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A B S T R A C T

This article is intended as a tutorial to assist engineers who want to develop and implement low-cost
underwater vehicle inertial navigation systems (INS) aided by time-delayed hydroacoustic position measure-
ments. A discrete-time unit quaternion error-state Kalman filter (ESKF) is used for sensor fusion. The ESKF
is implemented as a feedback algorithm with reset functionality. This is motivated by the need for long-
endurance autonomous underwater vehicles (AUVs). Proprietary navigation systems do not allow users to add
more measurement equations to the code if additional sensors are available. However, the open-source filter
architecture presented in the article provides for this. The article also aims to make in-house development of
strapdown INS accessible and affordable for vendors of low-cost AUV systems. Finally, a case study of an AUV
with a standard sensor suite is included to demonstrate the performance of the ESKF aided by time-delayed
position measurements.
. Introduction

The growth in low-cost uncrewed systems for commercial applica-
ions has created a demand for accurate inertial navigation systems
ith a small computational footprint using low-cost inertial sensors.
ypical applications are small uncrewed surface vehicles (USVs), au-
onomous underwater vehicles (AUVs), and fixed-wing uncrewed aerial
ehicles (UAVs). The literature on inertial navigation systems (INS) is
xtensive and hard to navigate in textbooks and technical articles. Engi-
eers who want to use an INS in their vehicle control systems often buy
xpensive proprietary systems with minimum interface capabilities and
ptions for adding third-party sensor systems. A survey of underwater
ehicle navigation and localization is found in Kinsey et al. (2006)
nd Paull et al. (2014).

The traditional Kalman filter algorithms for INS aided by global
avigation satellite systems (GNSS) are described in detail by Farrell
2008) and references therein. The interested reader is also recom-
ended to consult (Britting, 1971; Fossen, 2021; Grewal et al., 2001;
itterton & Weston, 1997). For underwater vehicles, a hydroacoustic
osition reference (HPR) system and a pressure meter can be used to
id (Stovner, 2018). In some cases, a Doppler velocity log (DVL) is
ncluded to improve the accuracy of the navigation solution (Jalving
t al., 2007; Morgado et al., 2011; Zhao et al., 2012). The attitude of the
UV can be represented using Euler angles or unit quaternions (Fossen,
021). The Euler angle error-state Kalman filter (ESKF) for underwater
ehicle navigation is described by Miller et al. (2010). If the attitude is
epresented using a unit quaternion, a multiplicative extended Kalman
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filter (MEKF) can estimate the orientation as described by Markley and
Crassidis (2014).

When designing an INS, there are two primary design philoso-
phies (Fossen, 2021):

• Gimbal-mounted systems where the IMU platform is isolated from
the vehicle’s rotations through a set of gimbals, thus maintaining
a fixed orientation in space. Four gimbals are used to avoid
gimbal-lock, which happens when the axis of two gimbals is
driven in the same direction, turning off their isolation capa-
bilities. Mechanized systems use angular rate sensors, feedback
control, and an actuated platform to keep the IMU in a fixed
orientation in space.

• Strapdown systems use an IMU strapped to the vehicle. Conse-
quently, the IMU will pick up the motions of the vehicle. This
implies that the strapdown INS equations must be integrated online
in a state estimator to accurately describe the IMUs and the
vehicle’s motions to separate these.

Gimbal-mounted systems are expensive compared to strapdown
INS, while strapdown systems require more computational power than
gimbal-mounted systems. Developing solid-state sensors based on mi-
croelectromechanical systems (MEMS) technology makes strapdown
INS very affordable. However, strapdown navigation systems can have
significant errors, especially in low-cost systems. This is usually handled
using feedback from accurate positioning systems to remove drift.
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This article focuses on designing a low-cost strapdown INS for AUVs
where drift is accurately compensated by the ESKF using hydroacoustic
position measurements and a depth sensor. Attitude is parametrized
using unit quaternions. The advantage of the unit quaternion to the
Euler angle representation is that the ±90 degree singularity in pitch is
avoided (Miller et al., 2010). In addition, unit quaternions have better
numerical properties and accuracy than the Euler angle representation
when used in an ESKF.

1.1. Strapdown INS aided by hydroacoustic position measurements

The position of an AUV can be determined by using hydroacoustic
networks providing range measurements from known locations. A long
baseline (LBL) network consists of several transducers mounted on the
sea bed, and the AUV carries one transducer. An alternative is a short
baseline (SBL) network where the array of transducers is mounted
under a surface vessel and an AUV carrying one transducer. Finally,
ultrashort baseline (USBL) systems where the transducers are fitted
inside a small apparatus mounted under the surface vessel can be used.
The hydroacoustic networks provide the user with range measurements
from known locations, which can be used to compute the AUV’s North-
East-Down (NED) positions. The geometry and number of transducers
highly impact the position accuracy (Vickery, 1998).

1.2. Loosely-coupled integration algorithms for hydroacoustic-aided inertial
navigation

The most straightforward HPR/INS integration scheme is loosely
coupled where the NED positions from a hydroacoustic reference sys-
tem are used as aiding through an ESKF (Fossen, 2021). This solution
is shown in Fig. 1 where the hydroacoustic reference system is referred
to as the low-rate aiding sensor, typically operating at 1 Hz. The
accelerometers and angular rate sensors (ARS) of the inertial mea-
surement unit (IMU) work at a high rate (typically 100 to 1000 Hz).
The acceleration measurements are integrated twice, and the ARS
measurements are integrated once to obtain positions and orientation,
respectively. However, the estimates will drift due to sensor biases,
misalignments, and temperature variations. The drift is compensated
by the ESKF, which is designed to estimate the accelerometer and ARS
biases.

This article describes how a loosely-coupled strapdown INS aided
by hydroacoustic position measurements can be implemented in an
embedded computer system onboard an AUV (see Fig. 4). Unfortu-
nately, the hydroacoustic position measurements will be delayed when
transmitted in water. Sound travels about 1400 to 1550 meters per
second in seawater. Consequently, for an AUV operating at a 1500 m
range, the position measurements will be delayed by approximately
one second. Hence, the ESKF must be designed to compensate for time
delays. An alternative that adds complexity is to apply a tightly-coupled
navigation filter where range measurements are used to aid the INS. In
this approach, the unknown water speed of each range measurement
must be included as additional states in the Kalman filter (Batista,
2015; Batista et al., 2010; Hegrenæs et al., 2009; Morgado et al., 2011;
Stovner, 2018; Stovner et al., 2016).

A comparative study of loosely- and tightly-coupled INS architec-
tures are presented by Falco et al. (2017) where it is concluded that
the tightly-coupled algorithms provide better estimates of position and
orientation than a loosely integrated system. However, this article’s
scope is design simplicity and low cost, which can be achieved using
a loosely-coupled ESKF with time-delay compensation. Focus is placed
on accelerometer and gyro bias estimation, essential for long-endurance
AUV applications.
2

1.3. Scope and contributions of the article

The article is written as a tutorial to assist engineers who want
to implement underwater hydroacoustic navigation algorithms in the
navigation computer onboard the vehicle. The goal is to make the
ESKF understandable to beginners and experts by concentrating on the
practical aspects of strapdown INS. Important contributions are:

• Development of a loosely-coupled ESKF for underwater vehicle
inertial navigation aided by slow hydroacoustic position measure-
ments. The fast measurements are used to propagate the INS. A
significant contribution is the accurate estimation of the specific
force and angular rate biases and the ESKF feedback modification
(reset) such that the INS can be used in long-endurance missions.

