
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

M
as
te
ro
pp

ga
ve

Veronica Galantucci

Prediction of coalescence and
rebound of fluid particles in non-
Newtonian media through film
drainage modeling

Master’s thesis in Chemical Engineering - Joint
Nordic Master's degree programme

Masteroppgave i TKP4900
Veileder: Hugo Atle Jakobsen
Medveileder: Suat Canberk Ozan
Juli 2023





Veronica Galantucci

Prediction of coalescence and rebound
of fluid particles in non-Newtonian
media through film drainage modeling

Master’s thesis in Chemical Engineering - Joint Nordic
Master's degree programme

Masteroppgave i TKP4900
Veileder: Hugo Atle Jakobsen
Medveileder: Suat Canberk Ozan
Juli 2023

Norges teknisk-naturvitenskapelige universitet





Abstract

The drainage of a non-Newtonian film entrapped between two fluid particles that are moving toward one
another with time-dependent velocities, causing either coalescence and rebound, is examined in this thesis.
Attention is given to the non-Newtonian rheology of the continuous phase where particles disperse, in order
to better understand how particles coalesce and rebound, which is important in a variety of natural processes
and industrial applications. It is specifically anticipated that the non-Newtonian continuous phase will adhere
to the power law model. The interfaces are permitted to deform during drainage. Non-Newtonian flows are
formed when materials are processed by procedures like coating, soap solutions, or polymer extrusion.
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1 Introduction
Multi-phase systems in which the dispersed fluid particles interact with each other and with the continuous
phase are ubiquitous phenomena in everyday life. From a technological standpoint, numerous operations in
chemical engineering and processing industries involve fluid-particle systems. The term ’fluid particles’ covers
here both droplets and bubbles since multi-phase frameworks frequently feature interaction of liquid metals, a
gas (commonly air) top space, liquid droplets in the top space, and injection of both solid particles and gaseous
bubbles into the bath. Monitoring and modeling the behavior of such interactions play a crucial role in many
chemical industries. Additionally, in many of these processes, it is not rare that the continuous phase is a non-
Newtonian substance, such as polymeric melts and solutions, crude oil, or biofuels. These fluids do not have a
linear relationship between shear stress and shear rate, unlike the widely studied and described Newtonian fluids.
In other words, the viscosity of a non-Newtonian fluid is a function of the shear rate, rather than being constant
as it is for the Newtonian ones (Peng at al, 2014). On the contrary to the general understanding, they are much
more common than Newtonian fluids in nature. Therefore, it is extremely important to analyze the effect of the
viscosity of such fluids and reveal the impact of the rheological complexities on the flow characteristics, which
can alter the efficiency and performance of the reactor considerably.

1.1 Coalescence
Coalescence is an energy minimization phenomenon in which two drops or bubbles merge to form a thermody-
namically stable daughter particle. Coalescence of particles of Newtonian fluids plays a key role in rain drop
condensation, combustion, atomization of metal droplets; while non-Newtonian fluid particles coalescence finds
applications in food industry, spray coating and paintings, even processes linked to life like those in growth and
development of tumor.

Any multiphase process involves several interactions, some of which may result in droplet and particle
collisions. In all processes involving phase separation that require destabilizing emulsions during treatment or
purification procedures, such as natural gas production, where the breakdown and separation of foams, water-
in-oil or oil-in-water emulsions is essential for process effectiveness, coalescence plays a significant role. Bubble
coalescence significantly influences the operation’s performance depending on the process, particularly when
little air bubbles are carried away in low shear stress zones or when the fine distribution of one phase into
another is necessary (Dudek et al., 2020).

In dispersed flow modeling, which frequently uses the population balance framework, the influence of coa-
lescence and breakage is accounted for by source and sink terms, which stand for the creation of a new fluid
particle and the demise of the previous ones, respectively. These source/sink concepts use an equation for the
coalescence frequency. The collision frequency, or how frequently the fluid particles collide within the dispersed
flow, and the coalescence probability of the interacting fluid particles are typically multiplied to indicate the
coalescence frequency.

For the coalescence process, three ideas or criteria have often been put forth. The film drainage model is the
most widely accepted theory. According to Shinnar and Church (1960), two bubbles may cohere together after
colliding and be prevented from coalescing by a thin layer of liquid caught between them. However, Howarth
(1964) asserts that the coalescence probability is controlled by the turbulent force and not by the attraction
between two colliding interfaces, and that the coalescence probability depends on the impact of colliding bubbles.
When "energetic collisions" occur, which occur when the approach velocities of two colliding bubbles exceed
a certain value, instantaneous coalescence without the formation of a liquid film rim and thinning of it will
be the predominant process. The critical approach velocity model, which is an empirical theory based on the
experimental finding of Doubliez (1991) and Duineveld (1994) that tiny approach velocities result in a high
coalescence efficiency, was presented in more recent research, as demonstrated by Liao and Lucas (2010).

Coalescence is not always the result of collision. There are several ways to explain when a collision causes
coalescence and when it doesn’t. The liquid layer between the particles must drain to the critical size essential
to break it before coalescence may occur. This contact between the particles must last for a sufficient amount
of time. In other words, the rate of film thinning determines whether coalescence will occur.

1.2 Film Drainage
The film drainage model, which identifies three distinct stages of the process—collision, film drainage, and film
rupture—is the most popular one for describing coalescence. A drop may collide with another by agitation,
gravity, or Brownian motion. When two particles are approaching, a thin film of the continuous phase forms
between them. The film needs to be drained to a critical thickness where strong attractive forces cause the film
to break down and allow the two particles to coalesce into one. In this method, the coalescence probability is
calculated by comparing the coalescence time scale to the interaction time scale. Hydrodynamic modeling of
the drainage of the thin layer between two approaching fluid particles prior to coalescence is frequently used to
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determine the coalescence time. This method is based on observations made by Shinnar and Church (1960),
who identified three steps in the coalescence process: first, the particles start interacting as they come closer
to one another and entrap a thin film of the continuous phase. Once the liquid layer between the two bubbles
has drained to a crucial thickness indicative of coalescence, it finally raptures as a result of the approaching
motion. The particles are often assumed to collide “gently” in the film drainage modeling, i.e., the radius of the
entrapped thin film is much smaller than the particle radii.

The constant approach velocity is found to affect coalescence in three different ways. Three successive film
drainage regimes were found by Ozan and Jakobsen (2019a) at different approach velocities. Lower approach
velocities cause the film rupture to happen at the film’s center, and higher approach velocities cause the coales-
cence period to shorten. The dimple development is seen when the approach velocity rises, and the film tears at
the rim. When operating in this second regime, the coalescence time gets shorter as the approach velocity gets
faster until it achieves a minimum. Following this minimum, the third stage is reached, where secondary rim
structures start to develop at the interface and the coalescence time starts to lengthen as the approach velocity
increases.

The lubrication theory is used to simplify the hydrodynamic models since the film between the particles is
thin. Additionally, a key factor in creating more precise film drainage models is how the interface is handled.
There are various levels of intricacy involved here. To start, because the interface thicknesses are so much less
than the film thickness, the three-dimensional particle interfaces can be viewed as two-dimensional surfaces. In
this 2-dimension model, where the interfaces have no mobility the tangential interface velocity is zero but the
interfaces are still allowed to deform. The simplest scenario is non-deformable spherical particles with immobile
interfaces, i.e., with zero tangential velocity, which allows the drainage model to be solved analytically. The
simplification of no tangential mobility is plausible since immobile systems are more common due to the presence
of surfactants or due to impurity effects in the system that lock the tangential motion of the interfaces as it is
shown in the study of Ozan and Jakobsen (2019b). However, with a non-deformable interface it is not possible
to render the dimpling of the interface, which is well-documented in experiments Derjaguin and Kussakov
(1939) and known to affect the coalescence behavior significantly (Ozan et al., 2021). Therefore, allowing the
interfaces to deform in the film drainage model is essential for the accuracy of the model. When the interface
is immobile, the film flow is only driven by pressure gradients, producing a parabolic velocity profile; however,
when the tangential velocity completely dominates the film drainage, the velocity profile appears as a plug-flow
profile, and the mobility of the interface controls the film drainage (Lee and Hodgson, 1968). Regardless of the
deformability of the interface, its tangential mobility determines the type of the film flow (Lee and Hodgson,
1968). The partially mobile interfaces, which take into account both the parabolic and the plug flow, are a more
universal alternative to the totally mobile and immobile interfaces. In addition, high dispersed phase viscosity
and Marangoni fluxes along the interface are typically related to the immobilization of the interface (Lee and
Hodgson, 1968). The presence of surfactants in many real systems makes it highly likely that particle surfaces
will be immobilized, especially in polymeric systems where particle and medium interaction will be improved.
Surfactants in emulsions adhere to the interface and affect stability, immobilizing the interface also by increasing
its viscosity, as demonstrated by Ozan and Jakobsen (2019b) and Ozan and Jakobsen (2020).

The connection of the dispersed and continuous phase velocity fields is necessary to determine the tangential
velocity of the interfaces. The boundary integral technique (Davis et al., 1989) demonstrated that this linkage
can be achieved through the no-slip condition and the stress balances without necessitating the solution of the
particles’ internal flow. The cost of computation is significantly reduced as a result. The usage of this approach
is well documented in the literature.

This study will be dedicated to coalescence in non-Newtonian continuous media with further examination of
other parameters such as the time-dependent approach velocity, for which a force balance will be implemented.
Furthermore, different closure models for the drag force will be examined. The film drainage behavior will
be investigated by employing a hydrodynamic film drainage model. During the drainage, the interfaces are
immobile and ideal, meaning that only the surface tension is significant to take into account. In addition, the
non-Newtonian film is described by the Power Law model.

1.3 Rheology
Ever since the discovery of the laws of motion by Newton, it has been a common practice to accept the
Newtonian fluid model as a standard fluid behavior, although this model can’t explain experiments’ outcomes
and predict the behavior of the majority of fluids and especially complex multiphase systems. Despite the
varied and versatile application of non-Newtonian fluids, coalescence dynamics of such fluids remain a sparsely
studied area. The vastness of the domain of non-Newtonian fluids - they can range from macromolecular fluids
to various colloids - makes a unified understanding even more elusive. Each subclass has a different micro-
structure composition leading to distinct behaviors. The branch of physics that studies the deformation and
the flow of matter, establishing constitutive relations between stimuli applied on a material and the materials’
responses to stimuli, is called rheology. Non-Newtonian fluids are fluids whose properties are not described
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by a single constant value of viscosity. These fluids are most frequently identified by a nonlinear stress–strain
relationship, yield stress, or time–dependent viscosity. Rheological complexity entails, in turn, solving non-
linear mathematical problems that haven’t reached the same respectable level of progress and maturity that
Newtonian fluid witnessed through the years.

The non-Newtonian fluid behavior is much more widespread than it is generally perceived. Polymer process-
ing, pharmaceutical products, thickening agents in food processing, drag reduction applications exhibit complex
rheological behaviors. Thus, over the years, due to the ever increasing needs and demands of consumers coupled
with the advancements in technology, chemical and process engineering applications extensively use a wide
range of rheologically complex materials including polymeric melts and solutions, and multiphase mixtures
(foams emulsions, dispersions).

Rheology concerns all types of materials, but it is interesting to bind the field within two extremes: viscous
fluids and elastic solids. The non-Newtonian continuous phase in this work is assumed to have no elastic
properties, i.e., it is a generalized Newtonian fluid. Therefore, the focus will be on the viscous models throughout
this section. Newtonian fluids are identified by a linear behavior between the shear rate and the shear strain;
for those, viscosity is constant and independent of the shear rate. They follow Newton’s law of viscosity:

τ = −ηγ̇ (1)

where τ is the viscous stress, η is the viscosity, and γ̇ the shear rate. Newtonian liquids are often instances
of glycerine, water, and various mineral oils. The Newtonian behavior is further distinguished by constant
viscosity with respect to the time of shearing and a quick relaxation of the shear tension following the cessation
of shearing. Additionally, the viscosities that are measured in various forms of deformation are always in relation
to one another. Generalized Newtonian fluids are substances like dispersions, emulsions, and polymer solutions
that frequently deviate from the Newtonian behavior. Those show no elastic behavior and their viscosity is found
to decrease or increase with increasing shear rate, referring to shear thinning and shear thickening respectively.
The most common model used for shear-thinning and shear-thickening fluids is the power-law model:

η(γ̇) = k |γ̇|n−1 (2)

where γ̇ is the magnitude of γ̇, k is the flow consistency index, and n the power index. This expression represents
shear-thickening behavior for n > 1, shear-thinning behavior for n < 1, and Newtonian behavior for n = 1.
Shear-thickening behavior is much less frequent but might occur in some dispersions and specific suspensions
with a high solid particle concentration. Shear-thinning behavior is the most frequent form of non-Newtonian
behavior in industrial applications. Shear-thickening is often an undesirable consequence that can seriously
affect processing. The non-Newtonian viscosity may be calculated most easily, and it does so well for modest
shear rates, using the power law model. For low and high shear rates, the viscosity becomes almost constant,
however, and the power law model is unable to produce reliable findings. The Sisko model, for example, would
be a better option to estimate the viscosity because it applies for shear rates in the power law area in addition
to higher shear rates. The Sisko model is defined as (Barnes 2000):

η(γ̇) = k |γ̇|1−n
+ η∞ |γ̇| (3)

where η∞ is the viscosity value at high shear rate. For the entire range of shear rates, the Cross model (Barnes
2000),

η(γ̇)− η∞
η0 − η∞

=
1

1 + k |γ̇|n
(4)

can be employed. Here, η0 is the viscosity at a low shear rate. However, in this thesis, the shear rates are
assumed to be within the range describable by the power law.

