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Abstract

The research in this thesis centers on the image data interpretation capabili-
ties of autonomous underwater systems in the offshore oil and gas industry
responsible for visual inspection and monitoring of underwater pipelines and
detection of hazards on pipeline surfaces. The main contribution of research
is a framework that provides the solutions to overcome the vulnerabilities of
artificial intelligence methods during the underwater pipeline inspection by
autonomous underwater systems through applied safety engineering.

Increased autonomy in autonomous underwater systems require a greater
reliance on artificial intelligence technology for executing pipeline inspection
tasks. However, the artificial intelligence for pipeline inspection is limited by
several data interpretation challenges. The shortcomings of artificial intelli-
gence for autonomous systems during offshore pipeline hazard inspection can
result in catastrophic environmental damage and substantial financial losses for
the oil and gas industry. Imbalanced and underrepresented data can cause the
artificial intelligence methods, such as machine learning, anomaly detection,
and computer vision, to form biases in favor of more represented data with a
tendency to reproduce biases learned from data. Underrepresented data can be
disregarded as noise during anomaly detection due to their inclination toward
efficiency and sacrificing anomalies as tolerable collateral damage. Current
methods focus primarily on data content with no regard for the context behind
data, yielding conclusions primarily based on correlation and not causation,
further causing the occurrence of false alarms during anomaly detection that
are a significant drawback during real-time operations. Furthermore, the acute
lack of annotated training image data of offshore pipelines and lack of haz-
ard evidence in the data results in the reliance on inexplainable, unsupervised
methods. Therefore, one of the main contributions of this research is using
the methods for risk and hazard analysis to semi-supervise anomaly detection
methods and generate synthetic images of pipeline hazards for extrapolat-
ing and annotating the training data. Risk analysis aids anomaly detection
in identify the types of anomalies that are recognized as risks, by analyzing
low-probability, high-consequence event detection. Furthermore, due to the
acute disorganization of categorization and definition of anomalies in cur-
rent research, this research proposes a redefined anomaly categorization for
autonomous underwater systems operations based on hazard behavior and
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viii ▶ ABSTRACT

traditional anomaly classification. Finally, this research examines the complex
and connected properties of offshore pipeline inspections and offers future di-
rections in rethinking the artificial intelligence methods for pipeline inspection
with autonomous underwater systems. The general theme of this thesis lies in
risk-informed approaches to address the fundamental challenge of finding early
true anomalies and avoiding false alarms when no label exists to inform us of
the anomaly or its properties by giving context to anomaly detection methods
to comprehend data points not by their labels but by how they relate to one
another.
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CHAPTER 1

Introduction

A technological explosion and an ever-increasing demand for energy have
marked the 21st century. As one of the primary sources of global energy supply,
the oil and gas industry transports oil and gas products through vast networks
of subsea pipelines. In Norway, the first large pipelines were constructed in
the early 1970s, and since then, the Norwegian gas transport system has been
expanded to meet the nation’s growing energy demands resulting in approxi-
mately 8,800 kilometers of pipeline networks 1. The total length of the pipeline
networks is compared to the distance between Oslo in Norway and Bangkok in
Thailand1. Figure 1.1 shows the intricate network of pipelines that transport
gas and oil condensates on the Norwegian continental shelf. Unfortunately,
these pipelines are susceptible to environmental factors that can compromise
their integrity and further result in the environmental damage through oil and
gas product releases and loss of energy supplies to Europe. As a consequence,
maintaining and inspecting offshore structures has been one of the industry’s
greatest challenges. Initially, and for decades after that, operators such as main-
tenance and inspection engineers, divers, and operators of remotely operated
vehicles (ROVs) would travel to remote locations aboard vessels to perform
inspection and maintenance and ensure that offshore structures’ integrity re-
mains acceptable. However, such a difficult task can result in accidents that
harm personnel, the environment, or offshore installations. A continuous and
financially sustainable inspection system is a desirable solution for pipeline
inspection and monitoring to detect potential sources of harm, also known as
hazards2.

The oil and gas industry has actively developed and tested emerging tech-
nologies, from remotely operated to autonomous systems for inspecting remote
structures. Remotely operated systems, such as ROVs, eliminate the need to
send human operators and divers for inspection tasks. However, they are finan-
cially unsustainable, rely on humans to analyze a large amount of incoming data,
and do not use the capabilities of artificial intelligence (AI) that the industry
strives towards. Autonomous systems, which rely on AI, operate and make
decisions independently of human operators and are intended almost entirely
to replace human involvement in certain tasks 3, have already demonstrated

3



4 ▶ CHAP. 1 INTRODUCTION

great potential due to their capacity to collect and analyze vast amounts of data
rapidly and in real-time. AI is currently adept at learning patterns and making
quick predictions based on learned data but needs help grasping a task’s context
and understanding it reliably. This challenge is particularly evident in offshore
subsea pipeline inspection. The complexity of the subsea environment, the
number of properties influencing pipeline degradation, and the limitations
of sensors attached to underwater autonomous systems (UAS) are complex

FIGURE 1.1. Pipelines on the Norwegian continental shelf. Image property of
Norwegian Petroleum Directorate1
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networks of challenges that puzzle and intrigue research communities and
industries alike.

The Norwegian University of Science and Technology has developed the
Better Resource Utilization in the 21st Century (BRU21) innovation program on
digital and automation solutions for oil and gas in response to the growing
need for collaboration between research communities in academia and industry.
BRU21 is comprised of multiple research programs, one of which focuses on
new business and operational models that investigate the industry’s major
trends, such as the development and implementation of new technologies across
the oil and gas value chain. As a part of BRU21 New business and operational
models program, this thesis explores and proposes solutions to the challenges of
current AI methods employed in UAS for detecting and recognizing hazards,
as well as the means by which the context of risk and hazards can be brought
to the attention of autonomous systems and increase the potential for safer
remote operations.

In this thesis, the terms underwater autonomous system, unmanned au-
tonomous system, autonomous underwater drones or vehicles, are used in-
terchangeably and as research progressed. These terms refer to any type of
underwater vehicle (swimming, gliding, or crawling vehicles or drones) that
operate autonomously, update and exchange operation data by connecting to a
permanent system, i.e, subsea docking station or a designated vessel (described
in more detail in Chapter 2).

1.1 REMOTE, INTEGRATED OPERATIONS AND EMERGING TECHNOLOGIES

Major oil and gas companies that operate globally are pursuing safer and more
sustainable future operations enabled by information and communication tech-
nology, especially emerging technologies such as highly autonomous systems
and sensor networks formonitoring andmaintenance tasks 4. Long-established
annual and triennial ship-based monitoring programs for offshore operations
include environmental monitoring, sampling of seabed and water sediments,
and monitoring of offshore structures 4. However, technological advancements
have enabled flexible, sensor-based, and real-time monitoring of day-to-day
operations, such as inspections with ROVs attached to ships (see an ROV launch
from ship to the ocean in Figure 1.2).

Enabling advanced technologies necessitates a multidisciplinary approach,
requiring contributions from domains as diverse as sensor instrumentation,
field development, risk management, and organization development 4. The
incorporation of remote monitoring into day-to-day operations affords the
opportunity to act proactively - to take preventative measures and to respond
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promptly - and, as a result, to achieve safer operations by ensuring early detec-
tion of potential incident-causing hazards. In the oil and gas industry, the role
of technology and its interaction with people, process, and governance issues
has been described through a capability platform (illustrated in Figure 1.3)6.

A capability platform focuses onmeeting the capabilities of multiple parties
to create economic value through an efficient, adaptable design and network of
organizations and individuals who offer complementary goods and services 6.
Figure 1.3 illustrates layers and focus areas of a capability platform:

1. Business operations: Addressing the development and execution of work
processes and decision support.

FIGURE 1.2. ROV launch to the ocean. Image property of Oceaneering 5

FIGURE 1.3. Capability Platform, adapted from6
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2. Knowledge sharing and analysis: Enabling real-time processing, anal-
ysis and information updates for effective operations, including risk
management approaches.

3. Information and collaboration: Existence of safe and reliable communica-
tions infrastructure and safe transfer if sensor data is collected automati-
cally from facilities.

4. Intelligent infrastructure: Increase of automatic monitoring through sens-
ing capabilities, including emerging technology such as higher degree of
automation and sensing.

The inclusion of real-time monitoring programs for daily operations with
a flexible and robust design that is necessary for future systems is provided
by sensor technologies and platforms. Sensor technology includes any sensor
platforms from existing sources, stationary observatories, to emerging tech-
nologies with mobile systems (i.e, ROVs, underwater autonomous drones). A
direct implementation of a capability platform can be observed through the
implementation of UAS for continuous monitoring and inspection of offshore
structures (i.e., pipelines). UAS embraces the focus areas of a capability platform
by addressing the business needs and supplementing decision-making through
real-time data collection, analysis and information updates, along with risk
management capabilities for safe and reliable remote operations.

To support the need for higher automation and sensing technologies, the
oil and gas industry is continuously developing autonomous systems for re-
mote monitoring and inspections of offshore structures (see an example of
an autonomous drone inspecting a pipeline Figure 1.4). Recent years have
marked the immense development for autonomous systems along with the
development of permanent or semi-permanent seabed structures that allow
the autonomous systems to reside on the seabed and continuously monitor the
structures and the environment 7.

As the role of UAS becomes more permanent in industry, it becomes more
important to observe and define the relationships and interdependencies these
systems form with humans to ensure safe and reliable cooperation. This re-
lationship, known as human-machine teaming, establishes requirements for
operating autonomous systems, such as 8:

• A single task for an autonomous system should provide multiple options
for recovery and always allow humans to define an abstraction level for
the given task.

• An autonomous system’s autonomy should be modified on demand.



8 ▶ CHAP. 1 INTRODUCTION

• Autonomous systems must be adaptable and tolerant of graceful failure
to maintain their own and their surroundings’ safety.

Since the autonomous intervention component heavily relies on AI meth-
ods, it is essential that these methods comply with safety expectations and
regulations and are capable of enabling trustworthy, safe, and reliable opera-
tions with autonomous systems such as the UID system. Therefore, the leading
motivation of research in this thesis is exploring and addressing the challenges
that autonomous systems face due to safety concerns of AI approaches.

1.2 SAFETY AND REGULATIONS FOR AUTONOMOUS SYSTEMS AND AI

The vast opportunities to enhance safety and environmental sustainability that
autonomous systems and AI technologies provide make them highly desirable
in the industry and, therefore, develop at a rapid pace. However, as new tech-
nologies develop rapidly, they become susceptible to unintended shortcomings
and unknown obstacles9. These shortcomings require responsible lifecycle
planning and design to ensure the reliability and their safe implementation in
the industry, and thus ensure the safety of our environment 9. The European
Union Artificial Intelligence Act or EU AI Act 10 is expected to be followed by
industries that employ AI in their operations. The EU AI Act broadly divides
high-risk AI applications into two categories: physical and software-based
applications. Before the AI-based system is put to use, it is expected to be
subjected to strict conformity assessments to determine if the system meets
requirements of the EU AI Act. Some of the requirements include 10:

FIGURE 1.4. Autonomous drone inspecting a pipeline. Image is a property of
©Offshore Energy Magazine, 2020.
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• Establishment of a risk management system.

• Training, validation, and test data are subjected to adequate data gover-
nance and management practices.

• Ensuring the measures that guarantee human supervision of high-risk
AI systems.

The International Standard on Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety-Related Systems IEC 61508-1 11 provides
requirements to the design and use of these systems to perform safety functions
for conventional technologies, prohibiting the use of AI. However, in the auto-
motive industry, guidelines for AI-based autonomous systems are introduced
in SOTIF (ISO/PAS 21448)12 to ensure safety of autonomous driving. Future
functional safety assurance may rely on integrating condition monitoring sys-
tems with AI components, such autonomous drones, despite the fact that this
is not currently accepted.

Functional safety, as described by ISO/IEC TR5469 on Functional safety for
AI13, is a part of overall safety relating to the Equipment Under Control and the
control system that depends on the correct function of the electrical/electron-
ic/programmable electronic safety-related systems and other risk reduction
measures.

Safety is defined as freedom from risk (ISO/IEC Guide 51:1999, Definition
3.1)14.Risk is further defined as a combination of the probability of occurrence
of harm and the severity of that harm (ISO/IEC Guide 51:1999, Definition 3.2),
where hazard is defined as a potential source of harm (ISO/IEC Guide 51:1999,
Definition 3.5)14.

ISO/IEC TR546913 suggests an architectural pattern for systems using AI
technology components, illustrated in Figure 1.5. Since the implementation
of AI in safety-related systems can introduce challenges, the architectural pat-
tern proposes three components: AI or machine learning (ML), supervisory
component, and a backup decision system. Machine learning, as a type of AI,
uses substantial amounts of data to learn patterns and perform tasks, learning
more with each increase of data. The AI or ML component is expected to pro-
duce diverse results that need to be voted and limited with the help of limiting
logic and supervisory component. Supervisory component, that represents
the knowledge generated outside of AI component, supervises or limits the AI
and is invoked at a failure. Similarly to the backup decision component that is
introduced during a failure detection. The architectural pattern for functional
safety of AI, Figure 1.5 introduces redundancy in a fault-tolerant system as
well as elements that minimally restrict or bound AI operations. Additionally,
ISO/IEC TR546913 suggest that the expected behavior of AI systems should be
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FIGURE 1.5. ISO/IEC TR5469 Architectural patterns for systems using AI,
adapted from13

possible to evaluate within the distribution of training data. The training data
may be also used to potentially predict undesirable behavior of an AI system.

To ensure safety of AI and therefore trust in AI, European AI Strategy 15

suggests AI systems to be:

• Science-guided or respectful of scientific knowledge.

• Uncertainty-aware or aware of what is unknown.

• Causal or understanding of cause and effect of observed situations rather
than relying on correlations.

In this way, the European approach to AI is to build trust into AI algorithms and
making AI ethical, transparent and unbiased to ensure safety for humanity 15.

1.3 RESEARCH GAPS AND NEEDS

This section briefly outlines and provides an idea of the existing research on the
state of subsea pipeline inspection by autonomous systems and the application
of AI. Articles relevant to the topics are described in later chapters of this thesis.

The existing research on remote operations and models for subsea pipeline
inspection by UAS can be observed from two perspectives: the expectations
and challenges of autonomous systems and AI in the industry; and the current
role and implications of highly autonomous systems for remote operations
subsea pipeline inspection. High autonomy requires extensive use of AI, the
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study and development of computer systems capable of intelligent behavior
and learning from experience, through substantial amounts of data 3.

The application of AI for subsea pipeline inspection presents numerous
challenges, including the complexity of algorithms, making it difficult to in-
terpret and validate the results and incorporate risk analysis and specific risk
measures. Despite being the integral components for traditional operations and
maintenance of offshore structures, risk analysis, and risk factors are still not
optimally integrated in data-driven operations 16. The most common effort to
combine risk analysis and data-driven approaches include using probabilistic,
Bayesian, and fuzzy logic methods to derive more insight about risk factors
from the existing data17,18. However, the existing data typically lacks the evi-
dence of hazards, creating imbalanced or biased data and further intensifying
the challenge of autonomous systems reliably diagnosing the hazards. Due
to the biases in data, autonomous systems run a risk of not learning to detect
hazards and failing to report them. Anomaly detection, as a type of AI, is a
method for recognizing irregular patterns or occurrences in data, known as
anomalies19. Anomalies can present undesirable information, such as noise in
the environment (i.e., unusual objects at sea floor), or they can present more
significant rare occurrence, such as hazards (i.e., damaged pipeline, corrosion).
Early detected anomalies can signal warning signs of possible hazards. During
hazard detection, it is preferable to detect and identify the hazard warnings as
early as possible, while avoiding the undesirable noise that results in reporting
false alarms. Image-based hazard detection for subsea pipelines is particularly
challenged by the data that is subject to a significant amount of noise, con-
tributing to additional biases and errors during analysis 20,21. Recent efforts
to improve the lack of quality data include collecting data from simulations 22,
manual collection of image data with remotely operated vehicles, and manual
annotation of data in attempt to create more training data for AI systems 23.
However, themanual approaches are exhausting and expensive. Other efforts at
creating better datasets developing methods to color-correct and recover shape
from hazy, monochromatic underwater images 24 and methods for automatic
annotation of images25. In recent years, the field of image manipulation to re-
cover color and shape has prospered and is more commonly used in bio-marine
applications. The tools for automatic underwater image annotation are still
in their early stages and have not reached maturity for offshore oil and gas
structures, still posing challenges in the industry and research society. Conse-
quentially, due to the complex subsea environment and the lack of suitable data,
autonomous systems can result in a considerable measure of compromise with
regard to the reliability and safety of operations 26,27. Despite the extensive
research on subsea pipeline hazard detection with UAS and the implications
of safe AI, the following research gaps need to be addressed for safer remote
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operations:

RG 1: Insights from risk and hazard analysis are not sufficiently integrated in AI
applications for subsea pipeline hazard detection with UAS.
The opportunities to integrate risk and hazard analysis as supervisory
components forAI and provide supplementary context of risk and hazard
to AI in order to detect early warnings of hazards are not sufficiently
addressed in existing research.

RG 2: The existing data for training AI applications for subsea pipeline hazard
detection is not adequate enough to reliably represent the complex environment
of subsea pipelines for inspection with UAS.
The lack of adequate training data is a critical challenge in AI applications
for subsea pipeline hazard detection. The lack of evidence of hazards
in training data creates highly imbalanced training datasets that can
contribute to biased results and lead to misdiagnosed or even omitted
warning signs of hazards. Furthermore, substantial amount of data is
collected during the well-established operations with ROVs that are
manually operated with trained personnel. However, it is not sufficiently
explored if the autonomously collected data with UAS has the same
properties and quality.

RG 3: Fusion of varied data sources and integration of adaptive sensor technolgies
that lead to new opportunities of image-based UAS pipeline hazard detection
is not sufficiently discussed.
The current design of AI applications, such as existing anomaly classifi-
cation and organization of data sources, do not address the challenges of
image-based subsea pipeline hazard detection with UAS and utilize the
potential of adaptive sensor technologies.

The identified research gaps serve as a basis for research questions and
objectives of this thesis.

1.4 RESEARCH QUESTIONS

The following research questions are based on the identified research gaps and
serve as directions for the objectives of research contributions in this thesis:

RQ 1: How can insights from risk and hazard analysis supervise the results of
AImethod, such as anomaly detection and classification, and increase the
reliability of UAS in detecting early warnings of subsea pipeline hazards?
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RQ 2: How can the adequacy of collected data be ensured during autonomous
data collection with UAS and how can the training data be enhanced to
introduce evidence of hazards necessary for UAS training, while mini-
mizing the manual labor and costs of data collection?

RQ 3: How can the image-based hazard detection with UAS be supplemented
by utilizing varied data sources from sensor technologies for adaptive
sensing, and how can anomaly classification be reimagined for the future
of UAS subsea pipeline hazard detection?

1.5 OBJECTIVES AND CONTRIBUTIONS

This thesis seeks to provide novel and practicable insights into detecting sub-
sea pipeline hazards using UAS and is grounded in a theoretical or concep-
tual framework and experimental methodology. The main motivation of this
thesis is understanding the challenges and blindspots associated with using
autonomous systems powered by AI for subsea pipeline inspection and pro-
poses novel approaches for combining traditional risk-based engineering with
operation-specific anomaly detection frameworks for detecting and classifying
hazards. In addition, this thesis suggests how remote operations may evolve
in the future as data, computational capabilities, and autonomous systems ad-
vance.

Themain objective of this work is to combine traditional risk-based approaches
to subsea pipeline detection with anomaly detection and computer vision tech-
niques. The main objective is addressed through contributions C1 - C7, listed
below, each addressing research questions as presented in Table 1.1:

C1 SpahicR., HepsøV., LundteigenM.A.,ReliableUnmannedAutonomous
Systems: Conceptual Framework forWarning Identification dur-
ing Remote Operations, IEEE International Symposium on Systems Engi-
neering (ISSE), September 2021, DOI: 10.1109/ISSE51541.2021.9582534

C2 SpahicR., HepsøV., LundteigenM.A.,UsingRiskAnalysis forAnomaly
Detection for EnhancedReliability ofUnmannedAutonomous Sys-
tems, Proceedings of the 32nd European Safety and Reliability Conference
(ESREL) - Dublin, 2022, ISBN: 978-981-18-5183-4

C3 Spahic R., Lundteigen M.A.,Manually or Autonomously Operated
Drones: Impact on Sensor Data towards Machine Learning, IEEE



14 ▶ CHAP. 1 INTRODUCTION

International Conference on Computational Intelligence and Virtual Environ-
ments for Measurement Systems and Applications (CIVEMSA), 2022, ISBN:
978-1-6654-3445-4

C4 Spahic R., Hepsø V., Lundteigen M.A., A Novel Warning Identifica-
tion Framework for Risk-Informed Anomaly Detection, Springer
Nature Journal of Intelligent and Robotic Systems, 108, 17. June, 2023. DOI:
10.1007/s10846-023-01887-2

C5 Spahic R., Poolla K., Hepsø V., Lundteigen M.A., Image-based and risk-
informed detection of Subsea Pipeline damage, Springer Nature, Dis-
cover Artificial Intelligence. June, 2023. DOI: 10.1007/s44163-023-00069-
1

C6 Spahic R., Hepsø V., Lundteigen M.A., Enhancing Autonomous Sys-
tems’ Awareness: Conceptual Categorization of Anomalies by Tem-
poral Change During Real-Time Operations, The Eighteenth Inter-
national Conference on Autonomic and Autonomous Systems, 2022, ISBN:
978-1-61208-966-9

C7 Spahic, R., Lundteigen, M.A., Hepsø, V. Context-based and image-
based subsea pipeline degradation monitoring. Springer Nature, Dis-
cover Artificial Intelligence 3, 17. May, 2023. DOI: 10.1007/s44163-023-
00063-7

Overall, the scope of this PhD research has not been merely restricted to
these main aspects but rather embraces the variety and complexity of encoun-
tered challenges and expands to investigate potentials in the future of subsea
pipeline inspection through exploration of adaptive sensor systems, marine
biology and geographical properties of subsea pipeline environment.

Experiments were conducted to the extent that data and computational
power were available. Due to the complexity of the topic and the novelty of
challenges, some insights were brought to light through conceptual framework
proposals and incorporated into future operating models. The main objective
of this thesis is to find feasible ways to address challenges in hazard detection
with approaches based on AI and to comply with expectations of explainable,
reliable, and safe autonomous operations.
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TABLE 1.1. Research questions addressed by the contributions C1 - C7

Research
Question

Contribution description Contribution

RQ 1 Mapping the overlapping tasks between risk and hazard
analysis to AI methods for anomaly and hazard detection
into a conceptual Warning Identification Framework.

C1

RQ 1 Expanding the Warning Identification Framework by in-
troducing hazard analysis as a supervisory component to
anomaly detection applications to a traditional data analy-
sis lifecycle.

C2

RQ 2 Analyzing data collected with manually operated drone
and comparing it to the analysis of data collected by an
autonomous drone under equal circumstances to look for
discrepancies between the two modes of drone operation.

C3

RQ 2 Analysis of sensor-collected seismic and seismic tremor
data: Supervising anomalies detected with conventional
anomaly detection with hazards identified through hazard
analysis by domain experts to detect warning signs and
eliminate false alarm anomalies. This contribution is and
expansion and implementation of the Warning Identifica-
tion Framework introduced in C2.

C4

RQ 2 Analysis of industry-provided subsea pipeline images: Ex-
panding heavily imbalanced training data with new, syn-
thetic image data of mechanical damage on pipeline that is
generated through image manipulation methods, and ap-
plying localised anomaly detection to increase explainabil-
ity of AI methods during mechanical damage detection on
subsea pipelines.

C5

RQ 3 Proposal of novel categorization for anomaly classification
for the future of UAS subsea pipeline hazard detection.

C6

RQ 3 Proposal of data source fusion and adaptive scheduling
to supplement image-based inspections and introducing
risk-informed architecture for the future of AI-based sub-
sea pipeline hazard detection with UAS.

C7
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1.6 OUTLINE

This thesis consists of eight chapters, AppendixA andDissemination of research.
The contents of the thesis are briefly described as follows:

Chapter 2 describes the function of subsea pipelines, themethods and systems
used to inspect them, and the external anomalies that can be visually
inspected using autonomous systems.

Chapter 3 examines the experimental methods that are the focus of this thesis,
including anomaly detection, classification, computer vision methods,
and their blindspots and challenges.

Chapter 4 is based on the contributions C1 and C2 and focuses on theoretical
concepts for risk-informed and data-driven UAS operations.

Chapter 5 is based on the contributions C3 and C4 and focuses on reliability
of sensor data for machine learning through experimental work

Chapter 6 is based on the contribution C5 and focuses on the visual inspec-
tion of subsea pipeline anomalies through analysis of pipeline images
provided by the industry:

Chapter 7 is based on the contributions C6 and C7 and explores the future
models in subsea pipeline inspection with UAS by exploring opportuni-
ties and focus areas for the future of remote operations:

Chapter 8 concludes the research, discusses challenges and learned lessons,
and examines future work and possibilities.

Appendix A is supplementary material to Chapter 5, describing attributes
used in experimental work for detecting true hazards by analyzing seis-
mic sensor data with anomaly detection.
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CHAPTER 2

Subsea Pipelines and Inspection

The oil and gas industry produces billions of barrels of hydrocarbon resources,
such as oil and gas, to meet more than half of the increasing global demand for
energy1. Extracting hydrocarbons from offshore reservoirs and transporting
them necessitates various interdependent systems. One of the most impor-
tant structures for the long-distance transport of oil and gas are the vast and
intricate networks of subsea pipelines. Due to their widespread installation
and harsh subsea environment, subsea pipelines are susceptible to natural (i.e.,
weather and environment conditions, material ageing) and artificial damages
(i.e., human error and equipment failure). Therefore it is crucial that the subsea
pipelines are environmentally and economically sustainable.

2.1 SUBSEA PIPELINE DEGRADATION AND FAILURES

Monitoring the pipeline to detect potential degradation and fault states is one
of the most critical tasks of UAS in pipeline inspection, illustrated in Figure
Figure 2.1. Degradation is defined as an undesired deviation in the operational
performance of any device, equipment or system from its intended performance
that may be caused by internal processes or effects of the environment (IEV
161-01-19)2. The UAS are expected to detect failure, such as pipeline damage.
Failure is defined as the loss of the capacity to function as required, or an event
that results in a fault state (IEV 192-04-01) 2. A fault state is further defined to
be the inability to perform as required, due to an internal state (IEV 192-04-
01)2. Establishing the degradation and failure leads to repair and restoration
functions, towards normal state, or partial repair and restoration from fault to
degraded state. An instance of restoration is when the state is restored after
a failure (IEC 192-06-23), and a repair instance is an action taken to effect
restoration, including localization, diagnosis, and correction of the fault (IEC
192-06-14)2.

A report from Det Norske Veritas (DNV), who specialize in assurance and
risk management for environmental safety shows the failure frequency rates
of subsea pipelines, presented in Table 2.1. In their report3, DNV describe
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FIGURE 2.1. Role of UAS for Pipeline Inspection

failure as a subset of an incident resulting in loss of containment and leakage.
Failure and leak frequency (and loss of containment frequency) are considered
equivalent. Pipeline failure frequency is expressed as the number of failures
per km pipeline and year.

Bureau of Safety and Environmental Enforcement (BSEE) classifies off-
shore pipeline failures into five categories: equipment failure, external forces,
such as human error, corrosion, weather or natural causes, and vessel, anchor,
or trawl damage4. Even the smaller surface damages such as local metal loss
in forms of abrasions or pipe wall abrasions resulting in dent defects, may
accompany the pipe surface damage, further creating weak points on the pipe
surface for ruptures and potential leakage 5. Figure 2.2 illustrates the damage

TABLE 2.1. Offshore Pipeline Failures3

Description Failure frequency Unit

Well stream pipelines and other
pipelines containing unprocessed
fluid

Between 2.3 x -3 and 4.8 x
10-4

Per km year

Flexible pipelines 2.1 x 10-3 Per km year

Failure frequency from inadvertent
dragging of
anchors by ships under way

Pipe specific

Processed oil, gas with pipeline diam-
eter > 24"

Between 1.4 x 10-4 and 5.4
x 10-6

Per km year

Processed oil, gas with pipeline diam-
eter ≤ 24"

Between 7.1 x 10-5 and 1.7
x 10-5

Per km year
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distribution by causes to different levels of oil spills from subsea pipelines.
According to the Figure 2.2, smaller scale pipeline failure and ruptures that
result in leaks are often caused by corrosion. Pipeline failure analysis and dam-
age monitoring are challenging tasks due to the complex nature in which the
damages and failures can occur. The pipeline is built during the manufacturing
phase, where defects can already occur at raw material transformation and
production, creating weak points in the pipeline structure, particularly where
welding occurs1. Over time, the pipeline faces new potential threats on the
ocean floor. Debris from the environment, such as large marine animals and
their carcasses or invasive microbial species, can impact the pipeline over ex-
tended periods. The pipeline can also be impacted by other offshore equipment
that falls and drags at the seabed, such as ship anchors, drilling installations, or
fishing equipment. Ocean currents can wash away the soil beneath the pipeline,
causing a segment of the pipeline to become unsupported and unstable, known
as free spanning1. Chemical reaction and abrasion from the internal fluids,
which are frequently acidic and contain sand particles moving at high speeds,
can cause corrosion and erosion and develop into external damage 1. All of
these factors necessitate routine pipeline inspections and the implementation
of a permanent monitoring system. Continuously monitoring pipelines for
potential damage is one method for minimizing pipeline failure.

FIGURE 2.2. Distribution of damage causes to different levels of oil spills from
subsea pipelines (Spill size in Barrels (bbl)). Adapted from 4,6
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2.2 UNDERWATER AUTONOMOUS SYSTEMS AND INSPECTION METHODS

Pipeline damage and material degradation can occur internally and externally;
therefore, numerous inspection and sensing systems have been developed to
inspect the internal and external integrity of the pipeline. Unless the sensors
have been implemented during pipeline installation, divers or, when personnel
safety is a concern, remotely operated vehicles (ROVs) or autonomous underwa-
ter vehicles (AUVs) can deliver sensors to subsea pipelines 1. ROVs are manually
operated by a trained operator, and often connected to a nearby surface ves-
sel. AUVs are not manually operated by an operator, rely on pre-programmed
instructions and AI-based methods. More recently, subsea docking stations
allow AUVs to reside at offshore locations, charge batteries and transmit data.
Other systems include intelligent pigs and crawling robots that also introduce
pipeline sensors for internal inspection.

FIGURE 2.3. ROV installing a weld inspection sensor1 © Sonomatic

Robotic vehicles, such as ROVs and AUVs, have demonstrated outstand-
ing potential in the offshore industry for various applications. Due to their
tested and proven technology, ROVs already have a permanent place in remote
offshore infrastructure inspection, sensor delivery, exploration of the subsea
environment, and even rescue missions. Most offshore pipeline inspections
with ROVs involve a submersible component powered and controlled by a
tether cable7. Despite some disadvantages that ROVs have, expensive oper-
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FIGURE 2.4. Flatfish AUV for long-term underwater operations, adapted from
Albiez et al.8

ations that involve sending vessels offshore for tether cable connection and
extensive personnel training to operate them, the ROVs have become one of
the most applied subsea inspection methods. Figure 2.3 shows an example of
an ROV installing a sensor for weld inspection of subsea pipeline.

The offshore oil and gas industry recognizes the immense potential of
semi-autonomous and, particularly, fully underwater autonomous systems
(UAS) capable of tetherless communication, such as AUVs or autonomous
underwater drones, swarms of drones, gliders, and autonomous benthic landers
(observational platforms that sit on the seabed). UAS relies on AI methods for
inspection tasks, whereas a ROV relies on the training of the operator who

FIGURE 2.5. Eelume Subsea Intervention Drone. Image property of ©Eelume
Subsea Intervention Eelume AS9
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manually operates theROVand inspects the pipelines. Figure 2.4 shows a subsea
resident AUV, Flatfish AUV, for long-term underwater operations, equipped
with sonars, cameras, and probes. Figure 2.5 shows a subsea intervention vehicle
Eelume designed to carry out subsea inspection, maintenance and repair with
autonomous robotic arms and flexible body 9.

FIGURE 2.6. Equinor’s UID System. Image is a property of © EnergyVoice

The development of subsea docking stations (SDS) has made it possible for
UAS to remain submerged for months, recharge their batteries, and transmit
and receive data. Over the recent years, for autonomous offshore operations,
Equinor has been designing and developing an Underwater Intervention Drone
(UID) subsea control system to combine the advantages of SDS and underwa-
ter vehicles10. Figure 2.6 shows an example of the UID system developed by
Equinor. Figure 2.7 shows the technology building blocks of the UID system
that consists of the SDS and the drone. The SDS consists of the components
such as inductive connectors, electronicmodules, and interface component that
consist of facility-specific and drone-specific interfaces. The drone component
needs to be capable of docking and undocking to the SDS, autonomous maneu-
vering (i.e., tracking the pipeline), and autonomous intervention. Additionally,
drone is expected to provide pilot supervised intervention capabilities through
tethered communication, free-space optical, or acoustic communication 10. The
highlighted component, autonomous intervention, provides the capacity for
greater autonomy, typically through artificial intelligence. It is anticipated that
the drone will be able to autonomously detect sources of harm or hazards on
facilities that require attention, such as pipeline damage, leaks, or corrosion 10.
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FIGURE 2.7. UID System Building Blocks, adapted from10

There are multiple levels of autonomy for UAS that perform inspection
tasks, which are categorized according to industry expectations 11 and include
data deliberation and risk management capabilities that allow the system to
perform decision-making during inspection:

Level 1 - During inspection tasks, UAS warns human operator if it approaches it’s
operation design limits, and systematizes incoming sensor data, provid-
ing the operator with task-relevant information.

Level 2 - UAS is capable of decision-making during inspection tasks by assessing
data from all connected devices, continuously assesses risk and adjusts
warnings.

Level 3 - UAS is capable of complex decision-making during inspection tasks by
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assessing historic data, comparing it to ongoing observations, assessing
risks and providing mitigative options.

Level 4 - UAS reasons on distributed data, conducts high-level planning, and
provides the best risk management policy.

UAS can continuously gather the data about the environment and ongoing
operation, and perform near-real-time and real-time analysis with the help
of sophisticated data analysis methods, particularly artificial intelligence (AI).
The intention is to replicate human-level capabilities of assessing the situation,
providing insight, and making decisions. AI consists of multiple branches,
such as, among others, machine learning (ML) and deep learning that utilize
large amounts of sensor-collected data to learn and predict patterns; computer
vision that interprets image and video inputs; fuzzy logic that imitates human-
interpretive logical decisions. Although AI can potentially replace humans in
complex tasks, perform high-level functions, and increase the safety of remote
operations, AI continues to suffer from immature technology and unproven
reliability for safety-critical operations. Most of the challenges with AI stem
from inadequate data used to train the AI systems in learning correct, unbiased
patterns and conducting reliable, trustworthy decisions that are on par with
human operators. More on AI methods and challenges in remote offshore
operations is described in Chapter 3 Experimental methods and Artificial
Intelligence.