• The MEKF for attitude estimation (Markley & Crassidis, 2014)
is extended to a complete INS solution aided by time-delayed
positioning measurements. The unit quaternion implementation
removes the Euler angle singularity and is more numerically
efficient than the Euler angle representation.

• Matlab scripts for implementing the INS are made available
from the GitHub repository of the Marine Systems Simulator
(MSS) (Fossen & Perez, 2004). The m-files are also compatible
with the scientific programming language (GNU Octave, 2023),
which is free software under the terms of the GNU General Public
License.

• A case study shows the strapdown INS’s performance with and
without time-delayed position measurements when applied to a
small AUV.

1.4. Organization of the article

The rest of the article is organized as follows. Section 2 discusses
the inertial measurement equations and lever-arm compensation. In
Section 3, the strapdown INS equations are presented, while Section 4
derives the unit quaternion ESKF with reset functionality (feedback
filter). Section 5 discusses methods for time-delay estimation and a
modification of the ESKF for time-delayed hydroacoustic positioning
measurements. Finally, an AUV case study is included in Section 6,
while the concluding remarks are drawn in Section 7.

2. Inertial measurements and lever-arm compensation

For local navigation, two reference frames are introduced:

• {𝑏} Body-fixed frame with coordinate origin CO.
• {𝑛} North-East-Down (NED) tangent plane of the geoid acting as

an approximative inertial reference frame.

pplications using the reference frames {𝑏} and {𝑛} are also referred
o as ‘‘flat-Earth navigation’’. The NED position vector will be accurate
o a smaller geographical area, typically 10 km × 10 km. Let,

𝒑𝑛𝑛𝑏 Position of the CO w.r.t. {𝑛} expressed in {𝑛}
𝒗𝑛𝑛𝑏 Linear velocity of the CO w.r.t. {𝑛} expressed in {𝑛}
𝝎𝑏𝑛𝑏 Angular velocity of {𝑏} w.r.t. {𝑛} expressed in {𝑏}
𝜣𝑛𝑏 Euler angles from {𝑏} to {𝑛}
𝒒𝑛𝑏 Unit quaternion from {𝑏} to {𝑛}

n INS uses a computer, a three-axis accelerometer, and a three-axis
RS to continuously calculate by dead reckoning the position vector
𝑛
𝑛𝑏 = [𝑥𝑛, 𝑦𝑛, 𝑧𝑛]⊤, linear velocity vector 𝒗𝑛𝑛𝑏 = [�̇�𝑛, �̇�𝑛, �̇�𝑛]⊤ and attitude
unit quaternion 𝒒𝑛𝑏 and/or the roll, pitch, and yaw angles 𝜣𝑛𝑏 =
𝜙, 𝜃, 𝜓]⊤) of a moving vehicle without the need for external reference
ignals. The key sensory component is the IMU, which is composed of
he following sensors:

• Three-axis accelerometer
• Three-axis ARS
• Three-axis magnetometer
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Fig. 1. Loosely-coupled error-state feedback Kalman filter for INS. The strapdown navigation equations are propagated to obtain the estimate �̂�ins[𝑘]. The Kalman filter error-state
stimate 𝛿�̂�[𝑘] is fed back (reset mechanism) to ensure that �̂�ins[𝑘] → 𝒙[𝑘].
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he IMU is mounted onboard the vehicle in a body-fixed measurement
rame {𝑚I} with coordinate origin CMI located at

𝑏
𝑏𝑚I

= [𝑥𝑚I
, 𝑦𝑚I

, 𝑧𝑚I
]⊤ (1)

ith respect to the {𝑏} frame coordinate origin CO. It is assumed that
he axes of {𝑚I} and {𝑏} point in the same directions. Since the IMU
s rigidly attached to the body and a lightweight digital computer
ropagates the strapdown INS equations, this is called a strapdown
ystem. Thus the need for a mechanical-gimbal system is eliminated.

.1. Attitude rate sensors

The classic ARS is a gyro, a spinning wheel that utilizes conservation
f momentum to detect rotation. ARS based on MEMS dominate for
ow- and medium-cost applications (Barbour & Schmidt, 1998). For
trapdown applications, optical gyros such as ring-laser gyros (RLG)
nd fiber-optic gyros (FOG) have been used for some time. They are
lso expected to be the standard for high-accuracy strapdown INS for
he foreseeable future.

The IMU measurement equation for a three-axis ARS is
𝑏
imu = 𝝎𝑏𝑛𝑏 + 𝒃𝑏ars +𝒘𝑏

ars (2)

�̇�𝑏ars = 𝒘𝑏
𝑏, ars (3)

here the ARS bias vector is denoted as 𝒃𝑏ars. Additive zero-mean
aussian white noise terms 𝒘𝑏

ars and 𝒘𝑏
𝑏, ars are used to model the

easurement and bias noise, respectively. It is necessary to estimate
𝑏
ars in the Kalman filter since the ARS bias will grow over time. The
RS measurement (2) is only valid for low-speed applications such as
n AUV since it assumes that {𝑛} is nonrotating, that is 𝝎𝑏𝑖𝑏 ≈ 𝝎𝑏𝑛𝑏 where
he subscript {𝑖} denotes the inertial frame. For terrestrial navigation,
he Earth’s rotation will affect the results, and it is necessary to use an
nertial frame instead of the approximate inertial frame {𝑛}.

.2. Accelerometers

The IMU accelerometer is a device that measure three-axis specific
orce, i.e., non-gravitational force per unit mass

𝑏
imu = 𝑹⊤

𝑞(𝒒
𝑛
𝑏)(𝒂

𝑛
𝑛𝑚I

− 𝒈𝑛) + 𝒃𝑏acc +𝒘𝑏
acc (4)

�̇�𝑏acc = 𝒘𝑏
𝑏, acc (5)
 t

3

here 𝒈𝑛 = [0, 0, 𝑔]⊤ is the gravity vector, 𝑔 is the acceleration of
ravity, and 𝑹(𝒒𝑛𝑏) is the unit quaternion rotation matrix from {𝑏} to
𝑛} given by Fossen (2021)

𝑞(𝒒𝑛𝑏) =
⎡

⎢

⎢

⎣

1 − 2(𝜀22 + 𝜀
2
3) 2(𝜀1𝜀2 − 𝜀3𝜂) 2(𝜀1𝜀3 + 𝜀2𝜂)

2(𝜀1𝜀2 + 𝜀3𝜂) 1 − 2(𝜀21 + 𝜀
2
3) 2(𝜀2𝜀3 − 𝜀1𝜂)

2(𝜀1𝜀3 − 𝜀2𝜂) 2(𝜀2𝜀3 + 𝜀1𝜂) 1 − 2(𝜀21 + 𝜀
2
2)

⎤

⎥

⎥

⎦

(6)

he vector 𝒒𝑛𝑏 = [𝜂, 𝜀1, 𝜀2, 𝜀3]⊤ defines the unit quaternion. The ac-
elerometer bias is denoted as 𝒃𝑏acc, while 𝒘𝑏

acc and 𝒘𝑏
𝑏, acc are additive

aussian white measurement and bias noise, respectively.

.3. Magnetometer

The magnetic field strength can be measured by a three-axis mag-
etometer, usually included in the sensor suite of commercial available
MUs. Mathematically this can be expressed as
𝑏
imu = 𝑹⊤

𝑞(𝒒
𝑛
𝑏)𝒎

𝑛 +𝒘𝑏
mag (7)

here 𝒎𝑏
imu is the IMU measurement, 𝒎𝑛 is the strength and direction of

arth’s magnetic field expressed in {𝑛} and 𝒘𝑏
mag is additive zero-mean

hite noise expressed in {𝑏}.