1.4 Dispersed systems
Multiphase dispersed systems are systems that deal with at least two immiscible phases in contact; therefore,
the understanding of physical and chemical phenomena that occur at interfaces or at the layers close to the
interfaces, is of substantial interest. The design of suitable chemical reactors, as well as their subsequent
downstream processing, storage, and transportation, are all influenced by the stability of two-phase dispersions
systems, making it essential to model the impacts of these numerous elements. For instance, an emulsion is a
dispersion system that permits the creation of particles as a result of shear stress and the tension at the fluid-
liquid interface. To create efficient emulsion systems, it is essential to optimize the flow rate, solution viscosity,
and surface tension. Another example in the industry could be the supply of oxygen for aerobic fermentations
in a yeast fermentor. The more the system is dispersed, the more microbubbles of air are inside, the higher
the mass transfer, the more are the reactants converted into the fermentation products. For such systems, it
is of crucial importance to have a highly dispersed system for a higher surface area. Furthermore, it is crucial
to characterize the microstructure and flow characteristics of dispersions in order to comprehend, regulate, and
guarantee their optimal performance.
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1.5 Sustainable goal
According to Hasanbeigi (2018) in the journal "Energy Efficiency in California’s Chemical Industry," the chem-
ical sector, which includes petrochemicals, is one of the leading emitters of greenhouse gases (GHG), accounting
for around 20% of global GHG emissions. Energy is a major resource for our civilization today and will be
essential for our sustainability in the future, thus reducing CO2 emissions and maximizing process efficiency are
essential. Efficiency’s greatest adversary is friction, which requires a significant amount of energy to overcome,
particularly in the transportation, industrial, and power-generation sectors. The effectiveness of lubricating oil
may be greatly increased by modern technologies. The viscosity of a lubricating oil has a significant impact on
how effectively it reduces friction and wear. The majority of lubricants now produced employ mineral oils as
their base constituents, which are created by refining petroleum oils. Mineral oils are replaced with synthetic
oils, which are made of chemical compounds. Chemical additives are typically added to lubricants to increase oil
life, prevent corrosion, minimize friction and wear, lower temperature and its effects, and lessen sludge buildup
in engines. Typically, these oils are categorized as non-Newtonian.

Even if the bulk of lubricant components now used are made from fossil carbon sources, a significant amount
of material is still present due to the size of the entire market for these products. According to Boyde (2002),
lubricants made from renewable raw materials are thought to make up around 2% of the market in Europe.

2 Mathematical Model

Figure 1: Physical system

To obtain the theoretical solution for the film drainage model, the symmetry of the problem is employed
and equations are formulated in two-dimensional Cartesian coordinates. Figure 1 illustrates the physical con-
figuration of two particles that are allowed to have different radii,R1 and R2, and are approaching each other
along their centerline with velocities V1(t) and V2(t) and a thin film of the non-Newtonian continuous phase is
entrapped between them and assumed to be incompressible. The continuous phase has viscosity η, following
the Power law. Meanwhile, the dispersed phase is assumed incompressible Newtonian fluid, characterized by
constant viscosity µd. Interfaces are assumed deformable and assumed to be inviscid and its rheological behavior
is described by the surface tension, σ, assumed constant. The axisymmetrical interactions between two fluid
particles in non-Newtonian continuous media are examined. Since, for assumptions, the particles are assumed
to collide gently, the particles’ radii are much larger than the radius of the entrapped film. As a result, both
particles can be described by the equivalent radius, Rp (Abid and Chesters 1994):

1

Rp
=

1

2

(
1

R1
+

1

R2

)
(5)

The collision between the particles can now be modeled as a collision of particles of equal size with radius Rp.
For these reasons, the system is assumed symmetric around the radial axis in addition to axisymmetric. This
simplifies the geometry of the problem and the solutions can be obtained just for a quadrant of the film, where
r ≥ 0and z ≥ 0, and the interface position is given by z = h/2. In Fig. 1, the classical dimple formation is
shown which is possible only when drainage occurs for deformable interfaces. Such model implies numerical
simulations.
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The thin film has thickness h(r, t), which is a function of the radial position r and the time t. This thin film
has a thickness typically much smaller than its radial extent, rendering the lubrication theory applicable. First,
the drainage model will be derived for a Newtonian continuous phase in Chapter 2.1.1. Then, the model will be
expanded for a non-Newtonian fluid with a non-constant viscosity and the Power law model will be introduced
in Chapter 2.2.

Furthermore, the governing and interface equation will be rendered dimensionless together with the viscosity
model and containing the Hamaker constant for the pressure equation. The Hamaker constant is a coefficient
that relates the interactive Van Der Waals energy to the distance of separation between two molecules, used to
evaluate the interaction between molecules based on composition and structure of the particle, as widely used
from previous studies (Abid and Chesters, 1994).

Only after displacing all the main equation to solve the problem, the time-dependent behavior of the approach
velocity will be modeled by a force balance in Chapter 2.3.

2.1 Newtonian Model
2.1.1 Governing equations

Governing equations are universally valid equations derived from the bulk phase. In particular, the equations
used are mass and momentum conservation. The continuity equation is defined by:

∂ρ

∂t
+∇ · (ρv) = 0 (6)

where ρ is the density of the continuous phase, t the time and v is the continuous phase velocity vector. The
continuity equation may be expressed as follows if we assume an incompressible flow:

∇ · (v) = 0 (7)

The equation can be further simplified by applying the assumption of axisymmetry, which implies that the
velocity along the θ-direction is constant, and applying the definition of the nabla operator and decomposing
the velocity in cylindrical coordinates the following is found:(

er
∂

∂r
+

1

r
eθ

∂

∂θ
+ ez

∂

∂z

)
· (vrer + vzez) = 0 (8)

in this work vθ = 0 is assumed. Derivatives are simplified using the product rule of derivatives. Unlike the
cartesian nabla operator, derivatives of unit vectors are not equal to zero neither are kept out of the derivation
as constants. This is because cylindrical unit vectors are not universally constant. Though their magnitude
is equal to 1, they can still have different directions. Then knowing this, after applying the dot product the
equation results in:

∇ · (v) = ∂vr
∂r

+
vr
r

+
∂vz
∂z

(9)

By writing the first two-term for consistency, the continuity equation becomes:

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0 (10)

The equation of motion is defined by:

∂

∂t
(ρv) +∇ · (ρvv) = −∇P −∇ · τ + ρg (11)

where the gravitational accelerator vector is g, P represents pressure, and τ is the viscous stress tensor. The
same incompressible flow assumption may be used, making ρ constant and changing the first term in the formula
to:

∂

∂t
(ρv) = ρ

∂

∂t
(vrer + vzez) (12)

The second component in the equation of motion is changed to the following by applying the nabla vector
definition and the dyadic velocity product:

∇ · (ρvv) =
(
er

∂

∂r
+

1

r
eθ

∂

∂θ
+ ez

∂

∂z

)
· ρ (vrvrerer + vrvzerez + vzvrezer + vzvzezez) (13)

By using the dot product between cylindrical unit base vectors and the definition of unit base vector derivatives,
Eq. 13 can be reformulated as:

∇ · (ρvv) = ρ

[
∂

∂r
(vrvrer) +

∂

∂r
(vrvzez) +

vrvr
r

er +
vrvz
r

ez +
∂

∂z
(vzvrer) +

∂

∂z
(vzvzez)

]
(14)
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Utilizing the product rule and the definition of unit base vectors derivatives, Eq. 14 can be expressed as:

∇ · (ρvv) = ρ

[
er

∂

∂r
(vrvr) + ez

∂

∂r
(vrvz) + er

vrvr
r

+ ez
vrvz
r

+ er
∂

∂z
(vzvr) + ez

∂

∂z
(vzvz)

]
(15)

The third term can be expressed as:

−∇P = −er
∂P

∂r
− ez

∂P

∂z
(16)

The assumption of axisymmetric flow is still employed resulting in no angular pressure gradient term. By using
this assumption, the fourth term can be rewritten as:

∇ · τ =

(
er

∂

∂r
+

1

r
eθ

∂

∂θ
+ ez

∂

∂z

)
· (τrrerer + τrzerez + τθθeθeθ + τzrezer + τzzezez) (17)

The angular derivatives of all the scalars are zero due to axisymmetry. By performing the dot product, applying
the product rule and the unit base vector derivatives, the divergence of the stress tensor can be rearranged to:

∇ · τ =
∂

∂r
(τrrer) +

∂

∂r
(τrzez) +

τrr
r
er −

τθθ
r

er +
∂

∂z
(τzrer) +

∂

∂z
(τzzez) (18)

Equation 18 is manipulated further by use of the product rule obtaining:

∇ · τ = er
∂

∂r
(τrr) + ez

∂

∂r
(τrz) + er

τrr
r

− er
τθθ
r

+ er
∂

∂z
(τzr) + ez

∂

∂z
(τzz) (19)

It is presumed that the last term in the equation of motion is negligible in comparison to the other components.
The equation of motion then has the following form:

ρ

[
∂

∂t
(vrer + vzez) + er

∂

∂r
(vrvr) + ez

∂

∂r
(vrvz) + er

vrvr
r

+

ez
vrvz
r

+ er
∂

∂z
(vzvr) + ez

∂

∂z
(vzvz)

]
= −er

∂P

∂r
− ez

∂P

∂z
− er

∂

∂r
(τrr)

− ez
∂

∂r
(τrz)− er

τrr
r

+ er
τθθ
r

− er
∂

∂z
(τzr)− ez

∂

∂z
(τzz) (20)

By decomposing the equation of motion, the r-component becomes:

ρ

[
∂vr
∂t

+
∂

∂r
(vrvr) +

vrvr
r

+
∂

∂z
(vzvr)

]
= −∂P

∂r
− ∂τrr

∂r
− ∂τrr

∂r
− τrr

r
+

τθθ
r

− ∂τzr
∂z

(21)

By applying the product rule, the terms containing the partial derivative of vr can be rewritten as:

ρ

[
∂vr
∂t

+
1

r

∂

∂r
(rvrvr) +

∂

∂z
(vzvr)

]
= −∂P

∂r
− 1

r

∂

∂r
(rτrr)−

τrr
r

+
τθθ
r

− ∂τzr
∂z

(22)

whereas, the z-component yields:

ρ

[
∂vz
∂t

+
∂

∂r
(vrvz) +

vrvz
r

+
∂

∂z
(vzvz)

]
= −∂P

∂z
− ∂τrz

∂r
− ∂τzz

∂z
(23)

Again, by applying the product rule, the terms containing the partial derivative of vr can be rewritten as:

ρ

[
∂vz
∂t

+
1

r

∂

∂r
(vrvz) +

∂

∂z
(vzvz)

]
= −∂P

∂z
− ∂τrz

∂r
− ∂τzz

∂z
(24)

Newton’s law may be used to construct the viscous stress tensor for Newtonian fluids as:

τrr = −2µ
∂vr
∂r

(25)

τrz = τzr = −µ

(
∂vz
∂r

+
∂vr
∂z

)
(26)

τθθ = −2µ
vr
r

(27)

τzz = −2µ
∂vz
∂z

(28)
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where µ is the Newtonian continuous phase viscosity. The final formulations for the r- and z-components of the
equation of motion are as follows after incorporating these equations into Eqs. 22 and 24:

ρ

[
∂vr
∂t

+
1

r

∂

∂r
(rvrvr) +

∂

∂z
(vzvr)

]
=

−∂P

∂r
+

1

r

∂

∂r

(
2µr

∂vr
∂r

)
− 2µ

vr
r

− ∂

∂z

[
−µ

(
∂vz
∂r

+
∂vr
∂z

)] (29)

ρ

[
∂vz
∂t

+
1

r

∂

∂r
(vrvz) +

∂

∂z
(vzvz)

]
= −∂P

∂z
+

∂

∂r

[
µ

(
∂vz
∂r

+
∂vr
∂z

)]
− ∂

∂z

(
−2µ

∂vz
∂z

)
(30)

2.1.2 Interface conditions

The interface conditions are additional equations employed only as a boundary condition valid on the interface
but also related to the variables of the bulk phases. These equations include the kinematic condition, the no-slip
condition, and the normal and tangential stress balance components. With a set of boundary conditions that
are only true at the interface, those equations link the continuous and dispersed phase variables. The unit
tangent and the normal vectors on the interface must first be defined. As the solution will be only recovered
for r ≥ 0 and z ≥ 0, the interface position is given by:

z =
1

2
h (r, t) = f (31)

where f is a function that represents the surface. The normal vector n is defined by:

n = n (r, t) = − ∇f

|∇f |
(32)

Since ∇f is defined by:

∇f = er
∂f

∂r
+ eθ

∂f

∂θ
+ ez

∂f

∂z

= −1

2

∂h

∂r
er + ez

(33)

where the angular term disappears due to axisymmetry. The normal vector then can be written as:

n =
− 1

2
∂h
∂r er + ez√

1 + 1
4

(
∂h
∂r

)2 (34)

There are two tangent vectors in the system: one is eθ, which requires no further manipulation, and the other
is defined as:

t = t (r, t) =
∂rs
∂r∣∣∂rs
∂r

∣∣ (35)

which depends on both time t and position r. In cylindrical coordinates, the position vector r is represented as
follows:

r = rer + zez (36)

which, following Eq. 31, in surface coordinates becomes:

rs = rer +
1

2
h (r, t) ez (37)

The surface position vector’s derivative with regard to r is as follows:

∂rs
∂r

= er +
1

r

∂h

∂r
ez (38)

The length of the vector is calculated as: ∣∣∣∣∂rs∂r

∣∣∣∣ =
√
1 +

1

4

(
∂h

∂r

)2

(39)

The tangential vector t can then be express as:

t =
er +

1
r
∂h
∂r ez√

1 + 1
4

(
∂h
∂r

)2 (40)
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The interface conditions can now be derived. The no-slip condition is defined by:

vc · t = vd · t = U · t (41)

where U is the interface velocity. As the interface is assumed to be tangentially immobile:

vc · t = Ut = 0 (42)

where Ut is the scalar tangential velocity of the interface which is zero for an immobile interface. By inserting
the velocity vector decomposed in cylindrical coordinates and the derived tangential vector, the equation results
in:

vr +
1
2
∂h
∂r vz√

1 + 1
4

(
∂h
∂r

)2 = 0 (43)

The kinematic condition is defined by:

vc · n = vd · n = U · n (44)

which can be simplified in:
vc · n = Un (45)

since the mass balance across the interface suggests continuity between the normal speed of the interface and
the normal component of the film velocity, Un, the scalar normal velocity of the interface, is not nearly zero
this time. The kinematic condition becomes:

vc · n =
1

2

∂h

∂t
(46)

