
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s
th

es
is

Imre Angelo

Implementation of an optimal
control solver for linear problems

Bachelor’s thesis in Mathematical Sciences
Supervisor: Markus Arthur Köbis
June 2023

Imre Angelo

Implementation of an optimal control
solver for linear problems

Bachelor’s thesis in Mathematical Sciences
Supervisor: Markus Arthur Köbis
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Optimal control theory is pivotal to many fields of science, engineering, and economics, as it
provides a mathematical framework to determine the control that optimizes a given measure over
time. This thesis details the development and analysis of a linear optimal control solver written
in C++/C. The solver was implemented using complete parameterization, a direct discretization
method for optimal control.

i

Abbreviations

ODE Ordinary Differential Equation
DAE Differential-Algebraic Equation
CVP Control Vector Parameterization
LP Linear Programming
NLP Non-Linear Programming
CPLEX The IBM ILOG CPLEX Optimizer
SIMD Single Instruction, Multiple Data

ii

Table of Contents

Abstract i

Abbreviations ii

1 Introduction 1

1.1 Outline of Thesis . 1

2 One Step Methods for Ordinary Differential Equations 2

2.1 Euler’s Method . 2

2.2 Runge-Kutta Methods . 3

3 Optimization with CPLEX 4

3.1 Definition . 4

3.2 Linear Programming . 4

3.3 CPLEX . 5

4 Optimal Control Theory 6

4.1 Definition . 6

4.2 Direct Discretization Methods . 7

4.2.1 Algorithm . 7

4.2.2 Complete Parameterization . 7

5 Implementation of Complete Parameterization in C++/C 9

5.1 CPLEX Concert Technology API for C++ . 10

5.2 Matrix Operations with Eigen3 . 11

5.3 Parameterization of the Ordinary Differential Equation 12

iii

6 Examples 13

6.1 Example 1 . 13

6.2 Example 2 . 14

6.3 Example 3 . 15

6.4 Example 4 . 16

7 Results 17

7.1 Accuracy . 18

7.1.1 Example 2 . 18

7.1.2 Example 3 . 19

7.1.3 Example 4 . 20

7.2 Performance . 22

7.2.1 Example 2 . 22

7.2.2 Example 3 . 23

7.2.3 Example 4 . 24

8 Summary 25

8.1 Future Work . 25

iv

Chapter 1

Introduction

Optimal control theory is the mathematical framework that allows us to control systems in the best
possible manner. It has seen widespread use in various disciplines including engineering, economics,
and computer science. This theory, developed in the mid-20th century, is now an essential tool
for determining the best possible performance of a control system, be it in guiding a spacecraft,
optimizing production in a factory, or predicting economic trends.

Most optimal control problems are not analytically solvable, or are at least very hard problems
to solve analytically, necessitating the use of numerical methods. While this thesis does explore
the basic theory of optimal control, there is a significant focus on the practical application of this
theory. Its epicenter is the development and analysis of a numerical solver for linear optimal control
problems, written in C++/C.

1.1 Outline of Thesis

As someone who started this project with little-to-no experience in applied mathematics, I wrote
this thesis with the assumption that potential readers might also lack a solid foundation in applied
mathematics. Note, however, that some parts, especially the implementation details of Chapter 5,
is intended for someone who wishes to extend or use the solver as a library, and might require some
degree of knowledge of low-level programming to fully comprehend. These parts can be skipped if
the reader is simply interested in the mathematics at play.

The thesis is therefore divided into two parts; the first part provides a high-level introduction to the
mathematical theory employed by the solver, while the sequel details the solver itself and presents
some numerical tests performed with and on the program.

Chapter 2 begins with a brief review of one-step methods, particularly the Runge-Kutta family of
one-step methods. Chapter 3 offers a simple introduction to optimization, and to the third-party
optimizer, CPLEX, that is used as the final step of the optimal control solver. Chapter 4 looks at
direct discretization methods of optimal control problems, and explains in detail one such method
called complete parameterization.

The second part of the thesis begins in Chapter 5 with a detailed description of the program
developed as part of this thesis. Chapter 6 introduces some example problems that we will use for
a series of numerical tests in Chapter 7. Finally, we summarize the thesis in Chapter 8 and discuss
some of the possible future directions for the solver.

1

Chapter 2

One Step Methods for Ordinary
Differential Equations

The dynamics of an optimal control problem is modelled by a set of equations, some of them
differential. Our ability to solve optimal control problems thus relies on our ability to solve ODE’s.
In this chapter we cover the standard approach to solving ODE’s of the form (2.1) numerically.

ẏ = f(t, y(t)), y(t0) = y0, t ∈ [t0, t1] (2.1)

2.1 Euler’s Method

Perhaps the simplest numerical technique used to approximate the solution to (2.1) is Euler’s
method. The method itself is given by the simple iteration (2.2) which results in a set of N
discrete approximations of the function y(t) at equidistant points tn separated by a distance of
h = (tend − t0)/N , called the step size, where t0 and tend denote the start and end of the interval.

yn+1 = yn + hf(tn, yn) (2.2)

Euler’s method can be derived directly from the first order Taylor polynomial. This derivation
also gives the error bound on each iteration of the method, called the local truncation error,
since we know from analysis that the remainder of the n-th order Taylor expansion around t is
O((t− a)n+1) ≤ C · (t− a)n+1 for some constant C and fixed point a. If we use the notation that
tn = t0 + n · h and yn = y(tn), then choosing a = tn for the first order Taylor expansion around
tn + h gives us:

y(tn + h) = y(tn) + h ẏ(tn) +O(h2)

y(tn+1) = y(tn) + hf(tn, y(tn)) +O(h2)

yn+1 = yn + hf(tn, yn) +O(h2)

(2.3)

While Euler’s method is straightforward and computationally cheap, it only takes into account the
slope at the starting point of each interval and might therefore require a very small step size to
achieve an acceptable accuracy. This is where Runge-Kutta methods come in.