.4. IMU lever-arm compensation

Instead of transforming the IMU measurements 𝒇 𝑏imu, 𝝎𝑏imu, and 𝒎𝑏
imu

o the coordinate origin CO, the state estimator is formulated in the
rigin CMI. Hence, the state estimates �̂�𝑏𝑛𝑚I

and �̂�𝑏𝑛𝑚I
(output of the

alman filter) must be transformed to the CO using the lever-arm vector
𝑏
𝑏𝑚𝐼

from the CO to the CMI according to

�̂�𝑏𝑛𝑏 = �̂�𝑏𝑛𝑚I
− �̂�𝑏𝑛𝑚I

× 𝒓𝑏𝑏𝑚𝐼 (8)

̂ 𝑏𝑛𝑏 = �̂�𝑏𝑛𝑚I
(9)

he motivation for this is that it is not straightforward to transform the
MU-specific force measurement 𝒇 𝑏imu to the CO and express the state
stimator in the CO. This is seen from
𝑏
𝑛𝑏 = 𝒇 𝑏𝑛𝑚I

+ �̇�𝑏𝑛𝑚I
× 𝒓𝑏𝑚I𝑏

+ 𝝎𝑏𝑛𝑚I
× (𝝎𝑏𝑛𝑚I

× 𝒓𝑏𝑚I𝑏
) (10)

here 𝒓𝑏𝑚I𝑏
= −𝒓𝑏𝑏𝑚I

. The angular acceleration vector �̇�𝑏
𝑛𝑚I

in (10)
requires that the angular rate 𝝎𝑏

𝑛𝑚I
= 𝝎𝑏

imu − 𝒃𝑏ars is numerical differ-
entiated. Since this signal is not available as a direct measurement, it
is recommended to use {𝑚I} as the reference frame in combination with

he transformations (8)–(9) when implementing the ESKF.
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3. Strapdown INS equations

Indirect filtering implies that the Kalman filter is formulated as an
ESKF. In this context, the INS state 𝒙ins and error state 𝛿𝒙 are related
to the true state 𝒙 by

𝒙 = 𝒙ins + 𝛿𝒙 (11)

The estimate of the state vector is denoted by �̂� = �̂�ins + 𝛿�̂�. The
ESKF in Section 4 computes the estimate 𝛿�̂�, while �̂�ins is obtained by
propagating a 16-state system known as the strapdown INS equations

̇̂𝒑𝑛ins = �̂�𝑛ins (12)

̇̂𝒗𝑛ins = 𝑹𝑞(�̂�ins)𝒇 𝑏ins + 𝒈𝑛 (13)
̇̂𝒃𝑏ins, acc = 𝟎 (14)

̇̂𝒒ins = 𝑻 𝑞(�̂�ins)𝝎𝑏ins (15)
̇̂𝒃𝑏ins, ars = 𝟎 (16)

where �̂�ins ≡ �̂�𝑛𝑏 = [�̂�, �̂�1, �̂�2, �̂�3]⊤ denote the unit quaternion. The INS
position �̂�𝑛ins and linear velocity �̂�𝑛ins of the origin CMI with respect to
{𝑛} are expressed in {𝑛}. The inertial sensor bias states are denoted
y �̂�𝑏ins, acc and �̂�𝑏ins, ars. Let 𝑺(𝝀) denote the skew-symmetric matrix
perator

(𝝀) = −𝑺⊤(𝝀) =
⎡

⎢

⎢

⎣

0 −𝜆3 𝜆2
𝜆3 0 −𝜆1
−𝜆2 𝜆1 0

⎤

⎥

⎥

⎦

(17)

here 𝝀 = [𝜆1, 𝜆2, 𝜆3]⊤. Hence, the cross product of two vectors 𝒂 and
satisfy 𝒂 × 𝒃 = 𝑺(𝒂)𝒃, and Fossen (2021)

𝑞(�̂�ins) =
1
2

[

−�̂�⊤

�̂�𝑰3 + 𝑺(�̂�)

]

(18)

where �̂� = [�̂�1, �̂�2, �̂�3]⊤. The inputs, 𝒇 𝑏ins and 𝝎𝑏ins to the strapdown INS
Eqs. (13) and (15), respectively, are bias-compensated IMU measure-
ments

𝒇 𝑏ins ∶= 𝒇 𝑏imu − �̂�𝑏acc ,ins (19)

𝝎𝑏ins ∶= 𝝎𝑏imu − �̂�𝑏ars, ins (20)

The biases are initialized as �̂�𝑏acc, ins[0]=𝟎 and �̂�𝑏ars, ins[0]=𝟎. However,
the ESKF will update the biases and remove the drift by feedback as
described in Section 4.

The discrete-time Eqs. (12)–(16) can be implemented using exact
discretization. Let

𝒂𝑛ins[𝑘] = 𝑹𝑞(�̂�ins[𝑘])𝒇 𝑏ins[𝑘] + 𝒈𝑛 (21)

denote the linear acceleration expressed in {𝑛}. Then (12), (13), and
(15) can be propagated using

�̂�𝑛ins[𝑘 + 1] = �̂�𝑛ins[𝑘] + ℎ�̂�
𝑛
ins[𝑘] +

1
2
ℎ2𝒂𝑛ins[𝑘] (22)

�̂�𝑛ins[𝑘 + 1] = �̂�𝑛ins[𝑘] + ℎ𝒂
𝑛
ins[𝑘] (23)

�̂�ins[𝑘 + 1] = e𝑻 𝜔(𝝎
𝑏
ins[𝑘])ℎ �̂�ins[𝑘] (24)

where ℎ is the sampling time. The matrix exponential in (24) is com-
puted by Sola (2016)

𝑻𝑤(𝝎𝑏ins)[𝑘] =
1
2

[

0 −𝝎𝑏ins[𝑘]
⊤

𝝎𝑏ins[𝑘] −𝑺(𝝎𝑏ins[𝑘])

]

(25)

Finally, the unit quaternion estimate must be normalized each time the
state is propagated. This is mathematically equivalent to

�̂�ins[𝑘 + 1] ←
�̂�ins[𝑘 + 1]

(26)

�̂�ins[𝑘 + 1]⊤�̂�ins[𝑘 + 1]

4

4. Error-state Kalman filter

This section describes the ESKF for estimating the error state 𝛿𝒙
in (11). It is well known that estimating the biases of inertial sensors
is non-trivial, particularly if the vehicle is at rest or moving with
little excitation in the roll, pitch, and yaw modes. In particular, the
accelerometer biases are hard to estimate for certain maneuvers. How-
ever, by monitoring the excitation level of the vehicle, a strategy could
be to estimate the biases during agile maneuvers to ensure the con-
vergence of biases. For this purpose, an online metric for observability
with a threshold value can be used to trigger bias estimation.