By inserting the decomposed velocity vector and the derived normal vector, the kinematic condition can be
expressed as:

vz − 1
2
∂h
∂r vr√

1 + 1
4

(
∂h
∂r

)2 =
1

2

∂h

∂t
(47)

Both for the no-slip condition and the kinematic condition, the velocities are evaluated at the interface.
A stress balance over the interface can be formulated as:

(Tc · n)− (Td · n) = (Tt · n) (48)

where Tc and Td are the total stress tensors in the continuous and dispersed phases and (Tt · n) represents the
discontinuity in stress across the interface. For a rheologically ideal interface, which is studied in this work, the
only contribution comes from the surface tension:

(Tt · n) = 2Hσn (49)

where H is the mean curvature which is as well a function of r and t, and σ is the surface tension. Normal and
tangential components of the stress balance can further be expressed as:

(Tc : nn)− (Td : nn) = 2Hσ (n · n) (50)

Here, Tc is given by:
Tc = −PcI− µ

[
∇v + (∇v)

T
]

(51)

where the term in the brackets is defined as the shear rate tensor and the entire second term represents the
viscous stress tensor. Here, the identity tensor I is equal to I = erer+eθeθ+ezez. The gradient of the velocity
vector is written as:

∇v = er
∂

∂r
(vrer + vzez) +

1

r
eθ

∂

∂θ
(vrer + vzez) + ez

∂

∂z
(vrer + vzez) (52)

The product rule and the relations of derivatives of unit base vectors may be used to simplify the equation to:

∇v = erer
∂vr
∂r

+ erez
∂vz
∂r

+ eθeθ
vr
r

+ ezer
∂vr
∂z

+ ezez
∂vz
∂z

(53)

By switching the unit base vectors’ order, it is possible to get the transpose of the gradient of the velocity
vector:

(∇v)
T
= erer

∂vr
∂r

+ ezer
∂vz
∂r

+ eθeθ
vr
r

+ erez
∂vr
∂z

+ ezez
∂vz
∂z

(54)
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These equations can now be used to express the shear rate tensor as:[
∇v + (∇v)

T
]
= 2erer

∂vr
∂r

+ (erez + ezer)
∂vz
∂r

+

2
vr
r
eθeθ + (erez + ezer)

∂vr
∂z

+ 2ezez
∂vz
∂z

(55)

The normal component of the stress balance is obtained by inserting Eq. 55 into Eq. 51, and employing the
definition of dot product of unit base vectors. The normal component of the first term of Eq. 48 reduces to:

(Tc : nn) = −Pc −
µ

1 + 1
4

(
∂h
∂r

)2
[
1

2

∂vr
∂r

(
∂h

∂r

)2

− ∂vz
∂r

∂h

∂r
− ∂vr

∂z

∂h

∂r
+ 2

∂vz
∂z

]
(56)

Due to the assumption of gentle collision, the viscous stresses are considered insignificant in the dispersed phase;
as a result, the second term in the normal stress balance becomes:

(Td : nn) = −Pd (57)

The curvature, 2H, is defined as:

2H =
1

2r

∂

∂r

(
r
∂h

∂r

)
(58)

Now, the normal stress balance 48 may be expressed as follows:

−Pc −
µ

1 + 1
4

(
∂h
∂r

)2
[
1

2

∂vr
∂r

(
∂h

∂r

)2

− ∂vz
∂r

∂h

∂r
− ∂vr

∂z

∂h

∂r
+ 2

∂vz
∂z

]
+ Pd =

1

2r

∂

∂r

(
r
∂h

∂r

)
σ (59)

2.1.3 Non-Dimensionalization

The given equations can be simplified by reducing them to dimensionless form. A dimensionless variable, x̃, is
defined as:

x̃ =
x

x̄
(60)

Here, x is a generic variable with dimension, and x̄ is its characteristic scale with the corresponding dimension.
First, characteristic scales must be introduced for the system of interest. Due to the dimensions of the film,
the lubrication theory is applicable. In a thin film the length scales are significantly different, in this particular
setting the film radius being much larger than its thickness:

h̄

r̄
= ϵ << 1 (61)

Here, ϵ is a dimensionless number whose value is unknown. Here it is used as a tool to simplify equations for
a better understanding of how magnitudes of different terms compare to each other. Later on in the analysis,
after the dominant terms in each equation are determined, the unknown factor ϵ will be omitted from the
characteristic scales.

The notion of the gentle collision leading to the formation of a thin film reveals a relationship between the
three length scales, as suggested by Ozan and Jakobsen (2019a):

h̄ << r̄ << Rp (62)

where h̄ and r̄ are measures of the thickness and the width of the film, respectively. The characteristic radial
length scale of the thin film, r̄, and the characteristic axial length scale, h̄, are then assumed to be related to
the equivalent radius, Rp, as follows:

h̄ = ϵ2Rp; r̄ = ϵRp (63)

Characteristic scales are employed in the form:

P̄ =
σ

Rp
h̄ = ϵ2Rp r̄ = ϵRp v̄r =

ϵ3σ

µ
v̄z =

ϵ4σ

µ
t̄ =

Rpµ

ϵ2σ
(64)

and by using them, the equations obtained from the previous chapter, 2.1.1 are nondimensionalized and trans-
formed as follows.

First, the continuity equation presented in Eq. 10 is written in dimensionless form as:

1

r̃

∂

∂r̃
(r̃ṽr) +

∂ṽz
∂z̃

= 0 (65)
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From Eq. 29, the radial component of the equation of motion is non-dimensionalized as follows:

ϵ2Re

[
∂ṽr

∂t̃
+

1

r̃

∂

∂r̃
(r̃ṽrṽr) +

∂

∂z̃
(ṽz ṽr)

]
= −∂P̃

∂r̃
+

[
∂

∂z̃

(
∂ṽr
∂z̃

)]
(66)

where Reynolds number is Re = ρ v̄r r̄
µ . Comparing the magnitudes of the viscous terms, it is concluded that the

final term is much larger than the others, this is why is the only viscous term left in the dimensionless form of
the equation. The physics of the problem dictates that the pressure gradient term and the viscous term should
be of the same order of magnitude. Otherwise, the approach of the particles would not result in the drainage of
the film. And since the collision is gentle and very slow, Re << 1, the first term in the equation is significantly
small compared to the other two. The dimensionless radial component of the equation of motion appears to be
then:

0 = −∂P̃

∂r̃
+

∂2ṽr
∂z̃2

(67)

The z-component of the equation of motion presented in Eq. 29 can be nondimensionalized as:

ϵ2Re

[
∂ṽz

∂t̃
+

1

r̃

∂

∂r
(ṽrṽz) +

∂

∂z̃
(ṽz ṽz)

]
= − 1

ϵ2
∂P̃

∂z̃
+

[
∂

∂r̃

(
∂ṽr
∂z̃

)
+

∂

∂z̃

(
2
∂ṽz
∂z̃

)]
(68)

Since the second term is bigger than the other two, as 1
ϵ2 >> 1 and 1

ϵ2 >> ϵ2Re, the final dimensionless equation
for the axial component is:

∂P̃

∂z̃
= 0 (69)

meaning that the pressure difference along the z-axis can be assumed constant. Again as for the r−component
of the momentum equation, the inertial term containing the Reynolds number can be assumed negligible, while
due to a magnitude comparison, on the left side of the equation only the pressure term along the z−axis matters.

The kinematic condition Eq. 47 is non-dimensionalized. Employing the relation in Eq.64 gives:

ϵv̄rṽz − 1
2
ϵr̄v̄r
r̄

∂h̃
∂r̃ ṽr√

1 + 1
4
ϵ2r̄2

r̄2

(
∂h̃
∂r̃

)2 =
1

2

ϵr̄

t̄

∂h̃

∂t̃
(70)

The second term inside the square root is negligible since ϵ2 is a very small term, hence, the denominator is
simplified to 1. By inserting the time scale,

t̄ =
Rpµ

ϵ2σ
=

r̄

v̄r
(71)

and by grouping the coefficients together, the equation will end up as:

ṽz −
1

2

∂h̃

∂r̃
ṽr =

1

2

∂h̃

∂t̃
(72)

Since the particles are approaching each other in the system, the position of the interface must change with
time, which indicates that the velocity term and the right-hand-side should be comparable.

Moreover, by applying the relations in Eq. 60 and 64 on the no-slip condition, and treating the denominator
in the same way as done as for the kinematic condition, the equation results in:

ṽr + ϵ2
1

2

∂h̃

∂r̃
ṽz = 0 (73)

By comparison of magnitude, the second term is assumed to be negligible because it is multiplied by a very
small term, ϵ2. Thus, the dimensionless no-slip condition assumes the following form:

ṽr = 0 (74)

Furthermore, upon substitution of the variables in Eq. 64, the normal stress balance is written in terms of
dimensionless variables as:

− µv̄r
ϵ3Rp

(
P̃c − P̃d

)
− µ

1 + 1
4ϵ

2
(

∂h̃
∂r̃

)2
1
2

ϵv̄r
Rp

∂ṽr
∂r̃

(
∂h̃

∂r̃

)2

−

ϵv̄r
Rp

∂ṽz
∂r̃

∂h̃

∂r̃
− v̄r

ϵRp

∂ṽr
∂z̃

∂h̃

∂r̃
+ 2

v̄r
ϵRp

∂ṽz
∂z̃

]
=

1

Rp

1

2r̃

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
σ

(75)
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The second term on the denominator of the viscous term is surely negligible, as well as for the first two terms
inside the square brackets because of the presence of ϵ2. By grouping all the coefficients and comparing:

−
(
P̃c − P̃d

)
− ϵ2

[
−∂ṽr

∂z̃

∂h̃

∂r̃
+ 2

∂ṽz
∂z

]
=

ϵ3σ

µv̄r

1

2r̃

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
(76)

The second term disappears because it has a smaller dimension compared to the other two due to the presence
of ϵ2. The right-hand-side of the equation represents the interface’s ability to deform and must be kept to
accurately model phenomena such as dimple formation. Otherwise, without that term the particle will always
stay perfectly spherical. The dimensionless normal stress balance equation is then:

P̃d − P̃c =
1

2r

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
(77)

The equation can be further manipulated to write it in terms of excess pressure defined as the pressure difference
between a deformed interface and a perfectly spherical interface. For a perfect sphere the Young-Laplace
equation states:

P̃d,0 − P̃c,0 =
2σ

Rp
(78)

where the subscript 0 stands for a perfectly spherical particle. By employing the definition of dimensionless
variable shown in Eq. 60, the equation can be reduced in dimensionless form:

P̄ (P̃d,0 − P̃c,0) =
2σ

Rp
(79)

And grouping all the constant coefficients:

P̄Rp

σ
(P̃d − P̃c) = 2 (80)

gives the pressure scale shown in Eq. 64. The Young-Laplace equation for a perfect sphere in dimensionless
forms then will be:

P̃d,0 − P̃c,0 = 2 (81)

By subtracting the dimensionless normal stress balance, Eq. 77 from Eq. 81, the following equation is obtained:

(P̃c − P̃c,0)− (P̃d − P̃d,0) = 2− 1

2r

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
(82)

The second term, (P̃d − P̃d,0), is negligible since the pressure change in the continuous phase is expected to be
much larger than the change in the dispersed phase. Then, the term (P̃c − P̃c,0) represents the excess pressure,
P̂ , which is the difference in pressure in the bulk phase in comparison with the initial spherical one. The final
dimensionless normal stress balance becomes:

P̂ = 2− 1

2r̃

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
+

A∗

h̃3
(83)

where A∗ is the dimensionless Hamaker constant, defined by:

A∗ =
A

6πR2
pσ

(84)

which is added for convention to account for the attractive van der Waals forces. This constant is essential to
take into account in order to make coalescence feasible.

2.1.4 Analytical solution of the model

The final equations obtained in the previous section can now be solved partially analytically. The first equation
that is integrated is the momentum equation along the r-component, Eq. 67. The z- component of the
momentum balance shows that pressure is not a function of z. And then solution of the r-component becomes:

∂2ṽr
∂z̃2

=
∂P̃

∂r̃

∂

∂z
(
∂ṽr
∂z̃

) =
∂P̃

∂r̃

∂ṽr
∂z̃

=
∂P̃

∂r̃
z̃ + C1 (85)
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To assign a value to the constant C1, a boundary condition must be applied. Here, the symmetry condition is
used:

at z̃ = 0 :
∂ṽr
∂z̃

= 0 (86)

By employing this boundary condition into Eq. 85, C1 must be equal to 0. The equation is further integrated:

ṽr =
∂P̃

∂r̃

z̃2

2
+ C2 (87)

Now, to assign a value for the constant C2 the no-slip condition is applied:

at z̃ =
h̃

2
: ṽr = 0 (88)

By substituting into Eq. 87, the constant assumes the value:

C2 = −∂P̃

∂r̃

h̃2

4
= −∂P̃ h̃2

8r̃
(89)

The analytical solution for the r-component of the equation of motion is:

ṽr =
1

2

∂P̃

∂r̃
(z̃2 − h̃2

4
) (90)

The obtained solution for the ṽr can be inserted into the dimensionless continuity equation, Eq. 65, in order
to find an analytical solution for the variable ṽz:

1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃
(z̃2 − h̃2

4
)

)
+

∂ṽz
∂z̃

= 0 (91)

Integrating with respect of dz:

∂ṽz
∂z̃

= −1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃
(z̃2 − h̃2

4
)

)

ṽz = −1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃

)
z̃3

3
+

1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃

(
h̃2

4

)
z̃

)
+ C3 (92)

The following boundary condition, from the symmetry condition, is applied to find a solution for the constant
C3:

at z̃ = 0 : ṽZ = 0 (93)

From this condition, the value of the constant C3 must be equal to zero. The analytical solution for ṽz is:

ṽz = −1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃

)
z̃3

3
+

1

r̃

∂

∂r̃

(
r̃
1

2

∂P̃

∂r̃

(
h̃2

4

)
z̃

)
(94)

The obtained solutions for the velocities can be inserted into the kinematic condition Eq. 72:

1

2

∂h̃

∂t̃
= ṽz −

1

2

∂h̃

∂r̃
ṽr

= −1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

)
z̃3

3
+

1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

(
h̃2

4

)
z̃

)
− ∂P̃

2∂r̃
(z̃2 − h̃2

4
) (95)

The equation is valid at the interface, at z = h̃/2. By substituting all the z with this interface value:

1

2

∂h̃

∂t̃
= −1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

)
1

3

h̃3

8
+

1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

(
h̃2

4

)
h̃

2

)
−�������∂P̃

2∂r̃
(
h̃2

4
− h̃2

4
)

= −1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

)
h̃3

24
+

1

r̃

∂

∂r̃

(
r̃
∂P̃

2∂r̃

(
h̃2

4

)
h̃

2

)
(96)

By employing the chain rule for derivation and significantly manipulating, the equation can be rewritten in a
more compact form as:

1

2

∂h̃

∂t̃
=

1

24r̃

∂

∂r̃

(
r̃
∂P̃

∂r̃
h̃3

)
(97)

It is not possible to solve Eq. 97 further analytically, and it will be solved simultaneously with the pressure
equation, Eq. 83, numerically.
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2.2 Power Law
The derived model will now be extended to account for the non-Newtonian continuous phase. An empirical
expression is applied to express the stress tensor where the viscosity is considered a function of the magnitude
of the shear rate tensor. The model chosen in this study is the power law. The equations remain the same apart
from the ones depending on the viscous term: the radial and axial component of the equation of motion and
the normal stress balance. In all three equations the viscous term appears but actually, this term is significant
only in the r-component of the momentum equation: here, the derivative of the viscosity term appears. And
furthermore, in the normal stress balance, no derivative of the stress term is present. Through the text, in order
to identify the non-Newtonian viscosity, a new symbol is introduced: η is adopted instead of the Newtonian
continuous phase viscosity µ. In order to solve these equations numerically, this derivation seeks to extract the
pressure equation and the thinning equation.