2

2.2 Runge-Kutta Methods

One-step methods (2.4) extend the basic idea introduced by Euler’s method, where each step is
approximated only by the previous step. They provide more accurate approximations by incorpor-
ating additional information within each step, while still being computationally cheap.

yn+1 = yn +Φ(tn, yn, h) (2.4)

Runge-Kutta methods have long been established as the standard family of one-step methods.
This family sets the increment function Φ(·) to be the weighted sum of s intermediate steps ki,
each of the form (2.5).

ki = f(xn + cih, yn + h

s∑
j=1

ai,jkj) (2.5)

yn+1 = yn + h

s∑
i=1

biki (2.6)

The coefficients are often presented in a concise table called a Buthcer tableau or table. The number
of intermediate steps ki determines the order s of the table. This is not to be confused with the
order of the method represented by the table. If the local truncation error of a Runge-Kutta
method is O(hn+1) for sufficiently smooth problems, the method is of order n.

c1 a1,1 a1,2 . . . a1,s
c2 a2,1 a2,2 . . . a2,s
...

...
...

. . .
...

cs as,1 as,2 . . . as,s
b1 b2 . . . bs

Table 2.1: Butcher Table

Different methods use very different strategies for determining the coefficients. One approach
might be to find the coefficients that minimize the local truncation error of the method for a very
specific class of ODEs, while another approach could be to design methods that conserve certain
properties of the system being modeled. There are books and research papers devoted solely to
the derivation of these coefficients, and for a more rigorous and in-depth introduction to this topic
the reader is referred to [3].

Runge-Kutta methods can be explicit or implicit. Explicit methods are computationally efficient,
as each stage ki depends only on the previous stages. This also means explicit methods correspond
to Butcher tables with all non-zero entries ai,j below the diagonal. In implicit methods the stages
are interdependent, leading to a system of equations to be solved at each step. These methods
offer more stability and are better suited for stiff differential equations, which are loosely defined
as equations that lead to rapid variation in the solution and thus numerical instability with the
use of explicit methods.

3

Chapter 3

Optimization with CPLEX

Optimal control is an extension of optimization, the process of maximizing or minimizing a given
function. The purpose of this chapter is not to provide a thorough overview of optimization, for
that the reader is referred to [4], but rather to introduce some terminology that will be useful
when we begin looking at optimal control theory. We also introduce the CPLEX optimizer, which
is used by the linear optimal control solver.

3.1 Definition

We want to choose a point x, called a decision variable, that minimizes some objective function
J(x). Constrained optimization deals with problems where x must satisfy a set of equality and
inequality constraints. The typical constrained optimization problem therefore looks like:

min
x

J(x)

subject to g(x) ≤ 0

h(x) = 0

(3.1)

The exact algorithm or optimizer used to solve a specific optimization problem depends on the
characteristics of the problem; whether it is constrained or unconstrained, linear or non-linear and
so on.

3.2 Linear Programming

Linear programming (LP) is a method for solving optimization problems where the objective
function and constraints are all linear. Problems of this form are called linear programs, and are
generally formulated as:

min
x

c⊤x

s.t. Ax ≤ b,

x ≥ 0,

(3.2)

LP has some very desirable qualities. If a feasible and bounded solution exists, LP guarantees that
an optimal solution can be found. Additionally, existing algorithms are well-developed, highly effi-
cient and very capable of handling large-scale problems. In fact, LP is so desirable that a common
approach to non-linear optimization is linearization, where non-linear problems are approximated
by linear problems.

4

3.3 CPLEX

This thesis is primarily focused on the implementation of an optimal control solver, not an optim-
ization solver. Yet, as we shall see in the next chapter, we will be required to solve an optimization
problem as a necessary subroutine in the optimal control solving routine, or program. For this
purpose we will be using a third party optimizer, namely the IBM ILOG CPLEX Optimizer, or
CPLEX for short.

CPLEX provides a suite of optimization algorithms for linear, mixed-integer and quadratic pro-
gramming. By default, CPLEX will automatically choose an appropriate algorithm from this suite.
We are not particularly interested in which algorithm is used, instead we treat CPLEX like a black
box and concern ourselves only with the input and the output of the optimizer. As long as we are
able to feed a valid optimization problem into CPLEX, we will assume the output is correct.

5

Chapter 4

Optimal Control Theory

Where optimization was concerned with finding a point where some objective function is minimized,
or maximized, optimal control theory is concerned with the same for functions of time. In this
chapter we will look at direct discretization methods for optimal control, and one such method in
particular called complete parameterization.

