns a list of predictions, including
bounding box coordinates, class names, confidence scores, and colors for vi-
sualization. Users can also specify a maximum number of objects to return
per image for each class. This feature helps improve performance both dur-
ing inference and when outputting a video with annotations, as too many
annotations may slow down the process and obscure the fish in the output
video.

• Efficient Image Reshaping: The reshape_copy_img() method uses the
Letterboxing technique to efficiently reshape and copy input images while
preserving their aspect ratio. This ensures minimal distortion during infer-
ence and improves the model’s detection accuracy.

• Batch Image Padding: The pad_batch_of_images() method pads a
batch of images to the same size, which is necessary for running inference on
batches. It fills the padded area with a constant rgb value (114, 114, 114)
as a neutral grey color to minimize the impact on the model’s predictions.

• Post-Processing: The min_max_list() and max_objects_filter() meth-
ods process the raw detection output to create a list of bounding boxes with
class names, confidence scores, and colors. They also enable filtering the
results based on the maximum number of objects per class.

The main benefit of the BatchYolov8 class is that it enables batch processing of
images, which utilizes the GPU more and provides more control over the inference
process. The implementation is based on a pull request from "Ownmarc" on
GitHub [37].

Compared to the default Ultralytics implementation, the custom BatchYolov8
class offers the following benefits:

• Batching of images.

• Streamlined initialization, prediction, and post-processing methods tailored
for this specific project by exposing functionality to the image loader.

• Graceful stop/shutdown between to accommodate the stop controls refer-
enced in Section 7.1

CHAPTER

SEVEN

GRAPHICAL USER INTERFACE

This chapter provides an in-depth discussion of the decisions made with regards
to GUI elements, usability, visual feedback, and aesthetics for the computer ap-
plication developed as part of this research project.

7.1 Prototyping

During the initial stages of the Bachelor’s thesis development process, the team
commenced work on the design of the GUI prototype. The GUI prototype was
developed through the utilization of Figma [38], which is a digital tool used for
interface design. See section 4.1.4 in Technologies for the reasoning in choosing
Figma. The prototype was refined to meet the desired specifications and expecta-
tions of the team. Thereafter, it was presented to the client, NINA, for feedback.

In the majority of responses received, participants praised the GUI for its
intuitiveness and aesthetically pleasing design. Nevertheless, there were several
aspects the respondents recommended for improvement. These included the in-
corporation of more distinct pause and stop controls during the operation of the
software, the addition of advanced customization options for the video output and
report generation, and minor enhancements to the visual appearance. Subsequent
to the presentation of the initial prototype, the team diligently integrated the
client’s feedback, embarking on a series of iterative refinements to optimize the
GUI and ensure it adhered to the requisite standards. A visual representation of
the GUI is exhibited in Figure 7.1.1.

57

58 CHAPTER 7. GRAPHICAL USER INTERFACE

Browse files

Browse files

Folder to analyse

Folder to store new files

Keep original

Buffer time before Buffer time after

Run

Advanced options

Figure 7.1.1: Prototype of the GUI.

7.2 Ergonomics

In developing our software, the primary objective was to create an interface that
was both easily accessible and required minimal time for users to become proficient
in its operation. To accomplish this, we employed a simplistic aesthetic while
adhering to a set of design principles articulated by Don Norman in his influential
book, "The Design of Everyday Things" [39]. Key principles that guided the GUI
design included visibility, affordance, mapping, feedback, consistency, constraints,
and flexibility.

Initially, our focus was on ensuring optimal visibility, which aligns with the goal
of promoting ease of use and rapid user comprehension. We adopted the F-pattern
layout, a visual scanning pattern identified by the Nielsen Norman Group in 2006
[40], wherein users typically scan the screen starting from the top-left corner and
move across the top of the page, then down the left-hand side. This layout fosters
a natural and intuitive navigation experience.

Next, we emphasized affordance in the design of the GUI elements, ensuring
that each component clearly conveyed its intended function. For example, buttons
were designed to be prominent, with the "run" button featuring a green color to
signify the start of a process, while drop-down menus included arrows and adjacent
text.

CHAPTER 7. GRAPHICAL USER INTERFACE 59

In accordance with the F-pattern layout, we arranged the GUI elements logi-
cally to reflect the order of task execution and the relationship between actions.
Advanced options were grouped under a designated "Advanced Options" cate-
gory, indicating that these settings were not essential and were intended for more
sophisticated customization.

Feedback was another crucial consideration in our GUI design. We imple-
mented features such as Drop-down menus that displayed the selected option when
clicked, check-boxes that visually changed when activated, and a clear progress
bar with supplementary information during process execution. Customizing the
progress bar, as opposed to utilizing a standard operating system progress bar,
facilitated a better understanding of the process’s progression and the number
of detections made in the videos. Tool-tips were also incorporated to provide
additional information when users hovered over individual elements.

To further streamline the learning process, we ensured consistency across all
GUI elements, both within the software itself and in relation to commonly used
software programs. This consistency allowed users to transfer knowledge and skills
from one context to another, reducing the learning curve.

We introduced constraints by placing several options under the "Advanced
Options" category, simplifying the overall interface by removing non-essential op-
tions. Additional constraints included fixed Drop-down menu options and a Spin-
box prevention mechanism that allowed users to enter a numeric value between
0-100% for the prediction threshold.

Lastly, we addressed flexibility by providing two primary methods for inter-
acting with the software: mouse and keyboard navigation or keyboard-only nav-
igation. Users could click buttons and select check-boxes with a mouse, input
file paths directly, or browse files by clicking through folders on their computer.
Alternatively, they could navigate using the keyboard’s tab, space, and arrow keys.

By incorporating these design principles from Don Norman’s work, we suc-
cessfully developed a software program characterized by a simple, intuitive, and
user-friendly interface.

7.3 GUI-Elements
In order to efficiently allocate resources and streamline the design process for the
GUI elements, our team opted to utilize the PyQt6 [14] framework. Employing
PyQt6 facilitated the creation of a contemporary aesthetic with minimal exertion,
while simultaneously enabling automatic adaptation of the GUI to the OS of the
target device. This strategic decision allowed us to focus on other aspects of
the software development process, ultimately contributing to a more effective and
user-friendly application.

7.3.1 File Manager

During the initial phase of development, the file explorer employed was the in-
herent file explorer window associated with the OS. However, following user tests
conducted with our clients, feedback revealed an inability to visualize the files
contained within directories, rendering the directories ostensibly vacant. This
deficiency generated uncertainty regarding the accuracy of the selected directory.

60 CHAPTER 7. GRAPHICAL USER INTERFACE

In response to this feedback, modifications were implemented in subsequent
iterations. The final version incorporated a platform-independent file explorer,
ensuring uniform appearance across various operating systems and displaying both
files and directories within each folder. A depiction of the finalized file explorer is
provided in Figure 7.3.1.

Figure 7.3.1: How the window where you chooses a directory looks when select-
ing either input or output directory.

7.3.2 Tool Tips

In order to improve the User Experience in our GUI, we implemented a tool tip
feature to provide users with more detailed information on the available options.
This feature was added due to the wide set of different options available for the
user, some of which were not as self-explanatory as others. By providing tool
tips, we aimed to reduce the likelihood of user errors and to inform the user on
what changing the values will result in. As a result, we were able to include more
advanced options such as Batch Size and Prediction threshold. An example of a
tool tip added in our program can be seen in Figure 7.3.2.

Figure 7.3.2: Tool Tip Example.

CHAPTER 7. GRAPHICAL USER INTERFACE 61

7.3.3 Progress Bar and Feedback Window

Given the potential for the application to process extensive data sets, encompass-
ing hundreds of videos or more, it is of paramount importance to provide users
with sufficient information throughout the procedure. Consequently, a custom
progress and feedback window was developed to convey pertinent information in
a manner tailored to user requirements. This approach diverged from reliance on
preexisting OS windows, enabling the delivery of all necessary information to users
as the program operates.

The customized window offers an array of crucial details, including the num-
ber of detected frames and frame-ranges of fish, the video currently undergoing
processing, the number of remaining videos, an estimated time to completion, and
additional pertinent data. Furnishing this information equips end users with valu-
able insights into the ongoing process, enhancing the ease of monitoring progress
and obviating the need for excessive waiting periods. A visual representation of
the progress bar and feedback window is exhibited in Figure 7.3.3.

(a) While performing detections. (b) When all detections and cutting of
video is finished.

Figure 7.3.3: This Figure showcases the appearance of the progress bar and
feedback window in the final iteration of our GUI. The design effectively presents
pertinent information to the user during the processing phase, offering essential
details to enhance their waiting experience. This includes an estimated time re-
maining, an indication of the currently processed video, the number of videos
remaining, and comprehensive information regarding the detected objects within
each video. Notably, once the processing is complete, the loading bar seamlessly
transitions into an "Open Output Directory" button, providing convenient access
to the newly generated files.

7.4 GUI-Evolution
Throughout the course of the bachelor project, the GUI has undergone significant
evolution and improvement. Notable changes include the incorporation of intuitive
and modern widgets, automatic switching between Light mode and Dark mode
based on the OS settings, and a refinement of the overall appearance. Additionally,
we responded to our client’s request for more advanced options, including the

62 CHAPTER 7. GRAPHICAL USER INTERFACE

provision of report formats such as XLSX and CSV, the inclusion of detection
boxes in the video, the option to modify Batch Size, and a Prediction threshold
toggle. Moreover, we extensively revamped the loading window, enhancing it
from a rudimentary Windows loading bar to a more comprehensive window that
furnishes users with more information and program-specific options. Detailed
comparative visualizations of these transformations are presented in Figures 7.1.1
and 7.4.1.

(a) Without Advanced Options Toggled.

(b) With Advanced Options Toggled.

Figure 7.4.1: This is the final version of how the GUI turned out. Here it shows
the program when you open it up and after clicking the text to extend it to include
the Advanced Options.

CHAPTER

EIGHT

OBJECT-DETECTION

This chapter provides a comprehensive exploration of the implementation and op-
timization of the YOLOv8 object detection model in our video processing pipeline.
We delve into the practicalities of assembling and processing a robust dataset, de-
tailing the techniques used to gather and curate data suitable for training our
model. The annotation process, which forms a crucial part of generating our
training dataset, is discussed to provide insights into the intricacies involved in
preparing high-quality ground truth data.

Furthermore, we unpack the training process, discussing the decisions made
regarding model configuration training. A particular focus is given to the trade-
offs we navigated regarding computational resources, training time, and the desired
model performance.

In addition to outlining our methodology, we share our approach to evaluating
the performance of our trained model, illustrating the metrics used for this pur-
pose. This section includes a discussion on the limitations we encountered with
respect to the amount of available ground truth data for validation.

Throughout this chapter, we also address the challenges and limitations we
encountered during the implementation of our video processing pipeline. These
include issues related to hardware and software constraints, data transfer chal-
lenges, as well as challenges posed by external interruptions during the training
process.

By examining the various stages of our work with the YOLOv8 object detection
algorithm, this chapter provides a holistic view of its practical application in a
real-world scenario.

8.1 Dataset Creation and Utilization
In order to train our YOLOv8 model effectively, we required a substantial and
diverse dataset. The process of building such a dataset involved both utilizing
pre-existing data and generating new annotated data. A broad dataset ensures
a more generalized model that can better handle real-world scenarios. It also
allowed us to consider multiple classes of aquatic organisms, including fish and
amphibians.

The final dataset used for training the model is a combination of data obtained
from a previous group’s work [41], illustrated in Figure 8.1.2, and data that we

63

64 CHAPTER 8. OBJECT-DETECTION

personally collected and annotated. ∼ 66% of the dataset was sourced from the
prior group, who focused on identifying fish species. We managed to procure their
dataset through email. The remainder of the dataset was created using videos that
we annotated using CVAT. The distribution of annotations in the final dataset,
which consists of 128,954 images, is illustrated in Figure 8.1.1.

Table 8.1.1: Combined Annotation Distribution

Name # Annotations Distribution

Gjedde 47,353 0.23
Gullbust 1,884 0.01
Rumpetroll 14,926 0.07
Stingsild 360 0.00
Ørekyt 45,809 0.22
Abbor 33,781 0.16
Brasme 285 0.00
Mort 41,282 0.20
Vederbuk 18,980 0.09
Frosk 120 0.00
Annen fisk 1,500 0.01

Total 206,280 -

Table 8.1.2: Annotation Distribution from Previous Group

Name # Annotations Distribution

Gjedde 46,173 0.34
Gullbust 1,884 0.01
Rumpetroll 10,335 0.08
Stingsild 360 0.00
Ørekyt 34,873 0.26
Abbor 15,713 0.12
Brasme 285 0.00
Mort 7,827 0.06
Vederbuk 18,980 0.14
Frosk 0 0.00
Annen fisk 0 0.00

Total 136,430 -

Note: The label "Annen fisk" represents fish that could not be identified during
the annotation process. This label was used to group such instances in the dataset.

8.1.1 Gathering the Dataset

The dataset compilation process relied on two primary sources: the previously
obtained group’s dataset and our personally curated dataset. The dataset from
the previous group was a YOLO-formatted dataset containing train.txt, val.txt,

CHAPTER 8. OBJECT-DETECTION 65

images, and annotations. Additionally, we obtained two disks from NINA, which
contained video data. The first disk held 41.2GB of video data from 56 videos,
while the second disk comprised 3.47TB of video data from 1331 videos.

8.1.1.1 Identifying Annotated Videos Script

The challenge with incorporating the previous group’s dataset was that they had
already annotated a substantial portion of the same video data. To avoid dupli-
cating annotation work and wasting time, it was crucial for us to determine which
videos had already been annotated by the previous group. To resolve this issue,
we developed a script to identify what videos had already been annotated.

The script performed the following tasks:

1. Extracts images from each video in the dataset using the
extract_images_from_video() function. This function utilizes OpenCV
to read frames from the video and saves them as images on the disk.

2. Computes a perceptual hash (phash) using the phash() function for each
extracted image. This hash function provides a unique representation of the
image content, allowing us to compare images for similarity.

3. Loads the hashes of the images from the previous group’s dataset using the
load_hashes() function. This function searches for images in the previous
group’s dataset and computes their perceptual hashes. The hashes are then
saved in a cache file for faster loading in future runs.

4. Compares the perceptual hashes of images from the videos to those from the
previous group’s dataset. If a match is found, the script determines that the
video had already been annotated by the previous group.

5. Writes the names and paths of the annotated videos in a text file for easy
reference.

6. Maintains a cache of processed videos to avoid reprocessing the same videos
in future runs.

We used this script to find a substantial amount of the videos that had been
annotated by the previous group. While we don’t have precise data to confirm how
many of the annotated videos we found, it significantly reduced the time and effort
required for this task, allowing us to focus on annotating the remaining videos.
It’s worth noting that the script’s results were manually reviewed afterward to
ensure accuracy in regard to false positives. We kept track of all the annotated
videos in a Google Sheet visualised in Figure 8.1.1.

The detailed implementation for this script can be found in the Appendix at
I.

66 CHAPTER 8. OBJECT-DETECTION

Annotation statistics
Time Videos tagged Annotated videos Target amount Progress
Day 14 11 20 55%
Evening 3 3 20 15%

Visuals Videos tagged Annotated Videos Target amount Progress
Murky 6 4 20 20%
Clear 10 9 20 45%

Locations Videos tagged Annotated Videos Target amount Progress
Myggbukta 10 7 10 70%
Høyregga 6 6 10 60%
Fish ladder 0 0 10 0%

Video Specifics
Video title Folder-name Location Visuals Time Annotated
File1-[2020-05-26_09-26-43]-047 myggbukta 2020 mai/ 27.05.2020 - 28.05.2020 Myggbukta Murky Day
File1-[2020-05-26_09-26-43]-050 myggbukta 2020 mai/ 27.05.2020 - 28.05.2020 Myggbukta Murky Day
Myggbukta2022-[2022-10-11_06-28-47]-017 Myggbukta 2022 Myggbukta Murky Day
Myggbukta2022-[2022-05-20_10-36-34]-259 Myggbukta 2022 Myggbukta Murky Day
Myggbukta2022-[2022-05-20_10-36-34]-260 Myggbukta 2022 Myggbukta Murky Day
Myggbukta2022-[2022-10-11_06-28-47]-017 Myggbukta 2022 Myggbukta Murky Day
File1-[2017-08-18_11-46-59]-000 Høyregga Clear Day
File1-[2017-08-18_11-46-59]-001 Høyregga Clear Day
File1-[2017-08-18_11-46-59]-002 Høyregga Clear Day
File1-[2018-06-21_11-49-09]-069 Høyregga Clear Evening
File1-[2018-06-21_11-49-09]-070 Høyregga Clear Evening
File1-[2018-06-21_11-49-09]-099 Høyregga Clear Day
MYGGBUKTA2022-[2022-05-20_10-36-34]-110 Myggbukta 2022 Myggbukta Clear Day
MYGGBUKTA2022-[2022-05-20_10-36-34]-111 Myggbukta 2022 Myggbukta Clear Day
MYGGBUKTA2022-[2022-05-20_10-36-34]-112 Myggbukta 2022 Myggbukta Clear Day
MYGGBUKTA2022-[2022-08-13_05-29-48]-025 Myggbukta 2022 Myggbukta Clear Day
MYGGBUKTA2022-[2022-06-16_15-41-38]-300 Myggbukta 2022 Myggbukta Clear Evening

Figure 8.1.1: Google Sheet for Tracking Annotated Videos

8.1.2 Annotation Rules

To maintain consistency and accuracy in our dataset, we established a set of
annotation rules to be followed during the annotation process. These rules were
similar to the ones followed by the previous group, as described in their thesis [41].
The primary rules we adhered to were as follows:

• A fish should be annotated if at least 50% of its body was visible within the
frame. This rule helped to ensure that we only annotated fish with enough
visible features for the model to learn from.

• We would only annotate fish that were clearly identifiable within a single
frame. Since the algorithm did not have access to temporal data or context,
we refrained from annotating fish that could only be recognized by examining
preceding or following frames where they were more visible. By annotating
only the fish that are clearly identifiable within a single frame, we ensure that
the model learns to detect fish based on their distinct features in isolation,
promoting better generalization and reducing the likelihood of false positives.

• If we started annotating a video, we were required to complete the entire
video. If it was not possible to finish annotating the entire video, we needed
to cut the video up to the last annotated frame and re-upload it to CVAT
with the existing annotations. This was necessary because the dataset gener-
ation script (subsection 8.1.3) would otherwise include un-annotated frames
as background images when that feature was still in use.

CHAPTER 8. OBJECT-DETECTION 67

These rules were established to ensure consistency with the annotations pro-
vided by the previous group, as ∼ 66% of the dataset was provided by them. By
following similar annotation rules, we aimed to maintain consistency and compat-
ibility between the two halves of the dataset.

8.1.3 Dataset Generation Script

To facilitate the creation and management of our dataset, we developed a custom
Python script that parsed the "CVAT for video 1.1" XML format annotations and
generated a YOLO-formatted dataset. This script was designed to address issues
we encountered when using Datumaro [42] for merging datasets, such as duplicate
entries and image name conflicts.

To create the dataset, we first manually exported each annotated video from
CVAT using the "CVAT for video 1.1" format. This process produced a ZIP file
for each video, which we then placed together in a folder. Our custom script
subsequently performed the following tasks on the exported files:

1. Extracted and parsed the CVAT XML annotation file from each ZIP file,
corresponding to an annotated video.

2. Fetched the source video name from the annotation file and located the video
on the two disks obtained from NINA.

3. Extracted the annotated frames from the source video and saved them to
disk, organizing them into separate folders for each video to ensure unique
paths and easy navigation.

4. Generated the annotation .txt files for each image, following the YOLO
dataset format specifications [43].

5. Automatically generated background frames using the
determine_background_frames() function for initial testing, aiming for a
10% background frame ratio to avoid false positives. Later, we manually
gathered background frames from various videos.

6. Generated train.txt and val.txt files based on the training split, containing
a list of paths to images in the dataset.

7. Created a YAML file with paths to train.txt, val.txt, the number of classes
(nc), and the names of the objects/labels.

The script also facilitated the merging of additional datasets. When a new
dataset containing images and annotations was added to the output dataset folder,
running the split_train_val() function again would include those images in the
dataset.

If CVAT had been able to export frames with annotation data directly, we
would not need to use the script to search for and manually extract the matching
frames. We could have simply executed the split_train_val() function after
placing the exported dataset into the output dataset folder.

The detailed implementation of the dataset generation script can be seen in
Appendix I.

68 CHAPTER 8. OBJECT-DETECTION

8.1.4 Distribution of Annotations per Class Script

To maintain a balanced dataset and prevent model bias towards overrepresented
fish species, we created a Python script to calculate the distribution of annotations
per class in our dataset. This script provided us with insights into the annota-
tion count for each fish species, helping us identify underrepresented classes that
required additional images. The script performed the following tasks:

1. Loaded the class names from the obj.names file using the load_names()
function. This function read the file and returned a list of class names.

2. Counted the number of annotations for each class using the
get_annotation_distribution() function. This function iterated through
the YOLO-formatted dataset’s subdirectories, locating and opening each
annotation .txt file. It then read the class labels from the files and counted
the occurrences of each class label in the dataset.

3. Generated a list of tuples containing class names and their respective annota-
tion counts, obtained from the get_annotation_distribution() function.

4. Exported the annotation distribution data to a CSV file using the
write_annotation_distribution_to_csv() function. This function wrote
the class names and their corresponding annotation counts to the CSV file,
which we then added to our Google Sheet for easy tracking and updating.
This can be visualized in Figure 8.1.2.

Name Num annotations
Gjedde 47391
Gullbust 1808
Rumpetroll 9892
Stingsild 360
Ørekyt 34786
Abbor 20194
Brasme 285
Mort 40562
Vederbuk 19814
Frosk 120
Annen fisk 1500
Total 176712

Figure 8.1.2: Table with class names and number of annotations and a corre-
sponding graph showing the distribution of annotations per class

By using this script, we could quickly identify species with fewer annotations
and seek to improve the balance of the dataset. Although this didn’t result in a
perfectly balanced dataset, the steps we took included searching for more images
of underrepresented species from the dataset and prioritizing the annotation of
videos containing those species. This process helped us to incrementally enhance
the representation of various fish species in our dataset. The script also enabled

CHAPTER 8. OBJECT-DETECTION 69

us to monitor the progress of our annotation work and promote a better, though
not perfectly balanced, dataset for training the YOLOv8 model.

The detailed implementation for the script can be found at Appendix I.

8.2 Model Training and Optimization

This section delves into the intricacies of training our object detection model and
optimizing its performance. We discuss the training setup, dataset splits, class
definitions, and the rationale behind our training choices. Additionally, we explore
the adjustments made to hyperparameters and data augmentations to fine-tune
the model for underwater fish detection. The section also provides insights into the
resource considerations involved in deep learning model training and highlights the
evaluation metrics employed to assess the model’s performance. With explanations
and figures illustrating the training results, this section provides a comprehensive
overview of our approach to training and optimizing the object detection model.

8.2.1 Training Setup

To facilitate an efficient workflow, the YOLOv8 model was trained using two dis-
tinct computer systems. The personal computer, boasting superior GPU capabil-
ities and more VRAM, was employed for part of the training and experimentation
tasks. A comprehensive outline of this computer’s hardware specifications can
be found in Table 8.2.1. Although the school-allocated computer was equipped
with dual GPUs, PyTorch’s limitations with distributed training on Windows con-
fined us to utilizing only one of them. A detailed overview of the school-allocated
machine’s specifications is presented in Table 8.2.2.

The two systems’ combined computational resources, along with their par-
allel experimentation and hyperparameter evaluation capabilities, facilitated a
rapid optimization of the model. This approach effectively curtailed the over-
all model training time, despite the hardware and software limitations inherent to
the school’s computer.

A consistent Python environment was maintained on both computers during
training. This environment, defined in the ‘pyproject.toml‘ file at the root of
the project, was based on Python 3.10 and PyTorch version 1.13.1. To ensure
compatibility, all the necessary libraries and tools for training were installed on
each machine. This setup, despite its advantages, was not without challenges and
limitations, which are elaborated on in Section 8.4.

Table 8.2.1: Hardware Specifications of Personal Computer

Component Specification

CPU AMD Ryzen 9 5950x 16-Core Processor
GPU NVIDIA Geforce RTX 3090
RAM 2x16GB G.Skill F4-3600C16
Disk WD Black SN750 NVMe SSD

70 CHAPTER 8. OBJECT-DETECTION

Table 8.2.2: Hardware Specifications of the School-Allocated Computer

Component Specification

CPU AMD Ryzen Threadripper 2950X 16-Core Processor
GPU 2x NVIDIA GeForce RTX 2080 Ti
RAM 32.0 GB
Disk 2TB NVMe TOSHIBA 2048GB

8.2.2 Data Splits and Class Definitions

We adopted a 70/30 random split for the training and validation data. The train-
ing utilized eleven different species and categories of fish, which are visualized in
Figure 8.1.1.

8.2.3 Training Details and Rationale

Several models were trained using varied hyperparameters and training strategies
to optimize the detection system’s performance and efficiency. While more mod-
els were trained, two models named "v8s-640-classes-augmented-backgrounds" and
"v8m-640-classes-augmented" were chosen as the final models based on their bal-
ance between performance, efficiency, and computational demands.

8.2.3.1 v8s-640-classes-augmented-backgrounds

This model utilized manually gathered background images, which provided several
advantages over the automatically generated ones discussed earlier (see Section
8.1.3). The manually gathered background images offered greater diversity and
higher quality compared to the automatically generated backgrounds. By manu-
ally selecting and curating background images from various sources, we were able
to include a wider range of backgrounds with different textures, lighting condi-
tions, and compositions. This diversity in backgrounds helps improve the model’s
ability to generalize to different environments, including those dense with seagrass.
Additionally, the manual gathering process allowed us to cherry-pick high-quality
background images, ensuring that the model was exposed to more representative
backgrounds during training.

8.2.3.2 v8m-640-classes-augmented

The second model was trained using the medium-sized variant of the YOLOv8
model (YOLOv8m). This model explored the trade-off between model complexity,
performance, and computational demands. Owing to the graphics card’s VRAM
limitations, the batch size was restricted to 8, a constraint that can potentially
affect the model’s generalization performance [44]. It used the same dataset as
"v8s-640-classes-augmented-backgrounds" to train.

Both models were trained using a resolution of 640x640 pixels, a strategic
choice to balance computational efficiency and model performance. To assess the
impact of resolution on inference speed, we conducted experiments at 1280x1280,
twice the initial resolution. The results, which were generated on the personal

CHAPTER 8. OBJECT-DETECTION 71

computer and are illustrated in Table 8.2.1, revealed that the original configuration
was approximately 2.4× faster.

8.2.4 Model Augmentations and Hyperparameters

In order to fine-tune our model for fish detection in underwater environments, we
adjusted several hyperparameters and augmentations. This section provides an
overview of these adjustments and their impacts.

8.2.4.1 Hyperparameters

Hyperparameters are vital knobs that govern the learning process of a neural net-
work model. They are typically set before training begins and remain constant
throughout the learning procedure. Fine-tuning these hyperparameters can sig-
nificantly enhance the model’s performance.

Here, we made adjustments to several key parameters to manage the speed and
quality of learning. The initial learning rate (lr0), final learning rate (lrf), and
weight decay were tuned to control the learning pace and regularize the model,
respectively. The default and final configurations for these parameters are provided
in Table 8.2.3.

Table 8.2.3: Final and Default Configurations for Hyperparameters

Hyperparameter Default Value Final Value
lr0 (initial learning rate) 0.01 0.001
lrf (final learning rate) 0.01 0.01
weight decay 0.0005 0.001

Note that while other hyperparameters were available for adjustment, they
were left at their default settings for this thesis. The default configurations for all
parameters can be found in the official documentation [45].

8.2.4.2 Data Augmentations

Data augmentations, which modify training images, are a powerful technique to
boost the performance of deep learning models. In the context of underwater fish
detection, they can assist the model in learning to recognize fish under a variety
of different conditions and perspectives.

Our final models were trained with various augmentations, including alter-
ations to hue (hsv_h), saturation (hsv_s), and brightness (hsv_v), which helps
the model account for variations in water clarity and lighting conditions, as well
as the diverse colorations of different fish species.

Other implemented augmentations include rotation (degrees), translation (trans-
late), scaling (scale), and vertical flipping (flipud). The decision to include these
augmentations was significantly driven by the nature of our dataset, which con-
sisted of images captured from a limited number of static camera angles. These
augmentations introduce variations that mimic different perspectives and orienta-
tions, effectively expanding the diversity of our dataset. By doing so, they enable
the model to learn robust features that remain consistent regardless of the fish’s

72 CHAPTER 8. OBJECT-DETECTION

orientation, position, size, or reflection in the water. The final and default values
for these augmentations are provided in Table 8.2.4.

While the default settings for the above augmentations provided a solid start-
ing point, we adjusted several parameters to better suit our task. For instance, we
increased the degrees of rotation and scale range to account for the diverse poses
and sizes of fish. Similarly, the augmentation range for hue, saturation, and bright-
ness was boosted to cope with the wide spectrum of colors and lighting conditions
prevalent in underwater environments. The probability of a vertical flip was also
slightly increased, considering the possibility of upside-down fish appearances in
the training data.

Table 8.2.4 summarizes the final and default configurations for the augmenta-
tions.

Table 8.2.4: Final and Default Configurations for Model Augmentations

Parameter Default Value Final Value
hsv_h 0.015 0.2
hsv_s 0.7 0.7
hsv_v 0.4 0.7
degrees 0.0 10
translate 0.1 0.1
scale 0.5 0.6
flipud 0.0 0.01

In addition to these augmentations, the training process also incorporated
the mosaic data augmentation technique. Mosaic augmentation combines four
training images into one, increasing intra-image variance to mimic a broader data
distribution and promote the robustness of the trained model. However, to avoid
potential overfitting risks associated with this technique, mosaic augmentation was
disabled for the last 10 epochs of training. This practice is aligned with advice
provided by the developers of the YOLOv8 model [46]. An example batch of
training data is illustrated in Figure 8.2.1.

CHAPTER 8. OBJECT-DETECTION 73

Figure 8.2.1: Example training batch with augmentations and mosaic.

8.2.5 Training Resource Considerations

The training process of deep learning models in this project underscored the
resource-intensive nature of the task. Notably, the small model necessitated ap-
proximately 49 hours to complete 100 epochs on the school’s computer, while the
medium model, being larger with, required approximately 74 hours for the same
number of epochs. These extensive time requirements highlight the substantial
computational costs associated with training deep learning models.

8.2.6 Training and Evaluation Metrics

The models were trained using Stochastic Gradient Descent (SGD), a popular
optimization algorithm widely utilized in machine learning and deep learning for its
efficiency and effectiveness. SGD is advantageous as it retains the comprehensive
approach of regular gradient descent while significantly reducing computational
demand by performing parameter updates using a single training sample at each
iteration.

The training process relied on a variety of metrics for model evaluation, in-
cluding F1 score, precision, recall, and mAP (mean Average Precision). These
metrics, along with the associated losses: Box Loss, Classification Loss (Cls Loss),
and Distribution Focal Loss (DFL Loss), during the training phase, are shown for
each model in Figure 8.2.2.

74 CHAPTER 8. OBJECT-DETECTION

(a) v8m-640-classes-augmented.