4.1. Three-parameter attitude dynamics

The MEKF is an ESKF where orientation is parametrized by a four-
dimensional unit quaternion. However, the attitude error is uniquely
defined by three parameters, which is the minimal representation for
the 3-DOF rotational motion of a rigid body (Crassidis et al., 2007;
Markley & Crassidis, 2014). It is well known that it is impossible
to represent attitude by three parameters globally. Three-parameter
representations, such as the Euler angles, all have singular points. It
is tempting to use the four-parameter unit quaternion in the ESKF
to avoid singular points. However, the unit constraint will make the
covariance matrix rank deficient. Another problem is the ESKF injection
term. The standard ESKF with the additive-error injection cannot create
an unbiased estimator with the unit quaternion in the estimated state,
as the additive-error injection would also violate the quaternion unit
constraint. To overcome these difficulties, the MEKF formalism is used.
The main idea of the MEKF is that the unit quaternion error

𝛿𝒒𝑛𝑏 =
[

𝛿𝜂
𝛿𝜺

]

(27)

is parametrized using a three-parameter attitude representation where
𝛿𝜂 and 𝛿𝜺 are the real and imaginary components of the unit quaternion
𝛿𝒒𝑛𝑏. There are many candidates for the representation of the unit
quaternion error. A frequently used representation is the Rodrigues
parameters (Gibbs vector)

𝛿𝒂𝑔 =
𝛿𝜺
𝛿𝜂
, 𝛿𝒒𝑛𝑏 =

1
√

1 + 𝛿𝒂⊤𝑔𝛿𝒂𝑔

[

1
𝛿𝒂𝑔

]

(28)

It is convenient to scale Gibbs vector by a factor 2 such that the
ESKF covariance estimates will be given in radians squared, which is
equivalent to angle errors using a first-order approximation. This is
mathematically equivalent to

𝛿𝒂 ∶= 2𝛿𝒂𝑔 , 𝛿𝒒𝑛𝑏 =
1

√

4 + 𝛿𝒂⊤𝛿𝒂

[

2
𝛿𝒂

]

(29)

The differential equation for 𝛿𝒂 is derived in Appendix A, where it is
shown that

𝛿�̇� = −1
2
𝑺(𝝎𝑏𝑛𝑏 + 𝝎𝑏ins)𝛿𝒂 + 𝝎𝑏𝑛𝑏 − 𝝎𝑏ins (30)

where 𝝎𝑏ins ∶= 𝝎𝑏imu − �̂�𝑏ars is the bias-compensated IMU measurement.
Since 𝛿𝝎𝑏𝑛𝑏 = 𝝎𝑏𝑛𝑏 − 𝝎𝑏ins, application of the IMU measurement Eq. (2)
gives

𝝎𝑏ins ∶= 𝝎𝑏imu − �̂�𝑏ars

= (𝝎𝑏𝑛𝑏 + 𝒃𝑏ars +𝒘𝑏
ars) − �̂�𝑏ars

= 𝝎𝑏𝑛𝑏 + 𝛿𝒃
𝑏
ars +𝒘𝑏

ars (31)

From this it follows that

𝛿�̇� = −1
2
𝑺(2𝝎𝑏ins + 𝛿𝝎

𝑏
𝑛𝑏)𝛿𝒂 − 𝛿𝒃𝑏ars −𝒘𝑏

ars (32)

Finally, neglecting the second-order term 𝑺(𝛿𝝎𝑏𝑛𝑏)𝛿𝒂 in (32) gives

𝛿�̇� ≈ −𝑺(𝝎𝑏ins)𝛿𝒂 − 𝛿𝒃𝑏ars −𝒘𝑏
ars (33)

𝛿�̇�𝑏ars = − 1
𝑇

𝛿𝒃𝑏ars +𝒘𝑏
𝑏, ars (34)
ars
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Note that the ARS bias is modeled as a first-order system with user-
specified time constant 𝑇ars, while 𝒘𝑏

𝑏, ars is Gaussian white noise. The
exponential convergence of 𝛿𝒃𝑏ars to zero is essential during sensor
failure (dead reckoning).

4.2. Translational motion error dynamics

Consider the position and velocity error states 𝛿𝒑𝑛𝑛𝑚I
= 𝒑𝑛𝑛𝑚I

− �̂�𝑛ins
nd 𝛿𝒗𝑛𝑛𝑚I

= 𝒗𝑛𝑛𝑚I
− �̂�𝑛ins. The vehicle‘s linear acceleration is obtained

rom (4), which yields
𝑛
𝑛𝑚I

= 𝑹𝑞(𝒒𝑛𝑏)(𝒇
𝑏
imu − �̂�𝑏acc − 𝛿𝒃

𝑏
acc −𝒘𝑏

acc) + 𝒈𝑛 (35)

Then the translational motion errors dynamics becomes

𝛿�̇�𝑛𝑛𝑚I
= 𝛿𝒗𝑛𝑛𝑚I

(36)

𝛿�̇�𝑛𝑛𝑚I
= 𝑹𝑞(𝒒𝑛𝑏)(𝒇

𝑏
imu − �̂�𝑏acc − 𝛿𝒃

𝑏
acc −𝒘𝑏

acc) + 𝒈𝑛

−
(

𝑹𝑞(�̂�𝑛𝑏)(𝒇
𝑏
imu − �̂�𝑏acc) + 𝒈𝑛

)

=
(

𝑹𝑞(𝒒𝑛𝑏) −𝑹𝑞(�̂�𝑛𝑏)
)

(𝒇 𝑏imu − �̂�𝑏acc)

−𝑹𝑞(𝒒𝑛𝑏)(𝛿𝒃
𝑏
acc +𝒘𝑏

acc)

≈ 𝑹𝑞(�̂�ins)𝑺(𝛿𝒂)(𝒇 𝑏imu − �̂�𝑏acc)

−𝑹𝑞(�̂�ins)
(

𝑰3 + 𝑺(𝛿𝒂)
)

(𝛿𝒃𝑏acc +𝒘𝑏
acc) (37)

where �̂�ins ≡ �̂�𝑛𝑏 and

𝑹𝑞(𝒒𝑛𝑏) = 𝑹𝑞(�̂�ins ⊗ 𝛿𝒒𝑛𝑏)

= 𝑹𝑞(�̂�ins)𝑹𝑞(𝛿𝒒𝑛𝑏)

≈ 𝑹𝑞(�̂�ins)
(

𝑰3 + 𝑺(𝛿𝒂)
)

(38)

have been applied (see Appendix A). The second-order cross-product
term 𝑺(𝛿𝒂)𝛿𝒃𝑏a𝑐𝑐 in (37) is neglected such that

𝛿�̇�𝑛𝑛𝑚I
= 𝛿𝒗𝑛𝑛𝑚I

(39)

𝛿�̇�𝑛𝑛𝑚I
≈−𝑹𝑞(�̂�ins)𝑺(𝒇 𝑏ins)𝛿𝒂

−𝑹𝑞(�̂�ins)(𝛿𝒃𝑏acc +𝒘𝑏
acc) (40)

𝛿�̇�𝑏acc = − 1
𝑇acc

𝛿𝒃𝑏acc +𝒘𝑏
𝑏, acc (41)

where 𝒇 𝑏ins ∶= 𝒇 𝑏imu − �̂�𝑏acc is the bias-compensated IMU measurement.
The bias is modeled as a first-order system (41) with time constant
𝑇acc and Gaussian white noise 𝒘𝑏

𝑏, acc as driving input. The exponential
onvergence of the bias 𝛿𝒃𝑏acc to zero is important during sensor failure
dead reckoning).