4.1 Definition

We wish to minimize some objective function which represents a certain cost over time. The
objective is determined by control variables, which can be manipulated to influence the system’s
behavior, and state variables, which represent the system’s current condition. The goal is then to
find the control u(t) with the lowest cost. The dynamics of the system, how it evolves over time,
is described by a set of differential and algebraic constraints.

min
u(t)

tend∫
t0

I(t, y, u) dt +K(t, y, u)

s.t. 0 = F (t, y(t), ẏ(t), u(t), f(t))

0 ≤ H(t, y(t), u(t), h(t))

lbu(t) ≤ u(t) ≤ ubu(t)

lby(t) ≤ y(t) ≤ uby(t)

(4.1)

The objective usually consist of the definite integral of some function I(·) over the time horizon
[t0, tend], as well as some non-integral term K(·) to penalize the final state of the system. Perhaps
we are modelling the flight path of a commercial airliner, and we wish to minimize transit times
while using as little fuel as possible. The control u(t) might represent the engine throttle, while
the state represents the remaining distance y1(t) and fuel y2(t). We could then let I(·) = y1(t) and
K(·) = −y2(tend) to incentivize high speeds and lower fuel consumption.

6

4.2 Direct Discretization Methods

There are two approaches to optimal control: direct methods and indirect methods. The latter
transforms the problem into a different problem type, often a multi-point boundary value problem,
which is then discretized and solved numerically. Direct methods discretize the optimal control
problem itself, hence the name. The result of this discretization is a finite-dimensional optimization
problem which can be solved numerically by standard optimization algorithms.

All direct methods work on the grid GN , where N denotes the number of intervals in the grid.
Although not a requirement, the grid is often an equidistant partition of the time horizon [t0, tend]
with step size h = (tend − t0)/N .

GN = {t0 < t1 < · · · < tN−1 = tend} (4.2)

4.2.1 Algorithm

Direct methods can generally be characterized by the following steps, which can be carried out in
any order. The optimization step, however, typically depends on some of the other steps.

• Control Discretization
The control is approximated by a function of M parameters, where M is finite and is typically
a function of N .

• State Discretization
The ODE is discretized by a suitable scheme, such as a one-step method, on the grid GN .

• Constraint Discretization
The objective function and the algebraic constraints are only evaluated on the grid GN .

• Calculation of Gradients
This step involves the computing of any derivatives required by the optimizer, if there are
any. Not all optimization methods require any gradients or Jacobian matrices, so this step is
not always present. For instance, when the optimal control problem is linear, the resulting
optimization problem becomes a linear program and no additional values are required.

• Optimization
Finally, we have a NLP problem that must be solved numerically by some optimizer. In the
case that the optimal control problem has a linear objective function and linear constraints,
the resulting problem is formulated as a linear program and can be solved with LP instead.

4.2.2 Complete Parameterization

In complete parameterization, also called full discretization, both the control and state variables
are parameterized, meaning approximated by a function of a finite number of parameters. For com-
parison, another common direct method called control vector parameterization (CVP), also known
as reduced discretization, only parameterizes the control. By using more parameters, complete
parameterization is computationally more expensive but also more robust than CVP.

We begin the complete parameterization approach by creating two vectors y and u to hold the
parameters, where y holds N parameters and u holds M parameters. Each parameter yn and un

is a vector of the same size as y(t) and u(t), respectively. The exact relationship between N and
M depends on the discretization schemes being used. For instance, when using a one-step method
for the state discretization it is natural to let M = N − 1, since each control input un is used to
drive the system from a state yn to the next state yn+1.

y = (y1, y2, . . . , yN), u = (u1, u2, . . . , uM) (4.3)

7

When discretizing the state ODE, the key principle is that each discrete point of the solution y(t)
is a function of the parameters u and y. Then the discrete points cannot be evaluated, but instead
act as constraints on the parameters. Using Euler’s method as an example, each iteration yields a
constraint on yn+1, yn and un:

yn+1 = yn + h · f(tn, yn, un) (4.4)

The evaluations of the algebraic constraints and objective on the grid also places similar constraints
on the parameters. The result is a discrete optimization problem where the decision variables are
the parameters u and y. Given that a solution exists, the optimization step will assign values to the
previously unknown parameters according to (4.5). In other words, the parameters have become
discrete approximations for u(t) and y(t) on the grid GN .

yn ≈ y(tn), um ≈ u(tm) (4.5)

Still, the parameters are only discrete approximations, and we might wish to return a continuous
function. All that remains, then, is to construct the actual approximations of u(t) and y(t) from the
parameters u and y. The two obvious approaches is to either interpolate between the parameters,
or approximate u(t) as a piece-wise constant function. In practice, we often simply return the
parameter values, and leave the construction of the approximations to the user.

8

Chapter 5

Implementation of Complete
Parameterization in C++/C

A major part of this project was developing a linear optimal control solver in C++/C. This section
will detail some of the specifics of the program and the choices made during development. The
program, whose code is open-source on GitHub [1], uses complete parameterization, and IBM’s
CPLEX as the optimizer, to solve problems of the following form:

min
u(t),y(t)

tend∫
t0

e−φ·t ·Φ⊤
1 · y(t) dt +Φ⊤

2 y(t0) +Φ⊤
3 y(tend) (5.1)

s.t. ẏ(t) = Fu · u(t) + Fy · y(t) + Fc (5.2)

g(t) = Gu · u(t) +Gy · y(t) +Gc (5.3)

lb ≤ u(t) ≤ ub (5.4)

0 ≤ y(t) (5.5)

h(t) ≤ Hu · u(t) +Hy · y(t) (5.6)

b = B0 · y(t0) +Bend · y(tend) (5.7)

Let m be the number of dimensions of the state y(t) and control u(t). Then F(·), G(·) and H(·)
are m×m matrices whose elements are functions of time. The control is bounded element-wise by
two constant vectors lb and ub, while the state is only required to be non-negative. We have split
the DAE of (4.1) into a differential equation (5.2) and a set of algebraic equations, one equality
equation (5.3) and one inequality equation (5.6). Finally, there are some boundary conditions for
the start and end states.

