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Abstract. A Hilbert point in Hp(Td), for d ≥ 1 and 1 ≤ p ≤ ∞, is a nontrivial
function φ in Hp(Td) such that ∥φ∥Hp(Td) ≤ ∥φ + f∥Hp(Td) whenever f is in
Hp(Td) and orthogonal to φ in the usual L2 sense. When p ̸= 2, φ is a Hilbert
point in Hp(T) if and only if φ is a nonzero multiple of an inner function.
An inner function on Td is a Hilbert point in any of the spaces Hp(Td), but
there are other Hilbert points as well when d ≥ 2. We investigate the case of
1-homogeneous polynomials in depth and obtain as a byproduct a new proof of
the sharp Khintchin inequality for Steinhaus variables in the range 2 < p < ∞.
We also study briefly the dynamics of a certain nonlinear projection operator
that characterizes Hilbert points as its fixed points. We exhibit an example
of a function φ that is a Hilbert point in Hp(T3) for p = 2, 4, but not for any
other p; this is verified rigorously for p > 4 but only numerically for 1 ≤ p < 4.

1. Introduction

The prominence of inner functions (see for example [9] or [10]) arose from
Beurling’s landmark paper [3] on the shift operator on the Hardy space H2(T). One
usually defines an inner function on the unit disc D as a bounded analytic function
whose nontangential limits are unimodular at almost every point of the unit circle
T. In the spirit of Beurling’s theorem, one could alternatively define inner functions
as the norm 1 extremizers for point evaluation at the origin in invariant subspaces
for the shift operator on H2(T), with an obvious modification should all functions
in the space in question vanish at the origin.

The point of departure of this paper is another extremal property of inner
functions that characterizes them in the one-variable case but leads to a wider and
intrinsically interesting class of functions on the d-dimensional torus Td for d > 1.
The crucial definition is as follows. A nontrivial function φ in Hp(Td) for 1 ≤ p ≤ ∞
is said to be a Hilbert point in Hp(Td) if

(1.1) ∥φ∥Hp(Td) ≤ ∥φ+ f∥Hp(Td)

for every f in Hp(Td) such that ⟨f, φ⟩ = 0, where ⟨·, ·⟩ is the usual inner product
in L2(Td). Here no precaution is needed when p ≥ 2; when 1 ≤ p < 2, we declare
that ⟨f, φ⟩ = 0 if f lies in the closure in Hp(Td) of the space of polynomials g for
which ⟨g, φ⟩ = 0. We will see from (1.3) below that, a posteriori, this precaution is
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obsolete because a Hilbert point in Hp(Td) automatically belongs to the dual space
(Hp(Td))∗. All nontrivial functions in H2(Td) are clearly Hilbert points in H2(Td).

Our usage of the term “Hilbert point” is intended to suggest that we are dealing
with points in a Banach space around which the space locally “looks like” a Hilbert
space. This point of view is perhaps most succinctly reinforced by the following
interpretation in terms of Banach space geometry. Given a fixed function φ, we use
the notation

(1.2) Bp :=
{
f ∈ Hp(Td) : ∥f∥Hp(Td) ≤ ∥φ∥Hp(Td)

}
on the presumption that φ is inHp(Td). When 1 < p < ∞, we will see that a function
φ in H2(Td) ∩ Hp(Td) is a Hilbert point in Hp(Td) if and only if the supporting
hyperplane T2 to B2 that contains the point φ, coincides with the supporting
hyperplane Tp to Bp that contains φ, in the sense that T2 ∩Hp(Td) = Tp ∩H2(Td).

When 1 ≤ p < ∞, we will investigate Hilbert points in Hp(Td) using duality
techniques. A consequence of the Hahn–Banach theorem is the following description.
A nontrivial function φ is a Hilbert point in Hp(Td) for 1 ≤ p < ∞ if and only if
there is a constant λ > 0 such that

(1.3) P
(
|φ|p−2φ

)
= λφ,

where P denotes the Riesz projection from L2(Td) to H2(Td). The case p = ∞
is less amenable to duality arguments; we will see that it often requires separate
arguments.

Recall that I in Hp(Td) is said to be an inner function if |I(z)| = 1 for almost
every z in Td. From (1.3) it is evident that if φ = CI for a constant C ̸= 0, then φ
is a Hilbert point in Hp(Td) for every p < ∞. We obtain the same conclusion for
the endpoint p = ∞ by taking the limit in (1.1). Our first main result, alluded to
above, asserts that there are no other Hilbert points in Hp(T) when p ̸= 2.

Theorem 1.1. Fix 1 ≤ p ≤ ∞, p ̸= 2. A nontrivial function φ is a Hilbert point in
Hp(T) if and only if φ is a nonzero multiple of an inner function.

The situation becomes rather more complicated when d ≥ 2. In what follows,
we will mainly restrict our attention to one of the simplest nontrivial subspaces of
Hp(Td), namely that of 1-homogeneous polynomials. This means that we will be
dealing with functions of the form

(1.4) φ(z) =
d∑

j=1
cjzj .

Theorem 1.3 below reveals that there are Hilbert points in this subspace with
function theoretic properties that effectively contrast those of inner functions.

Our study of 1-homogeneous polynomials as Hilbert points is chiefly based on
(1.3) and the following remarkable formula.

Theorem 1.2. Fix 1 ≤ p < ∞ and suppose that φ(z) =
∑d

j=1 cjzj. Then

(
P |φ|p−2φ

)
(z) = p

2

d∑
j=1

cjzj

∫ 1

0

∫
Td

|φj(ζ, r)|p−2 dmd(ζ) 2rdr

where φj(z, r) := φ(z1, . . . , rzj , . . . , zd) for j = 1, 2, . . . , d.
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The integrals on the right-hand side of the formula in Theorem 1.2 only depend on
the modulus of the coefficients of the 1-homogeneous polynomial (1.4). By symmetry,
we can therefore easily obtain the following result from (1.3) and Theorem 1.2 for
p < ∞, and then for p = ∞ using (1.1).

Theorem 1.3. If the nonzero coefficients of φ(z) =
∑d

j=1 cjzj all have the same
modulus, then φ is a Hilbert point in Hp(Td) for every 1 ≤ p ≤ ∞.

Functions of the form φ(z) =
∑d

j=1 cjzj whose coefficients all have the same pos-
itive modulus, maximize the ratio ∥φ∥H∞(Td)/∥φ∥H2(Td) among all 1-homogeneous
polynomials, in stark contrast to what inner functions do. We are interested in
whether there is any other possible choice of coefficients in (1.4) that yields Hilbert
points for some p ̸= 2. We will obtain the following partial converse to Theorem 1.3.

Theorem 1.4. Suppose that 2 < p ≤ ∞. If φ(z) =
∑d

j=1 cjzj is a Hilbert point in
Hp(Td), then the nonzero coefficients of φ all have the same modulus.

We conjecture that Theorem 1.4 is true also for 1 ≤ p < 2. To obtain some
evidence supporting this conjecture, we consider the following dynamical system.
Let φ0 be any 1-homogeneous polynomial with ∥φ0∥H2(Td) = 1. Based on (1.3) and
Theorem 1.2, we iteratively define

(1.5) φn+1 :=
P
(
|φn|p−2φn

)
∥P (|φn|p−2φn)∥H2(Td)

.

In the range 2 < p < ∞, we can completely describe the behavior of this dynamical
system. It turns out that given any φ0(z) =

∑d
j=1 cjzj , the iterates (1.5) will

converge to a Hilbert point φ(z) =
∑d

j=1 c̃jzj with c̃j ̸= 0 if and only if cj ̸= 0.
Based on an analysis of the simple case d = 2 and numerical experiments in the

case d = 3, we observe that when 1 ≤ p < 2, the iterates will also converge to a
Hilbert point, but now to a 1-homogeneous inner function, i.e., to a unimodular
multiple of zj for some j. If this convergence could be established for d ≥ 3, we
would have a proof of Theorem 1.4 also in the range 1 ≤ p < 2.

