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Additivity Constrained Linearisation of Camera
Calibration Data

Casper F. Andersen, Ivar Farup, Jon Y. Hardeberg

Abstract—When characterising a digital camera spectrally or
colourimetrically, the camera response to a generally diffusely
reflecting colour chart is often employed. The recorded responses
to the light incident from each colour patch are typically not
linearly related to the power of the irradiance on the chart,
and the irradiance varies with position on the chart. This
necessitates a linearisation of the responses. We present a new
single image colour chart-based estimation method of responses,
that are linearly related to camera response values known as
ground truth. The method estimates the spatial geometry of the
irradiance incident on the chart attenuated by lens vignetting and
compensates individually for volumetric and per colour channel
non-linearities, including compensation for physical scene and
camera properties in a pipeline of successive signal transfor-
mations between the estimated linear and the given recorded
responses. The estimation is controlled by introducing a novel
Additivity Principle of linear responses, which is derived from
the spectral reflectances of the coloured surfaces on the colour
chart, observing that linear relations of the spectral reflectances
are equal to the relations of the corresponding linear responses.
Crucially, the additivity principle is not subject to metamerism.
The method is fundamentally solely reliant on a one-shot set
of one triplet of response values sampled from each patch of a
colour chart with known spectral reflectances, where rendition
level, gray scale, illuminant, camera sensor curves, irradiance
geometry, vignetting, moderate specular reflection, colour space,
colour correction, gamut correction and noise level are unknown.

Index Terms—Additivity principle, colour chart, camera cali-
bration, response linearisation, rendered responses, tone curves,
irradiance geometry, colour correction, specular reflection, noise
. . .

I. INTRODUCTION

KNOWLEDGE of linear colour channel values in digital
images pertaining to linear recorded sensor responses to

spectral stimuli in a physical scene is a prerequisite when esti-
mation of spectral components of or colourimetric operations
on said image are necessary [1]. By linear colour channel
values we refer to ideal (ground truth) responses that result
from integrating the per wavelength multiplied spectral power
distribution of the illuminant, the spectral reflectance of a sur-
face and the per channel spectral sensitivity of the camera. This
simulates a spatially uniform illumination irradiating spatially
arranged reflective surfaces recorded by a sensor, which is
defined exclusively by a set of spectral filters each pertaining
to a colour channel. They are thus exposure independently
related to the according colourimetric values. The ground truth
responses and their according colourimetric responses, i.e.
XYZ form the data sets needed in the colour characterisation

C. F. Andersen, I. Farup, and J. Y. Hardeberg are with the Norwegian
Colour and Visual Computing Laboratory, Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Gjøvik, Norway

of the camera. In the important cases, when calibrating [2],
colour image re-targeting [3] or colour characterizing [4], [5],
[6], [7] a digital recording device (e.g. a digital camera) based
on its responses to a set of spectrally calibrated surfaces on,
say a colour chart, such values are not necessarily available in
practice or given tentatively as raw responses in raw capable
cameras. The raw responses are often used in in-camera colour
characterisation as ground truth.

The recorded raw responses to the colour patches on the
chart need correction for elements in the optoelectronic cali-
bration function (OECF) [8] including dark noise, shot noise
and read-out noise, sensor non-linearities, lens glare and vi-
gnetting [9], [10], unknown effects of low-level camera signal
processing e.g. demosaicing etc. The according linearisation
corrections may be part of an in-camera signal processing
[10], in which vignetting and noise might be compensated
in the raw-responses. For our purposes, this correction is not
required. Furthermore, to truly become proportional to the
incident irradiant power on the chart, its spatial geometry,
which depends on the capture geometry and not the camera
itself, must also be known and compensated for. In cases
of spatial non-uniformity of the illumination and specular
reflections, linearised raw data do not suffice as ground truth
data. We note that vignetting like the spatial geometry of the
irradiant power of light attenuates (by shading) the camera
responses spatially [9]. They are thus controlling the spatial
irradiance on the sensor together. It is thus considered a part
of the irradiance throughout the method model. However, the
effect of vignetting may be considered small around the centre
of the image [11].

In cases where the images of calibration charts contain
rendered colour channel values, which typically are highly
non-linear, the linearisation is complicated further as the
data results from a pipeline of transformations of raw data,
including white balancing, tone mapping, colour correction,
gamut operations [12] [13], sharpening and quantisation.

In this paper, we introduce a novel approach to linearisation
of camera calibration data responses subsampled from a single
shot image of calibrated colour charts. Although not restricted
to, only one triplet of responses per patch is necessary. We
do not present an exhaustive comparison with other methods,
as the aim here is to present the additivity principle and
its implementation along with a regularisation method of
choice, which in itself is novel in conjunction with camera
linearisation.

It is assumed that the transformation from ground truth
responses, to camera responses at any stage of rendition,
consists of a successive series of smooth corrections that are
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at least C1, i.e., continuously differentiable (excluding gamut
wall cut-offs and patches with a conspicuously high level of
specular reflectance). The method estimates these individual
corrections, which, when subsequently applied inversely to
the camera responses, obtains estimated linear responses that
are linearly related to ground truth responses (i.e. related
within a matrix multiplication). Crucially, the estimation is
thus not subject to metamerism. The estimation incorporates
a regularisation according to the aforementioned smoothness,
and is not constrained to monotonicity. The method will
estimate gamut-clipped responses and responses to patches on
charts with an offset consisting of noise and a (small and
evenly distributed) specular reflection added to the ground
truth responses.

Section II provides background on existing methods for
camera characterisation, calibration, and linearisation. As there
is no other method, to our knowledge, that truly encompasses
the full inversion of the transformation pipeline from rendered
or raw data to linearly related ground truth calibration data,
given the limitations of available subsampled colour patch-
data that our method presumes, we will briefly present the
highlights of the various methods and discuss their potential.

The methods discussed below have goals that are not
necessarily pointed towards the linearisation of colour chart
responses exclusively as ours, but may encompass the estima-
tion of raw which, depending on the camera in question, may
or may not be fully linearised [10] in advance or pointed at a
linearisation of the camera responses to the full image plane
on the CCD, i.e. a radiometric calibration of said camera.
Methods that include inversion of rendered data typically
presume a parameterised rendering model of reduced degree
of freedom [14] to regularise the inversion. In these methods,
there is no mention of estimation of gamut edge cut-offs
(except [12]) as our method includes. In table I, an overview
of a selection of state-of-the-art methods is presented.

In Section III, we describe the fundamentals of colour
formation and rendition pertaining to digital camera recording,
with a specific view to camera calibration based on colour
charts. We further develop a model of camera response from
linear ground truth over raw to rendered colour channel values,
that will subsequently be the foundation for the linearisation
method presented. A graphic overview of said pipeline is given
in Figure 1.

In Section IV our linearisation method is defined. To enable
implementation, the presentation is comprehensive.

In Section V we present the measured and (semi-)synthetic
sets of data at our disposal that we use in the validation of the
method, involving the digital camera, colour and gray chart,
spectroradiometer and capture settings and environment.

Section VI outlines our typification of the conducted tests
and according origin of the response data, by referring to
specific rgb-types in accordance with measured, variations of
semisynthetic and ground truth data.

In Section VII the results of the application of the method
to the typified camera data are presented and discussed. We
will also compare our results with the classical method of
normalisation to a gray chart, when the image data permits.
We will provide a table of results pertaining to the real

camera samples from each individual recorded image along
with EXIF-data and according raw responses to the white
patch on the colour chart. These results may be compared
to the reported results from literature, which are (roughly)
outlined in table I.

Section VIII contains a conclusion.

II. BACKGROUND ON CAMERA LINEARISATION

State-of-the-art methods of calibration chart response lin-
earisation target different elements of the linearisation process
depending on whether the data is raw or rendered. In the
pipeline from rendered to ground truth, we choose to define
two distinct categories. First, the raw to rendered process con-
sisting of colour correction, gamut mapping and per channel
tone curve correction, which contains gamma and contrast
operations upon which a quantising JPEG compression is
applied. This process can contain proprietary transformation
[15]. Second, the raw to ground truth connection which
compensates for the fact that the raw data may not be perfectly
linearly related to the incident power of light due to lens
transmission (e.g. vignetting), noise and sensor non-linearities,
if the camera is not linearised otherwise before. The raw
data extracted from an image of spatially distributed colour
patches on a chart, may furthermore include spatial variation of
irradiance on the chart surface, glare, and spatially dependent
reflective properties like specular reflections originating from
incongruent camera recording and spectral measuring geome-
try of the patch surfaces.