We chose to focus on linear problems as a first step. As mention earlier, it is not uncommon to
approximate non-linear systems by linear models, and as we move forward the idea is to solve
non-linear problems by linearization. The interface (5.1) was inspired by real models used in the
field of biology. One such model will be investigated closer as example 3 in the next chapter.

With the hope of creating a tool with real world applications, the program was developed as a
standalone library to allow easy integration with other applications. Initially, I wanted a python
binding to leverage the ease-of-use and immense popularity of python, but since the focus of this
thesis was the mathematics, not a programming exercise, little time was allocated for designing
the application for portability. For the time being, the solver is integrated into the visualization
software made specifically for Chapter 7.

9

I chose to write the solver in C++/C due in part to the sheer speed of the language. Even
simple optimal control problems can reach thousands of constraints. In fact, its not uncommon for
real world applications to be modelled using millions of variables. Even the smallest inefficiency
in determining a single variable could propagate to all other variables, massively amplifying the
inefficiency.

The actual program uses the algorithm for direct methods described in Chapter 4, with no gradient
step since we only care about linear problems. The integral of the objective is evaluated on the
grid by using the trapezium rule. The state discretization takes a Butcher table as an argument
and uses the corresponding Runge-Kutta method. The solver returns only the parameters u and
y, and the visualization software approximates u(t) and y(t) by linear interpolation.

5.1 CPLEX Concert Technology API for C++

The library developed as part of this thesis uses CPLEX, the optimization solver introduced in
Chapter 3, to solve the linear program created as part of the complete parameterization method.
This section will briefly explain how CPLEX is used, as well as a particular quirk of the C++ API.

In C++/C we have two choices for interfacing with CPLEX. The first is the ’C callable library’
which exposes a procedural API written in C. Like many C libraries, this API offers very fine
control of the program at the cost of manual error handling and memory management. The other
option is Concert Technology, or Concert for short, which wraps the C API in object oriented
C++ objects. Concert handles errors and memory automatically, so long as we remember to call a
special IloEnv::end() function when we are done. For these reasons I chose Concert for this project.

The basic usage of Concert looks like this: We create an environment (IloEnv) which is responsible
for managing our memory. All other Concert objects, identified by their ”Ilo” prefix, are created
inside of this environment. We then create a model (IloModel) to hold our constraints. When we
create our decision variables (IloNumVar), we must give them an upper and lower bound. If we
want an unbounded decision variable, the bounds can be set to the maximum value supported by
the computer. We also need to add an objective to our model. When we are ready to solve the
model, we create an IloCplex object from the model and use the function IloCplex::solve() before
finally extracting the results.

1 IloEnv env;

2 IloModel model(env);

3

4 // Make decision variables (with arbitrary bounds lb, ub)

5 IloNumVar a(env, a_lb, a_ub);

6 IloNumVar b(env, b_lb, b_ub);

7

8 // Add a constraint

9 model.add(a == 2*b);

10

11 // Set objective to min(a + b)

12 model.add(env, IloMinimize(a + b));

13

14 // Solve the model with CPLEX

15 IloCplex cplex(model);

16 cplex.solve();

17

18 // Extract results

19 float aVal = cplex.getValue(a);

20 float bVal = cplex.getValue(b);

21

22 // Free memory

23 env.end();

10

Using Ilo-prefixed objects in any mathematical expression will yield an IloNumExpr object. This
class allows for the construction of more complex constraints, and is therefore heavily utilized
by the program. All classes from the Concert API act like reference types, meaning they hold
references to other IloNumExpr objects.

Exactly how this is implemented is unclear, as Concert is not open-source, it is clear. What is
clear, however, is that when an expression is updated it must be resolved to some canonical form.
When numerical expressions contain other numerical expressions, this resolution must propagate
to every IloNumExpr that indirectly references or is referenced by any of the affected IloNumExpr.

This reference structure allows for the easy construction intermediate steps, especially when using
implicit Runge-Kutta methods, as described in more detail in the next section. However, any
developer who wishes to extend the program should note that the resolution described above is
slow and some care should be taken to avoid unnecessary references.1 The important takeaway is
that Concert is easy to use from a mathematical perspective, at the cost of being somewhat slow
and difficult to predict the behaviour of in certain edge cases.

Furthermore, IloNumExpr objects must be initialized at declaration, and they must be initialized
with at least one reference to another Concert object. Once an IloNumExpr is linked to another
object, this reference cannot be reassigned or removed. This is very inconvenient when constructing
complex expressions, so I develop the following workaround which uses an empty decision variable
to create an expression that evaluates to 0. The decision variable is unused and therefore ignored
by CPLEX when solving the model.

1 IloNumVar z(env, 0, 0);

2 IloNumExpr zero = z - z;

5.2 Matrix Operations with Eigen3

I wanted to use the Eigen3 math library for vector and matrix operations, because Eigen3 is
an extremely fast linear algebra library. Most of the speed is achieved by taking advantage of
single instruction, multiple data (SIMD) instructions. Using these instruction is very cumbersome,
as every computer architecture has its own specific implementation, and implementing SIMD is
therefore generally left to specialized math libraries.

Most processors implement instruction sets that allow performing basic arithmetic on multiple
variables simultaneously, with no performance loss. In a process called vectorization, several scalars
are packed into a single, large register. Modern home computers typically allow packing up to eight
or even sixteen 32-bit scalars into a single 256-bit or 512-bit register. This allows the same operation
to be performed on all the packed scalars at the same time, facilitating a theoretical 8-16 times
improvement for supported operations, though in practice there is some overhead associated with
the packing and unpacking of the values.