There is an interesting connection between 1-homogeneous polynomials that are
Hilbert points in Hp(Td) and the sharp Khintchin inequality for Steinhaus variables.
To see this, we begin by setting

ap := min
(

1, Γ
(

1 + p

2

) 1
p

)
and bp := max

(
1, Γ

(
1 + p

2

) 1
p

)
for 1 ≤ p < ∞. Khintchin’s inequality for Steinhaus variables can be formulated as
the estimates
(1.6) ap∥φ∥H2(Td) ≤ ∥φ∥Hp(Td) ≤ bp∥φ∥H2(Td)

for 1-homogeneous polynomials φ. The upper estimate when 1 ≤ p < 2 and the lower
estimate when 2 < p ≤ ∞ are trivial consequences of Hölder’s inequality. Otherwise,
the constants ap and bp are optimal as d → ∞. The case p = 1 was established
by Sawa [12], and the case 1 < p < 2 was proved by Kwapień and König [7]. The
final case 2 < p < ∞ is independently due to Baernstein and Culverhouse [2] and
to Kwapień and König [7]. The best constant in (1.6) is also known in the case
0 < p < 1 by a result of König [6].

The connection between Hilbert points in Hp(Td) and Khintchin’s inequality is
as follows.
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Lemma 1.5. Fix d ≥ 1 and 1 ≤ p < ∞. Consider the functional defined on the
unit sphere of Cd by

Kp(c) := ∥c1z1 + · · · + cdzd∥Hp(Td).

Then c = (c1, . . . , cd) is a critical point of Kp if and only if φ(z) = c1z1 + · · · + cdzd

is a Hilbert point in Hp(Td).

Combining Theorem 1.3, Theorem 1.4, and Lemma 1.5 with a computation, we
obtain a new proof of the sharp Khintchin inequality for Steinhaus variables in the
case 2 < p < ∞. In our proof, the heavy lifting is all done by Theorem 1.2.

In view of the results presented above, one might be tempted to conjecture that if
φ is a Hilbert point in Hp(Td) for some p ̸= 2, then φ is a Hilbert point in Hp(Td)
for all 1 ≤ p ≤ ∞. We will however show that this is not the true. Specifically, we
will consider
(1.7) φ(z) = z3

1 + z3
2 + z1z2z3.

Using (1.3) and an argument involving change of variables, we will see that φ is a
Hilbert point in Hp(T3) if and only if a certain Fourier coefficient of the function
|ζ1 + ζ2 + ζ3|p−2(ζ1 + ζ2 + ζ3) vanishes. This allows us to establish that (1.7) is a
Hilbert point in H2(T3) and H4(T3), but not in Hp(T3) for 4 < p ≤ ∞. Based on
numerical evidence, we conjecture that φ is neither a Hilbert point in Hp(T3) for
1 ≤ p < 2 nor for 2 < p < 4.

To close this introduction, we give a brief overview of the contents of this paper.
In Section 2, we reformulate our problem using duality techniques and establish
Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2, Theorem 1.3 and
Theorem 1.4. The dynamical system mentioned above is investigated in Section 4.
In Section 5, we prove Lemma 1.5 and present a new proof of Khintchin’s inequality
for Steinhaus variables in the range 2 < p < ∞. Finally, the function (1.7) is
discussed in detail in Section 6.

2. Duality reformulation and inner functions

Recall that every function f in Lp(Td) can be represented by its Fourier series
f(z) ∼

∑
α∈Zd f̂(α) zα, where

f̂(α) :=
∫
Td

f(z) zα dmd(z)

and where md denotes the Haar measure of the d-dimensional torus Td. The Hardy
space Hp(Td) is the subspace of Lp(Td) comprised of functions f such that f̂(α) = 0
for every α in Zd \ Nd

0, where N0 := {0, 1, 2, . . .}.
We need a well-known consequence of the Hahn–Banach theorem concerning

orthogonality in Lp spaces, which can be extracted from Shapiro’s monograph [13].

Lemma 2.1. Fix 1 ≤ p < ∞. If φ is a nontrivial function in Hp(Td) and Y is a
closed subspace of Lp(Td), then the following are equivalent.

(i) ∥φ∥Lp(Td) ≤ ∥φ+ f∥Lp(Td) for every f in Y .
(ii)

〈
|φ|p−2φ, f

〉
= 0 for every f in Y .

Proof. If 1 < p < ∞, this is a special case of [13, Thm. 4.2.1]. If φ is a nontrivial
function in H1(Td), then log |φ| is in L1(Td) by [11, Thm. 3.3.5]. In particular,

md

(
{z ∈ Td : φ(z) = 0}

)
= 0.
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This means that we obtain the assertion for p = 1 from [13, Thm. 4.2.2]. □

If φ is in (Hp(Td))∗, then the bounded linear functional generated by φ on
Hp(Td) can be represented as Lφ(f) := ⟨f, φ⟩, which implies that

(2.1) ∥φ∥(Hp(Td))∗ := sup
g∈Hp(Td)

g ̸≡0

|⟨g, φ⟩|
∥g∥Hp(Td)

.

We are now ready to reformulate the defining property of Hilbert points using duality.
Note that the condition in Theorem 2.2 (a) below coincides with (1.3) discussed in
the introduction.

Theorem 2.2.
(a) Fix 1 ≤ p < ∞. A nontrivial function φ in Hp(Td) is a Hilbert point in

Hp(Td) if and only if there is some constant λ > 0 such that

P
(
|φ|p−2φ

)
= λφ.

(b) Fix 1 ≤ p ≤ ∞. A nontrivial function φ in Hp(Td) ∩H2(Td) is a Hilbert
point in Hp(Td) if and only if

∥φ∥Hp(Td)∥φ∥(Hp(Td))∗ = ∥φ∥2
H2(Td).

Part (a) implies that a Hilbert point in Hp(Td) also belongs to the dual space
(Hp(Td))∗. This means that the condition of part (b) that φ be in H2(Td) is
automatically verified when φ is a Hilbert point in Hp(Td). The assumption that
φ be in H2(Td) is only needed to exclude from the statement the claim that if
1 ≤ p < 2, then any φ in Hp(Td) \H2(Td) is a Hilbert point in Hp(Td).

The formula in part (b) further justifies our usage of the term “Hilbert point”,
since the identity ∥φ∥H ∥φ∥H ∗ = ∥φ∥2

H holds for all vectors φ in a Hilbert space
H by the Riesz representation theorem.

Remark. Theorem 1.3 can also be deduced from [4, Lem. 5] and Theorem 2.2 (b), in
addition to the proof based on Theorem 1.2 and Theorem 2.2 (a) mentioned above.

Proof of Theorem 2.2 (a). Throughout the proof, we will apply Lemma 2.1 with Y
as the closure in Lp(Td) of the set of analytic polynomials g satisfying ⟨g, φ⟩ = 0.

We assume first that P
(
|φ|p−2φ

)
= λφ for some λ > 0. By the implication (ii)

=⇒ (i) in Lemma 2.1, this means that
∥φ∥Hp(Td) ≤ ∥φ+ f∥Hp(Td)

for every f in Y . This shows that φ is a Hilbert point in Hp(Td).
To prove the reverse implication, we begin by assuming that φ is a Hilbert point

in Hp(Td). By the implication (i) =⇒ (ii) in Lemma 2.1, we have that〈
|φ|p−2φ, f

〉
= 0

for every f in Y . But this means that the function ψ := P
(
|φ|p−2φ

)
also has the

property that ⟨f, ψ⟩ = 0 for all f in Y . Since φ is in Hp(Td) and ψ is in (Hp(Td))∗,
at least one of them belongs to H2(Td). If 1 ≤ p < 2 so that ψ is in H2(Td), then
every f in Hp(Td) can be decomposed as

f = ⟨f, ψ⟩
∥ψ∥2

H2(Td)
ψ + h,
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where h belongs to Y . Since Hq(Td) is contained in Hp(Td) for q = p/(p− 1), this
decomposition is in particular valid for every f in Hq(Td). It follows that the action
of the functional Lφ on Hq(Td) can be computed explicitly:

Lφ(f) = ⟨f, ψ⟩
∥ψ∥2

H2(Td)
⟨ψ,φ⟩.