We consider methods of camera linearisation with a view
to the specific task of colour chart linearisation. The methods
are based on a variety of input data ranging from full image
analysis at pixel level or subsampled and averaged areas
of interest, employment of a linear proxy as substitute for
raw, imagery with or without an embedded colour chart,
precalculated linearisation parameters, such as image or device
database support and one or multiple captures. Common for
these methods is the estimation of raw from rendered through
linearisation. With a few exceptions, this constitutes the main
difference to our method, as it further linearises the step from
raw to ground truth, but not raw itself and furthermore, relies
solely on per patch subsampled camera values.

A. Raw to Rendered

1) Based on a Single Image: In [16] pairs of raw and
rendered (srgb/JPEG) colour values are employed to estimate a
linear colour transformation of raw and a subsequent channel
tone mapping. This approach is not dependent on a colour
chart, just as the method in [17], where a colour edge analysis
from selected parts of a single image reveals the radiometric
pipeline consisting of tone mappings and a linear colour
transformation matrix.

Using an image of a colour chart and assuming mono-
tonicity of the relationship between ranked camera responses
and their equivalent raw responses, the methods in [18] and
[19] can estimate the irradiance intensity across the surface of
the colour chart which attenuates the raw responses and the
tone mapping of the intensity corrected and linearly colour



ANDERSEN et al.: ADDITIVITY CONSTRAINED LINEARISATION OF CAMERA CALIBRATION DATA 3

transformed rendered data. The methods require pairs of raw
and rendered data, but raw can be approximated by a choice
of a canonical (or proxy) colour space [19] or in-camera
linearised raw data from another camera recording of the same
scene [14].

2) Based on Multiple Exposures: Methods relying on
analysing a multiplicity of exposures of a scene with a view to
constructing a high dynamic range image through radiometric
calibration are presented in [11] and [20]. These methods are
not reliant on a colour chart. In [8] an imaging model for
radiometric calibration enables conversion from rendered srgb
images to the corresponding raw values. In [21] the Opto-
electric Conversion Function (OECF) curves in each channel
are estimated by mapping camera response as a function of
incident irradiant power to linearize the responses.

3) Based on Gray scale: Instead of gathering multiple
images of the same scene, tone mapping can be estimated by
analysis of a series of known in-image neutral patches ranging
from high to low reflectance [22].

4) Based on Mixed Methods: In [23] an optimisation frame-
work based on a rank minimisation technique is presented by
which full images, edge analysis and multiple exposures can
be used to estimate the radiometric non-linearity in the colour
channels of the camera pertaining to the raw data.

An alternative to using a gray-scale when linearising chan-
nel responses is to gather multiple in-register images of the
same scene at varying and known exposures [11], [20].

Based on exploring information from a prior statistical
analysis of three-dimensional reflective properties in a mul-
titude of images in photo collections pertaining to a camera
sensor, radiometric calibration methods are proposed in [14],
[24]. This analysis is based on a large body of prior image
information and a full image analysis and aims at raw recovery.

A comprehensive variation of methods employed by digital
camera manufacturers of handling noise, exposure, flat-field
compensation, sensor non-linearities, rendering techniques etc.
are assembled and analysed in [10], [25]. Here, it is pro-
posed to gather a structured set of information from each
manufacturer in order to standardize spectral and radiometric
calibration of cameras. When raw data is not available, a
canonical (proxy) colour space is introduced in [18], [26] and
[27] that serves as basis for illuminant and sensor independent
colour space as an approximate set of ground truth raw re-
sponses, that enables estimation of the radiometric operations
imposed to reach a set of rendered data. In [28] an alternating
least squares method estimates the irradiance geometry over
a known colour chart by pairing the rendered with the proxy
data. It assumes that tone curves are linear. Including unknown
tone-curves, this method is close to [29] where an image
corrective irradiance geometry and a von Kries type illuminant
colour correction on the image colour values are found in an
iterative linear least squares optimisation.

B. Raw or Rendered to Ground Truth

In [1], a radiation intensity-based linearisation technique
is presented, where ground truth is estimated. The method
assumes a spatially even irradiance over the centre of the

capture area in which 14 neutral patches are located on top
of a regular colour chart, similar to the method presented in
[22].

In [26] a method to estimate the ground truth responses to a
specific in-image colour chart is based on a database of images
of the colour chart, captured under a variety of illuminants.

To compensate for the very likely non-uniform irradiance
over a chart surface, without prior knowledge of the magnitude
of the variation of the irradiation in each response sample, a
method of colour characterisation that takes advantage of the
intensity independent chromaticity values is presented in [30].
Specular reflection is not considered in these methods.
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Fig. 1. The radiometric pipeline and connection with ground truth, within
which our method lumps in per channel 1D corrections: specular and noise
offsets, glare, tone mapping and gamma, in a 2D spatial correction: illuminant
irradiance geometry (non-uniformity) and vignetting and in an all channels
3D correction: gamut mapping and nonlinear part of colour correction. The
wavelength is λ, pixel position (x) and sampling in patch (p). Sampling is
depicted by a double square box and registers averaged channel values from
a small area on (p) with an according image position at the centre of the
sampling area. Rectangular boxes are data, rounded boxes are processing,
and thick rectangular boxes are input data to the method. Note, Raw(p)
can substitute JPEG(p) if the estimation is based on raw instead of JPEG
patch sampled image data. The spectral functions form the linear ground
truth camera responses in Equation 1. The dashed boxes signify elements
to estimate in (p) and surround each of the three lumped corrections and
Lintran{...} which signifies a linear transformation of {...}. GT(p) signifies
ground truth method evaluation responses in (p), derived from sampling of
GT(x).
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C. X to Ground Truth

In the situation we address here, there is no requirement for
access to the raw or proxy camera recording and no additional
in-register image of a gray chart. It is not a priori known
whether the data is raw or rendered, or somewhere between.
There is neither access to auxiliary camera-specific informa-
tion nor a full image of the chart. The scene environment
surrounding the chart, i.e., illuminant, specular reflectance
and viewing geometry etc., is likewise not known. We will
briefly refer to the unknown stage to which the data has been
transformed in the rendition process as X.

The spectral reflectances and their according geometrical
positions on the chart are assumed to be known. Furthermore,
there is only access to one shot of the target and only one set of
RGB values for each patch gathered from a small area around
the position where the known spectral reflectances originate.
Within practical limits, the spectral measuring geometry of
the colour chart need not be identical to the camera record-
ing geometry. It is assumed that the prevailing illumination
across the entire chart surface consists of a single spectral
composition, and that the spatial irradiation geometry does
not contain abrupt variations in intensity. It is further assumed,
that any specular component in the reflection from the patches
is distributed over the chart patches without abrupt spatial
variation (for example a few scattered patches with high
specular reflection, as on the X-Rite Colour Checker DC).
Should such patches exist, they are omitted from the analysis.
The estimation of their linear response can be conducted
afterwards using the results pertaining to the chosen patches.
For this data setting, no method is found in the literature.

III. FORMULATION OF COLOUR FORMATION

Here we introduce the mathematical description and the
nomenclature for digital camera colour formation. The termi-
nology will be used for describing the proposed method.