2.2.1 Dimensionless Equations

For the non-Newtonian scenario, the viscosity is non-constant. It is worth noting that only the equation of
motion and the stress balance are impacted by this modification. The other equations are therefore unaltered.
However, only the r-component of the equation of motion, Eq. 29, takes the derivative of viscosity; the other two
equations are left essentially unaltered, and the Newtonian viscosity may be replaced with the non-Newtonian
one. The r-component then becomes:

ρ

[
∂vr
∂t

+
1

r

∂

∂r
(rvrvr) +

∂

∂z
(vzvr)

]
=

−∂P

∂r
+

1

r

∂

∂r

(
2ηr

∂vr
∂r

)
− 2η

vr
r

− ∂

∂z

[
−η

(
∂vz
∂r

+
∂vr
∂z

)] (98)

As with the Newtonian model, the non-Newtonian model may be simplified by making the equations dimen-
sionless. In order to do so, the characteristic scales already found will be employed as for the Newtonian model,
except here, instead of the Newtonian viscosity coefficient µ, a new characteristic scale, η̄, should be used,
which value will be introduces in the following chapter. Non-dimensionalizing the r-component of the equation
of motion, yields:

ρ
v̄2r
r̄

[
∂ṽr

∂t̃
+

1

r̃

∂

∂r̃
(r̃ṽrṽr) +

∂

∂z
(ṽz ṽr)

]
=

− η̄v̄r
ϵ2r̄2

∂P̃

∂r̃
+

η̄v̄r
r̄2

1

r̃

∂

∂r̃

(
2ηr̃

∂ṽr
∂r̃

)
− 2

η̄v̄r
r̄2

η
ṽr
r̃

+
η̄

ϵr̄

∂

∂z̃

[
η

(
ϵv̄r
r̄

∂ṽz
∂r̃

+
v̄r
ϵr̄

∂ṽr
∂z̃

)] (99)

As done for the Newtonian model, by comparing the magnitudes of the viscous terms, it is concluded that the
final term is much larger than the others, since v̄r/r̄

2 and ϵh̄/r̄ are much smaller than v̄r/ϵ/r̄. The viscous term
can be rewritten as:

ρ
v̄2r
r̄

[
∂ṽr

∂t̃
+

1

r̃

∂

∂r̃
(r̃ṽrṽr) +

∂

∂z̃
(ṽz ṽr)

]
= − η̄v̄r

ϵ2r̄2
∂P̃

∂r̃
+

η̄v̄r
ϵ2r̄2

∂

∂z̃

[
η
∂ṽr
∂z̃

]
(100)

Similar to the Newtonian case, the first term is negligible compared to the pressure and the viscous terms and
the final dimensionless non-Newtonian r-component of the momentum equation is:

∂P̃

∂r̃
=

∂

∂z̃

[
η
∂ṽr
∂z̃

]
(101)

This procedure is not repeated for the z-component of the equation of motion as well as for the stress balance
because it has already been shown that during the Newtonian non-dimensionalization procedure, the viscous
terms in both equations are negligible.

2.2.2 Dimensionless Power law

It is now added the non-Newtonian continuous phase contribution into the obtained model. Since the viscosity
for non-Newtonian fluids is considered a function of the magnitude of the shear rate tensor, an empirical model
is used to represent the stress tensor. The non-Newtonian fluid is referred to in the context of this model as a
generalized Newtonian fluid, and only viscous effects—not elastic ones—are taken into account. This assumption
will simplify the derivation of the thinning and pressure equation, making the solver numerically easier. The
stress tensor is defined by:

τ = −η(γ̇)γ̇ = −η(γ̇)
[
∇v + (∇v)

T
]

(102)
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Here, γ̇ is the shear rate tensor, γ̇ is the magnitude of γ̇ and η(γ̇) is the non-Newtonian viscosity. To express
this viscosity, the power law is applied:

η(γ̇) = kγ̇n−1 (103)

where k is the flow consistency index and n is the flow behavior index, which correspond to:

• If 0 < n < 1: shear-thinning fluid

• If n = 1: Newtonian fluid

• If n > 1: shear-thickening fluid

Inserting the power law gives the following expression for the stress tensor:

τ = −kγ̇n−1
[
∇v + (∇v)

T
]

(104)

where the magnitude of the shear rate tensor, γ̇, is defined by:

γ̇ =

√
1

2
γ̇ : γ̇ (105)

The shear rate tensor is given by Eq. 55, and its double dot product with itself gives:

γ̇ : γ̇ = 4ϵ4
∂vr
∂r

∂vr
∂r

+ 2ϵ6
∂vz
∂r

∂vz
∂r

+ 4ϵ4
∂vz
∂r

∂vr
∂z

+ 2ϵ2
∂vr
∂z

∂vr
∂z

+ 4ϵ4
v2r
r2

+ 4ϵ4
∂vz
∂z

∂vz
∂z

(106)

In terms of dimensionless variables from Eqs. 64, Eq. 106, becomes:

γ̇ : γ̇ =

(
σ

η0Rp

)2 [
4ϵ4

∂ṽr
∂r̃

∂ṽr
∂r̃

+ 2ϵ6
∂ṽz
∂r̃

∂ṽz
∂r̃

+ 4ϵ4
∂ṽz
∂r̃

∂ṽr
∂z

+ 2ϵ2
∂ṽr
∂z

∂ṽr
∂z̃

+ 4ϵ4
ṽ2r
r2

+ 4ϵ4
∂ṽz
∂z̃

∂ṽz
∂z̃

]
(107)

Here, the third last term is determined to be much more significant than all the other terms which therefore
are neglected. Hence, the magnitude of the shear rate tensor can be reduced to:

γ̇ =

√
1

2
γ̇ : γ̇ ≈

√
ϵ2
(

σ

η0Rp

)2
∂ṽr
∂z̃

∂ṽr
∂z̃

=

∣∣∣∣ ϵσ

η0Rp

∂ṽr
∂z̃

∣∣∣∣ = ∣∣∣∣∂vr∂z

∣∣∣∣ (108)

By inserting the obtained expression for the shear rate tensor into the power law in Eq. 103, and setting
the characteristic scale, the power law can be written as:

η = k

∣∣∣∣∂vr∂z

∣∣∣∣n−1

(109)

Only the equations including this component are impacted since the viscous stress tensor is the only factor
that differs between the non-Newtonian and Newtonian instances. Thus, only the equations of motion and the
stress balance component change, while the other equations stay the same. On the other hand, the form of
the equations of motion and the component of the stress balance shouldn’t alter as long as the power law isn’t
included for η and the viscosity isn’t considered constant and taken outside any derivatives.

Making the equation dimensionless, as was done for the Newtonian model, the non-Newtonian model is
simplified. Characteristic scales employed are the ones shown in Eqs. 64, but now the viscosity coefficient µ for
the continuous phase is replaced by a constant non-Newtonian coefficient, η0:

P̄ =
σ

Rp
h̄ = ϵ2Rp r̄ = ϵRp v̄r =

ϵ3σ

η0
v̄z =

ϵ4σ

η0
t̄ =

Rpη0
ϵ2σ

(110)

For the non-Newtonian viscosity, the following variable substitution is employed:

η = η0η̃ (111)

By non-dimensionalizing the power law given in Eq. 103, the characteristic scale, η0, can be found as:

η0η̃ = k
( v̄r
h̄

)n−1
∣∣∣∣∂ṽr∂z̃

∣∣∣∣n−1

(112)

This gives the following expression for η0:

η0 = k
( v̄r
h̄

)n−1

(113)
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By inserting the characteristic scales for v̄r and h̄, the Eq. 113 is rewritten to:

η0 = k

(
ϵ3σ

ϵ2η0Rp

)n−1

(114)

and further rearranged to:

η0 = k1/n
(
ϵ2σ

Rp

)1−1/n

(115)

The dimensionless power law can be expressed as follows:

η̃ =

∣∣∣∣∂ṽr∂z̃

∣∣∣∣n−1

(116)

2.2.3 Analytical solution with Power law

By adding the Eq. 116 to the previous set of equations, especially to the dimensionless r−component of the
momentum equation, Eq. 101, they can be rearranged in two main equations like for Newtonian continuous
media. By taking the Eq. 101 and inserting the Eq. 116, this can be solved numerically and become:

∂P̃

∂r̃
=

∂

∂z̃

[(
−∂ṽr

∂z̃

)n−1
∂ṽr
∂z̃

]
(117)

∂P̃

∂r̃
=− ∂

∂z̃

(
−∂ṽr

∂z̃

)n

(118)

where the sign is fixed due to the assumption of symmetry for z > 0. Proceeding by integrating the equation:

∂P̃

∂r̃
z̃ = −

(
−∂ṽr

∂z̃

)n

+ C1 (119)

where C1 is a constant the value of which can be found due to the assumption of symmetry around the radial
axis:

at z̃ = 0 :
∂ṽr
∂z̃

= 0 −→ C1 = 0 (120)

The equation is rearranged as follows:

−

(
−∂P̃

∂r̃

)1/n

z̃1/n =
∂ṽr
∂z̃

(121)

A second integration can be now made:

ṽr = −

(
−∂P̃

∂r̃

)1/n
1

1/n+ 1
z̃1/n+1 + C2 (122)

By applying the equation 74, a value to the constant C2 can be assigned:

at z̃ =
h̃

2
: ṽr = 0 (123)

Then by substituting into Eq. 122:

0 = − 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n(
h̃

2

)1/n+1

+ C2 (124)

By inserting the found value of C2 into the Eq. 122 and rearranging, a new expression for the dimensionless
velocity along the axial component is found:

ṽr =
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1

− z1/n+1

 (125)
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By inserting this expression into the dimensionless continuity equation, Eq. 65:

1

r̃

∂

∂r̃

r̃
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1

− z̃1/n+1

 = −∂ṽz
∂z̃

(126)

By integrating, another constant C3 is added to the equation:

ṽz =
1

r̃

∂

∂r̃

r̃ 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n(
h̃

2

)1/n+1
 z − 1

r̃

∂

∂r̃

r̃
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
 1

1/n+ 2
z1/n+2 + C3 (127)

The constant C3 is solved this time by using again the consition of symmetry around the radial axis:

at z̃ = 0 : z̃ = 0 −→ C3 = 0 (128)

And by substituting into the Eq. 127, a new expression for the dimensionless radial component of the velocity
for a Power law continuous media is found:

ṽz =
1

r̃

∂

∂r̃

r̃
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1

z̃ − 1

1/n+ 2
z̃1/n+2

 (129)

By substituting the expressions of the radial and axial components of the velocity into the dimensionless kine-
matic condition, Eq. 72, it is possible to proceed similarly as for the Newtonian case:

1

2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1

z̃ − 1

1/n+ 2
z̃1/n+2


+
1

2

∂h̃

∂r̃

1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1

− z1/n+1

 (130)

Since this condition is valid only at the interface, z = h/2:

1

2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃
1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+1(
h̃

2

)
− 1

1/n+ 2

(
h̃

2

)1/n+2
 (131)

in accordance with the no-slip condition at the interface, for which ṽr = 0. The equation is manipulated as:

1

2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃ 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n(
h̃

2

)1/n+1
( h̃

2

)

+
1

r̃

∂

∂r̃

r̃ 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
 (132)

and by applying the product rule:

1

2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃ 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2

)1/n+2

− 1

1/n+ 2

(
h̃

2

)1/n+2


−1

r̃

∂

∂r̃

( h̃

2

)1/n+1
 r̃

1

1/n+ 1

(
−∂P̃

∂r̃

)1/n(
h̃

2

) (133)

By applying the chain rule, the first derivative in the second term on the right-hand-side becomes:

∂

∂r̃

( h̃

2

)1/n+1
 =

(
1

n
+ 1

)
∂

∂r̃

(
h̃

2

)(
h̃

2

)1/n

(134)
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The equation becomes:

1

2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃ 1

1/n+ 1

(
−∂P̃

∂r̃

)1/n
( h̃

2
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1
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∂
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By applying the chain rule in reverse on the last term:

(
1

n
+ 2

)
∂

∂r̃

(
h̃

2

)(
h̃

2

)1/n+1

=
∂

∂r̃

( h̃

2

)1/n+2
 (137)

and inserting it into the kinematic equation gives:
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2

∂h̃

∂t̃
=

1

r̃

∂

∂r̃

r̃(−∂P̃

∂r̃
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∂

∂r̃
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2
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 1
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After the entire set of equations for a Power law continuous media is solved analytically and manipulated, again,
two main equations can be solved numerically to find the solution to the problem. The thinning equation just
written up above, rearranged results:

1

2

∂h̃

∂t̃
= −1

2

∂

∂r̃

r̃

(
−∂P̃

∂r̃

)1/n(
h̃

2

)1/n+2
 1

1/n+ 2
(139)

and the pressure equation, which is obtained from the stress balance equation exactly as for the Newtonian
case, Eq. 83:

P̂ = 2− 1

r̃

∂

∂r̃

(
r̃
∂h̃

∂r̃

)
+

A∗

h̃3
(140)

The thinning and pressure equations, i.e., Eqs. 139 and 140, are solved simultaneously with the following
boundary and initial conditions:

∂h̃

∂r̃

∣∣∣∣∣
r̃=0

= 0;
∂P̃

∂r̃

∣∣∣∣∣
r̃=0

= 0 (141)

∂h

∂t

∣∣∣∣
r̃=r̃∞

= −Ṽapp(t); P̃
∣∣∣
r̃=r̃∞

= 0 (142)

Due to the assumption of axisymmetry within the film, the boundary conditions shown in Eq. 141 are used
in the present case. Furthermore, it is assumed that at a sufficiently high radial distance, r̃∞, the form of the
interface and the approach velocity are unaffected by the impact due to the assumption of a gentle collision.
Thus, the boundary conditions in Eq. 142 appear. To resemble the film between two initially spherical particles,
the initial condition for the film thickness is taken as:

h̃0 = h̃min,0 + r̃2 (143)

where h̃min,0 is the dimensionless minimum initial thickness.