.3. Kalman filter state-space model

The goal is to estimate the discrete-time state vector 𝒙[𝑘] given by
11). The state estimate is denoted by

̂ [𝑘] = �̂�ins[𝑘] + 𝛿�̂�[𝑘] (42)

here the strapdown INS equations in Section 3 are used to com-
ute �̂�ins[𝑘]. The ESKF estimates the errors state vector 𝛿𝒙 using the
iscrete-time state-space model

𝒙[𝑘 + 1] = 𝑨𝑑 [𝑘]𝛿𝒙[𝑘] + 𝑬𝑑 [𝑘]𝒘[𝑘] (43)

𝛿𝒚[𝑘] = 𝑪𝑑 [𝑘]𝛿𝒙[𝑘] + 𝜺[𝑘] (44)

where 𝑨𝑑 [𝑘], 𝑪𝑑 [𝑘] and 𝑬𝑑 [𝑘] are the discrete-time system matrices,
and 𝒘[𝑘] and 𝜺[𝑘] are Gaussian white noise vectors. The ESKF equations
are given by Table 1. This is a special version of the ESKF known as a
feedback filter due to the reset function. The error-state model derived
in Sections 4.1 and 4.2 is a 15-states nonlinear system

𝛿�̇� = 𝒇 (𝛿𝒙,𝒘) (45)
5

𝛿𝒚 = 𝒉(𝛿𝒙) + 𝜺 (46)

with state and process noise vectors

𝛿𝒙 = [(𝛿𝒑𝑛𝑛𝑚I
)⊤, (𝛿𝒗𝑛𝑛𝑚I

)⊤, (𝛿𝒃𝑏acc)
⊤, 𝛿𝒂⊤, (𝛿𝒃𝑏ars)

⊤]⊤ (47)

= [(𝒘𝑏
acc)

⊤, (𝒘𝑏
𝑏, acc)

⊤, (𝒘𝑏
ars)

⊤, (𝒘𝑏
𝑏, ars)

⊤]⊤ (48)

ote that 𝛿𝒂 replaces the unit quaternion as an error state in (47).
onsequently, linearization of (33)–(34) and (39)–(41) about 𝛿𝒙[𝑘] = 𝟎
nd 𝒘[𝑘] = 𝟎, and application of Euler’s integration method gives

𝑨𝑑 [𝑘] ≈ 𝑰15 + ℎ
𝜕𝒇 (𝛿𝒙[𝑘],𝒘[𝑘])

𝜕𝛿𝒙[𝑘]
|

|

|

|𝛿𝒙[𝑘]=𝟎,𝒘[𝑘]=𝟎
(49)

𝑑 [𝑘] ≈ ℎ
𝜕𝒇 (𝛿𝒙[𝑘],𝒘[𝑘])

𝜕𝒘[𝑘]
|

|

|

|𝛿𝒙[𝑘]=𝟎,𝒘[𝑘]=𝟎
(50)

where ℎ is the sampling time and
𝜕𝒇 (𝛿𝒙[𝑘],𝒘[𝑘])

𝜕𝛿𝒙[𝑘]
|

|

|

|𝛿𝒙[𝑘]=𝟎,𝒘[𝑘]=𝟎
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎3×3 𝑰3 𝟎3×3 𝟎3×3 𝟎3×3
𝟎3×3𝟎3×3−𝑹𝑞(�̂�ins[𝑘])−𝑹𝑞(�̂�ins[𝑘])𝑺(𝒇 𝑏ins[𝑘]) 𝟎3×3
𝟎3×3𝟎3×3 − 1

𝑇acc
𝑰3 𝟎3×3 𝟎3×3

𝟎3×3𝟎3×3 𝟎3×3 −𝑺(𝝎𝑏ins[𝑘]) −𝑰3
𝟎3×3𝟎3×3 𝟎3×3 𝟎3×3 − 1

𝑇ars
𝑰3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

nd
𝜕𝒇 (𝛿𝒙[𝑘],𝒘[𝑘])

𝜕𝒘[𝑘]
|

|

|

|𝛿𝒙[𝑘]=𝟎,𝒘[𝑘]=𝟎
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎3×3 𝟎3×3 𝟎3×3 𝟎3×3
−𝑹𝑞(�̂�ins[𝑘]) 𝟎3×3 𝟎3×3 𝟎3×3

𝟎3×3 𝑰3 𝟎3×3 𝟎3×3
𝟎3×3 𝟎3×3 −𝑰3 𝟎3×3
𝟎3×3 𝟎3×3 𝟎3×3 𝑰3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(52)

nfortunately, the error state estimates 𝛿�̂�[𝑘] will grow too large for
ong-time applications. Hence, a reset technique (feedback filter) is
sed to regulate the state 𝛿�̂�[𝑘] to zero such that �̂�ins[𝑘] → �̂�[𝑘].

lgorithm 1 (Feedback filter). The reset for the ESKF is implemented in
wo steps:

Step 1. After every slow position measurement, the INS states are corrected
by setting the error-state vector 𝛿�̂�[𝑘] to zero. This is mathemati-
cally equivalent to

�̂�ins[𝑘] ← �̂�ins[𝑘] + 𝛿�̂�[𝑘] (53)

Step 2. ensures that the error-state vector will be zero before applying
fast IMU measurements. Therefore, the state predictor of the filter
becomes redundant since

𝛿�̂�−[𝑘 + 1] = 𝑨𝑑 [𝑘]𝟎 ≡ 𝟎 (54)

Consequently,

𝛿�̂�[𝑘] = 𝛿�̂�−[𝑘] +𝑲[𝑘]
(

𝛿𝒚[𝑘] − 𝑪𝑑 [𝑘]𝛿�̂�−[𝑘]
)

reset
= 𝑲[𝑘]

(

𝒚[𝑘] − 𝑪𝑑 [𝑘]�̂�ins[𝑘]
)

(55)

Note that 𝑨𝑑 [𝑘] is still necessary to compute since it is used in the
ESKF covariance prediction step; see Table 1.

.4. Measurement equations

The 𝑪𝑑 [𝑘] matrix in the measurement model (44) depends on the
ensor suit. For underwater vehicles, the primary sensors used for aided
NS are
𝛿𝒚ℎ[𝑘] - Hydroacoustic position vector
𝛿𝑦𝑝[𝑘] - Pressure meter
𝛿𝒚𝑣[𝑘] - DVL (optionally)
𝛿𝒚𝑔[𝑘] - Gravity reference vector

(56)
𝛿𝒚𝑚[𝑘] - Magnetometer reference vector
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The hydroacoustic position measurement relates to the error states as
follows

𝛿𝒚ℎ[𝑘] = (𝒑𝑛𝑛𝑚I
[𝑘] + 𝜺ℎ[𝑘]) − �̂�𝑛ins[𝑘]

= 𝛿𝒑𝑛𝑛𝑚I
[𝑘] + 𝜺ℎ[𝑘] (57)

where 𝜺ℎ[𝑘] is Gaussian white measurement noise. For AUVs, a pres-
sure meter can be used to improve the accuracy of the vertical position.
This is mathematically equivalent to

𝛿𝑦𝑝[𝑘] = [0, 0, 1] 𝛿𝒑𝑛𝑛𝑚I
[𝑘] + 𝜀𝑝[𝑘] (58)

where 𝜀𝑝[𝑘] is Gaussian white measurement noise. The DVL measure-
ment equation is

𝛿𝒚𝑣[𝑘] = 𝛿𝒗𝑛𝑛𝑚I
[𝑘] + 𝜀𝑣[𝑘] (59)

where 𝜺𝑣[𝑘] is Gaussian white measurement noise. For underwater
vehicles, the bias-compensated specific force vector 𝒇 𝑏

ins ∶= 𝒇 𝑏
imu − �̂�𝑏acc

can also be used to aid the INS. Let the reference vector 𝒗𝑛01 = [0, 0, 1]⊤

xpressed in {𝑛} denote the normalized gravity vector, pointing down-
ards. Then the normalized specific force and its estimate become

𝑏
1 = −1

𝑔
𝒇 𝑏ins, �̂�𝑏1 = 𝑹⊤

𝑞(�̂�
𝑛
𝑏)𝒗

𝑛
01 (60)

here 𝑔 is the acceleration of gravity. Since �̂�𝑛𝑏 ≡ �̂�ins, the measurement
quation for the gravity reference vector 𝒗𝑛01 takes the following form
see Appendix B)