A. Colour Formation

Following the model of colour formation, the ground truth
sensor responses from each colour channel ρ for a given
set of K sensors (K = 3 in contemporary camera systems)
with spectral sensitivities σ(λ) =

[
σ1(λ), σ2(λ), ..., σK(λ)

]
,

to a spectral reflectance from a surface ς(λ) under a spatially
constant spectral illumination ε(λ) where λ is wavelength in
the wavelength interval ω, are given by:

ρ =

∫
ω

ε(λ)ς(λ)σ(λ)dλ (1)

and ω = {λ ∈ R|400 ≤ λ ≤ 700} measured in [nm]. Ob-
taining ς(λ) on the surface of a patch, generally means spec-
trophotometric or spectroradiometric measurement averaged
over a suitably small but finite sample area on each patch.
The method theoretically requires, that ω should encompass
all wavelengths, in which the camera responds to any of
the chosen colour patches given the illuminant. This may
include extensions of the interval, beyond the visible range.
For convenience, we have assumed that the camera responses
beyond ω are negligible. The measurement areas of the patches

are spatially positioned in a N × 2 matrix of coordinates
x = [x, y], where N is the number of patches on the colour
chart. Even if patch surfaces on colour charts are held as
uniformly reflecting and diffuse as possible, a small amount
of specular reflection is expected. The amount of specular
reflection from a patch depends largely on angular subtense
between the measuring device and the light relative to the
target.

We define e(λ) the spectral specular reflection from a patch
surface area in the measuring direction. Here, we simplify the
spectral distribution of the specular reflection to assume that
it is equal to the perfect reflecting diffuser and thus giving the
specular component the colour of the illuminant [31].

In real situations, the irradiance intensity very likely varies
over the entire chart area. This leaves the actual recorded cam-
era responses ρraw in a patch dependent on spatial position on
the chart. The power of the irradiation incident on the sample
area of each individual patch is, however, as an approximation,
considered to be varying linearly over its spatial area when it
is suitably small. So, in the geometrical centre position of the
sample area, the averaged responses from that area, defines
the responses from said patch.

Furthermore, in a raw camera signal there will be a noise
contribution, mainly composed of dark noise, readout noise
and image dependent shot noise. We designate noise ν and
consider readout noise as a part of dark noise. In an nth

patch on the chart, denoted with subscript (...)n and spatially
positioned in xn = [xn, yn], the raw camera response ρraw

n
under the spatially dependent irradiation (including vignetting)
over the chart εn(λ) to the equivalently spatially dependent
camera response ρ

n
, becomes:

ρraw
n

=

∫
ω

εn(λ)(ςn(λ) + wne(λ))σ(λ)dλ+ νn (2)

where wn ≪ 1 for n ∈ N where N = {1, 2, ..., N} scales the
contribution of specular reflection down to a realistically small
amount considering the mostly diffuse reflection properties of
colour charts. Let wnen be the according camera response to
the specular reflection:

en =

∫
ω

εn(λ)e(λ)σ(λ)dλ (3)

and define an irradiance function in patch n:

In(ρn) =

∫
ω

εn(λ)ςn(λ)σ(λ)dλ (4)

then in patch n, when considering noise:

ρraw
n

= In(ρn + wnen + νsn) + νdn (5)

where In(ν
s
n) is the shot noise contribution attenuated by the

power of the irradiance and νdn is the dark noise contribution.
We assume that shot noise is Poission distributed and thus
largely will average out in the patch sampling. Dark and read-
out noise is also assumed to be Poission distributed and thus
will average to a constant offset throughout the image and so
in the sampled patch values. Otherwise, noise modelling is not
specifically part of the method definition. We also assume that
quantization errors are dampened in the sampling procedure.
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TABLE I
THE ROWS PERTAIN TO A SUBSET OF THE REFERENCED METHODS THAT ROUGHLY RELIES ON ONE SHOT ONLY AND OFFERS A PARTIAL COMPARISON
WITH OUR METHOD. IN THE COLUMNS, THE REQUIRED INPUT-DATA, THE OUTPUT-DATA AND THE CHARACTERISTICS OF THE MAIN LINEARISATION

ELEMENTS ARE SPECIFIED IN THE THIRD ROW. THESE PERTAIN TO EACH METHOD LISTED IN THE ROWS BELOW. THE QUANTITATIVE COMPARISON IN
THE LAST COLUMN MUST TAKE THE DIFFERENCES OF THE METHOD CHARACTERISTICS INTO ACCOUNT. THE X’S DENOTE THAT A METHOD

CHARACTERISTIC IS INCLUDED. F/I: FULL IMAGE ANALYSIS. CC: ONLY COLOUR CHART VALUE-BASED ANALYSIS. GC: GRAY-CHART-BASED
IRRADIANCE COMPENSATION. VIGN: ONLY VIGNETTING CORRECTION. RMSE RESULTS (RELATIVE TO BIT-DEPTH): PERTAIN TO THE RECOVERY GOAL

FROM EITHER INPUT RAW OR INPUT JPEG VALUES, I.E. RAW/JPEG. ∆E: MEANS ACCURACY REPORTED IN CIELAB-VALUES. (JPEG): MEANS
RMSE-VALUES MEASURED IN JPEG VALUES. TRAINING: IMPLIES AUXILIARY DATA INPUT LIKE CAMERA-SPECIFIC DATABASE SUPPORT. (+): GAMUT

EDGE CUT-OFFS RE-ESTIMATED.

Method Comparison Overview of relying on one shot images for calibration
output input input input input output output output RMSE

Method Recovery Goal Proxy RGB SpecR Training Gamut Tone Irr raw/JPEG
AP ρM (+) - CC CC - X X X 0.015/0.023
[8] ρraw X F/I - X X X - -/0.01
[9] ρ(V ign) - F/I - X - X Vign 0.06(JPEG)
[12] ρraw(+) - F/I - X X X - -/0.03
[13] ρraw X F/I - - X X - 0.04(JPEG)
[14] ρraw X F/I - X X X - -/0.01
[16] ρraw - F/I - X X X - -/0.003
[17] ρraw - F/I - - - X - -/0.012
[18] ρraw X F/I - - X X X -/0.013
[25] ρprx - F/I - - X X GC -/0.016
[28] ρraw X CC CC - - - X ∆E

Here it is implied that the specular reflection wne is atten-
uated by the irradiant geometry in the raw responses. When
formalizing the spatially dependent specular contribution to
the response in the nth patch by:

Wn(ρn) = ρ
n
+ wnen (6)

and inserting Equation (6) in Equation (5), then the camera
raw response is fully described by:

ρraw
n

= In(Wn(ρn) + νsn) + νdn (7)

B. From X to Ground Truth

The transformation from camera raw responses ρraw
n

to
rendered camera responses, rn in the nth patch, typically
involves five operations.

1) Initially, attempts to correct the raw data for dark noise
are made. This typically involves pixel-by-pixel subtracting
a raw image recorded with the lens cap on or an in-camera
procedure in which non-irradiated pixels on the CCD serve as
dark noise reference values [10].

2) A correction for the irradiance geometry I(...) is con-
ducted, if the geometry (i.e. including vignetting) is not
a-priori known to be spatially even. This is often achieved by
pixel-by-pixel normalising the responses in the chart image
with the according pixel-by-pixel responses from a spatially
perfectly registered image of a neutral surface.

Now, the raw responses can be considered to be linearised
and ready to be used in a colour characterisation of the camera.

Here, however, we omit these preliminary signal corrections.
They are precluded by the goal of the method, as there are no
in-register gray chart, in-camera linearisation steps nor lens-
cap on images at hand.

3) The colour correction C(...) is applied to the raw
data. Very often this colour correction is linear and therefore
based on a 3 by 3 matrix Mcc, relating raw responses to
colourimetric values, but can also be non-linear.

Depending on illuminant changes and knowledge of it, a
chromatic adaptation matrix Mca may be applied in the colour
correction operation. The resulting estimated colourimetric
values are then linearly transformed by a 3 by 3 matrix Mcs

to an output working colour space, such as defined in the srgb.
4) It is quite likely that colour correction and colour space

transformations will yield out-of-gamut values. In that case,
a gamut mapping operation G(...) on these values is applied,
which in its simplest implementation per channel cuts channel
values to the gamut edge. More advanced methods compress
the colour values in the vicinity of the out-of-gamut colour
in order to prevent sharp colour changes [32]. Assuming that
G(...) leaves in-gamut colours untouched (i.e. only moves out-
of-gamut colour values to the gamut edge), it is observed that:

G(r)M = G(rM) (8)

or simply:
G(r) = r (9)

where r is an arbitrary 1×K colour vector unaltered by G(...).
In practice, if G(...) incorporates gamut compression involving
in-gamut colours, it is difficult to separate the individual
contributions of the colour and the gamut correction when
analysing their combined transformation of a signal. It is,
however, fair to assume that colour channel values on the
gamut edge are results of gamut clipping. Thus, easily iden-
tifiable, they can be omitted from the input data. Their linear
responses can however ultimately be estimated based on the
estimated linear responses of the included in-gamut colours.
This estimation may be challenged when the compression is
image-dependent, in which case there may be no unique intra-
image nor inter-image relation between colour values before
and after gamut compression [33]. We will not consider this
possibility, and thus fuse G(C(...)) into C(...).
5) Denoting a vector value in a kth channel (...)k, where

k ∈ K where K = {1, 2, ...,K}, which corresponds to a
column value, a non-linear per channel transformation Γk(...)
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is applied to optimize the colour values to the available bit-
depth. A contrast enhancement correction curve is considered
to be incorporated in Γk(...).