Since ⟨ψ,φ⟩ = ⟨|φ|p−2φ,φ⟩ = ∥φ∥p
Hp(Td), this means that φ must be a positive

multiple of ψ. When 2 < p < ∞, we may argue in the same way, with the roles of φ
and ψ reversed. □

Proof of Theorem 2.2 (b). If φ is a Hilbert point in Hp(Td), then φ is also in the
dual space (Hp(Td))∗. When 2 ≤ p ≤ ∞, this is trivial. When 1 ≤ p < 2, this follows
from Theorem 2.2 (a) and the fact that |φ|p−2φ is in Lq(Td), where q = p/(p− 1).
The inequality

∥φ∥Hp(Td)∥φ∥(Hp(Td))∗ ≥ ∥φ∥2
H2(T2)

holds automatically by (2.1), so it suffices to prove that φ is a Hilbert point in
Hp(Td) if and only if the reverse inequality

(2.2) ∥φ∥Hp(Td)∥φ∥(Hp(Td))∗ ≤ ∥φ∥2
H2(T2)

is verified.
We begin with the necessity of (2.2). To this end, we assume that φ is a Hilbert

point in Hp(Td). Since φ is in (Hp(Td))∗ and since Hp(Td) ∩ (Hp(Td))∗ ⊂ H2(Td),
we may decompose every g in Hp(Td) as

(2.3) g = ⟨g, φ⟩
∥φ∥2

H2(Td)
φ+

(
g − ⟨g, φ⟩

∥φ∥2
H2(Td)

φ

)
.

If g ̸≡ 0, then we use the decomposition (2.3) and the assumption that φ is a Hilbert
point in Hp(T) to see that

|⟨g, φ⟩|
∥g∥Hp(Td)

≤
∥φ∥2

H2(Td)

∥φ∥Hp(Td)
.

Since g is arbitrary, we get the desired inequality (2.2).
To prove the sufficiency of (2.2), we suppose next that φ satisfies (2.2). By (2.1)

we then get that
|⟨g, φ⟩|

∥g∥Hp(Td)
≤

∥φ∥H2(Td)

∥φ∥Hp(Td)

for every nontrivial g in Hp(Td). In particular, choosing g = φ+ f with ⟨f, φ⟩ = 0,
we see that φ is a Hilbert point in Hp(Td). □

We will now formulate three corollaries of Theorem 2.2. The first just makes
explicit an immediate consequence of the fact that a Hilbert point φ in any of the
spaces Hp(Td) is in H2(Td) ∩ (Hp(Td))∗. Then the orthogonal projection

Pφf := ⟨f, φ⟩
∥φ∥H2(Td)

φ

is a well defined operator on Hp(Td), and we obtain the following from part (b).
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Corollary 2.3. A nontrivial function φ in Hp(Td) is a Hilbert point in Hp(Td) for
1 ≤ p ≤ ∞ if and only if φ belongs to H2(Td) ∩ (Hp(Td))∗ and Pφ is a contraction
on Hp(Td).

The Hahn–Banach theorem supplies a contractive projection onto every one-
dimensional subspace of a Banach space. Corollary 2.3 can be reformulated as
follows. If φ is in H2(Td) ∩ (Hp(Td))∗, then φ is a Hilbert point in Hp(Td) if and
only if the projection from Hp(Td) to span({φ}) coincides with the orthogonal
projection from H2(Td) to span({φ}). We refer to [8] and our recent paper [5] for
studies of other contractive projections on Hardy spaces.

We next come back to our interpretation of Hilbert points in terms of Banach
space geometry. We retain the notation from the introduction (see (1.2)) and stress
that the supporting hyperplane Tp of Bp is well defined since Hp(Td) is uniformly
convex when 1 < p < ∞.

Corollary 2.4. Suppose that φ is in H2(Td) ∩Hp(Td) with 1 < p < ∞. Then φ is
a Hilbert point in Hp(Td) if and only if Tp ∩H2(Td) = T2 ∩Hp(Td).

Proof. We begin by assuming that φ is a Hilbert point in Hp(Td). Then the inclusion
T2 ∩Hp(Td) ⊂ Tp ∩H2(Td) is immediate. To prove the reverse inclusion, we begin
by noting that if f is in Tp, then

∥φ+ f∥Hp(Td) ≥ ∥φ∥Hp(Td).

Thus Lemma 2.1 implies that ⟨f, |φ|p−2φ⟩ = 0 for every f in Tp. Therefore, since P
is self-adjoint, we have 〈

f, P (|φ|p−2φ)
〉

= 0.
Now invoking Theorem 2.2 (a), we see that ⟨f, φ⟩ = 0, whence f is in T2.

We assume next that Tp ∩H2(Td) = T2 ∩Hp(Td). If ⟨f, φ⟩ = 0, then f will be
in Tp which implies that ∥φ+ f∥Hp(Td) ≥ ∥φ∥Hp(Td). This means by definition that
φ is a Hilbert point in Hp(Td). □

As mentioned in the introduction, the following result is a direct consequence
of Theorem 2.2 (a) for p < ∞ and by a limiting argument for p = ∞. It is also
possible to deduce this result from Theorem 2.2 (b), (2.1), and Hölder’s inequality.

Corollary 2.5. Fix d ≥ 1 and suppose that φ = CI for a constant C ̸= 0 and an
inner function I. Then φ is a Hilbert point in Hp(Td) for every 1 ≤ p ≤ ∞.

We now turn to the proof of Theorem 1.1, which states that there are no other
Hilbert points in Hp(T) when p ̸= 2.

Proof of Theorem 1.1. The sufficiency part is the case d = 1 of Corollary 2.5, so it
remains to settle the necessity part.

We begin with the case 1 ≤ p < ∞, p ≠ 2. We assume that φ is a Hilbert point
in Hp(Td) and use Theorem 2.2 (a) to infer that

P
(
|φ|p−2φ

)
= λφ

for some λ > 0. We may assume without loss of generality that λ = 1 by rescaling
φ if necessary. Suppose that f is an arbitrary analytic polynomial. Then since the
Riesz projection is self-adjoint, we find that〈

|φ|2, f
〉

= ⟨φ,φf⟩ =
〈
P (|φ|p−2φ), φf

〉
=
〈
|φ|p−2φ,φf

〉
= ⟨|φ|p, f⟩ .
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The same identity holds also with f replaced by f . Hence |φ|p = |φ|2 almost
everywhere, so φ must be an inner function.

We assume next that φ is a Hilbert point in H∞(T). We factor φ in the usual
way as φ = IE, where I is an inner function and E is an outer function. For a
real number η, consider the function fη = IE1+η which is in H∞(T) and satisfies
∥fη∥H∞(T) = ∥φ∥1+η

H∞(T). Since

(2.4) ∥φ∥(H∞(T))∗ ≥ Re ⟨fη, φ⟩
∥fη∥H∞(T)

,

Theorem 2.2 (b) shows that φ is a Hilbert point in H∞(T) only if the quantity to
the right in (2.4) is maximized for η = 0. Using that |φ| = |E| almost everywhere,
we find that

0 = d

dη
Re ⟨fη, φ⟩

∥fη∥H∞(T)

∣∣∣∣
η=0

= 1
∥E∥H∞

∫
T

|E(z)|2 log
(

|E(z)|
∥E∥H∞(T)

)
dm1(z),

which holds if and only if φ is a constant multiple of an inner function. □

3. 1-homogeneous polynomials

To prove Theorem 1.2 we require some basic facts. We first recall that the Riesz
projection P can be expressed using the Szegő kernel as

(3.1) Pf(z) =
∫
Td

f(ζ)
d∏

j=1

1
1 − zjζj

dmd(ζ).