𝛿𝒚𝑔[𝑘] = 𝑺(𝑹⊤
𝑞(�̂�ins[𝑘])𝒗𝑛01)𝛿𝒂[𝑘] + 𝜺𝑔[𝑘] (61)

where 𝜺𝑔[𝑘] is Gaussian white measurement noise. The IMU magne-
ometer can be treated as a second reference vector 𝒗𝑛02 = 𝒎𝑛∕‖𝒎𝑛

‖,
where 𝒎𝑛 is the strength and direction of Earth’s magnetic field ex-
pressed in {𝑛}. Hence,

𝑏
2 =

𝒎𝑏
imu

‖𝒎𝑛
‖

, �̂�𝑏2 = 𝑹⊤
𝑞(�̂�

𝑛
𝑏)𝒗

𝑛
02 (62)

Consequently, from Appendix B it follows that

𝛿𝒚𝑚[𝑘] = 𝑺(𝑹⊤
𝑞(�̂�ins[𝑘])𝒗𝑛02)𝛿𝒂[𝑘] + 𝜺𝑚[𝑘] (63)

where 𝜺𝑚[𝑘] is Gaussian white measurement noise. The resulting
measurement matrix (44) corresponding to the measurements (56)
becomes

𝑪𝑑 [𝑘] ≈
𝜕𝒉(𝛿𝒙[𝑘])
𝜕𝛿𝒙[𝑘]

|

|

|

|𝛿𝒙[𝑘]=𝟎

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑰3 𝟎3×3 𝟎3×3 𝟎3×3 𝟎3×3
[0, 0, 1] 𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3
𝟎3×3 𝑰3 𝟎3×3 𝟎3×3 𝟎3×3
𝟎3×3 𝟎3×3 𝟎3×3 𝑺(𝑹⊤

𝑞(�̂�ins[𝑘])𝒗𝑛01) 𝟎3×3
𝟎3×3 𝟎3×3 𝟎3×3 𝑺(𝑹⊤

𝑞(�̂�ins[𝑘])𝒗𝑛02) 𝟎3×3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(64)

and the Gaussian white noise measurement vector is

𝜺[𝑘] = [𝜺ℎ[𝑘]⊤, 𝜀𝑝[𝑘], 𝜺𝑣[𝑘]⊤, 𝜺𝑔[𝑘]⊤, 𝜺𝑚[𝑘]⊤]⊤ (65)

4.5. Programming code for computer implementations

The discrete-time ESKF is implemented as a while-loop where the
hydroacoustic position measurements are much slower than the IMU
measurements; see Fig. 2. The Matlab function ins.m (see Appendix C)
is called with all the 11 arguments to update the ESKF estimates when a
slow position measurement arrives. This activates the reset function of
the ESKF, and the INS states are updated accordingly. When there are
no position measurements, the function ins.m is called with 7 arguments

to propagate the INS states using only the fast IMU measurements.

6

Table 1
Discrete-time error-state Kalman filter (ESKF) with reset (feedback) modification.

Initial values 𝛿�̂�−[0] = 𝛿𝒙0
�̂� −

[0] = E[(𝛿𝒙[0] − 𝛿�̂�−[0])(𝛿𝒙[0] − 𝛿�̂�−[0])⊤] = 𝑷 0

ESKF gain 𝑲[𝑘] = �̂� −
[𝑘]𝑪⊤

𝑑 [𝑘](𝑪𝑑 [𝑘]�̂�
−
[𝑘]𝑪⊤

𝑑 [𝑘] +𝑹𝑑 [𝑘])−1

State corrector 𝛿�̂�[𝑘] = 𝛿�̂�−[𝑘] +𝑲[𝑘]
(

𝛿𝒚[𝑘] − 𝑪𝑑 [𝑘]𝛿�̂�
−[𝑘]

) reset
=

𝑲[𝑘]
(

𝒚[𝑘] − 𝑪𝑑 [𝑘]�̂�ins[𝑘]
)

Covariance corrector �̂� [𝑘] =
(

𝑰𝑛 −𝑲[𝑘]𝑪𝑑 [𝑘]
)

�̂� −
[𝑘]

(

𝑰𝑛 −𝑲[𝑘]𝑪𝑑 [𝑘]
)⊤ +

𝑲[𝑘]𝑹𝑑 [𝑘]𝑲⊤[𝑘]

State predictor 𝛿�̂�−[𝑘 + 1] = 𝑨𝑑 [𝑘] 𝛿�̂�[𝑘]
reset
= 𝟎

Covariance predictor 𝛿�̂� −
[𝑘 + 1] = 𝑨𝑑 [𝑘]�̂� [𝑘]𝑨⊤

𝑑 [𝑘] + 𝑬𝑑 [𝑘]𝑸𝑑 [𝑘]𝑬⊤
𝑑 [𝑘]

where
𝑸𝑑 [𝑘], 𝑹𝑑 [𝑘] Covariance matrices for the process and measurement noises.
�̂�−[𝑘], �̂� − [𝑘] A priori error state and covariance matrix estimates (before update).
�̂�[𝑘], �̂� [𝑘] A posteriori error state and covariance matrix estimates (after update).

Fig. 2. Flow chart showing the ESKF with reset mechanism. The fast IMU measure-
ments propagate the INS strapdown navigation equations, while the slow time-delayed
position measurements are used to correct the estimates.

5. Error-state Kalman filter with time-delay compensation

The feedback ESKF is shown in Fig. 1. The fast IMU measurements
propagate the strapdown INS equations, while the hydroacoustic posi-
tioning measurements represent the slow corrections used to remove
drift. The section describes the methods for time-delay estimation and
correction.

5.1. Time-delay estimation

The hydroacoustic position measurements can be significantly de-
layed when transmitted in water. Sound travels about 1400 to 1550
meters per second in seawater; see Fig. 3. Hence, the time delay can
be seconds for underwater vehicles operating at great depths. When
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Fig. 3. Speed of sound in water as a function of temperature. Courtesy to K. Krallis,
SV1XV, CC BY 1.0, https://creativecommons.org/licenses/by/1.0, Wikimedia Commons.

designing a loosely-coupled position-aided ESKF, it is necessary to
have an accurate estimate of the time delay. This can be obtained by
combing the non-delayed pressure measurement with the time-delayed
hydroacoustic position measurement. The classical method computes
the cross-correlation peak between the output and the input where
the output is the delayed version of the input (Hero et al., 1998).
A survey of methods for time-delay estimation, including time-delay
approximation model methods, explicit time-delay parameter methods,
area and moment methods, and higher-order statistics (HOS) methods,
are found in Björklund and Ljung (2003).

5.2. Time-delay compensation

The ESKF must be redesigned to compensate for time-delayed hy-
droacoustic positioning measurements. The alternative to a loosely-
coupled ESKF aided by position measurements is to apply a tightly-
coupled navigation filter where range measurements are used to aid the
INS (Batista, 2015; Batista et al., 2010; Hegrenæs et al., 2009; Morgado
et al., 2011; Stovner, 2018; Stovner et al., 2016). However, the scope
of this article is the loosely-coupled ESKF due to design simplicity.

Assume that the time-delay 𝐷 has been estimated using one of the
methods described in Section 5.1. Then there exist several methods for
filter time-delay compensation (Comellini et al., 2020):

Filter Recalculation (FR): The FR method goes back to the time
step when the delayed measurement is taken, incorporating the
measurement and recomputing the entire trajectory of the state
until the current step. Hence, the whole time history will be
optimal. The estimation requires two filters: a principal one,
which operates at a constant rate by processing fast measure-
ments, and a second one, which is activated any time a delayed,
slow measurement arrives.

Extrapolation methods: The Alexander (1991) and Larsen et al.
(1998) extrapolation methods compute a correction term, which
is added to the filter estimate when the delayed measurement
becomes available.