The pipeline of signal modifications and corrective steps
from ground truth camera responses to rendered values can
be summarised as follows: Set M = Mcc×Mca×Mcs. The
rendered colour value rkn of the kth channel in the nth patch
becomes:

rkn = Γk
n(G

k
n(Cn(ρ

raw
n

M))) (10)

which, with insertion of Equation (7), leads to:

rkn = Γk
n(G

k
n(Cn((In(Wn(ρn) + νsn) + νdn)M))) (11)

For readability, we introduce the matrix M as superscript
(...)M when, say a 1×K vector v, is linearly transformed by
the matrix M, so that:

vM = vM (12)

Employing Equations (9) and (12) on Equation (11) then, for
all K channels:

rn = Γn(Cn(In(ρ
M
n

+ wne
M + νs,Mn ) + νd,Mn )) (13)

The goal is, within a linear transformation M, to estimate
the ground truth camera responses to the diffuse reflection,
illuminated by a spatially uniform light, from each patch.
These values will pair exposure independently to the according
colourimetric values referred to the actual illuminant used in
a camera characterisation. That means solving Equation (13)
by estimating ρ

n
given rn and ςn for n ∈ N, while com-

pensating for noise and specular reflection and simultaneously
to discover estimates of the transformation functions Γn(...),
Cn(...) and In(...), each of which identifies with an according
transformation function type. Since each transformation func-
tion has operated on the colour channel values resulting from
the preceding function, the solution can be found by individual
function inversion in accordance with the reverse order of their
successive application in Equation (13).

IV. METHOD

Our linearisation method relies on establishing near-additive
relations between the spectral reflection functions on each
of the patches on the target. These relations are explored
to define an additivity principle in which a set of N linear
spectral estimations of each of the N colour patches, found
by the additive combination of the remaining N − 1 colour
patches, define the linear relation between the equivalent linear
camera responses. The key is that these additive combinations
are the same in spectral and camera response space, when
the responses are linearly related to the reflectance from
the target. The basic idea is to observe that the additivity
principle is broken if the camera responses are non-linear. The
method estimates the per channel multiplicative transformation
functions of the non-linear responses necessary to linearise
them, at which point the additivity principle is fulfilled. The
additivity principle crucially makes the estimation of ground
truth independent of any canonical set of responses, as it is
invariant to metamerism.

A. Multiplicative Correction for non-Linearity

Define three real analytic functions f, g, h : Rp \ 0→ R \ 0
where p is a positive integer. If p = 1 and temporarily give a
variable ϑ as an argument, where ϑ ∈ R \ 0 then define:

f(ϑ)g(ϑ) = h(ϑ) (14)

In Equation (14) f(ϑ) works as a relative function of ϑ, which
maps g(ϑ) to the value of h(ϑ). Multiplying h(ϑ) with f−1(ϑ)
will map h(ϑ) back to g(ϑ). Introducing an arbitrary constant
α ∈ R \ 0, Equation (14) can be rearranged to:

αf(ϑ)g(ϑ) ∼= h(ϑ) (15)

Irrespectively of the value of α, αg(ϑ)f(ϑ) is linearly re-
lated to h(ϑ) (i.e. the linear relation being invariant to scaling).
f(ϑ) is thus known as a linearisation function pertaining to
g(ϑ) and h(ϑ).

Generalising to vector notation, Equation (14) can be ex-
panded to:

f(ϑ) ◦ g(ϑ) = h(ϑ) (16)

where ◦ denotes the Hadamard matrix product [34], by which,
matrices of the same dimension are multiplied entry-wise.
This multiplicative correction procedure is used in [35] in
conjunction with per channel non-linearity mapping and a
monotonicity constraint.

B. Modelling the Transformation Functions

Employing entry-wise multiplication and the mapping de-
fined in Equation (14) or entry-wise addition, the transforma-
tion functions in Equation (13) can be formulated as mapping
functions using linearisation functions. Let a 1×K vector ϑn

denote image colour channel values in an nth patch in position
xn, at any state of rendition.

The per channel tone curve correction is defined as a
function of a channel value, which attenuates the said channel
value, so that:

Γ : ϑk
n 7→ Γk

nϑ
k
n, where: Γk

n = Γk(ϑk
n) (17)

The geometrical shape of the spatial irradiance on the chart
surface is defined as a function of the spatial position of a
patch on the chart, which, according to the irradiant power
incident on the chart, attenuates the reflection, so that:

I : ϑk
n 7→ Inϑ

k
n, where: In = I(xn) (18)

The geometrical shape of the spatial distribution of the spec-
ular reflection on the chart surface is defined as a function of
spatial position on the chart, which, in an nth patch on the
chart, adds to the reflection, so that:

W : ϑk
n 7→ ϑk

n +W k
n , where: W k

n = W k(xn) (19)

In each nth patch, the colour correction function is defined as
a function of spatial position with coordinates ϑn in the K
dimensional colour channel space, which maps each channel
value, so that:

C : ϑk
n 7→ Ck

nϑ
k
n, where: Ck

n = Ck(ϑn) (20)
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Upon discretisation, each function operates as a multiplicative
or additive set of values, each of which are arranged in a look-
up table of dimension N ×K.

Applying the multiplicative vector notation in Equation (16)
to Equation (13) we obtain:

rn = Γn ◦ Cn ◦ (In ◦ (ρMn + wne
M
n + νs,Mn ) + νd,M ) (21)

or in full N ×K matrix form:

r = Γ ◦ C ◦ (I ◦ (ρM +W + νs,M ) + νd,M ), (22)

where W = [w,w, ..., w]◦eM , I = [I, I, ..., I] and the N×K
matrix eM = [eM ; eM ; ...; eM ].

C. Additive Relations of Spectral Reflectances

Observing that any spectral reflectance function in a given
nth patch ςn(λ), where n ∈ N can be estimated to ς̂n(λ) by a
linear combination of the remaining N−1 spectral reflectance
functions on the chart by:

ς̂n(λ) =

n−1∑
i=1

aiςi(λ) +

N∑
i=n+1

aiςi(λ) (23)

where the weighting factors ai ∈ R for i ∈ N \ n. The
accuracy of this estimation can be expressed in terms of a
spectral additivity residual εn(λ) so that:

ς̂n(λ) = ςn(λ) + εn(λ) (24)

The Euclidean distance ∥εn(λ)∥2 between the real and the
estimated spectral reflectance functions of the approximation
in each of these N equations depends on the dimensionality of
the set of N spectral reflectances on the chart. It is noted that
εn(λ) is solely dependent on the measured chart spectra and
thus subject to spectral measuring error. It is further assumed
that the spectra are generally broadband and overlapping.