2.3 Force Balance
Ozan et al. (2021) studied the film drainage between two fluid particles with deformable interfaces that can
support dimple formation by considering a time-dependent relative approach velocity. The time-dependent
behavior is governed by a force balance that accounts for the changes in the kinetic and the particle surface
energies. When the film’s resistance to the drainage is large enough the relative approach velocity can attain
negative values, signifying the onset of rebound of the particles. Thus, in addition to predicting coalescence, the
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drainage model is able to estimate the rebound as well. The time-dependent behavior of the approach velocity
of ith fluid particle is described by a force balance:

mA,i
∂Vi

∂t
= Fb,i + Fd,i + Ff,i (144)

where mA,i is the added mass.

mA,i = mi

(
1 + Cm

ρc
ρd

)
(145)

Fb,i and Fd,i are the buoyancy and the drag forces acting on the particle, and the film force, Ff,i is the
hydrodynamic force resisting the motion of the particle due to the lubrication pressure build up inside the film.
By writing the forces explicitly, the equation can be expressed as:

mA,i
∂Vi

∂t
= mi

(
1− ρc

ρd
g

)
− CD,iRei

π

4
µcRiVi + di

∫ 2π

0

∫ r∞

0

rpdrdσ (146)

= mi

(
1− ρc

ρd
g

)
− CD,iRei

π

4
µcRiVi + di2π

∫ r∞

0

rpdr (147)

where CD,i and Rei are the drag coefficient and the instantaneous Reynolds number, respectively. The di term
in the film force is added to ensure that the film force always acts in the opposite direction to the approach
of the particles. It depends on the orientation of the coordinate system and the position of the fluid particles
relative to each other.

The dimensionless version of this equation is:

∂Ṽi

∂t̃
=

mi

mA,i

µ2
cRp

σ2

(
1− ρc

ρd

)
(g · k)−Oh2

A,i

(
CD,iRei

π

4

Ri

Rp
Ṽi − di2π

∫ r̃∞

0

r̃p̃dr̃

)
(148)

where OhA,i =
µcRp√
MA,iσ

is an Ohnesorge number defined by considering the added mass of the particles. For

the collision involving similar size fluid particles, i.e., R1 ≈ R2 ≈ Rp the equation simplifies to:

∂Ṽi

∂t̃
=

m

mA

µ2
cRp

σ2

(
1− ρc

ρd

)
(g · k)−Oh2

A

(
CD,iRei

π

4
Ṽi − di2π

∫ r̃∞

0

r̃p̃dr̃

)
(149)

where the subscripts i are omitted when a quantity is the same for both particles. As the interactions between
similar size particles are considered, the buoyancy forces acting on the particles are approximately equal to
each other, and their effect on the relative approach velocity, Vapp = V2 − V1, is negligible. Therefore, the
buoyancy term in the equation is excluded from the calculations. The relative importance of the drag and the
film forces, on the other hand, depends significantly on the distance between the particles and the extent of
the interfacial deformations. This work aims to study the film dynamics at the interaction of the two particles
rather than investigate the earlier stages of the approach, therefore the film force plays a big role while the drag
force is found to be less significant, yet not completely negligible. Furthermore, in this work, interfaces have
zero degrees of mobility. For the calculation of the drag coefficient, the expression proposed by Schiller and
Naumann (1933) is used:

CD,i = 24Re−1
i (1 + 0.15Re0.687i ) (150)

which is a common empirical equation to use to model particle-particle drag force between fluid phases in
Newtonian multiphase systems and so far it shows the best agreements in literature.

2.3.1 Critical Rebound Velocity

The smallest approach velocity that allows rebound is denoted as the critical relative approach velocity Vc of the
corresponding parameter set. This value was of crucial importance in order to set a boundary between rebound
and the beginning of the coalescence phase. Above it, the rebound process is completed. Below this value, the
film ruptures due to the attractive intermolecular forces. This critical velocity here introduced will be impor-
tant later on in order to validate the model used in this study by comparing previous studies. Furthermore,
this parameter is one of the key points of the research to subsequently analyze how other parameters typical
of non-Newtonian fluids, like n for example, could affect the simulation. As already mentioned in the previ-
ous paragraph, an important factor determining the coalescence characteristics of a collision is the tangential
mobility of the fluid particles. In Chapter 4.2 the influence of this assumption will be evaluated.
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2.4 Power-law drag effect on a particle
The drag on a sphere is a force of resistance that develops as matter moves through a liquid, and the drag
coefficient is a physical quantity that relies on the geometry of the material and the viscosity of the liquid. For
these reasons, it is of interest to investigate and compare both the Newtonian and non-Newtonian behavior of
the fluid. As the Newtonian case was already considered as the simple scenario, now the drag on a power-law
fluid is taken into consideration.

For non-Newtonian fluids, the drag on a falling sphere is affected by the power-law fluid surrounding it. From
previous studies, Dazhi and Tanner (2006), such effect is investigated more for shear-thinning fluids, which are
more common to find in real-life applications.

2.4.1 Shear-thinning fluids

According to the preponderance of studies on drag on a sphere, the power-law model dominates the theoretical
data that is currently available. The likely cause of this is the capability of utilizing the index parameter n to
evaluate the significance of the shear-thinning (or shear-thickening) effects in a flow problem. The majority of
theoretical discoveries are also based on shear-thinning fluids, which are employed in practical applications the
most frequently. In the work of Dazhi and Tanner (1985), the drag Fd on a sphere is presented as:

Fd = 6πk

(
Vi

2Rp

)n−1

ViRpX(n) (151)

where the radius Rp is the radius of the sphere moving at speed Vi in an unbounded power-law fluid, with
power-law parameter m and index n. Here, the X(n) is a correction parameter accounting for the effect of
the power-law viscosity, also named the drag correction factor. When n = 1 (Newtonian case), the value of
the function X is 1. This equation resembles the one already found for Newtonian fluids, Eq. 146, where
similar expression groups can be pointed out: the viscosity term, the linear dependence from the radius, and
the velocity. The Newtonian drag force takes into account the inertia with the Reynolds number correction
contained in the Cdi term, while this non-Newtonian equation adds a correction due to the power-law index by
adding the parameter X(n). When n = 1 (Newtonian case), the value of the correction parameter is equal to 1.

In the current work, the modeling efforts start based on this data. Figure 2 shows the curve fitting obtained
from the plot of the numerical calculations of the values of the drag correction factor X from Dazhi and Gu et
al. (1985). The values for the drag correction factor X have been found numerically from sphere-in-sphere and

Figure 2: curve fitting of the drag correction factor X for unbounded fluid in a power-law fluid. Data fitting
from Dazhi and Gu et al. (1985)

sphere-in-tube configuration experiments to assess the importance of wall effects on the drag force. The trends
reveal an increase in the values of X as the values of the index n decrease.
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Remembering the viscosity scale showed in Chapter 2.2:

η0 = m

(
Ṽi

Rp

)n−1

(152)

and by using the scales shown in the same Chapter, the dimensionless form of Eq. 151 turns out to be:

F̃d = 6πm

(
Ṽi

Rp

)n−1(
|Ṽi|i
2

)n−1

V̄i|Ṽi|RpX(n) (153)

= 6πη0

(
|Ṽi|
2

)n−1

V̄i|Ṽi|RpX(n) (154)

The drag force expression can now be replaced with this new drag expression for power-law fluids in the
force balance (Eq. 146), leading to the new following equation for power-law fluids:

mA,i
∂Vi

∂t
= mi

(
1− ρc

ρd
g

)
− 6πη0

(
|Ṽi|
2

)n−1

V̄i|Ṽi|RpX(n) + di

∫ 2π

0

∫ r∞

0

rpdrdσ (155)

Remembering the velocity scale and the time scale introduced in Chap. 2.2, the dimensionless version of this
equation is:

∂Ṽi

∂t̃
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(156)

Remembering the definition of the Ohnesorge number, OhA,i =
η0Rp√
mA,iσ

, the parameters in front of the drag term
can be grouped together. Considering the collision involving similar size fluid particles, the equation simplifies
to:

∂Ṽi

∂t̃
=

m

mA

µ2
cRp

σ2

(
1− ρc

ρd

)
(g · k)−Oh2

A

6π

(
|Ṽi|
2

)n−1

|Ṽi|X(n)− di2π

∫ r̃∞

0

r̃p̃dr̃

 (157)

It should be further underlined that the contribution of the buoyancy and film forces is indifferent for Newtonian
and non-Newtonian fluids since no viscosity term appears.

2.4.2 Shear-thickening fluids

The motion of spheres in dilatant fluids has only been the subject of a small number of studies. Despite
preliminary research on the creeping motion of spheres in power-law fluids with a flow behavior index greater
than unity being published by Tomita (1959) and Wallick et al. (1962), as reported in Chhabra et al. (2006),
shear thickening fluids are relatively uncommon in industrial applications. The governing equations for power-
law fluids flowing across a sphere up to Re < 100 and 1 < n < 1.8 were numerically solved by Tripathi and
Chhabra in 1995. The drag correction factor X is strongly influenced by the flow behavior index at low Reynolds
numbers, but the impact of n gradually decreases at high Reynolds numbers. The curves shown in Fig 3 are
fitted with the experimental values of CD for spheres in dilatant fluids from Tripathi et al. (2006). In the main
simulation, for the calculation of the drag coefficient, the expression for the CD,i was used from Schiller and
Naumann (1933), Eq. 150. This equation for the drag formula is well-known and other expressions proposed
give the same qualitative drainage behavior with only trivial differences in the Vapp values observed, like Caylan
et al. (2001) or Chhabra and Uhlherr (1980). For these reasons, this equation was used as the model to derive
similar-looking formulas for other values of n for dilatant fluids. Keeping in mind the equation proposed by
Schiller and Naumann:

CD = 24Re−1(1 + 0.15Re0.687)

this type of equation can be derived for other values of drag correction factors and Reynolds numbers:

CD = k|Re→0Re−1(1 + f(Re)) (158)

From the experimental data of the drag correction factor values CD for spheres in dilatant fluids (Tripathi, A.
and Chhabra, (2006)), the values of the f(Re) were obtained using the Eq. 158 and plotted against the Re
values. Then a power law type of fitting was made for each n. As it can be seen from Fig. 4 the first curve
in power scale is the Newtonian case. The Newtonian case reports parameters that solidly agree with the one
proposed by Schiller and Naumann (1933) in Eq. 150. From these results, new expressions for n = 1.2 and
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Figure 3: curve fitting of the drag correction factor values CD for spheres in dilatant fluids. Curves are fitted
for different n values: 1 (Newtonian case), 1.2, and 1.4. Raw data from: Tripathi et al. (2006)

Figure 4: curve fitting of the f(Re) from the CD values for spheres in dilatant fluids. Curves are fitted for
different n values: 1 (Newtonian case), 1.2, and 1.4. Raw data from: Tripathi et al. (2006)

n = 1.4 can be derived:

n = 1.2 : CD =
19.85

Re
(1 + 0.23Re0.681) (159)

n = 1.4 : CD =
13.67

Re
(1 + 0.57Re0.610) (160)
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For all the cases in between, interpolation of the raw data can be made.

3 Numerical Procedure
A spectral scheme based on the Chebyshev polynomials is used for spatial discretization, whereas second-order
backward differentiation is employed for the time derivatives.