Next, a function f in Lp(Td) is called 1-homogeneous if

f(eiθz1, e
iθz2, . . . , e

iθzd) = eiθf(z1, z2, . . . , zd).
It is clear that if φ is a 1-homogeneous polynomial, then |φ|p−2φ is a 1-homogeneous
function. Hence P (|φ|p−2φ) is a 1-homogeneous polynomial whenever φ is a 1-
homogeneous polynomial.

Proof of Theorem 1.2. Our goal is to establish that if φ(z) =
∑d

j=1 cjzj , then

(3.2)
(
P |φ|p−2φ

)
(z) = p

2

d∑
j=1

cjzj

∫ 1

0

∫
Td

|φj(ζ, r)|p−2 dmd(ζ) 2rdr,

where φj(z, r) := φ(z1, . . . , rzj , . . . , zd) for j = 1, 2, . . . , d. By the discussion above,
we know that the left-hand side of (3.2) is a 1-homogeneous polynomial. Hence we
do not need to consider any other Fourier coefficients when computing the Riesz
projection.

Let us first demonstrate that we without loss of generality may assume that
cj > 0 for j = 1, 2, . . . , d. Suppose that we have established (3.2) for cj > 0. Given
any φ, we define

φ̃(z) =
d∑

j=1
eiθjcjzj

where eiθj is chosen so that c̃j := eiθjcj > 0. Using (3.1), a change of variables and
the rotational invariance of Td, we find that(

P |φ|p−2φ
)

(z) =
(
P |φ̃|p−2φ̃

)
(e−iθ1z1, e

−iθ2z2, . . . , e
−iθdzd).
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Using (3.2) for φ̃ we obtain (3.2) for φ, since the integrals on the right-hand side of
(3.2) are the same for φ and φ̃, again by rotational invariance.

Considering the Fourier series of |φ|p−2, we compute

(3.3) (P |φ|p−2φ)(z) = Aφ(z) +
d∑

j=1
zj

d∑
k=1
k ̸=j

Bj,kck,

for A =
∫
Td |φ(ζ)|p−2 dmd(ζ) and Bj,k =

∫
Td |φ(ζ)|p−2 ζjζk dmd(ζ) with j ̸= k. In

what follows, let α in Nd
0 denote a multi-index, and set c = (c1, c2, . . . , cd). Suppose

that p− 2 = 2n for a nonnegative integer n. By the multinomial theorem,

(3.4) (φ(z))n =
∑

|α|=n

(
n

α

)
cαzα where

(
n

α

)
= n!
α1!α2! · · ·αd! .

We will use (3.4) to obtain expressions for A and Bj,k. It is clear that

A =
∑

|α|=n

(
n

α

)2
c2α.

Given some α with αk ≥ 1 let β denote the multi-index obtained by subtracting 1
from the kth coordinate of α and adding 1 to the jth coordinate of α. Note that(

n

β

)
=
(
n

α

)
αk

αj + 1 .

By using (3.4) twice, we find that

Bj,k =
∑

|α|=n
αk≥1

(
n

α

)(
n

β

)
cαcβ =

∑
|α|=n
αk≥1

(
n

α

)2
αk

αj + 1
cj

ck
c2α = cj

ck

∑
|α|=n

(
n

α

)2
αk

αj + 1c
2α.

Consequently,

(3.5) Acj +
d∑

k=1
k ̸=j

Bj,kck = cj(n+ 1)
∑

|α|=n

(
n

α

)2
c2α

αj + 1 .

A direct computation shows that∑
|α|=n

(
n

α

)2
c2α

αj + 1 =
∫ 1

0

∫
Td

|φj(ζ, r)|2n dmd(ζ) 2rdr

for φj(z, r) = φ(z1, . . . , rzj , . . . , zd) for j = 1, 2, . . . , d. By (3.3) and (3.5) we have
now established the formula

(3.6) (P |φ|2nφ)(z) = (n+ 1)
d∑

j=1
cjzj

∫ 1

0

∫
Td

|φj(ζ, r)|2n dmd(ζ) 2rdr

for n = 0, 1, 2, . . .. We can extend (3.6) to the case n = p−2 for p ≥ 1 by polynomial
approximation. Let D denote the differential operator

Df(x) := d

dx

(
xf(x)

)
.
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If f(x) = xn for n = 0, 1, 2, . . ., then (3.6) can be restated as

(3.7) P
(
f
(
|φ|2

)
φ
)

(z) =
d∑

j=1
cjzj

∫ 1

0

∫
Td

Df
(
|φj(ζ, r)|2

)
dmd(ζ) 2rdr.

By linearity of P and D, it is clear that (3.7) holds for any polynomial f . Suppose
that f is continuously differentiable on [0, C] for C = (c1 + c2 + · · · + cd)2. Then
(3.7) holds for f since both f and f ′ may be simultaneously uniformly approximated
by polynomials on [0, C]. In particular, (3.7) holds for f(x) = (δ + x)p/2−1 for
δ > 0. By Fubini’s theorem, we may let δ → 0+ when p ≥ 1 and obtain (3.2) from
(3.7). □

Remark. We may replace the above polynomial approximation argument by an
appeal to analytic continuation in the variable p and the fact that the sequence 2n
is not a Blaschke sequence in the right half-plane. The latter kind of argument is
used in the proof of Theorem 6.2 below.

Note that we may interpret the integrals on the right-hand side of (3.2) as area
integrals over the unit disc with respect to the variable w = rzj . Let A denote
the Lebesgue measure of C, normalized so that A(D) = 1. The following result is
pertinent to our analysis of the right-hand side of (3.2).

Lemma 3.1. Fix 2 < p < ∞. If a > b > 0, then∫
T

∫
D

|aw + bz + c|p−2 dA(w) dm1(z) <
∫
T

∫
D

|az + bw + c|p−2 dA(w) dm1(z)

for every complex number c.

Proof. We begin by interchanging the order of integration and using rotational
invariance to obtain

(3.8)
∫
T

∫
D

|aw+bz+c|p−2 dA(w) dm1(z) =
∫
D

∫
T

∣∣|aw+b|z+c
∣∣p−2

dm1(z) dA(w).

Notice that since a > b, the Möbius transformation

w 7→ aw + b

a+ bw
= w + b/a

1 + (b/a)w
maps the unit disc into itself. Hence

(3.9) |aw + b| < |a+ bw|

for every w in D. The function z 7→ |z+ c|p−2 is subharmonic for each fixed complex
number c. We can therefore use (3.9) to conclude that∫

T

∣∣|aw + b|z + c
∣∣p−2

dm1(z) <
∫
T

∣∣|a+ bw|z + c
∣∣p−2

dm1(z).

Integrating over D with respect to w and using (3.8) twice, we obtain the stated
inequality. □

We are now ready to proceed with the proof of Theorem 1.4.

Proof of Theorem 1.4 for 2 < p < ∞. We may assume without loss of generality
that cj > 0 for j = 1, 2, . . . , d. If d = 1 there is nothing to prove, so we also assume
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that d ≥ 2. We appeal to Theorem 2.2 (a) and Theorem 1.2 to conclude that φ is a
Hilbert point in Hp(Td) if and only if

p

2

d∑
j=1

cjzj

∫ 1

0

∫
Td

|φj(z, r)|p−2 dmd(z) 2rdr = λ

d∑
j=1

cjzj

for some constant λ > 0. Of course, this is equivalent to the claim that
(3.10) I1 = I2 = · · · = Id,

where we for j = 1, 2, . . . , d define

Ij :=
∫ 1

0

∫
Td

|φj(z, r)|p−2 dmd(z) 2rdr.

We will use a contrapositive argument, so assume that a = c1 and b = c2 for some
a > b > 0. By rotations and changing the order of integration, we find that

I1 =
∫
Td−2

∫
T

∫
D

∣∣∣∣∣aw + bz +
d∑

j=2
cjzj

∣∣∣∣∣
p−2

dA(w) dm1(z) dmd−2(z)

<

∫
Td−2

∫
T

∫
D

∣∣∣∣∣az + bw +
d∑

j=2
cjzj

∣∣∣∣∣
p−2

dA(w) dm1(z) dmd−2(z) = I2,

where we used Lemma 3.1 for each c =
∑d

j=2 cjzj . It is now clear from (3.10) that
φ cannot be a Hilbert point in Hp(Td). □

For the proof of Theorem 1.4 in the case p = ∞, we require a well-known result,
which will also be used in Section 5 for p < ∞. Let Hp

1 (Td) be the subspace of
Hp(Td) comprised of 1-homogeneous polynomials.

