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a b s t r a c t 

This paper presents a reinforcement learning-based observer/controller using Moving Horizon Estimation 

(MHE) and Model Predictive Control (MPC) schemes where the models used in the MHE-MPC cannot 

accurately capture the dynamics of the real system. We first show how an MHE cost modification can 

improve the performance of the MHE scheme such that a true state estimation is delivered even if the 

underlying MHE model is imperfect. A compatible Deterministic Policy Gradient (DPG) algorithm is then 

proposed to directly tune the parameters of both the estimator (MHE) and controller (MPC) in order to 

achieve the best closed-loop performance based on inaccurate MHE-MPC models. To demonstrate the ef- 

fectiveness of the proposed learning-based estimator-controller, three numerical examples are illustrated. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

In the context of model-based control approaches, Model Pre- 

ictive Control (MPC) is a well-known control scheme, which uses 

 dynamic model to predict the future behavior of the real system 

ver a finite time horizon. At each time instant, MPC calculates the 

nput and corresponding state sequence minimizing a given cost 

unction while satisfying constraints over a given prediction hori- 

on [26] . In many real applications, a state estimator (observer) is 

eeded to provide an estimation of the current system states to the 

PC scheme. In this paper, we adopt a Moving Horizon Estima- 

ion (MHE) scheme as a state observer, which is a simple choice in 

ombination with an MPC scheme. MHE is an optimization-based 

tate observer that works on a horizon window covering a limited 

istory of past measurements [21] . 

Accurate models of dynamical systems are often difficult to ob- 

ain due to uncertainties and unknown dynamics. It is also worth 

oting that even if an accurate model is available, it may be in gen-

ral too complex to be used in MHE and MPC schemes. However, if 

he model is imperfect, the inaccuracies can significantly degrade 

he performance of the MHE-MPC scheme. To cope with this prob- 

em, data-driven methods can be used in order to either improve 

he MPC and MHE models [3,16,18,31] or modify the MHE/MPC 

ost functions [10,11] . 
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The data-driven MPC/MHE schemes mentioned above often in- 

orporate Machine Learning (ML)-based techniques such as Rein- 

orcement Learning (RL) and Gaussian Process (GP). RL is a power- 

ul ML method for Markov Decision Processes (MDPs), which seeks 

o improve the closed-loop performance of the control policy de- 

loyed on the MDPs as observations are collected [28] . Most RL 

ethods use a Deep Neural Network (DNN) to approximate either 

he optimal policy underlying the MDP directly or the action-value 

unction from which the optimal policy can be indirectly extracted 

2] . 

The idea of using an MPC scheme as a value function/policy ap- 

roximator in the RL context was proposed in [11,35] . Specifically, 

he motivation was to replace the DNN-based approximators with 

he MPC schemes such that some challenging issues in the con- 

ext of RL including stability guarantee and safety were addressed. 

n an MPC-based RL, it was established that an MPC scheme can 

enerate jointly the optimal (action-) value function and optimal 

olicy underlying an MDP even if the MPC model does not cap- 

ure the real system dynamics accurately. As a data-driven MPC, 

he MPC-based RL framework has shown promising results for dif- 

erent applications [6–9,17] . Inspired by the researches mentioned 

bove in the context of MPC-based RL, in the present paper, we 

ill use an MHE-MPC scheme as a policy approximator for a de- 

erministic policy gradient algorithm. 

In some real-world control applications, the measurements 

vailable from the real system at a given time instant do not con- 

titute a Markov state. In the context of RL, these systems are 

hen formulated as Partially Observable MDPs (POMDPs) [15,36] . 
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o tackle a POMDP, one solution is to formulate a belief MDP 

here the information about the current state is described as 

 probability distribution over the state space a.k.a belief state. 

ence, POMDPs can be regarded as traditional MDPs using the 

oncept of belief states as complete observable states [32] . 

Most previous works in the context of POMDPs rely on train- 

ng a Neural Network (NN) or a Recurrent Neural Network (RNN) 

o summarise past observations and learn a policy based on DNN- 

ased approximators [14,19,33] . An NN-based framework (poste- 

ior distributions over states) was proposed in [12,29] in order 

o estimate a belief state based on historical information. These 

N-based algorithms are formulated as completely model-free ap- 

roaches. Most recently, as a combined model-based/data-driven 

echnique for dealing with POMDPs, a Q-learning method based on 

HE-MPC with inaccurate models was developed in [10] . In this 

esearch, the authors proposed to integrate MHE and MPC to treat 

he hidden Markovian state evolution. More specifically, a struc- 

ured solution by using MHE as a model-based approach was pro- 

osed to build a state from the measurement history. 

In this paper, we seek to improve the performance of MHE- 

PC as a combined observer/controller based on an inaccurate 

odel. Assuming the real system is fully observable and the MHE 

odel has a correct state structure, we show that both the arrival 

ost and the stage cost of the MHE scheme can be modified such 

hat a perfect state estimation is delivered even if the underlying 

odel is imperfect. However, the proposed method can arguably 

erform well on an incomplete model structure (partially observ- 

ble), which is demonstrated by a numerical example. To tackle 

he performance degradation of the MHE scheme due to the use of 

n imperfect model, we propose to modify the MHE cost function 

ather than adapting the MHE model. An NN-based approximator 

s proposed to deliver the modified MHE cost. To achieve the best 

losed-loop performance even if the underlying MHE-MPC model 

s imperfect, we then propose to jointly tune the MHE-MPC pa- 

ameters using a compatible Deterministic Policy Gradient (DPG) 

einforcement learning algorithm. 

The paper is structured as follows. The central theorem upon 

he cost modification of the MHE scheme using an imperfect 

odel is detailed in Section 2 . Section 3 describes a tractable ap- 

roach for the MHE cost modification. Section 4 is dedicated to 

he parameterization method upon the MHE cost and the MPC 

cheme in order to formulate an adjustable and learning-based 

HE-MPC scheme. To achieve the best closed-loop performance 

or an MHE-MPC scheme, a policy gradient-based RL algorithm is 

etailed in Section 5 to adjust the parameterized MHE cost func- 

ion and learn a policy captured from a parameterized MHE-MPC 

cheme. Section 6 provides three numerical examples: 1) a linear 

ystem with model mismatch 2) a POMDP test case in which a 

mart building is described as an imperfect dynamical model and 

ts climate is controlled by the proposed approach, and finally 3) 

 Continuous Stirred Tank Reactor (CSTR) as a nonlinear system is 

nvestigated. 

Notation. a is a scalar while a is a vector. For n vectors 

 1 , . . . , x n we define col ( x 1 , . . . , x n ) := [ x � 1 , . . . , x 
� 
n ] 

� . R is the set of

eal numbers and I is the set of integers. 

. Modified MHE with imperfect model 

In this section, we first consider an ideal stochastic MHE, which 

s formulated as a Full Information Estimation (FIE) problem. The 

IE problems are fundamentally formulated based on an optimiza- 

ion problem in which the entire history of the measurements is 

sed at each time instant [25] . We then formulate an MHE scheme 

sing an imperfect model, and show that the stage cost function 

an be modified so that the MHE delivers the same estimation as 

n ideal MHE. At the end of this section, as opposed to the FIE ver-
2

ion of the MHE, we will formulate a finite version of the modified 

HE scheme in order to make it computationally tractable. 

.1. Stochastic MHE scheme 

To formulate an ideal stochastic MHE scheme, we consider dis- 

rete dynamical systems evolving on a continuous state space over 

 

n , with stochastic states s k ∈ S ⊆ R 

n , where k denotes the time 

ndex. Let � k be a probability measure associated with the stochas- 

ic states as follows: 

 k ∼ � k (. ) (1) 

e will consider a measure space for s k , which is equipped with 

he Lebesgue measure as a reference measure, and the set of 

ebesgue-measurable sets as σ -algebra. Let us define stochastic dy- 

amics as a conditional probability density as follows: 

[ s k +1 | s k , a k ] (2) 

here s k , a k ∈ A ⊆ R 

m and s k +1 are the current state-input pair 

nd subsequent state, respectively, and A is the set of inputs avail- 

ble for the system. 

Let us define a transition operator T a k : M × A → M as the map

rom a probability measure � k to its successor � k +1 under input 

 k , and M is the set of probability measures over S such that the 

equence of probability measures � k ∈ M , k = 0 , · · · , ∞ . We then

efine the Law of Total Probability (LTP) with stochastic dynamics 

2) as follows: 

 k +1 (. ) = T a k � k (. ) = 

∫ 
S 
ζ [ . | s k , a k ] � k (d s k ) (3) 

et us label E s k ∼� k [ . ] the expected value operator with respect 

o probability measure � k ∈ M . To formulate a stochastic MHE 

cheme a.k.a Full Information Estimation (FIE), its cost function can 

e derived using a functional stage cost where this functional is 

ither an expectation or the Maximum A Posterior (MAP) [23] . In 

he present paper, we use an expectation to formulate a stochastic 

HE under some conditions detailed in the remainder of the pa- 

er. We then define a value functional associated with the stochas- 

ic MHE scheme as follows: 

 [ � k , o k ] := 

k ∑ 

i = −∞ 

γ k −i 
E s i ∼� i 

[
L ( s i , a i −1 , y i ) 

]
, (4) 

here γ ∈ ( 0 , 1 ] is a discount factor, y i ∈ Y ⊆ S , o k = 

ol 
{

a ... ,k −1 , y ... ,k 
}

∈ O is the available history of measurements 

p to time k , L : S × A × Y → R is a fitting function. It is worth

oting that the discounting above ensures the existence of the 

stimation problem on an infinite horizon for an MDP. However, 

he basic Theorem on the cost modification structure detailed 

n the remainder of this section also holds for the undiscounted 

etting, e.g., γ = 1 . We assume that the forward transition op- 

rator T a k has a backward transition operator T −1 
a i −1 

such that 

 i −1 = T −1 
a i −1 

� i , ∀ i ∈ I ≤k . Note that we use the backward transition

perator since an MHE scheme at the current time k is formulated 

ased on past information. Then the aim of the stochastic MHE 

cheme is to find the best probability measure ρ� as a function of 

 k that minimizes V [ � k , o k ] . More specifically: 

� 
k ( o k ) ∈ arg min � k V [ � k , o k ] (5) 

owever, we only have access to an imperfect model of (2) (typ- 

cally deterministic). To cope with this issue, in the remainder of 

his section, we first develop the central theorem on the modifi- 

ation of the stochastic MHE schemes with imperfect models. We 

hen propose a more practical formulation of the modified stochas- 

ic MHE in which a deterministic state estimation can be delivered. 
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.2. Modification of the MHE cost function 