(b) v8s-640-classes-augmented-backgrounds.

Figure 8.2.2: Performance metrics over epochs for both models. The graphs
provide an overview of the training progression, highlighting the evolution of crit-
ical metrics such as precision, recall, and mAP.

The confusion matrices for the "v8m-640-classes-augmented" and "v8s-640-
classes-augmented-backgrounds" models offer an additional perspective on the
models’ performance. Figure 8.2.3 provides a visual summary of how accurately
the models are classifying each category.

CHAPTER 8. OBJECT-DETECTION 75

(a) v8m-640-classes-augmented.

(b) v8s-640-classes-augmented-backgrounds.

Figure 8.2.3: Confusion Matrix for Models. Each matrix demonstrates how well
the respective model is able to accurately classify each category, by showing the
proportion of true and false positives for each category. It is worth noting that a
significant number of incorrect predictions are classified as backgrounds and vice
versa, indicating a potential challenge in distinguishing between these categories.

76 CHAPTER 8. OBJECT-DETECTION

To further delve into the performance of the models, Figure 8.2.4 displays the
precision-recall curve for both models. This graph is a valuable tool for under-
standing the trade-off between precision and recall for different threshold settings
and overall model performance.

(a) v8m-640-classes-augmented. (b) v8s-640-classes-augmented-backgrounds.

Figure 8.2.4: Precision-recall curve for both models. The curves provide a
graphical overview of the trade-off between precision and recall at various threshold
settings, offering additional insights into the models’ performance characteristics.

In conclusion, these figures provide a comprehensive and detailed overview
of the model training process and subsequent performance. By examining these
visual representations, we can gain valuable insights into model behavior, track
learning progress, and identify potential areas for improvement.

CHAPTER 8. OBJECT-DETECTION 77

8.3 Performance Evaluation
This section provides an overview of the evaluation of the weights using differ-
ent models. It begins by discussing the importance of model evaluation and the
various metrics used to measure model performance. Then we examine the differ-
ent types of models used for evaluation and their respective techniques. Finally,
it provides an overview of the challenges associated with model evaluation and
potential solutions to these challenges.

8.3.1 Validation Metrics

We measured using the Intersection over Union (IoU) metric because of its use for
model validation. We use it in order to get a generalised idea of how accurately
the model predicts the ranges with fish.

We use IoU as a metric used for evaluating how accurately the model creates
predictions as ranges with "fish". The metric quantifies the accuracy of the pre-
dictions by measuring the overlap between the predicted frame ranges and the
ground truth frame ranges. Calculating the IoU is done by dividing the area of
overlap between the predicted and ground truth bounding ranges by the area of
their union.

IoU =
AreaofOverlap

AreaofUnion

This ratio provides a measure of how well the prediction’s bounding boxes aligns
with the ground truth’s box. The value of IoU ranges from 0 to 1, where a
higher value indicates a better alignment.This is important because it allows us
to compare different models and determine which one is more accurate in its
predictions.

One advantage of IoU is that it is not affected by the absolute size of the
ranges, however it focuses on the relative overlap of the intersected ranges, making
it a useful metric for evaluating the different weights of our model on different
environments based on the metric over the predicted confidence.

The videos used for evaluation were selected for evaluation based on: Murki-
ness, time of day, resolution, filters, and if they fit our predefined conditions for
being valid videos for evaluating our model with.

78 CHAPTER 8. OBJECT-DETECTION

8.3.2 Evaluation Videos

The videos used for evaluating the predictions of our AI model have to fit certain
predefined conditions that we have set out, these conditions consist of:

• Conforming to our annotation rules. See Subsection 8.1.2. In order for us to
accurately evaluate if the model has predicted the ranges with fish, we have
to have footage that our annotation rules would fit, if the footage was to be
annotated.

• Be within reasonable state of clarity to murkiness/noise. See Figure 8.3.1
which represents reasonable and valid camera conditions. This is to ensure
that the footage we use is reasonable enough to use in order to shorten and
get the ranges with fish.

• The video has to contain fish with reasonable visibility. This is important
because using footage that contains no visible fish without data manipula-
tion, where it is hard for even us humans to see fish, or if the footage has
a lot of noise in addition to being low resolution, where bubbles become
indistinguishable to small fish, is very unreasonable.

We will later provide further references to these videos, which conform to the
aforementioned conditions as valid videos, and vice versa with the invalid non-
conforming videos.

When evaluating our model using binary evaluation, we need to first establish
a range of frames for analysis, this being the aforementioned ground truth ranges,
typically within a video sequence. Which will be used to compare to the prediction
ranges our model makes.

To perform the binary evaluation, we calculate the IoU between each frame
predicted range and the corresponding ground truth frame range. If the IoU value
exceeds the predefined threshold, typically set at 0.5, the detection is considered
correct; otherwise, it is considered incorrect.

Once we have evaluated all the predictions in the frame range, we can compute
various metrics such as precision and recall.

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

(8.1)

Precision measures the proportion of correct detection among all the predicted
ranges, while recall measures the proportion of correct ranges among all the an-
notated ground truth ranges.

CHAPTER 8. OBJECT-DETECTION 79

Videos within our predefined conditions, valid videos

(a) Clear camera, clear water, daytime,
colour

(b) Clear camera, cloudy water, daytime,
colour

(c) Murky camera, cloudy water, daytime,
colour

(d) Noisy camera, cloudy water, nighttime,
black and white

Figure 8.3.1: This figure represents all of the right camera conditions used for
validation for the model. The conditions are within the scope of our set annotation
rules as seen in Section 8.1.2.

Videos outside of our predefined conditions, invalid videos

(a) Unclear camera, unclear water, night-
time, black and white

(b) Murky camera, noisy water, daytime,
black and white

Figure 8.3.2: This figure represents all of the camera conditions not suitable for
the validation of the model. The conditions are not within the scope of our set
annotation rules as seen in Section 8.1.2.

We will eventually evaluate both of the conditions in order to better the model
itself. This includes how the weights we have trained, used and tested will accu-
rately detect frame ranges within reasonable conditions.

80 CHAPTER 8. OBJECT-DETECTION

8.3.3 Fish Ranges of Videos

The Intersection over Union (IoU) Here we have visualised the IoU of each video
using the v8s-640-classes-augmented-backgrounds weights for our model. This is
where cyan represents the ground truth frame ranges, and yellow represents the
predicted frame ranges from our model. Green is the overlap between the two.

IoU of valid videos

(c) This is the best example, with a confidence of 0.7 the average recall is at 0.964

CHAPTER 8. OBJECT-DETECTION 81

Figure 8.3.3: This figure shows the IoU for every valid video used during evalu-
ation.

As Figure 8.3.3 above illustrates the different conditions we have outlined, you can
see that the model is able to predict the fish in the ground truth. The green as
aforementioned represents the IoU, where you can tell that the average IoU here
is a high value.

82 CHAPTER 8. OBJECT-DETECTION

IoU of invalid videos

Figure 8.3.4: This figure shows the IoU for every invalid video.

As Figure 8.3.4 represents the different conditions we have mentioned as in-
valid, you can see that the model is unpredictable where it is erratic and gives
seemingly random predictions. The green as aforementioned represents the IoU,
here you can already tell that the average IoU is low.

8.3.4 Average Recall over Confidence

Here we calculated the average recall of all of the four valid control videos, and
the same with three invalid videos, over a confidence range from 0 to 1. This is
done utilising the aforementioned formula for recall, which is averaged and taken
off every range of every video evaluated and plotted into the following figures:

CHAPTER 8. OBJECT-DETECTION 83

Evaluation of videos within our predefined conditions, valid videos

(a) Average recall to the confidence of all the valid videos is 0.65

Evaluation of videos outside of our predefined conditions, invalid
videos

(b) Average recall to the confidence of all the invalid videos is 0.26

Figure 8.3.5: This figure shows the average recall over confidence of both the
valid and invalid videos used during evaluation.

84 CHAPTER 8. OBJECT-DETECTION

To summarize, we calculated the average recall for both the valid and invalid
videos within a confidence range of 0 to 1. This was done using the formula for
recall and averaged across all videos and confidence ranges, where the results were
plotted in Figure, 8.3.5.

In order to validate our models recall over confidence we got the number for
the average recall of all the valid videos used for evaluation. The average recall
reached 0.65 which indicates that our system successfully identified a significant
portion of the ground truth ranges in these videos.

In contrast, the average recall for the invalid videos was considerably lower,
measuring at 0.26. This suggests that our system struggled to accurately detect
the ground truth ranges in videos that fell outside our predefined conditions.

These findings provide insights into the performance of our system in different
scenarios. By analyzing the recall over confidence, we can assess the system’s
ability to detect objects of interest accurately. These results may guide further
improvements to enhance the system’s performance and make it more robust across
various video conditions.

8.4 Challenges and Limitations

Throughout the development process, we encountered various challenges and lim-
itations that impacted our object detection development process. In this section,
we outline the issues we faced during training and the limitations we encountered
in the performance evaluation.

8.4.1 Issues During Training

During the model training phase, we encountered several challenges and limitations
that significantly impacted our process. These issues, and the ways we navigated
them, are elaborated below.

8.4.1.1 Hardware Limitations

Although the personal computer boasted superior hardware, it was primarily used
for short experiments due to substantial heat and noise generation during extended
training sessions. Consequently, the school’s computer, despite being less powerful,
became our primary training device as it was more suitable for long-duration tasks.

8.4.1.2 Data Transfer Issues

Transferring our large training dataset between the personal computer and the
school’s machine presented a substantial challenge. The dataset comprised 263,767
files, totaling 113GB, making the transfer process time-consuming. To address
this, we adopted a distinct folder structure for the dataset, as explained in Section
8.1.3. This structure facilitated more targeted data transfers. We could segregate
each video’s corresponding images and annotations into separate folders. There-
fore, we only needed to transfer new or altered data, usually consisting of a spe-
cific video’s images and annotations, between the machines. After the transfer,
we could locally re-run the dataset generation script on the personal computer

CHAPTER 8. OBJECT-DETECTION 85

to create updated ’train.txt’ and ’val.txt’ files, which were then transferred to
the school’s machine, allowing the training process to resume with the updated
dataset.

8.4.1.3 Software Limitations

We encountered software limitations on the school’s computer, which operates
on Windows OS. Notably, we faced issues with the YOLOv8’s v8 dataloader, as
reported in a couple of GitHub issues [47, 48]. As a workaround, we used the older
v5 dataloader designed for YOLOv5, which proved more reliable.

8.4.1.4 External Interruptions

External interruptions posed a further challenge in our training process. The
school-allocated computer would sometimes restart for updates in the middle of a
training session, resulting in progress loss. The shared nature of the device meant
that other students could inadvertently disrupt our ongoing training. To mitigate
these issues we tried leaving notes on screen to notify others that training was in
progress.

8.4.1.5 Model and Resolution Limitations

Initially, we contemplated training a medium-sized model on a higher resolution,
hypothesizing that it might yield better results, particularly in detecting smaller
fish. As highlighted in Section 8.2.5, training the medium model took 74 hours,
compared to the 49 hours required for the smaller model. Additionally, as stated in
Section 8.2.3.2, inference using 1280 vs 640 took approximately 2.4 times longer.
From these observations, we estimated that it would take roughly 7.4 days to
complete a single training run to 100 epochs with the medium model at a higher
resolution, assuming no interruptions occurred on the school-allocated computer.
Given our time constraints, this was not a feasible option. As such, our current
medium-sized model did not demonstrate significantly better results compared to
models trained with the current resolution. In future work, exploring the impact of
different model sizes and resolutions on model performance could provide further
opportunities for improvement. This is also something NINA can do with our
provided training guide found in Appendix H.

8.4.2 Performance Evaluation Limitations

Despite our best efforts in carrying out the performance evaluation, we faced
certain limitations in terms of available data. The amount of ground truth data
that we had available for evaluation was a significant limitation.

Due to the complexities involved in the manual annotation process and the need
to balance this task with other project priorities, we were only able to generate
ground truth data for seven videos, four of which adhered to our annotation rules
and were deemed valid for our purposes, the remaining three were deemed invalid.
The ground truth annotation process is a meticulous one, requiring substantial
time and human effort to ensure accuracy, which limits the volume of data that
can be produced within a given time frame.

86 CHAPTER 8. OBJECT-DETECTION

While this may appear to restrict the comprehensiveness of our model evalua-
tion, we believe that the selected videos still provide a meaningful representation
of diverse conditions under which the model is expected to perform. These videos
encompass a range of scenarios, including differences in water clarity, lighting
conditions, and fish visibility, that our model should handle. Therefore, our per-
formance evaluation, conducted with a limited set of videos, provides valuable
insights into our model’s capabilities and areas for improvement. This experience
has reinforced the importance of careful resource management, particularly when
manual data preparation is a critical component.

CHAPTER

NINE

QUALITY ASSURANCE

Ensuring the adherence to high standards throughout all aspects of our project
necessitated the utilization of various tools. These tools encompassed code de-
velopment, documentation, testing, and facilitating effective group collaboration.
This chapter elucidates the utilization and application of these different tools and
practices, providing insights into how they contributed to achieving optimal qual-
ity and supporting our project’s progress.

9.1 Source Code Quality Assurance
Quality assurance of our source code is paramount in this project. We maintain a
high standard of code quality by adopting stringent guidelines and a set of tools,
each serving a specific purpose.

• PEP 8[49]: The Python Enhancement Proposal 8, commonly known as PEP
8, is a set of recommendations for how to format Python code. We chose
PEP 8 over other style guides such as Google’s Python Style Guide due to its
wide acceptance in the Python community and its emphasis on readability
and ease of maintenance. PEP 8 is recognized as the de-facto standard for
Python code, making it a clear choice for our project.

• Black[50]: This is a strict code formatter for Python that adheres to the PEP
8 guidelines. We chose Black over other formatters like autopep8 or yapf due
to its uncompromising nature. Unlike autopep8, which only corrects parts
of the code that violate PEP 8, Black takes a more proactive approach,
formatting all code to its own standard. And compared to yapf, which
allows some customization, Black’s philosophy of reducing decision fatigue
by having a single style setting stood out to us.

• Pylint[51]: This is a robust source code, bug and quality checker for Python.
We opted for Pylint over other linters like flake8 or pyflakes due to its com-
prehensive checks and ability to enforce coding standards. While flake8 and
pyflakes can detect some issues in the code, Pylint offers a more in-depth
analysis. This includes checking if modules are imported but unused, if vari-
able names follow the naming convention, and even if the code’s docstrings
are up to standard.

87

88 CHAPTER 9. QUALITY ASSURANCE

• mypy[52]: This is a static type checker for Python. We chose mypy over
other static type checkers like PyType and Pyright due to its seamless in-
tegration with existing Python syntax and its comprehensive type checking
capabilities. While PyType can infer types and catch common errors, and
Pyright offers performance benefits, Mypy’s balance of robust type checking
and ease of use made it our top choice.

• isort[53]: This tool is used to sort and organize imports in your Python
code. We chose isort over other tools like import-linter or flake8-import-
order due to its ability to automatically separate imports into sections and
by type, which not all tools provide. This makes the code cleaner and
easier to navigate. It also checks the code against its sorting and formatting
standards, ensuring that all imports are correctly placed and formatted.

9.2 Logging

We incorporated a custom logging system into our codebase. This tool was instru-
mental in enabling effective debugging. It also facilitated communication within
the team by providing clear, timestamped logs of system behavior.

The logger was implemented as a Python script, which created a logger with
both a file handler and a console handler. It uses a timed rotating file handler
from Python’s logging module, which rotates the log files at midnight and retains
ten old log files as a backup. The logs are saved in a designated folder, created
automatically if it doesn’t exist. The system also uses a console handler to output
the logs in the console, aiding in real-time debugging.

Logging played a significant role in our testing practices. The detailed logs
provided by our custom logger were essential in tracking and identifying bugs,
system behavior, and performance issues. It was particularly useful during the
integration testing with NINA, (described later in subsection 9.5.3), as the logs
provided insights into system performance and bottlenecks.

The logger script can be referred to in Appendix I for detailed reference.

9.3 Git Branching

We follow the standard Git branching model in our project. This involves using
feature-based branches for isolated development of new features or tasks. Once a
feature is complete and has been thoroughly tested, it is merged into a development
branch. This workflow allows us to work on multiple features simultaneously
without causing conflicts or disruptions. It also helps keep the codebase clean and
well-structured.

Upon reaching a stable state, the development branch is merged into the main
branch, which is often considered the "production-ready" branch. This strategy
ensures that the main branch always hosts stable, tested, and reliable code.

CHAPTER 9. QUALITY ASSURANCE 89

9.4 Documentation
Documentation forms an integral part of our project. It serves as a roadmap for
both our code and processes, making our work accessible and understandable to
others, including future contributors.

Our approach to code documentation involves using Docstring - a type of
comment used to explain the purpose of a function, method, class, or module
in Python. Docstring are placed immediately after the definition of a function,
method, or class and are enforced by Pylint, our chosen Linter.

We also use Git commits as an integral part of our documentation strategy.
Every change committed to the repository should be accompanied by a clear and
concise message that justifies the change and explains what it does. This provides
a comprehensive version history and allows us to use the ‘git blame‘ command to
easily track who made a certain change and why it was introduced. This form of
documentation ensures a high level of transparency and accountability within our
team, making it easier to understand the evolution of the codebase over time.

To document our processes, we maintain summaries of our meetings, detailing
significant discussions and decisions. We also provide a comprehensive installation
guide for setting up the application, ensuring a repeatable and straightforward
process for all users.

Toward the end of our project, we use ChatGPT as a language correction tool
for our final report. This tool enhances language usage, rectifies grammatical
errors, and ensures a consistent writing style, thereby contributing to a high-
quality final report.

9.5 Testing
Testing is an essential part of the software development process. It helps us to
identify any missing requirements, bugs, or errors and evaluate the software’s
security and reliability.

9.5.1 Continuous Integration: Build and Unit Testing

Continuous Integration (CI) is a software development practice where members of
a team integrate their work frequently. This leads to multiple integrations per day.
Each integration is verified by automated builds and tests to detect integration
errors as quickly as possible.

Our project uses GitHub for Continuous Integration. The CI pipeline is defined
in a ‘.github/workflows/code-quality.yaml‘ file located in the root directory of our
project. This file specifies the steps that GitHub performs to build and test our
project.

The pipeline setup involves several steps. First, we set up the Python environ-
ment with the required version. Then we install the necessary dependencies using
pip and Poetry, a tool we utilize for dependency management. After setting up
the environment, the pipeline runs the pre-commit hooks. These hooks include
trailing whitespace removal, end-of-file fixer, YAML checks, and formatting checks
using Black. mypy is run to check for type consistency in the code. Pylint is used
to identify bugs and quality issues.

90 CHAPTER 9. QUALITY ASSURANCE

The pre-commit [16] hooks also include checks using commitlint, a tool that
helps enforce a consistent commit message style across the project. This is particu-
larly important for maintaining a readable and navigable commit history. We use
the ‘@commitlint/config-conventional‘ configuration, which adheres to the Con-
ventional Commits[54] specification. Conventional Commits is a lightweight con-
vention that encourages readable commit messages that are easy to automate.
It prescribes a simple set of rules for creating an explicit commit history, which
makes it easier to write automated tools on top of. This can be particularly use-
ful for generating release notes, for example. If a commit message doesn’t follow
the specified format, the commit is rejected, encouraging the developer to properly
document their changes. This way, we can use Git blame effectively to understand
why changes were made.

The main tests we run on the CI are unit tests. Unit tests are written for
functions and methods to validate that each piece of the program performs as
expected. These tests are crucial for catching and fixing bugs early in the devel-
opment process, before they make their way into the final product.

These checks ensure that the code that is being integrated passes all quality
and format checks, including unit tests. If any of these checks fail, the integration
is stopped, and the developer is notified to fix the issues. This way, no code is
merged into the main branch without passing all the checks and tests.

9.5.2 User Testing

We also carry out user testing with NINA in a controlled environment. This
allows us to receive valuable feedback and iterate on our product. Self-testing is
also utilized to validate the steps for software installation and to ensure its core
functionalities.

In appendix E is the form that we utilized to perform user tests with NINA’s
representatives during our client meetings. Through the utilization of this form
we discovered issues the representatives may have encountered while using the
application. These had a main focus on the Front-end’s user interface. Further
details on the contents of the user test can be found in the meeting logs with
NINA in appendix G on the date 17th of April.

9.5.3 Integration Testing

Integration testing forms a vital part of our project’s quality assurance. In par-
ticular, we carried out integration testing with Francesco Frassinelli from NINA.
This involved the development of a custom script designed to test various model
sizes and batch sizes on NINA’s VDI setup.

The script, as detailed in Appendix I, initializes different model sizes in a
sequential manner, ranging from small to large. For each initialized model, it
processes the video using different batch sizes. If the model processing hits an
out-of-memory error, it skips the current batch size and moves on to the next.
This script was designed to be robust and flexible, allowing us to effectively gauge
the performance of our solution across different configurations.

This script was incorporated into a dedicated test branch named "vdi-perf-
test". We shared this branch with Francesco, enabling him to test the script on

CHAPTER 9. QUALITY ASSURANCE 91

their VDI. He created a Docker setup for our application and provided us with
the performance results. This valuable collaboration helped us obtain real-world
data on our solution’s performance on the actual deployment hardware.

This real-world testing also enabled us to identify and address specific issues.
Notably, it led us to revise the operation of our image loader to optimize its
performance on their hardware. This testing phase was instrumental in ensuring
that our solution met our performance expectations in the actual deployment
environment.

9.6 Group Work
To ensure effective collaboration, we held daily meetings to discuss our work and
progress. Our work is documented and managed through issues on our version
control system. This ensures that every aspect of the project is discussed, and
progress is made at each step.

In essence, our approach to code quality assurance, Git branching, documen-
tation, testing, and group work, is designed to ensure a high standard of work,
while fostering a productive and harmonious working environment for the group.
These principles and practices would not only lead to a successful project but also
provide a solid foundation for any future work we undertake.

92 CHAPTER 9. QUALITY ASSURANCE

CHAPTER

TEN

DISCUSSION

This chapter gives a thorough discussion of choices that were made throughout
the development process and of the following results. It will also provide insight
into the success of the planned development process and changes that were made
or should have been made during the process.

10.1 Preparatory Work
This section critically evaluates the adequacy of the preparatory work undertaken
and its effectiveness in providing a solid foundation for conducting the bachelor’s
thesis. Additionally, an assessment will be made regarding the feasibility and
attainability of the set goals, followed by an analysis of their ultimate outcomes
and achievements.

10.1.1 Project Plan

The project plan, outlined in Appendix C, provided a comprehensive roadmap for
the entire project prior to its initiation. Throughout the course of the project, we
adhered closely to this plan, deviating minimally from the agreed-upon framework.
The presence of a well-defined plan and established rules facilitated a structured
and efficient workflow, allowing for timely resolution of any issues that arose. An
exemplification of this can be observed in section 10.3.1. By meticulously outlining
the project requirements, we were able to adhere closely to the Gantt chart we
devised, successfully following it almost entirely. Although some minor deviations
occurred around two-thirds into the planned Gantt timeline, overall, we believe
that the presence of a well-crafted plan and its active utilization throughout the
project enhanced our efficiency and organization.

10.1.2 Goals

As we started on this project, our original result goals (as stated in Appendix
C) were centered on developing an object detection model that would offer a
balanced measure of precision and recall in identifying individual frames with fish.
We aimed to achieve an overall detection rate of 95%, striving for the F1-score to
capture a high degree of accuracy and comprehensiveness in fish detection.

93

94 CHAPTER 10. DISCUSSION

However, following further analysis at the onset of development and insightful
consultations with NINA, we revised our project goals. Our shift was largely
influenced by two factors: a clearer understanding of NINA’s operational needs
and the practical challenges associated with detecting fish in individual frames.

Firstly, our discussions with NINA revealed a distinct operational requirement:
to know the ranges within which fish were present in the videos, rather than
knowing the presence of fish in each specific frame. This requirement was rooted in
the nature of their research and operational workflows, where continuous detection
was more critical than isolated frame-wise identification.

Secondly, the challenge of achieving high precision in detecting fish in individ-
ual frames became apparent as we started the development process. Given the
variability in frame quality and the potential for many frames to lack distinctive
features, it was more practical and efficient to focus on ranges of frames where fish
were present.

Hence, our revised goals emphasized achieving a high recall rate for detecting
fish within ranges in the videos, targeting at least 95% of the ranges where fish are
actually present. This goal allowed us to concentrate on minimizing false negatives,
aligning well with NINA’s need to ensure that the presence of fish within a range
is detected, even at the expense of occasional false positives.

This shift in focus had a profound impact on our development strategy. We
designed an algorithm to convert a list of detected frames into a list of ranges,
accommodating some frames without detections within a valid range. This algo-
rithm, outlined in Section 6.3.4.1, became a key part of our model and allowed for
a more robust detection process.

Furthermore, we maintained our goal to reduce human effort required for video
processing tasks, which remained a critical aspect of the project. Our revised goal
aimed to ensure the model was both effective in achieving its primary purpose and
efficient, enhancing productivity in NINA’s research endeavors.

In conclusion, our goal revision led to a more tailored solution that better
addressed NINA’s needs and allowed us to navigate the practical challenges asso-
ciated with video-based fish detection. Despite the shift in focus, we stayed true to
our overarching aim of optimizing fish detection and processing workflows, thereby
benefiting NINA and improving the efficiency of their video analysis pipeline.

10.2 Cooperation
This section provides an assessment of the cooperation and collaboration within
the project team throughout the duration of the project. We critically evaluate
whether there were any areas that could have been improved upon and reflect on
the allocation of work in relation to each group member’s skills and preferred areas
of expertise. Additionally, we analyze whether the allocation of tasks was carried
out in a time-efficient manner.

10.2.1 Meetings

The scheduling and sequence of our meetings proved to be highly effective. As
depicted in Table 3.2.1, our sequential approach enabled us to address and discuss
pertinent matters from previous meetings in a timely and organized manner. For

CHAPTER 10. DISCUSSION 95

instance, when our client expressed the need for adjustments to the report format
(Section 10.3.1), we promptly tackled this issue in subsequent meetings with our
supervisor and incorporated it into our Sprint planning sessions. However, we ac-
knowledge that there were opportunities for improvement in terms of the structure
and focus of our meetings. The group meetings often took on a more casual na-
ture, fostering an open atmosphere conducive to group discussions. Nevertheless,
this informality occasionally resulted in extended meeting durations and topics
that were tangential to the project work.

10.2.2 Work Allocation

Figure 10.2.1: Work Distribution.

The allocation of different areas of responsibility, as outlined in section 1.4.2, en-
abled us to concentrate on our respective areas and acquire in-depth knowledge in
those domains. However, this focused approach inadvertently led to a certain level
of unawareness regarding specific key aspects of each other’s work. An illustration
of this challenge is evident in our limited understanding of the inner workings of
certain scripts used for dataset generation. Consequently, when the need arose to
collaborate and support each other in the later stages of the project, a substan-
tial amount of time had to be dedicated to teaching and familiarizing ourselves
with these intricate details. In hindsight, it would have been advantageous to
ensure that each group member contributed more significantly to the development
of Back-end scripts. Despite this limitation, we believe that the overall allocation
of work was successful and effectively assigned responsibilities for each aspect of
the project, giving every team member a sense of ownership and accountability.
See Figure 10.2.1 for how the hours were distributed.

96 CHAPTER 10. DISCUSSION

10.3 Flexibility of Development

In this section, we will revisit our choice of development method and how it has
effected our development. We discuss how it allowed us to make changes to key
aspects of our project, without having to redo substantial amounts of work.

10.3.1 Change in Task Description by Client

From the project’s inception, we sought a software development model that offered
flexibility and facilitated accommodating changes as they arose. This decision
proved wise as, approximately one month into development, NINA approached us
with a request to modify certain task descriptions. Specifically, the change involved
transitioning from a Windows-based program to a Linux-based program accessible
through a VDI. Following discussions during subsequent meetings, we determined
that this alteration was feasible without significant obstacles. The success in
addressing this request was attributable to our software development approach,
which embraced the Scrumban model and prioritized modularity and flexibility.
By adopting this strategy, we could isolate the specific sections of our program
requiring modification, thereby minimizing the required rework. Such changes en-
compassed code revisions to detect the OS on which the program was running, as
well as the incorporation of more substantial elements. These additional elements
encompassed configuring PyQt to function with XCB, ensuring compatibility of
our GUI within a Docker container and implementing X11 forwarding, developing
performance tests for the image loader and batch YOLOv8 model processor (Sec-
tion 9.5.3), and creating a suitable Dockerfile for the VDI environment utilized
by NINA. Despite these changes being requested approximately one-third into the
development phase, we effectively considered and integrated them into our project.
Furthermore, we commenced collaboration with NINA’s IT department to align
our solution with their internal system configurations. This collaboration involved
inviting IT personnel to client meetings, engaging in email correspondence, and
sharing our code repository on Git for internal testing, suggestions, and review of
pull requests. By collaborating closely with NINA’s IT department to integrate
our solution, we ensured the usability of our project and provided the foundation
for potential future iterations by the IT department beyond the scope of our thesis.

10.3.2 Report Structure Changes

During the later stages of our product development, a user test was conducted in
collaboration with NINA. In this test, valuable feedback was obtained regarding
the format of the report generated by our program. Specifically, NINA expressed
a preference for an alternative data format in the output file. In response, we
requested that they provide a template illustrating their desired format. After
a few days, we received the template; however, it became apparent that their
request included the tracking of individual fish in the report, along with several
other data sets that were not feasible to extract from our AI model. Subsequent
discussions took place during group meetings and client interactions, aiming to
explore the reasons behind this technical limitation. It was concluded that NINA
had overlooked the project delimitations outlined in Section 1.3. Despite the

CHAPTER 10. DISCUSSION 97

inability to fulfill certain requested data requirements, a mutual agreement was
reached, resulting in the inclusion of additional data that had not been previously
incorporated. An example of this additional data is a list of the summary of every
file processed with date, original- and new video length. Moreover, the data was
organized in an intuitive manner, allowing NINA to access both a summary of all
video files and their corresponding data, as well as individual detections for each
video. Consequently, the final version of the report provides detailed information
regarding each detection, including their respective start and stop times.

10.3.3 CVAT

CVAT, or Computer Vision Annotation Tool, is a powerful tool for annotating
and labeling datasets. However, it also has some limitations and problems that
must be addressed.

One issue that we have encountered with CVAT is that it can become over-
loaded when working with multiple people simultaneously. This can slow down
the process and make it difficult to collaborate effectively. Additionally, using
too many instances of tracking on a large sample size of fish can also lead to
performance issues.

Other problems we have encountered occurred when we tried to upload files
that were partially corrupt, CVAT had difficulty loading corrupt video files, this
was eventually fixed when the problem was identified, however, it was still a prob-
lem that was unexpected. Another very frustrating problem that occurred, oc-
curred when we tried to track a lot of fish at the same time with large datasets,
which would eventually lead to extreme inaccuracies and inconsistencies in retain-
ing information, which led to wasted time and effort. Finally, there have been
cases where we have inadvertently labelled datasets that were already included in
our collection, leading to even more unnecessary redundancy and wasted resources.