Lemma 3.2. The orthogonal projection P1 : H2(Td) → H2
1 (Td) extends to a con-

traction on Hp(Td) for every 1 ≤ p ≤ ∞.

Proof. The claim follows from the formula

P1f(z) =
∫
T
f(z1ζ, z2ζ, . . . , zdζ) ζ dm1(ζ)

and Minkowski’s integral inequality. □

Proof of Theorem 1.4 for p = ∞. As in the case 2 < p < ∞, we assume without
loss of generality that cj > 0 for j = 1, 2, . . . , d. By Lemma 3.2, we know that the
projection from H∞(Td) to H∞

1 (Td) is contractive, which implies that
∥φ∥(H∞(Td))∗ = ∥φ∥(H∞

1 (Td))∗ .

Noting that

∥φ∥H∞(Td) =
d∑

j=1
|cj | =

d∑
j=1

cj

by our assumption that cj > 0 it is clear that ∥φ∥(H∞
1 (Td))∗ = max1≤j≤d cj . Hence

we get from Theorem 2.2 (b) that φ is a Hilbert point in H∞(Td) if and only if(
max

1≤j≤d
cj

) d∑
j=1

cj =
d∑

j=1
c2

j .
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By the assumption that cj > 0, we see that φ is a Hilbert point in H∞(Td) if and
only if c1 = c2 = · · · = cd. □

The conclusion of Theorem 1.4 also holds if d = 2 and 1 ≤ p < 2. To see this, it
is sufficient to establish the following result. It replaces Lemma 3.1 in the proof of
Theorem 1.4, but the inequality goes in the reverse direction.

Lemma 3.3. Fix 1 ≤ p < 2. If φ(z) = az1 + bz2 for a > b > 0,then∫ 1

0

∫
T2

|φ1(z, r)|p−2 dmd(z) 2rdr >
∫ 1

0

∫
T2

|φ2(z, r)|p−2 dmd(z) 2rdr.

Proof. As in the proof of Lemma 3.1, we get that |aw + b| < |a + bw| for every
w ∈ D. The statement now follows from the fact that p− 2 < 0. □

Based on Theorem 1.3, Theorem 1.4 and Lemma 3.3, we offer now the following.

Conjecture 3.1. Suppose that 1 ≤ p < 2. If φ(z) =
∑d

j=1 cjzj is a Hilbert point
in Hp(Td), then the nonzero coefficients of φ all have the same modulus.

The conjecture is open for d ≥ 3. In the next section we will obtain some evidence
in support of Conjecture 3.1.

4. Dynamics of the nonlinear projection operators

It may be easier to understand the action of the nonlinear projection operator
φ 7→ P (|φ|p−2φ) if we normalize it in the following way:

(4.1) Pp(φ) := P (|φ|p−2φ)
∥P (|φ|p−2φ)∥H2(Td)

.

Then Pp maps the unit sphere of H2
1 (Td) into itself by Theorem 1.2 and φ is a

fixed point of Pp if and only if it is a Hilbert point in Hp(Td) by Theorem 2.2 (a).
Consider a 1-homogeneous polynomial

φ0(z) =
d∑

j=1
cjzj ,

normalized such that ∥φ0∥H2(Td) = 1. We define inductively φn+1 := Pp(φn) for
every nonnegative integer n. By Theorem 2.2 (a), we know that φn+1 = φn if and
only if φn is a Hilbert point in Hp(Td). We let c(n)

j denote the coefficient of φn at
zj (so that cj = c

(0)
j ). What can we say about the behaviour of these coefficients

when n → ∞? We begin with two obvious conclusions, which follow at once from
Theorem 1.2.

(i) If cj = 0, then c
(n)
j = 0 for every n ≥ 0.

(ii) If cj ̸= 0, then arg(c(n)
j ) = arg(cj) for every n ≥ 0.

For simplicity, we shall in what follows assume that cj > 0 for every j = 1, 2, . . . , d.
Next, let us compare two coefficients.

(iii) If cj = ck, then c
(n)
j = c

(n)
k for every n ≥ 0. This follows at once from

Theorem 1.2 and symmetry.
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Figure 4.1. The areas A1(r) and A2(r) in the proof of Lemma 4.1,
for x = 1+

√
5

2 and 1
x =

√
5−1
2 . The black circle is the unit circle.

We have chosen r =
√

2 or, equivalently, θ = π
3 .

To see what happens when cj ̸= ck, we will now establish a result that complements
Lemma 3.1 by giving an inequality in the opposite direction. While the proof of
Lemma 3.1 relied crucially on an argument involving subharmonicity, the next result
follows from a purely geometric consideration.

Lemma 4.1. Fix 1 ≤ p < ∞. If a > b > 0, then

a

∫
T

∫
D

|aw + bz + c|p−2 dA(w) dm1(z) > b

∫
T

∫
D

|az + bw + c|p−2 dA(w) dm1(z)

for every complex number c.

Proof. Replacing c by c/b, we assume without loss of generality that a = x > 1 and
b = 1. Set Φ(r, z, c) = |rz + c|p−2. As in the proof of Lemma 3.1, we write∫

T

∫
D

|xz + w + c|p−2 dA(w) dm1(z) =
∫
T

∫
D

Φ(|1 + xw|, z, c) dA(w) dm1(z),∫
T

∫
D

|z + xw + c|p−2 dA(w) dm1(z) =
∫
T

∫
D

Φ(|x+ w|, z, c) dA(w) dm1(z).

For fixed z on T and complex number c, we consider

I1(x) :=
∫
D

Φ(|1 + xw|, z, c) dA(w) and I2(x) :=
∫
D

Φ(|x+ w|, z, c) dA(w)

For 0 ≤ r ≤ x+ 1, we define

A1(r) := A({w ∈ D : |1 + xw| ≤ r}) and A2(r) := A({w ∈ D : |x+ w| ≤ r}).

By symmetry, we note that A1(r) is equal to the area of the intersection of the disc
D(1/x, r/x) and the unit disc D and, similarly, that A2(r) is equal to the area of
the intersection of the discs D(x, r) and D. See Figure 4.1. Since A2(r) = 0 for
r < x− 1, we rewrite the integrals as

I1(x) =
∫ x+1

0
Φ(r, z, c)A′

1(r) dr and I2(x) =
∫ x+1

x−1
Φ(r, z, c)A′

2(r) dr,
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by polar coordinates and change of variables. Since Φ is nonnegative, we are done if
we can prove that A′

2(r) ≤ xA′
1(r) for x− 1 ≤ r ≤ 1. We restrict r to this interval

henceforth.
The unit circle intersects the circles |1 + wx| = r and |x + w| = r in the same

two points e±iθ for some 0 < θ < π. We find it convenient to consider θ a function
of r. Let ℓ1 and ℓ2 denote the arc length of the part of the circles intersecting the
unit disc, respectively. Then

ℓ1(r) = 2 r
x

arctan
(

sin θ
cos θ + 1/x

)
and ℓ2(r) = 2r arctan

(
sin θ

cos θ + x

)
,

where arctan takes values in [0, π]. Inspecting Figure 4.1 again, we find that

A1(r) = π

(
x− 1
x

)2
+
∫ r

x

x−1
x

ℓ1(xs) ds and A2(r) =
∫ r

x−1
ℓ2(s) ds,

when x− 1 < r < x+ 1, from which we see that

A′
1(r) = 2r

x2 arctan sin θ
cos θ + 1/x and A′

2(r) = 2r arctan sin θ
cos θ + x

.