3.1 Newtonian solver
The Newtonian case with the analytical solution found in Chapter 2.1.4 is first implemented into the code and
then the Power law is adapted as well. The initial condition is taken as:

h = h0 + r2 (161)

where h0 is a constant that shows the minimum initial thickness of the film.
The dimensionless equations are implemented in MATLAB together with the boundary and initial conditions

and solved numerically by use of a spectral method based on Chebyshev polynomials (Guo et al. (2013)).
The equations to solve are the kinematic condition Eq. 97, solving for the thin film thickness, and the stress

balance, Eq. 77, solving for the pressure. The equations are discretized as:[
3

2∆t
I

]
hk+1 −

hk

∆t
+

hk−1

2∆t
=

[
diag

(
1

12r

)
[D]diag(h3

k)diag(r)[D]

]
Pk+1 (162)

[I]Pk+1 = 2−
[
diag

(
1

12r

)
[D]diag(r)[D]

]
hk+1 +

A∗

h3
k

(163)

At this stage, the tilde notation is omitted because it is clear that all equations are in dimensionless form. Here,
k is the time step number, and the equations are solved at step k + 1, therefore all terms which include k + 1
are unknown. Terms including k or k−1 are known from solutions at previous time steps. Note that the square
brackets indicate matrices of size (N + 1)× (N + 1), where N is the number of grids, and N + 1 is the number
of grid points, while the variables outside the square brackets, r, hi, Pi, are column arrays of length N + 1. I

is the identity matrix, a square matrix in which each of the elements of its principal diagonal is a 1 and each
of the other elements is a 0. Here it is represented of order (N + 1) × (N + 1). Moreover, ∆t is the time step
size. [D] is the (N +1)× (N +1) derivative matrix, which is obtained through Chebyshev polynomials that are
mapped linearly to fit the domain of r = 0 to r = r∞. Here, r∞ is a large enough distance from the collision
zone, such that the collision doesn’t affect the local conditions anymore. At each grid point, the matrix [D]
derives with respect to r. The diag operation also represents arrays that have been transformed into diagonal
matrices. The two examples below, which each include an unknown array (f), are provided to demonstrate the
need of this diagonalization:

[D]rf =
∂r

∂r
f, (164)

The unknown array in this case is not subject to the derivative operator. Conversely, the results of the diago-
nalization are as follows:

[D][diag(r)]f =
∂

∂r
(rf), (165)

the derivatives similar to that appear in both equations. The radial array and the unknown array, f , are
both subject to the derivative operator in this case. The diag command in MATLAB carries out the following
operation:

diag(r) =

r(1) 0 · · · 0
0 r(2) · · · 0
0 0 · · · r(N+1)

 (166)

Gathering the unknown terms in the matrix equations, Eqs. 162 and 163, on the left-hand-side and combining
them into a single matrix, yields:

AU = RHS (167)

where U is a column array consisting of the unknown terms (N + 1 nodal values of each hk+1 and Pk+1). The
weights for the matrix A are defined by the discretized pressure and thinning equations. RHS is a column
array that includes the known values. The matrix A is then further partitioned into four blocks, with one block
representing each unknown variable in each equation, and they are written as:[

A11 A12
A21 A22

] [
Pk+1

hk+1

]
=

[
RHS1
RHS2

]
(168)
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The rows of the A blocks represent the thinning equation and pressure equation, while the columns represent the
film thickness and the excess pressure, respectively. A is then of size 2(N +1)× 2(N +1), while the right-hand
side array and the array of unknowns are of length 2(N + 1).

The weights shown below, which correspond to the unknown pressure and film thickness, are provided via
the discretized thinning equation:

[A11] =

[
diag

(
1

12r

)
[D]diag(h3

k)diag(r)[D]

]
(169)

[A12] =
I

∆t
(170)

Then, the weights of the unknown terms in the pressure equation can be divided into the following blocks:

[A21] = I (171)

[A22] =

[
diag

(
1

2r

)
[D]diag(r)[D]

]
(172)

The discretized thinning and pressure equations are then written with the following right-hand sides:

RHS1 = − hk

∆t
(173)

RHS2 = 2 +
A∗

h3
k

(174)

Additionally, the boundary conditions must be included in the matrix A as well as on the right side of the
related matrix equation. Boundary conditions for this set of equations are:

for r = 0 :
∂h

∂r
= 0;

∂P

∂r
= 0 (175)

for r = r∞ :
∂h

∂t
= −Vapp(t); P = 0 (176)

where Vapp corresponds to the approach velocity of the two bubbles. The approach velocity condition turns
into:

hk+1 = −Vapp ∗∆t+ hk (177)
The boundary condition ∂h

∂r |r=0 = 0 gives:

A(1,i) = [D(1,i) 0 0 · · · 0] (178)

Note that the index i is the same as number of grid points (N + 1). The first row of the derivative matrix, D,
is therefore filled in row 1 of A, column 1 to N + 1. The remaining characters in row 1 are (N + 1) zeros. The
second block multiplies the unknown pressures in the problem and while implementing a boundary condition
on the film thickness the corresponding values in that block should be zero and vice versa. The corresponding
right-hand side yields:

RHS(1) = 0 (179)

The boundary condition ∂h
∂r |r=r∞ = 0 can be be implemented as:

A(N+1,i) = [0 0 · · · 1 0 0 · · · ] (180)

Here, the column N +1 of matrix A’s row N +1 has a 1 that, in the thinning equation’s point r∞, corresponds
to the variable h. This row’s remaining spaces are all zeros. Following the time discretization employed in the
thinning equation gives the following right-hand side entry in the position N + 1:

RHS(N+1) = −Vapp

∆t
+ hk,(N+1) (181)

The boundary condition ∂P
∂r |r=0 = 0 is expressed in A as:

A(N+2,i) = [0 0 · · · 0 D(1,i)] (182)

which indicates that row N + 2 in A is filled with the first row of the derivative matrix in column positions
N +2 to 2(N +1), while the remaining space on the row is filled with zeros. The corresponding right-hand-side
is expressed as:

RHS(N+2) = 0 (183)
Finally, the boundary condition P |r=r∞ = 0 gives:

A2(N+1),i = [0 0 · · · 0 0 1] (184)

where row 2(N + 1) of matrix A has entry 1 in column 2(N + 1). The right-hand-side gives:

RHS(2(N+1)) = 0 (185)
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3.2 Non-Newtonian case solver
For the non-Newtonian case, the spectral method implemented is the same but the equations and the matrices
are changed to follow the equation derived in Chapter 2.2.

Equations 139 and 140 are discretized in the following form:[
3

2∆t
I

]
hk+1 −

hk

∆t
+

hk−1

2∆t
= − n

(1 + 2n)21/n+1
[diag(1/r)] [D] [diag(r)] ([−D] [Pk])

1/n−1
[
h2n+1
k

]
[−D]Pk+1

(186)

[I]Pk+1 = 2− 1

2
[diag(1/r)] [D] [diag(r)] [D]hk+1 +

A∗

h3
k

(187)

and solved simultaneously with the boundary conditions presented in Eqs. 175 and 176.

3.3 Implementation of force balance and search algorithm

Figure 5: Evolution of Vapp0,guess with search iterations until convergence to Vc along the iteration steps.

The default values of the simulation parameters are estimated based on air-in-water particles. Fluid particles
of 1 mm are considered. The added mass coefficient value of air as the dispersed phase is Cm = 0.803 (Kamp
et al. (2001)). This coefficient is of usage for the calculation of the default values of mA and OhA. The particle
velocities V1 and V2 are calculated via Eq. 149 to give Vapp(t) and solved in an external function. This is
coupled and solved simultaneously with the main set of equations derived before Eq. 139 and Eq. 140. Eq. 149
is an ordinary differential equation and its discretized form is the following:

vk+1,i =

(
a(1− ρc/ρd)g − (−1)2π ·

[∫ r∞

0

rP dr

]
Oha2−Oha2 · b · vk,i +

vk,i
∆t

)
/
1

∆t
(188)

where vk+1 is the particle velocity and vk the particle velocity at the previous iterative step. Both are column
arrays of length N + 1 and i = 1, 2, identifying the two different particles. ρc and ρd are the density of water
and air, respectively of the continuous and dispersed phases. The parameters a and b contain within them the
values of the other multiplicative constants present in Eq. 149. P here is a matrix containing all the values
of pressure Pk+1 obtained from the Non-Newtonian solver. In order to carry out the integration, the built-in
function of MATLAB trapz is used which integrates the pressure function with respect to the coordinates or
scalar spacing specified by r.

In order to find the critical approach velocity, a small optimization algorithm has been implemented for
fast convergence of the solver. After selecting an initial approach velocity Vapp0,guess, the solver would increase
or decrease this value at the end of every simulation round based on whether the outcome was coalescence
or rebound, and then start another simulation with this new value of the approach velocity. If the outcome
is rebound, it is stored in a matrix called Vapp0,max, while if it is coalescence, it is stored in a matrix called
Vapp0,min. Storing all the values from the previous iterations is important in order to set boundaries that cannot
be exceeded. For example, if in an iteration the outcome is rebound, this is stored into the Vapp0,max. If the
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(a) Film thickness as a function of r and t. (b) Pressure as a function of r and t.

Figure 6: Pressure and Film Thickness. The model parameters are: Vapp = 0.05, A∗ = 0.0001, time steps
dt = 0.01. The simulation result is marked by circles and the black curve shows the reference from Fanebust et
al. (2021)

following outcome is coalescence, these values would be increased for the following third iteration but compared
with the smallest value stored inside the matrix Vapp0,max. Doing so, at the end of each loop the velocity was
changed but kept within the boundaries set by the values obtained from the previous iterations. And so on,
until the value converges to the critical approach velocity Vc. In this way, a fully-automatic and efficient search
algorithm is implemented which achieves faster convergence, and no extra work is done by iterating for values
for which the outcome was certainly already known. An example for the typical progression of Vapp0,guess during
search iterations is shown in Fig. 5.

4 Results and Discussion
The drainage model employed in this work allows the particle velocities, and as a result, Vapp, to change
throughout the drainage process by integrating a force balance for each particle in the model. Moreover, the
results presented in this work are not limited to the interactions between two bubbles but cover droplet-droplet
interactions as well. This is because the default values of mA and OhA are calculated based on the air bubbles
but the parameter values calculated for a typical droplet of the same size, are on the same order of magnitude
as the estimations for the bubbles. Furthermore, the model is the same for both droplets and bubbles.

The following chapter starts with the validation of the codes used in this thesis, and then attention will be
given to how the solver works and how rebound and coalescence were investigated with it. Then, the effects of
the major key parameters affecting the values of the Vapp are discussed: the analysis starts evaluating how the
solution changes with a power law type drag force compared with a Newtonian continuous media, and then the
effects of the different parameters contained inside the power law are analyzed.

4.1 Validation
The validation of the code is done in two phases: first the validation of the implementation of the non-Newtonian
drainage equations and then the validation of the force balance applied on the moving particles.

4.1.1 Validation of the Non-newtonian code

The results of the research work can be now validated with the results of previous similar work, in this case the
one carried out by Fanebust et al. (2021). Fig. 6 shows how the two solvers give the same outcome for film
thickness and pressure in the same range of r.

4.1.2 Validation of the Force balance

In order to validate the addition of the force balance to model the approach velocity, studies carried out by Ozan
et al. (2021) were used. Here, Vc, the critical velocity explained in Chapter 2.3.1, is presented as a function
of the equivalent particle radius, Rp for immobilized air-in-water particles, which is a common occurrence in
many real systems. The curve fit on the Vc data from this study is plotted in Fig. 7 together with the results
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from the data model calculated in Eq. 149. The typical critical velocity values presented here range between
2 × 10−4 and 3 × 10−3, which corresponds to 1.45 cm/s and 21.8 cm/s when the velocity scale is calculated
for air in water systems. Both plots are made for the dimensionless value of the critical velocity against Rp.
A qualitative comparison on the Vc model is possible. For smaller particles the current model agrees with the

Figure 7: Effect of particle radius on Vc in a Newtonian system. The simulation result is marked by circles and
the black curve shows a fit based on the reference adapted from Ozan et al. (2023)

ones estimated by Duineveld (1998) and Ribeiro and Mewes (2007)’s experiments. For larger particles, on the
other hand, the model still estimates a decrease in Vc as the particle size increases, however, the decrease in the
predicted Vc values seems to diminish as the particle size increases further, which may resemble the constant Vc

behavior observed in the experiments of Lehr et al. (2002), and Ribeiro and Mewes (2007). Finally, the current
work shows that Vc for the current model fits with high accuracy the model from Ozan et al. (2021) and Ozan
et al.(2023), where Vc was estimated as ∝ R−0.9

p .

4.2 Rebound and Coalescence
The integration of the force balance to render the time-dependent behavior of Vapp allows the film drainage
model to capture not just the coalescence outcome (like in previous works using constant approach velocity
collision by Ozan and Jackobsen (2019a), but the rebound outcome is also possible. Fig. 8 shows the behavior
of the film for a collision with rebound outcome. In Fig. 8(a) the film thickness gets thinner as the time steps
increase as the particles get closer. It should be noted that there is a difference from previous similar works:
from Ozan et al. (2021) the film thickness gets thinner and interfaces are allowed to deform following the
typical dimple shape, and the deformed radius increases but here, no tangential mobility undergoes. Figure 8(c)
reveals that the particles slow down during the approach, since kinetic energy is depleted by the drag forces
acting on the particles but no kinetic energy is converted to surface energy since interfacial deformations are
not allowed. As shown in Fig. 8(d), the magnitude of the total film force acting on the particles increases
during the approach, especially at the moment when particles collide, dropping down significantly immediately
after. This reversal indicates the beginning of the rebound process, and the film force starts to decrease due
to reducing pressure build-up in the film, while the energy stored at the surface starts being converted back
to kinetic energy. After the collision, the film force passes through a maximum and afterwards asymptotically
approaches zero indicating that the spherical particle shape at the beginning of the interaction is recovered.
The changes in Vapp in the latest stage of the interaction are due to the drag force only.