The main contribution of this paper is described by the next 

heorem, where an MHE scheme equipped with a modified stage 

ost function is proposed to tackle the performance degradation 

ue to an imperfect MHE model. It will be shown that one can, 

nder some assumptions, find a modified MHE cost such that a 

robability measure equal to (5) is delivered even if the underlying 

odel is inaccurate. In this paper, we define a cost functional � : 

 × A × Y → R such that this cost functional linearly depends on 

he stage cost function as follows: 

[ � i , a i −1 , y i ] = E s i ∼� i [ L ( s i , a i −1 , y i ) ] (6) 

ote that the above equality is valid under some conditions de- 

ailed in the next section. Then, the value functional (4) can be 

ewritten as follows: 

 [ � k , o k ] = 

k ∑ 

i = −∞ 

γ k −i �[ � i , a i −1 , y i ] , (7) 

et ζb 

[
s k −1 | s k , a k −1 

]
and 

ˆ ζb 

[
ˆ s k −1 | ̂  s k , a k −1 

]
be a backward model 

f (2) and an imperfect model of ζb , respectively. We then la- 

el ˆ T −1 
a i −1 

the corresponding imperfect backward transition operator. 

ow we propose to modify the MHE cost � detailed in the next 

heorem in order to cope with the performance degradation of an 

HE scheme where the MHE model is imperfect. Hence, the cor- 

esponding value functional for a modified stochastic MHE scheme 

s formulated as follows: 

ˆ 
 [ ̂  � k , o k ] := 

k ∑ 

i = −∞ 

γ k −i ˆ �[ ̂  � i , o i ] (8) 

here ˆ � i −1 = 

ˆ T −1 
a i −1 ̂

 � i , ∀ i ∈ I ≤k and 

ˆ � : M × O → R is an MHE cost

unctional based on the measurement history for the model. Note 

hat the arguments of the stage cost � in (7) include a i −1 , y i while 

hey are shown as a measurement history o i for the arguments 

f the modified stage cost ˆ � in (8) . More precisely, the modified 

tage cost will be a function of the measurement history at each 

ime step i , which is detailed in the proof of the next theorem. 

Analogous to the previous, we define the best probability mea- 

ure resulting from the imperfect model, as follows: 

ˆ � k ( o k ) ∈ arg min ˆ � k 
ˆ V [ ̂  � k , o k ] (9) 

e then aim to propose ˆ � such that ˆ ρ� 
k 
( o k ) = ρ� 

k 
( o k ) . In the fol-

owing, we make mild assumptions on the boundedness of the dis- 

ounted value function. 

ssumption 1. There exists a non-empty set of probability mea- 

ures M 0 ⊆ M , including ˆ � 

� 
k 
, such that for all ˆ � k ∈ M 0 and for all

∈ ( 0 , 1 ] it holds that 

γ N V [ ̂  � k −N , o k −N ] 
∣∣ < ∞ , ∀ N ∈ I ≥0 (10) 

here ˆ � k −N = 

ˆ T −1 
a k −N 

. . . ˆ T −1 
a k −1 ̂

 � k . 

ssumption 2. For a discount factor γ ∈ ( 0 , 1 ] and ˆ � k −N ∈ 

 0 , ∀ N ∈ I ≥0 : 

lim 

→∞ 

γ N V [ ̂  � k −N , o k −N ] = 0 (11) 

heorem 1. Under Assumptions 1 , 2 , there exists a modified stage 

ost functional ˆ � : M × O → R such that the following equalities 

old for all ˆ � k ∈ M 0 and all o k ∈ O: 

ˆ 
 [ ̂  � k , o k ] = V [ ̂  � k , o k ] , ˆ � 

� 
k ( o k ) = � 

� 
k ( o k ) (12) 

roof. Let us define the modified stage cost functional ˆ � as fol- 

ows: 

ˆ [ ̂  � i , o i ] = V [ ̂  � i , o i ] − γV 

[
ˆ T −1 
a i −1 

ˆ � i , o i −1 

]
(13) 
3 
y substituting the modified stage cost (13) in (8) , the value func- 

ional then becomes a telescoping sum as follows: 

ˆ 
 [ ̂  � k , o k ] = 

k ∑ 

i = −∞ 

γ k −i ˆ �[ ̂  � i , o i ] 

= 

k ∑ 

i = −∞ 

γ k −i 
(
V [ ̂  � i , o i ] − γV [ ̂  � i −1 , o i −1 ] 

)
= V [ ̂  � k , o k ] − γV [ ̂  � k −1 , o k −1 ] 

+ γV [ ̂  � k −1 , o k −1 ] − γ 2 V [ ̂  � k −2 , o k −2 ] 

+ γ 2 V [ ̂  � k −2 , o k −2 ] − . . . − lim 

N→∞ 

γ N V [ ̂  � −N , o −N ] 

= V [ ̂  � k , o k ] − lim 

N→∞ 

γ N V [ ̂  � −N , o −N ] (14) 

or all ˆ � k ∈ M 0 . Note that under Assumption 1 all terms in (14) are

ounded and the following equality holds: 

ˆ 
 [ ̂  � k , o k ] = V [ ̂  � k , o k ] (15) 

nd under Assumption 2 , 

rg min 

ˆ � k 

ˆ V [ ̂  � k , o k ] = arg min 

ˆ � k 
V [ ̂  � k , o k ] (16) 

mplies ˆ � 

� 
k 
( o k ) = � 

� 
k 
( o k ) since ˆ � 

� 
k 

∈ M 0 . �

It is worth noting that the modified stage cost function 

13) proposed as a cost modification is constructed based on a full 

istory of the measurements. Hence, this fundamental observation 

an impact on the practical implementation of the modified cost. 

ore specifically, the central Theorem 1 aims to show that there 

xists such a modification and to understand its structure. How- 

ver, the proposed modification structure above is not tractable in 

erms of implementation since it is too complex to compute the 

odified stage cost (13) and apply it to the modified MHE scheme 

irectly. To tackle this problem, we will provide a finite H-step 

tructure of the modified stage cost in the next section. Finally, we 

ill propose to construct an approximate structure of the modified 

tage cost using a Neural Network (NN) and adopt a reinforcement 

earning algorithm to learn the parameters of the NN in practice, 

hich is detailed in the Section 4 . 

Although Theorem 1 shows that the modified stochastic MHE 

cheme with the corresponding value functional (8) can deliver a 

orrect estimation of the probability measure using an imperfect 

odel, this infinite-horizon model-based fitting problem requires 

n infinite amount of data, which makes this full information ob- 

erver unsuitable in practice. To cope with this problem, we pro- 

ose a more practical formulation detailed by the next theorem, 

hich provides a finite-horizon stochastic MHE problem so that it 

elivers the same optimal density and value functional as (8) . 

It is worth mentioning that the proposed modified state cost 

13) has been constructed based on the value functionals, and 

hen Assumption 1 ensures that all intermediate terms (value func- 

ionals) appeared in the telescoping sum (14) cancel out. How- 

ver, there are infinitely many intermediate terms in the telescop- 

ng sum (14) that must be bounded while Assumption 1 may not 

e satisfied for a situation with an arbitrarily large N, e.g., let 

s consider the case γ = 1 , which then imposes the condition 

im N→∞ 

V 
[

ˆ � k −N , o k −N 

]
= 0 . Hence, the additional Assumption 2 is 

eeded to establish the Theorem 1 . To address this issue, one can 

onsider a milder assumption with a specific horizon window N

o be used in a finite-horizon MHE problem. We then provide the 

ollowing assumption and develop the corresponding theorem. 

ssumption 3. There exists a non-empty set of probability mea- 

ures M 1 ⊆ M , including ˆ � 

� 
k 
, such that for all ˆ � k ∈ M 1 and for all

∈ ( 0 , 1 ] it holds that 

γ N 0 V 

[
ˆ � k −N 0 , o k −N 0 

]∣∣ < ∞ , 0 ≤ N 0 ≤ N (17) 
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here ˆ � k −N 0 
= 

ˆ T −1 
a k −N 0 

. . . ˆ T −1 
a k −1 ̂

 � k and N < ∞ is labeled the horizon 

indow. 

Note that this assumption is weaker than Assumption 1 , indeed 

e have M 0 ⊆ M 1 . 

heorem 2. Consider the MHE scheme with a horizon window of N

teps at the current time k : 

ˆ 
 

N [ ̂  � k , o k ] := γ N 	 [ ̂  � k −N , o k −N ] 

+ 

k ∑ 

i = k −N+1 

γ k −i ˆ �[ ̂  � i , o i ] , (18a) 

ˆ �,N 
k 

( o k ) ∈ arg min ˆ � k 
ˆ V 

N [ ̂  � k , o k ] (18b) 

here 	 : M × O → R reads as an arrival cost functional. Then, under

ssumption 3 , the following equalities hold for all ˆ � k ∈ M 1 and all 

 k ∈ O: 

ˆ 
 

N [ ̂  � k , o k ] = V [ ̂  � k , o k ] , ˆ � 

�,N 
k 

( o k ) = � 

� 
k ( o k ) (19) 

roof. Let us define the modified stage cost ˆ � as (13) and arrival 

ost 	 as follows: 

 [ ̂  � k −N , o k −N ] = V [ ̂  � k −N , o k −N ] (20) 

y substituting the modified stage cost (13) and the modified ar- 

ival cost (20) in (18a) , the value functional then becomes a tele- 

coping sum as follows: 

ˆ 
 

N [ ̂  � k , o k ] = γ N V [ ̂  � k −N , o k −N ] 

+ 

k ∑ 

i = k −N+1 

γ k −i 
(
V [ ̂  � i , o i ] − γV [ ̂  � i −1 , o i −1 ] 

)
= γ N V [ ̂  � k −N , o k −N ] + V [ ̂  � k , o k ] − γV [ ̂  � k −1 , o k −1 ] 

+ γV [ ̂  � k −1 , o k −1 ] − γ 2 V [ ̂  � k −2 , o k −2 ] + . . . 