SIMD requires the use of primitive data types, such as integers or floating-point numbers. We
perform arithmetic directly on classes from Concert, and are therefore not taking advantage of
SIMD. This could be implemented in the future, but as Concert enforces an object-oriented design,
this would likely require a change to the procedural C callable API. It is safe to assume this is
possible with the C API, since, by the nature of being written in C, this library can only use
primitives.

1It falls outside the scope of this thesis, but the Runge-Kutta method was originally written to be branchless, a
coding style that should, in this case, allow for a specific compiler optimization to improve the speed of the code.
However, the penalty of propagating 0-valued expressions (zero) to all other IloNumExpr objects far outweighed the
penalty of branch-prediction misses. Using an if statement to skip such expressions more than doubled the speed of
the code.

11

5.3 Parameterization of the Ordinary Differential Equation

Except for the state discretization, the solver is a fairly straight-forward implementation of the
algorithm described in Chapter 4. The code is documented by comments and a ”readme” file,
but the state discretization might benefit from a deeper explanation. The state is discretized by
a one-step method; specifically, the interface is designed to take a Butcher table as an argument.
Note that the code uses 0-index notation, so we will do the same in this section.

With respect to the equidistant grid GN, we use N parameters for y(t) and M = N −1 parameters
for u(t). Let s be order of the given butcher table, and m the number of dimensions of u(t) and
y(t). First we initialize an ”empty” s ×m matrix k of numerical expressions, where the i-th row
of k represents the vector ki.

1 Matrix<IloNumExpr> k(s, m);

2 for (auto i = 0; i < s; i++)

3 for(auto j = 0; j < m; j++)

4 k(i,j) = zero;

We construct each ki sequentially, of which the most complicated part is the creation of the sum∑s−1
j=0 ai,jkj . The reference structure of IloNumExpr discussed in the previous section means that

we can simply use kj in the construction of ki, even when i < j. In this case, kj is zero at the time
of construction, but any changes to the value of kj will propagate to ki.

The following code creates the sum
∑s−1

j=0 ai,jkj . Note that the rest of ki is created in the same
iteration of i, but this construction is very straight forward and thus excluded to make the code
more readable and concise.

1 for (auto i = 0; i < s; i++)

2 {

3 Matrix<IloNumExpr> sum(s, 1);

4

5 for (auto j = 0; j < s; j++)

6 {

7 IloNumExpr expr = zero;

8

9 for (auto ii = 0; ii < s; ii++)

10 if(table.a[i][ii])

11 expr = expr + table.a[i][ii] * k(ii, j);

12

13 sum(j) = expr;

14 }

15 // Construct k_i here and set the i-th row of k equal to that

16 }

Once we have constructed all intermediate values ki, we add the constraints to our model. This
whole process is repeated N − 1 times, until all the parameters are included in some constraint.

1 for (auto j = 0; j < m; j++)

2 {

3 IloNumExpr biki = zero;

4

5 for (auto i = 0; i < table.order; i++)

6 biki = biki + k(i, j) * table.b[i];

7

8 // Add constraint

9 model.add(y(j, n + 1) == y(j, n) + biki);

10 }

12

Chapter 6

Examples

This section will introduce some example optimal control problems and their solutions. These
problems will be used in Chapter 7 to evaluate various aspects of the solver.

6.1 Example 1

The first problem was chosen to be as simple as possible, without being entirely trivial. The model
is simple enough that we can predict the expected output of the program.

min
u(t),y(t)

2∫
0

y(t) dt

s.t. ẏ = −u(t)

0 ≤ u ≤ 1

0 ≤ y

y(0) = 1

(6.1)

The control is proportional to the rate of change of the current state of the system. Perhaps the
control is the thrust of a rocket engine, and the state is the remaining fuel. In that case, we can
power the rocket by spending fuel. Our goal would then be to use all the fuel as fast as possible,
as we want to minimize the definite integral of the state, so we expect the control to be at full
capacity until the state is drained and the control ”switches off” instantly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

t

u(t)

y(t)

13

6.2 Example 2

The second example is only a slight complication of the previous example. We add a constant term
α · t and a state term β · y(t) to the differential equation. Although we do not have an analytic
solution to this problem, the model is still simple enough that we can ”predict” the solution and
verify if a given solution makes sense.

min
u(t),y(t)

3∫
0

y(t) dt

s.t. ẏ = α · t+ β · y(t)− u(t)

0 ≤ u ≤ 1

0 ≤ y

y(0) = 1

(6.2)

The following solution to the problem with α = 0.1 and β = 0.7 was found by the solver. We
expect the control to sustain its maximum output until the state reaches 0, at which point the
control must counteract the constant term 0.1 · t of the system to maintain the current state.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

t

u(t)

y(t)

As expected, the state falls to 0 as fast as possible, before the control acts to sustain the current
state. The curvature of the state is a result of the differential term β ·y(t) that dictates the system
will grow with strength proportional to y(t). If β was negative, for example if we let β = −0.7,
the system would resist growth instead, and the graph would curve in the other direction, as well
as reach the zero-state sooner:

0 0.5 1 1.5 2 2.5 3
0

0.5

1

t

u(t)

y(t)