Coalescence mechanisms describe the process of particles merging into one another to form a bigger one.
When the attractive intermolecular forces are included, the film drainage model is able to estimate the coales-
cence outcome, as mentioned above. The coalescence mechanism is identified by the coalescence of two closely
spaced particles and, since the film drainage model is not capable of rendering the film rupture, is assumed that
this is achieved when a sufficiently small thickness is reached, because the film begins to thin rapidly due to
the attractive Van der Waals forces. However in this work, due to the assumption of no tangential mobility, a
proper coalescence can’t be observed. The film force creates huge resistances that are too high to be broken
since no kinetic energy is converted into surface energy because no interfacial deformations are happening. It
is a balance between the film force and the Hamaker constant whether rebound or coalescence happens and
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(a) Film thickness profiles (b) Minimum film thickness

(c) Approach velocity (d) Film force

Figure 8: A collision with rebound outcome: (a) film thickness profiles, (b) minimum film thickness, (c) the
approach velocity, and (d) the total film force acting on the particles as functions of time. The model parameters
are Rp = 0.001, Vapp,0 = 1× 10−4, V2,0 = −V1,0 = Vapp,0/2, hmin,0 = 0.1, Oh2

A = 8.2× 10−6, A∗ = 10−13 and
n = 0.95.

in order to achieve coalescence with the assumption of immobile interfaces, the Hamaker constant and the
value of A∗ should increase a lot to overcome the film force. But such values would be unrealistic to get the
indication of the film rupture when the interface is immobile. However, in Ozan and Jakobsen (2019a) the
model is actually capable of estimating coalescence when the interfaces are not immobile. Another way to push
the coalescence would be of increasing the radius of the particle, in order to increase the OhA number and
consecutively increment the drag force. On the other hand, increasing the radius of the particle would give
fake coalescence results, like it is shown in Fig. 9. It is clear that coalescence is not happening interior of the
domain but on the boundary, not in accordance with the model assumption. Due to the assumption of gentle
collision, the coalescence should happen close to the center of the domain. This behavior is the result of the
implementation of the boundary conditions and not because of the application of the film drainage model itself.
This is not a physical outcome and it is predominantly seen for larger radii. Yet, coalescence can be identified
in the simulation by the steady-state outcome as shown in Fig. 10. The steady-state is a low-energy collision
in which the particles after bouncing reach a halt at a minimum thickness smaller than hmin,0, as their kinetic
energy is depleted before the film gets thin enough for coalescence and resistant enough for particles to rebound.
This outcome is neither a coalescence nor a rebound but it represents the beginning of the interaction between
the particles, a transitional middle stage connecting coalescence and rebound outcomes. Despite the limitations
of the simulation, in a real system, with stirrings and currents, it is likely that if a perturbation or a secondary
mechanism that supplied kinetic energy to the particles would occur in the system, the steady-state would be
disturbed and the collision would result in coalescence. In this work, this type of steady-state will always be
treated as a proper coalescence, assuming disturbances would later turn into coalescence. Figure 10(c) shows
the two particles’ approach and, simultaneously Fig. 10(b) shows that the film between them gets thinner before
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Figure 9: Non-physical coalescence outcome. Film thickness profiles during particles approach. The model
parameters are Rp = 0.001, Vapp,0 = 1 × 10−4, V2,0 = −V1,0 = Vapp,0/2, hmin,0 = 0.1, Oh2

A = 8.2 × 10−6,
A∗ = 10−13 and n = 0.95.

they start departing from each other until there is no more energy to push them apart enough to rebound and
the approach velocity becomes zero, and the minimum film thickness reaches also a steady height.

4.3 Force Balance
4.3.1 Newtonian continuous media vs Power law type drag force

It is important to analyze and sum up the effect of using a power law type of drag force within the force balance.
As can be seen from the following figures, Fig. 11(a), and Fig. 11(b) the change is extremely minimal, both
as regards the use of the Eq. 157 for thinning fluids, and for the use of the Eqs. 159 and 160 for thickening
fluids. Such plots are made by comparing the hmin for different n at the same initial approach velocity: at such
velocity (Vapp0 = 0.0003) the outcome is for the most of n steady-state, expect for n = 0.90 with Newtonian
drag force expression which is coalescence. Both plots show that using a drag force closure model to model the
non-Newtonian behavior of the continuous phase does not really affect the final results. Both graphs show that
while the behavior of the minimum film thickness is not influenced by the drag force expression used at all, the
power law parameters are very significant inside the solutions of the governing and interfacial equations. Even
though the flow around a sphere depends on the viscosity of the fluid the matter flows in, fluids with Newtonian
and power-law drag forces have similar flow patterns. As can be seen in Fig.12, the power-law drag force does
not really affect the plot of the critical velocity as well.

This not altogether unexpected result could agree with the fact that the drag force is of little significance in
contexts in which very small distances and particles are considered and takes second place to, for example, the
film force. This is because the force balance is an external and additional element to the problem. However,
the type of non-Newtonian fluid used is of greater value as regards its impact on the axial component of the
momentum equation: this is because the momentum balance is a governing equation and inside of it the viscosity
is of great importance and a change of the expression used to define it is much more impactful on the final
solution of the problem.

This was verified for slow scenarios in the ranges of radii and velocity of importance as well as for values of
n not too distant from the Newtonian case. Since the addition of the power law drag force in the force balance
does not really affect the results, the effects of the other parameters on the model will be analyzed only for the
general Newtonian type of force balance, for an easier understanding of the results.

4.4 Effects of Power law parameters
4.4.1 Effect of the flow behavior index, n

Figure 13(a) shows the time development of the hmin for varying values of the power index, n, for shear thinning
fluids, n < 1, while 13(b) shows the time development of the hmin for shear thickening fluids, n > 1. The plots
are both made at the same initial approach velocity Vapp0 and at the same particle radius. At this initial
velocity, in the Newtonian case, to use as a reference in order to compare the other n values, the particles will
not bounce but, instead, steady-state is the outcome. As the n value changes, the outcome varies between
steady-state and coalescence.
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(a) Film thickness profiles (b) Minimum film thickness

(c) Approach velocity (d) Film force

Figure 10: A collision with steady-state outcome: (a) film thickness profiles, (b) minimum film thickness, (c)
the approach velocity, and (d) the total film force acting on the particles as functions of time. The model
parameters are Rp = 0.001, Vapp,0 = 1 × 10−4, V2,0 = −V1,0 = Vapp,0/2, hmin,0 = 0.1, Oh2

A = 8.2 × 10−6,
A∗ = 10−13 and n = 0.95.

For n values not so far from the unity, the behavior is almost identical to the Newtonian one. For shear
thinning fluids, when the value of n starts decreasing, the approach of the two bubbles is faster and they stay
for a shorter time in contact before the bounce happens. For n = 0.95, there is a small bounce back but then
the particles don’t have enough energy to bounce to the initial position and a steady-state mechanism is shown
in the graph, exactly as for the Newtonian case. As the n decreases, this small bouncing disappears and the
particles just come together, showing coalescence. For shear thickening fluids, as the values of the n increase,
the particles find a harder time to get that close as shown in Fig. 13(b).

Figure 14 present the time development of the film thickness profiles for varying values of the power index,
n, for both shear-thinning and shear-thickening fluids. Here, all show rebound outcomes. Furthermore, the
profiles look very similar but shifted upwards, meaning that the liquid gets harder to drain out completely as
the fluid becomes more shear thickening, blocking the particles to enter in contact. The last plot shows how the
minimum thickness is almost three times larger than the one in the top right corner, showing how influential is
the value of n to the behavior of the drainage.

The more shear-thinning the continuous phase, the easier the film drainage, meaning the coalescence gets
easier as the value of the power-law exponent decreases. This is expected as shear thinning fluids get less viscous
as a stronger force is applied to them: the approach of the two particles increases the film force between them,
decreasing the viscosity and making the drainage of the liquid of the part of the liquid in between the particles
easier. Supposedly, the trend should be the opposite for shear thickening fluids: as a stronger pressure is applied
on the thin film, the viscosity should increase, making the drainage slower or harder to achieve. This could
be the reason why in Fig. 13(b), as the n value increases, the particles can’t keep their interfaces as close up.
At the same initial approach velocity, with the increasing shear thickening behavior, the fluid becomes more
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(a) Different shear thinning fluids. (b) Different shear thickening fluids

Figure 11: Comparison of the hmin for Newtonian and power law drag force expressions at the same approach
velocity Vapp = 0.0003, and Rp = 0.0005.

Figure 12: Comparison of the effect of the Newtonian and the non-Newtonian drag force expressions of an
unbounded fluid in a power-law fluid on the critical velocity

viscous and drains out less because more friction is applied. For shear thickening fluids, when the minimum
film thickness starts increasing for the first time is almost identical to for shear thinning, Fig. 13(a) and (b),
but the graph is shifted upper and upper as the n value increases. Although the particles are less likely to get
too close, even though after bouncing they all don’t have enough energy to rebound, and steady-state happens
in each case. In Fig. 14, not big differences can be seen.

For a better comparison of shear thinning and shear thickening fluids, the plots of the dimensional critical
velocity can be compared. It is important to compare the critical velocity for different n values using its form
with dimension since the velocity scale itself actually depends on the power law parameters. The critical relative
approach velocity calculated in the simulation is a dimensionless value from Eq. 149. By converting it into a
dimensional value, it is possible to evaluate the effects of the key parameters of the power law: k, known as the
flow consistency index, and n, known as the behavior index. For definition:

Vc(m/s) = ṼcV̄c (189)

Since the scale of the velocity is V̄ = σ
η0

:

Vc(m/s) = Ṽc
σ

η0
(190)
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(a) Shear thinning fluids (b) Shear thickening fluids

Figure 13: Time evolution of the minimum film thickness for different n: initial approach velocity Vapp0 = 0.0003
and Rp = 0.0005. Most of the cases at this initial approach velocity show steady-state outcome. On the left,
three cases, for n < 1, show coalescence. The plot on the left is on logarithmic scale for the y−axis.

Figure 14: Time evolution of the film thickness for shear-thinning fluids (n < 1) and shear-thickening fluids
(n > 1), Rp = 0.001

The scale of the viscosity is η0 = m
(

V̄
Rp

)n−1

and can be solved for η0 by inserting the scale of the velocity:

η0 = k

( σ
η0

Rp

)n−1

(η0)
n = k

(
σ

Rp

)n−1

η0 = k(1/n)
(

σ

Rp

)1−1/n

(191)
31



(a) Shear thinning fluids (b) Shear thickening fluids

Figure 15: Effect of the power-law index on the critical velocity for different type of fluids.

The equation of the critical velocity with dimensions becomes then:

Vc(m/s) = Ṽc
σ

k(1/n)
(

σ
Rp

)1−1/n
(192)

Figures 15(a) and (b) show the trend of the critical velocity with the power-law index. As mentioned, with
the increasing shear thinning behavior, n < 1, the drainage gets easier as the fluid becomes more viscous and
drains out smoother. Supposedly, the trend should be the opposite for shear thickening fluids: as a stronger
pressure is applied on the thin film, the viscosity should increase, making the drainage slower or harder to
achieve. Then rebound would show up at lower values of velocity. Accordingly, the simulations show that
the critical velocity for the smallest rebound possible is actually decreasing as the behavior of the fluid gets
more shear thickening, while it increases for shear thinning fluids. This increase is much more emphasized for
shear thinning than the decrease for shear thickening. Figure 15(a) shows how for shear thinning fluids the Vc

increases much more than how shear thickening decreases on the other side in Fig. 15(b). The critical velocity
does not escalate as strongly for shear thickening fluids. Since shear thickening films make coalescence harder
to achieve, the critical velocity diminishes as the fluid becomes more shear thickening i.e., with increasing n.
Since coalescence is easier to achieve when the film is shear thinning, the critical velocity for the first rebound
has to rise to higher values. Again, for values of the power law exponent close to the unity the critical velocity
is almost the same, and big changes are not visible. As the fluid becomes more shear thinning, rebound does
become harder to achieve. For pseudoplastic fluids, When pressure or sudden force is applied to its viscosity
is reduced, it becomes “thinner” and flows or pours more easily. As the pressure in the thin film increases due
to the approaching particles, coalescence is favoured and in order to get rebound, higher velocities are needed.
Meanwhile, rebound is facilitated by the increase in the shear thickening behavior. This may be in agreement
with previous studies which confirm that coalescence is slower to obtain for dilatant fluids: in fact, the graph of
the minimum thickness, Fig. 13, shows that as the index n increases, the particles find a harder time to enter in
contact. It is reasonable to think that shear thickening fluids are harder to drain compared to shear thinning.
As stress increases for such fluids, the viscosity increases and more force is required for the same amount of
strain. The particles then rebound on such thin film more easily and smaller velocities are required to achieve
this.

4.4.2 Effect of the flow consistency index, k

Again, the dimensional velocity is analyzed and plotted using Eq. 192. By using a range value for the flow
consistency index k of [0.001 0.0015 0.002], close to the values of water’s viscosity, it is possible to obtain a
plot of the critical velocity against the equivalent particle size.

The parameter k influences the system actually in one way: it affects the final scale of the curves without
interfering with the simulation itself. This parameter does not appear in the model directly, meaning that it
does not show up in the dimensionless equations but its effects are observable only in the scales during the
process of turning into dimensional values the Vc. The solution is then a single solution but it is possible to plot
Vc in dimensional form using different values of k, as shown in Fig. 16 As the value of the flow consistency index
increases, the curve is more and more shifted downwards, the value of the critical velocity decreases meaning
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Figure 16: Effect of different flow consistency index on the critical velocity plot. The model parameters are Vcs
from the simulation for Rp=0.0008 and n=0.95, σ = 0.0728

that film drainage is harder to achieve and rebound is favored. As k increases, the film gets more viscous, like
for shear thickening fluids, because this term multiplies the viscosity directly and at the same time from Eq.
192 it diminishes the value of the critical velocity.