D. Chart-Specific Additivity Matrix

Upon discretisation, each of the N spectral reflectances
ςn(λ) is expressed as a dim × 1 vector ςn, where dim = 31
(based on available tabulated data) and subsequently by fol-
lowing Equation (23), an N × N Chart-Specific Additivity
Matrix A in which:

A = [a1, a2, ..., aN ]T (25)

can be defined, where an is a N × 1 vector for n ∈ N. The
values in A are found by solving:

a⋆n = (ST
nSn)

−1ST
n ςn (26)

where Sn = [ς1, ς2, ..., ςn−1, ςn+1, ..., ςN ] is an dim×(N−1)
matrix and a⋆n is an N − 1 vector, so that:

an = [(a⋆n)1, (a
⋆
n)2, . . . , (a

⋆
n)n−1,−1, (a⋆n)n, . . . , (a⋆n)N−1]

T

A is non-singular, though poorly conditioned and requires reg-
ularisation in conjunction with inversion. Following Equation
24, a vector of the spectral additivity residuals ε(λ) for the N

reflectance spectra pertaining to our colour chart can be de-
fined as Eλ = [ε1(λ); ε2(λ); ...; εN (λ)]. Discounting measure-
ment error in ς(λ), this error is small1, as RMSE(ATEλ) ≃
10−7. Note, that once calculated, A replaces the reflectances
as method input for subsequent chart-specific captures.

E. Capture-Specific Additivity

Observing, by referring to Equation (5), that a set of linear
combinations in spectral space is the same in linear colour
space [4], it is readily seen that Equation (23) is equivalent
to:

ρ
n
=

n−1∑
i=1

aiρi +

N∑
i=n+1

aiρi − δn, (27)

where δkn is the camera response to the spectral additivity
residual in the kth channel of the nth patch. Then for i ∈ N\n
and k ∈ K:

aTi ρ
k = −δki (28)

or generalising Equation (28) by channel:

AT ρk = −δk (29)

For normalised ground truth responses
RMSE(AT ρ/ρ

max
)) ≃ 10−10 pertaining to our camera

sensors. The rmse-value is not likely to vary much for other
sensors and illuminants.

Henceforth, multiplying an additivity matrix with a set of
responses, as in Equation (29) will be known as applying the
Additivity Principle (AP).

The additivity principle is invariant to linear transformations
of responses. Multiplying a 3× 3 matrix M on both sides of
Equation (29), yields:

AT ρM = −δM (30)

Considering that, except for a simple scaling, δ ≃ δM,
and using Equation (12), it is readily seen that applying the
additivity matrix is quasi-invariant to linear transformation:

AT ρ ≃ AT ρM (31)

F. Solution

We wish to calculate the values of ρM in Equation (22). By
inversion, where each of the N × K elements of the trans-
formation functions have been inverted entry-wise (Γ−1)kn =
(Γk

n)
−1, (C−1)kn = (Ck

n)
−1 and (I−1)kn = (Ikn)

−1, we obtain:

ρM = r ◦ Γ−1 ◦ C−1 ◦ I−1 −W − νs,M − νd,M ◦ I−1 (32)

Assembling the unknown noise in ν = νs,M −νd,M ◦ I−1 and
concomitantly combining it with W, a total Offset denoted as
a N ×K matrix O is defined, where:

O = νs,M + νd,M ◦ I−1 +W (33)

From Equation (33) it can be seen that O is dependent on the
variation of the geometry of the irradiance. We assume that
the effect is negligible, as the dark noise is typically relatively
small compared to the total camera response and that, based

1Pertaining to X-rite ColourChecker SG chart excluding gray rim patches
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on experience with our data, the irradiance variation in our
data sets Imax/Imin < 1.2, and thus attenuates the dark noise
with less than 20%. It should be noted that vignetting can
be a considerable contributor to I and is reported to be up
to 279% [10]. This is however over the full field of view.
Our samples originate from about 20% of the full field of
view belonging to the centre of the images. To investigate
the impact of vignetting, we have included a test of severe
vignetting simulated on ground truth and real raw in Section
VII.B.

Equation (32) simplifies to:

ρM = r ◦ (Γ−1 ◦ C−1 ◦ I−1)−O (34)

or equivalently:

r = (ρM +O) ◦ (Γ−1 ◦ C−1 ◦ I−1)−1 (35)

Using the multiplicative linearisation function definition in
Equation (16) we seek the linearisation function L, given in a
N ×K matrix, such that the rendered camera response r can
be mapped to the ground truth linear responses ρM by:

ρM = r ◦ L (36)

Combining Equation (36) with Equation (35) yields:

ρM = (ρM +O) ◦ (Γ−1 ◦ C−1 ◦ I−1)
−1 ◦ L (37)

which demonstrates the impact of O on the estimation of L
and consequently of Γ−1,C−1 and I−1 as:

L = ρM/(ρM +O) ◦ (Γ−1 ◦ C−1 ◦ I−1) (38)

In an ideal case when noise and specular reflection are absent
from r denoted r(ideal), then O becomes N × K matrix of
zeros and Equation (32) reduces to:

ρM = r(ideal) ◦ Γ−1 ◦ C−1 ◦ I−1 (39)

which would make an according multiplicative linearisation
function L(ideal) in Equation (38) consist exclusively of three
multiplicative transformations:

L(ideal) = Γ−1 ◦ C−1 ◦ I−1 (40)

G. Solving by Additivity Principle

To control the linearisation of r by L to estimate ρM and
L in Equation (36) we employ the Additivity Principle by:

AT (r ◦ L) = −δM (41)

and use Equation (36) to obtain ρM . In Equation (41) the
right side −δM is unknown, constant and generally considered
negligible. We therefore seek a modified estimate of L̂ as
solution to:

AT (r ◦ L̂) = 0 (42)

thereby obtaining an estimated linear camera response;

ρ̂M = r ◦ L̂ (43)

To get an optimal solution, we propose to use constrained
linear least squares minimisation and thus for a kth channel,
by minimising:

ϕk = min
L̂

k
(∥AT (rk ◦ L̂

k
)∥2) s.t.

N∑
i=1

L̂k
i = N (44)

so that, for n ∈ N and k ∈ K, we avoid the obvious zero
solution by conveniently constraining L̂ in order for L̂k

n = 1
when rk is linear. We obtain estimated values of the ground
truth linear camera responses except for a linear K × K
transformation ρ̂M,k, where:

ρ̂M,k = rk ◦ L̂
k

(45)

H. Regularisation

As AT and thus likely AT rk are poorly conditioned, a
Tikhonov type regularisation is included in Equation (44). We
choose to employ regularisation of high physical justification,
by utilising the assumption of smoothness (discounting high-
frequency noise) in the mapping from ρ to r described
in Equation (22) of functions Γ(...), C(...) and I(...) and
consequently of their inverted counterparts Γ−1(...), C−1(...)
and I−1(...).

In accordance with Equations (17), (18) and (20), the
linearisation function L is dependent on camera response ρ
and spatial position x. We suggest measuring smoothness in
terms of second order derivatives of each linearisation function
within Lk.

To facilitate regularisation pertaining to each channel k
and each linearisation function type, we need to split Lk

into separate multiplicative linearisation contributions, each of
which corresponds to the domain of Γ(...), C(...), I(...). The
gamma-function is smooth as a function of ranked response,
neither of the remaining two functions are. A constant noise
contribution to the irradiance function is smooth as a function
of spatial position of the patches, neither of the remaining
two are. However, the irradiance function is multiplicative
and cannot compensate for an additive contribution from the
specular component and vice versa, the specular function is
additive and cannot compensate for a multiplicative contri-
bution from the irradiance function. It is possible, though,
that a constant average noise contribution added to all patches
can be compensated in the gamma function. The volumetric
colour correction function is not smooth as a function of
either spatial position or (typically) capable of compensating
for an additive contribution. Colour correction functions (e.g.
polynomials) are typically mapping as a function of added
weighted higher order mixtures of the raw responses, each of
which (except one) lacks one of the channel responses. This
means that the colour correction function is not necessarily
smooth as a function of ranked responses. It is expected that a
small amount of cross-talk between the estimated linearisation
functions exist. This is caused by quantisation, local intervals
of the domains in which similar mapping between functions
exist, noise and the built-in inaccuracy within the additivity
principle given by −δ in Equation (29).
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With a view to successively solving for each individual
linearisation function in Equation (44), we split L̂

k
into:

L̂
k
= L̂

k

Γ ◦ L̂
k

Ĉ ◦ L̂
k

I , (46)

where L̂
k

Γ operates on the colour channels (1D), L̂
k

I in the
spatial domain of the colour patches (2D), and L̂

k

Ĉ in the colour
space (3D).