We shall now fix x − 1 < r < x + 1, or equivalently 0 < θ < π. To establish the
desired estimate A′

2(r) ≤ xA′
1(r) it is enough to check that Fθ(x) > 0 for x > 1,

where
Fθ(x) = arctan

(
sin θ

cos θ + 1/x

)
− x arctan

(
sin θ

cos θ + x

)
.

Since Fθ(1) = 0, we compute

F ′
θ(x) = (x+ 1) sin θ

1 + 2x cos θ + x2 − arctan
(

sin θ
cos θ + x

)
≥ (x+ 1) sin θ

1 + 2x cos θ + x2 − sin θ
cos θ + x

,

using the estimate arctan(y) ≤ y for y ≥ 0. Since
(x+ 1) sin θ

1 + 2x cos θ + x2 − sin θ
cos θ + x

= sin θ(1 − cos θ)(x− 1)
(1 + 2x cos θ + x2)(cos θ + x)

and conclude that F ′
θ(x) > 0, which completes the proof. □

We may now make the following additional assertion.
(iv) If cj > ck, then c

(n)
j > c

(n)
k for every n ≥ 0. This is a consequence of

Theorem 1.2 and Lemma 4.1.
Combining the assertions (i)—(iv) with Theorem 1.2 and Lemma 3.1, we may

obtain the following result.

Theorem 4.2. Fix 2 < p < ∞. Suppose that φ0(z) =
∑d

j=1 cjzj is an arbitrary
point in the unit sphere of H2

1 (Td) and that cj ̸= 0 for j = 1, 2, . . . , d. Then

lim
n→∞

(Pn
p φ0)(z) = 1√

d

d∑
j=1

cj

|cj |
zj .

Proof. We may assume without loss of generality that c1 ≥ cj > 0 for j = 2, 3, . . . , d.
By (iv), this ordering will persist under iterations by Pp so that we will have
c

(n)
1 ≥ c

(n)
j for all n and j = 2, 3, . . . , d. In particular, this implies that c(n)

1 ≥ d−1/2

by the normalization. The crux of the proof will be to show that n 7→ c
(n)
1 is a

strictly decreasing sequence whenever c(0)
1 > d−1/2.
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We begin by showing how to conclude once we know that n 7→ c
(n)
1 is strictly

decreasing. If
c

(∞)
1 := lim

n→∞
c

(n)
1 = 1√

d
,

then we are done because the ordering of the coefficients persists under iterations.
We will next rule out the possibility that c(∞)

1 > d−1/2. If this were the case, we
could by compactness find a subsequence nk and coefficients c(∞)

j such that

c
(∞)
j = lim

k→∞
c

(nk)
j

for j = 1, 2, . . . , d. Clearly, the ordering persists in the limit so that c(∞)
1 ≥ c

(∞)
j for

every j = 2, 3, . . . , d. If we now start iterating from

φ∞(z) :=
d∑

j=1
c

(∞)
j zj ,

then the largest coefficient of the iterates will again be a strictly decreasing sequence.
However, this would violate the fact that the coefficients of Pp(φ) for φ in the unit
sphere of H2

1 (Td) depend continuously on the coefficients of φ.
It remains to show that n 7→ c

(n)
1 is strictly decreasing when c

(0)
1 > d−1/2. Then

there exists a j0 such that c(0)
j0

< d−1/2 < c
(0)
1 . By (iv) and induction on n, we have

then c(n)
j0

< c
(n)
1 for all nonnegative integers n. Now invoking Lemma 3.1 and taking

into account Theorem 1.2, we see that the ratios c(n)
1 /c

(n)
j are nonincreasing for

j = 2, 3, . . . , d. This allows us to draw the desired conclusion because we have seen
that at least one of these sequences of ratios is strictly decreasing. □

Remark. Theorem 1.3 and Theorem 1.4 can be obtained as direct corollaries to
Theorem 4.2 through Theorem 2.2 (a).

Suppose that we start iterating from φ0(z) = az1 + bz2 for |a|2 + |b|2 = 1 when
1 ≤ p < 2. Replacing Lemma 3.1 by Lemma 3.3, we obtain by similar considerations
as above the following conclusions.

• If |a| = |b| = 1/
√

2, then φ∞(z) = φ0(z).
• If |a| > |b|, then φ∞(z) = a

|a|z1.
• If |a| < |b|, then φ∞(z) = b

|b|z2.
The key difference between the cases 1 ≤ p < 2 and 2 < p < ∞ is that if a > b > 0,
then the sequence a(n) is strictly increasing in the former and decreasing in the
latter.

Consider now φ0 in the unit sphere of H2
1 (Td) and apply the nonlinear projection

operator (4.1) for d ≥ 3 and 1 ≤ p < ∞. Repeating the reasoning of the first part of
the proof of Theorem 4.2, we see that to extend Theorem 1.2 to the range 1 ≤ p < 2,
it would suffice to show that in this case, the largest coefficient of the iterates is
strictly increasing. We have performed some numerical experiments when d = 3
and 1 ≤ p < 2, picking many random polynomials from H2

1 (T3) as initial point
and applying the iteration. A representative example (with p = 1) can be found in
Table 4.1.

Table 4.1 reveals another difference between 1 ≤ p < 2 and 2 < p < ∞, since
the ratio n 7→ a(n)/c(n) is not monotone. In this example, the ratio decreases in
the first two iterations and then increases thereafter. This indicates that the case
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n a(n) b(n) c(n)

0 0.7256 0.6766 0.1251
1 0.7577 0.6346 0.1520
2 0.8259 0.5413 0.1576
3 0.9191 0.3762 0.1175
4 0.9742 0.2152 0.0686
5 0.9931 0.1120 0.0359
6 0.9982 0.0566 0.0182
7 0.9996 0.0284 0.0091
8 0.9999 0.0142 0.0046

Table 4.1. Iterations of (4.1) with p = 1 starting from φ0(z) =
a(0)z1 + b(0)z2 + c(0)z3, computed numerically to precision 10−5.

1 ≤ p < 2 is more subtle, since it is not sufficient to consider the pairwise interaction
of coefficients under the iterations.

Question 4.1. Suppose that φ0(z) =
∑d

j=1 cjzj is in the unit sphere of H2
1 (Td)

and that c1 > cj ≥ 0 for every j = 2, 3, . . . , d. Is it true that

lim
n→∞

(Pn
p φ0)(z) = z1

whenever 1 ≤ p < 2?

It follows from the above discussion that a positive answer to Question 4.1 would
lead to a proof of Conjecture 3.1.

It is natural to ask how the dynamics of Pp may be in a more general situation.
Notice however that Pp is not well defined on the unit sphere of H2(Td) when
p > 2, so that it is not clear how to proceed in full generality. One could imagine
modifiying the definition of Pp or restricting again to some submanifold of the unit
sphere of H2(Td) that is preserved by Pp, such as that consisting of m-homogeneous
polynomials. It would be interesting to know in which generality what was observed
above may hold, namely that inner functions are attracting fixed points for 1 ≤ p < 2
and repelling fixed points for 2 < p < ∞.

5. Khintchin’s inequality for Steinhaus variables

We will now see how Theorem 1.4 (and Theorem 1.2) can be applied to give a
proof of the sharp Khintchin inequality (1.6) in the range 2 < p < ∞. Recall that a
Steinhaus random variable by definition is uniformly distributed on T with respect
to the Lebesgue arc length measure. Hence, if (zj)d

j≥1 is a sequence of independent
Steinhaus variables and (cj)d

j≥1 are complex numbers, then

E

∣∣∣∣∣
d∑

j=1
cjzj

∣∣∣∣∣
p

=
∫
Td

|c1z1 + · · · + zdzd|p dmd(z) = ∥φ∥p
Hp(Td).

The novelty of our proof of Khintchin’s inequality is that we avoid using bisubhar-
monic functions as was done in [2]. It may be observed, however, that subharmonicity
plays an essential role, namely in the proof of Lemma 3.1.
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Our proof begins with Lemma 1.5, where we consider critical points of the
functional
(5.1) Kp(c) := ∥c1z1 + · · · + cdzd∥Hp(Td)

defined for c = (c1, . . . , cd) in the unit sphere of Cd. Recall that Hp
1 (Td) is the

d-dimensional subspace of Hp(Td) comprised of 1-homogeneous polynomials.