Despite these issues, there are many benefits to using CVAT in a collabora-
tive environment. One of the most significant advantages is the ability to share
labels between multiple users, making it easy to collaborate on large datasets.
Additionally, CVAT allows for the superclassing of labels, which can help stream-
line the annotation process and improve accuracy. Finally, CVAT ensures that
there is no overlap of annotated data (except in cases where we have provided the
COCO - YOLO dataset), which helps to ensure the accuracy and consistency of
our dataset.

If we continued to work with CVAT, there would be several future considera-
tions that we would have to keep in mind. One possibility would be to outsource
more annotated data to reduce the workload on our internal team. Additionally,
we could have explored the use of a 3D game renderer to generate training data,
which could help mitigate some of the challenges associated with annotating real-
world footage. Overall, while CVAT has its limitations and challenges, it has been
a valuable tool for our work on fish detection and monitoring in murky water
environments.

98 CHAPTER 10. DISCUSSION

10.3.4 Windows Python

And an important thing to note is that when downloading Python from the win-
dows store and using that instance of Python for the environment will lead to
an insurmountable amount of issues related to Paths, permissions and directo-
ries. This is because of how Windows store handles its installed version of Python
which differs from how the default installation of Python is handled. Windows
Store edition handles set up of your PATH settings for the current user (avoiding
the need for admin access), in addition to providing automatic updates, which
might be problematic to compatibility with libraries that have not updated. Mul-
tiple group members experienced problems regarding Poetry and other installation
packages due to the Windows Store Python which were inevitably fixed by switch-
ing Python installs.

10.4 Process Critique

In addition to the aforementioned points, there are several areas of improvement
that we would address if given the opportunity to continue or replicate the project.
Firstly, we recognize the need for a stronger emphasis on testing throughout the
development process. This entails the creation of more comprehensive unit tests
and the automation of code testing procedures. Such measures would result in
improved code quality, fewer bugs, and a more robust and reliable codebase. Nev-
ertheless, we did implement logging mechanisms in most aspects of our program.
This allowed us to identify instances where code did not behave as expected or, in
worst-case scenarios, resulted in program crashes. Different types of log messages,
such as CRITICAL, WARNING, ERROR, DEBUG, and INFO, were utilized to
provide concise descriptions of when and why such events occurred.

Another area requiring more attention is the inclusion of additional and en-
hanced user testing, as well as increased iterations of our program. These measures
would have contributed to refining the appearance and functionality of our GUI.
However, considering the intended purpose of our program and its target end-
users, we believe the current state of the GUI to be adequate. It is user-friendly
and avoids unnecessary distractions that could divert attention from its intended
functionality. The feedback received from the conducted user tests has generally
been positive, with minimal suggestions for major revisions, indicating a satisfac-
tory initial impression.

An aspect we would prioritize for improvement and alteration pertains to the
organization and structure of our Front-end code. Although not directly dis-
cernible to end-users, the current code structure may present challenges for future
developers who aim to continue working on the Front-end. Specifically, the code is
divided into a combination of appropriately nested files within folders, as well as
some loosely placed files within the root directory of our application. This incon-
sistency may potentially impede efficient comprehension and navigation within the
codebase. Enhancing this aspect would result in improved code management and
maintenance. Although we initially planned to address this issue, time constraints
necessitated a shift in priorities toward other aspects of our project.

Apart from these areas of critique, we are generally content with the project’s
overall execution. If given the opportunity to undertake the project again, we

CHAPTER 10. DISCUSSION 99

would largely adhere to the planned approach outlined in the project plan (Ap-
pendix C), with only minor modifications.

100 CHAPTER 10. DISCUSSION

CHAPTER

ELEVEN

CONCLUSION

This chapter serves as the concluding section of our thesis, providing a comprehen-
sive summary of the achievements and outcomes of our project. It highlights the
key findings, contributions, and accomplishments that have emerged throughout
the research and development process. Furthermore, we identify potential areas
that can be further explored and improved upon in future iterations or related
studies. This concluding chapter concludes with our final remarks on the thesis,
reflecting on the overall significance of the work conducted and its potential im-
plications for the field. By encapsulating the essence of our project and offering
insights for future work, this chapter brings closure to our thesis and solidifies its
contribution to the existing body of knowledge.

11.1 Project Achievements
Throughout this thesis, we have successfully attained a multitude of predetermined
goals. These objectives encompassed our overarching vision for the program’s im-
plementation, as well as the aesthetic and functional aspects of the GUI. Further-
more, we aimed to accomplish various performance-related and impact-oriented
goals. By achieving all these goals, NINA’s problem would hopefully be solved.
The conclusive outcomes of these endeavors are comprehensively discussed in the
subsequent sections.

11.1.1 Implementation and Interface

As a culmination of our efforts, the implementation of our project has resulted in
the development of an intuitive and user-friendly program. This program effec-
tively processes input videos, generating new videos that exclusively contain fish
detections. Additionally, the program generates a comprehensive report available
in both XLSX and CSV file formats. This report serves as a valuable resource
for the researchers at NINA, enabling them to not only access visual data in the
form of videos for analysis but also leverage written data for rapid examination
and statistical analysis.

The availability of both visual and written data provides researchers with a
multifaceted approach to study and understand the aquatic environment. By uti-
lizing the generated videos, researchers can visually analyze fish behaviors, move-

101

102 CHAPTER 11. CONCLUSION

ments, and interactions. Simultaneously, the written data in the form of reports
offers a structured and organized representation of the detected fish, facilitating
efficient data exploration, extraction, and statistical analysis.

By placing a strong emphasis on modularity and iterative development, we
have purposefully designed our project to facilitate ongoing improvement and en-
hancement by NINA’s IT department. Furthermore, we would like to promote
knowledge sharing and collaboration, which is why we plan to publish the dataset
and accompanying scripts on Kaggle.com. A comprehensive guide has also been
provided to assist researchers and practitioners in leveraging our work for advanc-
ing video detection research in diverse environments. Through these initiatives, we
aspire to contribute to the broader research community and support the pursuit
of United Nations Sustainable Development Goals.

11.1.2 Performance

We had several major goals for this project, which is detailed in Section 2.1.1.
These goals focus on the quality of the application and its functionality. In this
section, we discuss how we conducted the performance evaluation of our solution
and the results we obtained. Thus, also assessing how well our solution satisfies
our result goals.

The performance evaluation was conducted using a high-performance computer
system (as detailed in Table 8.2.1), equipped with an RTX 3090 GPU. This setup
closely resembled the VDI setup used by NINA, which is powered by an RTX
A4000 GPU, hence providing a valid and relevant testing environment for our
solution.

We chose three 30-minute videos for the testing process. These videos, provided
by NINA, were each 1920x1080 in resolution, with a frame rate of 25 frames
per second, and a file size of 960MB. We processed these videos through the
entire pipeline of our solution, which included detection, video cutting, and report
generation, using the YOLOv8s model (v8s-640-classes-augmented-backgrounds).

The performance results, obtained from our solution, demonstrate a significant
improvement, exceeding the initial goals set for this project as outlined in Section
2.1.1.

In our initial goals, we aimed to reduce the processing time to 25 minutes for
a 30-minute video. However, the testing showed that our solution could process a
30-minute video in an average of 130.39 seconds, approximately 2.2 minutes. This
achievement denotes a substantial reduction in the resources required for video
analysis operations, considering our solution could process videos around 14 times
faster than real time. Consequently, we were also able to reduce the storage needed
for a single file, from 960MB to only 3.7MB, which is around 259 times smaller
when using CRF on 21.

Such success was made possible due to our dedicated work on the optimiza-
tion of different components of our solution. The Image Loader’s efficiency was
significantly improved (as discussed in Section 6.4.1). The implementation of a
custom Model that utilizes batching (as described in Section 6.4.2) and the Video
Processor that efficiently cuts and annotates video (explained in Section 6.3.3)
further boosted the performance of our system.

However, these results were obtained under optimal testing conditions with a

CHAPTER 11. CONCLUSION 103

high-end hardware setup. Therefore, it’s essential to note that actual performance
may vary depending on the specific system configuration and the complexity of
the video content being processed.

As delineated in Section 2.1.1, our primary objective was to ensure a 95% ac-
curacy rate for detecting fish ranges in NINA’s provided videos. This goal guided
our methodology in testing and applying various weights from the YOLOv8 model,
such as v8s-640-classes-augmented-backgrounds, v8s-640-classes-augmented-oreskyt,
v8s-640-classes-augmented, and v8s-640-classes.

Our systematic and comparative testing strategy enabled us to isolate the most
proficient configuration. In this case, the v8s-640-classes-augmented-backgrounds
weight consistently outperformed the others and was thus employed in our final
performance evaluation. To assess this efficacy, we computed the average recall
accuracy across all valid videos. More specifics about this process are documented
in Subsection 8.3.3.

Following a thorough and meticulous evaluation, we were pleased to discover
that our solution’s average recall accuracy stands at an impressive 96.4%,
exceeding our initial target by maintaining a confidence threshold of 70%. These
outcomes underscore the precision of our solution when it comes to detecting
ranges of fish. Nevertheless, it’s worth noting that these assessments were con-
ducted solely on valid videos; performance may fluctuate with different conditions
or datasets.

In conclusion, we are delighted to report that we have not only achieved, but
surpassed our initial result goals. These results testify to the effectiveness of
our solution, and they promise significant improvements in speed, storage, and
accuracy in fish detection.

11.2 Future Work

While we are satisfied with the overall outcome of our project, there are several
potential areas that warrant further exploration and improvement. The following
list outlines potential areas for enhancement:

• To enhance the accuracy of our model, it is recommended to annotate a larger
set of relevant videos for training the weights. This entails annotating videos
containing a lower representation of specific fish species and expanding the
dataset to include additional species that are not currently being tracked. By
encompassing a comprehensive range of species likely to appear in the video
frames, we aim to ensure coverage of all possible species. To facilitate future
work in this area, a detailed guide has been developed, providing instructions
on the annotation process and methodology. For further information, please
refer to Appendix H

• To broaden the scope of our application and accommodate diverse environ-
ments, you can generate additional datasets and train new models. These
datasets should encompass various settings and include different species and
animals beyond the current scope. For instance, the creation of a new model
capable of detecting woodland animals captured by trail cameras would ex-
pand the applicability of our program. Similarly, developing a distinct model

104 CHAPTER 11. CONCLUSION

capable of detecting objects and organisms in other bodies of water, such as
the ocean, would further extend the program’s versatility. By undertaking
these endeavors, we can effectively cater to a wider range of scenarios and
provide valuable solutions for different ecological contexts.

• Implement a feature to run the program on real-time recordings.

• Include option for tracking fish, not just detection on a per image level. To
do this you would however need to use a different AI model and train it up.
This feature could enable the possibility to recognize already tracked fish
and detect specific fish behavior.

• Create an API for the software such that it can be used over a server, enabling
a whole network to use the software without downloading it separately on
all computers.

• Implement more testing on the software. See Section 10.4 for more in depth
on what kind of tests and how this could be done.

11.3 Final Words
Throughout the course of this bachelor thesis, we have leveraged the knowledge
and expertise acquired during our undergraduate studies, while also acquiring
new profound knowledge in various areas of specialization, including AI and im-
age recognition, full-stack development, and more. This extensive experience has
equipped us with the necessary skills to effectively tackle new challenges and suc-
cessfully overcome them.

By harnessing our knowledge and skills, we have developed a comprehensive
system that significantly improves workflow efficiency, reduces resource require-
ments, and empowers the researchers at NINA to gather a wealth of valuable data
for their ongoing research endeavors.

In conclusion, through effective teamwork and meticulous planning, we have
accomplished the creation of a fully functional system that will make substantial
contributions to scientific advancements pursued by NINA in the years to come.
Overall, we take great pride and satisfaction in our work and are delighted with
the successful outcome of the project.

BIBLIOGRAPHY

[1] NINA - Norwegian Institute for Nature Research. https://www.nina.no/
english/Home. Accessed January 11, 2023.

[2] United Nations. Sustainable Development Goals: Goal 14 - Life Below Water.
Accessed: January 18, 2023. n.d. url: https://sdgs.un.org/goals/
goal14.

[3] Scott Chacon and Ben Straub. Git. https://git-scm.com/. 2023.

[4] GitHub. Web Page. 2020. url: https://github.com/.

[5] Atlassian. SourceTree. https://www.sourcetreeapp.com/. 2023.

[6] Axosoft. GitKraken. https://www.gitkraken.com/. 2023.

[7] Discord Inc. Discord. Computer Program. 2015. url: https://discord.
com/developers/docs/intro.

[8] Alari Aho and Krister Haav. Toggl Track. Web Page. 2006. url: https:
//developers.track.toggl.com/docs/.

[9] Microsoft. Microsoft Teams. https://www.microsoft.com/en-us/microsoft-
teams/. 2023.

[10] Docker Inc. Docker. https://www.docker.com/. 2023.

[11] Project Jupyter. Jupyter. Documentation. 2014. url: https://jupyter.
org/.

[12] Nextcloud GmbH. Nextcloud. https://nextcloud.com/. 2023.

[13] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[14] Riverbank_Computing. PyQt. Documentation. 1998. url: https://wiki.
python.org/moin/PyQt.

[15] Sébastien Eustace. Poetry. 2018. url: https://python-poetry.org/.

[16] Sottile, Anthony and contributors. pre-commit. https://pre-commit.com.

[17] CVAT Contributors. CVAT: Computer Vision Annotation Tool. https://
github.com/openvinotoolkit/cvat. 2023.

[18] OpenCV. CVAT Documentation: YOLO Format. 2021. url: https : / /
opencv.github.io/cvat/docs/manual/advanced/formats/format-
yolo/.

105

https://www.nina.no/english/Home
https://www.nina.no/english/Home
https://sdgs.un.org/goals/goal14
https://sdgs.un.org/goals/goal14
https://git-scm.com/
https://github.com/
https://www.sourcetreeapp.com/
https://www.gitkraken.com/
https://discord.com/developers/docs/intro
https://discord.com/developers/docs/intro
https://developers.track.toggl.com/docs/
https://developers.track.toggl.com/docs/
https://www.microsoft.com/en-us/microsoft-teams/
https://www.microsoft.com/en-us/microsoft-teams/
https://www.docker.com/
https://jupyter.org/
https://jupyter.org/
https://nextcloud.com/
https://doi.org/10.1109/MCSE.2007.55
https://wiki.python.org/moin/PyQt
https://wiki.python.org/moin/PyQt
https://python-poetry.org/
https://pre-commit.com
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
https://opencv.github.io/cvat/docs/manual/advanced/formats/format-yolo/
https://opencv.github.io/cvat/docs/manual/advanced/formats/format-yolo/
https://opencv.github.io/cvat/docs/manual/advanced/formats/format-yolo/

106 BIBLIOGRAPHY

[19] Martin Fitzpatrick. PyQt vs Tkinter – a Guide on Choosing the Right GUI
Framework for Your Python App. 2021. url: https://www.pythonguis.
com/faq/pyqt-vs-tkinter/.

[20] Karl Kroening. ffmpeg-python: Python bindings for FFmpeg. Documentation.
2017. url: https://kkroening.github.io/ffmpeg-python/.

[21] K. S. Bealer. PyAV: A Pythonic binding for FFmpeg/Libav. 2020. url:
https://github.com/mikeboers/PyAV.

[22] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Ver-
sion 8.0.0. Jan. 2023. url: https://github.com/ultralytics/ultralytics.

[23] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object De-
tection. 2016. arXiv: 1506.02640 [cs.CV].

[24] Ultralytics. YOLOv5: YOLOv5 in PyTorch. https://github.com/ultralytics/
yolov5. 2021.

[25] Thierry Bouwmans. “Recent Advanced Statistical Background Modeling for
Foreground Detection: A Systematic Survey”. In: Recent Patents on Com-
puter Science 4 (Sept. 2011), pp. 147–176. doi: 10.2174/1874479611104030147.

[26] John Barron, David Fleet, and S. Beauchemin. “Performance Of Optical
Flow Techniques”. In: International Journal of Computer Vision 12 (Feb.
1994), pp. 43–77. doi: 10.1007/BF01420984.

[27] Alper Yilmaz, Omar Javed, and Mubarak Shah. “Object tracking: a survey.
ACM Comput Surv”. In: ACM Comput. Surv. 38 (Dec. 2006). doi: 10.1145/
1177352.1177355.

[28] David Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: International Journal of Computer Vision 60 (Nov. 2004), pp. 91–110.
doi: 10.1023/B:VISI.0000029664.99615.94.

[29] Chris Stauffer and W. Grimson. “Adaptive background mixture models for
real-time tracking”. In: Proceedings of IEEE Conf. Computer Vision Patt.
Recog, vol. 2 2 (Jan. 2007).

[30] Donovan H. Parks and Sidney S. Fels. “Evaluation of Background Sub-
traction Algorithms with Post-Processing”. In: 2008 IEEE Fifth Interna-
tional Conference on Advanced Video and Signal Based Surveillance (2008),
pp. 192–199.

[31] Roberto Brunelli. Template matching techniques in computer vision. en.
Hoboken, NJ: Wiley-Blackwell, Mar. 2009.

[32] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-yuan Liao. “YOLOv4: Op-
timal Speed and Accuracy of Object Detection”. In: (Apr. 2020).

[33] Adam Paszke et al. PyTorch. 2017.

[34] NVIDIA. CUDA Toolkit Documentation v12.0. Documentation. url: https:
//docs.nvidia.com/cuda/.

[35] Nat Noordanus. Poet the Poet. Online. Accessed March 23, 2023. 2020. url:
https://poethepoet.natn.io/.

https://www.pythonguis.com/faq/pyqt-vs-tkinter/
https://www.pythonguis.com/faq/pyqt-vs-tkinter/
https://kkroening.github.io/ffmpeg-python/
https://github.com/mikeboers/PyAV
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/1506.02640
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.2174/1874479611104030147
https://doi.org/10.1007/BF01420984
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://poethepoet.natn.io/

BIBLIOGRAPHY 107

[36] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.
url: https://doi.org/10.1038/s41586-020-2649-2.

[37] Pull Request 668.
urlhttps://github.com/ultralytics/yolov5/pull/668. Accessed May 16, 2023.

[38] Figma: the collaborative interface design tool.
urlhttps://www.figma.com/. Accessed May 21, 2023.

[39] D. A. Norman. The Design of Everyday Things: Revised and Expanded Edi-
tion. New York City: Basic Books, 2013.

[40] J. Nielsen. F-shaped pattern for reading web content. Retrieved May 3, 2023.
2006. url: https://www.nngroup.com/articles/f-shaped-pattern-
reading-web-content/.

[41] Birger Johan Nordølum et al. “Artsgjenkjenning av fisk”. Norwegian (Bok-
mål). In: (2021). Bachelor thesis. url: https://hdl.handle.net/11250/
2777966.

[42] Dataset Management Framework (Datumaro).
urlhttps://github.com/openvinotoolkit/datumaro. Accessed May 21, 2023.

[43] How to train to detect your custom objects in darknet. GitHub README.
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-
your-custom-objects. May 2023.

[44] Kevin Shen. “Effect of Batch Size on Training Dynamics”. In: Medium (June
2018). url: https://medium.com/mini-distill/effect-of-batch-
size-on-training-dynamics-21c14f7a716e.

[45] Ultralytics Documentation: Train.
urlhttps://docs.ultralytics.com/usage/cfg/#train. Accessed May 18, 2023.

[46] Issue 1839 Comment.
urlhttps://github.com/ultralytics/ultralytics/issues/1839#issuecomment-1497317519.
Accessed May 16, 2023.

[47] Issue 509.
urlhttps://github.com/ultralytics/ultralytics/issues/509. Accessed February
02, 2023.

[48] Issue 577.
urlhttps://github.com/ultralytics/ultralytics/issues/577. Accessed February
02, 2023.

[49] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style Guide
for Python Code. Documentation. 2001. url: https://peps.python.org/
pep-0008/.

[50] Łukasz Langa et al. Black. Documentation. 2011. url: https://black.
readthedocs.io/en/stable/.

[51] Pylint. Documentation. url: https : / / pylint . readthedocs . io / en /
latest/.

[52] Python Software Foundation. MyPy. http://mypy-lang.org/. Accessed
2023.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://hdl.handle.net/11250/2777966
https://hdl.handle.net/11250/2777966
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects
https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e
https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://pylint.readthedocs.io/en/latest/
https://pylint.readthedocs.io/en/latest/
http://mypy-lang.org/

108 BIBLIOGRAPHY

[53] Timothée Mazzucotelli. isort. https://pycqa.github.io/isort/. Ac-
cessed 2023.

[54] Conventional Commits. https://www.conventionalcommits.org/. Ac-
cessed: May 22, 2023. May 2023.

https://pycqa.github.io/isort/
https://www.conventionalcommits.org/

APPENDICES

A Project Agreement

109

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt:

Veileder ved NTNU:
e-post og tlf.

Ekstern virksomhet:
Ekstern virksomhet sin kontaktperson, e-post og tlf.:

Student:
Fødselsdato:

Ev. flere studenter1
Daniel Hao Huynh, 13.03.2001
Lars Blütecher Holter, 17.09.1999
Lillian Alice Wangerud, 16.06.2001
Benjamin Letnes Bjerken, 09.05.1999

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

Bacheloroppgave x

Prosjektoppgave

Annen oppgave

Startdato: 11.02.2023

Sluttdato: 22.05.2023

Oppgavens arbeidstittel er:
Deteksjon av bevegelse i undervannsvideo

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

1 Dersom flere studenter skriver oppgave i fellesskap, kan alle føres opp her. Rettigheter ligger da i fellesskap

mellom studentene. Dersom ekstern virksomhet i stedet ønsker at det skal inngås egen avtale med hver enkelt

student, gjøres dette.

3 NTNU 10.12.2020

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven2. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

2 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

Alternativ a) (sett kryss) Hovedregel

x Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

x Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i

5 NTNU 10.12.2020

denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

 ett år

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

6 NTNU 10.12.2020

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

Signaturer:

Instituttleder:
Dato:

Veileder ved NTNU:
Dato:

Ekstern virksomhet:
Dato:

Student:
Dato:

Ev. flere studenter

Daniel Hao Huynh: 19.01.2023

Lillian Alice Wangerud: 19.01.2023

Lars Blütecher Holter: 19.01.2023

Benjamin Letnes Bjerken: 19.01.2023

B Task Description

116

Oppdragsgiver: Norsk Institutt for Naturforskning (NINA)

Kontaktperson NINA: Knut Marius Myrvold / knut.myrvold@nina.no / 920 64 963

Tittel: Deteksjon av bevegelse i undervannsvideo

Videoopptak brukes i økende grad i overvåking av natur og dyreliv, både på land og i vann. En viktig

grunn er at video er en passiv og skånsom metode som ikke er avhengig av fangst og håndtering av

dyr. Norsk Institutt for Naturforskning (NINA) bruker i dag undervannskamera til å filme fisk i ulike

miljøer og for ulike formål. Fram til nå har vi i samarbeid med NTNU undersøkt vandring i

fisketrapper og hvordan oversvømte arealer brukes av fisk på våren og sommeren.

Filming under vann byr på utfordringer for både biologer og dataingeniører: Grumsete vann,

algevekst, andre objekter som oppleves som støy (eks. gress og alger som beveger seg i bildet), og

ikke minst mye dødtid mellom de relevante klippene. Utfordringen er å skille relevant informasjon i

et mylder av bevegelige objekter, og å unngå å bruke opp lagringsplass på «unødvendige» klipp.

Vi ser et stort behov for å effektivisere datahåndteringen. Til nå har vi lagret alt videomateriale på

harddisker ute i felt (dvs. vekk fra pålitelig bredbånd og strømtilgang), noe som er både dyrt og

sårbart. Vi ser at et naturlig neste steg er å unngå å lagre materiale som ikke er relevant. Vi ønsker en

løsning som kan bruke en kontinuerlig videostrøm til å lagre viktige klipp, og dermed unngå å fylle

opp harddisker med video som ikke gir noe relevant informasjon. Det er også ønskelig med en

rapportering over nett som ikke trekker for mye data (over 4G nett). Programvaren må kunne kjøres

på Windows fra en enkel GUI. Programmet må kunne snakke med ekstern harddisk for

lagring/sletting av klipp.

Interesse for eller bakgrunn innen maskinsyn/bildebehandling er ønskelig, samt en pragmatisk

tilnærming til praktiske løsninger innen datahåndtering. Utviklingsmiljø og konkrete oppgaver

bestemmes i dialog med oppdragsgiver. Gruppen vil få tilgang til videomateriale, men står også fritt

til å velge eksperimentelle oppsett for å teste ut konsept eller undersøke hva som fungerer under

varierende forhold.

Oppgaven må løses helt frikoblet fra et påbegynt arbeid med samme case for et år siden. Oppgaven

passer en gruppe på 3-4 personer.

C Project Plan

118

Motion detection in underwater video
Project plan

Benjamin Letnes Bjerken Daniel Hao Huynh
Lars Blütecher Holter Lillian Alice Wangerud

January 25, 2023

CONTENTS

Contents 2

List of Figures 2

List of Tables 3

Abbreviations 5

1 Project Goal 1
1.1 Background . 1
1.2 Project goals . 2

1.2.1 Result goals . 2
1.2.2 Impact goals . 3
1.2.3 Learning objectives . 3

2 Scope 5
2.1 Subject Area . 5
2.2 Delimitation . 5
2.3 Task Description . 6

3 Planning 7

4 Project Organization 9
4.1 Responsibilities and roles . 9
4.2 Routines and rules for the group . 10

5 Organization of Quality Assurance 11
5.1 Plan for documentation, configuration management, tool use and

source code . 11
5.1.1 Documentation . 11
5.1.2 Standards and Conventions 11
5.1.3 Configuration Management 12
5.1.4 Testing . 13

5.2 Early Risk Analysis (identify, analyze, measures, follow up) 13

1

CONTENTS 2

6 Progress Plan for Implementation 17
6.1 Gantt-schema for the project period 17
6.2 First Draft of product backlog . 18

7 Preliminary Sketch of Development Environment and Technolo-
gies 19

8 Relevant Bachelor Theses and Future Development 21

References 22

LIST OF FIGURES

1.1.1 A lot of activity. 1
1.1.2 No activity. 1
1.2.1 Video processing . 2

6.1.1 Gantt-schema . 17

3

LIST OF TABLES

4

ABBREVIATIONS

List of all abbreviations:

• NTNU Norwegian University of Science and Technology

• NINA Norwegian Institute for Natural Research (Norsk institutt for natur-
forskning)

• UI/GUI User Interface/ Graphical User Interface

• UX User Experience

• CV Computer Vision

• GPU Graphics Processing Unit

• CPU Computer Processing Unit

• IDE Integrated Development Environment

• CI Continuous Integration

• MVP Minimum Viable Product

• AI Artificial Intelligence

• CNN Convolutional Neural Network

• RNN Recurrent Neural Network

• GAN Generative adversarial network

5

CHAPTER

ONE

PROJECT GOAL

1.1 Background
Video recording is used increasingly in research to monitor nature and wildlife.
This is due to the method being a non-intrusive and passive way to observe be-
havior, that does not rely on catching and handling animals. The Norwegian
Institute for Nature Research (NINA1) is one of many that utilizes this method
in their research. One of these studies performed by NINA is on the behavior of
fish in different environments underwater. Filming underwater however brings on
a few challenges, both for the biologists and computer engineers. Some of these
challenges are; a lot of dead time between life observed, murky waters, algae and
objects that create noise in recordings.

As of now NINA are recording a lot of video out in the field that is saved on
hard disks without processing the video recorded. This causes a lot of the storage
to hold unnecessary video that includes a lot of dead time between when life is
observed, which then results in the researchers manually having to look through
and process the data for samples. Therefore they need to streamline their method
of data processing and optimize their use of storage space. The aim is thus to be
able to automate the process of removing excessive data that is not relevant to
the institutes’ research.

Figure 1.1.1: A lot of activity. Figure 1.1.2: No activity.

1NINA - See Abbreviations

1

CHAPTER 1. PROJECT GOAL 2

1.2 Project goals

Figure 1.2.1: Diagram illustrating the process of identifying and extracting fish
footage from a video and storing it to a hard drive.

Throughout our bachelor thesis we have set a few different goals for what we
want to achieve. These goals consist of different performance measures, learning
objectives, results as well as personal growth.

1.2.1 Result goals

In our project, we aim to accurately detect 95% of fish in an input video spanning
up to 12 hours. We will achieve this by using a binary classification model that
uses a combination of precision and recall as the evaluation metrics.

Precision is a measure of how many of the positive predictions made by the
model are actually correct. In this case, precision would measure the proportion
of correctly identified fish out of all the fish predicted by the model.

Recall is a measure of how many of the actual fish present in the video were
correctly identified by the model. In this case, recall would measure the proportion
of correctly identified fish out of all the fish present in the video.

To minimize false positives and to ensure that we detect 95% of fish in the
video, we will optimize the model to have a high precision and recall score. We
will use a formula that calculates the F1-score as the harmonic mean of precision
and recall. This formula is represented as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(1.1)

CHAPTER 1. PROJECT GOAL 3

We chose to use F1-score as the evaluation metric because it takes into account
both precision and recall, providing a balance between the two. By maximizing
the F1-score, we can ensure that the model has a high precision and recall, which
will minimize false positives and increase the overall accuracy of fish detection.

It’s important to note that we don’t care about individual frames, just that
the fish is detected at some point because we will include a few seconds buffer
time before and after fish detection in the output video. This will allow us to have
a more robust detection and not to miss any fish that might be missed due to a
specific frame that might not be captured properly.

Another result goal of our project is the processing time for an input video.
Specifically, we aim to process a 30-minute video in 25 minutes or less. This is an
important aspect of our project as it allows us to quickly analyze and make use
of the video data without building up a backlog of unprocessed video as NINA
continues to collect new video data.

Another important result goal of our project is to reduce the amount of hu-
man time involved in processing a video. Currently, the process of reviewing and
analyzing video footage is a time-consuming task that takes 1 minute per minute
of video. With our solution we aim to reduce this time to only 5 minutes for a
30-minute video, allowing human operators to focus on more important tasks.

1.2.2 Impact goals

Our impact goals for the project include improving the efficiency of NINA’s op-
erations by reducing the time it takes to process video footage. By achieving our
result goals of accurate fish detection and faster video processing, we can help
NINA to quickly analyze and make use of the video data without building up a
backlog of unprocessed video. This will help NINA to more effectively monitor
and study fish populations.

Another impact goal is to reduce the amount of hard drives required to store
video data. By processing and removing unnecessary footage, we can help NINA
to save storage space and reduce the cost of video data storage.

We also aim to focus on future development so that it is easy for others to
work on it, maintain it, and add new features. This will make it easier for NINA
to continue to improve and update the software as new technologies and methods
become available.

1.2.3 Learning objectives

Even though the bachelor thesis is about showing what we have learned thus far
in our study, it is also about learning new subjects needed to complete our thesis.
These learning objectives are far between each other but all are relevant to be-
coming a software engineer. The learning objectives we strive to become proficient
in throughout the thesis consists of but are not limited to; the complete devel-
opment life cycle of a software on a commercial project, implementing Artificial
Intelligence (AI2) and/ or Computer Vision (CV3), User Experience (UX4) and

2AI - See Abbreviations
3CV - See Abbreviations
4UX - See Abbreviations

CHAPTER 1. PROJECT GOAL 4

User Interface (UI5) , processing of video data and how to connect all aspects we
create through coding in different languages.