4.4.3 Challenges and future work

As the power-law index decreases, further investigations won’t produce significant results. The plot of the
critical velocity for n equal to 0.80 is not shown in Fig. 15(a) because after this n, the approach velocity must
scale to very high values in order to counteract the viscosity of the liquid and obtain the rebound of the particles
as a final result, around 4(m/s) and 2 (m/s). However, these speeds are absurdly high as to be unrealistic,
not common at an industrial level, outside any common range in which they are normally studied. Moreover,
the solver for values of n greater than 0.70 fails to converge: particles rebound even before getting closer, as
shown in Fig. 17. The stronger shear thinning behavior reduces the possibility for the spheres to rebound
and searching for the velocity that will give the first possible rebound outcome is not useful as the velocities
would exceed real processes and industrial application values even more than for 0.80. One way to improve

Figure 17: Plot of the hmin at the rebound of particles for n = 0.70 and Rp = 0.0005

and develop further this study in the future would be to find a solution that is more suitable and real for shear
thinning fluids: maybe a power law type fails to represent in a plausible way the behavior of these fluids for n
below n = 0.80 and a more suitable experimental law should perhaps be introduced instead for more realistic
results. Another suggestion would be to change the initial film thickness hmin,0: perhaps starting from further
distances could allow the system to interact better by enabling the particles to come into contact.
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A possible future work to extend this study would be to represent drainage differently, perhaps by introducing
tangential mobility into this model. This would increase the complexity of the system and the equation to solve,
slowly removing limiting assumptions and simplifications for a more realistic representation of the problem
instead of describing just immobile systems. Equations would become more elaborated and the numerical
method for finding a solution more complex. This would be an interesting future challenge. Since the drag
force at such a small molecular level counts for very little, perhaps going into more detail on how the forces are
distributed at a surface and at a tangential level would be a more accurate representation.
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5 Conclusions
The drainage of a thin non-Newtonian film entrapped between two fluid particles is examined in this thesis.
The power law is used to calculate the non-Newtonian viscosity of the continuous phase, which is treated as a
generalized Newtonian fluid. Although they are considered deformable, the interfaces cannot move tangentially.
A force balance that accounts for the drag, film, and the added mass forces was applied to the system in order to
construct a time-dependent approach velocity. This model is capable of both coalescence and rebound because of
the addiction of this force balance. Different models drawn from experimental data, capable of representing the
non-Newtonian behavior of the drag force within the force balance, were compared. From their application, the
appreciable results have been few, signaling how a type of drag force that is of Newtonian type or of power law
type has little influence at small particle level and such small speeds. The same cannot be said of the influence
of the power index n on the viscosity of the continuous phase. Through it, the impact of non-Newtonian
behavior on the film drainage and coalescence time is investigated. From the model, it can be seen that the
non-Newtonian behavior is very influential on the coalescence time: as the fluid becomes more shear thinning,
the drainage is facilitated and particles are more prone to coalesce. Furthermore, the flow consistency index
effects, k, were analyzed. As this parameter increases, the film becomes more viscous, making drainage harder
and promoting rebound. A critical initial approach velocity, for which the rebound is seen for the first time for
a given parameter set is defined as V c. V c is decreased, and so rebound facilitated, by an increase in the radii
of the particles and by an increase in the power index n, especially above the unity, since the fluid becomes
more viscous and drains out less because more friction is applied to it. At the same particle size, coalescence
starts to occur faster in shear-thinning fluid than in Newtonian fluid, and the critical velocity VC rises a lot.
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A MATLAB code

A.1 Non-Newtonian Solver

1 c l e a r a l l
2 c l c
3 warning o f f
4

5 g l oba l Rp sigma
6

7 Rps = [0 . 0 004 0 .0005 0 .0006 0 .0007 0 .0008 0 .0009 0 . 0 0 1 ] ; %[ 0 . 0 005 0 .001 0 .0015
0 .002 0 .0025 0 .003 0 .0035 0 .004 0 .0045 0 . 0 0 5 ] ;

8

9 f o r i =1: l ength (Rps )
10 Rp=Rps( i ) ;
11

12 sigma = 0 . 0728 ; %[ kg/ s ^2]
13

14 % th i s code with 10−4 won ’ t work f o r non−newtonian code because the re i s the
15 % chance i t w i l l run f o r e v e r
16 % depending on the outcome , coa l e s c ence , steady s t a t e or rebound be t t e r a
17 % code that h a l f s the v e l o c i t y
18 % rebound /2
19 % coa l e s c en c e /2 and add on top o f t h i s va lue a smal l va lue
20

21 Vapp0=0.0015;
22 Vapp0maxStore=Vapp0 ;
23 Vapp0max=Vapp0 ;
24 Vapp0min=0;
25 Vapp0minStore=Vapp0min ;
26 reboundswitch = 0 ;
27

28 f o r y = 1:20 %more i t e r a t i o n f o r b e t t e r accuracy
29 Vapp0Store (y )=Vapp0 ;
30 outcome (y ) = V_cr i t i c a l (Vapp0 , 0 ) ;
31

32 i f outcome (y ) == 0
33 reboundswitch = 1 ;
34 Vapp0max=Vapp0 ;
35 Vapp00=Vapp0/2 ;
36 i f Vapp00 < max( Vapp0minStore )
37 Vapp00=(Vapp0+max( Vapp0minStore ) ) /2 ;
38 end
39 e l s e
40 Vapp0min=Vapp0 ;
41 Vapp00=3/2∗Vapp0 ;
42 i f Vapp00 > min (Vapp0maxStore ) && reboundswitch==1
43 Vapp00=(Vapp0+min (Vapp0maxStore ) ) /2 ;
44 end
45 end
46

47 Vapp0maxStore (y )=Vapp0max ;
48 Vapp0minStore ( y )=Vapp0min ;
49

50 i f abs (Vapp0 − Vapp00 ) < 10^(−5)
51 Vc = Vapp0max ;
52 V_cr i t i c a l (Vc , 1 ) ;
53 break
54 end
55

56 Vapp0=Vapp00 ;
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57

58 end
59

60

61 f i l ename = s t r c a t ( ’Vapp0Store_n_115_Rp ’ , num2str (Rp) ) ;
62 f i l ename = s t r r e p ( f i l ename , ’ . ’ , ’ ’ ) ;
63 save ( f i l ename )
64

65 f p r i n t f ( ’ F in i to , un loop andato e s i vo laaa ! ! \ n ’ )
66 % semi logy (min ( hStore ) )
67

68 end
69

70 f unc t i on outcome = V_cr i t i c a l (Vapp0 , saveswi tch )
71 g l oba l Rp sigma
72

73 %%% data
74 N=200; % then put 300
75 L=0;
76 R=1;
77 dt =0.0001/Vapp0 ;
78

79 %Astar=10^(−9) ; %zero to t ry and then 10^(−2) l i k e be f o r e
80 %%%%%!!!!!Canberk : make Hamaker constant a func t i on o f Rp
81 Astar =3.731∗10^(−20) /(6∗ pi ∗ sigma∗Rp^2) ∗1000 ; %f i r s t number i s the d imens iona l

Hamaker constant
82 n=1.15;
83

84 % Di s c r e t i z e r space
85 [D, zc ] = cheb (N)
86 [ a , b , r ] = mapping (L ,R, zc ) ;
87 D=a∗D;
88 h0min = 0 . 1 ;
89 h0=h0min + r .^2 ;
90 P0=0.00000001∗ ones (N+1 ,1) ;
91 I=eye (N+1) ;
92

93 %%% Putting them toge the r in a unique unkown vecto r :
94

95 Pkm1 = P0 ; Pk = P0 ;
96 hkm1 = h0 ; hk = h0 ;
97 Vapp=Vapp0 ;
98

99 i = 1 ;
100 PStore ( : , 1 ) = Pk ;
101 hStore ( : , 1 ) = hk ;
102 VappStore ( : , 1 ) = Vapp0 ;
103 tS to r e (1 ) =0;
104 t =0;
105 f o r k=1:1:50000 %longe r s t ep s
106 t=t+dt ; %keeping t rack o f the time
107 A(1 :N+1 ,1:N+1) = 3/2/ dt∗ I ;
108 A(1 :N+1 ,(N+1)+1:2∗(N+1) ) = n/((1+2∗n) ∗(2^(1/n+1) ) ) ∗diag ( 1 . / r ) ∗D∗diag ( r ) ∗diag

((−D∗Pk) .^(1/n−1) ) ∗diag (hk .^(2∗n+1) )∗(−D) ;
109 A((N+1)+1:2∗(N+1) , 1 :N+1) = 1/2∗ diag ( 1 . / r ) ∗D∗diag ( r ) ∗D;
110 A((N+1)+1:2∗(N+1) , (N+1)+1:2∗(N+1) ) = I ;
111

112 rhs ( 1 :N+1 , :) = 2∗hk/dt−hkm1/2/dt ;
113 rhs ( (N+1)+1:2∗(N+1) , : ) = 2∗ ones (N+1, 1)+Astar . / hk .^3 ;
114 % Boundary cond i t i on s
115 A(1 , 1 :N+1)=D( 1 , : ) ;

38



116 A(1 , (N+1)+1:2∗(N+1) )=ze ro s (1 ,N+1) ;
117

118 A(N+1 ,1:N+1)= [ z e ro s (1 ,N) 1 ] ;
119 A(N+1 ,(N+1)+1:2∗(N+1) )= ze ro s (1 ,N+1) ;
120

121 A((N+1)+1 ,1:N+1)= ze ro s (1 ,N+1) ;
122 A((N+1)+1 ,(N+1)+1:2∗(N+1) )= D( 1 , : ) ;
123

124 A(2∗ (N+1) , 1 :N+1)=ze ro s (1 ,N+1) ;
125 A(2∗ (N+1) , (N+1)+1:2∗(N+1) )=[ z e ro s (1 ,N) 1 ] ;
126

127 rhs (1 ) =0;
128 rhs (N+1)=(−Vapp+2/dt∗hk ( end ) −1/2/dt∗hkm1(N+1) ) ∗(2∗ dt ) /3 ;
129

130 rhs (N+1+1)=0;
131 rhs ( end )=0;
132

133 Sol=r e a l (A\ rhs ) ;
134 hkp=Sol ( 1 :N+1) ;
135 Pkp=Sol (N+1+1:2∗(N+1) ) ;
136

137 i f mod(k , 1 0 ) == 2 %only i f number k p e r f e c t l y d i v i s i b l e by 10
138 k
139 min(hkp )
140 i = i +1;
141 PStore ( : , i )=Pkp ;
142 hStore ( : , i )=hkp ;
143 tS to r e ( i )=t ;
144 VappStore ( : , i )=Vapp ;
145 end
146

147 % i f min (hkp ) < 0.03
148 % dt=10^−4;
149 % end
150

151 i f min (hkp ) < 0.00001
152 outcome = 1 ; %’ coa l e s c ence ’
153 break
154 end
155

156 i f min (hkp ) > 1.1∗ h0min
157 outcome = 0 ;
158 break
159 end
160

161 i f abs (Vapp) /Vapp0 < 10^−2 && abs ( trapz ( r , 2∗ pi ∗ r .∗Pkp) ) < 10^−3
162 % f i r s t the V has to be zero but the cond i t i on i s not enough , a l s o the
163 % f i lm f o r c e ( Second term ) should be smal l enough
164 outcome=3; %’ steady−s ta te ’
165 break
166 end
167

168 % higher v e l o c i t y rebound g en e r a l l y and slow v e l o c i t i e s c oa l e s c en c e
169 hkm1=hk ; hk=hkp ; Pkm1=Pk ; Pk=Pkp ;
170 Vapp=Force_balance (Pk , r , dt , Vapp) ;
171 a s s i g n i n ( ’ base ’ , ’ hStore ’ , hStore ) ; %a s s i g n s th ing s in to the work space

d i r e c t l y
172 a s s i g n i n ( ’ base ’ , ’ PStore ’ , PStore ) ;
173

174 end
175
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176 i f saveswi tch == 1
177 f i l ename = s t r c a t ( ’Vapp0 Critical_n_115_Rp_ ’ , num2str (Rp) ) ;
178 f i l ename = s t r r ep ( f i l ename , ’ . ’ , ’ ’ ) ;
179 save ( [ da t e s t r (now , ’dd−mmm−yyyy−HH−MM−s s ’ ) f i l ename ] )
180 end
181 end

A.2 Force Balance

1 f unc t i on Vapp = Force_balance ( PStore , r , dt , Vapp)
2 g l oba l Rp sigma
3

4 %%%%%!!!!!Canberk : updating the va lue s f o r a i r−in−water system . Also
5 %%%%%ca l c u l a t e m in s t ead o f gue s s ing i t
6 % m = 0 . 1 ;
7 rho_c = 1000 ; %[ kg/m^3]
8 rho_d = 1 . 2 2 5 ;
9 mu_c = 0 . 0 0 1 ; %[ Pa∗ s ] v i s c o s i t y o f cont inuous phase

10 g=0;
11

12

13 m=4/3∗pi ∗Rp^3∗rho_d ; %mass o f the bubble without the added mass e f f e c t s
14 Cm = 0 . 8 0 3 ;
15 m_AD=4/3∗pi ∗Rp^3∗(rho_d+Cm∗rho_c ) ; %toge the r with the added mass
16 %%%%%!!!!!Canberk : make Oha2 a l s o a func t i on o f Rp
17 Oha2 = 8.2∗10^( −6) ; %
18 Oha2 = mu_c^2∗Rp^2/sigma/m_AD;
19 %%%%%!!!!!Canberk : In the Re c a l c u l a t i o n we should use Vapp in dimens iona l
20 %%%%%form . So Vapp ( d imens iona l )=Vapp( d imens i on l e s s ) ∗ sigma/mu_c
21 % Re = rho_c∗abs (Vapp/2) ∗(2∗Rp) /mu_c;
22 % co r r e c t one
23 Re = rho_c∗abs (Vapp/2) ∗(2∗Rp) /mu_c^2∗ sigma ;
24 Cd = 24∗Re^(−1)∗(1+0.15∗Re^(0 .687) ) ; % S c h i l l e r and Naumann (1933)
25

26

27 % ma = m∗(1+Cm∗rho_c/rho_d) ;
28 a=m/m_AD∗mu_c^2∗Rp/sigma ^2;
29 b=Cd∗Re∗ pi /4 ; % drag term c o e f f i c i e n t , s lows down due to the f r i c t i o n
30 vk1 = −Vapp/2 ;
31 vk2 = Vapp/2 ;
32

33 % 2∗ pi ∗ t rapz ( r , r .∗ PStore ) ∗Oha2 −−> f i lm f o r c e c r e a t e s huge r e s i s t a n c e and
34 % sometimes i t i s r e s p on s i b l e o f the rebound e f f e c t . Sometimes the Hamaker
35 % Constant can break t h i s r e s i s t a n c e and then we can have coa l e s c ence , i t i s
36 % a balance between f i lm f o r c e and hamaker whether we have rebound or
37 % coa l e s c en c e
38 vkp1 = ( a∗(1−rho_c/rho_d) ∗g−(−1)∗2∗ pi ∗ t rapz ( r , r .∗ PStore ) ∗Oha2−Oha2∗b∗vk1+vk1/dt )

/(1/ dt ) ;
39 % vkp2 = 0 ;
40 vkp2 = ( a∗(1−rho_c/rho_d) ∗g−2∗pi ∗ t rapz ( r , r .∗ PStore ) ∗Oha2−Oha2∗b∗vk2+vk2/dt ) /(1/

dt ) ;
41 %check which p a r t i c l e i s −1 in Canberk work ( the d i in the from o f the
42 %in t e r g a l )
43 Vapp = vkp2 − vkp1 ;
44

45 end
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