State augmentation: The classical approach (Gelb, 1974) is to aug-
ment the state vector with the delayed state to incorporate
the delayed measurement. This is only convenient for constant
and small time delays as the dimension of the state vector is

significantly increased. a

7

Fig. 4. The Remus 100 at the Applied Underwater Robotics Laboratory (AUR-Lab) at
NTNU.

The approach in this article is to extrapolate the delayed hydroa-
coustic position measurements 𝒚ℎ[𝑘−𝐷] to 𝒚ℎ[𝑘] where 𝐷 is the known
time delay. The propagated states will be based on the strapdown
INS Eqs. (12)–(16). The INS states and specific force measurements
are stored in a table from time 𝑡𝑘−𝐷 to 𝑡𝑘. Let ℎ denote the sampling
time, and 𝑁 = round(𝐷∕ℎ) is the total number of samples rounded
downwards. Hence, the bias-compensated specific force and angular ve-
locity vectors (fast measurements) can be computed for future samples
𝑖 = 1, 2,… , 𝑁 using

𝒇 𝑏ins[𝑖] = 𝒇 𝑏imu[𝑖] − �̂�𝑏ins, acc[𝑖] (66)

The linear acceleration vector expressed in {𝑛} is

𝒂𝑛ins[𝑖] = 𝑹𝑞(�̂�ins[𝑖])𝒇 𝑏ins[𝑖] + 𝒈𝑛 (67)

For each slow hydroacoustic measurement, initialize the state �̂�𝑛ℎ[0] =
𝒚ℎ[𝑘 − 𝐷]. Then 𝒚ℎ[𝑘 − 𝐷] can be extrapolated to 𝒚ℎ[𝑘] using the fast
acceleration measurements

�̂�𝑛ℎ[𝑖 + 1] = �̂�𝑛ℎ[𝑖] + ℎ�̂�
𝑛
ins[𝑖] +

1
2
ℎ2𝒂𝑛ins[𝑖] (68)

until �̂�ℎ[𝑘] = �̂�𝑛ℎ[𝑁 +1] is reached. Consequently, the ESKF in Section 4
can be run without time-delayed measurements by replacing the un-
known measurement 𝒚𝑛ℎ[𝑘] with the estimate �̂�𝑛ℎ[𝑘]. The price being paid
is that the INS states (�̂�ins, �̂�

𝑛
ins, �̂�

𝑏
ins, acc) and specific force measurement

𝒇 𝑏ins must be stored in a lookup table to execute (68) when a slow
measurement arrives. If the time delay is 1 s and the IMU runs at 100Hz,
the table will contain 13 × 100 entries. Even at 1000Hz, this will not
be a problem for a commercial low-cost embedded computer.

Note that white noise measurement noise will also be propagated
when applying (68) for extrapolation. The position and velocity terms
are white, while the acceleration term contains a squared white noise
signal resulting in a bias term. However, the bias term will be small
when propagating the state vector only 1 to 2 s into the future. If these
results are unsatisfactory, the FR or the state augmentation methods
can be implemented at the price of increased computational loads.

6. AUV case study

The case study aims to demonstrate the performance of the feedback
ESKF with and without time-delay compensation. The IMU is assumed
to be onboard a Remus 100 AUV, as shown in Fig. 4. The specific force
vector measurement is simulated using

𝒇 𝑏imu =
⎡

⎢

⎢

⎣

𝑎ℎ cos(𝜓)
𝑎ℎ sin(𝜓)

𝑎𝑣

⎤

⎥

⎥

⎦

−𝑹𝑞(𝒒𝑛𝑏)
⊤𝒈𝑛 + 𝒃𝑏acc +𝒘𝑏

acc (69)

here 𝒃𝑏acc = [0.05, 0.1,−0.1]⊤ is the unknown accelerometer bias vector
and 𝒘𝑏

acc is a vector of Gaussian white measurement noise. The acceler-
ation of gravity is chosen as 𝒈𝑛 = [0, 0, 9.82]⊤, while the horizontal and
vertical acceleration components are chosen as 𝑎ℎ = 0.1 and 𝑎𝑣 = 0.01,
espectively for time 𝑡 ≤ 30 s. Both acceleration components are zero
or time 𝑡 > 30 s. The ARS measurements vector is

𝑏
imu =

⎡

⎢

⎢

⎣

0.01 cos(0.2𝑡)
−0.005 sin(0.1𝑡)

0.02 sin(0.1𝑡)

⎤

⎥

⎥

⎦

+ 𝒃𝑏ars +𝒘𝑏
ars (70)

here 𝒃𝑏ars = [0.05, 0.1,−0.05]⊤ rad∕s is the unknown ARS bias vector
𝑏
nd 𝒘ars is vector of Gaussian white measurement noise. The gravity

https://creativecommons.org/licenses/by/1.0
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Fig. 5. Upper plot: North-East positions versus time. Lower plot: Down position (depth)
ersus time.

eference vector 𝒗𝑛01 = [0, 0, 1]⊤ is used in (60). The second ref-
erence vector 𝒗𝑛02 = 𝒎𝑛∕‖𝒎𝑛

‖ is computed for Trondheim, Norway
using the (NOAA, 2023) magnetic field calculator. This yields the
magnetic field vector 𝒎𝑛 = [13536.8, 1086.8, 50355.8]⊤ n T. Hence, the
time-varying IMU measurement vector becomes

𝒎𝑏
imu = 𝑹𝑞(𝒒𝑛𝑏)

⊤𝒎𝑛 +𝒘𝑏
mag (71)

where 𝒘𝑏
mag is vector of Gaussian white measurement noise. Finally,

the AUV state vector is obtained by exact numerical integration of the
differential equations

�̇�𝑛 = 𝒗𝑛 (72)

�̇�𝑛 = 𝑹𝑞(𝒒𝑛𝑏)𝒇
𝑏
imu + 𝒈𝑛 (73)

�̇�𝑛𝑏 = 𝑻 𝑞(𝒒𝑛𝑏)𝝎
𝑏
imu (74)

at 100 Hz. The fast IMU measurements are assumed to be available
at 100 Hz, while the hydroacoustic position measurement frequency is
chosen as 1 Hz. The time delay 𝐷 is assumed to be known, and it is
chosen as 1.0 s implying that 100 samples of INS data must be stored to
apply the predictor (68). The following cases are shown in the plots:

True measurements: The true position measurement 𝒚[𝑘] obtained
by numerical integration of (72)–(74) driven by the IMU mea-
surements 𝒇 𝑏imu[𝑘] and 𝝎𝑏imu[𝑘].

KF aided by predicted measurements: Aided INS using the predic-
ted position measurements �̂�[𝑘] defined by (68).

KF aided by delayed measurement: Aided INS using the time-dela-
yed position measurements 𝒚[𝑘 −𝐷] instead of 𝒚[𝑘].

Figs. 5–7 confirm that the estimated positions, linear velocities, and
Euler angles are close to their actual values for the strapdown INS when
aided by predicted position and time-delayed position measurements.
However, the difference in performance is clear when zooming in on
the plots. In Fig. 8, it is seen that position accuracy is improved by a
couple of meters when using the predicted values. This also improves
the accuracy of the attitude estimates, as shown in Fig. 9. Note that
attitude is estimated using unit quaternions, but it is straightforward to
map a unit quaternion to the roll-pitch-yaw Euler angles using (Fossen,
2021)

𝜙 = atan2
(

2(𝜀2𝜀3 + 𝜀1𝜂), 1 − 2(𝜀21 + 𝜀
2
2)
)

(75)

𝜃 = −asin
(

2(𝜀1𝜀3 − 𝜀2𝜂)
)

(76)
( 2 2 )
𝜓 = atan2 2(𝜀1𝜀2 + 𝜀3𝜂), 1 − 2(𝜀2 + 𝜀3) (77)

8

Fig. 6. North-East-Down positions, linear velocities, and acceleration biases versus
time.