5UI - See Abbreviations

CHAPTER

TWO

SCOPE

2.1 Subject Area
Our client NINA, has a department on researching fish and other underwater
wildlife. They do this through monitoring and recording video with an underwater
camera, so as not to disturb the wildlife. This is to ensure that the behavior of
the fish does not change.

NINA’s current in-field setup consists of several components that save video
recorded by an underwater camera. The use of a Matrox box, with a web interface,
gathers the video recorded from the camera to save on a hard disk, and allows for
a connected computer to stream from the underwater camera. The computer may
also connect to 4G through an on-site laptop which allows researchers to remotely
turn the camera on and off. As of now the only way for NINA to gain data that
has been recorded is to gather that data through fetching the hard disks physically
from the field and sort through and analyze the recordings.

The client is therefore requesting an application that uses image recognition
and movement detection to automate the process. The information stored on the
on-field hard disk would be processed after physically fetching it from the field,
using AI or computer vision. This would increase the effectiveness and the quality
of the NINA’s research.

2.2 Delimitation
In order to keep the bachelor within a doable time frame, we have a few points
to delimitation in order to narrow it down. Within our scope we have determined
that these elements will not be implemented:

• The finished product will not do real time processing of videos. This is due
to the client’s limited on field equipment as it seems unlikely that the current
setup is suitable to perform the image recognition and data processing and
it has limited network access and can therefore not send data across the
network to be processed.

• We will not be aiding in the improvement of onsite hardware as this is outside
of what is relevant to our bachelor thesis.

5

CHAPTER 2. SCOPE 6

• For the resulting application we will not prioritize counting and/or classifying
fish. This is due to these falling outside of the planned core software and
NINA already has software that can classify fish in recordings which we may
integrate with our project.

2.3 Task Description
This project will consist of developing a software that can be used to automate
the process of processing recorded video and removing dead time between life is
observed. The application needs to be able to run on a Cuda[1] and CudNN[2] sup-
ported NVIDIA graphics card. It should be straightforward and researchers with
little experience with computers should be able to utilize the program. Features
that the application is expected to have is as follows:

• Gather data from an external hard disk

• Process large data sets

• Recognize and determine when fish or other underwater life is seen in a
pre-recorded video.

– Through the use of AI or other movement detection methods

• Process footage by cutting out and removing the clips where wildlife is not
within the frame.

– Save the processed data in a configurable format

• Allow configuration for the processing of the data input(video clips), this
refers to; keep or delete the original data, add a customizable amount of
dead time before and after the created clip, merge the clips, etc.

– Everything that is not configurable is likely to be set by NINA prior,
such as a filename standard, video length standard, etc.

• Have an intuitive and well formed Graphical User interface that allows for a
good user experience with the program.

– This should allow the user to easily choose the input folder, the output
destination and customization to the clips.

CHAPTER

THREE

PLANNING

For our bachelor thesis we have agreed to use scrum as our development model,
this is because scrum fits very well with how we intend to work with our project.
When working with modules or interconnected components, we want the workflow
of the development model to be iterative instead of incremental in order to work
on different modules in parallel. This improves the workflow, especially when we
know we can work on different parts of the project asynchronously.

Each Tuesday at around 3 PM we plan to have the weekly scrum meeting where
we go through what we were able to do since last week, as well as make plans for
the week to come. Here Daniel Hao Huynh is going to act as the scrum master. In
the meetings we will go over issues and considering we plan to have our meeting
straight after our weekly supervisor meeting, we will discuss what the supervisor
advised us on. In these meetings we will also do the sprint reviews.

Each scrum sprint is intended to last for two weeks. We plan to have a daily
scrum meeting every weekday to just get everyone up and working on the project,
as well as to be able to notify anyone if there are any concerns for what you are
currently working on. In these daily meetings we will also make sure everyone is
following their tasks and do the work that their roles intend them to do.

To keep track of how far we have come and how the development goes, we will be
utilizing git issues. We plan to have medium sized issues with sub issues under
them where we can mark what is done and what remains in the issue. Inside our
github [3] we have made five different boards where we can change the status of
our issues. These statuses include; Todo, In Progress, Ready for review, Stuck and
Done. By having these statuses, we can easily see where we are in the development
with all aspects of our project and give us a clear indication on what we need to
work on next.

Throughout the development process we have several key milestones to work to-
wards. These milestones consist of, but are not limited to; MVP1, project plan
delivery, final plan delivery, user tests and final program iteration. These mile-
stones will be closely worked towards in our github by assigning every issue we

1MVP - See Abbreviations

7

CHAPTER 3. PLANNING 8

create to their respected milestone, allowing us to see how far along we are on
each milestone. These milestones are also shown in our Gantt-schema[4].

CHAPTER

FOUR

PROJECT ORGANIZATION

4.1 Responsibilities and roles
• Group leader: Lars Blütecher Holter

– Ensures that every member contributes to the project and that the
project follows the project plan

– Responsible for taking decisions during group disputes

• Secretary/Document responsible: Lillian Alice Wangerud

– Writes reports for meetings

– Responsible for ensuring that the project is adequately documented

• Communications: Benjamin Letnes Bjerken

– Responsible for keeping communication out of and in to the group

– Set up meetings between group and client

• Scrum master: Daniel Hao Huynh

– Responsible for summoning all members for scrum meetings

– Leads scrum meetings and ensures that every thing on the agenda is
brought up during the meeting

• Supervisor: Marius Pedersen

• Client representatives: Knut Marius Myrvold and Tobias Holter

9

CHAPTER 4. PROJECT ORGANIZATION 10

4.2 Routines and rules for the group
The routines and rules for the bachelor group that we have established are as
follows:

• We will have a physical meeting with our supervisor every Tuesday at 14
o’clock thereafter we will continue the meeting as a sprint meeting preferably
at 15 o’clock.

• Every day, except the weekends we will have normal digital meetings where
we will continue our formal work on the project.

• Every other week we will have digital meetings with our client, NINA every
monday at 14 until 16 o’clock.

• Every time we work we will log the amount of time used in Toggl [5].

• At any necessity for a Leave of Absence a notification to the group has to
be established at least 1 day prior to the date of the absence.

• If the group encounters any type of internal dispute, it will be upon the group
leader to take the responsibility for choosing the outcome of the dispute.

CHAPTER

FIVE

ORGANIZATION OF QUALITY ASSURANCE

5.1 Plan for documentation, configuration man-
agement, tool use and source code

In order to ensure the quality of the code in the project, it is important to have a
well-organized system for quality assurance in place. This includes documentation,
standards, configuration management, tools, and source code management.

5.1.1 Documentation

Documentation is a critical aspect of quality assurance, as it helps to clearly com-
municate the design, implementation, and testing of the code. This documentation
will include the requirements, design, test plans, and results. Additionally, any de-
cisions or trade-offs made during the development process will also be documented.
To effectively document the python code, we will be using Pydoc [6]. Pydoc is
a built-in documentation tool that can automatically generate documentation for
the code based on the comments and docstrings. In addition to pydoc, we will
be using Jupyter [7] notebooks to document the process of training and testing
AI models. Jupyter notebooks allow for interactive computing, data visualization,
and narrative text at each step. This will make it easy for others to understand
and reproduce the process, and help to ensure that the research is transparent
and reproducible. This makes Jupyter an ideal tool for documenting the process
of training and testing AI models.

5.1.2 Standards and Conventions

In order to ensure that the python code is readable, maintainable, and consistent,
we will be following the PEP8 [8] and PEP257 [9] guidelines. PEP8 is a set of
coding conventions for the python programming language which recommends a
specific style for formatting and structuring code. It covers various aspects of
the code, including indentation, line length, naming conventions, and commenting
conventions. PEP257 is similar to PEP8, but it describes a set of docstring con-
ventions. We chose to go with PEP8 instead of something like the Google Python

11

CHAPTER 5. ORGANIZATION OF QUALITY ASSURANCE 12

Style Guide [10] because PEP8 is the python standard and we are already familiar
with a lot of aspects from it.

Some key points we will follow from PEP8 include:

• Using 4 spaces for indentation (instead of tabs)

• Use lowercase letters and underscores for variable and function names (snake
case)

• Use capitalized words for class names (camel case)

• Use double quotes instead of single quotes for string literals

• Include a space after the # of a comment

• Include docstrings in all functions, classes, and modules

By following the PEP8 guidelines, we can ensure that the code is easy to
read and understand for others, and that it is consistent with the established
conventions for python code. In addition to following PEP8, we will be using
Pylint [11] which is a linting tool that checks the code for PEP8 compliance. This
will help us catch any style errors before the code is committed by using pre-
commit hooks. We will also be running Pylint as part of our GitHub Continuous
Integration pipeline in the form of a GitHub action to catch commits that did not
go through the pre-commit hook. The action will run on every push to the master
branch and will fail if the code is not PEP8 compliant. Pylint is stricter than
something like flake8 and has more checks, stricter coding standards, and more
code smells, this gives it an edge over other linters. In addition to Pylint, we will
be using the tool Black [12] to format our python code. Black is a python code
formatter that automatically reformats code to conform to a consistent style based
on the PEP8 guidelines. Black is also very opinionated compared to something like
autopep8 which only fixes PEP8 violations which can lead to other inconsistencies
in the code.

We will also use commitlint [13] which is a git commit linter that checks the
formatting and content of git commit messages before they are committed. This
will help ensure that commit messages are clear, concise, and written in the correct
format. This will make it easier to understand the history of the code, and to
quickly identify which commits made specific changes. We have not used a commit
linter before, but we found commitlint to be easy to set up and is well supported
with 2 million weekly downloads on NPM and 13,000 stars on GitHub.

5.1.3 Configuration Management

Configuration management will be implemented using a set of best practices and
using tools such as Github and Toggl.

Version control will be handled by Github where we will store all versions of
the code and track changes made over time. This will allow us to easily roll back to
previous versions if necessary and also to collaborate with other team members.
We will be using a branching model like git-flow, which allows for the creation
of separate branches for development, testing, and production. CI is also done
via Github action as mentioned above, this will help us automate the process of

CHAPTER 5. ORGANIZATION OF QUALITY ASSURANCE 13

building, testing, and deploying the code. Our branching model and CI pipeline
will help ensure that the code is always in a stable state and that changes are
thoroughly tested before being deployed to production. Task management is also
handled via Github, using their "Project" feature. Github projects allow us to
organize and prioritize tasks, assign them to team members and track the progress
of the work. How we use boards in the project is described in 4.1.

We will be using Toggle to track the time spent on different tasks, this will help
us have a better understanding of how much time is spent on different aspects of
the project and make data-driven decisions to improve the project management.

5.1.4 Testing

Testing is a crucial step in ensuring the quality of the code. It helps us to identify
and fix bugs, ensure that the code meets the requirements, and improves the overall
performance and usability of the code. To implement testing into our project, we
will be using a combination of automated unit tests, integration testing, manual
testing, and user testing.

We will be writing automated unit tests to test individual units of the code.
Integration testing will be performed once we have adequate coverage using unit
tests, in order to test how the individual units of code work together. Both
unit testing and integration testing will be performed using the Pytest testing
framework, and these tests will run as Github Actions on all commits pushed to
the repo. This will help to ensure that the code is working as expected before
anything is merged into production.

Manual testing will be performed to test the code manually by running it and
evaluating its output. This will be performed by us during development.

To perform user testing, we will be recruiting users from NINA and inviting
them to participate in in-person moderated usability testing sessions. During these
sessions, a moderator will guide the users through the testing process and ask
them questions about their experience with the interface. This method is useful
for gathering qualitative data about the user experience and providing insights
into the user’s thoughts and feelings. User testing is essential to ensure that the
interface is user-friendly and that the product meets the needs of the users.

By implementing these testing methods, we can ensure that the code is func-
tioning as expected, that it is able to detect fish in the videos, and that it meets the
requirements. Additionally, by performing user testing, we can gather feedback
on the user interface and the product and use it to improve the user experience.
Overall, testing helps to guarantee the reliability, stability, and usability of the
code and to avoid issues that can arise in the future.

5.2 Early Risk Analysis (identify, analyze, mea-
sures, follow up)

CHAPTER 5. ORGANIZATION OF QUALITY ASSURANCE 14

No. Area of
Assign-
ment

Description Possible conse-
quences

Risk Mitigation

ProbabilityImpactRisk-
index

1 Product Lack of
training
data

The model may
not be able to
detect fish accu-
rately

2 4 6 Gather datasets from ex-
ternal sources. Spend
adequate time labeling.
Use data augmentation.
Create synthetic data.

2 Product Loss of
source
code on
local ma-
chine

Non committed
code is lost and
has to be re-
written

3 1 4 Use an external host for
the git repository. Com-
mit often.

3 Product Loss of
training
data

We have to
spend time re-
collecting the
data

1 4 5 Use an external host to
store training data as
well as local copies.

4 Product Poor
tracking of
fish(?)

We are unable to
accurately count
fish and produce
bad reports

4 1 5 Allocate time for re-
searching and testing
accurate tracking algo-
rithms.

5 Product Inadequate
graphics
processing
unit for de-
ployment

Unsupported
GPU leads to no
deployment.

1 5 6 Change to a supported
GPU.

6 Product Inadequate
graphics
process-
ing unit
during
training

We are unable to
train the model
in a reasonable
amount of time

1 4 5 Choose a smaller model.

7 Product Complex/non-
intuitive
user inter-
face

Users are unable
to use the appli-
cation

2 4 6 Allocate time for user
testing and focus on sim-
plicity.

8 Product Product
not fin-
ished by
deadline

We are unable
to deliver a
product that
satisfies client
requirements

2 3 5 Focus on creating a min-
imum viable product be-
fore any extra features.
Prioritize more impor-
tant features over others.
(write more about follow-
ing gantt chart and good
use of issues on github)

CHAPTER 5. ORGANIZATION OF QUALITY ASSURANCE 15

No. Area of
Assign-
ment

Description Possible conse-
quences

Risk Mitigation

ProbabilityImpactRisk-
index

9 Product Model size
too small
or too
large/ex-
pensive

The model is
unable to detect
fish accurately,
or we might un-
able to process
the videos in
real time or less
time than the
length of the
input video

1 5 6 Allocate time for re-
search and testing of
models that satisfy our
accuracy requirements
while being performant
enough.

10 Project Lack of
documen-
tation

Hard to main-
tain and effi-
ciently perform
collaborative
work on the
project

2 3 5 Dedicated team member
to ensure adequate and
proper documentation.
(write about charts,
schemas, architecture,
source code comments,
atomic commits and
commit messages below)

11 Business Wrong
choice of
detection
method

Waste of time
and resources

2 4 6 Allocate time for re-
search into both tra-
ditional movement de-
tection algorithms and
different object detec-
tion methods using neu-
ral networks.

12 Business Report not
finished by
deadline

We get a worse
grade

2 5 7 Prioritize the report over
the product. Work on
the report in parallel
with the product. Doc-
ument all decisions as we
make them. Set interme-
diate deadlines and mile-
stones.

13 Business Monolithic
architec-
ture

Hard to main-
tain and extend
with new fea-
tures and future
models

1 3 4 Focus on modularity

CHAPTER 5. ORGANIZATION OF QUALITY ASSURANCE 16

ID Mitigation

1 Considering what our project is regarding, there is most likely not that
many datasets we can use that are ready to be used. Thus to prevent this
from being an issue, we will gather datasets from external sources. In
addition to this, we will spend adequate time labeling the data to make
sure we get the most accurate results as possible. To get more data to
run our model on, we will use data augmentation and if needed and not
too big of a challenge, we will try to add some synthetic data as well.

5 As the final part of our delivery for NINA is to deploy the product on
the commissioned hardware, we should ensure that the hardware fits
all the required specifications for our product. Therefore the Graphics
Processing Unit (GPU) has to be up to date with our product. It should
support Cuda and CuDNN in order to work, and if it does not, then we
have to get them to switch the unsupported component to a supported
one.

7 To ensure that the model is neither too small to perform the required
tasks nor too sizable and costly we plan on allocating time to research
and test models. This will make sure that the final model utilized for
our projects will satisfy the accuracy requirements we have put on the
product, such that it will accumulate as many clips with necessary data
for NINA’s research. However during this process we also need to ensure
that the model is not too costly to process data on our client’s equipment
and can process it in less than real time, as the goal of this project is to
streamline the processing of NINA’s data.

9 To mitigate the risk of choosing the wrong detection method, we will
conduct thorough research, create prototypes, review prior research, and
continuously evaluate the performance of the chosen method. We will
compare traditional movement detection algorithms and different object
detection methods using neural networks, test them on a small scale and
make an informed decision on which method to use. This will help to
ensure that we are using the best method for our project and that we are
using our time and resources effectively.

10 For our project to be used by the scientists at NINA, we will need to have
a working UI which is intuitive to use. Even though our program won’t
have too many different elements embedded into it, it’s still important to
test how it is for the end user and if there are anything missing. Hence we
will make sure to allocate time for user testing and focus on simplicity.

12 To mitigate the risk of not finishing the final report, we will prioritize
it over the end product, work on the report in parallel with the prod-
uct, document all the decisions as we make them, and set intermediate
deadlines and milestones. We will create a detailed project plan and com-
municate regularly with the supervisor to ensure that we are on schedule
to meet the deadline. We will also have a backup plan in case we face
unforeseen obstacles that might delay the report, such as seeking extra
help or adjusting the scope of the report if necessary. Additionally, we
will review the report on a regular basis to ensure that it is of high qual-
ity and includes all the necessary information. By taking these steps, we
ensure that the report is completed on time and to a high standard.

CHAPTER

SIX

PROGRESS PLAN FOR IMPLEMENTATION

6.1 Gantt-schema for the project period

Figure 6.1.1: A Gantt-schema for the approximation of the project period.

17

CHAPTER 6. PROGRESS PLAN FOR IMPLEMENTATION 18

6.2 First Draft of product backlog
The estimated time references to estimated hours spent on developing the feature

• Long - 20h or more

• Medium - 10h -20h

• Short - 10h or less

ID Feature Priority Estimated
Time

1 Detection of wildlife activity High Long

2 Process Videos/data High Medium

3 Setup dataset High Long

4 System Architecture High Medium

5 Save Videos/data Medium Short

6 Draft UI Medium Short

7 Fail safe mechanics Medium Long

8 Generate report after processing Low Short

9 Sorting of processed clips Low Short

10 Ability to pause and stop processing Low Medium

CHAPTER

SEVEN

PRELIMINARY SKETCH OF DEVELOPMENT
ENVIRONMENT AND TECHNOLOGIES

As we drafted a preliminary sketch for the development environment and discussed
which technologies we would use for the project, we concluded that python would
be a key programming language for the entirety of the project, this is because
of how highly supported the language is by libraries, and how well documented
it is. For drafting the AI model we used ChatGPT [14] for advice, this is be-
cause of its high versatility and speed regarding giving reasonable responses and
documentation of said models, this information was used in tandem with physical
and digital meetings in order to figure out which model fits the project’s scope best.

We decided that we would use a standard IDE which supported python for our
project such as Visual Studio Code[15] or PyCharm[16]. We would also include
the use of black & flake8[17] as a code formatter and linter with said IDE, this
is because of their standard of linting being very adamant and giving us a good
foundation in keeping all of the code format similar to each other.

For developing the AI, we would definitely use the Tensorflow[18] which sup-
ports the usage of GPU instead of just CPU processing, this is because using just
the regular tensorflow would bottleneck our progress severely. The performance of
said tensorflow is far behind the tensorflow which uses the GPU in order to train
the AI. Tensorflow GPU is therefore a must have for us especially when working
with training the provided and other datasets in general. Tensorflow GPU requires
that the physical GPU is of the NVIDIA brand and that the prerequisite cuDNN
and Cuda software be installed.

The UI has been drafted to be made using python, for the same reasons stated
previously, the libraries PyQT[19] or Tkinter[20] would be viable for use in devel-
opment of the UI. PyQT is built on industry standard Qt and would be viable
because of the different functionalities they provide. Qt uses a broad variety of
native platform APIs for networking, database development, and more. It pro-
vides primary access to them through a special API. As PyQt is one of the most
commonly used UI systems for Python, you can conveniently access a broad va-
riety of documentation. Qt provides multiple widgets, such as buttons or menus,
all designed with a basic interface for all compatible platforms. GUI programming

19

CHAPTER 7. PRELIMINARY SKETCH OF DEVELOPMENT
ENVIRONMENT AND TECHNOLOGIES 20

with Qt is built around the idea of signals and slots for creating contact between
objects. This allows versatility in dealing with GUI incidents which results in a
smoother code base.

Tkinter would be used in tandem with its auxiliary library CustomTkinter[21]
for added functionality, such as a unified style, and easier implementation of a styl-
ized GUI. This decision was based on the documentation they provided, and seeing
examples of what kind of applications which could be achieved using said libraries.
The libraries are also well documented, Tkinter has been documented thoroughly,
seeing as it is the standard Python interface to the Tcl/Tk GUI toolkit. Cus-
tomTkinter is a python UI-library based on Tkinter, which provides new, modern
and fully customizable widgets. They are created and used like normal Tkinter
widgets and can also be used in combination with normal Tkinter elements. Sur-
prisingly even though CustomTkinter is a newer library it is well supported and
documented.

We would use a Library supporting ffmpeg[22] in order to process the videos
so that they only contain data of value to our Client(NINA), this usually means
fish of any kind however it can also be just wild life activity in general. We would
have the program depend on our Model in order to decide which parts are neces-
sary and cut out the unnecessary parts, this would also be done presumably using
python with a ffmpeg library supporting the functionality which we need.

During the development there will be a need for testing different functional-
ities and mocking certain values, for testing pure python code, the inbuilt unit
testing library or the much preferred Pytest library would be used during the de-
velopment for that exact purpose, whereas UI would probably use something like
PyAutoGUI[23].

We use Discord [24] as a primary technology for the use of communication,
notes, resources and in general, it is likely going to reflect the development pro-
cess later on as it will contain all resources related to physical and digital meetings
and communication regarding the project itself, However we communicate using
email/teams in order to communicate with our supervisor and client(NINA).

The development process itself and technologies used during that process would
all be tracked using Toggl, a standalone website used for tracking the time usage
for any kind of work supporting group tracking and labeling, and Git issues for
the implementation of the product itself. Here we use GitHub for that with linted
commit messages acting concurrently with the issues regarding the commits.

CHAPTER

EIGHT

RELEVANT BACHELOR THESES AND FUTURE
DEVELOPMENT

We are currently working on a bachelor thesis that aims to make the researchers’
lives easier and acquire more data in a more efficient way. In order to achieve this
goal, we are considering incorporating previous NINA bachelor theses that have
similar aims and objectives. By doing so, we hope to create a more comprehensive
and end-to-end system that would satisfy NINA’s needs for a complete software
solution.

One of the relevant bachelor theses that we will be studying is the "Artsg-
jenkjenning av fisk" [25] which focuses on species recognition of fish. This thesis
worked on how to report which species of fish was recorded at a given time. Al-
though it is not the same thesis as ours, it is closely related in terms of the goals
and objectives. Our thesis, on the other hand, aims to cut out irrelevant video
footage. By integrating parts of this previous project into our own, we hope to
create a more end-to-end system that would make the researchers’ lives easier and
acquire more data in a more efficient way.

To ensure that our project is easily readable, maintainable and testable, we
plan to work in a modular fashion. This means that we will break down the code
into smaller, manageable components that are easier to understand and work on.
Additionally, we will document our work throughout the whole process, so that
anyone who picks up the project later on will be able to understand the reasoning
behind every decision we made along the way.

Another relevant thesis we will study is the "Salamander Identification Appli-
cation." [26] which is about identifying salamander species based on the patterns
on their stomachs through the use of picture recognition and AI. Even though
this thesis regards salamanders and creating an app for this, it still has many
similarities with our bachelor thesis and we will use the results from this previous
thesis to enhance our own project. By studying and incorporating the findings
from these previous theses, we hope to create a more comprehensive and effective
solution for NINA.

21

REFERENCES

[1] NVIDIA. CUDA Toolkit Documentation v12.0. Documentation. url: https:
//docs.nvidia.com/cuda/.

[2] NVIDIA. NVIDIA CUDNN DOCUMENTATION. Documentation. url: https:
//docs.nvidia.com/deeplearning/cudnn/developer-guide/index.
html.

[3] GitHub. Web Page. 2020. url: https://github.com/.

[4] John Correlli and Nathan Gilmore. teamgantt. Web Page. 2009. url: https:
//support.teamgantt.com/article/77-welcome-to-teamgantt/.

[5] Alari Aho and Krister Haav. Toggl Track. Web Page. 2006. url: https:
//developers.track.toggl.com/docs/.

[6] Python Software Foundation. pydoc – Documentation generator and online
help system. Documentation. 2023. url: https://docs.python.org/3/
library/pydoc.html.

[7] Project Jupyter. Jupyter. Documentation. 2014. url: https://jupyter.
org/.

[8] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style Guide
for Python Code. Documentation. 2001. url: https://peps.python.org/
pep-0008/.

[9] David Goodger and Guido van Rossum. PEP 257 – Docstring Conventions.
Documentation. 2001. url: https://peps.python.org/pep-0257/.

[10] Google Python Style Guide. Documentation. url: https://google.github.
io/styleguide/pyguide.html.

[11] Pylint. Documentation. url: https : / / pylint . readthedocs . io / en /
latest/.

[12] Łukasz Langa et al. Black. Documentation. 2011. url: https://black.
readthedocs.io/en/stable/.

[13] marionebl. commitlint. Documentation. 2020. url: https://commitlint.
js.org/%5C#/.

[14] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”.
In: (2019).

[15] Microsoft. Visual Studio Code. Computer Program. 2015. url: https://
code.visualstudio.com/docs.

22

REFERENCES 23

[16] JetBrains. PyCharm. Computer Program. 2010. url: https://www.jetbrains.
com/pycharm/guide/tips/quick-docs/.

[17] Ian Stapleton Cordasco. Flake8: Your Tool For Style Guide Enforcement.
Documentation. 2016. url: https://flake8.pycqa.org/en/latest/.

[18] Martıén Abadi et al. Tensorflow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems. Web Page. 2015. url: https : / / www .
tensorflow.org/.

[19] Riverbank_Computing. PyQt. Documentation. 1998. url: https://wiki.
python.org/moin/PyQt.

[20] Python Software Foundation. tkinter – Python interface to Tcl/Tk. Docu-
mentation. 2023. url: https://docs.python.org/3/library/tkinter.
html.

[21] Tom Schimansky. CustomTkinter. Documentation. 2021. url: https://
github.com/TomSchimansky/CustomTkinter.

[22] Karl Kroening. ffmpeg-python: Python bindings for FFmpeg. Documentation.
2017. url: https://kkroening.github.io/ffmpeg-python/.

[23] Al Sweigart. PyAutoGUI. Documentation. 2014. url: https://pyautogui.
readthedocs.io/en/latest/.

[24] Discord Inc. Discord. Computer Program. 2015. url: https://discord.
com/developers/docs/intro.

[25] Birger Johan Nordølum et al. “Artsgjennkjenning av fisk”. Thesis. 2021.

[26] Eirik Martin Danielsen et al. “Salamander Identification Application”. The-
sis. 2021. url: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2777982.

D Prototype

150

Browse files

Browse files

Folder to analyse

Folder to store new files

Keep original

Buffer time before Buffer time after

Run

Advanced options

E User Test Form

152

1. Innledning
● Forklar formålet med brukertestingen.
● Beskriv kort applikasjonen og dens funksjoner.

2. Spørsmål før testen
● Spør deltakerne om deres bakgrunn og erfaring.
● Spør dem hva de forventer at applikasjonen skal gjøre.
● Spør om de har noen spesifikke bekymringer eller spørsmål om applikasjonen.

3. Testoppgaver
● Be deltakeren om å fullføre en rekke oppgaver ved hjelp av applikasjonen. Se nedenfor.
● Observer deltakeren mens de fullfører oppgavene.
● Be dem om å tenke høyt og forklare tankeprosessen mens de arbeider med oppgavene.
● Oppfordre dem til å stille spørsmål eller gi tilbakemeldinger underveis.

4. Spørsmål etter testen
● Spør deltakeren om deres generelle erfaring med å bruke applikasjonen.
● Spør om de har støtt på problemer eller hatt problemer med å fullføre noen av

oppgavene.
● Spør om de syntes noen av funksjonene var forvirrende eller vanskelige å bruke.
● Spør om de har noen forslag til forbedringer av applikasjonen eller dens funksjoner.
● Takk deltakeren for deres tid og tilbakemeldinger.

5. Avslutning
● Minn deltakeren på at tilbakemeldingene deres er verdifulle og vil bli brukt til å forbedre

applikasjonen.
● Gi dem eventuell tilleggsinformasjon eller ressurser de måtte trenge.
● Takk dem igjen for deres tid og deltakelse.

Oppgave 1:
Du har en mappe som inneholder flere videoer. Bruk programmet til å behandle videoene og
lagre de behandlede videoene i en ny mappe. Forsikre deg om at de behandlede videoene bare
inneholder deler av videoen der ferskvannsfisk oppdages. Aktiver også rapportfunksjonen og
lagre rapporten i CSV-format.

Oppgave 2:
Du har en mappe som inneholder en video. Bruk programmet til å behandle videoen og lagre
den behandlede videoen i en ny mappe. Forsikre deg om at den behandlede videoen bare
inneholder deler av videoen der ferskvannsfisk er oppdaget. Deaktiver også rapportfunksjonen.

Oppgave 3:
Du har en mappe som inneholder flere videoer. Bruk programmet til å behandle videoene og
lagre de behandlede videoene i en ny mappe. Forsikre deg om at de behandlede videoene
inneholder 10 sekunder med video før og etter en snutten som inneholder fisk.

Oppgave 4:

Du har en mappe som inneholder flere videoer. Bruk programmet til å behandle videoene og
lagre de behandlede videoene i en ny mappe. Forsikre deg om at de behandlede videoene
inneholder 0 sekunder med video før og etter en rekke bilder som inneholder ferskvannsfisk.

Oppgave 5:
Du har en mappe som inneholder flere videoer. Bruk programmet til å behandle videoene og
lagre de behandlede videoene i en ny mappe. Forsikre deg om at de behandlede videoene
inneholder den opprinnelige input videoen og 5 sekunder med video før og etter en rekke bilder
som inneholder ferskvannsfisk.

Oppgave 6:
Utforsk programmets “advanced options” og aktiver PDF-rapportformatet. Bearbeid deretter en
video, og lagre den bearbeidede videoen i en ny mappe. Forsikre deg om at den behandlede
videoen bare inneholder deler av videoen der fisk oppdages.

Oppgave 7:
Utforsk programmets avanserte alternativer og deaktiver rapportfunksjonen. Behandle deretter
en video, og lagre den behandlede videoen i en ny mappe. Forsikre deg om at den behandlede
videoen bare inneholder deler av videoen der ferskvannsfisk er oppdaget. Se om en rapport ble
generert.

Oppgave 8:
Utforsk programmets avanserte alternativer og aktiver XML-rapportformatet. Behandle deretter
en video av ferskvannsfisk som svømmer i en elv eller bekk, og lagre den behandlede videoen i
en ny mappe. Forsikre deg om at den behandlede videoen bare inneholder deler av videoen der
ferskvannsfisk oppdages.