+ γ N−1 V [ ̂  � k −N+1 , o k −N+1 ] − γ N V [ ̂  � k −N , o k −N ] 

= V [ ̂  � k , o k ] (21) 

or all ˆ � k ∈ M 1 , and 

rg min 

ˆ � k 

ˆ V 

N [ ̂  � k , o k ] = arg min 

ˆ � k 
V [ ̂  � k , o k ] (22) 

elivers ˆ � 

�,N 
k 

( o k ) = � 

� 
k 
( o k ) , since ˆ � 

� 
k 

∈ M 1 . Then it delivers (19) . �

As an observation in the proposed finite-horizon MHE scheme 

18a) , the modified stage cost still depends on the complete mea- 

urement history despite using an arrival cost. Therefore, a practi- 

al modification of the stage cost will be detailed in the next sec- 

ion. 

. Tractable method for the MHE cost modification 

Although Theorem 2 proposes the modified finite-horizon 

tochastic MHE as a more practical scheme than an infinite prob- 

em, there are still two implementation issues to address: (1) im- 

lementing a stage cost functional (13) is not tractable in practice 

ecause it is constructed based on time-varying value functionals 

n which the current distribution function ˆ � k as given probability 

easure at the current time k is difficult to model and calculate 

xactly. Then, it is reasonable to consider a function version of the 

ost functional in the modified MHE scheme. (2) implementing a 

odified stage cost based on the full measurement history is not 

ractable. In the rest of this section, we discuss the solutions to 

ackle these problems. 
4 
.1. Modified stage cost function 

To construct a practical cost modification based on the above 

esults, one can consider a deterministic state estimation at the 

hysical time k such that the modified cost is then constructed 

ased on a value function instead of a value functional. Although 

his choice makes the implementation more practical, the estima- 

ion of a single state rather than a probability measure will sac- 

ifice the MHE capability in order to explicitly describe the state 

stimation uncertainty. More specifically, we replace a belief state 

ith a unique state such that the MHE solution cannot incorporate 

ny information upon the uncertainty level of the current state. 

In order to form an MHE scheme with a deterministic estima- 

ion of the state at time k , the proposed structure entails signif- 

cant characteristics established by the next propositions. In the 

ext Propositions 1,2 , we first show that the backward transition 

perator T −1 is a linear transformation and the value functional 

 [ � i , o i ] is linear in the probability measure. 

roposition 1. The inverse of a linear operator T is a linear back- 

ard transition operator T −1 such that: 

 

−1 ( � + �̄ ) = T −1 � + T −1 �̄ (23a) 

 

−1 ( α� ) = αT −1 � (23b) 

here the probability measures �, �̄ ∈ M and α ∈ C . 

roof. 

 

−1 ( � + �̄ ) = T −1 
(
T 

(
T −1 � 

)
+ T 

(
T −1 �̄ 

))
 

−1 
(
T 

(
T −1 � + T −1 �̄ 

))
= T −1 � + T −1 �̄ (24) 

nd 

 

−1 ( α� ) = T −1 
(
αT 

(
T −1 � 

))
 

−1 
(
T 

(
αT −1 � 

))
= αT −1 � (25) 

hen, the backward operator T −1 fulfills the requirements of a lin- 

ar transformation. �

roposition 2. The value functional V [ � i , o i ] is linear in the proba- 

ility measure. 

roof. According to (4) , the value functional V [ � i , o i ] at time step 

 is defined as follows: 

 [ � i , o i ] = 

i ∑ 

j= −∞ 

γ i − j 
E s j ∼� j 

[
L 
(
s j , a j−1 , y j 

)]
(26) 

= E s i ∼� i [ L ( s i , ·, ·) ] + γ E s i −1 ∼� i −1 
[ L ( s i −1 , ·, ·) ] + . . . 

irst a backward transition T −1 is a linear transformation, as es- 

ablished by Proposition 1 . We then conclude that each � j is lin- 

ar in � i . Hence, each expected stage cost term, appearing on the 

ight-hand side of (26) is linear in � i . Then, the summation of dis- 

ounted expectations on the right-hand side of the above equa- 

ion will also be linear in the probability measure, which proves 

he proposition. �

Now, in the next proposition, we will show a relation between 

he value functional and the value function such that the following 

ssumption must be satisfied: 

ssumption 4. Let us assume that the expected value function v 
s bounded for all � i ∈ M and s i ∈ S: 

 s i ∼� i [ | v ( s i , o i ) | ] < ∞ (27) 

Note that the assumption above ensures that the expected value 

f the value function v ( s i , o i ) will remain finite for all � i ∈ M and

 ∈ S , a harmless restriction in practice. 
i 
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roposition 3. Let the value function v ( s i , o i ) be a Lebesgue measur- 

ble function (a.k.a Borel measurable) on the σ -algebra of Borel sets, 

nd the probability measure � i be a compactly supported continuous 

unction. A value functional then can be represented as an expected 

alue function as follows: 

 [ � i , o i ] = E s i ∼� i [ v ( s i , o i ) ] (28) 

roof. Under Assumption 4 and the linearity of V [ � i , o i ] in � i , see 

roposition 2 , the proof follows the Riesz-Markov theorem, see [4] , 

hapter 9, page 105, such that: 

 [ � i , o i ] = 

∫ 
S 

v ( s i , o i ) � i (d s i ) = E s i ∼� i [ v ( s i , o i ) ] 

nd a value function v ( s i , o i ) can be found so that the equality 

bove holds. �

Now we choose the probability measure at time k as a Dirac 

easure centered at the current state such that � k = δs k 
(. ) . Ac-

ording to Proposition 3 , the value functional then becomes a value 

unction: 

 [ � k , o k ] = E s k ∼δs k 
(. ) [ v ( s k , o k ) ] = v ( s k , o k ) (29) 

hen, the ideal stochastic MHE scheme with the value functional 

4) can be rewritten as follows: 

 ( s k , o k ) := 

k ∑ 

i = −∞ 

γ k −i 
E s i ∼� i 

[
L ( s i , a i −1 , y i ) 

]
, (30a) 

 

� 
k ( o k ) ∈ arg min 

s k 
v ( s k , o k ) (30b) 

here � i −1 = T −1 
a i −1 

� i and � k = δs k 
(·) . We next show that the mod-

fied stage cost functional (13) can be rewritten as stage cost func- 

ion at each time step i , which is constructed based on the value

unctions defined as (30a) . 

We first remind that the linear relation (6) between the stage 

ost functional and the stage cost function is valid based on the 

ame synthesis as Proposition 3 using two underlying conditions: 

) expected stage cost function is bounded E s i ∼� i [ | L ( s i , a i −1 , y i ) | ] < 

 2) stage cost functional � is linear in � i . Hence, this relation 

lso holds for ˆ � in (13) considering the next remark. 

emark 1. The modified stage cost functional (13) is also linear 

n the probability measures since it is defined based on a linear 

quation of the value functionals, which are linear in the probabil- 

ty measures, see Proposition 2 . 

Now the modified stage cost functional can be described as: 

ˆ [ ̂  � i , o i ] = E ˆ s i ∼ ˆ � i 

[
ˆ L 
(

ˆ s i , o i 

)]
(31) 

here ˆ L : S × O → R reads the modified stage cost function. 

By considering Proposition 3 , equality (31) and adopting ˆ � i = 

ˆ s i 
(·) , one can obtain a practical cost modification of (13) at each 

ime step i as follows: 

 ˆ s i ∼δˆ s i 
(·) 

[
ˆ L 
(

ˆ s i , o i 

)]
= E ˆ s i ∼δˆ s i 

(·) 
[
v 
(

ˆ s i , o i 

)]
− γ E ˆ s i −1 ∼ ˆ � i −1 

[
v 
(

ˆ s i −1 , o i −1 

)]
= v 

(
ˆ s i , o i 

)
− γ E ˆ s i −1 ∼ ˆ � i −1 

[
v 
(

ˆ s i −1 , o i −1 

)]
(32) 

here ˆ � i −1 = 

ˆ ζb 

[
· | ̂  s i , a i −1 

]
. 

Hence, the modified cost functional ˆ � can then be replaced by 

he stage cost function 

ˆ L at time step i in practice: 

ˆ 
 

(
ˆ s i , o i 

)
= v 

(
ˆ s i , o i 

)
− γ E ˆ s i −1 ∼ ˆ � i −1 

[
v 
(

ˆ s i −1 , o i −1 

)]
(33) 

e then adopt the above-modified stage cost function to formu- 

ate a modified MHE scheme using an imperfect model in practice. 

ence, the modified stochastic MHE scheme based on the value 
5 
stage cost) function instead of the value (stage cost) functional 

8) is formulated as follows: 

ˆ 
 

(
ˆ s k , o k 

)
:= 

k ∑ 

i = −∞ 

γ k −i 
E ˆ s i ∼ ˆ � i 

[
ˆ L 
(

ˆ s i , o i 

)]
(34a) 

  

� 

k ( o k ) ∈ arg min 

ˆ s k 

ˆ v 
(

ˆ s k , o k 

)
(34b) 

here ˆ � i −1 = 

ˆ T −1 
a i −1 ̂

 � i and ˆ � k = δˆ s k 
(·) . 

Now, according to the developments above, we have shown 

hat the modified MHE scheme with a stage cost functional ˆ �

an be formulated as a tractable MHE (34) in which the modified 

ost function 

ˆ L (33) is practically constructed based on the value 

unctions instead of the value functionals. The following corollary 

hows that the structure (34) can still preserve the property estab- 

ished by Theorem 1 . 

orollary 1. By adopting the same approach as was detailed to prove 

heorem 1 and under the assumption 

N 
E ˆ s k −N ∼ ˆ � k −N 

[∣∣v (ˆ s k −N , o k −N 

)∣∣] < ∞ , ∀ N ∈ I ≥0 (35) 

ne can show that the following equalities hold: 

ˆ 
 ( ·) = v ( ·) , ˆ s 

� 

k = s � k (36) 

roof. By substituting the modified stage cost function (33) in the 

alue function associated to the problem (34) and using a telescop- 

ng sum argument, one can observe that: 

ˆ 
 

(
ˆ s k , o k 

)
= 

k ∑ 

i = −∞ 

γ k −i 
E ˆ s i ∼ ˆ � i 

[
v 
(

ˆ s i , o i 

)

−γ E ˆ s i −1 ∼ ˆ � i −1 

[
v 
(

ˆ s i −1 , o i −1 

)]]
= v 

(
ˆ s k , o k 

)
(37) 

nd 

rg min 

ˆ s k 

ˆ v 
(

ˆ s k , o k 

)
= arg min 

ˆ s k 

v 
(

ˆ s k , o k 

)
(38) 

esults in ˆ s 
� 
k ( o k ) = s � 

k 
( o k ) . �

.2. Tractable modified stage cost 

In the proposed modified stage cost function (33) , the value 

unctions captured from the MHE scheme (30) are based on the 

omplete measurement history, and the amount of historical data 

s growing at each time instant. Hence, constructing the corre- 

ponding modified stage cost is intractable in practice. We then 

ropose to formulate a finite version (H-step) of the optimization 

roblem (30) so that the corresponding value function reads as: 