Multiple phenomena, including electromagnetic, acoustic, and radio-graphic,
can be observed in a non-destructive manner (without hurting or damaging
the pipeline during testing) to determine the pipeline’s condition. An electro-
magnetic method, Magnetic Flux Leakage (MFL), which detects flaws in the
material’s surface and potential leaks, is one of the most commonly employed
tools for pipeline inspection12. Other commonly used electromagnetic sen-
sors include variants of MFL, such as the Hall Effect, Electrical/field signature
mapping, Eddy current inspection, and their variants, whose employment fo-
cuses on testing pipeline networks for local corrosion, cracking, and erosion 1.
Although efficient, most of these methods lack speed of detection and preci-
sion, and area coverage depends on the sensor type. Acoustic tools, such as
ultrasound inspection, Guided Wave Testing, Acoustic Emission, and Sonar
Mapping, depend on the use of elastic waves to detect small cracking. Although
sonar inspection can also efficiently detect foreign objects dragging on the
seabed, it relies on flat surfaces and may incorrectly assume the seabed is flat,
potentially leading tomisguided results 13. In general, acoustic sensors are often
limited in range and speed in detecting damages 14. Another promising way of
sensing the pipeline integrity and detecting damages is through Fiber Optic
Sensors (FOS). FOS are filaments of silica glass or plastic that transmit light
via total internal reflection15. The benefit of FOS is that they are lightweight
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and can be permanently installed along long pipeline distances for distributed
real-time sensing. They provide accurate sensing, but the FOS technology is
currently immature and the implementation of it is exceptionally costly.

The subsea environment is extraordinarily complex and ever changing, and
subsea pipeline networks can suffer from various interconnected challenges.
Maintenance requirements of subsea pipelines, including pipeline inspection
and monitoring, can be a challenging task and requires the use of multiple tools
or synergy of sensors to achieve the most reliable insights into subsea pipeline
integrity.
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2.3 EXTERNAL ANOMALY AND RISK-BASED ANALYSIS

Reliability engineering and risk assessment are essential components of design,
maintenance, and inspection for subsea infrastructure. Reliability engineering is
described as an engineering application that ensures that a component, product,
or process performs as intended without failure for a specified period in a given
environment16–18. To ensure the reliability of UAS pipeline inspection, it is
necessary to address issues with AI-based methods, such as the absence of data-
based hazard evidence. In order to identify potential hazards and risks that
may be encountered during pipeline inspection, risk assessment is an essential
component of reliable UAS. Risk assessment includes a structured analysis and
identification of potential hazards, their causes, and consequences, as well as a
description of the risk and representation of uncertainties 19–21. It is essential
to deconstruct the definitions of risk and hazard in this context, to understand
what properties are described during their analysis. Risk is the effect of uncer-
tainty on objectives, which can be positive, negative, or both, and results in
either threats or opportunities20. Risk is often expressed in terms of sources,
sequences of events, consequences, and likelihood or probability of occurrence,
where a potential source of harm is termed hazard20. The majority of offshore
platforms are currently designed using risk assessment to reduce and mitigate
potential risks in a timely manner22. Extended inspection times can reduce
any necessary reaction time and cause damage to subsea equipment. Identi-
fying risks is one of the first steps that form the basis of risk analysis. Before
conducting risk identification, the necessary operational data, such as pipeline
type, failure modes, weather and environmental conditions, and maintenance
properties, should be gathered23. An example of steps for the risk-based subsea
pipeline corrosion inspection are illustrated in Figure 2.8. Data gathering is the
first step towards risk-based inspection, including information on the design,
inspection methods, operating environment of subsea pipeline. With gathered
data and due to the various types and degrees of corrosion that can occur on sub-
sea pipelines, the following tasks would include the characterization of defects
through thickness measurements and an initial screening phase to determine
whether a detailed analysis is necessary 22. It is necessary to establish risk ac-
ceptance criteria. The risk acceptance criteria are risk reduction objectives and
aid in maintaining confidence in the subsea pipeline’s structural integrity. The
general acceptance criteria comply with the operation’s safety objectives and
specify acceptable limits for risks to personnel and environmental safety as well
as economic viability. After the acceptance criteria is defined, the probability
of failure needs to be established, including defining the corrosion damage, its
physical properties, the distribution of corrosion damage, and classification.
After the corrosion properties have been evaluated and described, the conse-
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FIGURE 2.8. Subsea pipeline corrosion: Flowchart of the risk-based inspection
planning, adapted from22

quence of failure can be determined through corrosion rate and burst pressure
calculation. Finally, risk evaluation is derived and presented in a risk matrix.
Figure 2.9 illustrates an example of a risk matrix describing the risk level and
consequence severity by risk occurrence likelihood that is color-coded. Color
green in the risk matrix represents insignificant consequences, yellow and
orange represent minor and moderate consequences, and darker red colors
represent major and severe consequences. Color coding reflects As Low As
Reasonably Possible (ALARP) principle for broadly acceptable, conditionally
acceptable, and intolerable regions of risk 24. With these results, as illustrated
in Figure 2.8, the inspection planning and management report is developed to
find fail mechanisms and high-risk locations and determine the inspection and
maintenance plans.

With visual inspection being the most common technique for pipeline
inspection by ROVs and UAS25, the success of the inspection depends on de-
tecting unusual or unexpected situations that can be rare and negligible or
situations that are rare yet hazardous. These rare occurrences are known as
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FIGURE 2.9. An example of risk matrix, adapted from23

anomalies. Therefore, anomaly criteria for visual inspection depend not only
on the descriptions of anticipated risks and hazards but also on the degree to
which these can be observed via image and video data. In contrast to an ROV,
where anomaly detection relies on the training of the operator who manually
controls the ROV, an UAS relies on AI methods for anomaly detection and
classification. In both situations, proper classification and criteria for expected
anomalies are necessary. Figures 2.7 - 2.11 show examples of anomalies on
subsea pipelines, provided by operators from oil and gas industry, where an
anomaly represents a deviation from normal state during data-driven or image-
driven inspection and is recognized as a potentially degraded or fault state.

Table 2.2 shows a list of anomalies by their category and criteria descrip-
tion, followed by a reference to figures that illustrate examples of the described
anomalies. Tadjiev25 derived the anomaly criteria for visual inspection by col-
lecting industry experiences and requirements, as well as lessons learned and
best practice guidance. Further pipeline inspection necessitates using special-
ized tools and sensors when anomalies are not evident from a visual inspection.
However, there is no widely accepted standard for anomaly criteria for visual
inspection by ROV and UAS, and the task remains operation- or even operator-
specific25. In addition, what is considered to be an anomaly depends on the
context of the situation, meaning the anomalies depend on a substantial num-
ber of factors, such as the seabed environment, soil type, pipe design, material
type, age, depth, and marine life, as well as the interrelationships between these
factors. Standardization can be achieved through consistent operator reporting,



2.3 EXTERNAL ANOMALY AND RISK-BASED ANALYSIS ◀ 31

enabling consistent quality inspection data and a more precise understanding
of anomaly occurrences.

TABLE 2.2. Anomaly Criteria for Visual Inspection of Subsea Pipeline 25

Anomaly
category

Criteria Figure reference

Inadequate
Cathodic
Protection

Disconnected or heavily depleted anodes Not available

External
corrosion

External corrosion on exposed surface or
staining on outer sheath when no obvious ex-
posed surface is visible

Figure 2.10

External
damage or
deformation

Evidence of deformed pipeline, abrasion, cut,
tear, burst

Figure 2.11

Debris Any debris or objects in contact with pipe or
blocking visibility of pipe or pipe components
such as fishing equipment, anchors, boulders

Figure 2.12

Inadequate
support

Evidence of missing support, such as eroded
seabed, riser self-trenching

Not available

Loss of pri-
mary contain-
ment

Evidence of fluid leakage Not available

Marine
growth

Presence of marine growth or coral colonies
covering > 50% of surface area or prevents
meaningful inspection

Figure 2.13

Layout
disarrangement

Interference of pope with other subsea equi-
ment (risers, mooring lines, anchors), over-
bending, sliding

Not available

Seabed
movement

Burial of pipes, gas vent valves, scour around
seabed structures

Figure 2.14

Other Unexpected anomalies, undescribed, uniden-
tified and suspicious events

Not available
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FIGURE 2.10. Example of external corrosion on subsea pipeline and pipe equip-
ment25 © Anonymous Operator

FIGURE 2.11. Example of external damage (ruptures) 25 ©AnonymousOperator

FIGURE 2.12. Example of external debris - misplaced objects 25 © Anonymous
Operator

FIGURE 2.13. Example of marine growth disrupting inspection 25 © Anony-
mous Operator
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FIGURE 2.14. Example of buried pipeline © Equinor



34 ▶ CHAP. 2 SUBSEA PIPELINES AND INSPECTION

2.4 REFERENCES

[1] MichaelHo, SamiEl-Borgi, Devendra Patil, andGangbing Song. Inspection andmonitoring
systems subsea pipelines: A review paper. Structural Health Monitoring 19 (2), 606–645 (3
2020). ISSN 17413168. doi: 10.1177/1475921719837718. Cited on page/s 19, 21, 22, 26.

[2] International Electrotechnical Commission. IEC 60050 (2 2015). URL https://www.
electropedia.org/iev/iev.nsf/. Cited on page/s 19.

[3] Erling Håland, Andreas Falck, Marianne Hauso, and Espen Funnemark. Recommended
Failure Rates for Pipelines 2017-0547, Rev. 2. Technical report DNV GL AS Oil & Gas
Safety Risk Management Høvik (8 2017). Cited on page/s 19, 20.

[4] Cheryl McMahon Anderson, Melinda Mayes, and Robert LaBelle. Update of occurrence
rates for offshore oil spills. Technical report epartment of Interior Bureau of Ocean
Energy Management and Department of Interior Bureau of Safety and Environmental
Enforcement Herndon, VA (2012). Cited on page/s 20, 21.

[5] S. Vishnuvardhan, A. RamachandraMurthy, andAbhishekChoudhary. A reviewonpipeline
failures, defects in pipelines and their assessment and fatigue life prediction methods (2
2023). ISSN 03080161. Cited on page/s 20.

[6] MichaelHo, SamiEl-Borgi, Devendra Patil, andGangbing Song. Inspection andmonitoring
systems subsea pipelines: A review paper (3 2020). ISSN 17413168. Cited on page/s 21.

[7] Christian Mai, Simon Pedersen, Leif Hansen, Kasper L. Jepsen, and Zhenyu Yang. Subsea
infrastructure inspection: A review study. In USYS 2016 - 2016 IEEE 6th International
Conference on Underwater System Technology: Theory and Applications pages 71–76. Institute
of Electrical and Electronics Engineers Inc. (4 2017). ISBN 9781509057986. doi: 10.1109/
USYS.2016.7893928. Cited on page/s 22.

[8] Jan Albiez, et al. FlatFish - a compact subsea-resident inspection AUV. In OCEANS 2015
- MTS/IEEE Washington. Institute of Electrical and Electronics Engineers Inc. (2 2016).
ISBN 9780933957435. doi: 10.23919/oceans.2015.7404442. Cited on page/s 23.

[9] EelumeAS. EelumeSubsea Intervention (). URL https://eelume.com/#the-eelume-concept.
Cited on page/s 23, 24.

[10] Daniel Abicht, Jan Christian Torvestad, Pål Atle Solheimsnes, and Karl Atle Stenevik.
Underwater intervention drone subsea control system. Proceedings of the Annual Offshore
Technology Conference 2020-May (May), 4–7 (2020). ISSN 01603663. doi: 10.4043/
30701-ms. Cited on page/s 24, 25.

[11] Francesco Scibilia, Knut Sebastian Tungland, Anders Røyrøy, and Marianne Bryhni Asla.
Energy industry perspective on the definition of autonomy for mobile robots. In Communi-
cations in Computer and Information Science volume 1056CCIS pages 90–101. Springer Inter-
national Publishing (2019). ISBN 9783030356637. doi: 10.1007/978-3-030-35664-4{\_}9.
URL http://dx.doi.org/10.1007/978-3-030-35664-4_9. Cited on page/s 25.

[12] Yan Shi, Chao Zhang, Rui Li, Maolin Cai, and Guanwei Jia. Theory and application of
magnetic flux leakage pipeline detection. Sensors (Switzerland) 15 (12), 31036–31055 (12
2015). ISSN 14248220. doi: 10.3390/s151229845. Cited on page/s 26.

[13] L-3 Communications SeaBeam Instruments. Multibeam Sonar Theory of Op-
eration. Technical report L-3 Communications SeaBeam Instruments East
Walpole, MA (2000). URL https://www3.mbari.org/data/mbsystem/sonarfunction/
SeaBeamMultibeamTheoryOperation.pdf. Cited on page/s 26.

[14] SRavi, SKarthikraj, D Sabareesan, andRKishore. PipelineMonitoringUsingVibroacoustic
Sensing-A Review. International Research Journal of Engineering and Technology (2016). ISSN
2395 -0056. URL www.irjet.net. Cited on page/s 26.

[15] Hang Zhou Yang, Xue Guang Qiao, Dong Luo, Kok Sing Lim, Wuyi Chong, and Su-



2.4 REFERENCES ◀ 35

laiman Wadi Harun. A review of recent developed and applications of plastic fiber optic
displacement sensors. Measurement: Journal of the International Measurement Confedera-
tion 48 (1), 333–345 (2014). ISSN 02632241. doi: 10.1016/j.measurement.2013.11.007.
Cited on page/s 26.

[16] ISO/DIS20815. ISO/DIS 20815 2018 Petroleum, petrochemical and natural gas indus-
tries - Production assurance and reliability management. Technical report ISO (10 2018).
Cited on page/s 28.

[17] IEC60300-3-4. International Standard International Electrotechnical Commission IEC
60300-3-4:2022 Dependability management - Part 3-4: Application guide - Specifica-
tion of dependability requirements. Technical report IEC International Electrotechnical
Commission (3 2022). Cited on page/s 28.

[18] D.R. Kiran. Reliability Engineering. In Total Quality Management pages 391–404. Elsevier
(1 2017). doi: 10.1016/B978-0-12-811035-5.00027-1. URL https://linkinghub.elsevier.
com/retrieve/pii/B9780128110355000271. Cited on page/s 28.

[19] E. Zio. The future of risk assessment. Reliability Engineering and System Safety 177 (March),
176–190 (2018). ISSN 09518320. doi: 10.1016/j.ress.2018.04.020. Cited on page/s 28.

[20] ISO 31000. Risk management — Guidelines, International Organization for Standard-
ization. Technical report International Organization for Standardization (2018). URL
https://www.iso.org/obp/ui/iso:std:iso:31000:ed-2:v1:en. Cited on page/s 28.

[21] ISO/IEC31010. IEC 31010:2019: Risk management — Risk assessment techniques. Tech-
nical report ISO/IEC 2009 (11 ). Cited on page/s 28.

[22] Jung Kwan Seo, Yushi Cui, Mohd Hairil Mohd, Yeon Chul Ha, Bong Ju Kim, and Jeom Kee
Paik. A risk-based inspection planning method for corroded subsea pipelines. Ocean
Engineering 109, 539–552 (11 2015). ISSN 00298018. doi: 10.1016/j.oceaneng.2015.07.066.
Cited on page/s 28, 29.

[23] Xinhong Li, Guoming Chen, Yuanjiang Chang, and Changhang Xu. Risk-based operation
safety analysis during maintenance activities of subsea pipelines. Process Safety and Environ-
mental Protection 122, 247–262 (2 2019). ISSN 09575820. doi: 10.1016/j.psep.2018.12.006.
Cited on page/s 28, 30.

[24] Marvin Rausand. Risk Assessment Theory, Methods, and Applications. John Wiley and
Sons IncHoboken, New Jersey (2011). ISBN9780470637647. doi: 10.10029781118281116.
Cited on page/s 29.

[25] Damir Tadjiev. Anomaly criteria for general visual inspection of subsea flexible pipes.
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering -
OMAE 4, 1–9 (2020). doi: 10.1115/OMAE2020-19044. Cited on page/s 29, 30, 31, 32.





CHAPTER 3

Experimental methods

Inspection of subsea oil and gas pipelines relies on collecting and analyzing sen-
sor data, typically using data-driven and artificial intelligence (AI) approaches,
such as machine learning (ML) and computer vision. These methods can ex-
tract features from sensor-collected data, classify images captured by camera-
equipped UAS, and identify anomalous patterns in vast data collections. Ma-
chine learning enables computer systems to become more intelligent as they
encounter more data1. Various data-driven approaches, such as anomaly de-
tection, image classification, and image segmentation, can detect and analyze
pipeline surface hazards when observing UAS-captured images. The following
sections describe the general theory of anomaly detection and classification,
as well as the different computer vision approaches, their developments, and
their function in subsea pipeline hazard inspection that have been discussed
and applied during this research.

3.1 ANOMALY DETECTION AND CLASSIFICATION

Anomaly detection is amethod for identifying any deviations in data (i.e., sensor
data, image data) from expected behavior. These deviations are referred to in
different terms, such as anomalies, outliers, exceptions, aberrations, depend-
ing on the application domain2. Depending on the application, the detected
anomalies may indicate noise, or anomalies as hazards. The distinction lies in
the fact that noise is an occurrence that impedes data analysis, misleads findings,
or misleads the machine learning methods learning process from the data 3,
and therefore it is removed after it has been detected. Anomaly, on the other
hand, is the reverse of noise; it can reflect something unique and frequently
critical, such as pipeline hazards in subsea inspection applications, network
intrusions in cybersecurity applications, or diseases in medical applications. In
the context of subsea pipeline inspection, an anomaly represents the deviation
in observed data that indicates a hazard (i.e., pipeline damage as a deviation
from the pipeline’s normal state), whereas noise represents any deviations in ob-
served data that do not require inspection or do not represent hazards (i.e., soft
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debris on the pipeline surface). Apart from noise detection and noise removal,
anomaly detection is related to novelty detection. Novelties are previously un-
observed data patterns. The main distinction between novelty and an anomaly
is that after a novelty has been identified, it is often incorporated into the
standard data model. An anomaly typically never conforms to the standard or
normal data2. Anomaly detectionmethods are typically tied to domain-specific
applications and challenges because what constitutes an anomaly relies on the
domain problem2. Therefore the key components of an anomaly detection, as
illustrated on Figure 3.1, are often described within a specific domain (i.e., cy-
bersecurity, medical, offshore operations). This means that the anomalies have
problem-specific characteristics that describe types of data, expected anomaly
types, available labels, and expected outputs 2.

FIGURE 3.1. Key components for anomaly detection, adapted from 2

Point, contextual, and collective anomalies are the most general types of
anomalies3. Point anomalies, also known as global anomalies, are single data
points that generally differ from the rest of the data points in a dataset. Contex-
tual anomalies only occur under specific conditions, such as season or location
(i.e., snow during summer would be considered an anomalous event, while
winter snow would be a normal event). Collective anomalies are anomalous
data points only when they appear in groups or collections, not as individual
data points. Detecting anomalies typically happens during a data preprocessing
stage in machine learning applications so that the anomalies are identified and
addressed before the training stage where learning from data patterns occurs.
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Depending on the availability of labels in the data or the existence of training
data, anomaly detection methods can there are three main modes by which
anomalies are detected: supervised, semi-supervised, and unsupervised.

FIGURE 3.2. Modes of anomaly detection based on label data availability,
adapted from4

Supervised anomaly detection assumes the availability of a training dataset
comprising labels for normal and anomalous data points (see Figure 3.2 (A)).
Any unknown data point is compared to the model to determine the class or
label to which it belongs, normal or anomaly. A significant issue is that there
are considerably fewer anomalous than normal data points in the training data,
thus creating imbalanced data and making it more challenging for the model
to detect less represented data points - anomalies 2,4.

Semi-supervised anomaly detection assumes that only normal-class data points
are labeled in the training data, as illustrated in Figure 3.2 (B). Since they do not
require labels for the anomaly class, their applicability is greater than supervised
approaches2,4.

Unsupervised anomaly detection, illustrated in Figure 3.2 (C), work without
any labeled data and implicitly assume that normal occurrences in the test data
are significantly more frequent than anomalies. If this assumption is untrue,
such methods have a high rate of false alarms (i.e., reporting points that are not
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truly anomalous). Due to the cost and complexity of obtaining labeled data,
unsupervised methods are the most prominent 2,4.

3.1.1 Blindspots and Challenges

Although anomaly detection appears to be a simple process, its application is
nevertheless hindered by numerous obstacles, despite the substantial research
conducted to address them:

• The noise in data is difficult to distinguish from significant anomalies
that may indicate something important. This challenge is particularly
evident in image data with complex backgrounds or poor visibility.

• The lack of training or labeled data requires the use of unsupervised
methods that are difficult to explain, and suffer from high false alarm
rates2. The false alarm rates disrupt the trust in operators observing the
anomaly detection methods, and may disrupt the final conclusions of
application’s functioning.

• Identifying a region in data to be considered normal, in the form of
boundaries, can be difficult, especially if anomalies are located near or
on the normal boundary.

• The low representation of anomalies in datasets often leads to biases.
Due to the method’s inclination towards efficiency, these anomalies may
get ignored5.

• Anomalies can be fluid and dynamic from domain to domain and under
different circumstances within the same domain. So, the anomaly detec-
tion methods may need to actively change to adhere to the situation’s
dynamic definition of anomaly.

Many other algorithm-specific issues include requirements for high com-
putational power, and inability to reliably detect anomalies in higher dimension
and large datasets6.
Due to these obstacles, solving the anomaly detection problem in its most gen-
eral form requires extensive and detailed work. Many elements influence the
application of anomaly detection, such as the nature of the data, the availability
of labeled data, and the type and behavior of expected anomalies.
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3.2 COMPUTER VISION

As a type of artificial intelligence, computer vision consists of methods that
specialize in analyzing visual data, such as images and videos 7. In recent years,
computer vision has gained popularity with applications like street view for
autonomous vehicle driving, satellite and map images, smart surveillance se-
curity cameras for object and movement detection, and autonomous drone
navigation and object recognition. For offshore applications, underwater com-
puter vision is increasingly popular in the research community and industry
with autonomous underwater systems that explore the seabed, inspect offshore
structures, or monitor marine life7. The most common computer vision tasks
are image classification (see Figure 3.4), object detection (see Figure 3.5), image
segmentation (see Figure 3.6). Underwater images frequently suffer from image

FIGURE 3.3. Computer vision preprocessing tasks, adapted from 7

degradation through loss of color, shape, and visibility; as a result, underwater
computer vision typically involves some form of image preprocessing to re-
construct shape in blurred images, color from many blue and green hues from
water, and overall visibility. The process preceding classification, segmentation,
and recognition is illustrated in Figure 3.3. The optical properties of water
bodies, such as the radiance, can be estimated by correlating the water’s optical
properties with other variables, such as the optical characteristics of the camera
lens or the detector specifications 7. Despite being influenced by environmen-
tal changes, these properties are predictable enough to distinguish between
bodies of water. This makes it possible to obtain a color-corrected, photomet-
rically invariant image for computer vision applications such as recognition,
segmentation, and shape recovery. Image classification is one of the earliest ap-
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FIGURE 3.4. Subsea pipeline object detection and classification. Image prop-
erty of © Equinor.

plications of computer vision for differentiating images, typically learned from
a set of training images labeled into classes. Figure 3.4 illustrates an example of
binary image classification where the entire image is observed and classified
into an image with or without a pipe. However, the image classification does
not separate individual objects on the image.

Another common task of computer vision is object detection and classifi-
cation, in which individual objects, rather than the entire image, are observed.
Object detection typically draws a box around a detected object but does not
follow the precise object shape, as illustrated in Figure 3.5.

Image segmentation is the process of separating or segmenting individual
image objects that can be classified individually 8. Human experts label or mark
the majority of image segments. Figure 3.6 illustrates an example of image
segmentation, in which individual objects on an image are precisely contoured
to detect the exact shape of an object. In recent years an increasing number
of AI-based automated labeling approaches have emerged that can segment
objects following the pixels of object corners 8.

The typical classification process, either of entire images, objects or seg-
ments on the image, can be broken down as follows 9:

1. Information collection via camera.

2. Data preparation thatmay consist of color correction, anomaly detection,
and noise elimination (dependent on the application needs).
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FIGURE 3.5. Subsea pipeline image classification. Pipeline images property of
© Equinor.

FIGURE 3.6. Subsea pipeline before and after image segmentation. Pipeline
image property of © Equinor.

3. Separation of the data into a training set for creating the models and
allowing the classification algorithm to learn the image patterns, and a
test set for evaluating the model’s accuracy.

4. Evaluation of the model’s accuracy by testing it on data from the test set
that was not used for training.

Figure 3.7 presents the evaluation methods for evaluating the classification
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FIGURE 3.7. Evaluation methods, adapted from8

results of computer vision methods. The most practical evaluation method
is a subjective evaluation, in which human evaluators evaluate segmentation
results8. A disadvantage of this approach is that the visual or qualitative eval-
uations are subjective and depend on each evaluator, as each evaluator uses
unique criteria to evaluate the quality of the segmented image. The direct eval-
uation assesses the computer vision algorithm’s computational power, speed,
and execution time. Analytical and empirical evaluations are a form of indirect
evaluation and the most common approaches. The accuracy of image classifica-
tion is observed via various algorithmmetrics, such as accuracy and precision 8.
In case of a supervised evaluation, a reference image is used to obtain the accu-
racy and precision metrics of the results. Unsupervised evaluation methods do
not require reference images and evaluate segmentation images by calculating
human-recognized criteria representing preferred results. Obtaining reference
images is generally difficult, time-consuming, and expensive (i.e., labeling or
segmenting objects on thousands of images) 8. Without a reference image, the
unsupervised method does not provide a more reliable evaluation accuracy
than the supervised method.

3.2.1 Blindspots and Challenges

Visibility is one of the main challenges in underwater computer vision where
light absorption, scattering, refraction, currents and water turbulence often
make it challenging to capture a good quality underwater image 7. While im-
age classification may be the least challenging to create training data for, the
underwater images still make the detection of patterns, colors and shapes, diffi-
cult due to visibility and monochromatic nature. Image classification, object
detection, and image segmentation tasks suffer largely from lack of labelled
data. Therefore, computer vision applications typically resort to unsupervised
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approaches, neural networks and deep learning. Many of these technologies
are black boxes whose results are difficult to explain, which is a significant
disadvantage10. Advanced underwater computer vision is in the early stages of
research for reliable application. Improving AI methods and focusing on their
reliability ensures computer vision’s constant development.
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CHAPTER 4

Risk-informed and Data-Driven UAS Operations

This chapter is based on the following articles:

• Spahic, Rialda; Hepsø, Vidar; Lundteigen, Mary Ann. (2021) Reliable
Unmanned Autonomous Systems: Conceptual Framework for Warning
Identification during Remote Operations. 2021 IEEE International Sym-
posium on Systems Engineering (ISSE).
DOI: 10.1109/ISSE51541.2021.9582534

• Spahic, Rialda; Hepsø, Vidar; Lundteigen, Mary Ann. (2022) Using Risk
Analysis for Anomaly Detection for Enhanced Reliability of Unmanned
Autonomous Systems. Proceedings of the 32nd European Safety and
Reliability Conference (ESREL 2022).
DOI: 10.3850/978-981-18-5183-4-R08-03-390-cd

All authors contributed to the research conception of the two articles. Rialda
Spahic performed material preparation, literature analysis, and manuscript
writing. Mary Ann Lundteigen performed writing reviews and supervision of
all prior drafts of the manuscript. Vidar Hepsø contributed to the literature
gathering and concept visualisation of the research.

The two articles focus on identifying concepts from multiple safety-
concerned disciplines (risk assessment, reliability engineering, resilience en-
gineering, and human-machine teaming) to supervise anomaly detection and
classification methods for subsea pipeline hazard detection. The discussed
challenges are trust calibration, explainability of algorithms, data biases, and
the inadequacies of anomaly detection methods to identify data biases and effi-
ciently distinguish noise from meaningful anomalies. The following sections
describe the motivation and main contribution of the two articles, a conceptual
framework for identifying warnings. The framework is a novel, risk-informed
approach to validating anomaly detection results and extracting meaningful
information from detected anomalies, which serve as early warning signs of
potential hazards during AUS operations. The application of the proposed
framework is presented in Chapters 5, and 6.
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4.1 RELIABLE UNMANNED AUTONOMOUS SYSTEMS: CONCEPTUAL FRAMEWORK

FOR WARNING IDENTIFICATION DURING REMOTE OPERATIONS

ABSTRACT

In the offshore industry, unmanned autonomous systems are expected to have a
permanent role in future operations. During offshore operations, the unmanned
autonomous system needs definite instructions on evaluating the gathered data
to make decisions and react in real-time when the situation requires it. We rely
on video surveillance and sensor measurements to recognize early warning
signals of a failing asset during the autonomous operation. Missing out on the
warning signals can lead to a catastrophic impact on the environment and a
significant financial loss. This research is helping to solve the issue of trustwor-
thiness of the algorithms that enable autonomy by capturing the rising risks
when machine learning unintentionally fails. Previous studies demonstrate
that understanding machine learning algorithms, finding patterns in anomalies,
and calibrating trust can promote the system’s reliability. Existing approaches
focus on improving the machine learning algorithms and understanding the
shortcomings in the data collection. However, recollecting the data is often an
expensive and extensive task. By transferring knowledge from multiple disci-
plines, diverse approaches will be observed to capture the risk and calibrate the
trust in autonomous systems. This research proposes a conceptual framework,
Warning Identification Framework, that captures the known risks and creates a
safety net around the autonomy-enabling algorithms to improve the reliability
of the autonomous operations.

4.1.1 Introduction

The advancements in technology are changing the way the industry handles
risk. What used to be a tedious or dangerous job for a human can be replaced
by an unmanned autonomous system (UAS). This replacement can enhance
safety, work efficiency, and knowledge of the operating environment. As a
type of artificial intelligence1, machine learning (ML) is at the forefront of re-
search in the context of reliable UAS. Autonomy is "an unmanned system’s own
ability of integrated sensing, perceiving, analyzing, communicating, planning,
decision-making, and acting/executing to achieve its goals" 2. Recent research
on autonomous systems identifies common challenges within risk and trust of
ML algorithms that enable autonomy 3,4. Formal definitions of technical tests
and evaluation of UAS5 highlight challenges of lacking the quantitative defini-
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tions of emergent behavior, human trust, reliability and resilience 3. However,
to ensure the UAS’s ability to act and make decisions to achieve the mission’s
goal, it is critical to explore the concept of calibrated trust 6. Calibrated trust
is the process of adjusting the trust level of human operators with the actual
reliability of a system6, - or trusting the machine will do as intended within a
specific environment7.

ML allows computing systems to learn how to do tasks from significant
amounts of data, rather than being programmed (human instructed) 1. There-
fore, there is a rising need to understand howML capabilities can be integrated
into existing systems engineering, and design processes 3. The performance
of ML algorithms can measure the majority of UAS’s capabilities, inevitably
measuring the system’s reliability. However, the software and system reliability
engineering forUAS incorporatingML is not a trivial task. ML integration is ex-
periencing significant limitations, including black box algorithms or algorithm
explainability8, scalability, and limited structural approach to problem-solving.
The data, often impacted by biases, is another limitation related toML. Bad qual-
ity data can lead the ML algorithms to result in poor predictions or decisions,
and eventually, unintended harm 9.

During offshore operations, the UAS relies on integrated sensors and video
input for surveillance, intervention, and inspection of the assets and the en-
vironment. The role of the UAS is to recognize warning signals from the
environment or the inspected asset, trigger warning signals, and report them to
the offshore control center or operator control rooms in real-time. Unintended
ML outcomes can significantly impact the environment, the asset, and the UAS
itself. The environmental disruptions can stay unnoticed and develop to critical
states, such as disruptive water states or chemical leaks. Similarly, unobserved
corrosion, chemical leaks, material degradation, cracks, misplaced objects, and
biological growth on assets are just a few examples of the potential issues. This
problem can lead to a catastrophic impact on the environment and significant
financial loss for the industry. Knowing how to respond and prepare the data
for anticipated insights is a challenge in dynamic operations. The industry
needs more knowledge on reliable, and time-efficient UAS operations 10.

The contribution of this section is a Warning Identification Framework
(WIF) for UAS incorporating ML. The WIF incorporates managing resilience,
ensuring the system’s ability to plan, prepare and react to the potential occur-
rence of unwanted and disruptive events. While designing this framework we
consolidate knowledge on reliability and resilience engineering, risk assess-
ment, and human-machine teaming approach to UAS. In this section, we:

1. Provide a multidisciplinary approach to the safety concerns of current
systems incorporating ML through the lenses of risk assessment’s future.
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2. Propose a global framework based on a shared understanding of gaps in
ML of a particular application instead of solutions based on specific ML
algorithm enhancements or global change of data gathering processes.

4.1.2 Motivation and Related Applications

Trust Calibration

Recent research shows potential in alleviating risks, enhancing reliability, and
influencing trust in autonomous systems. Reliability is an ability to perform
as required, without failure, for a given time interval, under given conditions
(IEC 192-01-24)11. The reliability of an autonomous system directly impacts
trust. However, over-trust and under-trust often occur in highly dynamic en-
vironments and can pose serious safety and efficiency concerns 6. Over-trust
in the system implies that the human operator overestimated the reliability
of a system. Under-trust in the system implies that the human operator esti-
mates that the system should not be trusted with a given task. Okamura et
al.6 describe the trust calibration in autonomous systems in a dynamic envi-
ronment as an essential process for successful collaboration between humans
and systems. Trust calibration incorporates system reliability and continuous
system transparency. Okamura et al. 6 argue that trust is a latent construct
and therefore challenging to measure. The authors 6 observe human behavior
to determine the trust calibration status. They experimented with a drone
simulator and observed seventy participants who performed inspection tasks
manually or relied on the inspection by an autonomous drone. In the experi-
ment, the participants observed the changing weather conditions in the drone
simulator. The participants were required to actively make decisions whether
they trust or rely on the autonomous drone to perform inspection tasks within
the environmental conditions presented on the simulator. The experiment’s
goal was to capture the under-trust and over-trust of the participants in the
autonomous drone operations. The experiment demonstrated successful de-
tection of miscalibration of trust and adjustment of participants’ behaviors,
showing trust gaps in collaboration between humans and autonomous systems.
The results showed that understanding how the system functions and makes
decisions is crucial when trusting the autonomous systems.

Explainable Machine Learning

ML is taking over many high-stakes decision-making throughout society 8.
The author8 defines black box ML algorithms as either functions that are too
complicated for any human to comprehend or as proprietary functions. Past
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research highlights that developing explainable algorithms will mitigate some
of the problems caused by the black box algorithms 8. Rudin8 argues that trying
to explain black box algorithms rather than developing explainable ones can
support a bad practice and therefore cause harm to society.

The author8 singles out some of the most prominent challenges of black
box and explainable algorithms that are summarised as follows:

1. Complexity: There is a belief that black box algorithms result in top
predictive performance when compared to the explainable algorithms
that are easier to understand. The author claims that when the data is
structured and contains meaningful features, complex classifiers (such
as neural networks, random forest, boosted decision trees) and more
straightforward classifiers (such as logistic regression and decision lists)
perform similarly. Complexity does not imply accuracy, which is also
valid for computer vision or image processing algorithms that are often
particularly complex.