The second order derivatives of L̂k
(...) cannot be computed

by the standard finite difference method since they are all de-
fined on irregular grids: digital camera responses, spatial patch
coordinates, and colour coordinates, respectively. Instead, we
propose to use the graph Laplacian. For the 2D and 3D cases,
the Delaunay triangulation is used, and for the 1D case, the
graph is simply a linked list of the ordered camera responses.
Define subscript t to indicate the type of either transformation
function Γ(...), C(...) or I(...). Let Gt denote the resulting
graph, and DGt

and AGt
denote the corresponding degree and

adjacency matrices of Gt, respectively. For the regularisation
of L̂k

t , the graph Laplacian matrix, Lk
Gt

= Ak
Gt
− Dk

Gt
is

used to define a substitute for the finite difference Laplacian
as follows:

∆2,k
t L̂k

t = Lk
Gt

L̂k
t (47)

As an alternative to the simple graph Laplacian matrix, dis-
tance weighting can be introduced. This is achieved by using
the weighted versions of the degree and adjacency matrices,
where the inverse distances between the vertices are used as
weights. Experimentally, we found that distance weighting
improved the results for the 1D and 3D regularisation, but not
for 2D, since the colour charts with a regular spatial layout
were used. For the 1D graph Laplacian Lk

GΓ
, better results

were obtained when the rows were normalized to have 2 on
the diagonal in analogy with the classical Laplacian operator.
For the boundary values of the 1D graph Laplacian, the values
of the nearest internal node were used in place of the values
obtained directly from the graph Laplacian.

With these definitions of the regularisers, Equations (44)
and (45) can be reformulated to:

ϕk
t (λ) = min

L̂
k

t

(∥AT (rk ◦ L̂
k

t )∥2 + λk
t

2∥∆2,k
t L̂

k

t ∥2)

s.t.
N∑
i=1

L̂k
t,i = N,

(48)

where λk
t is the Tikhonov regularisation parameter pertaining

to t and k. The regularisation parameters are optimized heuris-
tically. The magnitudes of the parameters decide the weight
of the regularisations, i.e. allowance for curvature. Changes
in their relative sizes can redistribute smoothness between the
functions.

It was found that the amount of smoothness in a series
of tests encompassing simulated curved irradiance functions
with a shading ration of up to around 3 (to approximate heavy
vignetting [10]), linear and second order colour correction and
tone curves approximating a channel gamma value of up to
2, it was adequately covered with simply setting λΓ = 10,
λI = 5 and λC = 0.1 irrespective of channel k.

In theory, it would be possible to optimize also for the λt

parameters. However, this would require a cost function that
would have to balance the relative importance and the absolute
size of the smoothness in the three respective domains, so
it would essentially just shift the task of selecting the λt

parameters to a new domain and allow more or less curvature
in the estimated functions. We have kept said λ values fixed
throughout.

In [16] an example of a similar λ value is hardcoded based
on experience.

I. Resulting Algorithm
Ultimately,

ρ̂M,k = rk ◦ L̂
k

Γ ◦ L̂
k

C ◦ L̂
k

I (49)

We solve Equation (48) in an iterative scheme, whereby, after
it iterations, Equation (48) becomes equivalent to:

ϕ
k,(it)
t (λk

t

2
) =

min
L̂

k,(it)

t

(∥AT (r̂k,(it) ◦ L̂
k,(it)

t )∥2 + λk
t

2∥∆2,k,(it)
t L̂

k,(it)

t ∥2);

r̂
k,(it)
t,i = rkt,i

it−1∏
ι=1

L̂
k,(ι)
t,i , ∆

2,k,(it)
t,i = ∆2,k

t,i

it−1∏
ι=1

L̂
k,(ι)
t,i

s.t.
N∑
i=1

L̂
k,(ι)
t,i = N for i = [1 : N ]

(50)
in which case Equation (49) can be written:

ρ̂
M,k,(it)
i = rki

(it)∏
ι=1

L̂
k,(ι)
Γ,i L̂

k,(ι)
C,i L̂

k,(ι)
I,i (51)

The iterative scheme employed to solve Equation (51), is, in
accordance with successive reverse order inversion as men-
tioned in connection with Equation (13), arranged as shown
in Algorithm 1.

The iterative scheme is solved by successive inversion of
each function type in Equation (13), as each type has operated
on the colour channel values resulting from the preceding
function. Out-of-gamut colour channel values (i.e. clipped
colour values) are excluded in the linearisation, as they will
not be linearly related to the in-gamut colour channel values
upon multiplicative linearisation. As it is assumed that only a
few colour patches are out-of-gamut, this omission will have
an insignificant impact on the accuracy of the linearisation.

J. Estimating Omitted Colours
When the estimation of the linearisation functions is com-

plete, it is however possible to estimate the linear values
pertaining to the omitted colour channel values by employing
the additivity principle. The additivity matrix is used based on
all the spectral reflections of the colour patches with non-
clipped colour values along with their linear estimates. In
Equation (27), N − 1 patches will refer to the number of in-
gamut estimated linear colour values and the nth colour values
to the colour values of an out-of-gamut patch. The effect of
this estimation is most visible in Figure 5, where mainly colour
values in the blue channel have been clipped to zero.
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Algorithm 1 Linearisation by Additivity
1: function LINEARIZE(r, tol)
2: it← 0 ▷ initialise
3: ρ̂(it) ← r

4: L̂
k,(0)

Γ ← [1, 1, ..., 1]T

5: L̂
k,(0)

C ← [1, 1, ..., 1]T

6: L̂
k,(0)

I ← [1, 1, ..., 1]T

7: compute ∆2,k
Γ , ∆2,k

C and ∆2,k
I

8: repeat ▷ iterate until convergence
9: it← it+ 1

10: estimate L̂
k,(it)

Γ by Equations (50) and (51)

11: ρ̂k,(it−
2
3 ) ← ρ̂k,(it−1) ◦ L̂

k,(it)

Γ

12: L̂
k,(it)

Γ ← L̂
k,(it−1)

Γ ◦ L̂
k,(it)

Γ

13: estimate L̂
k,(it)

C by Equations (50) and (51)

14: ρ̂k,(it−
1
3 ) ← ρ̂k,(it−

2
3 ) ◦ L̂

k,(it)

C

15: L̂
k,(it)

C ← L̂
k,(it−1)

C ◦ L̂
k,(it)

C

16: estimate L̂
k,(it)

I by Equations (50) and (51)

17: ρ̂k,(it) ← ρ̂k,(it−
1
3 ) ◦ L̂

k,(it)

I

18: L̂
k,(it)

I ← L̂
k,(it−1)

I ◦ L̂
k,(it)

I

19: until ∥ρ̂k,(it) − ρ̂k,(it−1)∥2 ≤ tol

20: return ρ̂k,(it), L̂
k,(it)

Γ , L̂
k,(it)

C , L̂
k,(it)

I

21: end function

K. Computing Overhead

The convergence criteria tolerance tol defined in Algorithm
1 is set to tol = 10−7, resulting in occasionally up to around
700 iterations or up to around 20 seconds, are registered using
a contemporary Windows Intel i7-11850H PC/Matlab setup.
Optimisation of the code and size of tol against estimation
accuracy can probably lower these values.

L. Evaluating Linearity

As the estimated linear responses are only linearly related
to ground truth, then in order to compare the data, an op-
timized linear transformation from estimate to ground truth
is performed for all estimates. We include a definition of the
estimation error of the linear colour values ∆RGB based on
Equation (43):

∆RGBi,j = ∥(ρ̂M − r ◦ L̂)i,j∥ (52)

where:

M = (ρ̂T ρ̂)−1ρ̂T ρ s.t. ρw = ρ̂wM (53)

and (..)w denotes values of the white patch. The estimated
values are thus mapped to ground truth. The values of ρ̂M

are located on the ordinate axis in Figures 4, 5, 6 and 7.
If a perfectly linear relation exists between ground truth and
estimate, then ∆RGB = 0 and paired values of ρ and ρ̂M

will be on the grey line. The maximum channel value of ρ̂M

in the white patch is scaled to coordinates (1, 1).