 

H ( s k , o k ) := γ H 
E s k −H ∼� k −H 

[ Z k −H ( s k −H , o k −H ) ] 

+ 

k ∑ 

i = k −H+1 

γ k −i 
E s i ∼� i 

[
L ( s i , a i −1 , y i ) 

]
(39) 

here � i −1 = T −1 
a i −1 

� i and � k = δs k 
(·) . Notice that the cost term

 k −H 

(
s k −H , o k −H 

)
is labeled the exact arrival cost function, which 

ummarizes the effects of past information before time k − H. 

hen, under an exact arrival cost, the stochastic MHE scheme 

ased on the value function (39) can be regarded as an ideal MHE 

cheme, i.e., 

 

H ( s k , o k ) = v ( s k , o k ) , (40) 

ow the modified stage cost (33) can be rewritten based on the 

alue function (39) as follows: 

ˆ 
 

(
ˆ s i , o i 

)
= v H 

(
ˆ s i , o i 

)
− γ E ˆ s i −1 ∼ ˆ � i −1 

[
v H 

(
ˆ s i −1 , o i −1 

)]
(41) 
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ote that the expectation above is taken over the imperfect model 

hereas the expected values appeared in the definition of the 

alue functions v H ( ·) in (39) are on the real system. Although 

he value function (39) is based on the full measurement history, 

he implementation of the modified stage cost (41) will be finally 

ractable for a finite MHE scheme with a horizon N proposed in 

he next theorem. More specifically, the full history of the mea- 

urements due to the arrival cost term of v H is transferred to the 

rrival cost Z k −N , which can be approximated in practice. A practi- 

al implementation based on the mentioned argument above will 

e discussed in detail in Section 4 . Now we develop the next the-

rem for a modified MHE scheme based on the above-modified 

tage cost function. To this end, let us consider the following as- 

umption: 

ssumption 5. There exists a non-empty set S 0 ⊆ S such that for 

ll ˆ s ∈ S 0 and for all γ ∈ ( 0 , 1 ] it holds that 

γ N 0 E ˆ s k −N 0 
∼ ˆ � k −N 0 

[
v H 

(
ˆ s k −N 0 , o k −N 0 

)]∣∣∣ < ∞ , 0 ≤ N 0 ≤ N (42) 

here N is labeled a specific horizon window. Note that the expec- 

ation in the above inequality is taken over the imperfect model 

ensity ˆ � k −N−1 = 

ˆ T −1 
a k −N−1 ̂

 � k −N . 

Then, the following theorem is defined under the above- 

entioned assumption: 

heorem 3. There exists an exact arrival cost function including some 

rior information as available observation Z k −N : S × O → R and a 

odified stage cost function ˆ L : S × O → R . We then formulate the 

ollowing finite stochastic MHE scheme at the current time k : 

ˆ 
 

N 
(

ˆ s k , o k 

)
:= γ N 

E ˆ s k −N ∼ ˆ � k −N 

[
Z k −N 

(
ˆ s k −N , o k −N 

)]
+ 

k ∑ 

i = k −N+1 

γ k −i 
E ˆ s i ∼ ˆ � i 

[
ˆ L 
(

ˆ s i , o i 

)]
(43a) 

  

�,N 
k ∈ arg min 

ˆ s k 

ˆ v N 
(

ˆ s k , o k 

)
(43b) 

where ˆ � i −1 = 

ˆ T −1 
a i −1 ̂

 � i , ˆ � k = δˆ s k 
(·) . 

Then under Assumption 5 , the MHE scheme above will deliver the 

ollowing equalities for all ˆ s k ∈ S 0 : 

ˆ 
 

N 
(

ˆ s k , o k 

)
= v H 

(
ˆ s k , o k 

)
, ˆ s 

�,N 
k ( o k ) = s � k ( o k ) (44) 

roof. Let us select the modified stage cost (41) and define the 

rrival cost Z k −N as follows: 

 k −N = v H 
(

ˆ s k −N , o k −N 

)
(45) 

y substituting the modified stage cost function (41) and the ar- 

ival cost function (45) in the value function (43a) , it then becomes 

 telescoping sum as follows: 

ˆ 
 

N 
(

ˆ s k , o k 

)
= γ N 

E ˆ s k −N ∼ ˆ � k −N 

[
v H 

(
ˆ s k −N , o k −N 

)]
+ 

k ∑ 

i = k −N+1 

γ k −i 
E ˆ s i ∼ ˆ � i 

[
v H 

(
ˆ s i , o i 

)
− γE ˆ s i −1 ∼ ˆ � i −1 

[
v H 

(
ˆ s i −1 , o i −1 

)]]

= γ N 
E ˆ s k −N ∼ ˆ � k −N 

[
v H 

(
ˆ s k −N , o k −N 

)]
+ v H 

(
ˆ s k , o k 

)
− γE ˆ s k −1 ∼ ˆ � k −1 

[
v H 

(
ˆ s k −1 , o k −1 

)]
+ γE ˆ s k −1 ∼ ˆ � k −1 

[
v H 

(
ˆ s k −1 , o k −1 

)]
+ . . . 

− γ N 
E ˆ s k −N ∼ ˆ � k −N 

[
v H 

(
ˆ s k −N , o k −N 

)]
= v H 

(
ˆ s k , o k 

)
(46) 

or all ˆ s k ∈ S 0 , and 

rg min 

ˆ s k 

ˆ v N 
(

ˆ s k , o k 

)
= arg min 

ˆ s k 

v H 
(

ˆ s k , o k 

)
(47) 
t

6 
elivers ˆ s 
�,N 
k ( o k ) = s � 

k 
( o k ) . �

Note that the horizon H is the length of the measurement his- 

ory used in the modified stage cost in the MHE scheme (43) with 

 horizon of length N. In the next section, we will describe how 

his measurement history of length H can be used in the proposed 

onvex neural network to modify the MHE stage cost in practice. 

t is worth noting that the horizon H may be selected larger than 

to capture the modified stage cost accurately. However, one can 

hoose a small length of H in order to provide an acceptable trade- 

ff between the computational effort and the approximate value 

aptured from the neural network. 

. Proposed learning-based MHE-MPC scheme 

.1. Practical implementation 

In what follows, we provide a practical version of the modified 

HE scheme (43) . We then discuss the approaches in order to ap- 

roximate both the arrival cost Z k −N and the modified stage cost 
ˆ 
 

(
ˆ s i , o i 

)
. 

.1.1. Learning-based arrival cost 

To approximate the arrival cost, we adopt a common approach 

o that the arrival cost takes the form of a quadratic function as 

ollows: 

ˆ 
 k −N = 

∥∥ ˆ s k −N − ˜ s k −N 

∥∥2 

�−1 
k −N 

(48) 

here ˜ s k −N is obtained as: 

  k −N = s � k −N| k −1 (49) 

ote that s � 
k −N| k −1 

is the first element of the horizon window at 

he previous physical time k − 1 . The prior weighting �k −N is ob- 

ained from the Kalman filter covariance update rule [30] : 

k +1 = A k �k A 

� 
k − A k �k C 

� 
k 

(
C k �k C 

� 
k + R 

)−1 
C k �k A 

� 
k (50) 

nitialized with the covariance matrix of the initial state �0 . Let 

f 
(

ˆ s , a 
)

be a nonlinear model as a deterministic approximation of 

2) . The matrices A k and C k are then obtained by linearization as 

ollows: 

 k = 

∂ f 

∂ ̂  s 
| ˆ s k | k −1 

, C k = 

∂h 

∂ ̂  s 
| ˆ s k | k −1 

(51) 

nd R is the covariance of the output noise νk where the mea- 

urements are delivered as y k = h ( ̂ s k ) + νk . However, the approach 

etailed above is based on classic Kalman filtering that may not 

e the best choice from a parameterization standpoint where the 

odel is imperfect. More specifically, the update rule (50) cannot 

eliver a perfect approximation of � since the matrices A, C cap- 

ured, respectively, from the dynamical model f and the measure- 

ent model h are imperfect. To tackle this problem, we propose to 

dopt reinforcement learning in order to adjust the entries of the 

atrices A 

θ
k 
, C θ

k 
and the covariance matrix R θ used in (50) , where

will be parameters that can be adjusted via RL. Then, the param- 

terized covariance update rule reads as: 

k +1 = A 

θ
k �k 

(
A 

θ
k 

)� 

− A 

θ
k �k 

(
C θk 

)� (
C θk �k 

(
C θk 

)� + R θ

)−1 

C θk �k 

(
A 

θ
k 

)� 
(52) 

t is worth noting that the policy π captured from the MHE-MPC 

cheme will have an extra state �k , which is obtained from the 

bove dynamics. More specifically, �k has its own dynamics in the 

HE scheme such that the state estimation and the policy deliv- 

red, respectively, from the MHE and MHE-MPC will depend on 

k . We then consider the effect of �k on the policy gradient in an 

HE/MPC-based reinforcement learning detailed in the next sec- 

ion. 
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.1.2. Learning-based MHE stage cost 

According to Theorem 3 , a finite stochastic MHE scheme can 

eliver a true state estimation using an imperfect model of the real 

ystem by adopting a cost modification. 

emark 2. In this paper, we denote the true state estimation (per- 

ect estimation) by the estimation captured from the FIE problems 

ith the correct model in (30) and (39) . 

In this theorem, we have proposed to construct a modified 

tage cost (41) based on the H-step value function (39) , and we 

ractically propose to approximate this modified stage cost. To this 

nd, let us consider the MHE scheme (43) and the value function 

39) where ˆ � i = δˆ s i 
(·) . We then observe that all expected arrival 

ost functions Z i −H , Z i −H−1 , i = k − N + 1 , · · · , k including entire his-

ory can be transferred to the arrival cost Z k −N . More precisely, the 

ime step i used in the modified stage cost of the MHE scheme 

43) is in the interval i = k − N + 1 , · · · , k , and this stage cost de-

ned in (41) is basically constructed based on the value functions 

 

H 
(

ˆ s i , o i 

)
and v H 

(
ˆ s i −1 , o i −1 

)
captured from (39) . The corresponding 

rrival costs then read as Z i −H and Z i −H−1 for i = k − N + 1 , · · · , k .

ence, the modified stage cost can practically be constructed based 

n a finite history as follows: 

ˆ 
 

(
ˆ s i , o 

H 
i 

)
= L 

(
ˆ s i , a i −1 , y i 

)
+ L h 

(
ˆ s i −H, ··· ,i −1 , o 

H 
i −1 

)
(53) 

here the cost term L h is constructed based on a finite history and 

 

H 
i 

= col { y i −H+1 , . . . , y i , a i −H , . . . , a i −1 } . We then propose to some- 

ow approximate this part of the modified stage cost ˆ L in practice. 