14

6.3 Example 3

The next example is inspired by the field of biology, and models a microbe. The first state variable
y1(t) represents nutrients available to the microbe. The microbe is able to control the intake of
nutrients with u(t). The nutrients consumed are converted into mass y2(t) that the microbe wants
to maximize as fast as possible. Once the available nutrients are consumed, the microbe rests.
Since nature has been running its own optimization algorithm for millions of years, we expect the
microbe to find the optimal solution.

min
u(t),y(t)

1∫
0

−e−t · y2(t) dt

s.t. ẏ1 = −u1

ẏ2 = u2

0 ≤ u1, u2 ≤ 10

0 ≤ y1, y2

0 = u1 − α · u2

0 ≤ y2 −
1

k1
· u1 +

1

k1
· u2

y0(0), y1(0) = 1

(6.3)

The optimal solution would be for the microbe to eat all the available nutrients as fast as possible.
This is also what we see in the following graphs produced with α = 5, k1 = 2, k2 = 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

t

u1(t)

y1(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

t

u2(t)

y2(t)

15

6.4 Example 4

Though we focus on linear problems, CPLEX is also capable of quadratic programming. For this
example, the interface was modified to handle problems where the objective is quadratic, more
specifically the integral of Φ⊤

1 · y(t)2 +Φ⊤
2 · u(t)2. Nothing else was changed. The modified code

is available in a separate branch in the git repo [1].

min
u(t),y(t)

1∫
0

y(t)2 +
1

2
u(t)2 dt

s.t. ẏ =
1

2
y(t) + u(t)

y(0) = 1

(6.4)

A problem with a known analytical solution was chosen so that we may compare the program
against a verified solution. We know from Gerdts [2], page 147, that the exact solution is (6.5).

y(t) =
2 exp(3t) + exp(3)

exp(3t/2)(2 + exp(3))
, u(t) =

2(exp(3t)− exp(3))

exp(3t/2)(2 + exp(3))
(6.5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

t

u(t)

y(t)

16

Chapter 7

Results

Having introduced the solver and some example problems, we are now ready to use the examples
in a series of tests. We will consider two main areas: accuracy and efficiency.

A selection of four different Runge-Kutta methods were chosen for all the tests: Euler’s method,
implicit Euler’s method, Heun’s second order method, and the classic fourth order method, denoted
RK4. These methods were chosen to represent a broad selection of Runge-Kutta methods, as we
have both explicit and implicit methods, as well as first, second and fourth order methods.

0 0
1

Table 7.1: Euler’s Method

1 1
1

Table 7.2: Implicit Euler’s Method

0
1 1

1/2 1/2

Table 7.3: Heun’s Method

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 7.4: RK4

The tests investigate accuracy and performance as a function of the one-step method used, as well
as the number of parameters used in the optimization step. Since the number of parameters is
determined by the number of steps N in the one-step method, where y has N parameters and u
has N − 1 parameters for a total of 2N − 1 parameters per dimension. Example 3 is the only
two-dimensional problem, and as such we will cut the maximum number of steps in half to ensure
we are testing with an equal number of parameters. The tests were all performed as close to,
without exceeding, 1000 parameters as possible.1

Furthermore, the first example is so simple that there are essentially no interesting results to show.
In fact, example 1 is just a special case of example 2, in particular when α = β = 0. We shall
therefore refrain from any further discussions of example 1.

1This means 500 steps or 999 parameters for the one-dimensional cases, and 250 steps or 998 parameters for the
two-dimensional case.

17

7.1 Accuracy

We know how the choice of one-step method generally impacts the accuracy of an ODE, and want
to test how this translates to our solver. Measuring the accuracy of example 4 is trivial, since we
know the analytical solutions. For examples 2 and 3, however, we will assume the solver is correct
at low enough step sizes and calculate a very high resolution solution to compare against.

Instead of comparing the local truncation error, we will measure the difference in the final objective
value, which is more an indication of the global truncation error. I felt this was a more interesting
comparison since the goal of optimal control is to minimize the objective, so a small difference in
the evaluated objective indicates the found solutions are almost equally good, even if the output
is very different.

7.1.1 Example 2

As the number of steps grows, the absolute difference between the one-step methods grows very
small. Since we are more concerned with the order of the error, the errors are plotted on a
logarithmic scale.

0 50 100 150 200 250 300 350 400 450 500

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Steps

T
ot
a
lE

rr
or

Euler
Implicit Euler

Heun
Classic RK4

Figure 7.1: Total Error in Example 2

Unsurprisingly, the higher order methods produced better approximations, as is the case with
regular ODEs. The variation in the total error fluctuated greatly between number of steps, for
instance the error was nearly twice as much when using 300 steps when compared to using only
290 steps, but the graph shows clearly that all of the methods tested have an upper bound on the
total error that decreases as the number of steps increase. However, this error probably does not
converge to 0.

18

The difference between the higher order methods was smaller than I expected, with the second
order method occasionally, but very rarely, outperforming the fourth order method. Still, its worth
noting that the variation is only large in relative terms, and very small in absolute terms. At the
same time, the difference between the first order methods and the higher order methods was larger
than I anticipated, especially as the number of steps grew. Even at 250 steps the first order
methods could not produce results as accurate as only 10 steps of the second order method, as
shown in the below table.

Method 10 steps 250 steps
Euler’s 9.1889123e-02 9.3130914e-03
Backward Euler 2.1038588e-01 2.0024691e-02
Heun’s 2nd 7.0283198e-03 1.5279249e-05
Classic RK4 2.1967056e-03 4.9357457e-06

Table 7.5: Objective Error at 10 and 250 steps

7.1.2 Example 3

The choice of one-step method had no impact on example 3; the accuracy was only a function of
the number of steps used. The accuracy still seems to be proportional to the number of steps,
decreasing as the step-size decreases. This is likely a consequence of the state y(t) being linear,
meaning that Euler’s method already is as accurate as possible at any given step-size.