2. Faithfulness of explainable algorithms: Explainable ML algorithms provide
interpretations that are not faithful to what the black box algorithm
computes. The explainable algorithm does not mimic the black box algo-
rithm but instead tries to interpret it as accurately as possible and provide
an explainable alternative to the black box algorithm. The difficulty in
creating this interpretation can lead to misalignment with the black box
algorithm and endanger the trust in the black box algorithm. Rudin 8

proposes calling these interpreted algorithms ‘summary statistics’, ‘sum-
mary predictions’ or ‘trends of the algorithm’ to avoid confusion with
the belief that the interpretation should mimic the black box algorithm.

3. Challenge to incorporate risk estimation within black box algorithms: The
database is a definite collection of data or information that the algorithms
learn from and train on to make predictions. Black box algorithms are
often incompatible with the situation where information outside the
database needs to be combined with a risk assessment. Rudin 8 argues
that the black box algorithms are challenging to calibrate with additional
information on estimated risk manually. Another downside of these
algorithms is that it is not transparent as to what the risk estimation is.

4. Explainability leading to human error: Additional explanations to the black
box algorithm can lead to complicated decision-making and leave space
for other human error.

5. Hidden patterns in data: There is a myth that only black box algorithms
can uncover hidden patterns in data. This myth can lead to less trust
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in the performance of explainable algorithms. The author 8 claims that
if the pattern were significant enough, it would be possible to obtain it
with an explainable algorithm.

6. Explainability is difficult to design and develop: Creating explainable algo-
rithms for specific domains often involves constraints on data dimen-
sions, meaning that explainability requires low-dimensional space. It is
challenging to troubleshoot the algorithm or agree on the explainable
algorithm’s reasoning process for a specific domain. The main challenge
lies in the difficulty of developing and designing explainable algorithms.

Explainable ML algorithms lead to increased transparency that is crucial
in measuring the fairness of the advanced system’s decision-making processes.
The fairness notion tells if the output of a predicting system is fair or discrimi-
nating12. Fairness is a rising problem due to the predictive system’s tendency
towards efficiency and sacrificing anomalies as tolerable collateral damage 12.

Errors and Biases in Machine Learning

There is a growing worry about the errors of ML in sensitive domains 13. Pleiss
et al.13 describe cases of ML errors due to biases in data that have directly
impacted human lives. The authors examine the cases of ML classification
algorithms and frameworks that constrain these algorithms such that no false-
positive or false-negative predictions affect any classified group or that there
exists fairness in the classified groups. Their study demonstrated unsettling
results that any algorithm with one error constraint (i.e., equal false-negatives
across groups) is almost equal to randomizing the percentage of predictions
for an existing classifier.

Knowing when to react is critical during remote operations. A timely
reaction can prevent accidents saving the environmental impact and significant
amounts ofmoney. Galaz et al.4 provide recent research ofmachine intelligence
risks that include algorithmic bias and harms, unequal access and benefits,
cascading failures and disruptions, mis- and disinformation, and trade-offs
between efficiency and resilience. The authors imply that many foreseeable
risks can be acted upon proactively. However, they do not propose actions or
algorithms to intervene with ML outcomes’ foreseeable risks. The authors 4
highlight that these risks are related to algorithmic biases and their allocative
harms. The authors group these biases into training data bias, transfer context
bias, and interpretation bias:

1. Training data bias is the erroneous data from which machines learn.

2. Transfer context bias occurs when using ML algorithms and dataset
created in/for one environment in another.
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3. Interpretation bias is a conflict between ML interpreted results and
expected or needed results for further functioning of a system.

Suresh et al.9 discuss important choices generated over extensive data and
build a framework for understanding unintended consequences of ML. The
authors identify ‘biases’ as the most common reason from which unwanted
ML consequences arise. The bias represents an unintended or even malicious
property of the data9. The authors9 curate through recent work of known
ML issues and identify six sources of harm that represent a framework for
understanding the unintended ML consequences:

1. Historical bias occurs when the machine learns on historical or available
data samples that do not reflect an accurate picture of the world.

2. Representation bias occurs when there is an imbalanced representation
of all the data samples in the data set.

3. Measurement bias occurs when what we choose to measure does not
relate well to the data samples the machine learns on or when the ML
task is oversimplified.

4. Aggregation bias occurs when using a one-size-fits-all algorithm for
cases with different conditional distributions.

5. Evaluation bias occurs when the evaluation or benchmark data for the
ML algorithm does not represent the target measurement.

6. Deployment bias occurs when there is a mismatch between the problem
an algorithm is intended to solve and how the algorithm is used.

The authors9 advise tweaking ML algorithms to mitigate aggregation and
evaluation biases in data. They indicate that the framework can communicate
knowledge on ML outcomes and possibly facilitate productive solutions on
dealing with the harmful consequences.

Applications

A significant number of applications are developed for autonomous systems
incorporating ML for mitigating risks during operations. As a major task in
offshore operations, the UAS are increasingly popular to gather information
for risk assessment of the assets or the environment. Condition-monitoring
data is often used as additional information for evaluating risk 14. In offshore
operations, monitoring of assets can give real-time information on degradation
of the asset material, and the condition-monitoring data provides information
on individual degradation process 14. Some of the applications regarding data
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assessment on degradation processes such as oxidation, corrosion, fatigue,
crack growth are14–16. Improved design and tweaking of ML algorithms and
reconsideration of data gathering and pre-processing methods are the most
notable research topics for enhancing the reliability of autonomous systems,
and understanding error measurements 5,17–21.

Anomaly detection is an essential process for recognizing unexpected
events in the data during operations. Liu et al. 22 explore background biases for
anomaly detection in surveillance videos. Their study shows that the algorithms
are biased to capture a considerable amount of background information as the
basis of predictions. The authors22 argue that background bias is a problem
that exists in the majority of the action recognition algorithms, particularly in
deep neural networks. They propose a trainable, area-guided framework for
the anomaly detection algorithms to recognize anomalous regions and learn the
essence of the anomaly instead of simply remembering the background 22. Re-
lated concerns around anomaly detection algorithms are prominent in research,
such as trade-offs and analysis of the algorithms 23, bottleneck identification24,
and large-scale anomaly detection in surveillance videos 25.

4.1.3 Multidisciplinary Approaches to Risk and Reliability of Autonomous Sys-
tems

Risk Assessment

Risk assessment is a discipline that incorporates structured analysis and identifi-
cation of possible hazards/threats, their causes and consequences, risk descrip-
tion, quantification, and representation of uncertainties 14. The terms risk and
warning are often used together or interchangeably. According to 1, risk is the
possibility of something bad happening at some time in the future, a situation
that could be dangerous or have a bad result. Moreover, a warning is a statement
or an event telling somebody that something bad or unpleasant may happen in
the future so that they can try to avoid it 1. Additionally, a warning is a sign that
indicates approaching or threatening risk and may require immediate inter-
vention. Therefore, it is crucial to understand a specific environment or assets’
potential risks of failure to understand warning signs and act upon them. The
risk assessment should provide a coherent increase of the awareness on risk and
attention to safety. The fourth industrial revolution, particularly the internet of
things, big data, and artificial intelligence that enables autonomy, changes how
we design and develop systems and monitor our environment. This complex
network of cooperative systems provides opportunities to improve the systems
that monitor, intervene, and inspect the environment or the industrial assets to
become more efficient, faster, more flexible, and resilient. However, these sys-
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tems also generate newweaknesses, hazards and create new risk, somewhat due
to new and unknown functional dependencies in and among the systems 14.26
describe the industry perspective on the definition of autonomy and divide
autonomy into six levels, from no automation to a fully autonomous system
that does not require human interaction. The authors 26 highlight that the fully
autonomous system is multidimensional and incorporates autonomy/automa-
tion, data deliberation, and risk assessment. Data deliberation signifies the
system’s capability to continuously gather data from the environment, analyze
it, and compare historical data to make predictions. Risk assessment signifies
the system’s capability to continuously assess the risk and adjust the criticality
of the warnings accordingly, deciding the best risk mitigation policy 26.

Naturally, the digital future is shaping the future of risk assessment. Ac-
cording to14, six underlying factors impact the advancement of risk assessment:

1. Knowledge, information, and data available for analyzing and computing
the risk are continuously growing.

2. Modeling capabilities and computational power are continuously advanc-
ing, making more accessible simulations and large-scale data analysis.

3. The increasing complexity of the advancing systems made of heteroge-
neous elements (hardware, software, human) leads to system behaviors
challenging to predict or explain.

4. The risk assessment extends to cover managing risk in a systematic
way that includes the occurrence of the risk, prevention, mitigation,
emergency crisis management, and restoration 14.

5. Recognition that risk varies over time and accordingly, the effectiveness
of the mitigation measures changes.

6. Cyber-physical systems require solid frameworks for safety and security
assessment.

Zio14 highlights that description of the risk and future risk assessment
is conditioned on available knowledge. However, it is equally important to
address the incomplete knowledge or the unknowns within the risk assessment.
According to the available knowledge, Flage et al. 27 classify the events in risk
assessment to:

1. Unknown-unknown events that are new and unknown to everyone.

2. Unknown-known events that are new to risk analysts but have been
recognized by someone else.
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3. Known-unknown events withweak background knowledge and justified
indications that a new, unknown type of event or scenario could occur
in the future.

4. Known-known events that are known to the analysts performing the
risk assessment and for which there is existing evidence.

In autonomous systems that incorporate ML, unknown events require nov-
elty detection and anomaly detection approaches. Novelty detection is the task of
classifying test data that differ in some respect from the data that are available
during training28. Anomaly detection detects the anomalies unrelated to the
training data29. Both anomalies and novelties occur rarely and are dealing
with unexpected events in the data. We can argue that the most dangerous
events are the unknown ones because otherwise, we can take action to prevent
them. Accordingly, Flage et al.27 argue that known-unknown events are rep-
resentative of known risks that become apparent in new conditions. However,
the unknown-unknown, unknown-known, and known-known events can be
associated with negligible probabilities of occurrence.

Reliability Engineering for UAS

The system reliability engineering and reliability assessment are practical ways
to manage risk and support decision-making for safe, reliable, and efficient
operation of complex engineering systems 30. According to31, reliability en-
gineering is an engineering discipline for applying scientific know-how to a
component, product, plant, or process in order to ensure that it performs its
intended function, without failure, for the required time duration in a spec-
ified environment. Reliability engineering involves an iterative process of
reliability assessment and improvement, and the relationship between the two
processes32. Autonomous systems can change their behavior in response to
unanticipated events during operation 33. However, assessing the reliability of
an autonomous system varies depending on the autonomy levels of the sys-
tem. Previous research on autonomy levels includes the work of Huang et
al.34 who developed Autonomy Levels for Unmanned Systems that specifies
metrics to assess autonomous systems capabilities. As the enablers of autonomy,
the reliability engineering approach to ML algorithms is similar to traditional
software reliability assessment. Abstractly, ML performs perception tasks and
informed decision-making; thus, most systems that incorporate ML will nat-
urally include standard software components 3. Reliability growth modeling
that characterizes how the reliability of a system increases during testing 3 is
one of the standard approaches to software reliability assessment. In ML, the
reliability growth measures the accuracy as a fraction of correct predictions di-
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vided by a total number of predictions 3. Consequently, reliability and accuracy
in ML are commonly synonymous terms3.

According to35, there are four technical components of reliable software:

1. Fault prevention - avoiding faults during design and development of
systems through enforcement of good design methods.

2. Fault removal - the process of enforcing formal inspection and testing
systems until eliminating all visible faults while not creating any new
faults.

3. Fault tolerance - the survival attribute of a system.

4. Fault/failure forecasting - the process of establishing reliability models,
failure data, fault/failure relationships, analysis, and interpretation of
system behavior.

A reliable system has a capability to function until the system desists under
expected circumstances. Moreover, a reliable system is a representation of the
resilience engineering results.

Resilience Engineering for UAS

Resilience engineering brings together the system safety concepts, reliability of
a system, analysis and handling uncertainties, risks, and survivability of a sys-
tem. According to1, resilience is the ability to recover quickly after something
unpleasant, such as shock or an injury, the ability to return to its original shape.
Hollnagel36, who was at the forefront of resilience engineering, has developed
three premises of resilience engineering that showcase limitations and issues
in resilience engineering:

1. The conditions of performance are underspecified.

2. Unfavorable events can be attributed to a combination of normal perfor-
mance uncertainties.

3. Safety management cannot be based on error probabilities and calcula-
tions.

These premises demonstrate the limitations within current safety engineering
and pose guidelines for the continuous evolution of resilience engineering.

Vachtsevanos et al.37 illustrate the expected basic functioning of a resilient
system through anticipation of undesirable events, the monitoring of perfor-
mance, and the response to warnings or threats (see Figure 4.1). This kind of
system implies proactive measures and readiness to adapt to the variability of



60 ▶ CHAP. 4 RISK-INFORMED AND DATA-DRIVEN UAS OPERATIONS

FIGURE 4.1. Basic functions of a resilient system, adapted from 37

circumstances making it less susceptible to a hazardous environment. As a re-
sult, a resilient UAS is flexible and capable of returning to a normal functioning
state after experiencing disturbances.

Human-Machine Teaming Perspectives

Human-Machine Teaming (HMT) is a relationship between humans, the ma-
chine, and their interdependencies. The goal of HMT is to build trustworthy,
transparent, predictable, adaptable, and reliable systems that incorporate arti-
ficial intelligence, to create effective human-machine teams 7. HMT require-
ments7 for an adaptable autonomous system include:

1. Multiple options or paths for recovery from a single problem (among
which allowing humans to specify problem at different levels of abstrac-
tion);

2. On-demand adjustment of autonomy;

3. System degradation and failure resistance (the system shall be tolerant
and fail gracefully maintaining its safety 7).

For highly effective HMT, the most relevant requirements during the de-
velopment and design stage of the autonomous systems are to ensure safe and
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effective systems during operations in complex, contested, unanticipated, and
dynamic environments7. Calibrated trust (i.e., trusting the autonomous sys-
tem will do what it is supposed to do within a particular environment) and
shared understanding (i.e., shared perception between human-to-machine and
machine-to-human) are fundamental HMT concerns. A long-term strategy
is to achieve an intuitive, shared, and bidirectional information flow between
humans and machines7.

4.1.4 New Warning Identification Framework

This section proposes an early concept of a Warning Identification Framework
(WIF) to guide the planning of UAS incorporatingML in addressing the known
risks and recognizing the warning signals accordingly (see Figure 4.2). The UAS
incorporating ML can understand the operating environment and decide their
reactions to the changes in the environment. During asset surveillance, the UAS
can detect anomalies in sensor measurements that can suggest possible risks or
early warning signals. A risk indicates the possibility of asset disturbance, and
a warning signifies the early sign of a disturbance that can require immediate
reaction. The anomalous events during remote operations, such as a measured
crack on the pipeline during surveillance for the offshore oil and gas industry,
can be extreme and unlikely. The rarity of suchmeasurements leads to very little
evidence in data. The rare measurement can be dismissed or even unnoticed
by the anomaly detection ML algorithm (as discussed by 22). The autonomous
systems’ ability to detect warnings or risks is not merely about building a tool;
it is about creating a long-term strategy. The UAS needs to have the possibility
to react to these warnings when the situation requires it.

The process of development and integration of ML into a system is re-
ferred to as theML lifecycle38. The ML lifecycle consists of four stages: Data
Management, Model Learning, Model Verification (as the activities during
which machine-learned models are produced), and Model Deployment (the
deployment of ML component along with the other software components in
the system)38. The Data Management stage is responsible for the acquisition
of the data that can be used to predict future data or to perform other kinds of
decision making under uncertainty 39. The planning of the Data Management
stage is often underestimated. However, with the trust, reliability, and explain-
ability issues that ML encounters, it is critical to have a clear understanding of
the purpose ofML incorporated into amore extensive system. TheWIF intends
to address trust calibration, errors and biases, and explainability for the UAS
that depend on ML algorithms (as shown in Figure 4.2). This framework bases
on concepts and mitigation methods from Risk Assessment, Reliability Engi-
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FIGURE 4.2. Multidisciplinary approach formalized in WIF to address chal-
lenges in UASML, adapted from40

neering, Resilience Engineering, and Human-Machine Teaming (as shown in
Figure 4.2). Two of the factors of future risk assessment, according to 14, are the
recognition of knowledge and data growth and the need for solid frameworks
for the safety assessment of cyber-physical systems.

Therefore, the WIF consists of three segments:

1. Identifying the Risk The first step in WIF is identifying the risk of expe-
riencing disturbances in the form of rare anomalies (i.e., concerning pipeline
surveillance) from available knowledge, historical insights, and domain expert
inputs. In this step, Risk Assessment provides insights into risk definition based
on available knowledge14 and focusing on known events that become apparent
in new conditions27. Known risks or vulnerabilities provide knowledge on
the sequence of events that can lead to the asset or environmental disruption,
frequency of occurrence of these events, and consequences of the disruption.
These factors are a part of formal characterizations and representations of risk
described in41. An extended definition, by42, describes the knowledge of risk
through defining the set of disturbance scenarios, set of consequences and,
quantified uncertainties. Furthermore, a reliable system is capable of normal
functioning under expected or ordinary circumstances. These circumstances
are a part of the risk scenario definition. This step requires developing models
based on existing knowledge to identify risks.

2. Hierarchy ofWarning Signals Hirerachization or ranking of thewarning
signals is a description of the sequence of the events that may evolve into a
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disturbance that requires immediate intervention. This hierarchy provides the
early-to-late-warning evolution of a disturbance by defining the criticality of
a warning signal. Adjusting the criticality of warning signals is a part of Risk
Assessment. This adjustment allows for fault forecasting, as a characteristic of
a reliable system that incorporates the analysis of warning signal relationships.
Finally, as a resilient system, analysis and adjustment of the criticality ofwarning
signals allow the system to incorporate a shared understanding of anticipation
andmonitoring of the disruptions. This step requires domain experts to develop
models based on existing knowledge for describing risks.

3. Orchestration of Actions Knowing how to respond to the emerging dis-
turbance is one of the critical elements of reliable UAS 26,37. The orchestration
of UAS actions is an essential task in remote operations. This step incorporates
the reliable system capabilities to prevent, remove or tolerate the disruptions
and a resilient system capacity to respond to the emerging situation. This step
satisfies the requirement and expectation of HMT for an autonomous system
to adjust the autonomy on demand. The ability for the UAS to systematically
and intelligently recognize and act upon warning signals gives the system the
capability of being proactive and reactive. A proactive UAS expects and cap-
tures weak signals before anomalies occur. A reactive UAS communicates and
responds to the emerging situation.

Finally, the three steps of WIF satisfy the HMT requirements for an ex-
plainable functioning of a system with a shared understanding of intentions
and multiple approaches to a single problem.

Warning Identification Process Inspired by the conceptual model of Pro-
cess Performance Indicator (PPI)14, Figure 4.3 illustrates theWarning Identifi-
cation Process (WIP). PPI reflects on the degree of system objective satisfaction
and describes the disruptive events leading to unwanted disruptions of the
operation. The WIP demonstrates the development and identification of the
warning signals by the UAS, guided by the WIF Hierarchy of Warning Signals.
Displayed are stages of warning from one to four, where one represents the
earliest stage of the warning sensed by UAS, and four represents the latest and
recognized warning that requires action. Anomaly Response State is the period
from when the UAS detects an anomaly until it recognizes it as a warning.
During the Warning Response Trigger, the UAS takes action and responds to
the disturbance following the WIF Orchestration of the actions. Finally, the
Response State is when the UAS returns to the natural flow of the operation,
between the recognized disturbance and a new expected disturbance.
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FIGURE 4.3. Warning Identification Process

4.1.5 Application and Contribution Summary

The complexity of algorithms that enable autonomy makes it challenging to
control, identify and characterize potential disruptions and react to the con-
sequences. As a future factor in risk assessment, 14 highlights the need for
extending the frameworks of risk assessment for complex, interconnected sys-
tems that support critical infrastructures. Disruptive events and safety barrier
failures typically occur due to degradation processes 14. Introduction of the
condition-monitoring or surveillance data in WIF can give insight into the
disruptive process, such as degradation, and prioritize the monitored variables.
The WIF can complement the ML processes incorporated in UAS towards
condition monitoring, surveillance, and intervention-based risk assessment.
The proposed WIF provides a scalable, explainable and structural approach
to dynamic risk assessment alongside ML. Examples of case studies for the
proposed Warning Identification Framework are presented in Chapters 5 and
6.
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4.2 USING RISK ANALYSIS FOR ANOMALY DETECTION FOR ENHANCED RELIA-
BILITY OF UNMANNED AUTONOMOUS SYSTEMS

ABSTRACT

Unmanned Autonomous Systems (UAS) are intended to improve the safety of
offshore operations by residing on the seabed and monitoring and inspecting
assets and the environment. The UAS can collect and analyze data in real-time
through sensor measurements and video analysis, warning onshore operators
of data anomalies that indicate potentially hazardous environmental events.
Due to the rarity of hazardous events, data on them are scarce, resulting in a data
imbalance between normal and anomalous occurrences. Consequently, it has
become increasingly challenging for UAS to recognize potentially hazardous
circumstances. Thus, the UAS may overlook early warning signs of hazardous
events or may overwhelm operators with trivial, resource-intensive informa-
tion in the form of false alarms. Recent research has addressed data imbalances
by simulating underrepresented data, extrapolating it using causal knowledge,
or adding parameters to data and methods as a form of semi-supervision. How-
ever, in this research, we examine risk analysis as a tool for providing a semi-
supervised approach to anomaly detection. We emphasize the overlapping
properties of risk analysis and anomaly detection within the objectives of a
highly autonomous system. Finally, we apply the derived insights to anomaly
detection in sensor data to lower the likelihood of false alarms or missed signals.

4.2.1 Introduction

Offshore operations at remote oil and gas platforms rely on support func-
tions such as monitoring, inspection, and maintenance to support the safe
and optimal functioning of highly engineered assets and their surrounding
environment. These support functions frequently require underwater labor in
restricted, low visibility or chemically contaminated environments, requiring
continuous resource-intensive response capability 26. Unmanned autonomous
systems (UAS) are intended to take a permanent part in offshore operations,
replacing the need for personnel and vessels in remote and potentially dan-
gerous locations and thereby improving remote operations’ safety. Equipped
with sensors and cameras, the UAS, such as underwater intervention drone,
monitor and inspect the assets and environment by residing on the seabed,
collecting and analyzing the data in real time. Sensor data from UAS reshapes
our perception of the environment and how the offshore industry manages
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risk by enabling UAS to detect unusual occurrences through irregularities in
data, known as anomalies. Anomalies can represent early warning signs of
potentially hazardous events, such as material degradation on the pipeline
surface, a developing fracture, misplaced objects, or biological growth. The
anomalous observations can be used as inputs to risk analysis to identify haz-
ards as potential sources of harm. Adequately detecting the anomalies with
anomaly detection and classification methods enables the UAS to react to the
emerging situation and activate the autonomous alarm management to alarm
the operators if and when the situation requires it. The alarms are used to warn
operators of a malfunctioning piece of equipment, a process deviation, or an
unanticipated state requiring operator involvement 43. It is vital for UAS to
detect early warning indications of a failing asset or substantial environmental
changes, as failure to do so can have a harmful effect on the environment and
result in significant financial loss.

Since the hazardous occurrences are relatively rare, there is insufficient evi-
dence or balance in data to adequately identify hazardous occurrences, making
it challenging for anomaly detection methods to capture the criticality of poten-
tially rising hazardous events. Thesemethodsmay overlook the anomalous data
by sacrificing the anomalies for efficiency and disregarding them as tolerable
collateral damage12. On the contrary, because of the inefficient ordering of
anomaly criticalities, anomaly detection methods may overwhelm operators
with low-significance, resource-wasteful information in form of false alarms.
Ideally, the anomaly detection methods would have sufficient understanding or
context of the environment to warn the operators of anomalous occurrences
as soon as they are detected while minimizing the false alarms 44.

Recent research explores numerous approaches to expanding underrepre-
sented data instances in imbalanced datasets, i.e., through extrapolation with
causal knowledge, expanding the underrepresented data with the one repro-
duced by simulations of rare events, or setting additional parameters within
data and methods as a form of semi-supervision. Numerous applications of
integrated risk analysis and anomaly detection have been investigated, with
anomaly detection results being used as inputs to risk analysis. The frequent
application of anomaly detection is the identification of anomalous trends in
data to help prevent or reduce the risk of undesired events 45, predict the risks46,
or enhance risk identification47. However, the properties of anomaly detection
and risk analysis are comparable, and the objectives of these methods often
overlap. This overlap is overlooked in recent research.

Therefore, this section introduces a novel approach to anomaly detection
by examining risk analysis as a tool for providing a semi-supervised approach to
anomaly detection, thereby providing an opportunity to lower the probability
of false alarms ormissed signals caused by data imbalance. We first compare the



4.2 USING RISK ANALYSIS FOR ANOMALY DETECTION FOR ENHANCED RELIABILITY OF

UNMANNED AUTONOMOUS SYSTEMS ◀ 67

weaknesses of existing methods for hazard detection in imbalanced data, such
as simulation, extrapolation with causal knowledge, and decision boundaries,
and identify the patterns in their advantages and disadvantages. We then search
for gaps in which anomaly detection can benefit from existing knowledge
resulting from risk analysis. By linking risk analysis to anomaly detection, we
concurrently address the absence of risk context in complex anomaly detection
methods while minimizing the impact of imbalanced data and thus adhere to
the essential EU guidelines for trustworthy intelligent systems 48.

4.2.2 Motivation and Related Work

In the context of an unmanned autonomous system, autonomy refers to a
system’s or component’s ability to operate without external control 37. In con-
trast to an automated system that performs strictly programmed tasks, an
autonomous system decides and executes actions driven by the intended objec-
tive, enabled through artificial intelligence (AI) approaches (i.e., ML, computer
vision)26. Thereby, by creating systems that accomplish tasks that require
intelligence when performed by people49, AI is essential for autonomy. Full
autonomy of a system relies on the advancement of enabling technologies and
associated data processing. The integral development of autonomy is adapting
the control of UAS in critical situations to reliably respond to dynamic envi-
ronments and provide appropriate detection, identification, and prediction of
hazards that may impact the safety of the environment and assets.

Challenges: data and enabling technologies

The goals of achieving a reliable, highly autonomous UAS are impeded by
several factors, according to37:

1. Significant operator engagement is necessary without a reliable level of
autonomy, posing critical new issues in human-machine interfaces and
mixed-initiative control.

2. Acquiring high levels of autonomy in an uncertain, unstructured, haz-
ardous, and dynamic environment necessitates using ML techniques,
facing numerous systems engineering difficulties.

3. Today’s widely used ML techniques are inherently unpredictable. They
lack the necessary frameworks to provide proof of safety and predictabil-
ity, whereas industrial applications require predictable behavior and a
strong guarantee of safety.
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4. UAS operate in uncertain and noisy environments subjected to hazards,
jeopardizing their operational integrity, necessitating the development
of methods that ensure resilient and reliable UAS operations.

Additionaly, the rarity of hazardous occurrences leads to their underrepresen-
tation in data, creating imbalanced data. Combined with noisy environments,
the methods become biased towards recognizing the broadly represented data
instances while discarding the underrepresented ones as noise. However, data
recollection is typically an expensive and time-consuming task 40. As a result, a
particular emphasis should be placed on bringing context to data and finding
means for supervising or semi-supervising the methods used to handle imbal-
anced data. The challenge of imbalanced data in anomaly detection systems
frequently leads to a distorted perspective of data distribution, resulting in
unreliable conclusions. The most common approaches to addressing this chal-
lenge are to extrapolate data with artificially generated circumstances through
simulations or computations from existing causal and physics knowledge, or
to determine decision boundaries by which normal and anomalous data would
be distinguished.

Simulating Underrepresented Data Fortunately, hazardous events with
high consequences are uncommon. Therefore, simulating the physical world is
a widely used technique for collecting missing data describing the high conse-
quence hazardous events to train ML models and address the data imbalance.
While the extensive study has been conducted on data collection via simulation,
this technique for balancing the data is not always suitable. 50 highlight the
complexity of imbalanced data and argue that it is challenging to construct an
adequate dataset for training ML models in engineering contexts becuase a
system is generally comprised of several sensors that can continuously gather
data, most of which is healthy normal data with little to no evidence of haz-
ardous occurrences. Conducting simulations to acquire data on hazardous
occurrences can be costly. For instance, researchers need to acquire adequate
equipment and computing power to simulate the occurrences, establish a test
benchmark, and collect the data. The data on hazardous occurrences obtained
by simulation in a virtual environment is often insufficiently practical, as the
simulations may not represent the complex physical world in its entirety.

Extrapolating underrepresented data with causal knowledge 51 discuss
high-consequence and low-probability scenarios not being well captured by
data-driven models and suggest using causal and physics-based knowledge to
extrapolate the scarce data. The authors 51 propose separating the components
of data-generating processes that are stochastic from those that are determinis-
tic or guided by well-defined principles. Accordingly, stochastic elements can
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be leveraged to augment the robustness against empirically observed variations
for relevant scenarios. Thus, by understanding the deterministic processes
that generate data, some physical constraints can be applied and employed to
extrapolate beyond the bounds of existing observed data with higher confi-
dence. They suggest that integrating data-driven and causal models to forecast
potentially catastrophic events in advance of their occurrence can enhance the
precision of real-time risk-based decisions.

Decision boundaries Sensor systems are critical components of modern
networked digital infrastructures, such as autonomous systems’ environmental
monitoring52. As a result, a considerable amount of the world’s data is in the
form of streaming, time-series data, where anomalies provide essential infor-
mation in critical situations44. Since not all potential anomalies are known in
advance, most data-driven anomaly detection techniques depend on developing
a model of the system’s normal behavior. This dependence can potentially ease
the occurrence of noise or false alarms during anomaly detection 53.Decision
boundaries are frequently seen in classification and supervised algorithms that
utilize labeled data54.

The discussed approaches vary in their disadvantages. Simulation and
extrapolation of imbalanced data are computationally and resource-intensive
and frequently lack real representation of the physical world. As an alternative,
setting decision boundaries lacks the context of underlying causes of anomalous
and hazardous occurrences, necessitating extensive iterations to determine the
correct boundaries and exposing the model to the risk of overfitting, which
can create difficulties during real-time analysis. However, the lack of risk
context is the overreaching drawback to the three discussed approaches. This
finding leaves an opportunity to combine the strengths of existing approaches
and fill in the gap of missing risk context. We can exploit the advantages of
utilizing accessible causal knowledge gathered through risk analysis insights
and employed in establishing decision boundaries.

4.2.3 Risk Context within Anomaly Detection

55 defines risk as the effect of uncertainty on objectives. The effect is a deviation
from the expected that can be positive, negative or both, and can create or result
in opportunities and threats. Risk is usually expressed in terms of risk sources,
potential events, their consequences and their likelihood of occurrence 55. Risk
analysis, as an element of risk assessment, systematically uses available infor-
mation to identify hazards and estimate risk. 56 defines hazard as a potential
source of harm. Thus, risk analysis can be viewed as a tool for informing future
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welfare decision-making, as risk is concerned with what might happen in the
future57. Themajority of systems incorporate barriers that can assist prevent or
limit hazardous events and their consequences, encircle and contain the hazard,
serve to safeguard the asset and separate the hazard from the asset 58. Similarly,
the identification of a hazard is a critical goal of anomaly detection since it plays
a vital role in ensuring the reliability and safety of industrial operations by
alerting the system of potentially hazardous occurrences in the environment,
monitored asset, or system itself.

Overlapping roles in UAS

Because the oil and gas industry prioritizes safety during remote operations, we
can consider safe operations an overarching goal of a UAS operation. Risk anal-
ysis, anomaly detection, and autonomous operations generally follow the same
process: analyzing data, identifying and assessing risk/anomaly, determining
the criticality of risk/anomaly, and determining appropriate mitigation steps.
The common objective and overlapping processes of risk analysis, anomaly de-
tection, and high-autonomy UAS operation, such as during pipeline inspection
and monitoring, involve reporting the risk analysis, and deciding the best risk
management policies. While risk analysis would provide information on poten-
tial hazards derived from causal knowledge (i.e., from material engineers), the
anomaly detection method would look for irregular patterns analyzed during
video inspection of the material surface. Risk analysis incorporates the analysis
of barriers that encircle and divide the hazard from the safe operation and can
be used to define decision boundaries within anomaly detectionmethods, encir-
cling and distinguishing normal data from anomalous data. Additionally, risk
analysis provides insight into the sequence of events leading up to a hazardous
occurrence, as well as the frequency and likelihood of that occurrence, which
can assist in differentiating between significant and non-significant anomalies.
Similarly, consequence analysis that stems from risk analysis can aid in deter-
mining the criticality of observed anomalies and the appropriate mitigation
actions. Therefore, the potential of risk analysis for reliable anomaly detection
is substantial.

4.2.4 Contribution Summary

Figure 4.4 illustrates the integration of high autonomy, data deliberation, and
risk analysis that models an objective-oriented (perceptive), risk-oriented (reli-
able), and independent (predictable) UAS. Concentrating on high autonomy
enables independence from operators, which frees up resources and boosts the
potential to manage complex missions involving vast volumes of data. Data



4.2 USING RISK ANALYSIS FOR ANOMALY DETECTION FOR ENHANCED RELIABILITY OF

UNMANNED AUTONOMOUS SYSTEMS ◀ 71

FIGURE 4.4. Reliable UAS

deliberation entails analyzing and comprehending the vast volumes of data
using AI approaches, mainly ML and anomaly detection. Risk analysis brings
context and reliability to autonomous operations, bridging the objective and
risk-oriented operations, thus balancing safety and efficiency. To achieve higher
predictability and thus reliability, the essential task is to use the derived knowl-
edge from risk analysis to identify the criticality of detected anomalies while
avoiding shortcomings of anomaly detection methods. Major shortcoming
involves overwhelming the system with noise, and minor to insignificant data
in the form of false alarms, resulting in wasted resources (i.e., insignificant
biological growth on pipeline surfaces). Contrastingly, the method may favor
the efficiency while classifying anomalies as noise and averting potentially
relevant data that might indicate early hazardous occurrence (i.e., early surface
fracture). Anomalies that overwhelm the data become a part of normal data;
hence anomaly detection methods may camouflage such occurrences 44,59 (i.e.,
substantial material degradation on pipeline surface).

To utilize existing knowledge and semi-supervise the anomaly detection
methods, we propose using the existing knowledge on identified hazards
through RA. Figure 4.5 illustrates the benefits of RA task insights in AD pro-
cesses for efficient criticality detection and thus decision making by the UAS.
The information derived from hazard labeling aids anomaly detection in dis-
tinguishing noise or false alarms from more meaningful information, such as
hazards. Furthermore, criticality labeling derived from risk analysis aids in
classifying hazards, enabling the efficient prioritization of mitigative actions
by UAS. This process initiates the potential of heavily data-oriented methods,
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such as AD, to result in more educated and less presumptuous predictions.

FIGURE 4.5. Methodology scheme, adapted from60
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4.3 CONCLUSIONS AND KEY CONTRIBUTIONS

This section highlights the key contributions and concludes the chapter and
the presented articles.

Implementing ML techniques in a standardized practice that incorporates
reliability is still a matter of early development. During remote UAS operations,
any unintended misbehaviors of the UAS can have severe environmental and
financial consequences. With an increase in UAS employment in remote off-
shore operations, we observe a noticeable need to validate and improve the ML
processes that enable autonomy, further supporting critical decisions during
the UAS operations. The proposed framework, the Warning Identification
Framework, attempts to improve the warning signal detection of UAS during
remote operations, address the shared understanding of UASML intentions,
and prevent unintentional consequences of ML.