V. MEASURED AND SYNTHETIC DATA

To validate the method, we have at our disposal a set of
simulated and real camera data. We have tested the method
on real camera data, both raw and rendered, gathered in-doors
and out-doors under various combinations of natural light (sun
and sky), LED, WLED, fluorescent, and tungsten. We have
further simulated camera data at rendering levels X using
these measured lights combined with either noiseless ground
truth or the according raw data. See entries on the abscissa in
Figures 13 and 14.

A X-rite Digital ColourChecker SG (SG) chart (After 2014
production) was used as colour chart. A supplemental X-
rite ColourChecker, White balance (GC) gray chart has been
included in some of the images for irradiance geometry
reference. The SG chart has been measured with the spectro-
radiometer (SpectraScan® Spectroradiometer PR-655) in an
integrating sphere including the barium tile in order to enable
calculation of the spectral reflection function in each colour
patch.2 The gray patches on the outer rim of the colour chart
are omitted from the analysis to remove any dependence in the
irradiance geometry estimation. To avoid spatial variation of
the patch recordings of the SG, the spectroradiometer was held
in a fixed position and the chart was moved patch by patch to
the same measuring position. To tentatively test the robustness
of the method, the SG chart spectral reflectance functions
are also given as a set of functions found on the internet
with no further data attached except that the data pertains
to the chart production after 2014 (X-Rite does not provide
the spectral data, but refers to data measured by third party).
The data has probably been measured by a GretagMacbeth
spectrophotometer. We refer to the data as factory, indicating
that the measurement acts as a stand-in for a real set of X-Rite
factory endorsed measurements.

The results are validated by using raw and rendered data
from the camera of both the colour chart (and a gray chart in
perfect registration for irradiance geometry comparison) and a
barium sulphate tile within each image where a spectroradio-
metric measurement of the illuminant pertaining to each shot
is performed. The colour chart and the gray chart are shot with
the same exposure and in immediate order. The ground truth
model of the camera has been established by using a camera
(Nikon D50 DSLR) with known measured (National Physical
Laboratory, UK) spectral sensor functions.

In each in-situ camera recording, the SG was placed within
a distance of 2 meters from the camera and centred in the
image. The chart was either laying flat or tilted to face the
lens. Adjacent to the chart, the tile was placed. No special care
was taken to expose the images optimally. Some are seriously
under-exposed with only about 10 % of the available bit depth.
See per channel raw responses to the white patch in columns
6, 7, and 8 in Table II.

A spectroradiometer was placed directly beside the camera
to record the light from the tile, when the image of the
chart and tile was recorded by the camera. An according in-

2The measurements were performed in the context of the project
‘Rank based spectral estimation’, EP/J005223/1, https://gow.epsrc.ukri.org/
NGBOViewGrant.aspx?GrantRef=EP/J005223/1.
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register image of the GC was taken immediately after in order
to enable a gray-chart irradiation-geometry normalisation for
comparison. The measured ground truth camera sensor func-
tions enable a calculation of Equation (1) of the ground truth
camera responses for each measured spectral distribution of
the illumination.

Captures of the GC in geometric register to measure the
relative irradiance incident on the colour chart and a simulta-
neous spectroradiometric measurement of an adjacent barium
sulphate tile is provided for each capture in order to obtain
the spectral composition of the prevailing illuminant power
distribution. Camera raw data3 as well as the corresponding
rendered data (JPEG/srgb) are supplied by the camera.

Fig. 2. Estimated tone curves from JPEG r vs linearised estimated srgb r̂linsrgb.
Here rsrgb = r.

A standalone Matlab-program was developed to load the
images and align the picking areas of averaged colour values
pertaining to each coloured surface to the patch centres com-
prising 20 by 20 pixels. The areas were chosen to avoid edge
variations, i.e. JPEG artefacts in the colour values between the
coloured pigments and the black frames covering about 20 %
patch area.

VI. TESTS PERFORMED ON DATA

We examine a set of real, synthetic and combined data.
Among the many combinations, the synthetic data is created
following the structure of Equation 10. Referring to each set as
a rgb-type we choose rgb-types covering real data: ρraw and
JPEG r. For rgb-types covering synthetic data Equation: ρ,
I ◦ ρ, srgb(ρ) and srgb(I ◦ ρ) and for rgb-types covering raw
with synthetic mapping: srgb(ρraw), srgb(I ◦ ρraw) and rr,
where the re-engineered JPEG values (i.e. a simplified version
of the actual JPEG values) rr are found by using Equation 54:

rr = srgb((srgb−1(r))Mr) (54)

3The raw data is developed externally in dcraw, using control parameters
-v -r 1 1 1 1 -M -W -o 0 -q 3 -4 -T, which excludes gain, colour-matrixing,
white-balancing and dark image subtraction (https://www.dechifro.org/dcraw/)

Fig. 3. Estimated tone curves from synthetic rsrgb = srgb(ρ) compared to
linearised estimated srgb r̂linsrgb.

Fig. 4. Estimated ρ̂M from rendered input JPEG r vs ρ.

where Mr denotes a K×K matrix found by min
Mr

∥ρrawMr−

srgb−1(r)∥. The estimated ground truth from matrixed canoni-
cal data is represented by ρ̂Mxyz referred to the actual illuminant,
for XYZ-based proxy comparison found by Equation 53
substituting ρ̂ with XYZ.

Per pixel normalisation of raw by the gray chart is defined
by: ρgc = ρraw ◦ (Igc)−1.

The results for the estimated linearisation functions are
shown in the figures, pertaining to linear responses, tone curves
and irradiance functions. The estimated perceptual differences
between LAB-values pertaining to ρ and estimated linear
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Fig. 5. Estimated ρ̂M from reverse engineered JPEG rr vs ρ. Here rendered
input r = rr .

Fig. 6. Estimated ρ̂M from ρraw vs ρ. Here rendered input r = ρraw .

responses are shown in Figure 11. The white normalisation
in the LAB values comes from the XYZ values of the white
patch referred to the actual illuminant.

VII. RESULTS AND DISCUSSION

As ρ̂M is only known within a least squares optimised
linear transform of ρ (Equation 53), the functions shown in the
figures 2 to 7 can only be plotted as a function of ρ because it
is known for evaluation purposes. In real situations, only ρ̂M

is known through the estimation.

Fig. 7. Estimated Linear RGB from xyz-sensor values based on actual
illuminant vs ground truth. ρ̂Msrgb refers to xyz ground truth data ρxyz linearly
transformed to ρ by estimated matrix M.

Fig. 8. Estimated irradiance (L̂Γ)
−1 from JPEG r, (L̂raw

Γ )−1 from ρraw

along with GC measured Igc.

In figures 2 and 3 the estimated tone curves (thick coloured
curves) are plotted on top of the known srgb tone curve (gray
curve) for reference. In figure 2, the white point (coloured
circles) found in the rendered images are used to scale the
tone curve values to the according ground truth values of white
calculated from reversing srgb values to ground truth. In figure
3 the ground truth of the white point has been scaled down
20% to avoid out-of-srgb-gamut values in the simulation of
the rendered data. Here r̂linsrgb denotes estimated ρ̂M linearly
transformed to the srgb space without its gamma applied. rsrgb
are values pertaining to ρ transformed to srgb values. The
resulting relation between these to data sets are the per channel
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Fig. 9. Estimated irradiance (L̂Γ)
−1 from synthetic vignetting image

srgb(I ◦ ρ), compared to synthetic irradiance I.

Fig. 10. Estimated irradiance (L̂Γ)
−1 and (L̂raw

Γ )−1 both from raw ρraw ,
compared to GC measured irradiance Igc.

estimated gamma curves. The green and the red hide behind
the blue.

In figures 4, 5 and 6 the estimated linear responses per-
taining to JPEG, reverse engineered JPEG and raw are shown
(thin coloured lines with circles). The reverse engineering of
JPEG resulted in out-of-gamut colours. Their linear estimates
are visibly found. Estimated linear responses can be compared
with the raw data (coloured dots) which visibly contains an
offset, see inset. The data is normalized to the maximum
response in the white patch. The rendered response input for
linearisation are shown (thin coloured lines) for reference.
Clearly, and perhaps not surprisingly, the estimated linear
responses pertaining to JPEG, which incorporates the most
challenging rendering manipulations, are the most inaccurate
(i.e. noisy). The dotted black line indicates the maximum value
of the raw image in the white patch, and thus the exposure
level. See Table II for overall image exposure levels.