Oppgave 9:
Utforsk programmets avanserte alternativer og deaktiver rapportfunksjonen. Behandle deretter
en video av ferskvannsfisk som svømmer i en elv eller bekk, og lagre den behandlede videoen i
en ny mappe. Forsikre deg om at den behandlede videoen bare inneholder deler av videoen der
ferskvannsfisk er oppdaget.

Oppgave 10:
Bruk programmet til å behandle en video av ferskvannsfisk som svømmer i en elv eller bekk, og
lagre den behandlede videoen i en ny mappe. Se på fremdriftslinjen og legg merke til hvor lang
tid det tar å behandle videoen. Gi deretter tilbakemelding på programmets hastighet.

F Timekeeping

155

Summary Report
06/01/2022 – 05/31/2023

TOTAL HOURS: 2158:52:31

583:20:00

466:40:00

350:00:00

233:20:00

116:40:00

0:00:00

233:48:00

359:08:22

574:09:48

424:57:37

566:48:44

Jun

2022

Jul

2022

Aug

2022

Sep

2022

Oct

2022

Nov

2022

Dec

2022

Jan

2023

Feb

2023

Mar

2023

Apr

2023

May

2023

24%

25%
26%

26%

USER DURATION

LB Lars Blütecher Holter 551:19:55

Daniel 551:16:19

BZ Bzh 532:09:15

LA Lillian Alice Wangerud 524:07:02

47%

1%1%1%1%1%2%2%
3%

3%

3%

4%

5%

5%

6%

7%

8%

TIME ENTRY DURATION

Final report writing 167:23:39

documentation 156:00:04

Daily meeting 125:15:04

Annotation 116:13:19

Documentation 99:31:08

Report writing 82:18:00

annotation work 69:34:53

Annotation work 64:34:01

Supervisor meeting 55:21:02

First iteration UI 41:37:10

Work on project plan 34:20:46

Research Previous bachelor assignment for RND 30:33:47

Scrum meeting 27:30:45

Daily scrum meeting 27:10:03

R&D for output report from the program 26:28:58

Project plan writing 25:56:13

Page 1/22Lillian Alice Wangerud's workspace

Other time entries 1009:03:39

USER - TIME ENTRY DURATION PERCENTAGE

BZ Bzh 532:09:15 24.65%

Add CI badge to repo 0:06:00

Add functionality to new UI widgets 2:11:03 0.1%

Add more videos to evaluation script 0:47:37 0.04%

Allocate disk space for CVAT 3:04:50 0.14%

Annotation 19:55:34 0.92%

Automate brackish dataset generation 7:10:53 0.33%

Clean up video output annotation code 0:34:00 0.03%

Configure and start training Yolov8s model 3:16:30 0.15%

Configure CVAT server 4:41:39 0.22%

Configure self-annotation with yolov5x and create script to turn --save-txt output to be cvat compliant 4:14:00 0.2%

Convert dataset to binary classification 5:28:00 0.25%

Create evaluation script and create evaluation data 5:04:00 0.23%

Create new training split with new background images and start training 4:09:00 0.19%

Create new vdi test with new frame grabber 1:00:00 0.05%

Create PR and validate that everything works on linux 1:15:00 0.06%

Page 2/22Lillian Alice Wangerud's workspace

Create PRs for settings rewrite and pytest CI 0:29:17 0.02%

Create script for generating dataset 10:00:14 0.46%

Create script to find fish distribution in un-annotated videos 5:01:00 0.23%

Create UI test template 1:30:00 0.07%

Daily meeting 42:01:26 1.95%

Daily meeting and discuss eval script 2:20:00 0.11%

Deploy model in cvat for automatic annotation 2:46:00 0.13%

Determine project name 0:25:00 0.02%

Diagram 0:37:00 0.03%

Discuss settings module 0:41:00 0.03%

Download and process Open Images Dataset V7 2:35:00 0.12%

Experiment with CVAT exports 4:00:00 0.19%

Export nina yolo dataset with images 0:39:24 0.03%

Finalize new output annotator 3:30:00 0.16%

Finalize ui-backend link 6:46:06 0.31%

Find already annotated videos 7:09:53 0.33%

Find annotation distribution in yolo dataset 0:30:00 0.02%

Page 3/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Find duplicate images in coco and yolo datasets 4:14:53 0.2%

Finish VDI test setup 5:00:17 0.23%

Fix and clean frame grabber among other small bugs and improvements 2:15:00 0.1%

Fix and convert brackish training data 6:25:36 0.3%

Fix and improve docker container for production env 3:14:29 0.15%

Fix and merge Francesco PR 1:15:00 0.06%

Fix annotation guide and scripts 2:15:00 0.1%

Fix CVAT and finish annotation 4:36:29 0.21%

Fix CVAT issues 2:30:00 0.12%

Fix LFS 0:54:20 0.04%

Fix linting and normalization issues in dataset generator 0:24:00 0.02%

Fix merge conflicts, do fixes, cleanup and features from user testing meeting 6:15:00 0.29%

Fix normalization issues and generate full dataset 3:03:36 0.14%

Fix output video annotation 3:35:00 0.17%

Fix poetry installation issues with torch and experiment with pre-commit.ci 5:11:40 0.24%

Fix pylint GitHub action 1:10:00 0.05%

Fix the annotation guide 0:44:00 0.03%

Page 4/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Fix Ubuntu CI 2:06:05 0.1%

Fix yolov8 segfaults 2:00:40 0.09%

Frame grabber fixes and UI stuff 4:18:00 0.2%

Gather more background images 3:44:11 0.17%

Gather relevant background images and re-generate dataset 1:15:00 0.06%

Help others 7:22:01 0.34%

Help others with setup 1:44:07 0.08%

Implement video annotation for processed videos 2:15:33 0.1%

Implement video cutting and processing 5:20:04 0.25%

Improve evaluation script 6:40:48 0.31%

Improve image fetching and batch processing 3:23:13 0.16%

Improve video loading performance 4:30:00 0.21%

Improve yolo dataset annotations 5:29:41 0.25%

Link UI and backend 3:38:15 0.17%

Make CI actions run on PR edits 0:07:14 0.01%

Meeting about project plan draft 3:01:00 0.14%

Merge before user testing 0:59:07 0.05%

Page 5/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Merge francesco PR and research better ways of batching images 3:30:00 0.16%

NINA meeting 4:09:53 0.19%

NINA meeting with IT 0:34:00 0.03%

Perform full export of new dataset(s) and find annotation distribution 1:22:00 0.06%

Planning 1:30:00 0.07%

Plotting 0:48:49 0.04%

Prepare for user testing 5:54:48 0.27%

Prepare usertesting 1:00:00 0.05%

Process "artsgjenkjenning" dataset 6:47:54 0.31%

Process annotations in unannotated videos 2:45:00 0.13%

Process detection data 2:30:00 0.12%

Process NINA yolo dataset 0:51:00 0.04%

PROG2009 Seminar - Crash course on Project management 1:45:00 0.08%

Project plan conversion to LaTeX 8:15:36 0.38%

Project plan draft 2 2:26:10 0.11%

Project plan writing 3:46:00 0.17%

Push detection changes for other work 0:56:00 0.04%

Page 6/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Read report and note feedback and TODOs and read other reports 3:45:00 0.17%

Reconfigure local disks for datasets 3:37:54 0.17%

Refactor checkbox and other misc stuff 2:06:00 0.1%

Refactoring 2:59:00 0.14%

Report writing 82:18:00 3.81%

Research AI models 1:57:00 0.09%

Research on pipreqs and pigar 1:05:00 0.05%

Rewrite settings 4:29:24 0.21%

Scrum meeting 4:30:18 0.21%

Scrum Meeting 2:14:35 0.1%

Set up commitlint locally and in CI 1:02:00 0.05%

Set up CVAT 5:33:00 0.26%

Set up isort 0:33:07 0.03%

Set up poetry 2:09:42 0.1%

Set up pre-commit for local linting of code and commit messages 1:48:00 0.08%

Set up sharing of external drive 1:03:12 0.05%

Set up test CI 1:28:00 0.07%

Page 7/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Set up training on school computer 2:10:00 0.1%

Set up training on school computer and fix issues 1:52:56 0.09%

Set up VDI test 0:29:21 0.02%

Set up Yolo v5 for training with nina dataset 0:42:50 0.03%

Show progress status of output video in UI 1:32:02 0.07%

Supervisor meeting 14:24:36 0.67%

Supervisor Meeting 1:00:00 0.05%

Tensorflow YOLOv5 integration 9:46:07 0.45%

Training configuration 5:00:00 0.23%

Tweak dataset generation script 3:00:00 0.14%

UI implementations 1:47:23 0.08%

Update and fix evaluation script 0:46:00 0.04%

Update and fix WSL/Docker install and start training 3:30:00 0.16%

Update yolo annotation distribution 0:15:00 0.01%

Upload training data and schedule weekly meetings 0:25:00 0.02%

User testing 2:24:00 0.11%

Various fixes and improvements 16:21:00 0.76%

Page 8/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Verify Dataset Integrity 5:45:00 0.27%

Work on project plan 5:24:00 0.25%

Work on Yolov8 integration 1:20:37 0.06%

Without description 17:43:16 0.82%

Daniel 551:16:19 25.54%

Add formatting to technologies 0:45:00 0.03%

Add models, fix small issue with recall 4:15:00 0.2%

After meeting summary and information exchange for reference group 1:35:14 0.07%

Annotation work 64:34:01 2.99%

Approve pull requests 0:30:00 0.02%

Begun second draft on Project Plan 2:15:00 0.1%

Crash course with FRODE 2:00:00 0.09%

Create data for weights 0:30:00 0.02%

Daily meeting 49:06:46 2.27%

Daily meeting + Communication with Jana 1:31:04 0.07%

Data annotation research 3:15:00 0.15%

Documentation 81:58:20 3.8%

Page 9/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Documentation organization 3:00:00 0.14%

Documentation organization for old models 1:30:00 0.07%

Documentation related to first draft of final report 2:04:48 0.1%

Documented for Annotations 2:23:58 0.11%

Documented merged and pushed base implementation of CustomTkinter variant 2:15:00 0.1%

Documented models 4:30:00 0.21%

Export models as PDF and organize in overleaf 1:45:00 0.08%

Export to Overleaf 1:15:00 0.06%

Extracted and changed data 2:00:00 0.09%

Finalized Overleaf Project Plan 3:00:00 0.14%

Finalizing Project Plan for first draft 10:39:17 0.49%

Fish range ground truth 4:49:01 0.22%

Fix COCO dataset 14:06:34 0.65%

Fix latex PDF figure issues, import all text into overleaf and fix problems that occurred when going

from PNG to PDF

2:15:00 0.1%

Fix local poetry issue 1:00:00 0.05%

Fix local python issue 1:33:00 0.07%

Fix models for Quality assurance 1:30:00 0.07%

Page 10/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

fix small bugs 1:00:00 0.05%

Fix some old models for documentation 0:45:00 0.03%

Fix UI bug 8:20:27 0.39%

Fixed a script's format to consider pylint and black 1:58:17 0.09%

Fixed abbreviations and glossaries 2:00:00 0.09%

Fixed Operating system instability 1:30:00 0.07%

Fixing the COCO formatted datasets 7:38:44 0.35%

Get up-to-date to current project progress 1:12:03 0.06%

Got data from videos 2:15:00 0.1%

Got numbers from evaluation 2:02:38 0.09%

Hardware Research for Deployment 1:37:57 0.08%

Help finalizing ui backend link 1:45:00 0.08%

Help other group members 4:30:00 0.21%

Help teach usage of source tree and GIT to group member 1:15:00 0.06%

Help with tool diagram 1:30:00 0.07%

Helped with ffmpeg report manager 1:34:26 0.07%

Helping group member with CUDA/CUDNN 1:32:56 0.07%

Page 11/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Installed various requirements for AI on multiple devices 3:33:32 0.16%

Integrated UI fix into unified branch 0:51:01 0.04%

IT meeting 1:00:00 0.05%

IT meeting kick-off 1:14:01 0.06%

Kick-off meeting with supervisor 1:15:00 0.06%

Latex library issue fix 1:15:00 0.06%

Latex RND 4:25:01 0.2%

Making models for Quality Assurance 2:53:14 0.13%

Making more models for report 1:00:00 0.05%

Meeting 0:30:00 0.02%

Model making 3:15:00 0.15%

Model validation 1:01:00 0.05%

Model work 3:30:00 0.16%

NINA meeting 5:12:25 0.24%

NINA meeting preparation + small scrum 1:02:39 0.05%

NINA usertesting 1:41:00 0.08%

Planned Meeting with NINA 1:46:00 0.08%

Page 12/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Plot IOU threshold - Confidence 2:00:00 0.09%

Plotting horisontal diagram with dual axes 8:13:01 0.38%

Post-merge fixes and reformat 1:30:00 0.07%

Pre-merge UI bug fixes 1:00:00 0.05%

Prepare for testing 1:45:00 0.08%

Preparing for NINA meeting + help YOLOv8 batch implementation 0:39:00 0.03%

Present changes on CustomTkinter, proof of concept on saving directories in script 0:58:58 0.05%

Pretest Meeting 1:49:00 0.08%

PROG2900 Seminar - Crash course on Project management 1:45:00 0.08%

Python errors 0:45:00 0.03%

Python Script 9:49:31 0.46%

R&D best model for showcasing weight difference over iterations 1:45:00 0.08%

R&D for Overleaf formats 1:30:00 0.07%

R&D Matplotlib 2:00:00 0.09%

Read through notes from last week 1:44:59 0.08%

Read through pull requests and approve 0:45:00 0.03%

Reaffirm performance of past scripts 1:23:47 0.06%

Page 13/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Refactor UI + logging 2:45:00 0.13%

Reference meeting for bachelor course 1:40:00 0.08%

Refined implementation of CustomTkinter 2:13:41 0.1%

Research AI models 1:51:03 0.09%

Research Annotation tooling 4:44:59 0.22%

Research CNNs 3:04:15 0.14%

Research Datasets 1:17:38 0.06%

Research FFMPEG 2:42:27 0.13%

Research models for report 1:15:00 0.06%

Research on setup and reconfiguration of space management on device for later implementation of

anotations for rnd and refinement of datasets + ordered more space for datasets

2:11:13 0.1%

Research Previous bachelor assignment for RND 30:33:47 1.42%

Research Tkinter 2:14:30 0.1%

Research YOLO models for use 1:16:00 0.06%

Researched annotation standard for AI 1:55:54 0.09%

Review and go through all of integration implementation for documentation 1:09:08 0.05%

Review and go through all of the quality assurance goals and document what we will need to

implement later in the final report

5:00:00 0.23%

Review and setup pull requests related to development 1:00:00 0.05%

Page 14/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

review profiling 0:12:09 0.01%

Review Report manager and compare to models 1:00:00 0.05%

Review Settings rework and review lint refacor/fix pull req 0:30:00 0.02%

RND on annotation software 1:15:00 0.06%

Scrum meeting 9:40:05 0.45%

Setting up environment for development 1:55:29 0.09%

Setting up Python for Assignment 2:24:45 0.11%

Settings RND 1:00:00 0.05%

Setup and research FFMPEG-Python for later use 3:00:00 0.14%

Setup Docker and Cvat for me and group member + Process dataset + Review annotations 3:00:00 0.14%

Setup for usertest 0:15:00 0.01%

Setup local CVAT on new disk 2:00:00 0.09%

Setup local dependencies for integrated project 0:53:02 0.04%

Setup NTNU-Machine + Jana request communication 3:24:08 0.16%

Setup Preliminary tools on laptop 1:45:00 0.08%

Skimmed through overleaf report 0:45:00 0.03%

Started finalizing Project Plan for first draft 3:02:02 0.14%

Page 15/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Started work on Project plan 1:49:00 0.08%

Supervisor evaluation orientation 1:12:11 0.06%

Supervisor meeting 15:51:26 0.73%

Supervisor Meeting + Scrum 3:00:00 0.14%

Supervisor Meeting regarding first draft 1:01:37 0.05%

Tested second iteration 2:00:00 0.09%

Testing new branch for AI @benjamin 1:59:30 0.09%

Transfer COCO dataset to CVAT org. 1:45:15 0.08%

transferred script to new project branch 1:15:48 0.06%

Understanding the model performance evaluation branch 2:15:00 0.1%

Upgraded components of workstation in order to increase workflow and give QoL changes 2:00:00 0.09%

Uploading the COCO formatted datasets 3:39:07 0.17%

usertest 1:13:00 0.06%

Walk to meeting 7:30:00 0.35%

Work on Project Plan 3:02:00 0.14%

Work on second draft Project Plan 5:38:17 0.26%

Work on transferring second draft from docs to Overleaf 4:00:13 0.19%

Page 16/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

LB Lars Blütecher Holter 551:19:55 25.54%

Add abbreviations and glossarys through the whole report 3:27:26 0.16%

Add widgets to UI 2:40:14 0.12%

Annotation 96:17:45 4.46%

Collect EHDD from NINA 1:15:00 0.06%

Connecting UI and AI 2:10:28 0.1%

Daily scrum meeting 27:10:03 1.26%

Final report writing 167:23:39 7.75%

First iteration UI 20:58:32 0.97%

Getting everything ready for usertesting etc 7:36:52 0.35%

Helping with merge 3:38:07 0.17%

Implement logging 7:14:30 0.34%

Implement QSettings 11:18:21 0.52%

Install and setup everything needed 2:05:03 0.1%

Leaning TKinter 4:00:04 0.19%

Learning PyQt 10:55:58 0.51%

Looking up how to change from YOLOV5 to V8 1:49:36 0.08%

Page 17/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Merge 0:25:00 0.02%

Merging 2:21:59 0.11%

NINA bachelor meeting 2:00:00 0.09%

NINA IT Meeting 1:05:00 0.05%

NINA Meeting 3:18:55 0.15%

NINA meeting 2:20:00 0.11%

PROG2900 Seminar 1:45:00 0.08%

PROG2900 Seminar

Lynkurs prosjektstyring

1:45:00 0.08%

Read old bachelor thesis 14:35:35 0.68%

Reading through old bachelor theses 16:29:43 0.76%

Replacing YOLOV5 with YOLOV8 4:47:40 0.22%

Reviewing PRs 1:07:00 0.05%

Scrum meeting 4:51:46 0.23%

Scrum meeting Bacheloroppgave 14:13:05 0.66%

Set up school PC to train AI Model 1:00:00 0.05%

Setting up annotation 2:49:00 0.13%

Setting up dualboot with ubuntu 1:15:00 0.06%

Page 18/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Setup all tools on laptop 1:15:00 0.06%

Setup anotation tools 2:21:37 0.11%

Setup environment 2:16:37 0.11%

Setup environment for running ai 1:31:52 0.07%

Started planing the bachlor theses 3:03:36 0.14%

Supervisor meeting 19:20:00 0.9%

System architecture 3:16:11 0.15%

Testing application looking for bugs 1:08:02 0.05%

Testing on UI 7:24:35 0.34%

Trying to fix gloassary and abbreviations 3:25:04 0.16%

UI changes based on usertesting 10:29:37 0.49%

User testing on NINA 1:37:05 0.07%

Work on project plan 28:56:46 1.34%

Working with pipeline 10:55:56 0.51%

Writing guide on how to annotate for NINA 8:06:36 0.38%

LA Lillian Alice Wangerud 524:07:02 24.28%

annotation work 69:34:53 3.22%

Page 19/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Commenting code 1:27:29 0.07%

commenting on report and data managers 3:16:32 0.15%

Daily meeting 34:06:52 1.58%

daily meeting 14:23:04 0.67%

data manager and report component work 15:00:34 0.7%

data manager component 11:29:38 0.53%

documentation 156:00:04 7.23%

Documentation 17:32:48 0.81%

Documenting Choice for Front-end 0:47:57 0.04%

First iteration UI 20:38:38 0.96%

fixing database bugs 3:43:53 0.17%

Guidance meeting 2:15:00 0.1%

integrating report manager and data manager into process 15:14:51 0.71%

Learning pyQt 5:17:41 0.25%

Learning Tkinter 4:43:21 0.22%

Meeting with NINA 3:00:00 0.14%

Merging and setup together 2:16:00 0.1%

Page 20/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Merging work together 2:33:59 0.12%

NINA meeting 7:01:55 0.33%

Planning Meeting 4:59:23 0.23%

Planning work ahead 2:57:02 0.14%

Project plan writing 22:10:13 1.03%

R&D for output report from the program 26:28:58 1.23%

Read previous bachelors 4:52:00 0.23%

Report component 14:06:56 0.65%

Report writing Seminar 1:00:00 0.05%

Scrum meeting 8:28:36 0.39%

scrum meeting 2:53:27 0.13%

scrum meeting and start of second draft 2:15:00 0.1%

Seminar 1:45:00 0.08%

Setting up work environment 3:30:00 0.16%

supervisor meeting 9:46:49 0.45%

Supervisor meeting 5:45:00 0.27%

System Archtecture development 6:45:29 0.31%

Page 21/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

Testing UI 2:20:00 0.11%

Travel 6:53:00 0.32%

UI changes 6:45:00 0.31%

Created with toggl.com Page 22/22

USER - TIME ENTRY DURATION PERCENTAGE

Lillian Alice Wangerud's workspace

G Meeting Logs

178

Møtereferat Veiledningsmøte

Dato: 24.01.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Feedback på prosjekt planen

Marius gir feedback på den nåværende prosjekt planen.

Feedbacken bestod av disse kommentarene:

• Effektmål og resultat mål burde skilles

• Spesifisere inni resultat mål accuracyen som skal oppnås, som for eksempel ønsker å

oppnå 95% accuracy

• Legge til en enkel og forklarende illustrasjon kan hjelpe med leserens forståelse

• Utvide hvorfor vi har valgt SCRUM som development model

• Begrunne valg av utstyr under standarer

• Kan diskutere rundt tidligere oppgave utført for NINA

Sak 2. Kildehenvisning og referering til kilder

Det ble diskutert hvordan kilder skulle henvises til i prosjekt planen.

Kildehenvisning skal inneholde:

• Forfatter eller organisasjon

• Software/programvare + versjon nummer

• Adresse til nettsiden

• Dato sist oppdatert/publisert

Sak 3. Stilling til teknologi bruk

Diskusjon rundt bruk at teknologi som chatGPT. Veileder har ingen spesifikk stilling til bruken

av chatGPT, men oppfordrer til å kvalitet sikre og reflektere over bruken i sluttrapporten.

Sak 4. Videre utvikling av programmet som er utenfor oppgave beskrivelse

Spørsmål om hvordan det skulle skrives om forbedringer eller videreutvikling som er utenfor

oppgave beskrivelsen blir tatt opp og diskutert. Dette omhandlet ideer som å forbedre på

NINA sitt fysiske oppsett ute i feltet ved å sette opp RAID for å redusere muligheten deres til

å miste data.

Via møtet kom veileder og gruppen fram til at dette kan bli tatt opp i diskusjonen på

sluttrapporten. Det å utvikle appliskasjonen for å kunne gjøre videre utvikling kan også bli

satt opp som et mål ved prosjektet.

Eventuelt

Det ble også spurt spørsmål rundt presentasjonene ved bachelor slutt. Det ble dermed

informert at presentasjonen er obligatorisk men vekter ikke på karakteren.

Møtereferat Veiledningsmøte

Dato: 31.01.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Innleveringer

Møtet startet med innlevering av dokumenter nødvendig for bacheloren.

Kontrakten mellom Bachelor gruppen og Oppdragsgiver ble levert på Blackboard. Mens

Prosjekt planen ble levert til veileder.

Sak 2. Bruk av teknologi som chatGPT og GitHub Copilot

Det ble videre diskusjon rundt bruken av AI teknologi innen for bachelor oppgaven med

veileder.

Etter grundig diskusjon så kom veileder og gruppen fram til at det skal være lovelig og

muligheter for å bruke disse verktøyene. Men så lenge bruk av det er referert og koblet til

kodesnuttene eller teksten skrevet ved hjelp av AI. Det er viktig å forklare og reflektere over

bruken av disse verktøyene igjennom utviklings prosessen i slutt rapporten. Marius påpeker

også at i forhold til å bruke direkte avsnitt fra slike verktøy så er det viktig å vite rettigheter

og licences rundt commercial bruk av innholdet gitt fra verktøyene. Dette var spesielt med

tanke på GitHub Copilot og koden som Copilot finner.

Møtereferat Veiledningsmøte

Dato: 17.02.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. AI modell valg og bruk av modellen

Det ble forklart valget av AI modell, Yolo v5, for veileder og diskuterte rundt hvordan denne

modellen skulle bli brukt.

Modellen skal kunne oppdage fisk inne i en frame uavhengig av kvalitet og bakgrunn på

videoen. Marius dermed oppfordret oss til å passe på at modellen blir trent på variert data,

og metoden og fargene den blir trent opp til å se. De ble diskutert om modellen skulle være

oversensitiv eller ikke, og vi kom fram til at vi ønsket en mer oversensitiv modell for å unngå

å miste data.

Under møtet ble det også brakt opp at modellens hoved bottleneck er iterasjonen av still

bildene og overføringen av data fra harddisk til modellen.

Sak 2. User interface

Vi gikk gjennom og viste et første utkast av UI til veileder. Planlegger å koble sammen UI

sammen med modellen i løpet av neste sprint.

Sak 3. System arkitektur

Viser en start på system arkitekturen til programmet for å få tilbakemeldiger fra veileder.

Feedback er som følger:

• Burde være kobling mellom harddisk og data manager

• Raw data fra model til manager burde bli navn gitt til noe bedre

• Burde være kobling mellom data manager og video komponenten

• Veldig brukbar på final report/ presentasjon til å forklare

• Vær forsiktig med bruk av farger

Sak 4. Dataset for trening av modellen

Siste punktet tatt opp var rundt datasettet som vi trenger for å trene modellen, som hvordan

annotering av data skulle foregå og hvor vi får dataene fra.

Marius nevner at han har opp til 50,000 allerede annoterte bilder som kan bli gitt til

gruppen. Ellers er datasettene fra Oppgavegiveren.

Veileder påpeker at da vi annoterer må vi passe på at vi har bilder av fisk fra forsjellige

vinkler, men vi burde være forsiktige med å augmente data ettersom det kan påvike

treningen av modellen negativt. Via diskusjon kommer vi fram til at vi skal bruke en en fisk

superklasse, som er foreldreklasse til arten funnet, da vi annoterer datasettet.

Møtereferat Veiledningsmøte

Dato: 02.03.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Samarbeid med NINA sin IT avdelig

Det blir informert til veileder at NINA legger til rette for dockerfil for prosjektet vårt.

Veileder så informerer til gruppen at vi ikke skal si at det er vårt arbeid og burde nevne at

dette har NINA tatt ansvar for i final report.

Sak 2. Annotering av dataset

Det blir snakket om prosessen av å annotere datasettene som gruppen har fått. Vi i gruppen

har oppdaget noen problemer ved at deler av videofilene er blirr korrupt som har gjort at

noen stillbilder forsvant og annoteringene er forskyvd.

Marius som veileder foreslår at vi skriver om prosessen av a kvalitetssikre testing/trenings

datasettet på raporten og om opplevelsene rundt disse korrupte filene vi møtte på. Han

nevner også at det er viktig å ha ett bredt datasett som dekker vanskelige situasjoner (aka,

forskjellige tider, lys, vinkler, andre objekter i frame etc), men vi burde sette en grense på

hvor mye data som er nødvendig og hva vi trenger for å ha et representativt datasett. Det

blir også foreslått av veileder at vi kan spørre NINA om hvordan de annoterer datasettene

sine.

Sak 3. Grafisk user interface prosess

Front-ended og dens grafiske UI blir vist til veileder.

Det blir også fortalt om hva som vurderes å jobbes videre med i forhold til GUI:

• logging og testing

• Arbeider på å sette opp en typ cache som lagrer instiller fra tidligere sessions

• legge til en standard CSS styling

Tilbakemeldinger og vurderinger vi som gruppe fikk fra veileder basert på front-ended vår:

• Burde ta en vurdering av hvor viktig stylig er for oss

• Forklare design valg vi har tatt i rapporten vår

• Burde ta vurdering for design i forhold til fargeblindhet, nedsatt syn osv

Sak 4. Dokumentering av prosjektet

Det ble diskutert hvor viktig det er å dokumentere gjennom utviklingsprosessen.

Gjennom denne diskusjonen kom vi fram til at dette var viktige punkter som burde bli med i

slutt rapporten:

• Vi har har diskusjon med IT avdelingen til NINA og at de har sett på appikasjonen

vår så langt, hvor de nevnte at det var forståelig hvordan man skulle sette det

opp. Dette kan diskuteres som å være en vertifisering av utviklings prosessen vår

så langt.

• Diskutere rundt strukturen vi har hatt på å samle spørsmål før møter i Q&A

threads

• Diskutere rundt utviklings prosessen i henhold til tidligere erfaring og hva vi har

gjort annerledes.

Derimot kom vi også fram til at logging av timer er ikke det mest nødvendige på rapporten.

Møtereferat Veiledningsmøte

Dato: 17.03.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Sluttrapporten

Det var hovedsaklig diskusjon på de første delene av rapporten og dokumentasjonen skrevet

så langt.

Kommentarene tilbake fra Marius på abstrakten så langt var:

• Ta opp problemstillingen i abstrakten

• Hvert avsnitt i introen burde referere til det samme stikkordet

• Lurt å gå over abstrakten igjen da man er ferdig med rapporten siden abstrakten

skal reflektere rapporten

Videre så ble det diskutert hvor detaljert vi skulle dokumentere AI modellen brukt i

programmet, etter som vi bruker en allerede eksisterende modell. Diskusjonen kommer fram

til at dette er viktig da vi dokumenterer AI modellen:

• Modellen er en blackbox -> trengs det ikke mye forklaring på modellen

• Modellen har blitt endret på -> trengs det å rapportere på struktur og endringer

• Tall på resultater og avvik er viktig å diskutere

Sak 2. Oppdragsgiver ønsker rundt prosess ‘rapporten’

Det ble så tatt opp under møtet at NINA, vår oppdragsgiver, har sent et forslag til hvordan de

ønsker rapporten som programmet skriver ut skal være satt opp. Dette forslaget viste seg å

inkludere deler som allerede har blitt diskutert med NINA at er utenfor omfanget til

oppgaven.

Ved hjelp av veileder kom vi fram til en liste med ting inne i rapport forslaget som ikke ville

være gjennomførbart å legge til basert på oppgavens omfang slik at vi kunne komme til en

annen løsning som er mulig å utføre. Dette var ønsker som å identifisere fisk og basere

rapporten på FishID, eller å gjennkjenne fisk som har blitt identifisert.

Møtereferat Veiledningsmøte

Dato: 21.03.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Annotering og datasett

Det første saken i dette møtet handlet om prosessen av å annotere og noen hindringer møtt

på i løpet av denne prosessen.

Etter diskusjon om emnet så kom vi fram til at en udefinert klasse for fisk en ikke kjenner

igjen og at siden datasettet skal brukes til å trene, teste og validere modellen burde

datasette være så balansert mellom klassene som mulig.

Det var også en del mangel på variert data og fikk dermed data fra tidligere oppgave for å

detekte fisk i video.

Sak 2. Presisjon av AI modellen

Det var diskusjon av hvordan man skal utnytte AI modellen best mulig og hvordan vi skal

måle modellens presisjon.