Anomalous observations can be abundant in datasets due to the extensive
use of sensors and, as a result, vast data collection. Therefore, they may be a
source of noise in data analysis. Due to the abundance of unlabeled and biased
datasets that lack context, training autonomous systems to detect anomalies
with meaningful insight while minimizing false alarms is becoming exceedingly
challenging. Despite ample research on anomaly detection, there is a gap in
knowledge on their relationship to overlapping risk analysis processes. The ex-
isting approaches to addressing this challenge, through simulation, data extrap-
olation, and decision boundaries, show great potential but lack the necessary
context to distinguish significant from insignificant anomalies. Simultaneously,
recent research singles out the need for more trustworthy autonomous systems
while highlighting the lack of explainable and contextual ML methods.

The key contributions of the presented articles are the identification of com-
ponents fromRisk Assessment, Reliability Engineering, Resilience Engineering,
and Human-Machine Teaming that aid in comprehending the directions for
addressing the common data-driven challenges associated with hazard identifi-
cation. The contributions of these articles tackle the critical shortcomings of
data-driven methods: the complexity of algorithms, difficulty to explain or rea-
son results, and to integrate risk assessment. This creates the opportunities to
design risk-informed data-drivenmodels and applications. These findings have
shaped the knowledge of some of the critical obstacles for anomaly detection
employed in UAS and led to shaping a conceptual risk-informedwarning identi-
fication framework as a novel approach to observingwell-known shortcomings
in using AI-based and data-driven systems for remote operations.
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CHAPTER 5

Reliability of Sensor Data for Machine Learning

This chapter is based on the following two articles:

• Spahic, Rialda; Lundteigen, Mary Ann,Manually or Autonomously Oper-
ated Drones: Impact on Sensor Data towards Machine Learning IEEE 9th
International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (2022)
DOI: 10.1109/CIVEMSA53371.2022.9853685

• Spahic, Rialda; Hepsø, Vidar; Lundteigen, Mary Ann. A Novel Warning
Identification Framework for Risk-Informed Anomaly Detection, Springer
Nature Journal of Intelligent and Robotic Systems (June, 2023)
DOI: 10.1007/s10846-023-01887-2

All authors contributed to the research conception of the two articles. Rialda
Spahic performed material preparation, literature analysis, data analysis and
manuscript writing. Mary Ann Lundteigen performed writing reviews and
supervision of all prior drafts of the manuscript. Vidar Hepsø contributed
to the literature gathering and concept visualisation of the research for the
second listed article.

Analyzing sensor-collected data during remote operations and identifying
the types of obstacles that methods and data may face is one of the preliminary
tasks required to investigate the reliability of machine learning. The first article
presented in this chapter compares the data collected by underwater drones
operated manually and autonomously to determine the differences in data
quality. The second article examines a set of seismic data and a chosen anomaly
detection method to determine whether reported anomalies are hazards or
noise by comparing the anomalies to hazard assessment methods provided by
domain exports for the analyzed dataset.
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5.1 MANUALLY OR AUTONOMOUSLY OPERATED DRONES: IMPACT ON SENSOR

DATA TOWARDS MACHINE LEARNING

ABSTRACT

The growing need for autonomous systems in offshore industries has con-
tributed to the increased use of machine learning methods. These systems
promise to improve safety in operations. However, the methods as enablers of
autonomy are susceptible to various failures while interpreting data andmaking
decisions. Several studies have highlighted the lack of research on the reliability
and resilience of autonomous systems powered by these standard methods.
Recent research provides sets of data interpretation methods. Despite the pop-
ularity of machine learning, there is a significant drop in knowledge when
these methods result in failures. These failures further support autonomous
systems in making wrong decisions. For autonomous systems, resilience and
safety management should be an integrated functionality for recovery from
risky situations and reporting of incidents. This research proposes an overview
of machine learning methods for interpreting sensor data captured by drones
operated manually and autonomously. We apply Isolation Forest for anomaly
detection analysis and evaluate the Decision tree, Random forest, kNN, Logistic
Regression, SVM, and, Naive Bayes for classification analysis. The methods are
chosen based on their adequacy and comparative research prevalence. Compar-
ison between the two drone operation modes contributes to understanding the
reliability level for autonomously collected data. This research’s results provide
an evaluation of machine learning methods’ performance across sensor data.

5.1.1 Introduction

Autonomous systems (AS) have shown potential in enhancing safety in the
industry by replacing human activities during dangerous operations in remote
environments. These systems can perform tasks that require little to no human
intervention by actively interpreting the real-time collected data. Timely de-
cisions based on previously learned knowledge come from historical insights
and domain expert inputs. There is a considerable number of machine learn-
ing (ML) methods that enable autonomy. However, these methods need to
be reliable and trusted within safety-critical circumstances. The potential of
ML depends on the data that the AS collects. In particular, sensor data can
be overwhelming for the methods to answer with desired results. This data
is most often varying from sound, video, image, pressure, temperature, and
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gas sensor measurements. The environment can potentially overwhelm the
collected data with extensive noise that impacts the final decisions and results
that AS provide.
During operations and asset surveillance, researchers are often interested in
occurrences in the environment that are distinct from expected operating times,
such as the presence of material degradation, misplaced objects, or biological
growth. It is possible that during ML analysis, considerable amounts of data
would lack distinct samples that are interesting to research. Therefore, methods
can discard the data outside of the ordinary as noise. It is important to curate
the data to avoid disregarding vital information hidden in the noise. Over the
last decade, the industry interest in employing AS to perform tasks and reduce
human efforts has continuously increased.
This section compares ML performance on the sensor data collected by a man-
ual and an autonomously operated underwater drone. Data collected by the
same drone under different operating modes can widen our comprehension
of autonomy dependability. We analyze the data through anomaly detection
and classification methods. Anomaly detection identifies abnormalities in the
data, contributing to fault prevention and predictive maintenance 1. Classifi-
cation methods, known as classifiers, are learning tasks that predict the data
category of given data points. By applying these methods to the manually
and autonomously collected sensor data, we build machine learning models
that provide us with an insight into the reliability of the methods that enable
autonomy.

5.1.2 Motivation and Related Work

There is a considerable amount of research on finding the best methods to
evaluating sensor data. Related work of this section presents semi-organized
comparative research. We single out the studies within the context of au-
tonomous systems and highlight the motivation of using ML methods. In the
following paragraphs, we discuss the sensor data analysis challenges through
applied anomaly detection and predictive capabilities of classification methods
in AS.

Anomaly Detection in Sensor Data

As earlier mentioned, environments in which drones operate can be noisy and
disruptive. Anomaly or outlier detection is an important research area that con-
tributes to fault prevention and predictive maintenance 1. Erhan et al.1 review
anomaly detection methods employed in sensor systems. Authors highlight the
data volumes, network efficiencies, information fusion, and biases as some of
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the anomaly detection challenges. Due to the ample employment of sensors
in smart devices such as the Internet of Things, the authors 1 argue that the
sensor systems have become dominant generators of data. The authors identify
different anomaly detectionmethods. Their research contributes to the study of
sensor systems constraints and their impact on machine learning and anomaly
detection. Authors also classify anomalies based on their source. These are
typically sensor recordings that are distinct from expected behavior. Erhan et
al.1 point out that real-world data is necessary to validate the effectiveness of
anomaly detection methods. However, anomalies occur unexpectedly and can
be scarce in real-world data. Therefore, it can be challenging to generate them
artificially1.
Anwar et al.2 propose a novel ML framework using feature extraction and SVM
with varying kernels. The motivation behind their research is to eliminate
disruptive sounds such as birds, airplanes, or thunderstorms as anomalies. This
elimination would provide the detection of nearby amateur drones more accu-
rate. Authors approach the problem by gathering real-time acoustic data and
classifying the noise withMel frequency cepstral coefficients, Linear predictive
cepstral coefficients, and SVM. SVM has proved to be an efficient method for
classifying noisy environments using small batches of data. In this research,
ML promised a cost-effective and accurate tool with minimized chances of
misclassification between classes 2.

ClassificationMethods in Sensor Data

Increased interest in autonomous systems has led to an increase in the use of
machine learningmethods. Choi andCha3 explore the application of traditional
ML methods employed in Unmanned Aerial Vehicles (UAVs) for autonomous
operations. The authors explain that the collected data can show the method’s
performance more realistically when the testing environment is heterogeneous,
consisting of various operational circumstances. They also advise testing the
models in smaller batches of non-ideal settings to track AUVs’ performance
under disturbances.
Moustafa and Jolfaei4 propose an autonomous Intrusion Detection Scheme
(IDS) for real-time complex attack scenarios from drone networks. They use
the predictive capabilities of ML for autonomous detection of malicious events
in drone networks. Their research compares the following methods to classify
cyber-attacks in drone networks: Decision tree, k-Nearest Neighbor (kNN),
Naive Bayes, Support Vector Machine (SVM), and Deep learning Multi-layer
Perceptron. The authors have synthetically created three different attack sce-
narios for testing vulnerabilities and recognizing attacks on time. The authors 4
depicted a concept of targeted awareness towards different settings and in-
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volved detecting false alarm samples. In this research, the Decision tree has
proven to be the best classifier, followed by multi-layer perceptron and kNN.
The least performing classifier was Naive Bayes. The authors mention the
opportunity to extend their research for more complex networks, simulating
more sophisticated attacks. However, there is a usual lack of justification of the
method failure in the context of their model.
The sensor data collected by the AS can be challenging to evaluate. Conse-
quently, the employment of machine learning has a remarkable impact on the
performance and efficiency of the AS. De Dominicis and Accardo5 highlight
that among the benefits of machine learning, there are three main issues: secu-
rity, certification, and cost. To establish strong evidence behind these methods,
the authors5 suggest having a quantitative assessment about the system perfor-
mance after introducingML. The advice is to carry out a benchmarking analysis
comparing ‘novel methods’ with the traditional solutions. The comparison
should encompass prediction capabilities, robustness, integrity, and reliability.

5.1.3 Data and Methods

Research Purpose and Expectations

This research analyzes the differences between the data collected by a manual
and autonomous drone operation by applying anomaly detection and classifi-
cation methods. The expected result is that the differences between manual
and autonomous operations are minimal due to the same sensors and pre-
programmed mission plans. Therefore, the autonomously operated drone
should provide the same level of reliability as the manually operated drone.
The second expectation is that the non-linear classifiers that perform well on
high dimensional and correlated data, such as Random Forest, will prevail over
the linear methods (SVM, Logistic Regression, and Naive Bayes) due to the
dataset’s dimensionality, non-variability, and imbalance.

Research Data

The data used for this research, collected by Castellini et al.6, is multivariate data
containing sensor measurements of six data acquisition campaigns performed
by underwater drones for water monitoring. The authors explored lakes and
rivers of different locations in Spain and Italy for data collection. There are
11 monitored features in the dataset that results in 20,187 total samples. We
have separated these features into general information of the area, water mea-
surements, and drone measurements (see Table I). The available information of
the site contains area location and time during drone exploration. Water mea-
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surements are specific sensor data that monitor water temperature, dissolved
oxygen in the water, and electrical conductivity. Finally, drone-specific mea-
surements monitor the drone’s internal state, such as battery voltage, signals to
propellers, and direction of the drone’s bow.
Additionally, the data of each campaign is labeled by 6 based on the drone opera-
tion status, drone curving, location in the water, and the status of the water flow.
These four labels consist of set values. In the dataset, each value is represented
by a number:

• Drive values: autonomous (2) , manual (1), unlabeled (0);

• Flow values: upstream (3), downstream (2), no water flow (1), unlabeled
(0);

• Curves values: turning (2), no turning (1) ;

• Water values: out of water (2), in the water (1), unlabeled (0);

For this research, we merged the six data acquisition campaigns into one com-
plete dataset. We then divided the complete dataset based on the ‘Drive’ label
into manual and autonomous datasets. Division by drive allows exploring the
data collected by the drone when it is manually operated and compare it to the
data collected during autonomous operation.
We select the Flow label as the ground truth (GT). GT is a measurement that clas-
sification methods predict. The GT Flow contains values for water monitoring
that yield essential contextual information for the domain experts 7.
The sensor data represented in this section is non-varied data with limited
sensor inputs collected by simple drone missions. Additionally, the ground
truth consists of a more significant number of samples within upstream and
unknown water flow values than downstream and no water flow values. The
imbalanced representation of the ground truth values in this data can restrict
the performance of ML models.

ResearchMethods

Different methods allow the evaluation of model performance to justify the
best methods across this dataset. We select the ML methods following their
adequacy and comparative research prevalence. We identify the abnormalities
in the data through the anomaly detection method, Isolation Forest. Following
the anomaly detection, we analyze the data features by applying feature selec-
tion and ranking to understand the relationships among the dataset’s features
and their relationship with the ground truth. We apply data validation with
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TABLE 5.1. Feature Description of the Dataset by Castellini et al.6

Feature Category Description

Latitude General Latitude of the area

Longitude General Longitude of the area

Altitude General Height above sea level

Date and time General 5,6 h of runtime

EC Water Water electrical conductivity

Temperature Water Water temperature

DO Water Water dissolved oxygen

m0 current Drone Signal to propeller 0

m1 current Drone Signal to propeller 1

Heading Drone Compass direction in which
the drone’s bow is pointed

Voltage Drone Drone’s battery voltage

the hold-out method to divide the data into training and testing datasets to
prepare for classification. Finally, we compare different classification methods
to analyze the predictive performance of the model. In this section, we justify
the selected methods for analyzing the data.

Anomaly Detection with Isolation Forest This model-based approach to
anomaly detection isolates anomalies with low computational requirements.
Isolation Forest works well in high-dimensional problems, and deals well with
many irrelevant attributes8. Liu et al.8 highlight the problem of anomalies
being few, making them prone to isolation. Isolation Forest partitions instances
repeatedly and recursively until they are isolated, producing shorter paths for
anomalies8. The method does not use distance or density measures to detect
outliers that eliminate computational costs making it a good fit for large and
non-linear datasets.

Feature Selection and Ranking Choosing a reduced feature set makes the
model easier to interpret, removes inessential information, reduces the dataset’s
size, and lowers the possibility of overfitting 9. Overfitting the model is an error
that occurs when the training on the data results with high accuracy. However,
the testing results with poor accuracy and is typically caused by high variance
in the data.

Lasso Regularization The Least Absolute Shrinkage and Selection Op-
erator (Lasso) is a powerful regularization and feature selection method. This
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method applies the regularization or shrinking process by penalization of the
coefficients of regression features 9. The features regularized to zero are pruned
from the model. The model, therefore, has the potential of reduced variance
without a considerable increase of bias.

Filter Method with Pearson Correlation Filter methods choose features
through statistical tests and correlation by ranking them on their usefulness to
the model9.

Data Validation with Hold-Out Method This validation method divides
the data into two non-overlapping sets, training and testing. The hold-out is the
testing set and can contain any percentage of the original dataset. The time for
learning in the hold-out method is lesser than in comparable cross-validation
methods10. The hold-out can eliminate the problem of overfitting, avoid un-
even distribution, and introduce a clear division of data with stratification 10.

Decision Tree classifier performs well on nonparametric, complex datasets.
This method classifies samples into branch-like elements and constructs an
inverted tree to make decisions 11. However, the Decision tree can result in
overfitting when working on small datasets or datasets with strongly correlated
features.

Random Forest A popular classifier, Random forest, constructs multiple
decision trees with randomly selected subsets of features and training data. It
is less sensitive to overfitting because of the considerable number of decision
trees produced randomly. Random forest performs well on datasets with high
dimensionality and highly correlated data, making this method a promising
approach in heterogeneous research 12.

k-Nearest Neighbor (kNN) Classifier kNN forms around finding similari-
ties in data. Therefore data quality is crucial to this method. KNN calculates
the nearest points in data and nominates the sign of majority. Choosing the
k number is often considered arbitrary; however, a larger value of k number
can reduce the effects of anomalous points 13. Due to its sensitiveness to data
quality, themethod performs the best with smaller data batches with eliminated
anomalies.
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Logistic Regression This classifier produces quick outputs that can be in-
terpreted as probability and therefore used for ranking. Logistic Regression is
not sensitive to overfitting; however, it underperforms on non-linear data.

Support Vector Machine (SVM) The SVM classifier has the advantage of
performing well within high-dimensional space 14. It fits a hyperplane that sep-
arates classes in data and positions every new data point within this hyperplane.
However, this method is computationally expensive, slow on extensive data,
and challenging to interpret.

Naive Bayes Naive Bayes represents decision-making under uncertainty, or
probabilistic approach to deduction13. This simple method is computationally
fast, easy to interpret, and performs well with high-dimensional data. However,
Naive Bayes will underperform if the data features are highly correlated or
calculate the probability of zero if an unknown class in test data appears 15.

Implementation, Results and Discussion

For this research, we implemented the models using the sklearn module1 for
Python with default hyperparameters. For every experiment, we analyzed the
complete dataset containing 20,187 samples, manual and autonomous datasets.
After removing the non-labeled or unknownDrive value, the manual set results
in 7,586, and the autonomous set in 7,530 samples.

Anomaly Detection Results Isolation Forest for anomaly detection outputs
compelling results for the three datasets. According to the results (see Table
II), the distribution of anomalies is comparable. A similar number of samples,
approx.10%, of each dataset are identified as anomalies. Uniform distribution
of detected anomalies promises a comparable data reliability level by manually
or autonomously operated drones. Almost all of the identified anomalies have
a GT value of 0. In the autonomous operation dataset, all anomaly samples
belong to GT value 0. The anomaly detection method removed 100% of the
samples with GT value 0, leaving only GT value 3 in the data.

1Scikit-learn Machine Learning in Python: https://scikit-learn.org/stable/
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TABLE 5.2. Anomalies Analyzed with Isolation Forest

Analyzed data Number of anomalies % of anomalies

Complete dataset 2019 10.0014

Manual operation 759 10.0052

Autonomous operation 753 10.0000

Similarly, in the manual operation dataset, only 0.0052% of the anomalies
are not samples with GT value 0. This small number of non-zero anomalies
are scattered around the manual dataset without showing a significant pattern.
Autonomous and manual operation datasets display uniform distribution of
anomalies, making them nearly equivalent in performance. However, GT value
0 represents unlabeled or unknown water flow which can be essential contex-
tual information for the domain experts 7, particularly when analyzing sensor
data performance. Hence, we retain the samples with GT value 0 in the dataset.

Feature Selection and Correlation Ranking Results Pearson correlation
results in uneven distribution of highly correlated features regarding the GT.
For the complete dataset, there are seven highly correlated features: electrical
current (ec), drive, water, altitude, longitude, latitude, and water temperature.
For the manual dataset, only four features highly correlate to the GT: altitude,
longitude, latitude, and water temperature. Lastly, for autonomous data, highly
correlated features are voltage, altitude, longitude, latitude, m0 current and,
m1 current. A high correlation between features can impact the classification,
such as biased predictions due to a strong relationship of two or more features.
The impact of these results is visible in the classification analysis.
Contrastingly, the Lasso Regularization method resulted in a more uniform
set of selected features regarding their importance in the dataset: ec, dissolved
oxygen, temperature, altitude, and heading. Furthermore, selected features are
penalized to a significantly low coefficient, nearly pruned from the dataset. This
method typically penalizes correlated features, potentially removing important
information and creating unstable models 16. With this information, we retain
the entire set of features for the classification analysis.

Data Validation We use the hold-out method for the data validation, where
60% of the data is split for training and 40% for testing the model. GT values’
distribution is undeviating for train and test sets (Table III and Table IV). The
autonomous operation dataset does not contain the GT values 2 and 1, and
there is a heavy imbalance of the existing values, 3 and 0. The complete and
manual operation datasets also contain differences between the GT values.
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However, a more uniform distribution of the GT values can contribute to the
model’s lessened sensitivity for the data’s bias.

TABLE 5.3. Distribution of the ground truth values on train set

Ground truth value Complete Manual Autonomous

3 6880 2357 4316

2 514 532 0

1 383 381 0

0 4335 1281 202

TABLE 5.4. Distribution of the ground truth values on test set

Ground truth value Complete Manual Autonomous

3 4499 1569 2862

2 341 323 0

1 259 261 0

0 2976 882 150

Supervised Classification Results Choosing a metric is likely the most
critical phase in the project. Figure 5.1 illustrates the steps necessary for choos-
ing an appropriate performance metric for imbalanced datasets. The metric is
used to evaluate and compare all models. Choosing the incorrect metric can
result in selecting the incorrect algorithm. The measure must reflect the most
critical facts about a model or its forecasts for the project or its stakeholders 17.
Furthermore, essential indicators of models’ performance are the trade-offs
in the data: bias and variance. Bias in the data indicates the inaccuracy of the
model’s prediction compared to the data’s actual values. The biases can occur
during the training phase, where the model is ‘simplified’ to make the GT easier
to predict. Alternatively, high variance indicates that the method learned the
noise instead of the output. The high variance can cause overfitting. High
variance and low bias relate to the high model complexity. The optimal model
performance is the crossing point of bias error with variance error. Results
of feature selection, feature correlation, and imbalance of the GT values can
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FIGURE 5.1. Imbalanced data: Choosing PerformanceMetrics, adapted from 17

set expectations for the prediction capabilities. The test data results (see Fig-
ure 5.2) of the three datasets show high accuracy for all classifiers. Accuracy,
the selected performance metric, describes the measure of correctly classified
records. The results are presented in a box plot, Figure 5.2, showing the spread
of the accuracy scores across data validation for each algorithm.

Manually-Collected Sensor Data Classification There is a considerable
difference between linear and non-linear methods for the manually-collected
dataset. As expected, non-linear methods, Decision Tree and Random Forest,
performed with higher accuracy than all three linear methods. The prevalence
of GT value ‘0’ contributes to good prediction results. However, through ob-
servation of the confusion matrices resulted by linear methods, it is evident
that the less represented GT values’ prediction is erroneous. Generally, the
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FIGURE 5.2. Algorithm Comparison: Autonomous, Manual and Complete
Datasets

performance of non-linearmethods on this model is adequate, making Random
Forest the most reliable classifier for this dataset.

Autonomously-Collected Sensor Data Classification The autonomously-
collected data illustrates significantly different results when compared to the
manual data. The GT in the autonomous operation set contains only two
values, 0 and 3. The 100% accuracy on the testing set can happen if the test set
overlapswith the training set. However, in this case, the test and training sets are
separate and not overlapping. In earlier anomaly detection results, the Isolation
Forest has eliminated the samples with GT value 0, which can indicate a clear
difference between these two values in the dataset. The poor distribution of the
GT values results in an uncomplicated model that predicts with 100% accuracy.
Arguably, the autonomous drone operated when the operation is unobserved
(value 0) or even exclusively within the selected upstream environment (value 3).
This model requires data complex enough to avoid bias and with a significantly
less data imbalance.

Complete Sensor Data Classification A complete dataset exhibits both
previous analysis’ results as a combination of manually and autonomously col-
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lected data. The high correlation of features in the data causes the model’s high
performance with Decision trees and Naive Bayes classifiers. Other classifiers
that are less sensitive to high correlation, such as Logistic Regression or kNN,
are sensitive to data quality, such as data imbalance in this dataset.

The results of the autonomous operation model do not meet reliability
expectations. Therefore, repeated data collection methods in more compli-
cated scenarios can improve the balance and complexity of the dataset 7. Alter-
natively, manually-collected data proved to be inherently different from the
autonomously-collected data. As a novel contribution, we suggest that future
data is collected from plannedmanual and autonomous dronemissions inmore
complex environments, recording the same sensor measures. A human opera-
tor of the manual drone should follow the same path as the preprogrammed
autonomous drone. Following these requirements, we can obtain consistent
data from both operations and avoid significant data differences.

5.1.4 Contribution Summary

This section analyzed the difference between manual operation and an au-
tonomous operation of an underwater drone. We explicitly identified the simi-
larities and the differences between the two operation modes through anomaly
detection and classification methods during the analysis. Our research recog-
nized the vital role of sensor data variations of different operation modes in the
context of prevalent machine learning methods’ performance and identified
the gaps in which these methods underperformed. Unfortunately, unbalanced
data is pervasive in research and industry, resulting in skewed classification
results and reduced reliability for machine learning methods.
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ABSTRACT

Cyber-physical systems are taking on a permanent role in the industry, such
as in oil and gas or mining. These systems are expected to perform increas-
ingly autonomous tasks in complex settings removing human operators from
remote and potentially hazardous environments. High autonomy necessitates a
more extensive use of artificial intelligence methods, such as anomaly detection,
to identify unusual occurrences in the monitored environment. The absence
of data characterizing potentially hazardous events leads to disruptive noise
displayed as false alarms, a common anomaly detection issue for hazard identi-
fication applications. Contrastingly, disregarding the false alarms can result in
the opposite effect, causing loss of early indications of hazardous occurrences.
Existing research introduces simulating and extrapolating less represented
data to expand the information on hazards and semi-supervise the methods
or by introducing thresholds and rule-based methods to balance noise and
meaningful information, necessitating intensive computing resources. This
research proposes a novel Warning Identification Framework that evaluates
risk analysis objectives and applies them to discern between true and false warn-
ings identified by anomaly detection. We demonstrate the results by analyzing
three seismic hazard assessment methods for identifying seismic tremors and
comparing the outcomes to anomalies found using the unsupervised anomaly
detection method. The demonstrated approach shows great potential in en-
hancing the reliability and transparency of anomaly detection outcomes and,
thus, supporting the operational decision-making process of a cyber-physical
system.

5.2.1 Introduction

The environment’s safety is ever more reliant on cyber-physical systems that
have applications in, among others, intelligent drones, remote sensing, and
smart sensor systems. These systems are taking on permanent roles in various
industries such as oil and gas, energy, and mining. They are replacing various
human operations and carrying out critical responsibilities, including inspect-
ing and monitoring remote, possibly hazardous environments. The increasing
growth of sensor-collected data grows a need for artificial intelligence (AI) and
data-oriented technologies along with the requirements for more autonomous



94 ▶ CHAP. 5 RELIABILITY OF SENSOR DATA

systems that are safer, more perceptive, and more financially viable. Auton-
omy is described as the capability of a system to operate independently from
external factors18. Increased autonomy necessitates a more significant usage
of AI19 methods that copy intelligent human behavior 20. With various sensors,
the cyber-physical systems can efficiently gather data during ongoing opera-
tions and use AI methods to analyze the data in real-time and gain situational
awareness. Consequentially, increased autonomy has the potential to replace
constant human supervision. As a form of AI, machine learning (ML) uses high
volumes of data to learn how to execute tasks rather than being programmed
to do them, allowing computing systems to become more intelligent as they
encounter additional data20. Similarily, anomaly detection, as a data-oriented
method, detects unusual trends in data that can give insight into potentially
hazardous occurrences. Detecting critical trends in good time allows for the
opportunity to take necessary corrective actions in advance to ensure safe oper-
ations. Considering the variety of hazards that can affect these systems, many
techniques might increase their ability to operate safely under all conditions.
Therefore, AI technology must be reliable in order to responsibly integrate it
into existing systems and operations.

The challenges inherent in unsupervised anomaly detection emphasize the
necessity for further research into semi-supervised or alternative methodolo-
gies21. Although sensor data and data-driven methods are becoming essential
in many safety-critical or high-risk engineering systems, data-driven methods
may not be sufficient to ensure safety because they lack the underlying causal
knowledge22. Additionally, benchmarking and comparing anomaly detection
methods is eminently challenging. Due to these challenges, early warning indi-
cator of potential hazardous events may be missed, possibly placing assets or
the environment in jeopardy during operations 23.

In cyber-physical systems, particularly autonomous systems, that form
decisions based on data-oriented methods, the safety and responsibility of the
methods and the data that trains themethods cannot be overemphasized. There-
fore, this section summarizes the development and evaluation of a Warning
Identification Framework (WIF) through a case study. The described frame-
work in this section is an extension of Chapter 4 that summarize articles 24
and25 and focus on theoretical concepts of risk-informed and data-driven
operations. The purpose of the WIF is to facilitate the decision-making of a
cyber-physical system that uses anomaly detectionmethods to identify warning
signs of an ongoing operation. Such applications include autonomous under-
water drones for inspecting pipelines and observing potential surface corrosion
or cracking or intelligent sensor systems for monitoring drilling operations
in mines and listening for potential seismic tremors, shaking of the ground
under the stress of mining or drilling. To facilitate the decision-making of
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a cyber-physical system, another objective of WIF is to address the interre-
lated challenges of unlabeled, contextless, biased data, unsupervised methods,
and consequentially unreliable anomaly detection results. WIF is anchored in
risk analysis and comprises three main steps: characterization, analysis, and
ranking of warning impacts detected through anomaly detection. To compare
the standard hazard assessment and anomaly detection methods, we examine
unlabeled seismic data with varied sensor values for tracking seismic tremors
and three distinct hazard assessment methods for identifying low, medium,
and high-impact hazardous occurrences.

The following is a summary of the primary contribution of this section,
Warning Identification Framework:

1. Novel risk assessment perspective on seismic hazard identification’s
training and assessment role in unsupervised anomaly detection ap-
proach.

2. Identification of overlapping methods and roles in risk assessment and
anomaly detection.

3. Preliminary results of three seismic hazard identification methods and
their assessment role for unsupervised anomaly detection results.

5.2.2 Background

Anomalies (in literature often interchangably referred to as outliers, novelties,
abnormalities, discordants or deviants) are occurrences in a dataset that are
odd in some sense and do not fit the dataset’s general or expected trend 26. They
apply to a wide range of desired and undesired phenomena, appearing as static
occurrences, time-related events, single and grouped occurrences. Despite
being interchangebly used, the terms anomaly and outlier are distinguished
in some studies27–29 . For an example, Hawkins28 provides a definition of an
outlier: “An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mecha-
nism.” In the recent study on anomaly classification, Foorthius 30 describes that
the definition of anomaly is vague and dependent on the application domain
due to the wide variety of ways anomalies manifest themselves. In order to
understand how unsupervised anomaly detection methods in relationship with
knowledge from risk analysis can be utilized to improve true anomaly discovery
and potentially avoiding missed out early warning signals, it is important to
understand how anomalies manifest themselves.
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5.2.3 Risk and Risk Analysis

Risk is defined as the effect of uncertainty on objectives, where the effect can be
positive, negative, or both, resulting in opportunities and threats 31. Typically,
the risk is expressed in terms of risk sources, future occurrences, their effects,
and the probability they will occur. Earlier guidelines for the inclusion of
safety aspects in standards32 define risk as a combination of the probability of
occurrence of harm and the severity of that harm, where harm is an injury or
damage to people’s health, property, or environment 32.

In his book, Risk Assessment Theory, Methods, and Applications, Rau-
sand33 describes risk analysis as one of the three main elements of risk man-
agement (see Figure Figure 5.3), the continuous process to reveal, analyze, and
assess potential hazardous events in a system, and identify and introduce effi-
cient risk control measures to eliminate or reduce possible harm 33. The risk
analysis is responsible for:

• the identification of hazards and threats related to the system of interest;

• the identification of potential hazardous events that may occur;

• the identification of causes of hazardous events;

• the identification of barriers and safeguards to prevent or reduce the
hazardous events and assessment of their reliability;

• the identification of accident scenarios related to each hazardous event
and their consequences.

The other two main elements of risk management are 33:

1. Risk evaluation for assessing risk picture, comparison of the risk with es-
tablished risk acceptance criteria, considerations of alternative systems.

2. Risk control and risk reduction for making decisions regarding intro-
ducing new risk-reducing measures, implementing the measures, moni-
toring, and communicating the risk.

Risk analysis systematically uses available information to identify hazards
and estimate risk where the hazard is a potential source of harm 32. Therefore,
risk analysis can be observed as a tool to inform decision-making concerning
futurewelfare since the risk is always related towhat can happen in the future 33.
As illustrated in Figure 5.3, the analysis of risk is carried out to answer the
following questions:

• Hazard identification: What can go wrong?
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FIGURE 5.3. Elements of Risk Management, adapted from 33

• Frequency analysis: What is the likelihood of that happening?

• Consequence analysis: What are the consequences?

The risk analysis results have great potentials for assessing or improving the
data for anomaly detection models. These potentials may be observed using the
risk analysis for rule-based labeling in classification problems or transferring
its knowledge to train the new models. As described by 34, transfer learning
comprises different techniques that aim to gather the knowledge gained at
the source problem to develop a new model using the gathered knowledge,
thus minimizing the efforts of developing that new model. To the best of our
knowledge, these potentials have not been leveraged effectively in prior studies
(see Section 5.2.4) that would tackle the existing challenges in the anomaly
detection methods.

Hazard Identification

Identifying the hazard is a critical first step toward preventing or mitigating
it. Certain hazards require a triggering event to grow into a hazardous event,
whilst others may develop into a hazardous event gradually 33. A triggering
event is an event or situation that must occur in order for a hazard to cause an
accident33. Hazard identification techniques determine 35:

• Possible cause of the harm;

• How the harm will manifest itself;
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• What measures are in place to avoid or mitigate harm;

• The extent to which the harm is tolerable;

• What further actions or resources are required to avoid or mitigate harm.

The What-If Checklist, the Hazard and Operability Study, and the Failure
Modes and Effects Analysis are three of the most often used techniques for haz-
ard detection35. Knowing what can go wrong and identifying the properties of
hazards is a crucial step in labeling the training sets for supervised classification
or anomaly detection.

Consequence Analysis

A consequence is an adverse event that may occur due to a hazard 35. As a result,
consequence analysis examines the predicted impacts of incident outcome
situations regardless of their frequency or likelihood. There is a specific amount
of energy or material released in the event of containment failure. This is
referred to as the source term35. Assume the effects are instantaneous, as with
an explosion. In that situation, the analysis uses inputs such as the material
type, the release pressure, and other factors to determine the impact effects.
If the effects are delayed, the source term characteristics are used as inputs in
a dispersion analysis followed by an analysis of the impact effects. Anomaly
detection can detect anomalies representing significant information about the
ongoing operation or anomalies that do not require any insight or resource
allocation. Consequence analysis provides critical information on the impact of
hazards or anomalies that can aid operators in allocating necessary resources.

Likelihood Analysis

Risk cannot be accurately assessed without first analyzing the likelihood of an
event occurring, which can be challenging. Analyzing the likelihood becomes
progressively more challenging for complex systems, and hazard scenarios 35.
The likelihood of often occurring events may be evaluated and validated using
statistical analysis that requires large amounts of data. The common methods
for likelihood analysis are fault propagation modeling methods - event tree
analysis and fault tree analysis.The situations, conditions, and protective mech-
anisms, together referred to as intermediate events that should have prevented
the accident, are listed, along with their associated probability of occurrence.
In anomaly detection, the likelihood and frequency analysis bring invaluable
information on the underlying knowledge of detected anomaly or hazard. Al-
though not all detected anomalies require reaction response or allocation of
resources, knowing the likelihood or frequency of certain undesired events is
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smaller or larger under a particular operational context may eliminate the need
for conjecture when classifying or labelling observed anomalies.