Steps Error (Example 3)
10 0.045359104
20 0.021163834
30 0.013364563
40 0.0095477565
50 0.0072515475
60 0.0057245166
70 0.0046481000
80 0.0038354421
90 0.0032026838
100 0.0027027758
110 0.0022906928
120 0.0019463652
130 0.0016587084
140 0.0014102166
150 0.0011940376
160 0.0010073758
170 0.00084136088
180 0.00069309382
190 0.00056226215
200 0.00044356512

Figure 7.2: Objective Error for all One-Step Methods in Example 3

19

7.1.3 Example 4

In the previous example, we assumed the objective approached the smallest possible value as the
number of steps used in the state discretization increased. While we can verify visually that the
approximations produced by the solver seem correct, we are yet to test the error of the high
resolution approximation. This changes with example 4, since we know the analytic solution to
this problem.

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

t

u

u(t)

Figure 7.3: Control Approximation
(500 steps)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

t

y

y(t)

Figure 7.4: State Approximation
(500 steps)

The approximations are mostly correct, with the notable exception of u0 which exhibits a strange
behaviour where the error grows with the number of steps. The error seems to converge to
1.728328996, which happens to be the same magnitude as the true value |u(0)|. In other words, it
seems the limit lim

n→∞
u0 = 2 · u(0). This happens regardless of what one-step method is used. The

following graphs show this behaviour by measuring the error in max-norm, which for u always was
|u0 − u(0)|.

0 100 200 300 400 500

1

1.2

1.4

1.6

Steps

M
a
x
E
rr
or

|u− u(t)|∞

Figure 7.5: Control Error in Max Norm

0 100 200 300 400 500
0

5 · 10−2

0.1

Steps

M
a
x
E
rr
or

|y − y(t)|∞

Figure 7.6: State Error in Max Norm

20

Unsure of the cause of this behaviour, I ran some more tests, starting by simply taking a closer
look at approximations produced at high step-sizes. This did, however, not yield any results.

0 0.2 0.4 0.6 0.8 1

−2

−1

0

Steps

M
a
x
E
rr
or

u(t)
u

Figure 7.7: Control Approximation
(6 steps)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Steps

M
a
x
E
rr
or

y(t)
y

Figure 7.8: State Approximation
(6 steps)

All I found was that the unexpected behaviour goes away if we add the boundary condition that
u0 = u(0) ≈ −1.728328996. This also causes the max error of y to decrease as we get a better
approximation of the trajectory at u(0), limiting the undershoot shown in Figure 7.8.

0 100 200 300 400 500
0

0.1

0.2

Steps

M
a
x
E
rr
or

|u− u(t)|∞

Figure 7.9: Control Error in Max Norm
(Adjusted u0)

0 100 200 300 400 500
0

5 · 10−2

0.1

Steps

M
a
x
E
rr
or

|y − y(t)|∞

Figure 7.10: State Error in Max Norm
(Adjusted u0)

At this point, the extra tests have proved inconclusive in determining whether the behaviour
exhibited by example 4 is caused by a bug in the program, or is inherent in the algorithm used
by CPLEX to solve quadratic problems. Still, the rest of the approximations are fairly accurate
at all step sizes, and the large error of u0 seems to have a negligible effect on the rest of the
approximation when the step-size is very small, which boosts the confidence in the correctness of
the solver in the linear case.

21

7.2 Performance

As mentioned in Chapter 5, performance is extremely important for this application due to the
iterative nature of the discretizations. Any inefficiency introduced at a single step could propagate
into potentially millions of steps. This section explores how the chosen one-step methods com-
pared with respect to the time spent discretizing the state ODE. Since the most computationally
expensive steps are the state discretization and the optimization, we will also compare the run
time of each method to that of CPLEX, as well as the other one-step methods.

The accuracy tests in the previous example are deterministic; they will always return the same
result. This is not the case with the following timing tests, since the execution time of any
program is dependent on the processing power available at run time. Modern home computers are
not controlled environments in the sense that thousands of background tasks cause the available
processing power to fluctuate between runs. We are more interested in trends, and will therefore
plot only the tests where N is a multiple of 20. This helps smooth out the graphs and makes them
easier to read.

7.2.1 Example 2

0 50 100 150 200 250 300 350 400 450

0

0.5

1

1.5

2

2.5

Steps

T
im

e
(m

s)

Euler
Implicit Euler

Heun
Classic RK4
CPLEX

Figure 7.11: Time Spent Discretizing the State ODE and Optimizing for Example 2

My initial observation was that the performance of CPLEX, as well as all the one-step methods seem
to be proportional to the number of steps. It makes sense that the Runge-Kutta methods would
scale proportionally to the number of intermediate steps, which makes sense as their computational
complexity is O(n · ss), meaning the fourth order method is about 4 times slower than the first
order methods, and about twice as slow as the second order method. What was more interesting
to see was that the growth rate of CPLEX is less than that of RK4, with RK4 overtaking CPLEX
as the most expensive method in about 100 steps.