Vi kom fram til at dette var de foskjellige måtene vi burde vurdere å måle presisjonen av

modellen:

• Presisjon av klassifisering

• Presisjon av deteksjon på riktig frames over tid

• Presisjon av boundary box

• Viktigste er deteksjon over tid

Det ble også diskutert dersom det var mer effektivt å generalisere klassifikasjon til; Fisk/ikke

Fisk og heller sende en video med generalisert klassifikasjon gjennom en komponent som

videre klassifiserer inn i arter. Marius nevner også at å bruke en confusion matix for å

illustrere rutene vi ønsker å dekke med modellen kan være lurt på rapporten.

Møtereferat Veiledningsmøte

Dato: 17.04.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Sluttrapporten

I denne saken diskuterte vi hva sluttrapporten burde inneholde og feedback fra veileder.

Feedbacken fra veileder på indroduksjonen:

• Burde inneholde hva NINA gjør og deres motivasjon for å lage prosjektet

• En figur i introen kan enklere forklare hva oppgaven går ut på

• Tall på NINA’s data kan hjelpe å putte ting i perspektiv, og gjøre at det virker som

en nødvendig ting å utvikle

• Kan sette decision making og conflict management inn i det samme seksjonen

• 1.2 Prosjekt beskrivelse skal være mer overordnet (mer lik oppgavebeskrivelsen

gitt av NINA)

Videre så ble det diskutert rapportens struktur og innhold og dette var veileders

tilbakemeldiger.

• Lurt å se over kapitlene og vurdere hva som skal være egne kapitler og om noe

kan slå sammen

▪ Quality Assurance og testing kan gå i samme kapittel

▪ Graphical userinterface kan muligens gå under implementasjon

▪ Object detection kan muligens gå under impplementasjon

• Lurt å legge til en figur tekst under tabellen på 4.1 Front-end technology

• Kan snakke om etiske, sosiale og økonomiske konsevenser av applikasjonen

Eventuelt

Annet tatt opp undermøtet var muligheten for å legge til en knapp som opner output

mappen/rapporten på prosesseringen og at vi kunne se på å sette opp programmet slik at

det kan videreutvikles senere.

Møtereferat Veiledningsmøte

Dato: 25.04.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Feedback på sluttrapporten

Vi gikk gjennom sluttrapporten og fikk feedback på den fra veileder.

Feedback på 3.1 under Development Process:

• Gi begrunnelse for hvorfor vi ikke bruker de andre modellene

• Koble begrunnelsen til requirements og prosjekt beskrivelsen

Feedback på 3.2 under Development Process:

• Argumenter for hvorfor vi har møter når vi har det, som hvorfor har vi møte med

NINA før Veiledning og Scrum

• Forklar hvorfor tidspunktet til dagelig møtet ble valgt

Feedback på kapittel 6 Implementasjon:

• Et ER diagram for databasen kan enklere visualisere databasen

• Forklar at valgene av raport formater til brukeren er blandt forvalgte fomater

• Burde være klarere på om AI er del av backend eller ikke, vi har valgt at den er

uavhengig fra backended fra rapportens perspektiv

• Lurt å forklare hvordan implementasjonen samhandler med harddisken til NINA,

dette burde bli basert på antagelser vi har gjort om NINA’s bruk at programmet

• Skrive om hva som har blitt implementert for å tilrette legge videre utvikling, kan

bli videre diskutert under diskusjon

Feedback på kapittel 7 Graphical Userinterface:

• Forklar hvorfor Figma (brukt før, gratis, etc)

• Utvid på hva slags feedback vi har fått fra NINA

• Utvid på design rules some vi har brukt for UIen

Eventuelt

Andre ting brakt opp under møtet lurt å bruke vektor format (pdf/svg) for bilder og

diagrammer og å skjekke om overskrifter er forklarende og passer sammen.

Møtereferat Veiledningsmøte

Dato: 02.05.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Feedback på sluttrapportens framgang

De var diskusjon med veileder on framgangen til sluttrapporten.

Tilbakemeldingene om figurer og tabeller:

• Oppfordrer til å skrive en del inni caption

• Viktig at man skal forstå figuren/tabellen via caption uten å lese selve teksten

• \caption [kort caption for figur tabellen]{long caption}

Feedback på kapittel 4 om Technologies:

• Det er litt overlapp med prototype avsnittene

• Referere til kilder for statements, som at pyQt er en industri standard/vidt brukt i

indeustrien

• Ikke går for mye inn i datamanager/ report manager inne i technologies ettersom det

har ikke blir introdusert enda som et konsept

Feedback på kapittel 5 System arkitekturen var hovedsakelig at den var veldig kort og

dersom den ikke ville bli lengere så kunne den slås sammen med implementasjon.

Det var noen spørsmål om referering til andre kapittler og det kom fram at det burde legge

til labels for kapittler som var forståelige. Disse labelene kan brukes til å referere til

sekosjoner i teksten med \ref {label}.

Inne på Implementasjon så blir det på pekt av veileder at det kan være lurt å visualisere

front-end implementasjonen på en eller annen måte.

Kapittel 7 Graphical user interface fikk denne feedbacken:

• teksten på bildene er vanskelig å lese og burde være samme størrelse som

bildeteksten

• kanskje legges sammen med eller før implementsjonen av frontended for å gi

kontekst til implementsjonen

Møtereferat Veiledningsmøte

Dato: 09.05.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Feedback på sluttrapportens framgang

Gruppen og veileder gikk gjennom sluttrapporten og fikk enda mer feedback på rapportens

framgang.

4.5 Tool overview Feedback

• CVAT er veldig isolert og burde bli koblet til resten

• Om rokere på hvor piler pekerslik at det er mer forståelig

• Vær forsiktlig med bruk og nevning av chatGPT, pass på å bruke det slik som

allerede exsisterende verktøy vi har lov til å bruke

• mulig å referere til bruk av AI

4.3 Lokal database og Libraries for rapporten Feedback

• Utfylle hvorfor valg av SQLite, som er at SQLite var den mest fremtredende og vel

dokumentert modulen for å lage en serverløs database

• Gi begrunnelse for fil formatene og hvorfor det ble endring, aka spurt etter csv og

xlsx

Det var litt forvirring om noe skulle være i Glossary eller Technologies. Vi kom fram til at vi

burde først og fremst korte ned beskrivelser inne i tech, men at vi kunne gjøre det dobbelt

opp. Hvor terminologi er i måde glossary og technologies slik some dette:

• Glossary: kort beskrivelse (brukes som oppslagsverk/påminnelse)

• Technologies: kort beskrivelse og en begrunnelse for bruk

Feedbacken på kapittel 7 GUI var hovedsakleig at det var greit å diskutere rundt at vi har lært

dette tidligere, som å nevne at dette er ting vi har lært fra user-centered design.

Feedback på framgangen til kapittel 8 AI og object detection:

• Å fylle ut dette er hovedfokuset videre

• Viktig å vise at programmet vårt er mer enn kun GUI

• Inkludere info om hjelpe script

▪ hvor viktige de er

▪ hva de gjør

▪ hvordan de er brukt

Møtereferat Veiledningsmøte

Dato: 16.05.2023 Tid: 14:00

Lokasjon: Gjøvik Ametyst 2.etasje Rom A232, NTNU Gjøvik

Tilstede:

Marius Pedersen (veileder),

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1. Feedback på sluttrapportens framgang

Vi gikk gjennom det som har blitt gjort siden sist og fikk feedback fra veileder.

Kapittel 8 Object detection Feedback:

• Burde forklare hvordan vi balanserer datasettet

• Sier vi splitter opp datasettet inn til trening, test og validerings sett men ikke hvordan

• Yaml blir nevnt men ikke forklart

Kapittel 11 Discussion Feedback:

• Oppfordrer til å strukturere kapittelet i på en mer forståelig måte

• Deler diskuterer teknologien, og burde bli flyttet til kapittel 4 Technologi

Kapittel 12 Conclusion Feedback:

• Utvid på punktet ‘legg til flere tester’ under videre utvikling

• Burde forklare bedre hva som menes med ‘mer annotasjon’ og hvilken type

annotering som vi trenger mer av

• ‘Improve structure of code’ virker som å være på feil sted, og burde bli flyttet til

diskusjon, hvor vi kan bedre forklare dette punktet

• Videre utvikling burde være større funksjoner som er relevant for sluttbrukeren

Det ble også diskutert at det var mangel på referanser igjennom teksten og vi burde dermed

passe på at vi legger til navn i teksten. I referanse listen vår burde vi også huske å legge til

dato hentet og versjon nummer.

Veileder på peker også at dersom det er kodesnutter i teksten så burde det bli forklart i

teksten dersom det ikke er kommentarer i koden. Det ble også nevnt at Implementasjon

burde ha et flyt diagram mellom delene diskutert.

Møtereferat Møte med NINA

Dato: 16.01.2023 Tid: 14:00

Lokasjon: Vormstuguvegen 40, 2624 Lillehammer

Tilstede:

Tobias Holter,

Knut Marius Myrvold,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: Planlegging av fremtidige møter

Det ble bestemt at videre møter vil finne sted hver andre mandag kl. 14:00 via Teams.

Sak 2: Diskusjon om filtrering av videoer

Det ble diskutert muligheten for å skille videoer med bevegelser eller fisker fra videoer uten.
Målet er å filtrere ut støyelementer som bobler, sjøgress, plankton, osv. Det ble uttrykt
behov for en filtreringsmekanisme som kan skille ønsket innhold fra uønsket støy.

Etter diskusjon kom vi fram til at harddisken med bideoer må bli hentet fra felten for å
kunne prosessere videoene ettersom oppsettet ute i felten er ikke tilstrekkelig sterkt nok til
å prosessere videoene i sanntid. Det ble enighet om at videoene må prosesseres etter at de
er hentet inn fra felten.

Det ble diskutert viktigheten av å jobbe mot høy presisjon for å sikre pålitelige resultater og
det ble satt et mål om å oppnå 95% presisjon i prosesseringen av videoene.

Sak 3: Ønsker til brukergrensesnittet (UI)

Det ble så diskutert ønskede funksjoner og egenskaper for brukergrensesnittet. Og vi kom
fram til at disse var de mest viktige elementene:

• Valg av input folder og output destinasjon

• Valg om å beholde orginal klippet

• Output videoen har kun klippene fra input videoen (med en navn indikasjon at den
er prosessert)

• Pause og/eller stoppe prosessen

• Varsel dersom det ikke er plass

• Generere en rapport på den prosesserte dataen (hvor i orginal klippet ble klippene
funnet, antall klipp funnet etc)

• Sortering av data basert på metadata (som dato)

Eventuelt

Det ble påpekt at språket som skal brukes i løsningen kan velges av gruppen.

Møtereferat Møte med NINA

Dato: 30.01.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Tobias Holter,

Knut Marius Myrvold,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: Gjennomgang av prosjektplanen og starten av applikasjonen

Vi startet med å diskutere prosjektet planen sin framgang og starten av utviklingen av
applikasjonen. Det ble besluttet å sende prosjektplanen til Knut og Tobias for gjennomgang
og tilbakemelding.

Til dette hadde det blitt lagd en skisse av user interfacen, dette var feedbacken:

• UI-skissen virker intuitiv og brukervennlig.

• De fremmet ønske om tydelige pause og stop knapper

• De var åpne til at det var mulig å legge til eller fjerne alternativer

• De ønsket også avanserte alternativer for mer spesifikke valg, samt muligheten

for å legge til ekstra alternativer

Sak 2: Valg av hardware for applikasjonen

Etter diskusjon om hardware nødvendig for applikasjonen kom vi fram til:

• Budsjettet for maskinen er satt til 25 000 kr.

• En lokal maskin blir målet for prosjektet.

• Det ble påpekt behovet for assistanse for å finne riktig hardware til maskinen.

Sak 3: Diskusjon om datasett og harddisk

Neste saken handler om datasett tilgjengelig og muligheten for å skaffe mer data fra NINA
eller andre kilder.

• Det ble nevnt at det finnes flere hundrevis av timer med uannoterte data.

• Det ble foreslått å kontakte den tidligere gruppen som jobbet med fisk for å
sjekke om de har noen annoterte datasett som de kan dele.

• Det ble enighet om å utforske mulighetene for å skaffe annoterte datasett fra
andre kilder.

Videre ble det diskutert hvordan harddiskene til NINA var organisert og kom fram til dette:

• Harddiskfilene er organisert i en mappe med videoene.

• Filene er navngitt med disse elementene i navnet:
o pre-fix
o dato
o tidsstempel
o nummer

Det ble uttrykt ønske om å kunne gruppere filene før prosessering og ble diskutert
muligheten for å legge til en funksjon i UI-en for å enkelt gruppe filene.

Eventuelt

Det ble nevnt muligheten for å legge til en funksjon for å trene modellen selv senere med ny
data. Dette vil nok bli utført av NINA sin IT avdeling dersom det blir lagt til.

Diskutert usikkerhet rundt hvordan rapportene utskrevet fra programmet med info om
prosessen ønskes presentert. Det ble foreslått å lage rapporter for hver "batch" som blir
prosessert og å opprette en database for lagret data og metadata fra prosesseringen. Det
ble snakket om muligheten for å dele opp rapportene basert på dager og inkludere en linje
for hver fil.

Videre så ble det tatt opp mangelen på backup-løsning av dataene ute i feltet. Det ble
påpekt at det ikke er økonomisk mulig å anskaffe en server eller RAID-løsning.

Møtereferat Møte med NINA

Dato: 27.02.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Tobias Holter,

Knut Marius Myrvold,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: Gjennomgang av prosesseringen og system arkitekturen

Det ble presentert en demonstrasjon av prosesseringen og informert om muligheten til å
angi input- og output-kataloger. Basert på den nåværende AI-en skal det ta en estimert tid
på omtrent 5-6 minutter å prosessere 30 minutters videoer.

Gruppen viser den planlagte system arkitekturen av programmet og det ble påpekt at
systemarkitekturen ikke trenger å endres fra Windows til Linux.

Sak 4: Opprettelse av en lokal database

Gruppen og NINA’s representanter diskuterer behovet for å opprette en liten lokal
database. Databasen vil inneholde informasjon om hver video og gjennkjenningsprosessen.
Informasjonen lagret inne på databasen er ment til å generere en lesbar rapport som vil
kunne brukes til å krysse-referere med den opprinnelige videoen og sjekke tidsstempler.

Sak 5: AI modellens presisjon

Via diskusjon om AI modellens presishon og det ble understreket viktigheten av at AI-en er
oversensitiv. Det blir brakt opp at det er bedre å ha falske positiver enn å gå glipp av
gjenkjenninger av fisk og at veldig små fisker kan bli oversett hvis AI-en ikke er tilstrekkelig
sensitiv.

Eventuelt

Det blir brakt opp at NINA's tekniske personell vil hjelpe med å sette opp deployment av
applikasjonen via WebGL.

Møtereferat Møte med NINA

Dato: 29.03.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Tobias Holter,

Knut Marius Myrvold,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: NINA's servere og WebGL

Det ble informert om at NINA's servere eller WebGL ikke er helt klare for ytelsestesting ennå.

Videre ble det diskutert muligheten for å sende programmet til Fransesco per e-post for

testing.

Sak 2: Rapport

En diskusjon rundt rapporten programmet skriver ut om prosessen blir gjort. Det ble påpekt

at systemet ikke kan oppdage individuelle fisker og kan dermed ikke utføre foreslått

rapportstruktur.

Dette er noen av forslagene NINA’s representanter gjorde for rapporten:

• Legge til sannsynlighet for deteksjon for hver fisk for å kunne filtrere ut deteksjoner

med lav sannsynlighet.

• Legge til notater med mulig antall eller art.

• Et ark som gir et sammendrag av tiden der fisk er blitt detektert.

• Det ble diskutert muligheten for å endre filformatet fra CSV til XLSX.

Det ble informert om at NINA vil sende forslag til nytt filstruktur.

Sak 3: Brukertesting

Det ble avtalt å utføre brukertesting med Tobias, Knut, Fransesco og Benjamin etter

forespørsel.

Eventuelt

Det ble besluttet å droppe møtet som var planlagt for 10.04 og flytte det til 17.04.

Møtereferat Møte med NINA

Dato: 17.04.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Tobias Holter,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: Usertesting

Under dette møtet ble det utført en bruker test med en av NINA’s representanter, Tobias,
slik at vi kunne få feedback på om applikasjonen var brukervennelig.

Feedback på user interface:

• Ønsker å kunne se innholdet i mappen de velger ved å trykke på "Browse files".
• Tydeliggjør at buffertime er angitt i sekunder.
• Boksen for rapportformat bør være større for bedre lesbarhet.
• Informasjon om hvor rapporten blir lagret.
• Ønsket forklaringer på "Batch size" og "Prediction Threshold".

Feedback gitt på rapporten:

• Endre navnet på rapporten.
• Kun nødvendig med XLSX eller CSV-formatene.
• Legge til en dato-kolonne i rapporten.
• Antall deteksjoner ikke trengs å inkluderes i rapporten.
• Burde kun skrive ut data fra databasen som er blitt prosessert.

Feedback på prosesseringsfunksjonalitet:

• Ønske om å kunne pause prosessen underveis.
• Implementere en sikkerhetsmekanisme i tilfelle lagringsplassen blir full.
• Legge til den opprinnelige videoens dato i den prosesserte videoen.
• Behov for å estimere prosesseringstiden.
• En knapp som fører til output-mappen eller åpner rapporten (en "nice to have"

funksjon, ikke essensiell).
• Ønsker muligheten til å prosessere de fire mest vanlige videoformatene.
• Inkluder en boks for å velge mellom binær gjenkjenning eller artsgjenkjenning.

Møtereferat Møte med NINA

Dato: 08.05.2023 Tid: 14:00

Lokasjon: Digitalt Teams Møte

Tilstede:

Tobias Holter,

Knut Marius Myrvold,

Lars Blütecher Holter (gruppe leder),

Benjamin Letnes Bjerken,

Daniel Hao Huynh,

Lillian Alice Wangerud

Referat skrevet av: Lillian Alice Wangerud

Sak 1: Visning av nye endringer i programmet

De nyeste endringene i programmet ble vist og diskutert med NINA’s representanter.
Endringene gjort var som følger:

• En "Max detections" funksjon ble lagt til for å bestemme antall fisk som blir
detektert per frame.

• En "Frame buffer" ble lagt til for å tillate buffer mellom frame ranges.
• En "CRF" (Constant Rate Factor) funksjon ble lagt til for å bestemme kvaliteten på

videoen. Redusert kvalitet kan spare plass på harddisken.

Sak 2: Videre arbeid med applikasjonen

Det var diskusjon anngåndede videre arbeid med applikasjonen fra dette punktet. Dette var
ikke mye men includerte ting som:

• Behovet for å endre navnet på applikasjonen for å gjøre det mer forståelig.

• Endring på plasseringen av knapper for å gi en mer logisk brukeropplevelse.

• Legge til en dropdown for å kunne velge vekter for modellen.

Eventuelt

Vi diskuterte at det hovedsaklig vil være arbeid på sluttrapporten videre og NINA’s
representanter oppfordret å ta kontakt hvis det trengs ytterligere informasjon til rapporten.

Det ble også snakket om muligheten for å levere tilbake harddisker etter presentasjonen
som skal holdes 6. juni.

H Annotation Guide

203

Annotation guide

This guide requires some knowledge of python programming.

CVAT (Computer Vision Annotation Tool) is an open-source tool developed by Intel for annotating
images and videos with various types of objects, such as bounding boxes, polygons, and keypoints. It
is especially useful for creating labeled datasets for machine learning and computer vision applications.

You can install CVAT locally or on a server through this guide:
https://opencv.github.io/cvat/docs/administration/basics/installation/
Alternatively you can use their own service: https://www.cvat.ai/pricing/cloud

Step 1: Create a new project in CVAT
 Click "Projects" in the top navigation bar, then click the blue "plus" symbol in the upper right corner ->

Create a new project. Name it what you want and then add labels to it by clicking "Add label" under the
"Constructor" tab. Make sure you add these labels to the dataset, you can also add more:

1. Gjedde

2. Gullbust

3. Rumpetroll

4. Stingsild

5. Ørekyt

6. Abbor

7. Brasme

8. Mort

9. Vederbuk

10. Frosk

11. Annen fisk

Step 2: Create a new annotation task
 On the project page, click the blue "plus" button -> Create a new task.

 Enter a name for the task.
 In the "Files" section, click "Select files" to upload the videos you want to annotate.

 The default settings are fine, but you can change them as you want.
 Click "Submit" to create the task.

 NOTE: You can also annotate images instead of videos, but then you have to export using the "YOLO
1.1" format, more on that below.

Step 3: Annotate the images or videos
 For an in depth view on the annotation rules we used in our project, see section 8.4.3 in our bachelor

thesis.
In the "Tasks" list, click on the task you just created.
Click the "Open" button to start annotating.
Use the annotation tools in the sidebar to draw and label the objects in the images or videos.
Please refer to their documentation for more of a user guide: https://opencv.github.io/cvat/docs/
Save your progress frequently by clicking the "Save" button in the bottom-right corner.
When you're finished annotating, click the "Done" button.
NB! Only annotate using bounding boxes! (this is the only annotation method supported by our
implementation of YOLO)

Step 4: Export annotations
 In the task view, click the "Actions" dropdown and select "Export as a dataset."

 If you have the CVAT installation installed on a sufficient server you might be able to export with
images. If that is the case you can use the "YOLO 1.1" format and toggle on "Save images".

 If not, you will have to export as "CVAT for video 1.1" without images. We will go through how to get the
images through a generation script later.

 Click the "Export" button to download the annotations as a zip file.

Now you have successfully installed CVAT, created an annotation task, annotated videos, and exported
the annotations. You can use these annotations as input for your machine learning or computer vision
algorithms.

Move all the exported zip files you exported using the "CVAT for video 1.1" format into a single folder if
you have any. (do not extract the data from the zip files)

 Also create a folder for where you want the final dataset to be (or use ours).
 Now you will have to extract all the zip files you exported using "YOLO 1.1" (if you have any) into the

final dataset folder, but only extract the "obj_train_data" folder (this is the folder containing all the
images and annotations). Make sure to rename it to something else after extracting it, like the original
video name to make it distinct from the others you extract.

The final dataset folder should now consist of folders containing images and .txt files for all the exports
did using "YOLO 1.1", and you should have another folder containing all the zip files you exported using
"CVAT for video 1.1".

You should also add more background images for new environments if you have new environments to
minimize false positive detections. A good rule is to have about 10% of the total amount of images be
background images (images with no fish), this is adjustable in the generation script, provided you have
enough background images.

 You can see that we have background images in the "backgrounds" and "backgrounds_2" folder in our
dataset.

Dataset generation

Step 1: Clone the bachelor thesis repository
Open a terminal window and run the following command to clone the bachelor thesis repository:
git clone https://github.com/beuss-git/bachelor-oppgave-nina

Follow the README file in the repository to install the required development tools.

Step 2: Edit the generation script for your setup
 We will be editing tools/generate_dataset/generate_dataset.py .

CVAT_EXPORTS_FOLDER should contain the path to the folder containing the zip files you exported using

"CVAT for video 1.1"

DATASET_FOLDER should contain the path of the final dataset folder.

SOURCE_VIDEO_FOLDERS should contain the paths of all root folders where you sourced the videos

from. This is used to extract images from videos you exported using "CVAT for video 1.1". The script
will search recursively for the videos, so depth doesn't matter as long as the root folders encompass all
the video folders.

The rest of the variables are fine as they are, just make sure to add to the CLASSES array if you added

more classes in the CVAT project.

Now you just need to run python generate_dataset.py from the tools/generate_dataset folder

and it should generate the final dataset to where you pointed DATASET_FOLDER to. The script should

have generated train.txt and val.txt, pointing to all the images in the dataset.

To start training you can use our training script found at model_research/train.py

Just make sure to update nina.yaml.
 To use our trained weights as a starting point, you have to change "yolov8s.pt" on the following line, to

the path of our weights (for example "v8s-640-classes-augmented-backgrounds.pt" (you need to
specify the full path)):

model = YOLO("yolov8s.pt")

To gain a bit more insight, you can follow this guide instead: https://medium.com/augmented-
startups/train-yolov8-on-custom-data-6d28cd348262

 You can skip to step-4 and instead of "Complete path to train folder" and "Complete path to val folder",
set it to train.txt and val.txt, path is the same as DATASET_FOLDER .

You can look at nina.yaml in our dataset for reference.

Deploying the weights

When you have finished training you should have a best.pt in the results folder.

Step 1: Move trained weights file (best.pt found in runs/detect/train[n]) into app/data/models .

Step 2: Change the name of the weights file to something else

You should now be able to pick the new weights through our application.

I Code

1 """ Video processor module. Contains functions for cutting and
annotating videos."""

2 from pathlib import Path
3 from typing import Any , Callable , Dict , List , Tuple
4

5 import av
6 import av.datasets
7 import av.packet
8 import av.video
9 import numpy as np

10 from PIL import Image , ImageDraw , ImageFont
11 from PIL import __version__ as pil_version
12 from tqdm import tqdm
13 from ultralytics.yolo.utils.checks import check_font ,

check_version
14

15 from app import settings
16 from app.logger import get_logger
17 from app.video_processor import Detection
18

19 logger = get_logger ()
20

21

22 def color_to_hex(color: Tuple[int , int , int]) -> str:
23 """ Converts a color tuple to a hex string."""
24 return f"0x{color [0]:02x}{color [1]:02x}{ color [2]:02x}"
25

26 class Annotator: # pylint: disable=too -few -public -methods
27 """
28 A more performant and specialized version of the
29 Annotator class from ultralytics.yolo.utils.plotting
30 """
31

32 def __init__(
33 self ,
34 frame_size: Tuple[int , int],
35 color: Tuple[int , int , int] = (255, 0, 0),
36 line_width: int | None = None ,
37 font_size: int | None = None ,
38) -> None:
39 try:
40 font = check_font("Arial.Unicode.ttf")
41 size = font_size or max(round(sum(frame_size) / 2 *

0.035) , 12)
42 self.font = ImageFont.truetype(str(font), size)
43 except Exception: # pylint: disable=broad -except
44 self.font = ImageFont.load_default ()
45 self.line_width = line_width or max(round(sum(frame_size)

/ 2 * 0.003) , 2)
46 self.color = color
47 self.pil_9_2_0_check = check_version(pil_version , "9.2.0")

deprecation check
48 self.text_color = (255, 255, 255)
49

50 def annotate(
51 self , frame: np.ndarray[Any , Any], detections: List[

208

Detection]
52) -> np.ndarray[Any , Any]:
53 """
54 Draws bounding boxes and labels on a frame for the

specified detections.
55

56 Args:
57 frame: The frame to draw on.
58 detections: A list of detections to draw.
59

60 Returns:
61 The frame with bounding boxes and labels drawn on it.
62 """
63 image = frame if isinstance(frame , Image.Image) else Image

.fromarray(frame)
64 draw = ImageDraw.Draw(image)
65 for detection in detections:
66 label = f"{detection.confidence :.2f} {detection.label}

"
67

68 box = (
69 int(detection.xmin),
70 int(detection.ymin),
71 int(detection.xmax),
72 int(detection.ymax),
73)
74

75 draw.rectangle(box , width=self.line_width , outline=
self.color) # box

76 if self.pil_9_2_0_check:
77 _, _, width , height = self.font.getbbox(
78 label
79) # text width , height (New)
80 else:
81 width , height = self.font.getsize(
82 label
83) # text width , height (Old , deprecated in 9.2.0)
84 outside = box[1] - height >= 0 # label fits outside

box
85 draw.rectangle(
86 (
87 box[0],
88 box [1] - height if outside else box[1],
89 box [0] + width + 1,
90 box [1] + 1 if outside else box[1] + height +

1,
91),
92 fill=self.color ,
93)
94 draw.text(
95 (box[0], box [1] - height if outside else box [1]),
96 label ,
97 fill=self.text_color ,
98 font=self.font ,
99)

100 return np.asarray(image)
101

102

209

103 # Thanks to https :// github.com/PyAV -Org/PyAV/blob/main/tests/
test_seek.py

104 def frame_to_timestamp(frame: int , video_stream: av.video.stream)
-> int:

105 """
106 Convert a frame number to a timestamp using the time base and

frame rate of a video stream.
107

108 Args:
109 frame (int): The frame number.
110 video_stream (av.video.stream): The input video stream.
111

112 Returns:
113 int: The timestamp in microseconds.
114 """
115

116 time_base = float(video_stream.time_base)
117 rate = float(video_stream.average_rate)
118

119 target_sec = float(frame) * 1.0 / rate
120 timestamp = target_sec / time_base + video_stream.start_time
121

122 return int(round(timestamp))
123

124

125 def timestamp_to_frame(timestamp: float , video_stream: av.video.
stream) -> int:

126 """
127 Convert a timestamp to a frame number using the time base and

frame rate of a video stream.
128

129 Args:
130 timestamp (float): The timestamp in microseconds.
131 video_stream (av.video.stream): The input video stream.
132

133 Returns:
134 int: The frame number.
135 """
136 return int(
137 round(
138 (timestamp - video_stream.start_time)
139 * float(video_stream.time_base)
140 * float(video_stream.average_rate)
141)
142)
143

144

145 def process_packet(# pylint: disable=too -many -arguments
146 packet: av.packet ,
147 current_frame: int | None ,
148 start: int ,
149 end: int ,
150 video_stream: av.video.stream ,
151 output_container: av.container.output ,
152 output_stream: av.video.stream ,
153 predictions: Dict[int , List[Detection]] | None ,
154 annotator: Annotator ,
155 pbar: tqdm ,

210

156 notify_progress: Callable [[int], None] | None = None ,
157) -> Tuple[int | None , bool]:
158 """
159 Process a packet of video frames , encode the frames ,
160 and mux the resulting packets into an output container.
161

162 Args:
163 packet (av.packet): The input packet of video frames.
164 current_frame (int | None): The current frame number.
165 start (int): The starting frame number for the segment.
166 end (int): The ending frame number for the segment.
167 video_stream (av.video.stream): The input video stream.
168 output_container (av.container.output): The output

container.
169 output_stream (av.video.stream): The output video stream.
170 predictions (Dict[int , List[Detection]] | None): Optional

detections for each frame.
171 pbar (tqdm): A progress bar to update.
172

173 Returns:
174 Tuple[int , bool]: The current frame number and a flag

indicating
175 whether processing should continue.
176 """
177 for frame in packet.decode ():
178 if current_frame is None:
179 current_frame = timestamp_to_frame(frame.pts ,

video_stream)
180 assert (
181 current_frame - start <= 0
182), f"Delta: {current_frame - start}, probably seeked

past start frame"
183 else:
184 current_frame += 1
185

186 if current_frame > end:
187 return current_frame , False
188

189 if current_frame >= start:
190 frame_image = frame.to_ndarray(format="bgr24")
191

192 if predictions is not None:
193 frame_detections = predictions.get(current_frame ,

[])
194 frame_image = annotator.annotate(frame_image ,

frame_detections)
195

196 output_frame = av.VideoFrame.from_ndarray(frame_image ,
format="bgr24")

197

198 packet = output_stream.encode(output_frame)
199 if packet is not None:
200 output_container.mux(packet)
201 pbar.update (1)
202 if notify_progress is not None:
203 notify_progress(int((pbar.n / float(pbar.total

)) * 100))
204

211

205 if current_frame is None:
206 return None , True
207

208 return int(current_frame), True
209

210

211 def process_frame_ranges(# pylint: disable=too -many -arguments
212 frame_ranges: List[Tuple[int , int]],
213 input_container: av.container.input ,
214 video_stream: av.video.stream ,
215 output_container: av.container.output ,
216 output_stream: av.video.stream ,
217 predictions: Dict[int , List[Detection]] | None ,
218 annotator: Annotator ,
219 notify_progress: Callable [[int], None] | None = None ,
220) -> None:
221 """
222 Process a list of frame ranges , seek to the appropriate

timestamps ,
223 and process each packet of video frames.
224

225 Args:
226 frame_ranges (List[Tuple[int , int]]): A list of (start ,

end) frame ranges.
227 input_container (av.container.input): The input container.
228 video_stream (av.video.stream): The input video stream.
229 output_container (av.container.output): The output

container.
230 output_stream (av.video.stream): The output video stream.
231 predictions (Dict[int , List[Detection]] | None): Optional

detections for each frame.
232 """
233 with tqdm(
234 total=sum(end - start + 1 for start , end in frame_ranges),
235 desc="Processing frames",
236) as pbar:
237 for start , end in frame_ranges:
238 timestamp = frame_to_timestamp(start , video_stream)
239 # Verify that the timestamp is correct
240 assert timestamp_to_frame(timestamp , video_stream) ==

start
241 input_container.seek(
242 int(timestamp), any_frame=False , backward=True ,

stream=video_stream
243)
244

245 current_frame = None
246 for packet in input_container.demux(video_stream):
247 current_frame , continue_processing =

process_packet(
248 packet ,
249 current_frame ,
250 start ,
251 end ,
252 video_stream ,
253 output_container ,
254 output_stream ,
255 predictions ,

212

256 annotator ,
257 pbar ,
258 notify_progress ,
259)
260 if not continue_processing:
261 break
262

263

264 def cut_video(
265 input_path: Path ,
266 output_path: Path ,
267 frame_ranges: List[Tuple[int , int]],
268 predictions: Dict[int , List[Detection]] | None = None ,
269 notify_progress: Callable [[int], None] | None = None ,
270) -> None:
271 """
272 Cut a video into segments specified by a list of frame ranges ,
273 and optionally annotate the frames with detections.
274

275 Args:
276 input_path (Path): The path to the input video file.
277 output_path (Path): The path to the output video file.
278 frame_ranges (List[Tuple[int , int]]): A list of (start ,

end) frame ranges.
279 predictions (Dict[int , List[Detection]] | None , optional):
280 A dictionary mapping frame numbers to lists of

Detection objects. Defaults to None.
281

282 Raises:
283 FileNotFoundError: If the input file does not exist.
284 av.AVError: If there is an error opening or processing the

input file ,
285 or encoding/muxing the output file.
286

287 Returns:
288 None
289 """
290 input_container = av.open(str(input_path))
291 video_stream = input_container.streams.video [0]
292 video_stream.thread_type = "AUTO"
293

294 output_container = av.open(str(output_path), mode="w")
295 fps = video_stream.average_rate.numerator / video_stream.

average_rate.denominator
296 output_stream = output_container.add_stream(
297 "libx264", str(fps), options ={"crf": str(settings.

video_crf)}
298)
299 output_stream.width = video_stream.codec_context.width
300 output_stream.height = video_stream.codec_context.height
301 output_stream.pix_fmt = video_stream.codec_context.pix_fmt
302

303 annotator = Annotator ((output_stream.width , output_stream.
height))

304

305 process_frame_ranges(
306 frame_ranges ,
307 input_container ,

213

308 video_stream ,
309 output_container ,
310 output_stream ,
311 predictions ,
312 annotator ,
313 notify_progress ,
314)
315

316 packet = output_stream.encode(None)
317 if packet is not None:
318 output_container.mux(packet)
319

320 output_container.close()
321 input_container.close ()

1 """ Video processor module. Contains functions for processing
videos."""