Warning Management

While warning management is not explicitly included in risk analysis, it is
necessary to employ risk analysis insights as a layer of protection. A warning
is used to notify the operator of a malfunctioning piece of equipment, a pro-
cess deviation, or an unexpected state that demands operator intervention 35.
Alarms assist the process in remaining within normal operating parameters and
ensuring its safety, differentiating between negligible, tolerable, and unaccept-
able risks . A risk level that is considered acceptable suggests that the risk level
is usually recognized as insignificant 33. Typically, additional risk-reduction
measures are not necessary. Tolerating a risk, or tolerable risk, implies that

FIGURE 5.4. Operator and Process Reaction Time, adapted from 35

we do not perceive it as negligible or something to be overlooked, but rather
as something to be monitored and mitigated further as and when possible 33.
Except in exceptional circumstances, activities with an unacceptable level of
risk are considered unsuitable, regardless of their advantages. Activities that
create such risk would be prohibited, or the risk would have to be mitigated
at all costs33. To assist in determining which alarms should be addressed first,
each warning is assigned a priority, often based on the severity of the potential
consequences.

Figure 5.4 depicts the operator response to warning. The operator must
be capable of promptly detecting, diagnosing, and appropriately responding
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to the warning to avoid a hazardous event. A warning management system
is a crucial component of cyber-physical systems involved in safety-critical
activities. In increasingly complex systems, an autonomous system, such as a
UAS, is anticipated to conduct detection, diagnostics, response, and reaction
depending on the scenario. UAS, such as underwater drone or smart sensor
systems, offer warnings to the operators if the ongoing activity requires further
attention. In this instance, the UAS can autonomously determine if a given
monitored occurrence is an early warning indicator and whether to sound a
warning using data-driven approaches, particularly AI.

5.2.4 Challenges

Missing Context and Data Imbalance

FIGURE 5.5. A Framework for Discussing Trust in Increasingly Autonomous
Systems, adapted from36

We observe a growing interest in research within the context of ML strate-
gies for knowledge sharing and organizing, such as 37,38,39. Righteously so, we
witness a more permanent role of autonomous systems andML in the industry.
However, integrating ML into existing systems involves heterogeneous teams
of, amongst others, software engineers, data analysts, and domain specialists.
Every domain specialist and analyst in a heterogeneous team developing a soft-
ware system that integrates ML should comprehend the context underlying
ML methods and data. This context specifies the relationship between code
and data, as well as the relationship between data and intent of the operation.
Lacher et al.36 point out that the context is critical to a system’s capacity to
respond satisfactorily as it becomes increasingly autonomous. In a framework
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for discussing trust in increasingly autonomous systems by36, context is represented
as a binding point between people, environment and the machine (i.e., the au-
tonomous drones) (as seen in Figure 5.5). People have varying perspectives of the
machine which is based on their roles and greatly influenced by their culture
(such as age and professional affiliation). The operation’s context is established
by the environmental factors because the machine will identify the situations
based on the data received from sensor inputs. The machine is designed to
perform required tasks at a high level of performance, which can be observed,
measured or assessed. The results of these assessments will have an impact
on people’s confidence in a machine’s competence. If the machine produces
expected results, the human confidence in the machine will increase, answering
the question of the machine’s reliability. Lacher et al. 36 conclude that most
of the machines will have a degree of human collaboration and the degree
of trustworthiness between people and machines is a cultural, organizational
and sociological challenge. According to36, calibrated trust is founded in our
perception and expectation of system performance, which has become an engi-
neering, social, cultural, and organizational challenge. Yet, as machines become
increasingly complex, trustworthiness becomes more challenging to maintain
due to the difficulty to understand the functioning and set the expectations on
the machine performance.

Hayes et al.40 offers an example of an anomaly detection algorithmmissing
context in the circumstance of a sensor reading detecting that a particular elec-
trical box consumes an abnormally high quantity of energy. However, when
examined in the context of the sensor’s location, present weather conditions,
and time of year, it is well within normal boundaries. There are various expla-
nations for these shortcomings, which we loosely divide into two categories:
technical and people/process-related. The technical reasons as the often un-
predictable malfunctions of the system. However, the people/process-driven
reasons for ML shortcomings are due to the more complex methodologies that
the individuals or teams use to organize and transfer knowledge, including de-
signing, developing, and maintaining the systems that employ ML. Lee et al. 41
argue that the shortcomings, particularly due to biases caused by imbalances
in data, can be removed not by niche methods but rather by informing the
appropriate mitigation strategy, whether technical or people/process-driven.
Nevertheless, the previous studies inform that practitioners struggle to inte-
grate newly proposed tools and methods into existing processes 41. Authors41
suggest that identification and categorization of different types of shortcom-
ings, such as biases, can help to understand the roots of the unintended ML
outcomes.

Due to the wide range of anomalies that can disrupt operations and the
large amount of data produced by environmental sensors, real-time anomaly
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detection is becoming more challenging. Imbalanced or underrepresented
data, such as high consequence and low probability hazardous event data, is
particularly problematic because the data processing methods form biases
in favor of more represented data. Classification methods, entrusted with
effectively predicting outcomes from the sensor data, tend to reproduce these
biases42. Furthermore, underrepresented data can be disregarded as noise due
to the anomalymethods’ inclination toward efficiency and sacrificing anomalies
as tolerable collateral damage43. False alarms, or noise, are another known
drawback of anomaly detection44. False alarms fall into two categories: false
positives and false negatives 45. When a normal or non-hazardous event is
recorded as a hazardous event, this is called a false positive. A consequence of
false positives is that a potentially hazardous event may go undiscovered due
to prior false positives. A false negative is defined as the inability to notice a
hazardous event. Due to the high proportion of false alarms created by anomaly
detection, it is difficult to correlate specific alarmswith the events that triggered
them45. Additionally, current methods for anomaly detection focus primarily
on data content, with no regard for the context behind the data 40. These
methods yield conclusions that are based on correlation without causation.
Causation is the situation in which one event, a cause, causes another event
to happen an effect. A correlation is the situation in which two or more events
appear to be related. Therefore, basing conclusions solely on correlations is
one of the critical problems in data analysis 22, as it might result in misleading
predictions. However, many datasets lack labels or supervision that provides
additional information and context about the data 46 making the training and
testing of anomaly detection methods even more challenging.

Trust Imbalance

Many judgments made by cyber-physical systems in various scenarios are based
on its analysis of the environment 47. The biased and unjust consequences of
data-driven methods are frequently the result of opaque or black-box methods
that lack transparency. As a result, anomaly detection methods have recently
piqued the interest of industry and academics in the hopes of gaining greater
transparency and offering more context to the data and the anomaly detection
methods30. The three of the biggest challenges of evaluating these systems
are user acceptance and trust, adequate evaluation, and defining autonomy
comprehensively and quantitatively 48. Autonomous drones, for example, must
operate safely and be resilient in changing environments and complex scenarios.
The ability to successfully manage disturbances and emergent needs during
the system’s mission - resilience - determines the efficacy and reliability of
autonomous systems49. A resilient and reliable system can alter its functioning



5.2 A NOVEL WARNING IDENTIFICATION FRAMEWORK FOR RISK-INFORMED ANOMALY

DETECTION ◀ 103

in advance of or in response to changes and disturbances, allowing it to continue
working even after a severe incident or in the face of persistent stress, primarily
by being proactive on safety50. Hollnagel has outlined the three fundamental
functions of a resilient system18:

1. Anticipate disturbances, prospective threats (Hollnagel uses the terms
threat and hazard synonymously), and any other destabilizing conditions.
This function enables the system to forecast the future and adjust risk
tolerance.

2. Monitor performance, risks and threats while constantly improving its
own risk identification model. This function enables the detection of
non-permanent transient impacts that, despite not being permanent, can
still cause failures and accidents.

3. Respond to threats, whether they are regular, irregular, unexpected or
unexampled. This function denotes a resilient system’s preparedness,
flexibility, and adaptability.

O’Neil51 argues that data-driven methods should be prejudice-free, pro-
duce objective results, judge according to universal norms, and eliminate biases.
However, since the methods are based on historical data, they not only incor-
porate biases, they reinforce them 51. Since highly autonomous systems rely
heavily on data-driven methods, these systems must include human-centered
features to ensure that they society, industry, and the economy while adhering
to ethical norms.

Existing Approaches to the Challenges

FIGURE 5.6. Major and minor data in a dataset
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With supervised anomaly detection and labeled datasets, discriminating
between anomalous and non-anomalous data is supposed to be straightfor-
ward. The dataset contains labels for anomalous and non-anomalous data
points, enabling anomaly detection methods to classify the data more precisely.
Distinctively, unlabeled data are analyzed using distances, density, and trends
between data points. However, the difficulty of underrepresented data, or mi-
nor data (see Figure Figure 5.6), has recently eroded faith in supervisedmethods
as well. The classifier or anomaly detection method is unable to distinguish
between more represented or major and minor classes in the data, favoring the
major data and thus overlooking the minor data, potentially omitting critical
information.

Numerous approaches to the problem of underrepresented data have been
developed, and the following paragraphs allude to recent studies while summa-
rizing the approaches as follows:

• Extrapolating minor data through simulations, causal and physics data

• Setting decision boundaries and thresholds for normal data

• Semi-Supervised and Rule-Based Anomaly Detection and Classification

Extrapolating Minor Data and Simulations

Due to the rarity of hazardous occurrences with high consequences, there is a
sparse indication of their properties in the sensor-collected data during envi-
ronment or asset monitoring. This lack of data necessitates using simulations to
replicate the natural world and generate artificial hazards and hazardous events,
further extrapolating imbalanced datasets with the artificially generated data
from simulations so that machine learning models can train on less imbalanced
data. Eldevik et al.22 highlight in their work on AI and safety that data-driven
models alone are insufficient. Although sensor data and data-driven mod-
els are becoming an integral part of a growing number of safety-critical and
high-risk engineering systems, the high-consequence and low-probability sce-
narios are not well reflected by data-driven models. The authors 22 propose the
use of causal and physics-based knowledge for extrapolation robustness. The
data-generating processes consist of stochastic and deterministic elements, pro-
viding an opportunity to utilize the deterministic processes, or those governed
by known principles, and extrapolate the naturally underrepresented data with
the existing causal and physics-based knowledge. The authors 22 argue that
the combination of data-driven models and the causal knowledge of industry
experts is essential for decision-making processes within AI systems.

The method of simulating, or extrapolating with causal and physics-based
knowledge, has significant drawbacks, including runtime and curse of dimen-
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sionality22. For a high-consequence system, a model used to inform risk-based
decisions must predict potentially catastrophic scenarios prior to the occur-
rence of the scenario. However, the runtime of these complex models is often
significant, commonly taking up to several days, making it nearly impossible
to initiate necessary analysis in real or near real-time. Alternately, the models
can be run in advance, but this again necessitates sophisticated processes with
many inputs, restricting the possibility of simulating every possible condition
that an actual system can encounter before its operation. Eldevik et al. 22 em-
phasize that data-driven models should incorporate risk assessment into the
decision-making processes as we rapidly progress toward more autonomous
systems that employ AI for making safety-critical decisions.

In addition to computationally expensive simulations, Zhang et al. 52 argue
that simulation experiments can be expensive to conduct in laboratories and
frequently meet physical limitations for simulating the real world (i.e., sim-
ulating scenarios in the ocean vs. in a laboratory water pool). The primary
limitation of simulations, whether virtual or in laboratories, is their inability to
reliably mimic the complex interactions between the environment, the asset,
and the ongoing hazard in the case of a hazardous occurrence.

Decision Boundaries and Thresholds

Anomalies are characterized in terms of previous behavior. This suggests that
a novel behavior may first appear anomalous but ceases to be anomalous if it
persists, establishing a new normal pattern 53. Lavin et al.53 define anomaly
windows to aid in early detection. Each window is a collection of data points
centered on a ground truth label for an anomaly. The earlier a detector can
reliably identify anomalies, the better, which implies that these windows should
be as large as possible. The trade-off with exceedingly large windows is that
unreliable or random detections would be reinforced regularly 53. This tech-
nique allows for a large window of opportunity for early detection and allows
for partial credit for detections made shortly after the ground anomaly. The
authors53 emphasize that various applications may place a greater emphasis
on true positives than on false negatives and false positives. For instance, in a
manufacturing plant, a false negative may result in machine failure and costly
production disruptions. Similarly, a false positive may necessitate an in-depth
examination of the data by a technician.

Li et al.54 developed a novel data-driven approach to anomaly detection
in cyber-physical systems by establishing a decision boundary to classify new
observations using a geometric structure non-convex hull. Convex hull-based
methods define a closed boundary around the normal data points. These meth-
ods make no assumptions about the underlying distribution. The convex hull-
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based methods do not require extensive parameter tuning, making them useful
for boundary-based anomaly detection 54. Since not all potential anomalies are
known in advance, most data-driven anomaly detection techniques depend on
developing a model of the system’s normal behavior. This dependency may
reduce the likelihood of noise or false alarms occurring during anomaly de-
tection. The points within the convex hull are normal, whereas the points on
its periphery are anomalous. However, convex hull-based algorithms produce
many erroneous classifications when the input normal data is not convex 54.
The authors54 demonstrated that incorporating a non-convex hull as a deci-
sion boundary for anomaly detection in data with non-convex forms achieved
significant improvements over typical convex hull-based approaches.

Shin et al.55 studied data bias caused by underrepresented classes in datasets.
They advised using decision boundaries to increase the accuracy of anomaly
detection generative adversarial network (AnoGAN) results produced from
low-quality data. The primary challenge encountered by the authors 55 is the sub-
jective nature of establishing the decision boundary. They evaluated the proposed
method’s success using the Area Under the Curve (AUC) and the F-measure
through testing multiple arbitrary values for the decision boundary. AUC evalu-
ates a classifier’s ability to discriminate between classes. In contrast, F-measure
evaluates the performance of a binary classification model based on predictions
for the positive class. The proposed model presented in the 55 research has
a slightly greater AUC and F-measure value (0.023 and 0.0231, respectively)
than the initially tested AnoGAN result. While decision boundaries are fre-
quently seen in classification and supervised algorithms that utilize labeled
data, such as SVM56, a similar approach can be applied to unlabeled data using
semi-supervision.

The disadvantage of decision boundaries or thresholds is their construction.
The boundaries are constructed either by an algorithm that learns from data
patterns or by assuming a geometrical shape (i.e., convex hull-basedmethods 54).
Forming context- or application-specific boundaries, as opposed to dataset-
specific ones, is one approach to mitigate the disadvantages and establish more
reliable decision boundaries.

Semi-Supervised and Rule-Based Anomaly Detection and Classification

Rule-based classification is amethod for classifying or labeling data points using
conditions such as ’if-then.’ The benefit of rule-based classification resides in
its interpretability and approach to generalization, rather than labeling each
data entry individually. Nonetheless, this strategy requires manual inputs from
domain experts and can soon become a complex task when applied to extensive
data and unstructured sets.
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Deng et al.57 explored a rule-based semi-supervised approach to anomaly
detection due to a lack of labels in data and, consequentially, an emphasis on
unsupervised methods that produce incomprehensible results. The authors 57
observed the challenge in selecting appropriate labels when training models
for anomaly detection due to the vague definition of an anomaly being a data
point that does not share a similar pattern with the rest of the data population. Their
approach to applying rule-based classification in anomaly detection consisted
of visually presenting identified anomalies and allowing users to select, label,
and describe the anomalies. Although this approach yields reliable and inter-
pretable results, it becomes a complex task when data is scaled up. While the
manual labeling and conditioning of anomalous points show promising results
in preventing false alarms or mistaking frequently occurring anomalous points
for normal points, the process makes the system less automated and more
reliant on the continual engagement of domain experts.

A more automated yet interpretable method for anomaly detection is to
have the model learn from normal data and report unusual deviations, a semi-
supervision process. In this instance, the model’s reliability depends on the
quality of the normal data it is trained on—the likelihood of frequently occur-
ring anomalies being misinterpreted as normal increases significantly.

5.2.5 Warning Identification Framework

The Warning Identification Framework (WIF) aims to support the decision-
making of a cyber-physical system that uses anomaly detection methods to
detect warning signals during an ongoing operation. WIF targets anomalies
with a low likelihood of occurring but can have severe consequences. Typically,
such anomalies are underrepresented in data, necessitating that WIF addresses
data biases, a lack of labeled data, and a lack of context in data and anomaly
detection methods to provide reliable results. The motivation behind WIF lies
in key aspects of multiple disciplines towards operations of autonomous and
intelligent sensing systems, adapted from 24:

• Aspects of future Risk Assessment:

– The recognition of knowledge, the growth of data, and the require-
ment for robust frameworks for the safety assessment of cyber-
physical systems58.

– Focus on new events that become apparent in new conditions.

• Aspects of future Reliability Engineering, an engineering discipline for
applying scientific know-how to a component, product, plant, or process
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in order to ensure that it performs its intended function, without failure,
for the required time duration in specified environment 59:

– Fault prevention, removal, and tolerance.

– Fault forecasting.

– Reliable functioning under expected circumstances.

• Aspects of future Resilience Engineering, a discipline that brings together
the system safety concepts, reliability of a system, analysis and handling
uncertainties, risks, and survivability of a system (where a resilient system
can recover quickly after a shock or an injury) 60:

– Anticipation of hazardous events.

– Monitoring of hazardous events.

– Responding to hazardous events.

• Aspects of future Human-Machine Teaming, a relationship between hu-
mans, the machine, and their interdependencies aiming to build trust-
worthy, transparent, predictable, adaptable, and reliable systems that
incorporate AI61:

– On-demand adjustment of autonomy.

– Explainable functioning of a system.

– Shared understanding of intentions.

– Multiple approaches to a single challenge.

Anomaly detection is frequently used in applications to identify unusual
data patterns thatmight harm the system. In comparison, risk analysis identifies
hazards as potential sources of harm. Risk analysis and anomaly detection have
comparable objectives. As illustrated in Figure 5.7, the two disciplines share a
common interest in identifying low probability events that may result in high
consequences and require extensive data analysis. Therefore, the combination
of risk analysis and anomaly detection provides a risk-informed approach to
anomaly detection.

The interest in anomaly detection in combination with risk analysis is de-
pendent on the capacity of anomaly detection to provide anomalous points that
may be used to identify potential hazardous events, hazards, and threats. The
combination of anomaly detection and risk analysis is particularly interesting
for autonomous warning management. However, this section demonstrates
that the process’s reverse order is equally interesting, particularly in addressing
the challenges caused by imbalanced data that contributes to poor anomaly
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FIGURE 5.7. Risk analysis and anomaly detection overlap

detection outcomes. By using insight from risk analysis, such as the list of
possible hazards and their properties, anomaly detection can be guided in de-
tecting the true anomalies that can be of interest for further inspection. The
causal analysis, accompanied by an identified sequence of events leading to
the potentially hazardous event, can aid in the detection of anomalies. With
the analysis of the severity of potential consequences, the detected anomalies
can be prioritized, consequentially decreasing the number of false alarms. In
light of this, we propose selecting anomaly detection methods that consider
the likelihood that true anomalies will occur infrequently. One such method is
Isolation Forest, which attempts to eliminate reporting of noise by isolating
rare points in the dataset on the assumption that there are fewer true anomalies.
We divide the process of using risk analysis as a supervisory component to
anomaly detection into three steps, with an assumption that historical data
exists for risk analysis as an input to WIF (as illustrated in Figure 5.8):

FIGURE 5.8. Architectural pattern for systems using WIF
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5.2.6 Step 1: Warning Characterization

Given the context and circumstances of the planned operation, such as the
operation goals, the assets, expected environmental compounds, location, time,
and season, the first step is to answer the question, "What can go wrong during
the given operation and given the context and circumstances?". By answering this
question, the warning characterization step, through risk analysis, aids in set-
ting the objectives of anomaly detection, as illustrated in Figure 5.8. Context
and circumstances are crucial for minimizing false alarms during anomaly
detection. Since not all occurrences are anomalous under all circumstances,
distinguishing hazards and their contextual occurrences makes it easier to
overlook expected or insignificant disturbances detected by anomaly detection
methods. In addition, it is essential to identify the events or circumstances
that contribute to a hazardous event, known as triggering events. While some
hazards develop gradually, others occur due to another event, a trigger, typically
a technical failure or human error33. Furthermore, while a single anomalous
phenomenon may not suggest a hazardous occurrence, a collection of several
phenomena may. All known or expected variables that may constitute a haz-
ardous occurrence, or an early sign of one, should be included in the step of
warning characterization.

5.2.7 Step 2: Warning Analysis

After determining what can go wrong and compiling a list of hazardous and
potentially hazardous occurrences, the second step is to answer the question
"How does the hazard manifest?" to gain a more profound knowledge of hazards.
It is essential to collect asmany attributes as possible that can explain the hazard,
such as the sequence of events that may lead to their occurrence, frequency, and
the likelihood of appearance. The sequence of events can highlight changes in
environmental components thatmay lead to a hazardous event. Inner corrosion
in a gas pipeline is an example of a hazard that builds gradually until a gas
leak, a hazardous event, occurs33. Accordingly, the sequence of events may
consist of multiple sensor measurements with specific values and properties
that are informative of hazardous occurrence, as determined by domain experts.
Rausand33 describes the first occurrence in a sequence of events that will lead
to undesirable outcomes as an initiating event or the event that disrupts the
normal operations of the system and may necessitate a response in order to
prevent subsequent undesirable outcomes.

The second part of understanding how hazards manifest is by answering,
"What is the likelihood of this hazard occurring, and how frequently does it
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occur?". While frequency tells us about the number of times an event has hap-
pened within a specific timeframe, likelihood answers how probable it is that it
will occur62. Knowing the frequency and likelihood of a hazard is valuable for
dismissing false alarms and recognizing circumstances under which the haz-
ardous events are more likely to occur. As illustrated in Figure 5.8, the warning
characterization step, through risk analysis, aids the anomaly detection out-
come in distinguishing noise from hazards or true and false warnings detected
in a group of anomalies. Nonetheless, unsupervised anomaly detection leads to
identifying novelties that may have been overlooked during risk analysis.

5.2.8 Step 3: Warning Prioritization

Knowing whether to respond is the objective of the third step. Figure 5.8
illustrates the critical component of decision-making of a cyber-physical system
responsible for autonomously reporting hazards during ongoing operations.
Warning priority is derived from consequence analysis and is responsible for
determining the impact of an identified hazardous occurrence. The impact of a
hazard prioritizes a response by the autonomous system to notify the operators
or supervisory system if and when the situation necessitates it, allowing for
early warnings with minimal false alarms.

Figure 5.8 formalizes the three phases of WIF into an architectural pattern
for systems employingWIF and utilizing anomaly detection (or comparableML
approaches) for safety-related decision-making. This type of architecture per-
mits decisions to be risk-informed instead of based onML-discovered patterns
that depend on often unreliable data. Risk analysis through WIF represents a
supervisory component for anomaly detection, provided by domain specialists
examining historical data and causal knowledge. Incorporating a supervisory
component increases the opportunities to address the challenges associated
with anomaly detection, such as a high number of false alarms and the inability
to differentiate noise from hazards, and other general challenges associated
with machine learning methods too, such as bias, lack of context, and lack of
explainability. WIF enables anomaly detection to distinguish false alarms, true
alarms (potentially hazardous occurrences), uncertainties, and novelties. Un-
certainties and novelties represent anything unknown. While some publications
use the terms anomalies and outliers interchangeably, other sources63–65 use the
term outliers to denote uncertainties or novelties captured by anomaly detection.
As part of the architectural pattern for WIF-based systems, as illustrated in
Figure 5.8, it is recommended to include a backup decision plan that requires
human intervention, Human In the Loop (HIL), if the system fails to operate
autonomously.
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The suggested methods for each WIF step depend on the data, case study,
and objectives. The methods for our seismic data case study are described in
the following paragraphs.

5.2.9 Case Study

The application of theWIF is demonstrated using data acquired by the geophys-
ical station supporting system towards estimating the rock burst hazard using
seismic and seismoacoustic techniques 66. Seismic hazard is one of the most
challenging natural hazards to detect and anticipate 67 and can result in devas-
tating consequences during underground activities such as mining and drilling.
One of the primary responsibilities of geophysical stations is to determine
the current level of seismic hazard, especially the probability of high-energy,
destructive seismic tremors that might cause rock bursts during underground
activities. For example, rock bursts pose a significant risk to humans on-site
during mining operations and can destroy longwalls and damage equipment.
The complexity of seismic processes and the imbalanced distribution of favor-
able "hazardous state" and unfavorable "non-hazardous state" data points pose
a significant challenge for predicting seismic hazards using machine learning
approaches67. The original Seismic dataset is a 19-attribute binary classifica-
tion dataset. It is an unbalanced dataset in which the positive (hazard) class is
in the minority and considered an anomaly class. In contrast, the negative (no
hazard) class is considered normal68. The list of seismic dataset attributes is
presented in Appendix A 8.3.

The prediction horizon of the data is eight hours. This eight-hour shift
indicates that the prediction methods (anomaly detection and classifiers) make
seismic hazard predictions one shift in advance. Continuous data collection
necessitates the aggregation of raw data prior to analysis. The aggregation
process replaces a series of measurements recorded at eight-hour intervals with
a single value. For instance, aggregating measurement data collected over 100
shifts yields a sequence of records or vector of variables x1, x2,..., x100, where
xt is a vector of aggregated measurement values characterizing the eight-hour
interval or one shift, as denoted in the dataset. After two-month data collection
process and aggregation, the seismic dataset consists of 2584 instances.

Seismic Data Hazard Assessment

Three hazard assessment methods are performed for the seismic data: seismic
hazard assessment, seismoacoustic hazard assessment, and seismoacoustic
hazard assessment based on only the registration of maximum energy from
a geophone67. The main aim of the three hazard assessments is to predict
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increased seismic activity, which can cause a rockburst. There are four distinct
categories of rockburst hazard: no hazard, low hazard, moderate hazard, and
high hazard. The following are the primary assessment factors influencing the
hazardous occurrence probability and the condition of rockburst hazard 69,70:

• Coal seam thickness;

• The distance between a coal seam and a probable seismogenic layer;

• Maximum seismic energy of tremors from a particular coal seam.

The seismic hazard assessment method The essence of seismic hazard
assessment is observing changes in seismic activity and identifying an increase
or decrease in the degree of hazard relative to a previously determined degree 67.
Seismic hazard assessment utilizes qualitative assessment (for low seismic activ-
ity) or quantitative assessment (for high seismic activity) based on the strength
of seismic tremors. The level of seismic activity is calculated by the quantity
and magnitude of seismic tremors recorded in the vicinity of an observed long-
wall during a specific period (a shift) 67. Table 5.5 provides the foundation for
quantitative hazard assessment.

TABLE 5.5. Basis of hazard assessment for quantitative method, adapted
from67
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The seismoacoustichazardassessmentmethod The seismoacousticmethod
for assessing seismic hazard is based on the relationships between seismoacous-
tic emission and seismic hazard. In the seismoacoustic method, the following
criteria are essential for assessing earthquake risk:

• recording of the seismoacoustic emission;

• the number of pulses recorded by geophones or denoted by seismic
energy.

TABLE 5.6. Seismoacoustic method for hazard assessment, adapted
from67

Changes in recorded seismoacoustic activity and energy are the primary
evaluation criteria. In addition, deviations (denoted as DEV in Table 5.6) of val-
ues calculated during subsequent time intervals also influence the classification
of one of the four seismic hazard states (a,b, c, and d for no, low, medium, and
high-impact hazards). Identifying the hazard level is based on the percentage
changes in activity/energy value deviations (see Table 5.6).

Anomaly Detection for Seismic Data

In order to achieve the most credible results, it is essential to select the anomaly
detection method that corresponds to the data description from among the
vast number available. Our approach is firstly to determine if the data is Gaus-
sian. If the data is Gaussian, anomalies often reside away from the peak of the
normal distribution71. The normality test of the seismic dataset, performed
with Python Library for statistical calculations Shapiro-Wilk Test for Normality.

72, in our case study indicates that the seismic data is not Gaussian with p-
value approaching 0. The data distribution contains more information than the
covariance matrix, which measures how much two random variables change
together and is helpful for normal data but less for non-Gaussian data. Plotting
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noise and artificial anomalies is more difficult for this type of data. Correlation
between attributes or their relevance to one another is an additional essential
characteristic of data. Figure 5.9 demonstrates the heat map illustrating the
magnitude of the correlation between attributes.

For this dataset we have selected an anomaly detection method Isolation
Forest that isolates anomalies with minimal computational needs. 8 provides a
comprehensive summary of each step of the Isolation Forest algorithm and the
underlying equations. Since Isolation Forest is capable of isolating outstanding
data points efficiently, it can also be used to determine if these points share
similarities with hazards, i.e., if hazards also appear as outstanding points and
if they are apparent to both domain experts and anomaly detection methods.
If they are difficult to detect, it indicates that the anomalies may not share
contextual properties with hazards, so the autonomous approach may need
to be modified accordingly. This knowledge can be used to extract what is
not apparent for anomaly detection to detect the hazards and determine what
properties to introduce to increase apparency and improve autonomous de-
tection, since not every anomaly is a hazard and vice versa. In our case study,
Isolation Forest provides a suitable testing environment for measuring an al-

FIGURE 5.9. Heat map - correlations between dataset attributes
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FIGURE 5.10. Isolation Forest, illustrated. Adapted from 73

gorithm’s capacity in isolating anomalies and determining whether they are
comparable to the anomalies that a human domain expert would identify as
seismic hazards. Isolation Forest effectively solves high-dimensional problems
with multiple non-correlated attributes by constantly and recursively splitting
instances until they are isolated by their normal common, normal uncommon,
and anomalous occurrence8, as illustrated in Figure 5.10. Isolation Forest does
not rely on distance or density metrics to identify anomalies, eliminating pro-
cessing expenses and making it suitable for nonlinear datasets. It is expected
that there are fewer true anomalies in the dataset; therefore, they are more
susceptible to isolation, eliminating the overabundance of registered noise or
false alarms. It is a widely applied and one of the most developed unsupervised
anomaly detection methods. The efficiency of Isolation Forest is in the way it
builds a normal data point profile and isolates the points that do not fit that
profile, taking advantage of anomalous properties and uncommon values, as
illustrated in Figure 5.10. Algorithm Part 1, 2, and 3 show the algorithm details
of Isolation Forest split into three parts: initialization of a forest, initialization
of a single tree (more of which construct a forest), and calculation of traversal
path length, a path between the tree node and the isolated anomaly. A group of
isolation trees finds anomalies as points with path lengths, with numerous trees
functioning as "domain experts" to target the anomalies 8. Additionally, the
Isolation Forest does not need to separate the majority of the training sample
consisting of normal examples.

As described in the Algorithm Part 1 and 2, the trees are produced by iter-
atively splitting the data until instances are isolated or a predetermined tree
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Algorithm Part 1: Creating a forest, adapted from 8

Algorithm Part 2: Creating a tree, adapted from 8

Algorithm Part 3: Calculating path length, adapted from 8
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height is attained, resulting in a partial model. The algorithm automatically
determines the tree height limit based on the sub-sampling size, which is de-
noted as the height limit variable. Finding the average height limit is necessary
because shorter-than-average path lengths are more likely to be anomalies.
Sub-sampling size𝜓 that controls the data size is reliably detected by Isolation
Forest, keeping the performance, processing time, and memory size optimal.
Algorithm Part 3 depicts the evaluating stage in which an anomaly score s is
derived from the expected path length for each test instance, which is obtained
by passing instances through each tree in the forest. A single path length is deter-
mined by counting the number of edges e from the root node to a terminating
node as an instance traverses a tree.

When a single path is obtained for each tree in the forest, an anomaly score
Equation s is derived following the 5.1, where h(x) denotes the path length,
E(h(x)) is the normalized h(x) from a collection of isolation trees, and c(n) is the
average of path lengths. Finally, the data are then sorted in descending order to
identify the most significant anomalies.

𝑠 = 2 − 𝐸 (ℎ(𝑥))
𝑐 (𝑛) (5.1)

WIF Steps: Application of Risk Definition

Step 1: Warning Characterization Answering the question "What can go
wrong during the given operation and given the context and circumstances?" neces-
sitates domain expert observations. For the seismic dataset, this is answered
through three hazard assessment methods. Table 5.5 and Table 5.6 provide the
hazards as the events that can go wrong. These hazardous events serve as the
ground truth for testing the capability of anomaly detection method to detect
the same events as anomalies. The results of the hazard assessment methods
are shown in Table 5.7. The three methods do not yield the same amount of
hazardous and non-hazardous states. Upon closer inspection, the number of
equal instances of the non-hazardous state resulting from seismic and seis-
moacoustic hazard assessment methods is 1071, and the number of equally
denoted hazardous states is 393. As suggested by 67, knowledge of the present
hazard state is essential for production process management and industrial
safety. However, assessing and predicting seismic hazards is a highly complex
procedure with a substantial element of randomness.

Treating each result of hazard assessment methods as different ground
truths, the information derived by domain expert observations and known as
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TABLE 5.7. Number of hazardous and non-hazardous instances labeled
by hazard assessment methods

Hazard Assessment Methods

State Seismic Seismoacoustic Seismoacoustic by
max energy

Non-
hazardous

1682 1580 2342

Hazardous 902 1004 242

FIGURE 5.11. Hazards identified by anomaly detection and (a) seismic hazard
assessment, (b) seismoacoustic hazard assessment, (c) seismoa-
coustic by max energy hazard assessment methods

the absolute truth, the anomaly detection results show significantly different
numbers (see Figure 5.11). Out of the 259 detected anomalies, 159 are the
hazardous state identified by seismic (Figure 5.11 (a)), and 108 are by the seis-
moacoustic hazard assessment method (Figure 5.11(b)). These results lead to
an early conclusion that approximately half of the anomalies detected by the
anomaly detection method are considered hazardous, and the other detected
anomalies are of no significance. Compared to the results of seismoacoustic by
max energy results of 242 hazardous states, anomaly detection has identified
only 32 (see Figure 5.11 (c)). The Figure 5.11 illustrates the critical difference
and the main shortcoming of the anomaly detection method, the inability to
independently detect true hazards and a substantial number of false alarms. The
confusion matrices in Table 5.8, Table 5.9, and Table 5.10 provide additional
insight into these results. Despite three distinct seismic hazard assessment
methods representing hazard occurrences, seismic, seismoacoustic, and seis-
moacoustic by maximum energy, Isolation Forest demonstrated an insufficient
understanding of hazards. This evidence may prompt an early proposition that
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TABLE 5.8. Confusion Matrix with Seismic Hazard Assesment as True
Values, Isolation Forest Anomalies as Test Values

Anomalies by Isolation Forest
Positive Negative Total

Hazards by Seismic
Positive 159 743 902
Negative 100 1582 1682

Total 259 2325

TABLE 5.9. Confusion Matrix with Seismoacoustic Hazard Assesment as
True Values, Isolation Forest Anomalies as Test Values

Anomalies by Isolation Forest
Positive Negative Total

Hazards by Seismoac.
Positive 108 896 1004
Negative 151 1429 1580

Total 259 2325

unsupervised anomaly detection may not be appropriate for seismic hazard
detection despite its widespread use for unusual patterns and threat detection
and that seismic hazard assessment is required as an element of supervision.

Step 2: Warning Analysis Warning Analysis intends to detect patterns in
which the hazards may occur and the likelihood of their occurrence. Condi-
tional probability P, Equation 5.2, is the likelihood that an event A or outcome
will occur given the occurrence of a prior event or outcome B, C, D62. Multi-
plying the likelihood of the preceding event by the updated probability of the
subsequent, or conditional, occurrence yields the conditional probability.