22

I observed that the time spent by any method could be almost twice as much when a test was
run multiple times, making the full graphs entirely undecipherable. For that reason I chose to plot
fewer tests, however, the graph for a full test suite is quite interesting when comparing a single
one-step method to the optimization step used in the same test. The following graph shows all
tests of the RK4 method, ran sequentially in order from N = 3 to N = 499.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

Steps

T
im

e
(m

s)

RK4
CPLEX

Figure 7.12: CPLEX compared to RK4 (same run)

The spikes in this graph that appear in both the one-step method and CPLEX during the same
test, are almost certainly a consequence of random background tasks running on my computer.
Perhaps the larger spikes that seem to appear at a regular interval are caused by a single, very
intensive task. What is more interesting to note, though, is how clearly we can see that both
CPLEX and the one-step method is bounded from below by some linear function.

7.2.2 Example 3

20 40 60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

Steps

T
im

e
(m

s)

Euler
Implicit Euler

Heun
RK4

CPLEX

Recall that the number of steps is cut in half for this example, to retain the maximum number
of parameters used. With that in mind, we once again see that both the one-step methods and
CPLEX grows linearly with the number of parameters, only at a slightly higher rate than before;
the higher rate likely caused by the fact that we are now using 2 × 2 matrices instead of scalars.
When combined with the observations from example 2, this starts to paint a picture that the
execution time of the full program seems to be linear for linear problems.

23

7.2.3 Example 4

I have mentioned in Chapter 3 that linear programming is very desirable, in part because of the
sheer efficiency of the long-established algorithms used for this class of problems. The following is
a great example of this. Since example 4 is quadratic in the objective, and thus cannot be solved
with LP, we expect an increase in the time spent by the optimizer.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

Steps

T
im

e
(m

s)

Euler
Implicit Euler

Heun
RK4

CPLEX

Figure 7.13: Execution Time of One-Step Methods and CPLEX for Example 4

I observe that the one-step methods behave as they did in earlier tests, while CPLEX performs
much worse, as expected. Another observation is that CPLEX still seems to scale linearly with
the number of parameters.

24

Chapter 8

Summary

The goal of this thesis was to develop an optimal control solver for linear problems, using complete
parameterization. This has largely been a success, with the solver being able to produce accurate
solutions in a reasonable time frame, even standing its ground when pushed outside the scope of
its design, such as by using a quadratic objective function.

In the process, we’ve seen that the performance of our linear problems were O(n), where n is
the number of parameters used. Assuming this trend continues as the number of steps increase,
we should be able to solve linear problems with a million parameters using RK4 in less than 10
seconds. That being said, there is still much room for improvement when it comes to performance,
both from a mathematical perspective as well as a computer programming perspective.

8.1 Future Work

Chapter 5 mentioned some possible code improvements, such as SIMD, that should improve the
performance of the program. Another programming-related improvement might be multi-threading
the one-step method. While one-step methods are not traditionally associated with parallel com-
puting, since each step is dependent on the value of the previous one, we are not limited in this
way with parameterization, since the steps are not evaluated but instead treated as constraints for
the discrete optimization problem.

We’ve also seen that execution time of the program as a whole is proportional to the number of
parameters. By not parameterizing the state variables at all, CVP could halve the number of
parameters used. This would come at the cost of robustness and accuracy at similar step-sizes,
but it remains to be seen if this speed makes up the loss of accuracy, and it would be interesting
to test first hand which approach can achieve the greatest accuracy in a given time-frame.

Many commercial Runge-Kutta methods also implement automatic step selection, where the step
size is adjusted based on an estimate of the local truncation error. Such methods might significantly
decrease the number of points in the grid GN , as we know is the case for regular ODEs.

While linear problems are powerful in their own right, most real world processes are best modelled
by non-linear systems. After seeing the performance impact of changing the objective from linear
to quadratic, we might consider linearization as the best approach to NLP. In that case, some
linearization method could be embedded into the solver as a translation layer from NLP to LP,
and no changes to the current code base would be necessary.

For the time being, the solver is coupled to the visualization software made specifically for this
thesis. The solver was designed as a library, meaning it is not dependent on any part of the
visualization software. Accordingly, decoupling the solver and turning into a standalone library
should be a trivial task for an experienced C++/C developer. The widespread popularity of Python
also makes a Python binding an attractive option for this solver.

25

Bibliography

[1] Imre Angelo. Linear Optimal Control. https://github.com/ImredeAngelo/LinearOptimalControl.
git repository. 2023. (Visited on 31st May 2023).

[2] Matthias Gerdts.Optimal Control of Ordinary Differential Equations and Differential-Algebraic
Equations. 2006.

[3] Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner. Solving Ordinary Differential Equa-
tions I: Nonstiff Problems. 2nd ed. Springer, 1993. doi: 10.1007/978-3-540-78862-1.

[4] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2nd ed. Springer, 2006. doi:
10.1007/978-0-387-40065-5.

26

https://github.com/ImredeAngelo/LinearOptimalControl
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-0-387-40065-5

	Abstract
	Abbreviations
	Introduction
	Outline of Thesis

	One Step Methods for Ordinary Differential Equations
	Euler's Method
	Runge-Kutta Methods

	Optimization with CPLEX
	Definition
	Linear Programming
	CPLEX

	Optimal Control Theory
	Definition
	Direct Discretization Methods
	Algorithm
	Complete Parameterization

	Implementation of Complete Parameterization in C++/C
	CPLEX Concert Technology API for C++
	Matrix Operations with Eigen3
	Parameterization of the Ordinary Differential Equation

	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Results
	Accuracy
	Example 2
	Example 3
	Example 4

	Performance
	Example 2
	Example 3
	Example 4

	Summary
	Future Work