2 import os
3 import subprocess
4 from pathlib import Path
5 from typing import Dict , List , Tuple
6

7 import ffmpeg
8

9 from app.video_processor import Detection
10

11

12 def __run_ffmpeg(
13 args: List[str],
14 pipe_stdin: bool = False ,
15 pipe_stdout: bool = False ,
16 pipe_stderr: bool = False ,
17 quiet: bool = False ,
18) -> Tuple[bytes , bytes]:
19 stdin_stream = subprocess.PIPE if pipe_stdin else None
20 stdout_stream = subprocess.PIPE if pipe_stdout or quiet else

None
21 stderr_stream = subprocess.PIPE if pipe_stderr or quiet else

None
22 with subprocess.Popen(
23 args , stdin=stdin_stream , stdout=stdout_stream , stderr=

stderr_stream
24) as process:
25 out , err = process.communicate ()
26 retcode = process.poll()
27 if retcode:
28 raise ffmpeg.Error("ffmpeg", out , err)
29 return out , err
30

31

32 def color_to_hex(color: Tuple[int , int , int]) -> str:
33 """ Converts a color tuple to a hex string."""
34 return f"0x{color [0]:02x}{color [1]:02x}{ color [2]:02x}"
35

36

37 def draw_detections(
38 video_stream: ffmpeg.nodes.Stream ,
39 detections: Dict[int , List[Detection]],

214

40 start_frame: int ,
41 end_frame: int ,
42) -> ffmpeg.nodes.Stream:
43 """ Draw the detections on the video stream."""
44 frame_offset = start_frame
45 for frame_number , frame_detections in detections.items():
46 # Simplify the above expression
47 if start_frame <= frame_number <= end_frame:
48 adjusted_frame_number = frame_number - frame_offset
49 for detection in frame_detections:
50 # NOTE: We round the coordinates and dimensions to

the nearest even number to
51 # avoid "flickering" when they are not

perfectly aligned with the pixel grid
52 x_pos = round(detection.xmin / 2) * 2
53 y_pos = round(detection.ymin / 2) * 2
54 width = round ((detection.xmax - detection.xmin) /

2) * 2
55 height = round((detection.ymax - detection.ymin) /

2) * 2
56

57 video_stream = video_stream.drawbox(
58 x=x_pos ,
59 y=y_pos ,
60 width=width ,
61 height=height ,
62 color=color_to_hex ((255 , 0, 0)),
63 thickness=2,
64 enable=f"eq(n,{ adjusted_frame_number })",
65).drawtext(
66 # TODO: package the font ourselves to make it

work on all platforms
67 fontfile=r"C:\ Windows\Fonts\consola.ttf",
68 text=f"{detection.label }: {detection.

confidence :.2f}",
69 x=detection.xmin + 4,
70 y=detection.ymin + 10,
71 fontsize =16,
72 fontcolor="white",
73 enable=f"eq(n,{ adjusted_frame_number })",
74 box=1,
75 boxcolor=color_to_hex ((0, 0, 0)) + "80",
76)
77 return video_stream
78

79

80 def cut_video(
81 input_path: Path ,
82 output_path: Path ,
83 frame_ranges: List[Tuple[int , int]],
84 predictions: Dict[int , List[Detection]] | None = None ,
85) -> None:
86 """ Cuts the video to the given frame ranges.
87

88 Args:
89 input_path: The path to the input video.
90 output_path: The path to the output video.
91 frame_ranges: The frame ranges to keep.

215

92 predictions: The detections to draw on the video. (
optional)

93 """
94

95 input_file: ffmpeg = ffmpeg.input(str(input_path))
96

97 streams = []
98

99 for start_frame , end_frame in frame_ranges:
100 # Trim the video to the frame range
101 trimmed_stream = input_file.trim(
102 start_frame=start_frame , end_frame=end_frame
103).filter("setpts", "PTS -STARTPTS")
104

105 if predictions is not None:
106 # Draw the detections on the video
107 trimmed_stream = draw_detections(
108 trimmed_stream , predictions , start_frame ,

end_frame
109)
110

111 streams.append(trimmed_stream)
112

113 command = ffmpeg.concat (* streams).output(str(output_path)).
overwrite_output ()

114

115 args = command.compile ()
116

117 # NOTE: The filter_complex argument is too long to be passed
as a command line argument.

118 # ffmpeg -python doesn’t support filter_complex_script so we
need to manually invoke it.

119

120 # find the index of the -filter_complex argument
121 filter_complex_index = args.index("-filter_complex")
122

123 # replace the -filter_complex argument with -
filter_complex_script

124 args[filter_complex_index] = "-filter_complex_script"
125

126 # write the filter_complex string to a file
127 with open("filter_complex.txt", "w", encoding="utf -8") as file

:
128 file.write(args[filter_complex_index + 1])
129

130 # replace the filter_complex string with the path to the file
131 args[filter_complex_index + 1] = "filter_complex.txt"
132

133 # run ffmpeg with the arguments
134 __run_ffmpeg(args)
135

136 # Delete the filter_complex file
137 os.remove("filter_complex.txt")

1 def detected_frames_to_ranges(
2 frames: List[int], frame_buffer: int
3) -> List[Tuple[int , int]]:
4 """ Convert a list of detected frames to a list of ranges.

216

5 Due to detection inaccuracies we need to allow for some
dead frames

6 without detections within a valid range.
7

8 Args:
9 frames: A list of detected frames.

10 frame_buffer: The number of frames we allow to be without
detection

11 before we consider it a new range.
12 """
13

14 if len(frames) == 0:
15 return []
16

17 frame_ranges: List[Tuple[int , int]] = []
18 start_frame = frames [0]
19 end_frame = frames [0]
20

21 for frame in frames [1:]:
22 if frame <= end_frame + frame_buffer:
23 # Extend the range
24 end_frame = frame
25 else:
26 # Start a new range
27 frame_ranges.append ((start_frame , end_frame))
28 start_frame = frame
29 end_frame = frame
30

31 # Add the last range
32 frame_ranges.append ((start_frame , end_frame))
33

34 return frame_ranges

1 def add_buffer_to_ranges(
2 frame_ranges: List[Tuple[int , int]], video_path: Path
3) -> List[Tuple[int , int]]:
4 """ Add buffer time before and after each frame range and merge

overlapping ranges """
5

6 cap = cv2.VideoCapture(str(video_path))
7 fps = cap.get(cv2.CAP_PROP_FPS)
8 video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
9

10 # Add buffer time to each frame range
11 frame_ranges_with_buffer = [
12 (
13 max(0, start_frame - int(fps * settings.buffer_before)

),
14 min(video_length , end_frame + int(fps * settings.

buffer_after)),
15)
16 for (start_frame , end_frame) in frame_ranges
17]
18

19 # Merge overlapping frame ranges
20 merged_ranges: List[Tuple[int , int]] = []
21 for start_frame , end_frame in frame_ranges_with_buffer:
22 if not merged_ranges or start_frame > merged_ranges

217

[-1][1]:
23 merged_ranges.append ((start_frame , end_frame))
24 else:
25 merged_ranges [-1] = (
26 merged_ranges [-1][0],
27 max(merged_ranges [-1][1], end_frame),
28)
29

30 return merged_ranges

1 def update_time_prediction(
2 self , progress: int , video_num: int , num_videos: int
3) -> None:
4 """ Update the time prediction label.
5

6 Args:
7 progress: The progress of the current task.
8 video_num: The number of the current video.
9 num_videos: The total number of videos.

10 """
11 current_time = time.time()
12 # Don’t update more than once per second
13 if current_time - self.last_time_update < 1.0:
14 return
15 self.last_time_update = current_time
16

17 total_elapsed_time = current_time - self.start_time
18 video_elapsed_time = current_time - self.video_start_time
19

20 if progress > 0:
21 # Calculate the remaining time for the current video
22 time_left_current_video = video_elapsed_time * (100 -

progress) / progress
23

24 if video_num > 0:
25 # Calculate the average time spent per video for the

videos processed so far
26 avg_time_per_video = (
27 total_elapsed_time - video_elapsed_time
28) / video_num
29

30 # Estimate the time left for the remaining videos
31 time_left_remaining_videos = avg_time_per_video * (
32 num_videos - (video_num + 1)
33)
34 else:
35 # If this is the first video , estimate the total time

for the current video
36 total_time_current_video = video_elapsed_time * 100 /

progress
37

38 # Use the total time for the current video as an
estimate for the remaining videos

39 time_left_remaining_videos = total_time_current_video
* (num_videos - 1)

40

41 # Calculate the total time left
42 time_left = time_left_current_video +

218

time_left_remaining_videos
43

44 time_left_str = str(timedelta(seconds=int(time_left)))
45 self.update_time_prediction_sig.emit(f"Total Time Left: {

time_left_str}")

1 """A timer class to time code blocks."""
2 import time
3 from typing import Any
4

5 from app.logger import get_logger
6

7 logger = get_logger ()
8

9

10 class Timer:
11 """A timer class to time code blocks."""
12

13 def __init__(self , name: str) -> None:
14 self.name: str = name
15 self.start: float = 0
16

17 def __enter__(self) -> None:
18 self.start = time.time()
19

20 def __exit__(self , exc_type: Any , exc_value: Any ,
exc_traceback: Any) -> None:

21 if exc_type is not None:
22 # logger.error (" Exception raised in timer block",

exc_info=True)
23 return
24

25 delta_time = time.time() - self.start
26

27 logger.info("%s took %s seconds", self.name , delta_time)

1 # pylint: skip -file
2 # mypy: ignore -errors
3

4 import logging
5 import os
6 import sys
7 from pathlib import Path
8

9 import torch
10

11 from app import settings
12 from app.detection import detection
13 from app.detection.batch_yolov8 import BatchYolov8
14 from app.logger import create_logger , get_logger
15 from app.timer import Timer
16 from app.video_processor import video_processor
17

18 MODELS_DIR = "data/models"
19

20 MODEL_NAMES = [
21 "yolov8n.pt",
22 "yolov8s.pt",

219

23 "yolov8m.pt",
24 "yolov8l.pt",
25 "yolov8x.pt",
26]
27 BATCH_SIZES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
28 # BATCH_SIZES = [1024]
29

30 DEVICE = "cuda:0"
31

32 VIDEO_INPUT = Path("data/input.mp4")
33 VIDEO_OUTPUT = Path("data/output.mp4")
34

35 log = get_logger ()
36

37

38 def perform_test(
39 model: BatchYolov8 , batch_size: int = 64, max_batches_to_queue

: int = 4
40) -> None:
41 with Timer(f"Processing video (batch_size ={ batch_size}, device

={ DEVICE })"):
42 frames_with_fish = detection.process_video(
43 model=model ,
44 video_path=VIDEO_INPUT ,
45 batch_size=batch_size ,
46 output_path=None ,
47)
48

49 # frame_ranges = detection.detected_frames_to_range(
frames_with_fish , frame_buffer =3)

50

51 # with Timer (" Cutting video"):
52 # Cut the video to the detected frames
53 # video_processor.cut_video(VIDEO_INPUT , VIDEO_OUTPUT ,

frame_ranges)
54

55

56 def main() -> int:
57 create_logger(level=logging.INFO)
58 settings.setup()
59

60 # MODEL_NAMES.reverse ()
61 for model_name in MODEL_NAMES:
62 try:
63 # Clear CUDA cache to free up memory from the last

model/iteration
64 log.info("Initializing %s", model_name)
65 model = BatchYolov8(
66 Path(os.path.join(MODELS_DIR , model_name)),
67 DEVICE ,
68)
69

70 except Exception as err:
71 log.error("Failed to load model %s: %s", model_name ,

err)
72 return 1
73

74 for batch_size in BATCH_SIZES:

220

75 try:
76 perform_test(model , batch_size=batch_size ,

max_batches_to_queue =4)
77 except RuntimeError as err:
78 if "CUDA out of memory" in str(err):
79 log.warning("Ran out of memory , skipping batch

size %s", batch_size)
80 else:
81 log.error("Failed to process video: %s", err)
82 break
83

84 except Exception as err:
85 log.error("Failed to process video: %s", err)
86 break # might be due to OOM
87 return 0
88

89

90 if __name__ == "__main__":
91 sys.exit(main())

1 """ Settings module for the application."""
2

3 import sys
4 from types import ModuleType
5 from typing import Any , Dict , Tuple
6

7 from PyQt6.QtCore import QSettings
8

9 from app.logger import get_logger
10

11 # region Settings
12

13 # Window settings
14 window_width: int = 700
15 window_height: int = 400
16

17 # File settings
18 open_path: str = "" # Path to open file
19 save_path: str = "" # Path to save file
20 buffer_before: int = 0
21 buffer_after: int = 0
22 keep_original: bool = True
23

24 # Advanced settings
25 get_report: bool = False
26

27 report_format: str = "CSV"
28

29 batch_size: int = 8
30

31 prediction_threshold: int = 50
32

33 box_around_fish: bool = False
34

35 video_crf: int = 23
36

37 max_detections: int = 100
38

221

39 frame_buffer_seconds: int = 1
40

41 # endregion
42

43 #

#

44

45 # key: name , value: ((default) value , type)
46 __entries: Dict[str , Tuple[Any , type]] = {}
47

48 # Create __settings as QSettings and store it as ini in data
folder

49 __settings = QSettings("settings.ini", QSettings.Format.IniFormat)
50

51 __logger = get_logger ()
52

53

54 # This is a hack to get the above module variables
55 module_vars = locals ()
56

57

58 def __setup_entries () -> None:
59 """ Adds all the entries to the settings entries."""
60 # use the above variables and access them through the module
61

62 to_delete = []
63 for name , value in module_vars.items():
64 if name.startswith("__"):
65 continue
66

67 # Check if the value is a variable of the supported types
68 if not isinstance(value , (int , float , str , bool)):
69 continue
70

71 __logger.debug("Adding entry %s with default value %s",
name , value)

72 __add_entry(name , value , type(value))
73 to_delete += [name]
74

75 # Delete the attributes so it doesn’t get exported , and we
force everything through __getattr__

76 for name in to_delete:
77 del module_vars[name]
78

79

80 def __add_entry(name: str , default_value: Any , value_type: type)
-> None:

81 """ Adds a new entry to the settings entries.
82

83 Args:
84 name: The name of the entry as it will be exported by the

module and in the ini file.
85 default_value: The default value
86 value_type: The type of the value
87

88 Raises:
89 ValueError: If the entry already exists

222

90 ValueError: If the default value is not of specified type
91 """
92 if name in __entries:
93 raise ValueError(f"Entry {name} already exists")
94

95 # We could infer the type , but better to be explicit and raise
an error if it’s wrong

96 if not isinstance(default_value , value_type):
97 raise ValueError(f"Default value {default_value} is not of

type {value_type}")
98

99 __entries[name] = (default_value , value_type)
100

101

102 # TODO: rename
103 def __populate_entries_from_ini_config () -> None:
104 """ Reads the values from the ini file and sets the values in

the module."""
105

106 for name , (default_value , value_type) in __entries.items():
107 value = __settings.value(name , default_value , value_type)
108

109 # If the value is not of the correct type , use the default
value

110 if not isinstance(value , value_type):
111 value = default_value
112 __logger.warning(
113 "Value for %s is not of type %s, using default

value", name , value_type
114)
115

116 __logger.debug("Setting %s to %s", name , value)
117 __entries[name] = (value , value_type)
118

119

120 class SettingsModule(ModuleType): # pylint: disable=too -few -
public -methods

121 """A subclass of the settings module that overrides
__setattr__ """

122

123 def __setattr__(self , name: str , value: Any) -> None:
124 # Access the entries through the module dict
125 entries = sys.modules[__name__]. __dict__["__entries"]
126 settings = sys.modules[__name__]. __dict__["__settings"]
127 logger = sys.modules[__name__]. __dict__["__logger"]
128

129 if name in entries:
130 entry_type = entries[name][1]
131 entries[name] = (value , entry_type)
132

133 if not isinstance(value , entry_type):
134 raise ValueError(
135 f"[{name}] Value {value} is not of type {

entries[name][1]}"
136)
137

138 settings.setValue(name , value)
139 logger.debug("Storing %s as %s", name , value)

223

140 settings.sync()
141 else:
142 super().__setattr__(name , value)
143

144

145 # Override the __getattr__ method of the settings module
146 def __getattr__(name: str) -> Any:
147 if name in __entries:
148 return __entries[name][0]
149 raise AttributeError(f"Module {__name__} has no attribute {

name}")
150

151

152 def setup () -> None:
153 """ Sets up the settings module."""
154

155 __logger.debug("Settings stored at %s", __settings.fileName ())
156

157 __setup_entries ()
158 __populate_entries_from_ini_config ()
159

160 # Replace the settings module with a subclass that overrides
__setattr__

161 sys.modules[__name__]. __class__ = SettingsModule

1 # pylint: skip -file
2 # mypy: ignore -errors
3

4 """ Module to generate a dataset for training and testing."""
5

6 import multiprocessing as mp
7 import os
8 import random
9 import re

10 import shutil
11 import xml.etree.ElementTree as ET
12 import zipfile
13 from concurrent.futures import ThreadPoolExecutor
14 from pathlib import Path
15 from typing import Dict , List , Tuple
16

17 import cv2
18 import yaml
19 from tqdm import tqdm
20

21 CVAT_EXPORTS_FOLDER = Path(r"D:\ dataset_temp\cvat_exports")
22 DATASET_FOLDER = Path(r"D:\ dataset_temp\generated_test")
23 SOURCE_VIDEO_FOLDERS = [
24 Path(r"X:\ Myggbukta 2022"),
25 Path(r"X:\DISK1 - Hoyregga 17+18 og myggbukta 2020 mai NTNU"),
26]
27 BACKGROUND_IMAGE_PERCENTAGE = 0.1
28 TRAIN_SPLIT = 0.8
29 PNG_QUALITY = 3 # 0-9 where 0 is the best quality
30 # VAL_SPLIT = 0.3 # Not used , just the rest of train split
31 MAX_WORKERS = 8
32

33 CLASSES = [

224

34 "Gjedde",
35 "Gullbust",
36 "Rumpetroll",
37 "Stingsild",
38 "Orekyt",
39 "Abbor",
40 "Brasme",
41 "Mort",
42 "Vederbuk",
43 "Frosk",
44 "Annen fisk",
45]
46

47

48 def get_video_filename(annotation_xml: Path) -> str:
49 tree = ET.parse(annotation_xml)
50 root: ET.Element = tree.getroot ()
51 assert root is not None , "Could not parse xml file"
52

53 task = root.find("meta").find("task")
54 return task.find("source").text
55

56

57 def extract_annotations(
58 cvat_exports_folder: Path , output_folder: Path ,

processed_counter: mp.Value
59) -> None:
60

61 # NOTE: We do this because background images are randomly
selected and we

62 # don’t want to add more and more background images to
the dataset if run multiple times

63 # also other parameters and the dataset itself might
have changed.

64 if os.path.exists(output_folder):
65 shutil.rmtree(output_folder , ignore_errors=True)
66

67 annotation_folder = output_folder / "cvat_annotations"
68

69 # Creates output folder and annotation folder
70 os.makedirs(annotation_folder)
71

72 def process_zip_file(
73 zip_filepath: Path , id: int , total: int , processed_counter

: mp.Value
74) -> None:
75

76 try:
77 with zipfile.ZipFile(zip_filepath , "r") as zip_file:
78 zip_file.extract(
79 "annotations.xml",
80 path=annotation_folder / f"{id:04d}",
81)
82 annotation_path = annotation_folder / f"{id:04d}"

/ "annotations.xml"
83 video_filename = get_video_filename(

annotation_path)
84 video_filename = os.path.splitext(video_filename)

225

[0]
85

86 with processed_counter.get_lock ():
87 tqdm.write(f"Started processing {zip_filepath.

name}")
88

89 try:
90 generate_yolo_dataset(
91 output_folder / video_filename ,
92 annotation_path ,
93 BACKGROUND_IMAGE_PERCENTAGE ,
94)
95 except FileNotFoundError as err:
96 print(err)
97 raise
98 with processed_counter.get_lock ():
99 processed_counter.value += 1

100 tqdm.write(
101 f"Finished processing {zip_filepath.name} ({

processed_counter.value }/{ total})"
102)
103 except zipfile.BadZipFile as err:
104 print(err)
105 raise
106 except Exception as err:
107 print(err)
108 raise
109

110 # Create a ThreadPoolExecutor to parallelize the processing
111 with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
112 zip_filepaths = [
113 cvat_exports_folder / zip_filename
114 for zip_filename in os.listdir(cvat_exports_folder)
115 if zip_filename.endswith(".zip")
116]
117 total_zip_files = len(zip_filepaths)
118

119 for position , zip_filepath in enumerate(zip_filepaths):
120 executor.submit(
121 process_zip_file ,
122 zip_filepath ,
123 position + 1,
124 total_zip_files ,
125 processed_counter ,
126)
127

128

129 def parse_xml_annotation(
130 xml_file: str ,
131) -> Tuple[
132 str ,
133 Tuple[int , int],
134 int ,
135 Dict[int , Dict[str , List[Tuple[float , float , float , float]]]],
136]:
137 tree = ET.parse(xml_file)
138 root: ET.Element = tree.getroot ()
139 assert root is not None , "Could not parse xml file"

226

140

141 task = root.find("meta").find("task")
142 video_filename = task.find("source").text
143

144 video_original_size = (
145 float(task.find("original_size").find("width").text),
146 float(task.find("original_size").find("height").text),
147)
148

149 frame_count = int(task.find("size").text)
150

151 # dictionary to store annotations , with frame number as key
152 annotations: Dict[int , Dict[str , List[Tuple[float , float ,

float , float]]]] = {}
153

154 # Add image annotations
155 for image in root.findall("image"):
156 frame_number = int(image.attrib["id"])
157 annotations[frame_number] = {}
158 for box in image.findall("box"):
159 label = box.attrib["label"]
160 occluded = box.attrib["occluded"]
161 outside = box.attrib["outside"]
162 # Skip occluded and outside boxes
163 if occluded == "1" or outside == "1":
164 continue
165

166 xtl = float(box.attrib["xtl"])
167 ytl = float(box.attrib["ytl"])
168 xbr = float(box.attrib["xbr"])
169 ybr = float(box.attrib["ybr"])
170 if label not in annotations[frame_number]:
171 annotations[frame_number][label] = []
172 annotations[frame_number][label]. append ((xtl , ytl , xbr

, ybr))
173

174 # Add track annotations
175 for track in root.findall("track"):
176 label = track.attrib["label"]
177 for box in track.findall("box"):
178 frame_number = int(box.attrib["frame"])
179 occluded = box.attrib["occluded"]
180 outside = box.attrib["outside"]
181 # Skip occluded and outside boxes
182 if occluded == "1" or outside == "1":
183 continue
184 xtl = float(box.attrib["xtl"])
185 ytl = float(box.attrib["ytl"])
186 xbr = float(box.attrib["xbr"])
187 ybr = float(box.attrib["ybr"])
188 if frame_number not in annotations:
189 annotations[frame_number] = {}
190 if label not in annotations[frame_number]:
191 annotations[frame_number][label] = []
192 annotations[frame_number][label]. append ((xtl , ytl , xbr

, ybr))
193

194 return video_filename , video_original_size , frame_count ,

227

annotations
195

196

197 def generate_yolo_dataset(
198 yolo_dataset_folder: Path ,
199 annotation_path: Path ,
200 background_image_percentage: float ,
201 background_image_no_annotation_buffer: int = 50,
202) -> None:
203 os.makedirs(yolo_dataset_folder)
204

205 (
206 video_filename ,
207 video_resolution ,
208 frame_count ,
209 annotations ,
210) = parse_xml_annotation(annotation_path)
211

212 def get_video_path(video_filename: str) -> Path:
213 """
214 This is kinda hacky , but it works.
215 Should have globbed it directly , but escaping the brackets

was a pain.
216 """
217 for source_video_folder in SOURCE_VIDEO_FOLDERS:
218 search_name = os.path.splitext(video_filename)[0]
219 # NOTE: we replace underscores with spaces due to

handbrake naming
220 search_name = re.sub(r"_", " ", search_name).upper()
221 files = source_video_folder.glob("**/*.*")
222 for file in files:
223 if search_name in re.sub(r"_", " ", file.name).

upper():
224 return file
225

226 raise FileNotFoundError(
227 f"Could not find {video_filename} in any of the source

video folders"
228)
229

230 video_path = get_video_path(video_filename)
231

232 def extract_frames(video_path: Path , background_frames: List[
int]) -> None:

233 video = cv2.VideoCapture(str(video_path))
234

235 frames_to_extract = list(
236 filter(
237 lambda n: n in annotations or n in

background_frames , range(frame_count)
238)
239)
240

241 for frame_number in frames_to_extract:
242 video.set(cv2.CAP_PROP_POS_FRAMES , frame_number)
243 success , frame = video.read()
244 if success:
245 cv2.imwrite(

228

246 str(yolo_dataset_folder / f"{frame_number :06}.
png"),

247 frame ,
248 [int(cv2.IMWRITE_PNG_COMPRESSION), PNG_QUALITY

],
249)
250 video.release ()
251

252 def determine_background_frames(max_frame_number: int) -> List
[int]:

253 """
254 Determines background frames based on the

background_image_percentage.
255 It needs to have at least

background_image_no_annotation_buffer amount of frames before
256 and after it to be considered a background frame.
257

258 This is to prevent the background frames from being too
close to the

259 annotated frames and containing half a fish.
260

261 Needs to be verified by a human.
262 """
263 # Store annotated frame numbers in a set
264 annotated_frames = set(annotations.keys())
265

266 # Create a set of frame numbers that are too close to
annotated frames

267 exclude_frames = set(
268 frame_number
269 for annotated_frame_number in annotated_frames
270 for frame_number in range(
271 max(0, annotated_frame_number -

background_image_no_annotation_buffer),
272 min(
273 max_frame_number ,
274 annotated_frame_number +

background_image_no_annotation_buffer + 1,
275),
276)
277)
278

279 # Create a set of background frames that are not too close
to annotated frames

280 background_frames = (
281 set(range(max_frame_number + 1)) - annotated_frames -

exclude_frames
282)
283

284 # Convert the background frames set to a list and shuffle
it

285 background_frames = list(background_frames)
286 random.shuffle(background_frames)
287

288 # Determine the amount of background frames to use
289 n_background_frames = int(background_image_percentage *

len(annotations))
290

229

291 return background_frames [: n_background_frames]
292

293 # Iterate all the annotations and generate the yolo dataset
294 # Each entry of annotations contain the frame number as key

and a dictionary of labels as value , with the bounding boxes as
value

295 video_width , video_height = video_resolution
296

297 for frame_number , frame_annotations in annotations.items():
298 # Create annotation file
299 annotation_file = yolo_dataset_folder / f"{frame_number

:06}. txt"
300 with open(annotation_file , "w", encoding="utf -8") as file:
301 for label , boxes in frame_annotations.items ():
302 for box in boxes:
303 xtl , ytl , xbr , ybr = box
304 x_center = (xtl + xbr) / 2
305 y_center = (ytl + ybr) / 2
306 width = xbr - xtl
307 height = ybr - ytl
308

309 # Normalize the coordinates and size to be
between 0 and 1

310 x_center /= video_width
311 y_center /= video_height
312 width /= video_width
313 height /= video_height
314

315 # Clamp the values to be between 0 and 1 (cvat
annotations are sometimes OOB when starting new tracks)