TABLE 5.10. Confusion Matrix with Seismoacoustic by Max Energy Haz-
ard Assesment as True Values, Isolation Forest Anomalies as
Test Values

Anomalies by Isolation Forest
Positive Negative Total

Hazards by Max Energy
Positive 32 210 242
Negative 227 2115 2342

Total 259 2325
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𝑃 (𝐴 | 𝐵,𝐶, 𝐷) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵,𝐶, 𝐷) (5.2)

Table 5.11 shows the results of conditional probability of each nonhaz-
ardous occurrence and hazard, categorized by their impact. Table 5.11 repre-
sents the probability for each state (either no hazard, low, medium, high-impact)
given the occurrence of the other states. The impact of the hazard is derived
following the causal knowledge described in Table 5.5 and Table 5.6 on hazard
detection patterns with the task of hazard prediction based on the association
between the energy of recorded seismic tremors and seismoacoustic activity
with the probability of seismic tremor occurrence 67.

TABLE 5.11. Conditional probability of hazard occurring, by hazard as-
sessment methods

Conditional Probability by Hazard Impact, expressed in percentages

State Seismic Seismoacoustic Seismoacoustic by
max energy

No hazard 65.09 61.14 90.63

Low-impact
hazard

34.90 36.99 8.20

Medium-
impact hazard

1.80 1.85 1.16

High-impact
hazard

0 0 0

Even though this case study has an exact number of seismic hazards, it is not
always expected that seismic tremor monitoring operations will have sensor
data for identifying hazards analyzed by domain experts. In the event of not
having an exact number of hazards derived from sensor data by domain experts,
knowing the frequency of a hazardous occurrence in a given environment
may help compensate for situations in which a large number of anomalies
are reported in order to determine the likelihood of the anomaly being a true
hazard or a false alarm.

Step 3: Warning Prioritization The three approaches to hazard assessment
for seismic data provide the impact of the hazard on four levels (hazard impacts
derived following the Table 5.5):

1. No hazard
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2. Low-impact hazard

3. Medium-impact hazard

4. High-impact hazard

Table 5.12 shows the number of hazards, categorized by their impact, de-
tected by the three hazard assessment methods. In comparison, Table 5.13
represents the number of anomalies detected by the unsupervised anomaly
detection method, Isolation Forest, where each hazard assessment method is
used to categorize the hazards and their impacts among the detected anomalies.

TABLE 5.12. Hazard impacts by hazard assessment methods

Hazard Assessment Methods: Hazard Impact

State Seismic Seismoacoustic Seismoacoustic by
max energy

No hazard 1682 1580 2342

Low-impact
hazard

902 956 212

Medium-
impact hazard

0 48 30

High-impact
hazard

0 0 0

As presented in Table 5.12, during the hazard assessment, there were no
records of high-impact hazardous occurrences. The seismic hazard assessment
method has identified only low-impact hazards, and no medium or high impact
hazards. According to the impact, the reactions during operations can be
prioritized.

Anomaly detection has provided poor results concerning the identification
of various levels of hazard impacts, presented in Table 5.13. For low impact-
hazards, anomaly detection has, on average, identified only 14,2% of the low-
impact hazards, and for medium-impact hazards, only 14,5% of the cases on
average. These results indicate that unsupervised anomaly detection cannot
reliably identify seismic hazards and distinguish them based on their severity
impact. Therefore, a formof supervision, as demonstratedwith different hazard
assessment approaches, is necessary to introduce.
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Case Study Summary and Opportunities for a Generalized Framework

The case study architecture of WIF, applied to identify seismic hazards among
detected anomalies by unsupervised anomaly detection, is illustratated in Figure
5.12. Isolation Forest, a method for unsupervised anomaly detection, analyzes
unlabeled seismic sensor data and detects a group of anomalies. However,
within the detected anomalies, there is yet no knowledge of which ones are
false warnings and the ones that are truewarnings or hazards. In this case study,
domain expert knowledge is leveraged throughhazard assessment criteria based
on three methods: seismic, seismoacoustic, and seismoacoustic with maximum
energy. Hazards, or true warnings, can be extracted from the given dataset and
compared to anomalies detected by the unsupervised method to determine
if the unsupervised method can capture the properties of hazards and report
them as anomalies while ignoring false warnings. These hazard anomalies can
be prioritized based on their impact, such as none, low, medium, and high.

As the use of data-driven and machine learning methods increases, the
problem of unintended and harmful behavior of machine learning systems
resulting from poor design of real-world AI systems becomes increasingly
apparent74. Unsupervised anomaly detection, classification, and other data-
driven machine learning methods face well-known challenges:

• biased data,

• false positives and false negatives (false alarms),

• prioritization of anomaly reporting for anomaly detection applications,

• lack of context that is tied to all of the previous challenges, and

• lack of explainability of the results produced by unsupervised methods

TABLE 5.13. Hazard impacts identified by anomaly detection methods,
with hazard assessment methods as the ground truth

Anomalies detecting hazard impacts

State Seismic Seismoacoustic Seismoacoustic by
max energy

Low-impact
hazard

166 104 29

Medium-
impact hazard

0 6 5

High-impact
hazard

0 0 0
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Introducing a supervisory component to data-driven systems is a step to-
ward providing context to the method, reducing biases and false reporting,
adding prioritization knowledge, and improving the explainability of the re-
sults as they are derived from more traditional risk, and hazard assessment
approaches. The approach studied in this section can be generalized by observ-
ing risk assessment methods and properties of hazards for a specific operation,
where hazard properties may serve as a class label by which the unsupervised
data-driven method can be validated. According to a technical report and rec-
ommendations on AI and safety by ISO/IEC, 2022 75, providing explainable
algorithms and results and validating them in the real world characterizes the
future of AI-related systems and safety.

FIGURE 5.12. Case Study Summary Architecture

5.2.10 Discussion

The results of the case study show shortcomings of an unsupervised anomaly
detection method through a clear difference between the identified hazards
by three seismic hazard assessment methods and their results with unsuper-
vised anomaly detection method Isolation Forest. The findings from Step 1
Warning Characterization provide crucial insights into unsupervised anomaly
detection and seismic hazard assessment differences. During safety-critical
operations, such as seismic hazard monitoring, it is essential to assess the dif-
ference between the discovered hazardous states and adapt our expectations
for the implementation of anomaly detection. Since it is not expected that an
operation will have labeled training dataset, and identified hazards list by do-
main experts for each case, the analysis of the data becomes unsupervised. This
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step showed unexpected differences between the number of seismic hazards
identified by domain expert inputs and anomalies identified by unsupervised
anomaly detection. An unexpectedly low number of detected anomalies proved
to be hazards when categorized following the hazard identification criteria
presented in Table 5.5 and Table 5.6. This leads to an assumption that unsuper-
vised anomaly detection, despite being used for detection of threats and unusual
patterns, cannot be trusted to detect all seismic hazards. An additional layer
of context, namely through hazard assessment methods, is necessary to distin-
guish the anomalies that are only data discrepancies and offer no significance,
from the ones that are hazardous.

The results of conditional probability obtained in Step 2, Warning Analysis,
and based on hazard assessment methods, are crucial to setting the expectation
of the occurrence of a hazard of varying degrees of impact. The seismic and
seismoacoustic hazard assessment methods resulted in the highest probability
of a non-hazardous event, followed by a low-impact hazard and a low probabil-
ity of medium-impact hazard occurrence. The data in this case study provided
no evidence of high-impact hazards, resulting in an expected no probability
of high-impact hazardous occurrences. In comparison, the seismoacoustic
by maximum energy method resulted in the highest probability of 90.53% of
non-hazardous occurrence, followed by a low probability of low-impact and
medium-impact hazards. This step showed a limitation in the case study data
where the lack of high-impact hazard evidence resulted in a 0 % probability of
such hazards occurring. This imbalance in hazard impacts can lead to biases
during anomaly detection or hazard identification methods.

Further analysis in Step 3, Warning Prioritization, categorized the identi-
fied hazards in the varying degrees of impact: no hazard, low-impact, medium-
impact, and high-impact. The anomaly detection method resulted in fewer
identified hazards than the hazard assessment methods. This step showed
the low reliability of the anomaly detection method as an autonomous hazard
identification approach.

The case study results have validated the assertion that unsupervised anomaly
detection generates a considerable amount of false alarms, that may waste op-
erator response resources if the methods are used as a part of an autonomous
drone or smart-sensor system. These results provide valuable insight into the
possibilities of addressing the shortcomings of unsupervised anomaly detection
methods for seismic hazard identification, where risk assessment approaches,
such as hazard identification, can play a crucial role.
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5.2.11 Contribution Summary

Recent research provides different approaches to handling discussed challenges
through simulations, rule-based classification, and decision boundaries. How-
ever, these approaches do not address the explainability of the data-driven
methods and introduce new complexities. The results and contributions of this
section can be summarized as follows:

1. A novel outlook on utilizing existing domain knowledge in seismic
tremors through seismic hazard assessment methods as a supervisory
component for unsupervised anomaly detection through the Warning
Identification Framework based on risk assessment, resilience and relia-
bility engineering, and future human-machine teaming expectations.

2. Identification of overlapping tasks for risk assessment and anomaly
detection objectives that can be utilized in addressing the shortcomings
of anomaly detection results.

3. A case study examining the sensor-obtained seismic data for monitor-
ing seismic tremors and analyzing three different hazard identification
methods in comparison to unsupervised anomaly detection for hazard
identification.

During our analysis, we identified significant anomaly shortcomings in detec-
tion methods to detect hazardous occurrences by their levels of impact and to
distinguish anomalies of no significance from the anomalies that represent haz-
ardous occurrences. The results of this research show significant opportunities
in utilizing risk assessment insights to tackle the shortcomings of unsupervised
anomaly detection methods and aid a more reliable and transparent hazard
detection.

5.3 CONCLUSIONS AND KEY CONTRIBUTIONS

This section highlights the key contributions and concludes the chapter and
the presented articles.

It is anticipated that cyber-physical and intelligent sensor systemswill play a
permanent role in industrial operations, including monitoring, inspecting, and
intervening with assets and the environment, necessitating greater autonomy
for making significant decisions in near-real and real-time. Current challenges
include a lack of context, the underutilization of causal knowledge, and an
excess of imbalanced data. We discussed the growing need for employing
data-driven methods in a more explainable, transparent, and reliable practice.
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The key findings of the two papers presented in this chapter confirmed
the challenges inherent in sensor data. They uncovered the most significant
algorithmic shortcoming resulting from a lack of context: the abundance of
noise compared to significant anomalies as hazards. The analysis of seismic
hazard data provided solid justification for using traditional methods to add
the context of risk to semi-supervised anomaly detection results.
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CHAPTER 6

Subsea Pipeline Visual Inspection of Anomalies

This chapter is based on the article:

• Image-based and risk-informed detection of Subsea Pipeline damage by Rialda
Spahic, Kameshwar Poola, Vidar Hepso, and Mary Ann Lundteigen.
Discover Artificial Intelligence, Springer Nature. June, 2023.
DOI: 10.1007/s44163-023-00069-1

All authors contributed to the research conception. Rialda Spahic performed
material preparation, literature and data analysis, and manuscript writing.
Kameshwar Poolla and Mary Ann Lundteigen performed writing reviews and
supervision of all prior drafts of the manuscript. Vidar Hepsø contributed to
the concept visualisation of the research.

This research explores and addresses the prevalent challenges of image-
based subsea pipeline hazard detection, such as the lack of training data, insuf-
ficient evidence of hazards in data resulting in heavy data imbalance, complex
subsea environment reducing image quality, and the lack of explainability of
methods for image analysis. The main contributions of this research are the
analysis of external hazards on raw subsea pipeline images taken by subsea
drones and provided by the oil and gas industry, generation of synthetic data
through seamless blending of existing hazards and expansion of training data
with synthetically generated images. Additionally, to increase the explainability
of convolutional neural network for image analysis, we apply localized anomaly
detection that highlights the most discriminatory regions of images. Finally,
we formalize the success and potential of our approach in a methodology that
expands on traditional data analysis lifecycle.
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6.1 IMAGE-BASED AND RISK-INFORMED SUBSEA PIPELINE HAZARD DETECTION

ABSTRACT

As one of themost important assets in the transportation of oil and gas products,
subsea pipelines are susceptible to various environmental hazards, such as me-
chanical damage and corrosion, that can compromise their structural integrity
and cause catastrophic environmental and financial damage. Autonomous un-
derwater systems (AUS) are expected to assist offshore operations personnel
and contribute to subsea pipeline inspection, maintenance, and damage detec-
tion tasks. Despite the promise of increased safety, AUS technology needs to
mature, especially for image-based inspections with computer vision methods
that analyze incoming images and detect potential pipeline damage through
anomaly detection. Recent research addresses some of the most significant
computer vision challenges for subsea environments, including visibility, color,
and shape reconstruction. However, despite the high quality of subsea im-
ages, the lack of training data for reliable image analysis and the difficulty of
incorporating risk-based knowledge into existing approaches continue to be
significant obstacles. In this section, we analyze industry-provided images of
subsea pipelines and propose a methodology to address the challenges faced
by popular computer vision methods. We focus on the difficulty posed by a
lack of training data and the opportunities of creating synthetic data using
risk analysis insights. We gather information on subsea pipeline anomalies,
evaluate the general computer vision approaches, and generate synthetic data
to compensate for the challenges that result from lacking training data, and
evidence of pipeline damage in data, thereby increasing the likelihood of a more
reliable AUS subsea pipeline inspection for damage detection.

6.1.1 Introduction

Monitoring and inspection are essential for operational subsea oil and gas
pipelines. However, subsea oil and gas operations are complex, with a range of
structures and systems, in complex and harsh subsea environment. As a critical
asset for transporting oil and gas products over vast distances, subsea pipelines
are exposed to a variety of environmental hazards. Hazard is defined as the
source of harm1. Exposure to environmental hazards can damage the pipelines
and cause severe personnel, environmental, and financial damage 2. Therefore,
proper inspection and maintenance of subsea pipelines are essential tasks for
their safe and reliable functioning and operations. In case of an unexpected
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event, continuousmonitoring (i.e., pressure dropmonitoring for leak detection)
notifies the pipeline shutdown systemwith the supervisory role of an operator 3.
Despite the worldwide safety record of subsea pipelines, comprehending and
responding appropriately to complex situations as well as anticipating their
consequences are crucial for the safety of offshore operations 4. Since sending
human operators offshore can be dangerous and expensive, autonomous un-
derwater systems (AUS) are intended to assist human operators in inspecting
offshore structures, especially long and vast subsea pipelines. With the devel-
opment of subsea docking stations that allow AUS to reside on the seabed for
months, trained operators have the flexibility and opportunity to use AUS to
inspect pipelines when the situation calls for it 5.

Autonomy, as described by6, is the capacity to act and make decisions
without external assistance. For AUS, autonomy is typically achieved through
artificial intelligence (AI) systems, the computer systems designed to mimic
intelligent human behavior6, by analyzing large amounts of incoming data
collected in near-real-time or real-time by sensors and cameras attached to the
AUS. For damage detection scenarios, the dominant AI approaches include 7,8:

• Computer visionmethods for analyzing image data,

• Machine learningmethods that learn from large amounts of data to find
patterns, and

• Anomaly detection methods that identify and report irregularities, or
anomalies, in data patterns.

In addition, risk assessment and analysis are common and well-established ap-
proaches for identifying what can go wrong in operations and offering a list of
hazards, as potential sources of harm, the likelihood, sequence of events and
consequences of hazards9.

In recent years, due to the success of remotely operated vehicles (ROVs)
that are manually controlled, pipeline inspection research has considered the
potentials of AI technologies employed by AUS, such as underwater drones.
Therefore, there is an increase in interest for the potential of image-based
inspection by computer vision techniques through cameras attached to AUS,
such as image classification, object detection, and image segmentation 2,10–16.
However, the existing research for image-based inspections with AUS is partic-
ularly oriented toward image color and shape reconstruction and unsupervised
methods due to the complexity of underwater conditions, poor visibility, and a
significant lack of training data.

Despite the abundance of available research, the remaining obstacles to
reliable operations with AUS stem from the underrepresentation of evidence
of pipeline damage in data, which contributes to data imbalances that can lead



136 ▶ CHAP. 6 SUBSEA PIPELINE VISUAL INSPECTION OF ANOMALIES

to inaccurate data analysis results and misleading data pattern findings. In
addition, there is a significant lack of training data for computer vision and
data-driven methods to learn the patterns of potential dangers in order to
detect them efficiently and reliably. Unfortunately, a significant number of the
detected anomalies represent insignificant data, also known as noise, which
further mislead the data analysis conclusions and disrupt the AUS operations
decision-making system.

In this section, we focus on analyzing industry-provided subsea pipeline
images captured by underwater drones for external damage detection, intro-
ducing risk-informed training processes for the anomaly detection methods
and evaluating the detected anomalies by isolating potential the anomalies
that represent pipeline damage. The focus of this section is on utilizing risk
analysis knowledge and semi-supervising computer vision methods for subsea
pipeline images for early identification of pipeline damage while separating
them from insignificant anomalies (noise and false alarms). The objective is to
provide the missing training data while limiting the amount of manual labor
to annotate the training images, and therefore to limit the frequency of false
alarms generated by autonomous systems and to identify pipeline damage as
early as feasible while increasing the scope of anomaly detection capabilities
during visual monitoring and inspection. Therefore, the contributions of this
section can be summarized as:

• Analysis of external damage on subsea pipelines on raw, industry-provided
data.

• Generation of synthetic data through a seamless blending of known
anomalies, as defined by risk assessment and analysis methods, for a
more reliable computer vision and anomaly detection.

• Review of computer vision challenges, such as monochromatic images
and large images that necessitate extensive computational power to ana-
lyze.

• Proposal of a methodology to address the lack of training data, imbal-
anced data, and data quality for image-based subsea pipeline damage
detection.

6.1.2 Related Work

The efficiency and reliability of damage detection are vastly enhanced by com-
puter vision. During visual inspection, environmental conditions and appro-
priate image collection are essential for obtaining high-quality images for im-
age analysis17. Computer vision is a type of real-time, in-line detection that
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requires the analysis of vast quantities of data, often including redundant in-
formation, and a high-dimensional feature space. The primary obstacles of
general computer vision applications are the computation speed required for
real-time operations and the detection intelligence required to differentiate
between significant and redundant information 17. Recent efforts in computer
vision have centered on general algorithms for the efficacy and precision of
visual inspections17,18, the necessity of integrating multiple detection technolo-
gies19, and the improvement of real-time performance with less computational
power18,20. The restrictions of computational power are particularly critical in
applications with autonomous systems, such as underwater drones and other
mobile vehicles21. However, underwater computer vision for subsea structures
inspection is facing additional challenges, such as poor visibility, and lack of
training data21,22. Subsea pipelines are exposed to various environmental fac-
tors that can compromise their integrity and contribute to various types of
damage. Due to this, substantial research has been conducted on inspecting
subsea pipelines to look for damage.

Zhou et al.7 described the challenge of locating anomalies during subsea
exploration. Using a context-enhanced autoregressive network that learns
semantic dependence based on conditional probability to identify the anomaly
in low-visibility underwater images weighted by both image reconstruction
loss and feature similarity loss, they proposed a deep-learning-based anomaly
detection framework to identify unknowns in a complex underwater environ-
ments for autonomous robots. With sufficient training data with images of
marine animals, they successfully demonstrated their method for detecting
marine animals as anomalies on a large, imbalanced dataset.

Samnejad et al.23 exploredways to reduce the time-to-value and overall cost
of the subsea pipeline inspection by replacing the laborious task of manually
searching for anomalies through unorganized data with an efficient workflow
through a set of neural network methods and substantial computational power
from cloud-based services. The authors 23 presented a digital solution that
integrates the value of visual data collected and aggregated over decades of
inspection campaigns with computer vision technologies to detect and classify
structure and equipment anomalies autonomously. However, the 20,000 images
for the training dataset were annotated manually, requiring intense labor.

Bastian et al.24 visually inspected and characterized external corrosion
in pipelines located on land using a convolutional neural network (CNN).
They proposed a CNN for detecting and classifying corrosion on four levels:
no corrosion, low, medium, and high corrosion. Despite high accuracy and
promising results, the authors24 encountered several issues that made CNN
misclassify corrosion, such as leaves, deposits on the pipeline, and the corrosion-
like landscape surrounding the pipelines. They highlighted the need for pipeline
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images to contain background information, or context, for training. Among
the classified corroded pipelines, there were images with background clutter
that the CNNmodel could not distinguish. They emphasized the importance
of pipeline images containing context or background information for training
purposes a recommended a more localized pipeline inspection approach for
more reliable results in differentiating corrosion levels. On land pipelines,
however, image-based damage detection encounters fewer challenges with
hazy, monochromatic images than on subsea pipelines, making the subsea
pipeline inspection task more challenging.

Khan et al.25 investigatedmethods for estimating subsea pipeline corrosion
based on the color of the corroded pipeline. The authors 25 encouraged incor-
porating the color correction methods into a robotic system for subsea pipeline
corrosion inspection, even in real-time to address the visibility challenges for
underwater images. They proposed an algorithm for image restoration and
enhancement to reduce blur and improve the color and contrast of underwater
images that were tested on experimentally collected and publicly available hazy
underwater images.

6.1.3 Problem Description

Underwater computer vision for offshore inspections with autonomous sys-
tems is receiving greater attention and the methods need to mature for reliable
and safe anomaly detection operations. The primary challenges that pique the
interest of both the research community and the industry are:

• Imbalanced data is a frequent obstacle in data-driven analysis, such
as with most machine learning and anomaly detection techniques. The
difficulty is most apparent in anomaly detection applications where
anomalies may reflect important information, such as potential pipeline
damage. Due to the scarcity of damage evidence in everyday operations,
the collected data consists of the vast majority of non-anomalous situa-
tions, making it difficult for algorithms to learn patterns about anomalies,
report them, and not eliminate them as noise, which is the information
that misleads data analysis 26.

• Training data is generally sparse in AI-based data-driven approaches.
There is a saturation of applications tested with accessible training data;
nevertheless, unsupervised algorithms that do not require annotated data
are becoming increasingly popular asmore data becomes available 27. Yet,
due to the complexity and inexplicability of these techniques, there is a
growing interest in discovering automated methods to annotate massive
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amounts of data and save laborious manual effort. Creating training data
is being explored from different perspectives, among others, generat-
ing data from simulations, using AI tools for automatic annotation, or
through transfer learning where data is learned from one application
and tested on a different one.

• Image quality and visibility are computer vision applications’ most
persistent and obvious obstacles. Due to the nature of water as a medium,
underwater photos frequently need to be corrected to avoid incorrect
lighting and color, causing them to appear predominantly blue or green.
In addition, seawater may include a high concentration of plankton
and other marine organisms that can obscure photographs. For subsea
pipelines, layers of material such as sand and biological deposits referred
to as fouling and biofouling, limit the view of the pipeline surface, and
inhibit inspection. Hence, many underwater computer vision applica-
tions concentrate on reconstructing the image’s color, shape, and overall
item visibility.

• Computing power is another challenge for computer vision applica-
tions, because images are often very large andneed substantial computing
power and processing time. A weakness of prominent neural network
algorithms is the necessity to resize or downscale images to improve
processing speed, which may result in a substantial loss of information
from the resized images. Sliding-window approaches are used in applica-
tions where the larger regions of image need analysis without substantial
resizing or in case of substantial information loss due to resizing 28.

Autonomous systems powered by computer vision have great potential to
detect subsea pipeline damage. However, as offshore operations prioritize the
reliability and maturity of emerging technologies, it is necessary to investigate
options for generating more training data and reducing the need for Black-box
algorithms to be closer to permanently employing autonomous underwater
systems for remote operations. It is also important to determine if the image
resizing, which is often required to reduce needed computational power during
image analysis poses a considerable information loss and reduces the chances
of reliable anomaly detection.

6.1.4 Anomalies as Risk Factors

General visual inspection of subsea pipelines, traditionally performed by ROVs
is one of the most common inspection methods for determining the pipeline’s
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integrity and identifying areas of increased risk 29. The operators whomanually
control the ROV during the pipeline inspection are trained and experienced
in detecting anomalies on and around pipelines. The following is a set of the
common anomaly criteria for general visual inspection of subsea pipelines
established by the best practices in industry 29:

1. Any evidence of fluid leakage.

2. Any external corrosion on the exposed metal or outer sheath.

3. Any external damage, deformation, and bending on the pipe surface,
anodes or other components.

4. Any debris blocking the visibility of the pipeline, including litter and
other seabed debris, and sediments, is known as fouling. The visibility
is also impeded by an abundance ofmarine growth, known as marine
fouling or biofouling. The anomaly is considered if more than 50% of the
surface is covered within 10 meters. Additionally, debris considered an
anomaly are objects in the nearby vicinity, up to 1 meter, of a pipeline
that can cause damage or obstruct visibility, such as large boulders.

5. Ineffective pipeline support, including ineffective seabed support.

Accordingly, Table 6.1 shows a summary of anomalies as risk factors that
can contribute to pipeline failure. Table 6.1 illustrates each risk factor’s poten-
tial damage analyzed, from extensive to minor damage, and compared to its
expected occurrence probability, from most probable to least probable occur-
rence of damage30.

Table 6.1 shows the general representation of anomalies and the expectation
of their occurrence probability, However, the exact probability and anomalies
that are identified as damage are typically calculated within a specific operation
context. It is crucial for the UAS that detects anomalies to have information or
knowledge of the major risk contributing factors associated with the subsea
pipelines to adjust expectations and reporting in regions where the likelihood
of the most extensive damage potential is higher.

6.1.5 Case Study

Data Description

The dataset for this case study consists of an imbalanced set of 164 subsea
pipeline images captured with an autonomous underwater drone, provided by
domain experts from the oil and gas industry. There are 126 images without
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TABLE 6.1. Risk factors contributing to pipeline failure, adapted from 30

anomalies and 38 images with anomalies or mechanical damage on the surface
of the pipeline. We used 35 additional images without anomalies to generate
synthetic mechanical damage images. This was done to balance out the anoma-
lous and non-anomalous images and test if the synthetic data is sufficiently
realistic to improve the network learning process. The images are in high
resolution and do not require shape or color recovery. However, the nature
of the mechanical damage makes it difficult to distinguish the damage from
marine growth on the pipeline surface, as both share irregular patterns and
similar colors, posing a challenge to distinguish between small-scale damage
and marine growth. The original size of each image was 4096 x 2304 pixels,
however, due to computational resources required during CNN training, the
images were reduced to 224 x 224 pixels where mechanical damage is still
visible on the pipeline.

Image Classification with Neural Networks

One of the elements of data analysis through machine learning is the discovery
of discriminant data features. Discovering discriminant data features in images
can be particularly challenging and requires complex methods inspired by
visual cortex processing in the brain that are capable of learning a substantial
number of features and extracting patterns 31. We will focus on a deep learning
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method CNN or convolutional neural networks. The CNN model consists
of convolutional layers whose primary function is to learn and extract the
features required for efficient image comprehension 31. The objective of the
convolutional layer, modeled over neuronal cells, is to extract features such as
edges, colors, texture, and gradient orientation. Convolutional layers, see Figure
6.1, are composed of convolutional filters or kernels. The kernels are convolved
across the width and height of the input image. CNN intuitively learns filters
that are activated upon encountering edges, colors, textures, and other image
properties. The pooling layer performs nonlinear downsampling of convolved
features and reduces the computational power necessary to process the data
by reducing dimensionality31. The output of pooling is the subdivision of its
input into a collection of rectangle patches. Depending on the pooling method
selected, each patch is replaced with a single value 31. There are two main types
of pooling, maximum and global average pooling. Global average pooling is
the more interpretable of the two types because it enforces correspondence
between featuremaps and categories through the creation ofmicro-networks 32.
Global average pooling is a structural regularizer that prevents overfitting,
a phenomenon in which the CNN model provides accurate predictions for
training data but not test data. Maximum pooling, or Max pooling performs
linear separation, and provides a maximum network that is more potent and
achieves higher performance with less computational power by assuming that
instances of latent concept lie within a convex set 32.

Although CNN is considered a less explainable approach in image analysis
applications, numerous efforts have been made to enhance its explainability.
Particularly for image classification and object detection tasks, localized anomaly
detection is one of the most effective methods for explaining which local regions
of an image have been selected for classification. Typically, local regions are
depicted using attention maps, which highlight feature regions deemed (by the
trained model) crucial for satisfying the training criteria 33. An example of an
attention mask is a highlighted class region on the image, such as mechanical

FIGURE 6.1. Building blocks of CNN, adapted from31
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damage, which helps to explain why this image has been classified by CNN
as mechanical damage or anomaly. Localized anomaly detection is crucial
not only for determining if the classification occurred for the correct reason
but also for understanding CNN’s learning patterns and identifying noise
during classification (i.e., analyzing highlighted regions that do not represent
the accurate class).

EvaluationMetrics

The evaluation metrics are used to assess the general performance of a trained
method, such as a classifier that classifies two or more classes from a given
set of data34. Various metrics can be evaluated based on the application’s
requirements. Accuracy is one of the most commonmetrics that counts the total
amount of correct classifications on the unseen data. The correct and incorrect
classification results can also be illustrated with a confusion matrix, such as in
Table 6.2.

TABLE 6.2. Confusion Matrix for Binary Classification, adapted from 34

The confusion matrix consists of the total numbers of correctly and incor-
rectly predicted classes, and the numbers of actual classes, to determine true
and false positive and negative predictions 34. True positive (TP) and true nega-
tive (NP) represent the total number of accurately predicted classes, where the
predictive method (i.e., classifier) accurately predicted the instances of positive
class, and the instances of a negative class. Alternatively, false positive (FP) and
false negative (FN) represent the total number of incorrectly predicted positive,
and negative classes. Typical evaluation metrics that are calculated through
a confusion matrix are accuracy, error rate, sensitivity, specificity, precision,
recall, F-measure, and averaged measures of each of these metrics 34.

Accuracy (acc) =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓 𝑝 + 𝑡𝑛 + 𝑓 𝑛
(6.1)

Error Rate (err) =
𝑓 𝑝 + 𝑓 𝑛

𝑡𝑝 + 𝑓 𝑝 + 𝑡𝑛 + 𝑓 𝑛
(6.2)

Sensitivity (sn) or Recall (r) =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛
(6.3)
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Specificity (sp) =
𝑡𝑛

𝑡𝑛 + 𝑓 𝑝
(6.4)

Precision (p) =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝
(6.5)

F-Measure (FM) =
2 ∗ 𝑝 ∗ 𝑟
𝑝 + 𝑟 (6.6)

Accuracy, calculated with Equation 6.1, measures the ratio of correct pre-
dictions from the total number of predicted instances 34. However, accuracy
does not represent a reliable evaluation metric when the dataset is imbalanced.
Due to low representation of certain classes, many predictive models are unable
to learn the patterns of poorly represented data and the inaccurate prediction
becomes nearly invisible as compared to the prevalent number of highly rep-
resented classes. Accuracy of a predictive model can be high even when all
of the underrepresented classes are predicted incorrectly. Depending on the
needs of an application, other evaluationmetrics aremeasured to determine the
reliability of the model. Error rate measures the ratio of incorrect predictions
from a total number of evaluated instances and it is calculated with Equation
6.2. Sensitivity or Recall, calculated with Equation 6.3, measures the proportion
of correctly classified positive patterns, whereas Specificity (see Equation 6.4)
measures the proportion of correctly classified negative patterns 34. With Equa-
tion 6.5, Precision determines correctly classified positive patterns from the
total predicted patterns of a positive class. Finally, F-Measure, calculated with
Equation 6.6, measures the harmonic mean between recall and precision 34.

Generating Synthetic Anomalies

Global image editing, such as resizing, shape reconstruction, and color cor-
rection, is a typical preprocessing step for image analysis tasks. However,
achieving local changes that are restricted to a region of an image, such as
object replacement, distortion, blending, cloning, and texture changes, can
provide opportunities to manipulate images and create new, seamless, and
realistic images. To balance the dataset and provide additional training data
for image analysis, we generate synthetic anomalies, mechanical damage on
pipeline surface, using the computationally efficient Poisson equation for local
seamless blending. With the Poisson equation, we blend an extracted anomaly
from anomalous images and seamlessly blend it into another image without
anomalies.

v = ∇g (6.7)

△f = △g 𝑜𝑣𝑒𝑟 Ω, 𝑤𝑖𝑡ℎ f | 𝛿Ω = f* |𝛿Ω (6.8)
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FIGURE 6.2. Guided image interpolation, adapted from 35

FIGURE 6.3. Seamless blending of mechanical damage on a subsea pipeline:
(a) Source image with an anomaly from which a mask (b) and
seamlessly interpolated onto destination image (c), resulting in (d)

Perez et al.35 described and proposed amethod for seamless object blending.
The seamless blendingmethod is based on a Poisson partial differential equation
with Dirichlet boundary conditions that specify the Laplacian of an unknown
function over the domain of interest and the unknown function values at the
domain’s boundary. This allows an object to be seamlessly interpolated onto
another object. Figure 6.2, described by Equations 6.7 and 6.8, illustrates a
guided interpolation in terms of a function f that interpolates in domain Ω the
destination function f* within a closed subset S with boundary 𝛿Ω, guided by
vector v, as a gradient field of a source function g35.

A detailedmathematical description of the process is offered in 35. Seamless
cloning and insertion of an object relies on importing the gradients where the
most common option for the guidance field v is a gradient field extracted
directly from the image source (i.e, color information from the source image).
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FIGURE 6.4. Other examples of synthetic anomalies

Gradient field performs non-linear mixing or seamless blending, between
source and destination images and selects the more dominant features for
blending (color, texture, etc.). Equation 6.7 is used to guide the interpolation of
this source image, which is denoted by g, after which the final reading for the
function f is described by Equation 6.8.

Figure 6.3 shows the process of seamless blending on an image of a subsea
pipeline. A source image (Figure 6.3 (a)) has a mechanical damage anomaly
on the pipeline that is masked off using an open-source annotation tool for
machine learning and image analysis applications. We used Label Studio 36 for
this purpose to achieve a precise mask image as shown in Figure 6.3 (b). Anno-
tation or labeling of images with Label Studio 36 was performed by marking a
local region on the image. The marked region contains the bounding box and
is assigned a label. Exported labels of the labeled regions are then exported as
mask images. The source and mask, along with the position of the local region
(i.e. position on the pipeline surface) on the destination image (Figure 6.3 (c))
where the blending will occur (other changes such as resizing and reshaping
of source/mask object can be made at this point) are provided for seamless
blending. Finally, the resulting image is obtained as a synthetic anomaly, as de-
picted in Figure 6.3 (d). Figure 6.4 shows other images with synthetic anomalies.
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Obtaining the mask images, which requires hand-labeling of anomalies with
the knowledge of anomalies as risk factors, is the most labor-intensive aspect
of creating synthetic anomaly images. However, once the masks have been
obtained, the remaining steps are automated to produce batches of synthetic
images. The reshaping and placement of the anomalies are randomized so
that they do not appear in identical or similar forms. Nonetheless, generated
synthetic anomaly images are manually inspected to identify any unrealistic or
incorrect results.