Proof of Lemma 1.5. Fix 2 < p < ∞. For c in the unit sphere of Cd, let φ denote
the associated 1-homogeneous polynomial. By the Lagrange multiplier theorem, any
critical point (c1, . . . , cd) of the functional (5.1) satisfies

∇∥φ∥Hp(Td) = λ∇∥φ∥H2(Td)

for some constant λ. This means that the complex tangent space to the closed ball
in Hp

1 (Td) centered at the origin with radius ∥φ∥Hp(Td) at the point φ is the same
as the complex tangent space to the closed unit ball in H2

1 (Td) at the point φ. But
this condition means that for any 1-homogeneous polynomial f such that ⟨f, φ⟩ = 0
we have that
(5.2) ∥φ+ f∥Hp(Td) ≥ ∥φ∥Hp(Td).

By Lemma 3.2, we get that (5.2) holds for all 1-homogeneous polynomials f satisfying
⟨f, φ⟩ = 0 if and only if φ is a Hilbert point in Hp(Td). □

Remark. The above proof is a finite-dimensional version of the argument used to
establish Corollary 2.4, where we saw that Tp ∩H2(Td) = T2 ∩Hp(Td) at a Hilbert
point in Hp(Td).

By Lemma 1.5 and Theorem 1.4, we know that to get the optimal upper and
lower bounds in Khintchin’s inequality when 2 < p < ∞, we only need to investigate
the 1-homogeneous polynomials for which all the nonzero coefficients have the same
modulus. Hence we require the following result.

Lemma 5.1. If 2 < p < ∞, then

d 7→

∥∥∥∥∥∥ 1√
d

d∑
j=1

zj

∥∥∥∥∥∥
Hp(Td)

is strictly increasing for d ≥ 1.

Proof. Fix 2 < p < ∞. For 0 ≤ t ≤ 1, we consider the function

φt(z) :=
(

1 − t

d
+ t

d+ 1

)1/2
(z1 + · · · + zd) +

(
t

d+ 1

)1/2
zd+1

and define Φ(t) := ∥φt∥p
Hp(Td). We need to prove that Φ(0) < Φ(1) which we will

do by showing that Φ′(t) > 0 for 0 < t < 1. Writing |φt|p = (φtφt)p/2 and using
the chain rule and the product rule, we find that

Φ′(t) = p

2

∫
Td+1

|φt(z)|p−2φt(z) · 2 d
dt
φt(z) dmd+1(z).

To proceed, we first note that we may replace |φt|p−2φt by P (|φt|p−2φt) by orthog-
onality. Next we compute

2 d
dt
φt(z) = − 1

d(d+ 1)

(
1 − t

d
+ t

d+ 1

)−1/2
(z1 + · · · + zd) +

(
1

(d+ 1)t

)1/2
zd+1.
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By Theorem 1.2, we find that

Φ′(t) = p2

4(d+ 1)

(
−
∫ 1

0

∫
Td+1

|(φt)1(ζ, r)|p−22rdr dmd+1(ζ)

+
∫ 1

0

∫
Td+1

|(φt)d+1(ζ, r)|p−22rdr dmd+1(ζ)
)
.

Since p > 2 and 1−t
d + t

d+1 >
t

d+1 for 0 < t < 1, we find that Φ′(t) > 0 by using
Lemma 3.1 as in the proof of Theorem 1.4. □

Theorem 5.2 (Khintchin’s inequality [2, 7]). Fix 2 < p < ∞. We have∥∥∥∥∥
d∑

j=1
cjzj

∥∥∥∥∥
Hp(Td)

≤ Γ
(

1 + p

2

) 1
p

(
d∑

j=1
|cj |2

) 1
2

for all complex numbers c1, . . . , cd. The constant Γ
(
1 + p

2
) 1

p is optimal.

Proof. By Lemma 1.5, Theorem 1.4, and Lemma 5.1, we obtain that the asserted
inequality holds with optimal constant equal to

lim
d→∞

∥∥∥∥∥∥ 1√
d

d∑
j=1

zj

∥∥∥∥∥∥
Hp(Td)

= Γ
(

1 + p

2

) 1
p

.

The limit can be evaluated by the central limit theorem, since the independent
complex-valued random variables (zj)j≥1 have mean 0 and variance 1. □

Remark. The proof of Khintchin’s inequality for 1 ≤ p < 2 in [7] requires rather
technical estimates. This indicates why Conjecture 3.1 could be more difficult to
establish compared to Theorem 1.4, since a positive answer to the former would
simplify the proof of Khintchin’s inequalty for 1 ≤ p < 2 substantially.

6. A Hilbert point in H4(T3)

We have so far devoted our attention to two classes of Hilbert points. If φ = CI
for a constant C ̸= 0 and an inner function I, then φ is a Hilbert point for every
1 ≤ p ≤ ∞ by Corollary 2.5. If φ is a 1-homogeneous polynomial, then it follows
from Theorem 1.3 and Theorem 1.4 that if φ is a Hilbert point in Hp(Td) for some
2 < p ≤ ∞, then it is a Hilbert point in Hp(Td) for every 1 ≤ p ≤ ∞. Conjecture 3.1
implies that the same statement should hold if 2 < p ≤ ∞ is replaced by 1 ≤ p < 2.

The purpose of the present section is to demonstrate that in general, when d ≥ 2,
the Hilbert points depend on p. We begin with the following result, which is inspired
by [5, Ex. 3.4].

Theorem 6.1. The function

φ(z) = c1z
3
1 + c2z

3
2 + c3z

3
3 + c4z1z2z3

is a Hilbert point in H4(T3) if and only if the nonzero coefficients of φ all have the
same modulus.
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1 2 3 4

0.05

Figure 6.1. The Fourier coefficient (6.1) for 1 ≤ p ≤ 4.

Proof. We will use Theorem 2.2 (a), and begin by expanding

|φ(z)|2 = ∥φ∥2
H2(T3) + c1z

3
1

(
c2z3

2 + c3z3
3 + c4z1z2z3

)
+ c2z

3
2

(
c1z3

1 + c3z3
3 + c4z1z2z3

)
+ c3z

3
3

(
c1z3

1 + c2z3
2 + c4z1z2z3

)
+ c1c2c3z1z2z3

(
c1z3

1 + c2z3
2 + c3z3

3

)
.

Hence, we find that

P
(
|φ|2φ

)
=

3∑
j=1

cjzj

(
2∥φ∥2

H2(T3) − |cj |2
)

+ c4z1z2z3

(
2∥φ∥2

H2(T3) − |c4|2
)
,

from which we easily deduce that the solutions of the equation P (|φ|2φ) = λφ have
the stated form. □

If c4 = 0, then the conclusion of Theorem 6.1 can be obtained directly from
Theorem 1.3 and Theorem 1.4 by substituting ζ1 := z3

1 , ζ2 := z3
2 and ζ3 := z3

3 .
However, the same argument shows that φ is a Hilbert point also in Hp(Td) for
every 1 ≤ p ≤ ∞. We now turn to the main result of this section, where we see that
putting c3 = 0 leads to a completely different situation.

Theorem 6.2. The function φ(z) = z3
1 + z3

2 + z1z2z3 is a Hilbert point in H2(T3)
and H4(T3), but not in Hp(T3) for any 4 < p ≤ ∞.

Numerical evidence (see Figure 6.1) suggests that this φ is a Hilbert point in
Hp(Td) only when p = 2, 4. Unfortunately, we are only able to verify analytically
that there is possibly a finite number of p in [1, 4) \ {2} for which φ is a Hilbert
point in Hp(Td).