Fig. 7. Euler angles (roll-pitch-yaw) and ARS biases versus time.

Finally, the case study also confirmed that the ESKF manages to es-
timate the acceleration biases (lower plot in Fig. 6) and ARS bi-
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Fig. 8. Position zoom showing the performance improvement of the INS aided by the
predicted positions to the 1 Hz delayed position measurements. The predicted values
(green) are close to the measurements (red cross). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Euler angle zoom showing the performance improvement of the INS aided
by the predicted positions to the 1 Hz delayed position measurements. The predicted
alues (green) are close to the true values (red). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

ses (lower plot in Fig. 7) with great accuracy. This is important for
ong-endurance underwater vehicle applications.

. Conclusions

A tutorial article for the design of inertial navigation systems (INS)
or underwater vehicles aided by time-delayed hydroacoustic posi-
ioning measurements has been presented. The state estimator was
mplemented using an error-state Kalman filter (ESKF) and a loosely-
oupled integration scheme where the North-East-Down (NED) posi-
ions from a hydroacoustic reference system were used to aid the INS.
he discrete-time unit quaternion ESKF, known as the multiplicative
xtended Kalman filter (MEKF), was implemented as a feedback al-
orithm with reset functionality. This is necessary for long-endurance
utonomous underwater vehicle (AUV) operations. Proprietary naviga-
ion systems do not allow the user to add more measurement equations
o the code if additional sensors are available for aided INS. However,
he open-source filter architecture presented in the article provides
or this. Hence, the presented ESKF is useful for vendors of low-cost
UV systems who aim to make in-house development of strapdown

NS accessible and affordable. Finally, a case study of an AUV with a
tandard sensor suite confirmed that ESKF could accurately estimate
he NED positions, linear velocities, and attitude when correcting the
ime-delayed position measurements. The ESKF also estimated the bi-
ses of the inertial measurements, which is essential for performance
mprovement and dead-reckoning operations.
9
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Appendix A. Attitude dynamics

The unit quaternion error 𝛿𝒒𝑛𝑏 satisfies (Sola, 2016)

𝒒𝑛𝑏 = �̂�ins ⊗ 𝛿𝒒𝑛𝑏 (78)

here �̂�ins ≡ �̂�𝑛𝑏. The unit quaternion differential equations are

̇ 𝑛𝑏 =
1
2
𝒒𝑛𝑏 ⊗

[

0
𝝎𝑏𝑛𝑏

]

= 1
2
�̂�ins ⊗ 𝛿𝒒𝑛𝑏 ⊗

[

0
𝝎𝑏𝑛𝑏

]

(79)

ifferentiating (78) gives

̇ 𝑛𝑏 = ̇̂𝒒ins ⊗ 𝛿𝒒𝑛𝑏 + �̂�ins ⊗ 𝛿�̇�𝑛𝑏

= 1
2
�̂�ins ⊗

[

0
𝝎𝑏ins

]

⊗ 𝛿𝒒𝑛𝑏 + �̂�ins ⊗ 𝛿�̇�𝑛𝑏 (80)

ombining (79) and (80), and at the same time isolating the term �̂�ins
ives

1
2
𝛿𝒒𝑛𝑏 ⊗

[

0
𝝎𝑏𝑛𝑏

]

= 1
2

[

0
𝝎𝑏ins

]

⊗ 𝛿𝒒𝑛𝑏 + 𝛿�̇�
𝑛
𝑏 (81)

eglecting second-order terms in (29) implies that

𝒒𝑛𝑏 =

[

1
1
2 𝛿𝒂

]

⟹ 𝛿�̇�𝑛𝑏 =

[

0
1
2 𝛿�̇�

]

(82)

Hence, (82) inserted into (81) gives
[

0
𝛿�̇�

]

= 𝛿𝒒𝑛𝑏 ⊗
[

0
𝝎𝑏𝑛𝑏

]

−
[

0
𝝎𝑏ins

]

⊗ 𝛿𝒒𝑛𝑏 (83)

The product of two unit quaternions (Hamiltonian product) is defined
as

𝒒1 ⊗ 𝒒2 =

[

𝜂𝑞1𝜂𝑞2 − 𝜺⊤𝑞1𝜺𝑞2
𝜂𝑞1𝜺𝑞2 + 𝜂𝑞2𝜺𝑞1 + 𝑺(𝜺𝑞1 )𝜺𝑞2

]

(84)

xpanding the second line in (83) gives

�̇� = 𝝎𝑏𝑛𝑏 +
1
2
𝑺(𝛿𝒂)𝝎𝑏𝑛𝑏 − 𝝎𝑏ins − 𝑺(𝝎𝑏ins)𝛿𝒒

𝑛
𝑏

= 𝝎𝑏𝑛𝑏 −
1
2
𝑺(𝝎𝑏𝑛𝑏)𝛿𝒂 − 𝝎𝑏ins −

1
2
𝑺(𝝎𝑏ins)𝛿𝒂

= −1
2
𝑺(𝝎𝑏𝑛𝑏 + 𝝎𝑏ins)𝛿𝒂 + 𝝎𝑏𝑛𝑏 − 𝝎𝑏ins (85)

where 𝑺(𝛿𝒂)𝝎𝑏𝑛𝑏 = −𝑺(𝝎𝑏𝑛𝑏)𝛿𝒂 and 𝛿𝒒𝑛𝑏 = (1∕2)𝛿𝒂 have been exploited.

Appendix B. Reference vector measurement equation

Assume that 𝒗𝑏𝑖 is a measured vector expressed in {𝑏}. Consequently,
the estimated vector is �̂�𝑏𝑖 = 𝑹⊤

𝑞(�̂�
𝑛
𝑏)𝒗

𝑛
0𝑖 where 𝒗𝑛0𝑖 is the reference vector.

From this, it follows that

𝛿𝒚𝑖 = (𝒗𝑏𝑖 + 𝜺𝑖) −𝑹⊤
𝑞(�̂�

𝑛
𝑏)𝒗

𝑛
0𝑖

= 𝑹⊤
𝑞(𝒒

𝑛
𝑏)𝒗

𝑛
0𝑖 + 𝜺𝑖 −𝑹⊤

𝑞(�̂�
𝑛
𝑏)𝒗

𝑛
0𝑖

≈
(

𝑰3 − 𝑺(𝛿𝒂)
)

𝑹⊤
𝑞(�̂�ins)𝒗𝑛0𝑖 −𝑹⊤

𝑞(�̂�ins)𝒗𝑛0𝑖 + 𝜺𝑖
= −𝑺(𝛿𝒂)𝑹⊤

𝑞(�̂�ins)𝒗𝑛0𝑖 + 𝜺𝑖

= 𝑺(𝑹⊤
𝑞(�̂�ins)𝒗𝑛0𝑖)𝛿𝒂 + 𝜺𝑖 (86)

where (38) and �̂�𝑛 = �̂� have been used on line three.
𝑏 ins
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Appendix C. Strapdown INS Matlab function

The flow chart for implementing the strapdown INS in a computer
language is shown in Fig. 2. The Matlab function ins.m calls the func-
tions Smtrx.m, Rquat.m, and Tquat.m, which can be downloaded from
the GitHub repository of the Marine Systems Simulator (MSS) (Fossen &
Perez, 2004). The Matlab scripts are also compatible with the scientific
programming language (GNU Octave, 2023), which is free software
under the terms of the GNU General Public License.
10
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