As one practical solution to approximate L h , one can use a Neu- 

al Network (NN) as follows: 

ˆ 
 θ

(
ˆ s i , o 

H 
i 

)
≈ L θ0 

(
ˆ s i , a i −1 , y i 

)
+ L NN ( Y i , θNN ) (54) 

here L θ0 
is a parameterized least-squares cost at the current time 

tep i used for an output noise MHE scheme [21] and 

 i = col 
{

ˆ s i −H, ··· ,i −1 , o 

H 
i −1 

}
 

H 
i −1 = col { y i −H , . . . , y i −1 , a i −H−1 , . . . , a i −2 } (55) 

ote that o 

H 
i −1 

∈ O 

H ⊂ O is regarded as a finite history of the mea- 

urements and Y i ∈ R 

n y is labeled the Neural Network (NN) in- 

ut. To adjust the parameters θ0 , θNN , we will use a reinforcement 

earning algorithm based on the policy gradient method. 

Neural networks are well-known universal function approxima- 

ors so an NN including three layers is capable to approximate any 

ontinuous multivariate function down to prescribed accuracy, if 

here are no constraints on the number of neurons [34] . 

We then propose to use a convex class of NNs to approximate 

 NN in the MHE stage cost (54) . While enforcing convexity in the 

HE stage cost does not imply that the overall MHE problem is 

onvex, using a non-convex stage cost will often require signifi- 

antly more caution in providing an initial guess for the NLP solver 

ackling the MHE scheme than if a convex stage cost is used. To 

reserve the convexity of the MHE stage cost function (54) , we 

hen propose to compute L NN using an Input Convex Neural Net- 

ork (ICNN). In this type of neural network, the partial weights 

eet certain constraints such that the output of the ICNN is a con- 

ex function of the input [1,5] . Compared to building conventional 

eural networks, ICNN structures must meet two additional re- 

uirements: (1) activation functions are convex and non-decreasing 

2) the weights of NN are constrained to be non-negative. As a 

orm of ICNN, we choose a Fully Input Convex NN (FICNN) architec- 

ure since the scalar output of the network is convex with respect 

o all inputs. 

Let us consider a l-layer FICNN over Y i in order to estimate 

 NN ( Y i , θNN ) as follows: 

 j+1 = g j 
(
W 

(z) 
j 

z j + W 

(y ) 
j 

Y i + b j 
)
, (56a) 
e

7 
 NN ( Y i , θ ) = c · z l (56b) 

.t. W 

(z) 
1: l−1 

≥ 0 , W 

(z) 
0 

≡ 0 , z 0 ≡ 0 (56c) 

here j = 0 , . . . , l − 1 and z j ∈ R 

n y ×1 denotes the middle lay-

rs (layer activations). The neural network weights are W 

(z) 
j 

∈ 

 

n y ×n y , W 

(y ) 
j 

∈ R 

n y ×n y , b j ∈ R 

n y ×1 , c ∈ R 

1 ×n y . Note that c is consid-

red as the connection weight between the output layer and the 

ast middle layer. Then, θNN = 

{ 

W 

(z) 
1: l−1 

, W 

(y ) 
0: l−1 

, b 0: l−1 , c 

} 

are the 

odifiable weights, and g j are nonlinear activation functions (con- 

ex and non-decreasing, e.g., Rectified Linear Unit ReLU ). 

Then, the reformulated MHE scheme (43) reads as: 

ˆ 
 

N 
(

ˆ s k , o k 

)
:= γ N 

E ˆ s k −N ∼ ˆ � k −N 

[
ˆ Z k −N 

(
ˆ s k −N , o 

H 
k −N 

)]
+ 

k ∑ 

i = k −N+1 

γ k −i 
E ˆ s i ∼ ˆ � i 

[
ˆ L θ

(
ˆ s i , o 

H 
i 

)]
(57a) 

  

�,N 
k ∈ arg min 

ˆ s k 

ˆ v N 
(

ˆ s k , o k 

)
(57b) 

here ˆ � i −1 = 

ˆ T −1 
a i −1 ̂

 � i , ˆ � k = δˆ s k 
(·) . 

In the remainder of this section, we practically formulate a de- 

erministic version of the above MHE scheme (57) with a fully pa- 

ameterized cost function including arrival and stage cost. We then 

ropose a parameterization for the MPC scheme to deliver a policy 

pproximation required in the context of policy gradient RL. 

.2. Deterministic MHE scheme with adjustable cost 

As a result of Theorem 3 , a finite optimization-based state es- 

imation scheme with an imperfect model can deliver a true state 

stimation by modifying the stage and arrival costs. As a practical 

pproach, we proposed to leverage NN in approximating the mod- 

fied stage cost function (54) . One can also choose a parameteri- 

ation method on the arrival cost detailed in the previous section. 

inally, a reinforcement learning algorithm is used to adjust all pa- 

ameters. 

Note that the theory proposed is very generic so that the ac- 

uired result holds e.g., for the states of a stochastic dynamical 

odel being estimated by an MHE scheme based on an inaccu- 

ate deterministic model. Hence, the transition model ˆ ζ
[

ˆ s i +1 | ̂  s i , a i 
]

rivially includes deterministic models as: 

ˆ 
[

ˆ s i +1 | ̂  s i , a i 
]

= δ
(

ˆ s i +1 − ˆ f MHE 
(

ˆ s i , a i 
))

(58) 

e then propose to formulate the following parameterized MHE 

cheme: 

 

� 
k −N MHE , ... ,k 

= arg min ˆ s γ
N MHE ˆ Z θ

(
ˆ s k −N MHE 

, ̃  s 
)

+ 

k ∑ 

i = k −N MHE +1 

γ k −i ˆ L θ
(

ˆ s i , o 

H 
i 

)
(59a) 

 . t . ˆ s i +1 = 

ˆ f MHE 
θ ( ̂ s i , a i ) (59b) 

here ˆ Z θ = 

∥∥ˆ s k −N MHE 
− ˜ s 

∥∥2 

�k 
and �k is obtained from the parame- 

erized updating rule (52) and ˜ s is the available estimation s � 
k −N MHE 

t time k − 1 . Note that in the case of linear systems, another solu-

ion to adjust the arrival cost is to directly modify the arrival cost 

y adjusting the corresponding positive weight matrix �θ using 

.g., Semi-Definite Programming (SDP). 
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.3. Parameterized MPC scheme 

Let us define the closed-loop performance of a parameterized 

olicy πθ delivered from an MHE-MPC scheme for a given stage 

ost L ( y k , a k ) as the following total expected cost: 

 ( πθ ) = E πθ

[ ∞ ∑ 

k =0 

γ k L ( y k , a k ) 

∣∣∣∣a k = πθ (s � k ) 

]
(60) 

here the expectation E πθ
is taken over the distribution of the 

arkov chain in closed-loop with policy πθ . The cost L ( y k , a k ) 
eads as a baseline cost (RL stage cost), which is a function of mea-

urable states and actions at the current time k . It is worth not-

ng that the initial conditions are defined by the environment (real 

DP), e.g., in the simulation section, the MDPs for test cases 1 and 

 are defined with fixed initial conditions while the third test case 

as an MDP with random initial conditions. We then seek the op- 

imal policy parameters as follows: 

� = arg min 

θ
J ( πθ ) (61) 

As a learning-based control approach in this paper, we propose 

o use a parameterized MPC scheme as a policy approximation in 

rder to deliver πθ required in a policy gradient method. The MPC- 

ased reinforcement learning then allows us to leverage the ca- 

ability of MPC in handling the state-input constraints. Although 

 constraint violation may occur due to an imperfect MPC model, 

he constraints are finally satisfied by letting RL adjust the whole 

PC scheme, e.g., the constraints can be adjusted in the case of 

onstraint violation. 

For a given estimated state s � 
k 

obtained from the MHE scheme, 

he policy delivered by a parameterized MPC scheme is 

θ

(
s � k 

)
= u 

� 
0 

(
s � k , θ

)
(62) 

here u 

� 
0 

is the first element of the control input sequence u 

� de- 

ivered by the following parameterized MPC scheme: 

in 

 , u ,σ
γ k + N MPC 

(
T θ (x k + N MPC 

) + w 

� 
f σk + N MPC 

)
+ 

k + N MPC −1 ∑ 

i = k 
γ i 

(
l θ (x i , u i ) + w 

� σi 

)
(63a) 

 . t . x i +1 = 

ˆ f MPC 
θ (x i , u i ) , (63b) 

 k = s � k , (63c) 

 (u i ) ≤ 0 , (63d) 

 θ (x i , u i ) ≤ σi , h 

f 

θ
(x k + N MPC 

) ≤ σk + N MPC 
(63e) 

k, ... ,k + N MPC 
≥ 0 (63f) 

here l θ and T θ are the parameterized stage cost and terminal 

ost, respectively. Note that the imperfect MPC model ˆ f MPC is pos- 

ibly but not necessarily different from the MHE model. We label 

 θ the mixed constraints, g the pure input constraints, and h 

f 

θ
the 

erminal constraints. The MPC initial conditions in (63c) are de- 

ivered by the MHE scheme at the current time instant k . To relax

he inequality constraints, an 	 1 relaxation of the mixed constraints 

63e) is introduced. An exact penalty is then imposed on the corre- 

ponding slack variables σk with large enough weights w , w f such 

hat the MPC scheme will not be infeasible under some constraint 

iolations, which appears due to inaccurate MPC model, uncertain- 

ies and disturbances. 
8 
. Policy gradient RL with MHE-MPC 

In this section, we propose a new observer-based RL framework 

ased on Deterministic Policy Gradient (DPG), MPC, and MHE to 

eal with the partially observable and imperfect dynamics. 