Fig. 11. Estimated Perceptual Differences from JPEG image to ground truth

Fig. 12. Estimated volumetric (L̂C)
−1 displacements of JPEG r. An expected

tendency for the gamut mapping to have been contracting the colour space in
the saturated colours. As the distribution of scaling between (L̂C)

−1,(L̂C)
−1

and (L̂C)
−1 is unconstrained, a part of said scaling is also visible in the

contraction.

In figure 6 the tone curves pertaining to raw data are shown.
Comparing figure 6 with 7 an example of how the accuracy
of the raw-based ground truth estimations compares to the
linearly optimized canonical ground truth estimates ρ̂Mxyz , they
seem to be almost on par. In the box plot in Figure 13
the averaged accuracy for all images can be found showing
the same tendency. So, the linearisation performed on real
noisy raw data is on par with the accuracy of theoretical
noiseless and physical linear canonical (XYZ proxy) estimated
linear values. This points to the impact on accuracy stemming
from sensor metamerism. Adding illuminant metamerism will
probably only aggravate the problem.

The perceptual displacements between CIELAB values per-
taining to the linearised JPEG data (pertaining to Capture
151) and ground truth can be seen in Figure 14. Except in
the saturated greenish colours, the perceptual differences seem
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small. Refer to Figure 14 for overall results.

A. Resulting colour Accuracy
To permit a maximum signal-to-noise influence in the

estimates, the evaluation of the linearised results are quantified
in absolute response differences between raw and ground truth
scaled (by gaining) to the maximum ground truth channel
response of the white patch. Furthermore, these results are cal-
culated in terms of RMSE to enable approximate comparison
with other methods, see Table I. The maximum raw channel
responses to the white patch (i.e. around 5 to 47% of the
total 16 bit exposure range in the camera), are shown in the
figures (i.e. Capture 151, 29%) for visualisation and listed in
detail in Table II. A rough inspection of the results indicates (a
part from two outliers in capture 97 and 303) that only FLT-
illuminated (fluorescent light) results seem to have elevated
RMSE-values. They stem from exposures of only up to 36%.
Such RMSE-values are, however, also found among captures
under other illuminants. Since FLT illuminants are quite spiky,
small changes in the reflectance can lead to large variations in
sensor responses and thus noise sensitivity.

Furthermore, the estimates are related to colour differences
in a perceptually uniform representation in the CIELAB-
values. Here, the scaling of the estimated and the ground
truth responses are related directly to the colourimetric values
calculated from the srgb values of the white patch in the
rendered (JPEG) images.

For all the patches and rgb-types, the predicted RGB and
CIELAB values were compared to the known ground truth
values, and the colour differences ∆RGB and ∆E were
computed using the measured reflectances of the colour charts.
The CIELAB values use the colourimetric values estimated
from the images. The resulting colour differences between
ground truth and its linear estimate, are shown as box plots in
Figures 13 and 14, respectively. The green lines correspond to
the median values, the upper and lower ends of the boxes to the
quartiles, the whiskers to the full range of the data excluding
outliers, and the separate dots to outliers.

For the ground truth data, both spectroradiometrically mea-
sured reflectances and colour chart spectral reflectances factory
were tested. The ones measured in the laboratory are supposed
to be more accurate than the provided ones, given that they
relate to the particular chart that was used, including its state of
wear and tear, pigment variations in production and a viewing
geometry that mimics the camera recordings pertaining to
some of the possible specular reflection. The predicted colour
differences and response differences between using the two
different ground truths were found to be very small. For the
raw images, the RMSE was 0.015 for the measured charts, and
0.023 for the factory provided reflectances, with corresponding
average ∆E values of 1.86 and 4.26, respectively. For the
JPEG images, the RMSE was 0.023 for the measured charts,
and 0.033 for the factory provided reflectances, with corre-
sponding average ∆E values of 3.62 and 9.40, respectively.
The differences are statistically significant with vanishing p-
values according to the Wilcoxon test and with a size in line
with the precision in state-of-the-art colour characterisation
methods for real data.
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Fig. 13. Box plot of the RGB response difference of all the patches for the
different rgb-types for the R measurements. The boxes range from the 25%
to the 75% quartile, the green line marks the median and the blue dot is the
RMSE. The extent of the whiskers is the full range of the data excluding the
outliers, defined as points that are outside 1.5 times the interquartile range
outside the box.
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B. Resulting Accuracy of the Irradiance Function

Under the assumption that the offset O can be corrected in
Equation (49) and particularly in L̂Γ it makes sense to validate
the estimation of the irradiance function on its own. In Figure
9 is shown an estimation of a synthetic irradiance function
I negotiating the exaggerated curvature pertaining to a third
order spatial polynomial function with a shading ratio of 3.3.
The irradiance function is applied to ρ and so defines rgb-type
srgb((I ◦ ρ)).

Without the srgb non-linearity included, the shading com-
pensation method presented in [28] aligns with rgb-type I ◦ ρ.
Simulated data are generated by applying a synthetic smooth
shading on linear rgb-responses from spectrally known colour
chart patches. Given the linear responses linearly transformed
by a matrix M and the shaded rgb-responses, the method
solves for M and the shading function. On synthetic data with
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a shading ratio of 3.3, they report a mean ∆E = 3.0 and a
max ∆E = 22.4. Our method reports ∆E = 0.72 and a max
∆E = 11.04. Note that M is not estimated by our method.

In Figure 8 the estimated irradiance functions pertaining to
r, ρraw and the in-register camera responses from the GC.
When inspecting Figure 8 it can be seen that the linearisation
method estimates almost the same irradiance function irrespec-
tive of rendition level, measured, raw or re-rendered.

The data results for the factory measured reflectances are
not presented here in terms of specific results and figures, as
that would cover a full parallel set of results. However, the
overall influence of the interchanging spectroradiometric with
the spectrophotometric measurements of the CG pertaining to
the estimates of the irradiance functions is minute. The median
error in the L̂

k

I correction factor is on the order of 0.4 %. It
varies only insignificantly between the various rgb-types and
ground truth data based on the two reflectance sets. Although
impossible to evaluate precisely as the origin of the factory
measurement is largely unknown, this alludes to the robustness
of employing the additivity principle to data which is not
necessarily the exact colour chart and whether the spectral
measurement is radiometric or photometric.

Although a thorough investigation of the impact on the
accuracy of the estimations is beyond the scope here, we
briefly point to possible reasons for shortcomings of the
presented method: The additivity matrix A is subject to the
quality of the measurements (e.g. noise) of ς(λ) and their
overlaps, the patch sampling procedure (e.g. image blurring,
edge response contamination, quantisation, and lens glare), in-
situ spatially varying SPD of the illuminant and its spectral
selectivity, inadequate exposure, reduction of N and spectral
dimensionality of reflectance spectra (may be alleviated in the
regularisation) and discretization resolution and bandwidth of
wavelength interval ω.

VIII. CONCLUSION

This paper proposes a digital image colour channel value
linearisation method of sampled calibration data based on a
novel additivity principle. The additivity principle is invari-
ant to metamerism and apart from regularisation parameters,
exclusively based on knowledge of the spectral reflectance
functions of a colour target. The method linearizes camera
responses to one-shot digital images of colour calibration
charts from which response values of unknown rendition level
are gathered. Only one triplet of sampled responses per patch
is necessary. In the process estimates of irradiance geometry,
channel non-linearity and non-linear volumetric transformation
are calculated. Although, the method does not constitute
a radiometric camera calibration, it estimates and performs
parallel compensations whilst stepping further to compensate
for physical interactions between the camera sensor and the re-
flectances. It is reiterated that no existing method encompasses
the full linearisation from unknown rendition level to estimated
colour values that are linearly related to ground truth, as
defined in Equation 1. This complicates a fully satisfying
comparison with state-of-the-art. However, the results indicate
that the error in the ground truth estimates are on par with

competing methods that only estimate raw and typically need
much more data support.
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