Proof. We begin with the case p = ∞, where we need to establish the estimate∥∥z3
1 + z3

2 + z1z2z3 − εz3
3
∥∥

H∞(T3) < 3

to see that φ is not a Hilbert point in H∞(T3) by (1.1). To this end set ζ1 := z1z2
and ζ2 := z1

2z2z3 so that our task is to show that∥∥1 + ζ1 + ζ2 − εζ1ζ
3
2
∥∥

H∞(T3) < 3.
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Now if |1+ζ1| ≤ 2−2ε or |1+ζ2| ≤ 2−2ε, then trivially
∣∣1 + ζ1 + ζ2 − εζ1ζ

3
2
∣∣ ≤ 3−ε.

It therefore suffices to consider ζ1 and ζ2 such that |1+ζ1| > 2−2ε or |1+ζ2| > 2−2ε.
In this case, we may finish the proof by an easy computation which is essentially
identical to that given in the proof of [5, Lem. 2.5].

We assume from now on that p < ∞. It is clear that we may rewrite the Fourier
series of φ as a Fourier series in the variables ζ1 := z3

1 , ζ2 := z3
2 , ζ3 := z1z2z3. Such

a rewriting reveals, by symmetry, that the Fourier coefficients of P (|φ|p−2φ) with
respect to the three monomials z3

1 , z3
2 , z1z2z3 are identical. Since the function φ is

3-homogeneous, there can be at most one additional term in the Fourier series of
P (|φ|p−2φ), namely a multiple of z3

3 . We deduce from this that φ is a Hilbert point
in Hp(T3) if and only if Φ(p) = 0, where

(6.1) Φ(p) :=
∫
T3

|φ(z)|p−2φ(z) z3
3 dm3(z).

Using the notation ψ(ζ) := ζ1 + ζ2 + ζ3, we get by the change of variables introduced
above that

(6.2) Φ(p) =
∫
T3

|ψ(ζ)|p−2ψ(ζ) ζ1ζ2ζ3
3 dm3(ζ).

Assume that p− 2 = 2n, where n is a nonnegative integer and expand(
ψ(ζ)

)n+1 =
∑

|α|=n+1

(
n+ 1
α

)
ζα and

(
ψ(ζ)

)n =
∑

|β|=n

(
n

β

)
ζβ .

We only get a contribution to (6.2) for α = β + (−1,−1, 3), when(
n+ 1
α

)(
n

β

)
= (n+ 1)

(
n

β

)2
β1β2

(β3 + 1)(β3 + 2)(β3 + 3) .

This shows that

(6.3) Φ(2(n+ 1)) = (n+ 1)
∑

|β|=n

(
n

β

)2
β1β2

(β3 + 1)(β3 + 2)(β3 + 3) .

Note that the numerator β1β2 ensures that Φ(2) = Φ(4) = 0, so φ is a Hilbert point
in H2(T3) and H4(T3). It is also clear that Φ(2(n+ 1)) > 0 for every integer n ≥ 2.
We need an analytic expression for (6.3). This can be established directly using
Bergman norms when n ≥ 2. If we write ψn(w) = (w1 + w2 + w3)n, then

Φ(2(n+ 1)) = (n+ 1)
3!

∫
D3

∣∣∣∣ ∂2

∂w1∂w2
ψn(w)

∣∣∣∣2 3(1 − |w3|2)2 dA3(w)

= (n+ 1)n2(n− 1)2

3!

∫
D3

|ψn−2(w)|2 3(1 − |w3|2)2 dA3(w),

where dA3(w) := dA(w1)dA(w2)dA(w3). Returning to (6.1), we have established
the identity

(6.4) Φ(p) =
(
p/2
3

)
(p− 2)(p− 4)

4

∫
D3

|w1 + w2 + w3|p−6 3(1 − |w3|2)2 dA3(w)

when p > 4 is a positive even integer. Since the sequence of positive integers
violates the Blaschke condition in the right half-plane and since Φ grows at most
exponentially as p → ∞, it follows by analytic continuation that (6.4) is valid also
for non-integer p > 4. It breaks down at p = 4 because integrability fails. The
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expression on the right-hand side of (6.4) is positive for p > 4, so we get that the
Fourier coefficient (6.1) does not vanish. Hence φ is not a Hilbert point in Hp(T3)
for p > 4. □

Remark. One could offer a rigorous computer assisted proof that Φ(p) ̸= 0 also
when 1 ≤ p < 4, p ̸= 2, by estimating the integral in (6.2) using interval arithmetic
in the intervals [1, 2) and (2, 4) and analyzing separately the behavior near p = 2
and p = 4.

We believe that the Fourier coefficients of
(6.5) |ζ1 + ζ2 + ζ3|p−2(ζ1 + ζ2 + ζ3) =

∑
|α|=1

cp(α)ζα

may be of some independent interest. In the proof of Theorem 6.2 we investigated
the Fourier coefficient corresponding to α = (−1,−1, 3).

Our interest in (6.5) stems from the fact that when d = 2, we have easy access to
all the corresponding Fourier coefficients. By a computation in [4, Sec. 3], it follows
that

(6.6) |ζ1 + ζ2|p−2(ζ1 + ζ2) =
∑

|α|=1

Γ(p)
Γ(p/2 + α1)Γ(p/2 + α2)ζ

α.

Let us sketch a different proof of (6.6) in the spirit of Theorem 6.2. We consider
first p = 2n for a positive integer n and write

(6.7) |ζ1 + ζ2|2n−2(ζ1 + ζ2) = (ζ1ζ2)n(ζ1 + ζ2)2n−1 =
2n−1∑
j=0

(
2n− 1
j

)
zn−1−j

1 zj−n
2 ,

to establish (6.6) when p is an even integer. By analytic continuation as in the proof
of Theorem 6.2, we obtain (6.8) for 1 ≤ p < ∞. This proof shows that if p = 2n,
then the nonzero Fourier coefficients in (6.6) are precisely the entries in row 2n− 1
of Pascal’s triangle. Since |ζ1 + ζ2|2 = 2 + ζ1ζ2 + ζ1ζ2, we see that
(6.8) cp+2(α1, α2) = 2cp(α1, α2) + cp(α1 − 1, α2 + 1) + cp(α1 + 1, α2 − 1),
where α1 + α2 = 1. If p = 2n, then the recursion (6.8) corresponds to the three
applications of Pascal’s formula need to go from row 2n− 1 to row 2n+ 1.

Returning to (6.5), we similarly expand |ζ1 + ζ2 + ζ3|2 to get the recursion
cp+2(α1, α2, α3) = 3cp(α1, α2, α3) + cp(α1 + 1, α2 − 1, α3) + cp(α1 + 1, α2, α3 − 1)

+ cp(α1 − 1, α2 + 1, α3) + cp(α1, α2 + 1, α3 − 1)
+ cp(α1 − 1, α2, α3 + 1) + cp(α1, α2 − 1, α3 + 1)

where α1 + α2 + α3 = 1. Specializing to the case p = 2n for positive integers n as
above, we observe that the nonzero Fourier coefficients in (6.5) correspond precisely
to the entries in the slice 2n− 1 of the hexagonal Pascal’s pyramid. We refer to the
On-Line Encyclopedia of Integer Sequences [1] and note that our numbering of the
slices differs by 1. The numbers in the hexagonal Pascal’s pyramid does not have a
known closed form similar to the binomials appearing in (6.7), so it is not clear how
to proceed to get a formula for general 1 ≤ p < ∞.

Further examples can be generated starting from any of the sets found in [5,
Sec. 3]. It is clear that for every n > 1 we could construct functions that are Hilbert
points in Hp(T4) for p = 2, 4, . . . , 2n and “most likely” for no other p in the range
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1 ≤ p ≤ ∞. We use quotation marks here to indicate that verifying rigorously the
latter assertion would be difficult if not impossible.

Beyond inner functions, we have so far only seen polynomial Hilbert points in
Hp(Td) for p ̸= 2, which reflects that our understanding of the general situation is
very limited. We do not know, for instance, whether there exists an unbounded
Hilbert point in Hp(Td) for some p ̸= 2. It remains also to be seen whether Hilbert
points in Hp(Td) may have an operator theoretic role to play when d ≥ 2, as they
do with such distinction when d = 1, in view of Beurling’s theorem.
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