.1. Compatible deterministic actor-critic 

In the context of DPG-based RL algorithms, the policy parame- 

ers θ can be directly optimized by the gradient descent step such 

hat the best-expected closed-loop cost (a.k.a policy performance 

ndex J) can be captured by applying the policy πθ . More specifi- 

ally, the policy parameters θ can be updated as follows: 

← θ − α∇ θ J(πθ ) (64) 

or some α > 0 small enough as the step size. In the context 

f hybrid controller/observer scheme MHE-MPC, the input sig- 

al can be interpreted as a sequence of measurements ō k = 

ol 
{

a k −N MHE , ... ,k −1 , y k −N MHE , ... ,k 

}
∈ O at the physical time k . Then, the 

ntermediate variable s � 
k 

is delivered by the MHE scheme based on 

he history of the measurements and fed to the MPC scheme to de- 

iver the control policy. Let us assume that the measurement his- 

ory ō k of length N o is sufficient to determine the statistics of the 

ext output y k +1 such that it remains unaffected for any N̄ o > N o . 

t follows that ō k is a Markov state. We then consider an input- 

utput MDP based on ō k rather than on the state of the real sys- 

em, and consequently, this MDP can be described based on the 

tate estimation s � 
k 

as an implicit function of ō k . Therefore, the 

tate estimation s � 
k 

also reads as a Markov state, and one can use 

t in the state (-action) value functions. Let us define the policy 

erformance index by the following expected value: 

 ( πθ ) = E ō k ∼p k 

[
Q πθ

(
s � k , πθ

(
s � k 

))]
= E ō k ∼p k 

[
V πθ

(
s � k 

)]
(65) 

here p k is the measurement distribution at the current physi- 

al time k , e.g., a Gaussian distribution. Note that we remove ō k 

rom the arguments of the state (-action) value functions Q πθ
and 

 πθ
above as s � 

k 
is implicitly constructed (delivered from the MHE 

cheme (59) ) based on the history ō k . It also follows that the con- 

rol policy πθ

(
s � 

k 

)
= u 

� 
0 

(
s � 

k 
, θ

)
captured from the MHE-MPC reads 

s an implicit function of the measurement history. The action- 

alue function Q πθ
is then defined as follows: 

 πθ

(
s � k , a k 

)
= L ( y k , a k ) + γ E ζ

[
V πθ

(
s � k +1 

)| s � k , a k 
]

(66) 

here the expectation E ζ is taken over the distribution of the 

arkov chain (2) . Based on the proposed DPG theorem by [27] and 

he fact that both the πθ and Q πθ
are functions of s � 

k 
, the policy

radient equation is described as follows: 

 θ J(πθ ) = E πθ

[∇ θπθ (s � k ) ∇ a k Q πθ
(s � k , a k ) | a k = πθ

]
(67) 

here the expectation E πθ
is taken over the distribution of the 

arkov chain resulting from the real system in closed-loop with 

θ . To represent the effect of the parameterized MHE upon the 

olicy gradient, the sensitivity of the policy w.r.t θ can be updated 

uch that the new policy gradient is described by the following ex- 

ectation: 

 θ J(πθ ) = E πθ

[ 
�∇ a k Q πθ

(s � k , a k ) | a k = πθ

] 
(68) 

here the Jacobian matrix � is obtained by the following chain 

ule: 

= ∇ θπθ + 

(∇ θ s � k + ∇ θ�k ∇ �k 
s � k 

)∇ s � 
k 
πθ (69) 

ence, the Jacobian matrix above is constructed based on both the 

HE and MPC sensitivities where the optimal policy is delivered 

y a combined MHE-MPC scheme. In this paper, we adopt a com- 

atible deterministic actor-critic algorithm [27] in which the action- 

alue function Q πθ
(s � 

k 
, a k ) can be replaced by a class of compatible
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unction approximator Q 

w (s � 
k 
, a k ) such that the policy gradient is 

reserved. Therefore, the compatible function for a deterministic 

olicy πθ delivered by the parameterized MHE-MPC scheme can 

e expressed as follows: 

 

w = ( a k − πθ ) 
� �� w + V 

ν
(
s � k 

)
(70) 

he first term in the above compatible function as the critic part 

s an estimation for the advantage function and the second term 

stimates a value function for the history of the measurements 

elivered as a summarized variable s � 
k 

by the MHE scheme. Both 

unctions can be computed by the linear function approximators 

s follows: 

 

ν
(
s � k 

)
= ϒ

(
s � k 

)� 
ν, (71a) 

 

w 

(
s � k , a k 

)
= �

(
s � k , a k 

)� 
w (71b) 

here ϒ
(
s � 

k 

)
is the summarized measurement feature vector in 

rder to constitute all monomials of the history of the measure- 

ents with degrees less than or equal to 2. The vector �
(
s � 

k 
, a k 

)
:= (

a k − πθ

(
s � 

k 

))
includes the state-action features. Considering (70) , 

he policy gradient (68) is then rewritten as follows: 

 θ J(πθ ) = E πθ

[
��� w 

]
(72) 

n this paper, the parameterized policy in the context of policy gra- 

ient RL is proposed to be captured by the MPC scheme (63) . To

valuate the policy gradient (72) , one needs to calculate some sen- 

itivities upon the MPC and MHE schemes in order to compute the 

acobian matrix �. Hence, the Jacobian matrices ∇ θπθ and ∇ s � 
k 
πθ

an be computed by the sensitivity analysis for the parameterized 

PC scheme while the gradient ∇ θ s � 
k 

and the Jacobian matrices 

 θ�k , ∇ �k 
s � 

k 
are obtained as sensitivity terms for the parameter- 

zed MHE scheme. 

.2. Sensitivity analysis and LSTD-based DPG 

.2.1. Sensitivity computation 

We describe next how to compute the sensitivities (gradients) 

eeded in the proposed policy gradient RL framework based on 

HE-MPC. To that end, let us define the Lagrange functions ˆ L θ , L θ

ssociated to the MHE and MPC schemes (59), (63) as follows: 

ˆ 
 θ

(
ˆ z 
)

= 

ˆ �θ + ̂

 λ� ˆ G θ (73) 

 θ ( z ) = �θ + λ� G θ + μ� H θ (74) 

here �θ and 

ˆ �θ are the total parameterized costs of the 

PC and MHE schemes, respectively. The inequality constraints of 

63) are collected by H θ while G θ and 

ˆ G θ gather, respectively, the 

quality constraints in the MPC and MHE schemes. We then la- 

el λ, ̂  λ the Lagrange multipliers associated with the equality con- 

traints G θ , ˆ G θ of the MPC and MHE, respectively. Variables μ are 

he Lagrange multipliers associated with the inequality constraints 

f the MPC scheme. Let us label � = { x , u , σ } and 

ˆ � = ̂

 s the pri- 

al variables for the MPC and MHE, respectively. The associated 

rimal-dual variables then read as z = { �, λ, μ} and 

ˆ z = 

{ 

ˆ �, ̂  λ
} 

. 

The sensitivity of the policy delivered by the MPC scheme 

63) w.r.t policy parameters and the sensitivity of the estimated 

tate associated with the MHE scheme (59) can be obtained via 

sing the Implicit Function Theorem (IFT) on the Karush Kuhn 

ucker (KKT) conditions underlying the parametric NLP. Assuming 

hat Linear Independence Constraint Qualification (LICQ) and Sec- 

nd Order Sufficient Condition (SOSC) hold [20] at z � and 

ˆ z � , then, 

he following holds: 

∂z � = −∂κθ
−1 ∂κθ

, (75a) 

∂θ ∂z ∂θ

9

∂ ̂  z � 

∂θ
= −∂ ̂  κθ

∂ ̂  z 

−1 
∂ ̂  κθ

∂θ
(75b) 

here 

θ = 

⎡ 

⎣ 

∇ �L θ

G θ

diag ( μ) H θ

⎤ 

⎦ , ˆ κθ = 

[∇ ˆ �
ˆ L θ

ˆ G θ

]
(76) 

re the KKT conditions associated with the MPC and MHE schemes, 

espectively. As πθ and s � 
k 

are, respectively, part of z � and 

ˆ z � . Then, 

he sensitivity of the MPC policy ∇ θπθ and the sensitivity of the 

HE solution ∇ θ s � 
k 

required in (72) can be extracted from gradi- 

nts ∂z � 

∂θ
and 

∂ ̂ z � 

∂θ
, respectively. 

.2.2. LSTD-based policy gradient 

In the context of compatible DPG, one can evaluate the opti- 

al parameters w and ν of the action-value function approxima- 

ion (70) as solutions of the following Least Squares (LS) problem: 

in 

w ,ν
E 

[(
Q πθ

(s � k , a k ) − Q 

w (s � k , a k ) 
)

2 
]
, (77) 

n the context of RL, the Least-Squares Temporal Difference (LSTD) 

lgorithms offer efficient use of data and tend to converge faster 

han other methods [9] . The LSTD update rules for a policy gradi- 

nt RL are then obtained as follows: 

= �−1 
ν b ν, (78a) 

 = �−1 
w 

b w 

, (78b) 

← θ − αb θ (78c) 

here the matrices �(·) and the vectors b (·) are calculated by tak- 

ng expectation ( E m 

) over m episodes as follows: 

ν = E m 

[ 

T f ∑ 

k =1 

[ 
ϒ

(
s � k 

)(
ϒ

(
s � k 

)
− γϒ

(
s � k +1 

))� ] ] 

(79a) 

w 

= E m 

[ 

T f ∑ 

k =1 

[ 
�

(
s � k , a k 

)
�

(
s � k , a k 

)� ] ] 

, (79b) 

 ν = E m 

[ 

T f ∑ 

k =1 

ϒ
(
s � k 

)
L (y k , a k ) 

] 

, (79c) 

 w 

= E m 

[ 

T f ∑ 

k =1 

[ (
L (y k , a k ) + γV 

ν
(
s � k +1 

)
− V 

ν
(
s � k 

))
�(s � k , a k ) 

] ] 

, 

(79d) 

 θ = E m 

[ T f ∑ 

k =1 

��� w 

]
(79e) 

here T f is the final time instant at the end of each episode. 