Image Classification without Synthethic Training Data

CNN Global Average Pooling and Maximum Pooling on two-dimensional
images have been implemented through Keras, a Python-based application
programming interface for deep learning that runs on the machine learning
platform TensorFlow37,38. We analyzed the available data without added

FIGURE 6.5. Training and Validation Loss by Global Average andMax Pooling,
without Synthetic Training Data

synthetic anomaly images to test the level at which CNN can classify the normal
from anomalous images. The total number of images in the dataset without
added synthetic mechanical damage is 164, out of which there are 126 normal
images, and 38 of anomalous images with mechanical damage. We split the
dataset into 80% for training, and 20% for testing. For the training, we have
set the CNN to train over 30 epochs. During each epoch, one cycle of CNN
training, all images are processed forward and backward to the CNN. Figure 6.5
shows the training and validation losses. Training loss measures how well the
model fits the training data, while validation loss measures how well the model
fits new data. The left graph in Figure 6.5 shows the training and validation
loss lowering with the epochs, indicating that the model is getting better with
learning. However, the graph on the right in Figure 6.5, displaying losses for
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FIGURE 6.6. Training and Validation Accuracy by Global Average and Max
Pooling, without Synthetic Training Data

FIGURE 6.7. Confusion Matrix by Global Average and Max Pooling, without
Synthetic Training Data

The Maximum Pooling model, shows a mismatched pattern for training and
validation, indicating that as the model is struggling to learn the pattern with
epochs. These trends are also visible through the accuracy, Figure 6.6, and
particularly when observed in the resulting confusion matrix, Figure 6.7. The
confusion matrix in Figure 6.7 shows that Global Average Pooling resulted in
four incorrectly classified anomalies and only one correctly classified anomaly.
Maximum Pooling, however, was not able to learn the trends of anomalous
class and did not classify any images as anomalies.
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Image Classification with Synthetic Training Data

This section describes the results achieved with added synthetic anomalies
through analysis with CNN Global Average Pooling and Maximum Pooling
on two-dimensional images37,38. Total number of images in the dataset with

FIGURE 6.8. Training and Validation Loss by Global Average andMax Pooling,
with Added Synthetic Training Data

FIGURE 6.9. Training and Validation Accuracy by Global Average and Max
Pooling, with Added Synthetic Training Data

added synthetic mechanical damage, is 199, out of which there are 126 normal
images and 73 anomalous images with mechanical damage where original and
synthetic images are mixed. We split the dataset into 80% for training, and
20% for testing and set the CNN to train over 30 epochs. Figure 6.8 shows the
training and validation loss for Global Average Pooling, andMaximum Pooling,
with added synthetic data. UnlikeMaximumPooling the loss forGlobal Average
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FIGURE 6.10. Confusion Matrix by Global Average and Max Pooling, with
Added Synthetic Training Data

Pooling shows a good result, with a promising learning trend with the epochs.
This is also observed in Figures Figure 6.9 and Figure 6.10 where the accuracy
improves for both, training and validation over the epochs, in both cases Global
Average, and Maximum Pooling CNN. In the confusion matrices, Figure 6.10,
both approaches show that the networkwas able to learn patterns of anomalous
images. With additional synthetic training data, the CNNmodel has learned
the pattern of anomalies more successfully, which is the most optimistic result.
In the case of Global Average Pooling, eight anomalies were classified correctly,
and six incorrectly. For Maximum Pooling, four anomalies were classified
correctly, and nine incorrectly. Maximum Pooling showed difficulty to classify
small-sized anomalies (such as the anomaly in Figure 6.12). In both cases,
there is a high accuracy rate for classifying images without anomalies. When
synthetic anomalies are added to the training data, the normal and anomaly
classes become more balanced, and the CNNmodel has more anomaly data to
learn from.

Localised Anomaly Detection

Localized anomaly detection highlights the anomaly on the evaluated image.
The highlighted part of the image illustrates how CNN classified the image
into noromal and anomalous regions. Figure 6.11 illustrates the examples of
localizedmechanical damage on accurately classified subsea pipeline anomalies,
we see three different regions highlighted with red boxes:

(a) Localized damage on the pipeline without any noise.
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(b) Localized damage on the pipeline surface, and dislocated anode cover
on the sides of the pipeline.

(c) Localized damage on the pipeline surface, and noise in the corner of
the image.

FIGURE 6.11. Localized Mechanical Damage

FIGURE 6.12. Inaccurate classification of undersized anomalies. True label:
Anomaly; Predicted: Non-anomalous (normal)

Figure 6.11 (a) shows a clean image of highlighted damage as the most
desirable outcome. However, two cases Figure 6.11 (b) and (c) have resulted in
additional highlighted regions that do not represent mechanical damage. The
highlighted regions give insight into possible noise levels that result in inaccu-
rately classified anomalies. Similarly, Figure 6.12 shows one of the inaccurately
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classified images where an undersized anomaly is not recognized and captured
by CNN.

6.1.6 Resulting Methodology

The case study and its objectives are summarized in the proposed resulting
methodology presented in Figure 6.13. The resulting methodology proposes

FIGURE 6.13. Resulting Methodology

the eight-task data analysis lifecycle for pipeline damage detection on images of
imbalanced subsea pipelines. Tasks 3, 4, and 8 are the most novel contributions
to a traditional data analysis lifecycle:

1. The first task is to understand the objective, the problem and gather the
data.

2. As the objective is to detect pipeline damage, the second task is to observe
the data, identify the anomalies that are pipeline damage within the data,
and determine the imbalances between the anomaly and no-anomaly
data classes.

3. Once the anomaly and no-anomaly classes have been determined, the
third step is to prepare the data by extracting images with pipeline dam-
age from the dataset, masking, and annotating images in preparation for
the next step.
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4. The fourth task is processing the data which entails generating synthetic
damage by seamless blending and image manipulation. This step al-
lows us to expand the training data with additional evidence of pipeline
damage.

5. Once the training data is complete, the fifth task consist of training the
classification models.

6. After the training is complete, the sixth task is testing the classification
models.

7. Utilizing appropriate evaluation metrics, the seventh task is the valida-
tion of classification outcomes.

8. Finally, the eighth task is to communicate and interpret the classification
results. One of the efforts at interpretation is the application of localized
anomaly detection that provides more precise insight into damage de-
tection and possible errors. The last task is particularly important for
complex image analysis algorithms that are challenging to explain.

The proposed methodology is based on the case study presented in this
section and the primary challenges identified in image analysis and damage
detection, such as a lack of training data and the difficulty explaining Black-box
algorithms.

6.1.7 Discussion

Despite the small data size, the resulting methodology that includes generating
synthetic anomalies to balance the heavily imbalanced data and employing lo-
calized anomaly detection has proven to be a promising strategy for addressing
the lack of training data, imbalance, and explainability issues that are commonly
encountered in image analysis. The subsea images present additional difficul-
ties with visibility, color, and resizing which is especially evident in cases of
small and less evident anomalies that are challenging to detect. The resizing of
the images has contributed to loss of information resulting in small and less ev-
ident anomalies to be less visible. However, resizing of the images is necessary
because the computational requirement is a critical challenge. Analysis of large,
high quality images requires significant computational resources. Therefore,
resizing of images is necessary and during this process, informationmay be lost.
Despite considerable image compression, seamless blending, manipulation, and
generation of anomalies allow for the realistic and straightforward expansion
of data as required. Moreover, since there is a general absence of high-quality
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data on subsea pipelines, this method of creating synthetic images may prove
useful in industry for generating new data with minimal effort and sharing the
data openly and anonymously, while maintaining the realism of the images.

6.1.8 Conclusion and Key Contributions

This section highlights the key contributions and concludes the chapter and
the presented article.

As one of the most important assets in the transportation of oil and gas
products, subsea pipelines are vulnerable to environmental hazards that can
compromise their structural integrity and result in catastrophic environmen-
tal damage and financial loss. Autonomous underwater systems (AUS) are
expected to assist subsea pipeline inspection and enhance damage detection.
However, image-based inspections with computer vision and anomaly detec-
tion methods for detecting anomalies, such as pipeline damage, continue to
face numerous obstacles that reduce their reliability. These obstacles include
visibility, color reconstruction, and shape reconstruction. The lack of training
data for image analysis impedes reliable subsea pipeline inspection. In this
section, we analyzed images of subsea pipelines provided by the industry and
generated a set of synthetic images using seamless blending techniques. We
compared the outcomes of convolutional neural networks trained on data with
and without synthetic anomalies. In addition, localized anomaly detection
during CNN training and validation increases explainability by highlighting
regions of classification impact. Finally, we demonstrated the potential of our
approach of augmenting the data with synthetic anomalies and presented the
tasks in a new methodology that expands the traditional data analysis lifecycle.
The proposed methodology shows a potential in training AUS for more reliable
damage detection, and assisting pipeline inspection tasks.
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CHAPTER 7

New Models for Subsea Pipeline Inspection with
UAS

This chapter is based on the following two articles:

• Spahic, Rialda; Hepsø, Vidar; Lundteigen, Mary Ann, Enhancing Au-
tonomous Systems’ Awareness: Conceptual Categorization of Anomalies by
Temporal Change During Real-Time Operations, The Eighteenth Interna-
tional Conference on Autonomic and Autonomous Systems (2022).
ISSN: 2308-3913; ISBN: 978-1-61208-966-9

• Spahic, R., Lundteigen, M.A., Hepsø, V. Context-based and image-based
subsea pipeline degradation monitoring. SpringerNatureDiscover Artificial
Intelligence 3, 17 (2023).
DOI: 10.1007/s44163-023-00063-7

All authors contributed to the research conception. Rialda Spahic performed
material preparation, literature analysis, and manuscript writing. Mary Ann
Lundteigen performed writing reviews and supervision of all prior drafts of
the manuscript. Vidar Hepsø contributed to the collection of literature and
concept visualisation of the research.

The two articles presented in this chapter discuss suggestions for future
UAS inspection of subsea pipelines. The first article proposes a novel cate-
gorization of anomalies according to their temporal change. Even though
domain-specific anomaly categorization is prevalent in pipeline inspection
applications, categorizing changing anomalies that can be tracked with time-
series data remains a topic with less research. Similarly, the second article
focuses on various factors that contribute to subsea pipeline surface damages,
such as the impact of excessive pipeline growth, types of soil surrounding the
pipeline, and other geographical properties that contribute to understanding
and detecting potential pollution from surface material damage, as well as the
opportunities for enhancing pipeline inspection with UAS.
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7.1 ENHANCING AUTONOMOUS SYSTEMS’ AWARENESS: CONCEPTUAL CATEGO-
RIZATION OF ANOMALIES BY TEMPORAL CHANGE DURING REAL-TIME OP-
ERATIONS

ABSTRACT

The Unmanned Autonomous Systems (UAS) are anticipated to have a perma-
nent role in offshore operations, enhancing personnel, environmental, and asset
safety. These systems can alert onshore operators of hazardous occurrences in
the environment, in the form of anomalies in data, during real-time inspections,
enabling early prevention of hazardous events. Time series data, collected
by sensors that detect environmental phenomena, enables the observation of
anomalous data as dynamic instances of the dataset. Recent research charac-
terizes anomalies in terms of their patterns of occurrence in data. However,
there is insufficient research on anomalous temporal change patterns. In this
section, we examine anomalies in relation to one another and propose a concep-
tual categorization system for anomalies based on their temporal changes. We
demonstrate the categorization through a case study of potentially hazardous
occurrences observed by UAS during underwater pipeline inspection. Analyz-
ing anomalies based on their behavior can provide further information about
current environmental changes and enable the early discovery of unwanted
events, simultaneously minimizing false alarms that overwhelm the systems
with low-significance information in real-time.

7.1.1 Introduction

Sensors integrated into Unmanned Autonomous Systems (UAS), such as un-
derwater autonomous vehicles, are reshaping our perception of the world by
detecting environmental phenomena and responding to them through inputs
such as graphics, motion, pressure, and heat. Underwater UAS, particularly in
the offshore industry, are intended to replace operators in remote and poten-
tially dangerous locations by residing on the seabed, collecting the data, and
continuously monitoring and inspecting assets and the environment. In crucial
situations, real-time data collection and analysis of the environment or assets
can provide critical information, signaling us of potentially harmful deviations
within the data, known as anomalies. Failure to capture anomalies effectively
can have a devastating effect on the environment and result in severe financial
loss.

Despite their ample presence in research and industry, anomaly detection
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methods have not yet matured as they are frequently too specialized or com-
plex to evaluate1. Detecting anomalies, particularly for time-series data, is a
challenging task that needs real-time processing while learning from analyzed
data and making predictions2. Most anomaly detection methods are based
on statistical samples of some data regions collected over time 3. When the
input data for these data regions changes, it becomes challenging to select the
most appropriate strategy for detecting anomalies 3. More compellingly, it
becomes challenging to detect anomalies and capture their changing nature
in real-time. The anomalous change detection method searches for unusual
discrepancies between measurements taken at the same site at various periods 4.
These discrepancies may be due to harmless changes in atmosphere or sensor
equipment. However, they may also be pervasive and potentially indicative
of something hazardous evolving at the monitored site, i.e., a deteriorating
material of a pipeline surface at the offshore oil and gas platform. Unfortu-
nately, anomaly detection methods can have two significant drawbacks: they
can ignore anomalies for the sake of efficiency as tolerable collateral damage 5,
or they can overload the system with low-significance data, referred to as false
alarms or noise6. The ideal outcome of anomaly detection is to alert operators
of anomalous occurrences as soon as they are detected while minimizing false
alarms2.

Historically, anomalies have been defined primarily by their pattern of
occurrence in data. However, there is insufficient investigation and catego-
rization of anomalies based on how they relate to one another, particularly
by the patterns of their temporal change. The time-series data enables the
collection and observation of anomalies as dynamic instances of data that alter,
evolve, disappear, and reappear. Therefore, this section’s contributions is a
conceptual categorization of anomalies according to patterns of their tem-
poral change, through an overview of the identification of anomalies during
time-series change detection. Analyzing anomalies based on their behavior
can provide more information about current environmental changes and allow
for the early detection of anomalous, potentially hazardous occurrences in
real-time. Consequentially, analyzing anomalies by their behavior can assist in
minimizing false alarms by allowing for the more certain elimination of noisy
data.

RelatedWork

Anomaly Characteristics and Categorization Anomalies are instances in
a dataset that are unusual in some way and deviate from the dataset’s overall
or predicted trend7. There have been numerous attempts in the literature to
categorize anomalies based on their presence in data, the data structures in
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which they arise, or even application-specific high-level categorization.

Anomalies by Data Structure In a recent review on the nature and cate-
gories of anomalies, Foorthius1 presents an overview of anomaly categories
from a data-centric perspective. Because most datasets follow a well-defined,
organized format, the author1 describes the anomalies by examining the data
structures that include them: cross-sectional, time-series, time-oriented, se-
quence, graph, tree, spatial, and spatio-temporal data structures. The author 1
then divides anomalies into univariate, multivariate, andmultivariate aggregate
anomalies, each of which includes numerical, class, or categorical anomalies
and mixed data anomalies.

Anomalies byOccurrence inData While categorizing anomalies according
to the data structure inwhich they occur simplifies their detection, the literature
most often refers to a more general approach to anomaly categorization 8:

• Global anomaly - one or more independent data points that deviate from
the rest of the data. Global anomalies are alternatively referred to as
point, and content anomalies9 10.

• Collective anomalies - a group of data points that differ from the rest
of the data. When observed individually, these points often do not con-
stitute an anomaly. Collective anomalies are alternatively referred to as
group or aggregate anomalies.

• Contextual anomalies - anomalies that deviate when an intentionally
chosen context is considered, i.e., weather, season, or location. Contex-
tual anomalies are alternatively referred to as conditional anomalies 11.

Anomalies by Data Source According to Erhan et al.,12, sensor systems
have become the primary source of data. Therefore, the authors 12 categorize
anomalies according to their origins and potential causes (see Table 7.1). Sensor
data frequently deviate from predicted behavior. The authors 12 underline
the importance of evaluating the performance of anomaly detection systems
using physical world data, as opposed to virtual testing with simulators. Since
anomalies occur suddenly and are frequently unusual in physical world data,
artificially manufacturing them through simulations or data extrapolation can
be challenging.
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TABLE 7.1. Anomaly Categorization by Origin, adapted from Erhan et
al.12

Anomaly
origin

Potential cause

Environmental Unusual events, disasters, weather changes, new objects or com-
pounds

System System and Hardware limitations, system malfunctions
Communication Communication and Network loss or delay
Attacks Malevolent attacks on the physical components, and malevolent

interference or attack in network
Spike Short peak in measured values,
Noise Increase in the variance in successive data samples
Constant A constant neutral value reported by sensor
Drift Off-set in the measurements

Application-Defined and Specific Anomaly Types Ragozin et al.13 ap-
proached forecasting complex time-series within an automated industrial sys-
tem by basing anomalies on their distinct dynamic characteristics to increase the ef-
ficiency of information security management within the observed system. The
authors13 developed amethod based on structural analysis of multi-component
time series and digital signal processing technology for decomposing complex
multi-component time series into several essential components for further
real-time monitoring of the industrial information system and detecting any
component-specific behavior anomaly event or proximity to such event.

Lutz et al.14 analyzed operational safety-critical anomalies. The authors 14
argue that despite the widely-established benefits of anomaly analysis for oper-
ational software, research on anomaly analysis for safety-critical systems has
been sparse. Patterns of software anomaly data for operational, safety-critical
systems, in particular, are poorly known14. The authors14 describe the findings
of two hundred abnormalities on seven spacecraft systems using classifica-
tion methods. The results of their study demonstrated various classification
patterns, including the causal significance of data access and delivery issues,
hardware degradation, and unusual incidents. Anomalies frequently revealed
hidden software needs critical for the system’s robust, accurate operation 14.

Anomalous Change Detection

In a recent review of change detection, Liu et al. 15 classify change detection
methods based on their application purpose, data availability, and automation
degree. The authors15 describe anomalous change detection, and time-series
change detection as application-specificmethodsmost frequently used in image
analysis. By suppressing background and emphasizing alterations, anomalous
change detection finds anomalous changes between images. Anomalous change
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detection is typically focused on detecting minor changes caused by the inser-
tion, deletion, or movement of produced small items and on small stationary
objects that exhibit spectrum shifts between images, aswith camouflage conceal-
ment and deception15. The authors15 argue that the critical point is to examine
the image statistics, increase the likelihood of detecting changes induced by
human activity, and suppress background in image scene sequences.

FIGURE 7.1. (a,b) Predictable change in image contrast and brightnes; (c,d)
Interesting change with (artificially) added vehicle, adapted from 4

Theiler et al.4 employed anomaly detection to identify uncommon changes
in images of the same scene captured at various periods and often under varying
viewing conditions (see Figure 7.1). The detection of anomalous changes in
imaging is of broad general interest and is particularly useful in remote sensing 4.
The authors4 emphasize that anomalous change is distinct from and more
unusual than changes across an entire scene. The authors 4 propose a framework
based on a non-flat background distribution stated in terms of data distribution,
with anomaly detection treated as a classification problem. The proposed
framework identifies anomalous changes capturing meaningful differences
between images while avoiding predictable noisy information caused by the
camera’s focus, contrast, or brightness.
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Time-Series Anomaly Detection

Although many organizations collect time-series data, Feremans et al. 16 con-
tend that automatically analyzing them and extracting valuable knowledge,
such as a comprehensible model that flags critical anomalies, remains a com-
plex problem, despite decades of effort. After examining various benchmark
datasets for time series anomaly detection, the authors 16 discovered that these
datasets frequently contain univariate time series with local or global extrema
or point anomalies. By contrast, their research concentrated on collective
and contextual anomalies, requiring data analysis from multiple sources to
detect anomalies successfully. As a result, the authors 16 proposed a method
for detecting anomalies in mixed-type time series. The method uses frequent
pattern mining methods to create an embedding of mixed-type time series to
train a prevalent anomaly detection method, isolation forest. Assuming that
the anomalies are infrequent in the data, the isolation forest isolates them by
continually splitting the data with low computational costs 17. Experiments
on multiple real-world univariate and multivariate time series and a synthetic
mixed-type time series demonstrate that the proposed method outperforms
established anomaly detection methods such as MatrixProfile, Pav, Mifpod,
and Fpof16.

Hannon et al.18 used anomaly detection on streaming data to explain a
power-grid system’s real-time behavior and provide insight to system operators.
The authors examined a real-time anomaly detection followed by a data-driven
framework based on the statistical machine learning methods (decision trees
and k-nearest neighbors) to enable the remote analysis of individual grid com-
ponents for monitoring, detecting, and classifying anomalies that generate
warnings of possible shortcomings in the system. They 18 concluded that clas-
sification of identified anomalies using well-defined probabilistic scores and
classification of detected anomalies using interpretable decision trees demon-
strates a high level of accuracy, as a result enabling operators to take corrective
action to avert cascading blackouts and prevent system failures.

Previous research has established a variety of applications for anomaly
detection and a need for a more profound comprehension of anomalies. In a
discussion sectionAnomalousness: How tomeasure what you can’t define, Theiler19
describes anomaly detection as target detection with unknown targets and with
the objective to differentiate anomalies (unknown targets with stubbornly
undefined attributes) from a background that is generally too cluttered to
support an explicit model. Despite the challenges in defining and categorizing
anomalies, the outcomes and discussions of previous studies demonstrate a
promising direction in application-specific and dynamic-oriented anomaly
categorization.
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7.1.2 Categorization of Anomalies Based on Their Temporal Changes

After decades of research on anomaly detection, selecting anomalies to in-
vestigate and those to disregard as noise continues to be a complex problem,
particularly with the pressure of a growing need for autonomous systems.
Given the poor camera vision and ambiguous sensor inputs in the subsea en-
vironment20, it is only natural to assume that strange phenomena, such as
biological growth or misplaced objects, are frequently misinterpreted. This
misinterpretation can further result in the misallocation of resources or the
omission of signs indicating a more hazardous occurrence. Using inspiration
from prior research on grouping time-series data 21 and integrating time-series
and event logs into itemsets16, we open opportunities to investigate prospects
for isolating and analyzing changes in anomalies based on their geospatial con-
text. By combining insights from time-series change detection on dynamic data
points21–23 with application-specific anomalies 14 24, we observe that anomalies
can display behavioral patterns such as frequent or reoccurring, disappearing
and reappearing, and expanding.

Frequent or Recurring Anomalies Feremans et al.16 discuss frequent pat-
terns in data, assuming that because anomalous activity infrequently occurs in
time series, the frequent patterns represent frequently seen normal behavior.
Themain advantage of frequent pattern extraction is that the extracted patterns
are easily interpretable and aid classifiers and anomaly detection methods in
differentiating between normal and anomalous behavior in data. However, it
might quickly become problematic if an anomalous event occurs repeatedly or
in patterns. Anomalies that reoccur in patterns, hence generating a recurrent
pattern in obtained data, present a concern because they can be difficult to spot
or even mistaken as part of the normal dataset. Normal data can mask these
anomalies, making it particularly difficult to detect when using unsupervised
methods.

A practical example, seen on Figure 7.2, is the pipeline with unclear surface
material, provided by images collected during a visual inspection of sea bot-
tom infrastructure by an autonomous underwater vehicle. Visually inspecting
structures can detect various phenomena, from object detection to material
degradation such as corrosion monitoring 25. However, a less intrusive pro-
cess, such as biological growth, happens frequently and can readily obscure
a more intrusive process, corrosion. Although additional measurements like
ultrasonic testing and electromagnetic mapping are used to identify additional
information about the corrosion process, the pace of corrosion (spread over
time), the exact location, and even plausible causes 25, relying on unsupervised
visual inspection of anomalies may not be sufficient.
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FIGURE 7.2. (a) Visual inspection of underwater pipeline, images taken by
autonomous underwater vehicle, adapted from 20; (b) 3D scan
over the underwater pipeline, adapted from 20

Disappearing andReappearing Anomalies Although disappearing anoma-
lies are not usuallymentioned in industrial anomaly detection applications, they
are a fairly common topic in stock market anomaly detection. During the analy-
sis of the dynamic persistence of anomalies, Marquering et al. 26 highlighted the
occurrences of disappearing and reappearing anomalies. Sincemost seasonal or
predictable anomalies are well-known, they should not persist 26. However, the
authors26 question the persistence of such anomalies as a source of contention.
They highlight essential questions on disappearing and reappearing anomalies
in data: Are there still anomalies in recent data? Are they just existent during specific
periods, or did they completely vanish? What is the immediate cause of the endurance
of the anomaly? The occurrence of disappearing and reappearing anomalies may
be of interest in time-series change detection for various applications.

During a real-time inspection of an underwater pipeline, as depicted in
Figure 7.3, recordings of fading unusual eventsmay represent a low-importance
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environmental phenomenon that does not require comprehensive inspection,
thus saving additional resource allocation. However, the persistence of such
occurrences may represent something of more profound research interest 26.

FIGURE 7.3. (a) Visual inspection of underwater pipeline, images taken by au-
tonomous underwater vehicle: Possible material degradation or
biological growth?, adapted from20; (b) 3D scan over the under-
water pipeline, adapted from20

FIGURE 7.4. Anomalies that expand over time

Expanding Anomalies As the environment evolves and changes over time,
assuming that anomalous occurrences will exhibit similar changes is natural.
Despite anomalies’ dynamic and evolving nature being frequently discussed
in sensor networks, it is not often discussed in other applications. What ap-
pears to be an innocuous anomaly may grow to affect various regions of the
inspected structure. The purpose is to identify the onset of the anomaly as fast
as feasible while maintaining a low false alarm rate 23. This detection problem
is formulated as a stochastic optimization problem utilizing a delay metric
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based on the anomaly’s worst-case path 23. In Figure 7.4, we illustrate a point
anomaly (Figure 7.4 (a)) expanding into a collective anomaly (Figure 7.4 (b-j)).
At an early stage (Figure 7.4 (a)), the detected point anomaly or a smaller collec-
tion of anomalies may not yet indicate a high-significance unusual occurrence.
However, if unexplored, the anomalous collection may develop into a possibly
hazardous state (Figure 7.4 (j)), leaving less time for a reactive response. De-
tecting anomalies early enables preventative measures. Expanding fractures of
the pipeline surface material are a practical example of expanding anomalies
during an underwater pipeline inspection.

The proposed conceptual categorization of anomalies according to their
temporal changes does not impede their occurrence in data as point, collec-
tive, and contextual anomalies. Table 7.2 summarizes the two categories that
are intended to complement one another, aiding in our comprehension of un-
usual events occurring during autonomous operations. Anomalies’ behavior
is highly dependent on context, not just on their occurrence as a single point
or collection of anomalies. The criticality of frequently occurring point and
collective anomalies varies by context, as they may be seen as normal and there-
fore obscure more intrusive processes. This increases the likelihood that the
unexposed anomaly may develop into a potentially hazardous event that could
have been discovered earlier. Similarly, the context (i.e., seasonal, weather) of
disappearing and reappearing anomalies can aid in identifying the cause of
their pervasiveness and provide additional reasoning for unanticipated envi-
ronmental phenomena. Additionally, the point anomaly may expand creating a

TABLE 7.2. Describing Anomalies by Temporal Change

Anomaly
type

Frequent
Recurring

Disappearing
Reappearing

Expanding

Point Frequently occur-
ring point anomaly.

Disappearing and
reappearing point
anomaly may be a
sign of pervasive
environmental phe-
nomena.

Point anomaly may
evolve into a col-
lective anomaly of
larger size and im-
pact.

Collective Frequently occur-
ring collection of
anomalies with sim-
ilar properties (i.e.,
geospatial context).

Disappearing and
reappearing collec-
tive anomaly may
be a sign of perva-
sive environmental
phenomena.

Collective anoma-
lies may evolve into
a more intrusive
anomalous occur-
rence of larger size
and impact.

Contextual Anomalous depend-
ing on the context
due to a potential
risk of being mis-
interpreted as nor-
mal and left unex-
posed or a frequent
anomaly collection
obscuring more in-
trusive processes.

Context (i.e.,
geospatial, sea-
sonal, weather)
aids in determining
the anomalousness
of the disappear-
ing/reappearing
phenomena and
finding the causes
of their persistence.

Anomalous depend-
ing on the context.
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collective anomaly of more impactable volume and intrusiveness. Contextual
information (e.g., changed material properties due to chemical or temperature
variations) can assist in determining the criticality and anomality of observed
unanticipated changes. Observing and categorizing anomalies according to
their temporal changes adds context to our understanding of how anomalies
relate to one another and evolve in a normal and predictable data environ-
ment. This knowledge enables the UAS to perceive environmental phenomena
and anomalous events in their geospatial and temporal context, improving
understanding of the significance and criticality of anomalous occurrences.

7.1.3 Contribution Summary

The research on time-series anomaly detection has been application-oriented
and vague. Despite decades of research and categorization approaches, per-
sistent obstacles prevent anomaly detection from maturing and becoming a
dependable component of autonomous systems. While an unsupervised and
data-driven strategy is common in industry and research, it is insufficient to
achieve reliable autonomy. Therefore, this section proposes a fundamentally
different perspective of anomalies via a conceptual categorization of anomalies
according to their temporal changes. Frequent or recurrent, disappearing and
reappearing, and expanding anomalies describe the behavior of anomalies and
provide context for their dynamics observed through time-series data analysis.
Observing anomalies as they evolve through time enables us to deduce the
underlying causes of anomalous occurrences, focusing on more pertinent data
from the vast collections of sensor measurements, thus allowing the UAS to
react if and when the situation requires it during real-time operations.
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7.2 CONTEXT-BASED AND IMAGE-BASED SUBSEA PIPELINE DEGRADATION MON-
ITORING

ABSTRACT

This research examines the factors contributing to the exterior material degra-
dation of subsea oil and gas pipelines monitored with autonomous underwater
systems (AUS). The AUS have a role of gathering image data that is further
analyzed with artificial intelligence data analysis methods. Corrosion and po-
tential ruptures on pipeline surfaces are complex processes involving several
competing elements, such as the geographical properties, composition of soil,
atmosphere, andmarine life, whose effects can result in substantial environmen-
tal damage and financial loss. Despite extensive research, corrosion monitoring
and prediction remain a persistent challenge in the industry. There is a lack
of knowledge map that can enable image analysis using an AUS to recognize
ongoing degradation processes and potentially prevent substantial damage. The
main contribution of this research is the knowledge map for increased context
and risk awareness to improve the reliability of image-based monitoring and
inspection by autonomous underwater systems in detecting hazards and early
signs of material degradation on subsea pipeline surfaces.

7.2.1 Introduction

Material degradation of a pipeline can result in structural failures that endanger
marine life, create environmental hazards, and cause significant financial losses.
Understanding the factors contributing to corrosion is essential for under-
standing the development of corrosion in materials, building anti-corrosion
structures, and making risk assessments during monitoring and inspection
operations27. Several factors contribute to the deterioration of pipeline sur-
face material, and there are multiple factors to consider when identifying the
most effective ways to predict deterioration and ultimately prevent substantial
damage. The most visible factors are the materials used to construct pipelines
and geographical elements such as soil, environment, climate, and marine life.
Complex processes affecting material degradation, corrosion, and eventual
surface ruptures pose a challenge to industry and are the subject of continuous
research.

Autonomous Underwater Systems (AUS), such as autonomous underwater
drones and intelligent sensor systems, play an increasingly important role in
the monitoring and inspection of remote, potentially chemically contaminated
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offshore structures, such as pipelines 28. In the context of autonomous systems,
autonomy characterizes self-organizing and self-sufficient systems to achieve a
specific task29. The industry is increasingly relying on AUS for enhanced safety
in remote operations. Missed opportunities in detecting damages at offshore
structures, such as ruptures and gas leaks, can lead to catastrophic consequences
for employees at connected facilities, the environment and significant financial
losses. There is a growth in the usage of artificial intelligence (AI) and machine
learning (ML)methods for continuous data and image analysis as the application
and interest in AUS for monitoring and inspecting offshore infrastructure
grows. However, for reliable data analysis, the AUS requires extensive use of
empirical data and causal reasoning 30,31. There is insufficient labeled data to
trainML algorithms for detecting hazardous events. Evenmore so, themethods
lack context in distinguishing significant information from insignificant and
hence reliably responding if and when the situation requires it. Commonly,
an absence of visibility and contextual knowledge of the operation hinders
image-based analysis. Therefore, a knowledge map must be established to
determine the most effective and reliable means to plan operations and aid
AUS in monitoring and inspecting critical infrastructure.

The main contributions of this section are:

• Analysis of the different factors, geographical properties, soil composi-
tion, and marine life in the context of autonomous pipeline monitoring
and inspection.

• Mapping of domain knowledge for context-based and risk-informed
autonomous monitoring of subsea pipeline material degradation.

• Proposal of a strategy for reconsidering how image-based analysis using
AUS is used for safety purposes and overcoming the shortcomings of
AUS operations is proposed.

7.2.2 Motivation and Literature Review

Pipeline Material Degradation

Pipeline material degradation, such as corrosion, which can lead to material
rupture or cracking, has a significant economic and ecological impact, consum-
ing 4% of the gross domestic product of industrialized countries 32. Due to the
significant reliance on pipelines for product transportation, the offshore oil and
gas industry is the most impacted. Subsea pipeline degradation is a complex
process involving a series of causes and events 33. Despite extensive research
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and prevention systems, corrosion remains one of the industry’s most signifi-
cant challenges. Corrosion can cause damage to both the inside and exterior
layers of a pipeline and image-based inspection by AUS allows for the detection
of exterior corrosion. Hagarova et al.34 examined the types of corrosion and
prevention mechanisms that often involve coatings and cathodic protection.
The outer surfaces of pipelines are additionally protected by protective barriers,
metal and non-metal coatings, glass fiber, rubber, and epoxide designed to last
for the duration of the pipeline’s life 33–35. However, the degradation of the
outer surface of the pipeline gains an electrochemical nature. The exterior cor-
rosion highly depends on the soil’s chemical composition, the water’s salinity
in the environment, the existence of currents and atmospheric characteristics,
and the presence of microorganisms34. Additionally, the surrounding soil in-
fluences aeration, affecting water content, oxygen concentration, and other
potentially corrosive constituents. While sandy soil acts as a type of protection
for pipeline materials, clay-rich soil creates a more corrosive environment.
Corrosion damage of gas pipelines is often divided into following categories:

• Sweet corrosion occurs due to 𝐶𝑂2, 𝐻2S, 𝑆 , 𝐻2O, inorganic salts,
chlorides, sand and bacteria in transported products.

• Sour corrosion develops in𝐻2S environment that becomes corrosive in
water-gas environment and can cause cracking in the pipeline wall.

• Microbially influenced corrosion is caused by microorganisms, bacteria,
fungi, and other biological growth that produce waste material, such as
acids,𝐶𝑂2,𝐻2S, which increase the toxicity and promote corrosiveness
of the environment.

• Corrosion cracking is induced by mechanical damage that occurs under
the component of stress and corrosive environment.

In addition, carcasses of animals and other animal deposit on the pipelines
contribute to the increased microbial presence and promote further material
degradation.

Geographical Properties and Pipeline Degradation

The physical features of soil significantly contribute to the corrosion propa-
gation of buried metals, which is particularly apparent in pipelines. Wang et
al.27 perfromed the soil corrosivity tests that most commonly analyze oxida-
tion potential, pH factor, water content, and salt saturation. According to the
National Association of Corrosion Engineers and the American Society for
Testing and Materials, the degradation process of pipeline materials is con-
siderably determined by soil resistivity and corrosivity 27. Additionally, the
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authors27 examined data mining, artificial intelligence, and machine learning
approaches to analyze large amounts of sensor-collected soil data and deter-
mine soil composition and corrosivity. They observed that this strategy, despite
being practical, had significant limitations:

• Soil properties are fixed and cannot be easily changed to fit the conditions
on the field. This limitation can be attributed to the need formore context
challenges of AI and ML approaches.