316 x_center = max(0, min(1, x_center))
317 y_center = max(0, min(1, y_center))
318 width = max(0, min(1, width))
319 height = max(0, min(1, height))
320

321 file.write(
322 f"{CLASSES.index(label)} {x_center} {

y_center} {width} {height }\n"
323)
324

325 background_frames = determine_background_frames(frame_count)
326

327 # Write empty annotation files for the background frames
328 for frame_number in background_frames:
329 annotation_file = yolo_dataset_folder / f"{frame_number

:06}. txt"
330 with open(annotation_file , "w", encoding="utf -8") as file:
331 pass
332

333 # Extract annotation frames and background frames
334 extract_frames(video_path , background_frames)
335

336

337 def split_train_val(dataset_path: Path , train_split: float) ->
None:

338 all_images: List[Path] = []
339

340 # Collect all image paths from subfolders

230

341 for folder in dataset_path.iterdir ():
342 if folder.is_dir ():
343 # Glob for .png or .jpg
344 images = list(folder.glob("*.png"))
345 images.extend(folder.glob("*.jpg"))
346

347 # Make it relative to the dataset folder
348 # images = [img.relative_to(dataset_path) for img in

images]
349 all_images.extend(images)
350

351 # Shuffle the images and split them into train and val sets
352 random.shuffle(all_images)
353 train_size = int(len(all_images) * train_split)
354

355 print(f"Total images: {len(all_images)}")
356 print(f"Train size: {train_size}, Val size: {len(all_images) -

train_size}")
357 train_images = all_images [: train_size]
358 val_images = all_images[train_size :]
359

360 # Write the train.txt and val.txt files
361 with open(dataset_path / "train.txt", "w", encoding="utf -8")

as train_file:
362 for img in train_images:
363 train_file.write(f"{img}\n")
364

365 with open(dataset_path / "val.txt", "w", encoding="utf -8") as
val_file:

366 for img in val_images:
367 val_file.write(f"{img}\n")
368

369

370 def merge_datasets(dataset_a: Path , dataset_b: Path , output_folder
: Path):

371 """
372 This will merge the train.txt and val.txt files from two

datasets into one dataset.
373 It will also copy the obj.names and obj.data files from the

first dataset.
374 And it will output the new train.txt and val.txt files in the

output folder.
375 """
376 train_a = dataset_a / "train.txt"
377 val_a = dataset_a / "val.txt"
378 train_b = dataset_b / "train.txt"
379 val_b = dataset_b / "val.txt"
380

381 with open(train_a , "r", encoding="utf -8") as file:
382 train_a_lines = file.readlines ()
383 with open(val_a , "r", encoding="utf -8") as file:
384 val_a_lines = file.readlines ()
385 with open(train_b , "r", encoding="utf -8") as file:
386 train_b_lines = file.readlines ()
387 with open(val_b , "r", encoding="utf -8") as file:
388 val_b_lines = file.readlines ()
389

390 # FIXME: This is a hack to fix the paths in the train.txt and

231

val.txt files
391 # I only need it for the yolo dataset (b) atm because prepends

the data/ folder to the paths
392 """
393 def remove_data_path(lines: List[str]) -> List[str]:
394 # Remove data/ from each line by removing first 5

characters
395 lines = list(map(lambda line: line [5:], lines))
396 return [f"{ line}" for line in lines]
397

398 train_b_lines = remove_data_path(train_b_lines)
399 val_b_lines = remove_data_path(val_b_lines)
400 """
401

402 # Merge the train and val files
403 train_lines = train_a_lines + train_b_lines
404 val_lines = val_a_lines + val_b_lines
405

406 # Shuffle the lines
407 random.shuffle(train_lines)
408 random.shuffle(val_lines)
409

410 # Write the new train and val files
411 with open(output_folder / "train.txt", "w", encoding="utf -8")

as file:
412 file.writelines(train_lines)
413

414 with open(output_folder / "val.txt", "w", encoding="utf -8") as
file:

415 file.writelines(val_lines)
416

417 # shutil.copy(dataset_a / "obj.names", output_folder / "obj.
names")

418 # shutil.copy(dataset_a / "obj.data", output_folder / "obj.
data")

419

420 # Create the dataset.yaml config file
421 dataset_yaml = {
422 "path": str(output_folder),
423 "train": "train.txt",
424 "val": "val.txt",
425 "names": CLASSES ,
426 }
427 with open(output_folder / "dataset.yaml", "w", encoding="utf -8

") as yaml_file:
428 yaml.dump(dataset_yaml , yaml_file , default_flow_style=

False)
429

430

431 if __name__ == "__main__":
432 """
433 processed_counter = mp.Value("i", 0)
434 try:
435 extract_annotations(CVAT_EXPORTS_FOLDER , DATASET_FOLDER ,

processed_counter)
436 except FileNotFoundError as e:
437 print(e)
438 """

232

439 split_train_val(DATASET_FOLDER , TRAIN_SPLIT)
440 # generate_obj_files(DATASET_FOLDER)
441

442 # Split the downloaded yolo dataset into train and val
443 split_train_val(Path(r"D:\ dataset_temp\

yolo_updated_with_images"), TRAIN_SPLIT)
444 merge_datasets(
445 DATASET_FOLDER , # Path(r"C:\Users\benja\Documents\

datasets\nina_yolo_new "),
446 Path(r"D:\ dataset_temp\yolo_updated_with_images"),
447 output_folder=Path(r"D:\ dataset_temp\spliced"),
448)

1 """ Script to find the distribution of annotations in a yolo
dataset."""

2 # pylint: disable=missing -function -docstring
3 import csv
4 from pathlib import Path
5

6 from tqdm import tqdm
7

8 NAMES_FILE_NAME = "obj.names"
9 # DATA_FOLDER_NAME = "obj_train_data"

10

11

12 DATASET_PATH = Path(r"D:\ dataset_temp\spliced")
13

14

15 def load_names () -> list[str]:
16 with (DATASET_PATH / NAMES_FILE_NAME).open("r", encoding="utf

-8") as file:
17 dataset_names = file.read().splitlines ()
18 return dataset_names
19

20

21 def get_annotation_distribution () -> list[tuple[str , int]]:
22 annotations_dist: list[int] = [0 for _ in names]
23 # Get subdirectories of DATASET_PATH
24 subdirectories = [
25 subdirectory for subdirectory in DATASET_PATH.iterdir () if

subdirectory.is_dir ()
26]
27 # Get all .txt files in the subdirectories
28 filenames = [
29 filename
30 for subdirectory in subdirectories
31 for filename in subdirectory.glob("*.txt")
32]
33 with tqdm(total=len(filenames), desc="Processing annotations")

as progress_bar:
34 for filename in filenames:
35 with filename.open("r") as file:
36 for line in file:
37 try:
38 class_id , _, _, _, _ = line.split ()
39 annotations_dist[int(class_id)] += 1
40 except ValueError as err:
41 print(f"Error processing {filename }: {err}

233

")
42

43 progress_bar.update (1)
44 return list(zip(names , annotations_dist))
45

46

47 def write_annotation_distribution_to_csv(
48 annotations_dist: list[tuple[str , int]]
49) -> None:
50 with open("annotations_dist.csv", "w", newline="", encoding="

utf -8") as file:
51 writer = csv.writer(file)
52 writer.writerow (["Name", "Num annotations"])
53 writer.writerows(annotations_dist)
54

55

56 names = load_names ()
57

58 annotations = get_annotation_distribution ()
59

60 print(annotations)
61

62 write_annotation_distribution_to_csv(annotations)

1 # pylint: skip -file
2 # mypy: ignore -errors
3 import concurrent.futures
4 import hashlib
5 import os
6 import pickle
7 import queue
8 from pathlib import Path
9

10 import cv2
11 import ffmpeg
12 import numpy as np
13 import tqdm
14 from imagehash import dhash , phash
15 from PIL import Image
16

17

18 def extract_images_from_video(video_path , output_folder):
19 video_name = video_path.stem
20 cap = cv2.VideoCapture(str(video_path))
21

22 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
23

24 # Create the output folder if it doesn’t exist
25 os.makedirs(output_folder , exist_ok=True)
26

27 for i in range(frame_count):
28 ret , frame = cap.read()
29 if ret:
30 output_file_path = os.path.join(
31 output_folder , f"{video_name}_frame_{i:04d}.jpg"
32)
33 cv2.imwrite(output_file_path , frame)
34 else:

234

35 print(f"Failed to read frame {i} from {video_path}")
36

37 cap.release ()
38

39

40 def extract_images_from_video_ffmpeg(video_path , output_folder):
41 video_name = video_path.stem
42

43 # Create the output folder if it doesn’t exist
44 os.makedirs(output_folder , exist_ok=True)
45

46 output_file_pattern = os.path.join(output_folder , f"{
video_name}_frame_ %04d.jpg")

47

48 try:
49 (
50 ffmpeg.input(str(video_path))
51 .output(output_file_pattern , format="image2", vcodec="

mjpeg")
52 .run(capture_stdout=True , capture_stderr=True)
53)
54 except ffmpeg.Error as e:
55 print(
56 f"Error occurred while extracting frames from {

video_path }: {e.stderr.decode ()}"
57)
58

59

60 def md5_hash(image_path):
61 with open(image_path , "rb") as f:
62 file_hash = hashlib.md5()
63 while chunk := f.read (8192):
64 file_hash.update(chunk)
65 return file_hash.hexdigest ()
66

67

68 hash_func = phash
69

70

71 def load_hashes(yolo_dataset_path , cache_file_path , batch_size =10)
:

72 yolo_hashes = set()
73

74 cache_file = Path(cache_file_path)
75 if cache_file.exists ():
76 with open(cache_file , "rb") as f:
77 yolo_hashes = pickle.load(f)
78 print("Loaded", len(yolo_hashes), "YOLO hashes")
79 else:
80 # Find both .jpg or .PNG files
81 image_files = list(Path(yolo_dataset_path).glob("*.jpg"))

+ list(
82 Path(yolo_dataset_path).glob("*.PNG")
83)
84 num_images = len(image_files)
85 print("Found", num_images , "images in YOLO dataset")
86 progress_bar = tqdm.tqdm(total=num_images , desc="

Processing YOLO images")

235

87

88 for i in range(0, num_images , batch_size):
89 batch = image_files[i : i + batch_size]
90 for image_path in batch:
91 image = Image.open(image_path)
92 yolo_hashes.add(
93 hash_func(image , hash_size =16)
94) # You can use dhash () if preferred
95

96 progress_bar.update(len(batch))
97

98 progress_bar.close()
99 print("Found", len(yolo_hashes), "unique images in YOLO

dataset")
100 with open(cache_file_path , "wb") as f:
101 pickle.dump(yolo_hashes , f)
102 print("Saved hashes to", cache_file_path)
103

104 return yolo_hashes
105

106

107 def load_processed_videos(file_path):
108 processed_videos = set()
109 cache_file = Path(file_path)
110 if cache_file.exists ():
111 with open(cache_file , "rb") as f:
112 processed_videos = pickle.load(f)
113 print("Loaded", len(processed_videos), "processed videos")
114 else:
115 print("Processed videos file not found")
116 return processed_videos
117

118

119 def save_processed_videos(processed_videos , file_path):
120 with open(file_path , "wb") as f:
121 pickle.dump(processed_videos , f)
122

123

124 def process_video(video_path , yolo_hashes , progress_bars_queue):
125 try:
126 progress_bar = progress_bars_queue.get()
127

128 video_name = video_path.stem
129 cap = cv2.VideoCapture(str(video_path))
130

131 fps = 1
132 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
133 fps_original = int(cap.get(cv2.CAP_PROP_FPS))
134 interval = fps_original // fps
135

136 progress_bar.total = frame_count // interval
137 progress_bar.n = 0
138 progress_bar.set_description_str(f"Processing {video_name}

")
139 progress_bar.refresh ()
140 progress_bar.reset()
141

142 for i in range(0, frame_count , interval):

236

143 cap.set(cv2.CAP_PROP_POS_FRAMES , i)
144 ret , frame = cap.read()
145

146 if ret:
147 # _, frame_buffer = cv2.imencode (".jpg", frame)
148 # frame_hash = hashlib.md5(frame_buffer.tobytes ())

.hexdigest ()
149 frame_pil = Image.fromarray(cv2.cvtColor(frame ,

cv2.COLOR_BGR2RGB))
150 frame_hash = hash_func(frame_pil , hash_size =16)
151

152 if frame_hash in yolo_hashes:
153 progress_bars_queue.put(progress_bar)
154 return True
155

156 progress_bar.update ()
157

158 cap.release ()
159 progress_bars_queue.put(progress_bar)
160 return False
161 except Exception as e:
162 print(f"Error occurred while processing {video_path }: {e}"

)
163 return False
164

165

166 def find_annotated_videos(video_folder , processed_videos ,
output_file , max_workers =4):

167 annotated_videos = set()
168 # Keep track of processed videos to avoid processing the same

video multiple times
169 video_files = list(
170 Path(video_folder).rglob("*.mp4")
171) # Adjust the extension if necessary
172 # Remove files in "RECYCLE.BIN" folders
173 video_files = [
174 video_path for video_path in video_files if "RECYCLE.BIN"

not in str(video_path)
175]
176 # Remove if in processed_videos
177 video_files = [
178 video_path for video_path in video_files if video_path not

in processed_videos
179]
180 # Randomize the order of videos
181 # np.random.shuffle(video_files)
182

183 print("Found", len(video_files), "videos in folder")
184

185 progress_bars = [
186 tqdm.tqdm(total=0, position=i, leave=False) for i in range

(max_workers)
187]
188 progress_bars_queue = queue.Queue ()
189

190 for progress_bar in progress_bars:
191 progress_bars_queue.put(progress_bar)
192

237

193 with concurrent.futures.ThreadPoolExecutor(max_workers=
max_workers) as executor:

194 futures = {
195 executor.submit(
196 process_video , video_path , yolo_hashes ,

progress_bars_queue
197): video_path
198 for video_path in video_files
199 }
200

201 overall_progress = tqdm.tqdm(
202 total=len(video_files), desc="Overall progress",

position=max_workers
203)
204

205 for future in concurrent.futures.as_completed(futures):
206 video_path = futures[future]
207 if future.result ():
208 annotated_videos.add(video_path.stem)
209 # Write the video name to a file
210 with open(output_file , "a") as f:
211 f.write(video_path.stem + " " + str(video_path

) + "\n")
212

213 processed_videos.add(video_path)
214

215 save_processed_videos(processed_videos ,
processed_videos)

216 overall_progress.update (1)
217 overall_progress.set_description_str(
218 "Overall progress (" + str(len(annotated_videos))

+ " annotated videos)"
219)
220

221 for progress_bar in progress_bars:
222 progress_bar.close()
223

224 overall_progress.close()
225 return annotated_videos
226

227

228 video_folder = r"path/to/videos" # Videos to check
229 reference_images = r"path/to/reference/images" # Reference images

to check against
230 reference_images_hashes = "hashes.pkl" # Cache file for reference

images
231 processed_videos = "processed_videos.pkl" # Cache file for

processed videos (to avoid processing the same video multiple
times)

232 output_file = "annotated_videos.txt" # Output file with annotated
videos

233

234 annotated_videos = set()
235

236 yolo_hashes = load_hashes(reference_images ,
reference_images_hashes)

237

238 processed_videos = load_processed_videos(processed_videos)

238

239

240 annotated_videos = find_annotated_videos(
241 video_folder , processed_videos , output_file , max_workers =4
242)
243

244 print("Annotated videos:", annotated_videos)

1 """ Main file for our application """
2 import logging
3 import os
4 from logging.handlers import TimedRotatingFileHandler
5

6 LOGGER_NAME = "log"
7 LOG_PATH = "app/log"
8

9

10 def __create_file_handler(
11 formatter: logging.Formatter , filename: str
12) -> TimedRotatingFileHandler:
13 """ Set up logging to file to rotate every midnight and set

formatter
14

15 Returns:
16 TimedRotatingFileHandler: The file handler
17 """
18 handler = TimedRotatingFileHandler(
19 f"{LOG_PATH }/{ filename}",
20 when="midnight",
21 backupCount =10,
22)
23

24 # Set up custom naming for log files
25 def namer(default_name: str) -> str:
26 base_filename , ext , filedate = default_name.split(".")
27 return f"{base_filename }.{ filedate }.{ext}"
28

29 handler.suffix = "%d-%m-%Y"
30 handler.namer = namer
31 handler.setLevel(logging.DEBUG)
32 handler.setFormatter(formatter)
33 return handler
34

35

36 def __create_console_handler(formatter: logging.Formatter) ->
logging.Handler:

37 """ Set up logging to console """
38 console_handler = logging.StreamHandler ()
39 console_handler.setFormatter(formatter)
40 return console_handler
41

42

43 # log_location = "main"
44 def create_logger(level: int = logging.DEBUG , filename: str = "

logfile.log") -> None:
45 """ Creates a logger with a file handler and a console handler
46

47 Args:
48 level: The log level. Defaults to logging.DEBUG.

239

49 filename: The log filename. Defaults to "logfile.log".
50 """
51

52 formatter = logging.Formatter(
53 "%(asctime)s %(name)s %(levelname)s %(message)s",
54 datefmt="%H:%M:%S",
55)
56 # Initialize the logger
57 logger = logging.getLogger(LOGGER_NAME)
58 logger.setLevel(level)
59

60 # create directory for logfiles
61 if not os.path.exists(LOG_PATH):
62 os.makedirs(LOG_PATH)
63

64 # Sets midnight rotation for logger
65 logger.addHandler(__create_file_handler(formatter , filename))
66

67 # Sets console handler for logger
68 logger.addHandler(__create_console_handler(formatter))
69

70 # document that logger is initialized
71 logger.info("Logger initialized")
72

73

74 def get_logger () -> logging.Logger:
75 """ Get the logger """
76 return logging.getLogger(LOGGER_NAME)

1 """ Yolov8 class for running inference on video. """
2 import copy
3 import os
4 from pathlib import Path
5 from typing import Any , Dict , List , Optional , Tuple
6

7 import numpy as np
8 import torch
9 from torch import Tensor

10 from ultralytics.nn.tasks import attempt_load_one_weight
11 from ultralytics.yolo.data.augment import LetterBox
12 from ultralytics.yolo.utils.checks import check_imgsz
13 from ultralytics.yolo.utils.ops import non_max_suppression ,

scale_boxes
14 from ultralytics.yolo.utils.torch_utils import select_device
15

16 from app.logger import get_logger
17

18 logger = get_logger ()
19

20

21 class BatchYolov8: # pylint: disable=too -many -instance -attributes
22 """ Yolov8 class for running inference on video."""
23

24 def __init__(# pylint: disable=too -many -arguments
25 self ,
26 weights_path: Path ,
27 device: str = "",
28 img_size: int = 640,

240

29 conf_thres: float = 0.4,
30 iou_thres: float = 0.5,
31 augment: bool = False ,
32 agnostic_nms: bool = False ,
33 classes: Optional[List[str]] = None ,
34 colors: Optional[List[Tuple[int , int , int]]] = None ,
35) -> None:
36 try:
37 self.device = select_device(device)
38 except Exception as err:
39 logger.error("Failed to select device", exc_info=err)
40 raise RuntimeError("Failed to select device", err)

from err
41

42 self.weights_name = os.path.split(weights_path)[-1]
43

44 try:
45 (self.model , _) = attempt_load_one_weight(
46 str(weights_path), device=self.device
47)
48 # self.model = attempt_load(weights_path , device=self.

device) V5
49 except Exception as err:
50 logger.error("Failed to load model", exc_info=err)
51 raise RuntimeError("Failed to load model", err) from

err
52

53 self.names = (
54 self.model.module.names
55 if hasattr(self.model , "module")
56 else self.model.names
57)
58 if colors is None:
59 self.colors: List[Tuple[int , int , int]] = [
60 (
61 np.random.randint(0, 255),
62 np.random.randint(0, 255),
63 np.random.randint(0, 255),
64)
65 for _ in range(len(self.names))
66]
67 logger.debug("Color is none , setting random colors.")
68 else:
69 self.colors = colors
70 self.imgsz = check_imgsz(img_size , stride=self.model.

stride.max())
71 # self.imgsz = check_img_size(img_size , s=self.model.

stride.max()) V5
72 self.conf_thres = conf_thres
73 self.iou_thres = iou_thres
74 self.augment = augment
75 self.agnostic_nms = agnostic_nms
76 self.classes = classes
77 self.half = self.device.type != "cpu"
78 if self.half:
79 self.model.half()
80 if self.device.type != "cpu":
81 self.burn()

241

82

83 def prepare_images(
84 self , img_s: List[np.ndarray[Any , Any]] | np.ndarray[Any ,

Any]
85) -> Tensor:
86 """ Prepare a batch of images for inference by normalizing

and reshaping them.
87

88 Args:
89 img_s: The images to prepare.
90

91 Raises:
92 RuntimeError: If the type of the images is not

supported.
93

94 Returns:
95 The prepared images as a torch tensor.
96 """
97 if isinstance(img_s , list):
98 img_list = []
99

100 for img in img_s:
101 img_list += [self.reshape_copy_img(img)]
102

103 img_to_send = self.pad_batch_of_images(img_list)
104 elif isinstance(img_s , np.ndarray):
105 img_to_send = self.reshape_copy_img ((np.ndarray(img_s)

))
106 else:
107 print(type(img_s), " is not supported")
108 raise RuntimeError("Not supported type")
109

110 return self.prepare_image(img_to_send)
111

112 def __str__(self) -> str:
113 out = [
114 f"Model: {self.weights_name}",
115 f"Image size: {self.imgsz}",
116 f"Confidence threshold: {self.conf_thres}",
117 f"IoU threshold: {self.iou_thres}",
118 f"Augment: {self.augment}",
119 f"Agnostic nms: {self.agnostic_nms}",
120]
121 if self.classes is not None:
122 filter_classes = [self.names[each_class] for

each_class in self.classes]
123 out.append(f"Classes filter: {filter_classes}")
124 out.append(f"Classes: {self.names}")
125

126 return "\n".join(out)
127

128 def burn(self) -> None:
129 """ Burn in the model for better performance when starting

inference."""
130 img = torch.zeros(
131 (1, 3, self.imgsz , self.imgsz), device=self.device
132) # init img
133 _ = self.model(img.half() if self.half else img) # run

242

once
134

135 def predict_batch(
136 self ,
137 img0s: List[Any],
138 imgs: torch.Tensor ,
139 max_objects: Optional[Dict[Any , Any]] = None ,
140 max_detections: int = 300,
141) -> List[Any]:
142 """ Predict on a batch of images.
143

144 Args:
145 img0s: The list of images to predict on.
146 max_objects: Max number of objects to return per image

for each class.
147

148 Returns:
149 A list of predictions.
150 """
151

152 # imgs = self.prepare_images(img0s)
153

154 with torch.no_grad ():
155 # Run model
156 inf_out , _ = self.model(
157 imgs , augment=self.augment
158) # inference and training outputs
159

160 # Run NMS
161 preds = non_max_suppression(
162 inf_out ,
163 conf_thres=self.conf_thres ,
164 iou_thres=self.iou_thres ,
165 max_det=max_detections ,
166)
167

168 batch_output = []
169 for det , img0 , img in zip(preds , img0s , imgs):
170 if det is not None and len(det):
171 det[:, :4] = scale_boxes(img.shape [1:], det[:,

:4], img0.shape).round ()
172 min_max_list = self.min_max_list(det)
173 if min_max_list is not None and max_objects is not

None:
174 min_max_list = self.max_objects_filter(
175 min_max_list , max_objects , name_key="name"
176)
177

178 batch_output.append(min_max_list)
179

180 return batch_output
181

182 def prepare_image(self , original_img: np.ndarray[Any , Any] |
List[Any]) -> Tensor:

183 """ Prepare image for inference by normalizing and
reshaping.

184

185 Args:

243

186 original_img: The image to prepare.
187

188 Returns:
189 The prepared image as a torch tensor.
190 """
191 new_img = torch.from_numpy(original_img).to(self.device)
192 new_img = new_img.half() if self.half else new_img.float()
193 new_img /= 255.0 # 0 - 255 to 0.0 - 1.0
194 if new_img.ndimension () == 3:
195 new_img = new_img.unsqueeze (0)
196

197 return new_img
198

199 def reshape_copy_img(self , img: np.ndarray[Any , Any]) -> np.
ndarray[Any , Any]:

200 """ Reshape and copy image.
201

202 Args:
203 img: The image to reshape and copy.
204

205 Returns:
206 The reshaped and copied image.
207 """
208 _img = LetterBox(stride =32, new_shape=self.imgsz)(image=

img)
209 # _img = letterbox(img , new_shape=self.imgsz)[0] V5
210 _img = _img[:, :, :: -1]. transpose(2, 0, 1) # BGR to RGB
211 new_img: np.ndarray[Any , Any] = np.ascontiguousarray(_img)

uint8 to float32
212 return new_img
213

214 @staticmethod
215 def pad_batch_of_images(
216 img_list: List[Any], return_np: bool = True
217) -> np.ndarray[Any , Any] | List[Any]:
218 """ Pad a batch of images to the same size.
219

220 Args:
221 img_list: The list of images to pad.
222 return_np: Whether to return a numpy array or a list

of images.
223

224 Returns:
225 The padded images as a numpy array or a list of images

.
226 """
227 max_height = 0
228 max_width = 0
229 padded_img_list = []
230 for img in img_list:
231 _, height , width = img.shape
232 max_height = max(max_height , height)
233 max_width = max(max_width , width)
234

235 for img in img_list:
236 padded_img = np.full(
237 (max_height , max_width , 3), (114, 114, 114), dtype

=np.uint8

244

238)
239 padded_img = padded_img.transpose (2, 0, 1)
240

241 _, height , width = img.shape
242 offset_width = (max_width - width) // 2
243 offset_height = (max_height - height) // 2
244

245 padded_img[
246 :,
247 offset_height : offset_height + height ,
248 offset_width : offset_width + width ,
249] = img
250 padded_img_list.append(padded_img)
251

252 if return_np:
253 return np.array(padded_img_list)
254 return padded_img_list
255

256 def min_max_list(self , det: Any) -> Optional[List[Any]]:
257 """ Create a list of bounding boxes from the detection.
258

259 Args:
260 det: The detection.
261

262 Returns:
263 The list of bounding boxes.
264 """
265 min_max_list = []
266 if det is not None:
267 for i, class_id in enumerate(det[:, -1]):
268 obj = {
269 "bndbox": {
270 "xmin": min(int(det[i][0]), int(det[i][2])

),
271 "xmax": max(int(det[i][0]), int(det[i][2])

),
272 "ymin": min(int(det[i][1]), int(det[i][3])

),
273 "ymax": max(int(det[i][1]), int(det[i][3])

),
274 "width": max(int(det[i][0]), int(det[i

][2]))
275 - min(int(det[i][0]), int(det[i][2])),
276 "height": max(int(det[i][1]), int(det[i

][3]))
277 - min(int(det[i][1]), int(det[i][3])),
278 },
279 "name": self.names[int(class_id)],
280 "class_id": int(class_id),
281 "conf": float(det[i][4]),
282 "color": self.colors[int(det[i][5])],
283 }
284 min_max_list.append(obj)
285

286 return min_max_list
287

288 return None
289

245

290 @staticmethod
291 def max_objects_filter(
292 min_max_list: List[Any], max_dict: Dict[Any , Any],

name_key: str = "name"
293) -> List[Any]:
294 """ Filter a list of bounding boxes based on the maximum

number of objects.
295

296 Args:
297 min_max_list: The list of bounding boxes.
298 max_dict: The maximum number of objects per class.
299 name_key: The name key for class names. Defaults to "

name".
300

301 Returns:
302 The filtered list of bounding boxes.
303 """
304 filtered_list = []
305 max_dict_copy = copy.deepcopy(max_dict)
306 for obj in min_max_list:
307 if max_dict_copy[obj[name_key]] > 0:
308 max_dict_copy[obj[name_key]] -= 1
309 filtered_list.append(obj)
310 else:
311 pass
312 # print(f"rejected {obj[by]} conf {obj[’conf ’]}")
313

314 return filtered_list

246

A - GITHUB REPOSITORY

All code and latex-files used in this document are included in the Github repository
linked below. Further explanations are given in the readme-file.

Github repository link

• https://github.com/beuss-git/bachelor-oppgave-nina

247

https://github.com/beuss-git/bachelor-oppgave-nina

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Code Listings
	Glossary
	Abbreviations
	Introduction
	Project Description
	Group Background
	Academic Background
	Group Motivation

	Delimitations
	Organizing
	Project Roles
	Professional Areas of Responsibilities

	Thesis Structure

	Requirement Specifications
	Project Goals
	Result Goals
	Impact Goals
	Learning Objectives

	Use Case
	Functional Specification

	Development Process
	Development Model
	Choice of Software Development Model
	Our Software Development Model

	Meetings
	Client Meetings
	Supervisor Meetings
	Sprint Planning Meetings
	Daily Scrum

	Tools and Technologies
	Tool Overview
	Collaboration
	Documentation
	Programming Language
	Prototyping
	Poetry
	Pre-commit
	Annotation

	Technologies
	Quality Assurance
	GUI
	Local Database
	File Generation
	Video Processing
	Artificial Intelligence

	Technology Integration and Interaction

	System Architecture
	Disk
	Front-end
	Back-end
	Data Manager
	Report Manager
	Video Processor

	AI

	Implementation
	Development tools
	Poetry
	Pre-commit

	Front-end
	Initialization and Main Function
	MainWindow and User Interface
	Processing and Output
	Settings

	Back-end
	Data Manager
	Report Manager
	Video Processor
	The Video Processing Pipeline
	Time Estimation in Video Processing

	AI Model
	Image Loader
	BatchYolov8: A Custom Object Detection Model

	Graphical User Interface
	Prototyping
	Ergonomics
	GUI-Elements
	File Manager
	Tool Tips
	Progress Bar and Feedback Window

	GUI-Evolution

	Object-detection
	Dataset Creation and Utilization
	Gathering the Dataset
	Annotation Rules
	Dataset Generation Script
	Distribution of Annotations per Class Script

	Model Training and Optimization
	Training Setup
	Data Splits and Class Definitions
	Training Details and Rationale
	Model Augmentations and Hyperparameters
	Training Resource Considerations
	Training and Evaluation Metrics

	Performance Evaluation
	Validation Metrics
	Evaluation Videos
	Fish Ranges of Videos
	Average Recall over Confidence

	Challenges and Limitations
	Issues During Training
	Performance Evaluation Limitations

	Quality Assurance
	Source Code Quality Assurance
	Logging
	Git Branching
	Documentation
	Testing
	Continuous Integration: Build and Unit Testing
	User Testing
	Integration Testing

	Group Work

	Discussion
	Preparatory Work
	Project Plan
	Goals

	Cooperation
	Meetings
	Work Allocation

	Flexibility of Development
	Change in Task Description by Client
	Report Structure Changes
	CVAT
	Windows Python

	Process Critique

	Conclusion
	Project Achievements
	Implementation and Interface
	Performance

	Future Work
	Final Words

	Bibliography
	Appendices:
	Project Agreement
	Task Description
	Project Plan
	Prototype
	User Test Form
	Timekeeping
	Meeting Logs
	Annotation Guide
	Code

	A - Github repository