. Simulation results 

In this section, we illustrate the performance of the proposed 

earning-based control and estimation algorithm to deal with three 

ypes of problems. In the first test case, we consider a linear sys- 

em evaluating a model mismatch problem where the MHE model 

n a combined MHE-MPC scheme is wrong and cannot capture the 

eal system. In the second test case, we show that the proposed 
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Fig. 1. Real system behavior and state estimations for a set-point tracking ( x d 1 = 0 . 8 and x d 2 = 0 ) in the presence of the model mismatch on the MHE. The solid lines of blue 

color indicate the states while the estimations are indicated as dashed lines of red color. The correct states and estimations without model mismatch are shown in green. 
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ramework achieves a better closed-loop performance for the con- 

rol of systems using inaccurate models where a reduced model is 

sed for both the control and estimation goals. We implement our 

lgorithm for a smart building in order to maintain the room tem- 

erature in its comfort range even if there is no sufficient knowl- 

dge about the building dynamics. Finally, we investigate the pro- 

osed learning-based framework applied to a Continuous Stirred 

ank Reactor (CSTR) as an example with nonlinear dynamics. 

.1. Test case 1 

In this case study, we consider a model mismatch upon the 

HE and evaluate a set-point tracking using an MHE-MPC for a 

wo states linear system x k +1 = A x k + Bu k where x 1 is selected as

easurement. The real system and MPC model are chosen as: 

 = 

[
1 0 . 25 

0 1 

]
, B = 

[
0 . 0312 

0 . 25 

]
, (80) 

hile the MHE model is selected as: 

ˆ 
 k +1 = 

[
0 . 9 0 . 35 

0 1 . 1 

]
ˆ x k + 

[
0 . 0813 

0 . 2 

]
u k (81) 

We then use the MHE scheme (59) where the arrival cost is 

djusted based on the updating rule (52) and the stage cost is ap- 

roximated based on the parameterization (54) . The input convex 

N has two hidden layers with 15 neurons and both the MHE and 

PC horizons are set to 8. We use a smooth version of ReLU as an

ctivation function g j in ICNN (56) . 

 j (x ) = log ( 1 + exp (x ) ) (82) 

ote that in this example only the MHE scheme is learned by RL 

nd the MPC scheme is not parameterized. Fig. 1 shows that the 

odel mismatch on the MHE scheme can affect both the estima- 

ion performance and the set-point tracking performance. Indeed, 

he MHE model mismatch causes a large estimation error on x 2 
nd the set-point 0.8 on x cannot be tracked. As it is shown in
1 

10 
ig. 2 , the mentioned problems due to model mismatch have been 

olved and a correct state estimation is delivered where the pro- 

osed modification of the MHE cost is implemented. Fig. 3 shows 

he learning progress including the system states x 1 , x 2 and their 

stimations during 60 RL steps such that the closed-loop perfor- 

ance J(πθ ) is improved by the MHE cost modification, and the 

orrect state estimations shown in Fig. 2 are delivered. 

.2. Test case 2 

.2.1. Building model 

Let us select a model of the real system of a house floor heat- 

ng system connected to a ground source-based heat pump shown 

n Fig. 4 . We consider a dynamical model with four states for the 

uilding as the real system under control, which is described by a 

et of ordinary differential equations as follows [24] : 

 wa 
dT wa 

dt 
= K wa,a ( T a − T wa ) + K wa,r ( T r − T wa ) (83a) 

 r 
dT r 

dt 
= K wa,r ( T wa − T r ) + K f,r 

(
T f − T r 

)
(83b) 

 f 

dT f 

dt 
= K f,r 

(
T r − T f 

)
+ K b 

(
T w 

− T f 
)

(83c) 

 w 

dT w 

dt 
= K b 

(
T f − T w 

)
+ ηW c (83d) 

here the control input u = W c is the power used by the heat 

ump. The states of the real system x r = 

[
T wa , T r , T f , T w 

]� 
are 

abeled the wall temperature, the room temperature, the floor 

pavement) temperature, and the water pipeline temperature, 

espectively. The coefficients C wa , C r , C f , and C w 

read as the cor-

esponding heat capacities of the above-mentioned temperatures. 
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Fig. 2. Real system behavior and state estimations for a set-point tracking ( x d 1 = 0 . 8 and x d 2 = 0 ) where the MHE scheme is modified. The solid lines of blue color indicate 

the states while the estimations are indicated as dashed lines of red color. The correct states and estimations without model mismatch are shown in green. 

Fig. 3. Closed-loop performance and evolution of states and their estimations during reinforcement learning. 
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e label K wa,a , K wa,r , K f,r and K b the overal heat transfer coef-

cients between the { T wa , T a } wall-ambient, { T wa , T r } wall-room, 

T f , T r 
}

floor-room and 

{
T f , T w 

}
floor-water pipeline, respectively. 

The Coefficient of Performance (COP) η for heat pumps varies 

ith type, outdoor ground temperature, and condenser tempera- 

ure. In this paper, we then adopt a stochastic COP shown in Fig. 5

o make the simulations more realistic. 
11 
To implement a POMDP scenario, we assume that the building 

ynamics can be modeled by a reduced model considering the 

oom and water pipeline temperatures ( T r , T w 

) as the only measur- 

ble states used in the state-space model. Hence, the dynamics of 

all inertia and floor are removed from the real system (83) , and 

hen a partially observable model with two states is adopted for 

oth the MHE and MPC schemes. To reduce the order of a state- 
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Fig. 4. Building climate control [13] using a heat pump floor heating system. The dashed line represents the floor heating pipelines. 

Fig. 5. Stochastic COP of heat pump sampled from the last RL step. 
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pace model captured from the real model of the building (83) , 

e propose to use ÿmodred ÿ with option ÿMatchDC ÿ as a built-in 

unction in MATLAB. By eliminating the states T wa , T f from the real 

ystem, the frequency response of the reduced model is affected 

o that it can no longer follow the real response shown in Fig. 6 . 

The parameters of the building model adopted in this simula- 

ion are given in the following table. 

.2.2. Simulation settings 

As we propose to adopt a reduced model of the real system 

83) as a POMDP scenario, we label x m = [ T r , T w 

] 
� the model states 

measurements) used in both the MHE and MPC schemes. We 

hen use a parameterized MHE scheme as (59) to estimate the 

odel states from the noisy measurements ȳ = x m . The stage cost 
ˆ 
 θ

(
ˆ s i , o 

H 
i 

)
in this MHE scheme consists of two cost terms expressed 

n (54) so that L NN ( Y i , θNN ) is approximated using an input convex 

eural network defined in (56) . This NN consists of two hidden 
12 
ayers and each layer has 26 neurons where a smooth version of 

eLU is used. The cost term L θ0 
is selected as a least square prob-

em parameterized as follows: 

 θ0 
= 

∥∥ȳ i − h 

(
ˆ x 

m 

i 

)∥∥2 

Q θ
+ G � θ ˆ x 

m 

i (84) 

ote that the second term in the cost above reads as a gradi- 

nt modification term. The adjustable weighting matrix Q θ in the 

quation above is tuned using RL. As a requirement, this weight- 

ng matrix must be symmetric and positive semidefinite. However, 

he RL steps delivered by the LSTD-based DPG do not necessarily 

espect this requirement, and we need to enforce it via constraints 

n the RL steps throughout the learning process. To address this 

equirement, we then formulate a Semidefinite Programming (SDP) 

s the following least squares optimization problem: 

in 

�θ

1 

2 

‖ 

�θ‖ 

2 − d � �θ (85a) 
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Fig. 6. Bode plot of the frequency response. 
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F

 . t . Q θ ( θ + �θ) ≥ 0 , (85b) 

W 

(z) 
1: l−1 

≥ 0 (85c) 

here θ = { Q θ , W 

(z) 
1: l−1 

} and d = −αb θ . We assume that the weight-

ng matrix Q θ is a linear function of θ . Then, it is updated at ev-

ry RL step (epoch) due to updating �θ , which is a solution of 

he above SDP scheme. Note that the second term in the objective 

unction (85a) ensures that �θ is obtained in the direction of the 

olicy gradient at every RL step. 

To keep the room temperature in a comfortable range, we for- 

ulate an economic MPC scheme as follows: 

min 

x m ,u,σ
γ k + N MPC 

(
w f σk + N MPC 

)
+ 

k + N MPC −1 ∑ 

i = k 
γ i ( p u,i u i + wσi ) (86a) 

 . t . x 

m 

i +1 = 

ˆ f MPC (x 

m 

i , u i ) , (86b) 

x 

m 

k = 

ˆ x 

�,m 

k 
, (86c) 

θ + T min 
r,i − σi ≤ T r,i ≤ θ̄ + T max 

r,i + σi , (86d) 

�u min ≤ �u i ≤ �u max , (86e) 

u min ≤ u i ≤ u max , (86f) 

σk, ... ,k + N MPC 
≥ 0 (86g) 

here ˆ x �,m 

k 
is the current state estimation delivered by the ap- 

roximate MHE scheme, p u is the cost coefficient for the electric- 

ty prices, and 

ˆ f MPC is captured from a model reduction approach. 

o adjust the constraints upon the room temperature, we consider 

wo parameters ( θ, θ̄ ) and let RL tune them. As a result of the the-

rems developed in this paper, we propose to modify the stage 

ost of the MHE scheme with a reduced model to tackle POMDPs. 
13
o that end, we let RL adjust the NN weights θNN and some param- 

ters of the first stage cost term L θ0 
including inverse of the covari- 

nce matrix Q θ and gradient term G θ in (84) . Hence, all RL param-

ters θ = 

{
θNN , Q θ , G θ , θ, θ̄

}
are adjust ed by the proposed LSTD- 

ased DPG reinforcement learning. We adopt a baseline stage cost 

n the proposed LSTD-based RL algorithm as follows: 

 (y k , a k ) = p u,k .a k + w. max 
(
0 , h 

(
T r,k 

))
(87) 

here a k = πθ

(
ˆ x �,m 

k 

)
= u 

� 
0 

(
ˆ x �,m 

k 
, θ

)
with the possible addition of 

ccasional random exploratory moves. Note that u 

� 
0 is the first 

lement of the control input sequence u 

� delivered by the MPC 

cheme (86) . We use the weight w = 100 where h 
(
T r,k 

)
collects the

nequality constraints upon indoor temperature T min 
r,k 

≤ T r,k ≤ T max 
r,k 

. 

We choose a sampling time 15 min and a forecast 24 h for the

mbient disturbances and electricity prices. Therefore, the predic- 

ion and estimation horizons ( N MPC , N MHE ) are set to 96. The am-

ient temperature and electricity prices are forecasted for 10 days 

tarting from the first day of January 2021 in Trondheim, Norway 

here the data used in this simulation is provided by Nord Pool 

pot as an electricity market operator. 