• Assessing the soil’s corrosivity is a complex task that often involves con-
tradictory factors. During the data analysis with AI and ML methods,
the contradictory problems presented by the interaction of multiple fac-
tors and the inconsistent effects on soil corrosion need to be sufficiently
addressed.

• The lack of specificity in the classification of soil corrosivity contributes
to the expansion of uncertainty, necessitating more information from
the observations.

• Image data plays a vital role in detecting and analyzing corrosion on
subsea pipeline surfaces.

Addressing these limitations would facilitate the prediction of the mate-
rial degradation levels and improve the monitoring of the rate of material
degradation development.

Ohaeri et al.33 examined climate as another important component of mate-
rial degradation. They single out the cold environment as a challenge tometallic
materials and as one of the primary causes of brittleness, especially in welded
areas that lose ductility. The common idea is that materials are less susceptible
to corrosion in colder climates, primarily due to the ice covering or permafrost
in buried pipelines, which prevents oxygen from accessing surface material 33.
However, high salinity inhibits the freezing process and accelerates corrosion.
Similarly, chloride-enriched water and ice create a corrosive environment. Hy-
drogen is another challenging component contributing to the accumulation of
faults and eventual failure in metallic materials. The authors 33 argue that there
is not a single factor that contributes to the material degradation of subsea
pipelines but rather a series of events that contribute to accelerated material
failure, making it vital to observe each event to predict the pipeline lifecycle.

Marine Life at Subsea Anthropogenic Structures

Various attempts have been made to determine the positive and negative effects
of pollution and corrosion from offshore structures on the behavioral patterns
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of opportunistic species36–41. The mutual impacts of opportunistic organisms
and subsea anthropogenic structures, such as offshore oil platforms, can be
summarized in two focus areas:

1. the impact of material degradation and associated pollution from off-
shore constructions on opportunistic species

2. the impact of opportunistic species on offshore structural materials

Both focus areas provide vital information about the behavioral patterns of
opportunistic species in connection to certain pipeline surface materials during
degradation (i.e., corrosion, ruptures), and associated pollution. Some species
can be the cause of pipeline degradation, while others significantly increase
or decrease their appearance when material degradation already occurs 38. Al-
though the microbial species that cause material degradation, i.e., corrosion,
are not visible with image-based inspections 42, many species that appear or
disappear under higher saturation of elements in the environment as a result of
degradation or pollution are not microorganisms and are visible with imaging
equipment. As a result of the elevated components in the environment pro-
duced by material degradation of offshore infrastructure, the appearances or
disappearances of specific species are frequently classified as either positive in-
dications or negative indicators of pollution 38. Positive indicators, also known
as tolerant opportunistic species, flourish in environments with elevated levels
of components produced by material degradation (i.e., increased number of
species due to higher saturation of iron in the environment due to corroded
material). Negative indicators are species with low tolerance whose disappear-
ance from an area may indicate pollution, or elevated saturation of components
produced by material degradation, such as corrosion 38. Even though positive
indicator species thrive in polluted environments, some of them are depen-
dent on the existence of negative indicator species. This dependence leads to a
reduction of positive indicators due to the decrease of negative indicators.

Successful observation of opportunistic species around offshore structures
is supplemented by information about soil, sediments, seasons, and weather
conditions. Su et al.39 explored the mutual influence of corrosion and micro-
bial communities on buried petroleum pipelines. They argued that soils with
distinct microbial populations can have varying effects on the corrosion of
buried petroleum pipelines. Their research centered on three distinct types
of soil exposed to varying levels of corrosion and petroleum pollution. The
authors39 were able to determine, using electrochemical measurements, that
the microbial diversity in soil surrounding corroded pipelines decreased inde-
pendently of the extent of petroleum contamination. However, electrochemical
testing also revealed a more significant concentration of microorganisms that
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degrade hydrocarbons. Dubiel et al.42 examined microbial composition in
corrosion-surrounded environments and found that such environments con-
siderably modify the microbial composition in the soil and that carbon steel or
iron corrosion correlates with sulfate loss in the environment.

Different microbial communities inhabit different soil types, further influ-
encing the observed area’s benthic communities. Seasonal context is vital in
determining if an increase in larvae in the water contributes to murkiness and
invites other species to feed, leading to poor visibility and necessitating varying
contextual and sensor inputs for the AUS. Similarly, storms and similar weather
conditions can contribute to murkiness in shallower water and sediment de-
posits. This kind of contextual knowledge can aid in eliminating common
issues of AI methods, particularly anomaly detection, pattern recognition and
classification, such as biases, an inclination towards efficiency, and a lack of
causal and contextual knowledge. While pattern recognition detects patterns or
regularities in data, anomaly detection is responsible for detecting data points
that do not conform to the data patterns, irregularities, or anomalies 43. The
ability to distinguish between important and irrelevant anomalies is a cru-
cial challenge when using anomaly detection methods to identify potentially
hazardous conditions on pipeline surfaces.

AUS and Image-Based Pipeline Monitoring

Image-based monitoring and inspections of structures offshore with mobile
cameras that are attached to drones or with stationary cameras attached to
structures, can produce extensive collections of image data 44. Autonomous
operations on offshore structures rely on AI for real-time or near-real-time data
analysis of extensive image data collections. Detecting material degradation
on images of subsea pipelines typically requires computer vision methods,
pattern recognition, or anomaly detection. As corrosion and ruptures may
be examined through differences in color and texture of the material surface,
anomaly detection is a common approach to detect when these changes occur in
comparison to the expected appearance of pipeline surface during monitoring
operations.

Idris et al.35 reviewed pipeline inspection using an image-based system
for corrosion detection. Through images and videos, a visual examination of
pipeline surfaces aids in detecting corrosion by observing changes in texture
and color. The following forms of corrosion are classified by appearance and
can be detected with image analysis 35,45–50:

1. Uniform or general corrosion that is evenly distributed across materials.

2. Pitting corrosion, a localised corrosion that leads to small ruptures in
metallic materials.
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3. Crevice corrosion is one of the most harmful corrosion types that forms
inside of ruptures, or spaces and seals.

4. Galvanic corrosion occurs when a metal contacting another conducting,
often protective material, results in corrosion, potentially leading to
quick deterioration of materials.

5. Erosion-corrosion occurs due to mechanical action, liquids or other
particles that can form cavitation.

6. Intergranular corrosion, or stress corrosion, occurs at structural level of
the metallic material.

7. Environmentally assisted cracking, including corrosion fatigue, hydro-
gen damage, and stress-corrosion cracking.

The authors35 decomposed the problem of incorrect inspection results
into underlying causes using a problem tree, as illustrated in Figure Figure 7.5.
Each image contains a considerable amount of data, most often noise, making it
challenging to select the meaningful data wemay be searching for. A substantial
amount of sensor-collected data is lost, and retrieving lost data in images is
more feasible than other analog signal data. The authors 35 explain the process
through a correlation between the lost pixels and their neighbors to retrieve
the lost image compression. As Figure Figure 7.5 illustrates, a combination of
challenges makes the incorrect image analysis result. The image processing step
of image analysis suffers from a lack of information, inexperienced conclusions,
wrong data interpretation, challenges derived from artificial intelligence, false
data extraction, and undetected defects. Image enhancement layer challenges
include poor quality, blur, over-exposure, focus, illumination, environmental
constraints, and inappropriate tools and procedures.

Todd et al.40 performed a review of utilizing remotely operated vehicles
(ROV) responsible for collecting the data by observing offshore structures, but
not autonomously inspecting the collected images. They found the ROV data
collected near offshore anthropogenic structures to be a reliable and readily
available information source for researches to further observe and analyze
not just offshore structures but also marine life. The authors 40 observed that
certain marine animals are taking advantage of the anthropogenic structures
due to the growing microhabitat. This result indicated that repeated sightings
of specific species can tell us about themicrohabitats growing around structures
and may signal an ongoing material deterioration or pollution surrounding the
structures.
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FIGURE 7.5. Image-Based Inspection Problem Analysis35

7.2.3 Degradation Probability Under Corrosive Events

Each instance of pipeline deterioration, such as external corrosion, may not be
the result of the most common causes of such deterioration. Nevertheless, the
likelihood that certain factors contribute to corrosion more than others can be
determined by observing multiple risk assessments of corroded pipelines. The
chemical composition of the soil andwater (i.e., salinity, saturation of𝐶𝑂2, 𝐻2𝑆 ),
subsea atmospheric characteristics (i.e., currents, harsh environment), and the
presence of microorganisms are the most common causes of corrosion 34. To
obtain the level of influence of corrosion-causing events through probability
analysis, Yang et al.51 examined numerous risk assessments, accident reports
on corroded pipelines and values assigned by domain experts based on their
subject knowledge and experience. Table Table 7.3 describes the probability
of corrosion-causing natural factors, excluding human error or faulty sensors.
The prior probability of an event is the probability that is assigned before data
is considered. Whereas, the posterior probability is obtained with the new
event or given the data observations. The prior probability, P(U, E), is used to
calculate the posterior probability, P(U|E) described by Equation 7.1, when new
data, an observed event or evidence supports the prior hypothesis, where U are
all the data variables, and E represents the specific event 51, also listed in Table
Table 7.3.

𝑃 (𝑈 | 𝐸) = 𝑃 (𝐸 | 𝑈 )
𝑃 (𝐸) 𝑃 (𝑈 ) (7.1)

Table Table 7.3 shows prior probability that represents what was initially
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believed prior to an event, whereas posterior probability is used to revise
a prior belief when new information or an event becomes available. Prior
and posterior probabilities are also used to estimate the risk of a hazardous
occurrence, such as corrosion, by updating the probability of the default state
based on previous observations. For machine learning applications, prior and
posterior probability are useful in the training phasewhere posterior probability
is updated after each training round. Knowing prior and posterior can enhance
contextual understanding of the ongoing operation and facilitate more reliable
and confident decision-making for AUS when new events or observations are
encountered.

7.2.4 Context-Based AUS Operations

Monitoring, inspection, and intervention operations at offshore structures 28,
are characterized by substantial amounts of sensor and image data collection
and require intensive work with uncertainties and probabilistic data that can
be a task too challenging for human operators. The AUS enables us to turn this
data and heavy processing into information ready for interpretation. This data
analysis is increasingly reliant on AI methods, such as ML and computer vision,
that ease our understanding of ongoing operations and act as decision-support
systems. AI connects several traditionally separate disciplines in its lifecycle,
data analysis, model building, and software engineering as crucial components
of autonomous systems52. More specifically, AI systems include problem defi-

TABLE 7.3. Probability of corrosion caused by common corrosive events,
adapted from51

Event Prior Probability Posterior Probability
High salinity 3.35E-03 1.01E-01
Low temperatures 8.63E-04 2.60E-02
Microorganism presence in the environment 1.30E-03 3.91E-02
Microorganisms on corroded material 2.15E-03 6.47E-02
Anti-corrosive coating failure 6.20E-02 4.73E-01
High 𝐶𝑂2 5.00E-03 1.31E-01
High 𝐻2𝑆 7.15E-03 1.88E-01
Presence of sand in pipeline 5.00E-03 4.40E-02
Internal stress 5.50E-03 4.84E-02
External pipeline stress 2.70E-03 2.38E-02
Deposits or unclean pipeline 1.00E-02 1.07E-02
Harsh subsea environment 1.00E-03 1.19E-02
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FIGURE 7.6. AI Model Architecture

nition, data collection through sensors or other data inputs, data conditioning,
algorithm selection, and solution deployment or delivery as typical steps for
developing AI models52. Finally, a vital part of the AI model is the Human-
Machine Teaming element that represents interactions between humans and
the system (i.e., user inputs, results checking, and aided decision-making) .
Because of the lack of training data and complexity of the tasks that AI systems
are expected to accomplish, the efficiency and accuracy of outputs are often
prioritized over interpretability and reliability 53. Hence, unsupervised and
black-box algorithms have become prevalent. These algorithms are often not
application specific, challenging to interpret, integrate any risk assessment
tasks into, and consequentially cause safety, ethical and moral concerns 53. Ad-
ditionally, available training data determines the settings in which classification
and anomaly detection methods operate 54:

1. Supervised: labeled dataset is available to train the model.

2. Semi-supervised: a dataset that does not contain anomalies is used to
train the model on distinguishing anomalous from non-anomalous data
instances.

3. Unsupervised: there is no available dataset for training the model. The
model relies on determining statistical patterns between data instances.

Due to the lack of training data and the difficulty of reliably integrating un-
supervisedmethods, AI approachesmay be supplementedwith heuristics-based
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FIGURE 7.7. Knowledge Map for AUS Pipeline Inspection Decision-Making
System

methods or heuristic knowledge. Heuristics are described as decision-making
methods that employ past experiences to generate quick and efficient solutions
to a given problem55–57, derived from heuristic knowledge that represents the
expertise of domain specialists or experts. The systems that take advantage
of heuristic knowledge, known as expert systems, serve as decision-support
systems and are based on "what-if", "if-else" premises or fuzzy logic 55,56. The
integration of heuristic or empirical knowledge of domain experts, in terms
of rules in computing systems, show a great potential in formalizing human
knowledge and drawing inferences from observed data for computationally
low-cost decision making. However, the integration of heuristics alone into a
systemmay result in biases based solely on past events. Integration of heuristics
and analytical tools through AI is therefore onemethod for avoiding experience
bias. Integrating human knowledge by managing heuristic expertise and stor-
ing essential skills in dependable and permanent systems can further enhance
the interpretability of highly complex systems 57,58. For subsea pipeline moni-
toring, the incorporation of domain expertise may help provide operational
context with operation-specific information, thereby enhancing the reliability
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for detection of anomalies or hazards on pipelines. This can be accomplished
with risk assessment insights at the training level of the AI life-cycle or during
the validation phase of the results, in which the detected anomalies are vali-
dated in order to discard noise or discover information about dangerous events.
Integration of domain expertise is particularly critical due to recent efforts in
AI standardization and functional safety requiring the use and development of
more interpretable models that contain operational or application context and
carry a high level of reliability. The safety of operations and decision-making
systems for AUS cannot be overemphasized. Hence, the interest in integrating
risk and context into these systems is increasing in research and industry 59–63.
In Figure Figure 7.6, we propose additional two components to AI models,
context and supervisory components as a response to the recent challenges in
industry and recommendations for a more standardized approach to AI sys-
tems30,64. According to64, a supervisory component or supervisory function,
acting as a safe subset of the action space, is advised and expected to be a part of
the architecture of AI systems. The AI outputs and decision-making processes
are limited by this component, which is regarded as a non-AI component. The
proposed context component includes operation-specific knowledge from the
domain experts and anticipated risks. The impact of uncertainty on objectives
is referred to as risk by65, and it is typically referred to in terms of risk sources,
potential events, likelihood, and consequences. Since AI systems are expected to
perform detailed tasks, implementing these systems cannot remain generalized.
Context gives us an idea of what kind of setting the AUS operation will take
place in. In order to help the AI system decide whether a detected occurrence
is significant, Figure Figure 7.7 elaborates on the context and expectations
in the AI model for a particular operation. It does this by gathering all the
relevant components of the decision-making process. Additionally, Figure
Figure 7.7 illustrates the AI system, that includes image inputs and other sensor
measurements contributing to decision-making system in detecting significant
anomalies from noise, aided by context component. The context includes ge-
ographic characteristics like the soil’s composition, the climate, the expected
marine life and how it might alter in behavior, the material’s observed qualities
and the several kinds of corrosion that image-based monitoring and inspection
makes it feasible to see. On the other hand, the risk assessment picture provides
us with information about the risks that we can expect from the operation and
lists potential hazards as sources of harm 65,66. It also shows us how likely it is
that each of these things will occur as well as their consequences.

Flage et al.67 observed the risks through the ways the risk emerges. They
describe the emerging or emergent risk as a familiar or unfamiliar risk that
becomes apparent in unfamiliar conditions. The authors link the definition
of emerging risk to the known/unknown taxonomy derived from the press
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briefing by United States Secretary of Defense, Donald Rumsfeld 67:

There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know
there are some thingswe do not know. But there are also unknown
unknowns - the ones we don’t know we don’t know.

From this taxonomy, Flage et al.67 proceeded to address the unknown-knowns
and the unknown-unknowns as ambiguous types of risks and link them to
the events that lie outside of expectations, known as black swan events. By

FIGURE 7.8. Rumsfeld Matrix for AUS Exploration

observing the concept of emerging risks, we propose constructing a Rumsfeld
matrix for AUS explorations, as shown in Figure 7.8 and demonstrated in Figure
7.9. In the matrix, we place the common challenges from underrepresented
data available to the AI model by which AI may derive biased conclusions,
known as data biases. An example of a bias in anomaly detection methods is
sacrificing anomalies for efficiency and misclassifying them as noise due to
a learned experience that there is a higher likelihood of encountering noise
rather than a hazardous occurrence 66. We link the possible situations during
the AUS exploration to the emerging risks and identify the following:

1. (Known-known) Knowledge: AUS is certain of encountered occur-
rence because it has learned it from previous experience. The accuracy
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is high, confirmed by the supervisory component. Example of a known-
known during pipeline inspection: AUS can accurately classify an en-
countered object, such as biological growth, damage, large boulder, with
high confidence.

2. (Known-unknown) Exploration: AUS is uncertain of the encountered
occurrence, but due to previous experience, knows to inspect the situa-
tion further to make the classification. Example of a known-unknown:
AUS cannot confidently classify an encountered object, possibly due to
the object sharing similar features with more than one classes, such as
biological growth and sediment deposit that share the same color and
shape.

3. (Unknown-known) Bias: AUS assumes the encountered occurrence
and proceeds to classify it without further inspection, contributing to
unintended bias and potentially problematic conclusions. Example of an
unknown-known during pipeline inspection: AUS has not encountered
a degraded ship anchor during training phase, but due to high similarity
to a known class of biological growth in color and shape, AUS classifies
the anchor as biological growth with high confidence, possibly putting
the pipe at risk of being damaged due to vicinity of a heavy object.

4. (Unknown-unknown) Blindspot: The AUS does not know what the
encountered occurrence is, does not know how to proceed in further
inspecting it, or experiences challenges in the decision-making process
necessitating human interaction. Example of an unknown-unknown:
AUS encounters object that is not known and cannot proceed to classify
it, potentially requiring human interaction or resulting in an error. This
situation may occur if the encountered object is extremely rare and
unexpected, or has never appeared in any form during AUS training
phase.

Figure 7.9 demonstrates an example of the object classification on the
pipeline surface. The image is captured by an underwater drone where the
common (known) occurrences, such as biological growth and expected benthic
species (Figure 7.9 (a)), are identified, together with texture changes (Figure 7.9
(c)(d)) and sediment deposits (Figure 7.9 (d)). Finally, a sudden material change
resembling a material rupture necessitates further inspection (Figure 7.9 (e)).
The AUS may need to analyze more images or use more sensor inputs during
a subsequent inspection. Determining the right kind of sensors to utilize in a
particular situation is crucial when image analysis is insufficient.
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FIGURE 7.9. Subsea Pipeline Images Captured by an Underwater Drone: (a)
Known known - Biological growth; (b) Known known - Sediment
deposits; (c) Known known - Minor texture/color irregularities;
(d) Known known - Major texture/color irregularities; (e) Known
Unknown - material rupture. Photo: Equinor

7.2.5 Rethinking Image-based Monitoring and Inspection

Widespread use of sensors and imaging equipment for intelligent automation
have increased the need for effective and adaptive sensor scheduling, a dynamic
sensor control based on environment or operation needs to maximize the
efficiency of existing sensors for the intended benefits 68. Image quality is one
of the main drawbacks of image-based analysis. Although many difficulties
are camera-related (such as overexposure and focus), the environment can also
provide a variety of problems that recur in patterns. During the inspection
of offshore pipelines, the oil and gas industry anticipates highly autonomous
systems to combine data from multiple sources for the most efficient and
reliable data collection28. Rather than relying solely on images obtained from
visible-spectrum sensors and cameras, it can be beneficial to incorporate data
fusion frommultiple imaging systems operating in different wavelength ranges,
such as infrared cameras. The operation-specific context, however, may assist
in identifying the additional types of sensors that may be the most effective
under conditions where image-based inspection is problematic. The context
of the operation is essential to assessing the validity of conclusions reached by
AUS during an image-based pipeline inspection, as was shown in the preceding
section. For each factor influencing the objectives of the inspection, such as
material degradation, a conditional analysis might be required. Knowing the
marine life cycle in such settings is highly beneficial, as a high larval density
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may lead to a high species density and poor visibility. Not only is it crucial to
rely on various sensor inputs in situations when this is an expected pattern,
but it is also crucial to avoid mistaking an increase in species presence for an
anomalous occurrence. Similarly, in situations when the pipeline’s surrounding
soil is primarily clay, there is a higher likelihood of corrosion at the points
where the soil contacts the pipeline and accumulates on the surface. Similar
is true if the encountered occurrence creates ambiguity for an AUS and low
confidence in analyzing the situation.

FIGURE 7.10. Image Quality Analysis Flowchart

Figure 7.10 shows a high-level flowchart for entrusting image-based inspec-
tion after image quality analysis, illustrating a situation inwhich an image-based
analysis may require additional sensor inputs to classify encountered occur-
rences during the inspection. An image’s quality can be evaluated based on the
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anticipated conditions, such as exposure, blur, focus, and lighting, after it has
been captured by imaging equipment like a drone camera. Object classification
begins if the image quality is acceptable and the objects are visible enough for
the analysis. Suppose the object is unknown or not identified by the AI model;
in that case, the model returns to additional sensor inputs like temperature,
pressure, and water content to gather more information. The same sensors are
considered if the photos are of poor quality, and object analysis could be more
reliable. The AUS needs more inputs to provide observation results if other
sensor inputs supply more data to conclude the ongoing observation. Suppose
the additional sensor readings are sufficient to support further analysis; in that
case, the analyzed output should be updated with the operation-specific contex-
tual information provided in the context component to generate observation
results.

7.2.6 Contribution Summary

This research reviewed different factors contributing to subsea pipeline surface
material degradation, corrosion, and potential ruptures. The significant factors
contributing to the degradation include geographical properties, such as climate
and weather variables, soil and water components, microbial communities, and
marine species as pollution indicators. Despite extensive study, corrosion con-
tinues to be a severe concern to the offshore oil and gas industry, with the
potential to cause material failure, which can cause environmental disturbances
and substantial financial losses. The employment of autonomous underwater
systems for offshore structure inspections, such as intelligent sensor systems
and autonomous drones, has consequentially increased the use of AI meth-
ods for data analysis in real-time and near-real-time inspections, primarily
with image and video captures. These methods include object classification,
anomaly detection, and pattern recognition. Although AImethodsmay evaluate
acquired image data effectively, they have flaws that raise concerns about their
reliability, such as bias and an efficiency inclination that wastes resources and
misdiagnoses pipeline conditions. In this research section, we have examined
the factors contributing to the enhanced reliability of image-based pipeline
material degradation inspection. We proposed context and supervisory com-
ponents in AI model architecture and rethinking adaptive sensor scheduling,
particularly the image-based inspection, by examining the operation-specific
context, emerging risks, and patterned expectations.

It is becoming increasingly important to find context in the operations
that AI-dependent systems are required to carry out in order to ensure reliable,
intelligible, and ethical outcomes. By analyzing a dataset of underwater images
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captured by an autonomous drone, we intend to further our research on imple-
menting the AI model context component as a part of image-based anomaly
detection and object categorization.

7.3 CONCLUSIONS AND KEY CONTRIBUTIONS

This section highlights the key contributions and concludes the chapter and
the presented articles.

As the use of UAS becomes more prevalent in the offshore oil and gas
industry, the two articles presented identified opportunities to improve the
inspection of subsea pipelines. Key findings include the introduction of new
temporal anomalies and adaptive sensing for a complex ecosystem of factors
that provide early warning signs of potential pollution due to external pipeline
damage. These findings are suggestions for future research directions in au-
tonomous pipeline inspection.
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CHAPTER 8

Conclusion

This thesis examined several aspects of utilizing autonomous underwater sys-
tems with artificial intelligence, such as machine learning, anomaly detection,
and computer vision, for detecting hazards during a subsea pipeline inspec-
tion. During the early stages of research, risk analysis, reliability engineering,
resilience engineering, and human-machine teaming, served as a foundation
for identifying solutions to well-known challenges and limitations of artificial
intelligence. Experiments with sensor and image data collected by autonomous
underwater drones demonstrated that the inadequacies of the methods and the
imbalances in the collected data undermine the reliability of the results and
need to be revised to guarantee the integrity of the inspected offshore struc-
tures. Consequently, applying risk analysis to obtain domain-specific hazards
and their properties has enabled the detection of hazard warnings among many
reported anomalies and noise. The presented contributions have successfully
fulfilled main research objectives and answered research questions, while pro-
viding directions for extending the research and development of multi-purpose
models for AI-based subsea pipeline hazard detection.

8.1 OVERVIEW

Chapter 1 introduced the motivation and scope of this thesis, state of the art
from the perspective of autonomous systems in subsea pipeline inspection, its
implications, the research objectives, and the contributions.

Chapter 2 described the fundamentals of this thesis, namely the role of
subsea pipelines in the industry and the complex conditions that expose the
pipelines to various types of hazards. This chapter also describes the external
failures that can be detected during visual inspection with underwater vehicles
and introduces the fundamentals of risk-based analysis for determining the
significance of these failures.

Chapter 3 discussed the fundamentals of the experimental methods ex-
amined. This chapter describes the method for identifying anomalous data
patterns, anomaly detection, the types of anomalies that can be detected with
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conventional methods, and the necessary data setups for employing anomaly
detection in various applications. In addition, computer vision applications
are described, including image classification, object detection on images, and
object segmentation, as well as the blindspots and challenges associated with
their application. Lack of training data, heavy data imbalances contributing to
biases and errors in results, and the need to employ complex algorithms that
make it difficult to explain results and incorporate risk measures are obstacles
shared by anomaly detection and described computer vision methods.

The main contributions of Chapter 4 are identifying concepts from mul-
tiple safety-related disciplines to transfer knowledge and address common
anomaly detection and machine learning challenges for hazard detection in re-
mote operations. The presented challenges are trust calibration, explainability
of algorithms, data biases, and the inadequacy of anomaly detection methods to
identify data biases and efficiently differentiate noise from meaningful anoma-
lies. This chapter presents the early concepts of a novel Warning Identification
Framework that is anchored in the expectations of risk assessment, reliability
engineering, resilience engineering, and human-machine teaming. The steps
that configure the Warning Identification Framework rely on the warning
identification or lists of expected hazards, hierarchy of warnings or hazard
consequences, and orchestration of response methods by the autonomous
underwater systems.

The focus of Chapter 5 was on analyzing sensor-collected data to iden-
tify the limitations of methods and the potential of the previously proposed
Warning Identification Framework. In the first section of Chapter 5, the data
collection capabilities of manually and autonomously operated drones were
compared. During this experiment, several machine learning and anomaly de-
tection strategies were evaluated to determine the differences in data collection.
The outcomes of this analysis provided insight into the potential for addressing
issues posed by imbalanced data. Chapter 5’s second section analyzed sensor-
collected seismic data and compared anomaly detection results with domain
expert-specified hazard assessment method results to determine the number of
noise and hazards detected by anomaly detection. This analysis demonstrated
that incorporating a hazard assessment method can enhance the capability to
detect real hazards in a significant number of anomalies and eliminate noise
generated by anomaly detection methods.

The main focus of Chapter 6 was exploration of anomalies as risk factors
for image-based hazard detection. Analysis of underwater images is challenging
due to complex environment that results in hazy and monochromatic images.
Additionally, the methods used for the analysis are often complex, challenging
to interpret, and, due to computational resources, require resizing of images
whichmay result in loss of information. The image data analyzed in this chapter
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was collected by an underwater drone that followed a subsea pipeline. Despite
high quality images, the pipeline surface was covered in soft sediment and
occasional marine growth. Due to the poor visibility of pipeline surface, it
was challenging to detect corrosion damage. However, a small number of
images displayed ruptures and mechanical damage on the pipeline surface.
Due to the high amount of images with pipeline without any damage, and
only a few images of damaged pipeline, the dataset was heavily imbalanced,
and the image classification methods did not detect any hazards or anomalies.
Therefore, by using seamless blending and image manipulation techniques,
we were able to generate artificial images of damaged pipelines and balance
the training dataset, resulting in improved chances for classification. As an
effort to increase explainability of image analysis and classification methods,
we have applied localised anomaly detection to highlight distinctive regions on
the images that contribute to classification. Finally, we presented the process
of expanding the training dataset and enhancing the explainability as a novel
methodology for image-based subsea pipeline hazard detection.

Chapter 7 explored future directions for remote operationswith autonomous
underwater systems for subsea pipeline inspection have been proposed dur-
ing this research. One of the future directions is a novel categorization of
anomalies with time-dependent data. The second proposal for future direction
describes dynamic properties that impact the surface degradation of pipeline
materials and circumstances under which the visual inspection may necessitate
an adaptive sensor approach and modification of traditional AI architecture
models.

8.2 CHALLENGES AND LESSONS LEARNED

Inspection of subsea pipelines with anomaly detection and classification meth-
ods has been studied in the past, but the well-known challenges regarding the
reliability of these methods and the lack of risk and hazard insights in the tradi-
tional lifecycle of data analysis persist. In addition, the existing literature does
not provide extensive applications of these methods under complex conditions,
such as monochromatic images, the absence of training data, the interpretation
of image analysis methods, and the absence of supervision methods. The stated
motivation and objectives of this thesis were to investigate and address the
challenges associated with safe AI applications for subsea pipeline inspection
in an efficient and effective manner.

Risk and hazard analysis as supervisory components to traditional AI ap-
proaches, such as anomaly detection and classification, was one of the primary
objectives of this thesis. This has proven to be a novel contribution, and the
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results of the tested method have been encouraging. This method was only
tested on sensor-obtained seismic data containing evidence of seismic tremors
due to the difficulty of locating adequate datasets containing relevant data with
performed hazard analysis. The most difficult aspect of testing the method of
hazard analysis as a supervisor for anomaly detection was locating a dataset
with anomalies and research that examined the dataset using hazard analysis
and domain experts. Unfortunately, this method has not been tested on images
of subsea pipelines and is only applicable to numeric data. Hazard analysis
of industry-provided pipeline images necessitates additional knowledge on
properties of pipelines and the pipeline environment (e.g., materials, location,
sediment types) and the extensive participation of domain experts. However,
it was not possible to obtain additional information about pipelines, and the
images were anonymized due to industry privacy policies. This made it difficult
for domain experts to provide a reliable risk picture.

Existing knowledge on external anomalies as risk factors formanual pipeline
inspection could be utilized despite the insufficiency of information on pipeline
image data. This knowledge of risk factors enabled the extraction of anoma-
lous images and the observation of existing damage. Due to poor visibility on
images, only mechanical damage was detected using hazard detection. Despite
the presence of other anomalies, such as large boulders and unknown objects
surrounding the pipelines, it was difficult to generate these anomalies from
synthetic data. Lack of realism in the images is the primary reason for this
challenge. Current image manipulation and color correction techniques are
not sophisticated enough to handle complex underwater images with shape
and color loss. It is not essential to use these techniques for external pipeline
damage. The proposed method was created to detect mechanical damage, but
it should be expanded to detect other anomalies or hazards.

8.3 FUTURE WORK

Future research will concentrate primarily on pipeline and surrounding envi-
ronment surveillance with image and video data, supplemented by sensor data
from IR cameras and chemical sensors for water and soil analysis. Even when a
variety of sensors are employed and sufficient information about the pipeline’s
environment is available, autonomous hazard detection on subsea pipelines
remains a challenging task.

Convolutional Neural Network (CNN) analysis is computationally inten-
sive, particularly due to the requirement for high-quality images. CNN and
Isolation Forest anomaly detection have performed admirably, but additional
techniques must be evaluated. Lack of explainability in AI is an additional
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concern with CNNmethods, and despite the promising results from Localised
AnomalyDetection as an effort to increase explainability, additional approaches
must be explored and compared. In addition, the loss of color and/or shape
in images presents a formidable obstacle for image-based inspection. It is nec-
essary to implement color correction and shape reconstruction techniques to
enhance image clarity and object detection capabilities.

Future work will consist of testing the proposed methods with additional
data and detecting multiple anomalies. As discussed in Chapter 7, for future
pipeline hazard detection perspectives, the introduction of operation-specific
anomalies and the tracking of anomaly development over time are required in
order to understand the development of hazards and implement proactive and
preventative measures. As flexible and real-time inspection is one of the future
goals for remote inspection in industry, it is natural that future research will
include video-data and the designing experiments for real-time performance
tests. To further generalize the autonomous subsea pipeline hazard detection,
two articles inChapter 7 have focused on futuremodels that could be considered
with an access to extensive image, video and other sensor data.
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APPENDIX A

Supporting information for Chapter 5.2

SEISMIC DATASET ATTRIBUTES

1. seismic: result of shift seismic hazard assessment in the mine working
obtained by the seismic method (a - lack of hazard, b - low hazard, c -
high hazard, d - danger state);

2. seismoacoustic: result of shift seismic hazard assessment in the mine
working obtained by the seismoacoustic method;

3. shift: information about type of a shift (W - coal-getting, N -preparation
shift);

4. genergy: seismic energy recorded within previous shift by the most
active geophone (GMax) out of geophones monitoring the longwall;

5. gpuls: a number of pulses recorded within previous shift by GMax;

6. gdenergy: a deviation of energy recorded within previous shift by GMax
from average energy recorded during eight previous shifts;

7. gdpuls: a deviation of a number of pulses recorded within previous shift
by GMax from average number of pulses recorded during eight previous
shifts;

8. ghazard: result of shift seismic hazard assessment in the mine working
obtained by the seismoacoustic method based on registration coming
form GMax only;

9. nbumps: the number of seismic bumps recorded within previous shift;

10. nbumps2: the number of seismic bumps (in energy range [102,103))
registered within previous shift;

11. nbumps3: the number of seismic bumps (in energy range [103,104))
registered within previous shift;

A-1
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12. nbumps4: the number of seismic bumps (in energy range [104,105))
registered within previous shift;

13. nbumps5: the number of seismic bumps (in energy range [105,106))
registered within the last shift;

14. nbumps6: the number of seismic bumps (in energy range [106,107))
registered within previous shift;

15. nbumps7: the number of seismic bumps (in energy range [107,108))
registered within previous shift;

16. nbumps89: the number of seismic bumps (in energy range [108,1010))
registered within previous shift;

17. energy: total energy of seismic bumps registered within previous shift;

18. maxenergy: the maximum energy of the seismic bumps registered within
previous shift;

19. class: the decision attribute - ’1’ means that high energy seismic bump
occurred in the next shift (’hazardous state’), ’0’ means that no high
energy seismic bumps occurred in the next shift (’non-hazardous state’) -
generated during rule-based classification experiment by 1

A.1 REFERENCES

[1] Jozef Kabiesz, Beata Sikora, Marek Sikora, and Lukasz Wrobel. Application of rule-based
models for seismic hazard prediction in coal mines. ActaMontanistica Slovaca 18 (4), 262–277
(2013). Cited on page/s A-2.
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