.2.3. Discussion 

In practice, it is very difficult to make an accurate model of 

 building for the model-based control approaches, i.e., an MPC 

cheme since there are some complex dynamics and uncertainties 

hat may not be captured. To address this complexity, a common 

olution is to adopt some simplified and reduced models in this 

ontext. Although these simplified models are useful to be used in 

n MPC scheme in order to reduce computational complexity, they 

an affect the control performance in a building climate control 

ystem. In this simulation, we use a super-simplified and realistic 

uilding model where its dynamics include only two measurable 

tates T r , T w 

while the aim is to control the indoor temperature in

 real model (83) . As it is shown in Fig. 7 , the first evolution (No

earning is used) of T r in blue color cannot perfectly respect the 

ower variable constraint and there is a heavy violation since the 

odel is not truly captured. 

The evolution of estimated T r is depicted in Fig. 8 in red color 

nd it can be observed that the first evolution of this estima- 

ion is not able to follow the first evolution of the real T r in blue

olor. This estimation error, where there is still no adopted learn- 

ng mechanism upon MHE and MPC, can be clearly observed in 

ig. 10 . To address these problems induced by adopting a reduced 
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Fig. 7. Evolution of the building temperatures T r , T f , T wa (black color) and trained optimal policy u where both the estimator (MHE) and controller (MPC) use an imperfect 

model. The comfort T r is captured (green color) after 185 learning steps (epoch) for the adjustment of MHE and MPC schemes. 

Fig. 8. Evolution of the real states as measurements (temperatures T r , T w in blue color) and their estimations (red color) used in the inaccurate models of MHE and MPC as 

POMDPs. The estimations in light blue color are captured from the trained MHE estimator. 
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i

odel, we let an LSTD-based DPG reinforcement learning adjust 

he parameters of both the MHE (cost modification) and MPC (con- 

traint adjustment) schemes shown in Fig. 9 in order to capture a 

orrect state estimation and deliver a learned policy to tackle this 

odel inaccuracy. 

To conclude the proposed learning-based state estimation and 

ontrol, we can observe that the proposed theorem of cost modi- 

cation in an MHE scheme with imperfect model works since we 

chieve a perfect closed-loop performance by applying that theo- 

em in order to modify the MHE cost depicted in Fig. 9 . It is worth
14 
oting that, the learned policy is optimally captured from the MPC 

cheme so that the heat pump power has its highest value in lower 

lectricity prices and it has a minimum peak for times that the 

lectricity is expensive shown in Fig. 7 . 

.3. Test case 3 

.3.1. CSTR Nonlinear model 

In this section, the proposed learning-based MHE-MPC scheme 

s applied to a Continuous Stirred Tank Reactor (CSTR), where the 
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Fig. 9. Some parameters of the MHE/MPC and the closed-loop performance J(πθ ) over reinforcement learning steps. 

Fig. 10. The building indoor temperature before and after learning the estimator and controller. 

d
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m

a  

u  

c  

f

V

C

ynamical system is nonlinear and may not be modeled accurately. 

n this chemical reactor, the reaction (A → B ) is accomplished by 

eans of an irreversible and exothermic chemical reaction, and the 

im is to control the concentration of A , C a , and the reaction vol-

me, V , by manipulating the output process flow rate, q s , and the

oolant flow rate, q c , see [22] . The CSTR dynamics are described as
15 
ollows: ( Table 1 ) 

˙ 
 (t) = q o − q s (t) , (88a) 

˙ 
 a (t) = 

q o 

V (t) 
( C a o − C a (t) ) − k 0 e 

−E 
RT (t) C a (t) , (88b) 
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Fig. 11. Evolution of the CSTR states and their estimations during the learning progress. The system states and their estimations at the learning stage are shown as black 

and green lines, respectively. The orange circles and blue lines, respectively, represent the correct state estimations and the system states delivered after 800 RL steps. The 

set points are shown as red dashed lines. 

Table 1 

Building parameters. 

C wa 24 . 2 × 10 6 [ J 
K 

] K wa,a 56[ W 
K 

] 

C r 6 × 10 6 [ J 
K 

] K wa,r 386[ W 
K 

] 

C f 24 . 8 × 10 6 [ J 
K 

] K f,r 594[ W 
K 

] 

C w 20 . 7 × 10 6 [ J 
K 

] K b 506[ W 
K 

] 

T

k

w

o

a  

s

l  

q

c  

t

c

t

t

T

C

s

m

V

C

T

1  

6

N

I  

r

a

c

i  

s

(

t

˙ 
 (t) = 

q o 

V (t) 
( T o − T (t) ) + k 1 e 

−E 
RT (t) C a (t) 

+ k 2 
q c (t) 

V (t) 

(
1 − e 

−k 3 
q c (t) 

)
( T co − T (t) ) , (88c) 

 1 = 

−�Hk 0 
ρC p 

, k 2 = 

ρc C pc 

ρC p 
, k 3 = 

hA 

ρc C pc 
(88d) 

here V (t) , C a (t) , T (t) are the reaction volume, the concentration 

f A , and the reactor temperature, respectively. We consider V (t) 

nd T (t) as measurable states since it is not usually easy to mea-

ure the concentration C a directly. The measurement noises are se- 

ected as N (0 , Q ) with Q = diag (2 . 5 2 , 2 . 5 2 ) . The control inputs are

 s and q c . The constant parameters given in Table 2 are the pro- 

ess flow rate q o , the feed concentration C a o , the reaction rate k 0 ,

he activation energy term E/R , the feed temperature T o , the inlet 

oolant temperature T co , the heat of reaction �H, the heat transfer 

erm hA , the liquid densities ρ, ρc and the specific heats C p , C pc . 

To investigate the performance of the proposed modification of 

he MHE scheme, we adopt the correct model (88) in the MPC 
able 2 

STR Model Parameters. 

q o 100[ l 
min 

] C a o 1[ mol 
l 

] 

T o 350[ K] T co 350[ K] 

�H −2 × 10 5 [ cal 
mol 

] ρC p 10 0 0[ cal 
lK 

] 

k 0 7 . 2 × 10 10 [ 1 
min 

] E/R 1 × 10 4 [ K] 

ρc C pc 10 0 0[ cal 
lK 

] hA 7 × 10 5 [ cal 
minK 

] 

T  

T

6

m

s

s

s

16 
cheme while the MHE scheme is formulated using an imperfect 

odel of the real system as follows: 

˙ 
 (t) = q o − q s (t) , (89a) 

˙ 
 a (t) = 0 . 93 

q o 

V (t) 
( C a o − C a (t) ) − 1 . 2 k 0 e 

−E 
RT (t) C a (t) , (89b) 

˙ 
 (t) = 0 . 93 

q o 

V (t) 
( T o − T (t) ) + 1 . 3 k 1 e 

−E 
RT (t) C a (t) 

+ 0 . 8 k 2 
q c (t) 

V (t) 

(
1 − e 

−0 . 8 k 3 
q c (t) 

)
( T co − T (t) ) (89c) 

The constraints on the states and control inputs are 90 ≤ V ≤
10 , 0 ≤ C a ≤ 0 . 35 , 400 ≤ T ≤ 480 , 80 ≤ q s ≤ 120 and 75 ≤ q c ≤ 140 .

.3.2. Simulation settings 

In this simulation, both the modification step H and the horizon 

are set to 10. The number of neurons in the hidden layers of the 

CNN is set to 18, and we consider a sampling time 0 . 1 min . In the

einforcement learning setting, the parameterized MHE scheme is 

djusted during 800 episodes (RL steps), where each episode in- 

ludes a 4 min (40 time steps) of running the real system. Hence, 

n this simulation scenario, we use a total of 3 . 2 × 10 4 learning

amples to modify the MHE scheme with the imperfect model 

89) , and improve the closed-loop performance. Note that the ini- 

ial conditions are randomly selected for episodes of length 40. 

he set-point tracking goal is set as V d = 105 l, C d a = 0 . 12 mol /l ,

 

d = 433 . 72 K, q d s = 100 l/min and q d c = 110 l/min . 

.3.3. Discussion 

Fig. 11 depicts the evolution of the system states and their esti- 

ation during the learning progress. As it is observed, the correct 

tate estimations (orange circles) are delivered after 800 RL steps 

o that the system states (blue lines) can track the corresponding 

et points accurately. 
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Fig. 12. Evolution of the CSTR control inputs during the learning progress. The control inputs at the learning stage are shown as black lines while the optimal control inputs 

delivered from the MHE-MPC after 800 RL steps are shown as blue stairs. The constraints and set points are shown as red-dashed and yellow-dashed lines, respectively. 

Fig. 13. Comparative analysis between the conventional MHE-MPC with an imperfect model and learning-based MHE-MPC. 
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ters. 
Fig. 12 shows the evolution of the control inputs in black color 

uring the learning progress, and it is observed that the optimal 

ontrol inputs shown as stairs in blue color track the correspond- 

ng set-points while the constraints are guaranteed. 

The results depicted in Fig. 13 provide a comparative analy- 

is between the proposed learning-based MHE-MPC and one with- 

ut learning. It can be observed that the system states in black 

olor are struggling to track the references since the imperfect 

odel (89) is used in the MHE scheme, and the wrong estima- 

ion is delivered, shown as blue circles. The proposed learning- 
17 
ased modification of the MHE scheme then adjusts the MHE 

tage cost function so that the state estimations (red circles) per- 

ectly match the correct estimations. Note that the correct estima- 

ions are those captured from the MHE scheme with the perfect 

odel (88) . 

The closed-loop performance J(πθ ) is illustrated in Fig. 14 , and 

t is observed that the best performance is achieved after 500 

pisodes, and the norm of policy gradient steps ∇ θ J moves towards 

ero since the policy parameters converge to the optimal parame- 
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Fig. 14. Closed-loop performance and the norm of the policy gradient steps ||∇ θ J(πθ ) || 2 in logarithmic scale. The noisy closed-loop performance is shown as a blue line 

while its moving average is shown as a red line. The noisy logarithmic scale of ||∇ θ J(πθ ) || 2 is shown as a purple line while its moving average is shown as a yellow line. 

Table 3 

Computation time. 

Time Baseline MHE-MPC Modified MHE-MPC 

Test Case 1 0 . 89 sec 1 . 68 sec 

Test Case 2 10 . 2 min 19 . 47 min 

Test Case 3 1 . 23 sec 2 . 15 sec 
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.4. Computation time 

To investigate the computation time of solving the proposed 

odified MHE-MPC scheme, the choice of the modification step 

and the number of neuron used in the hidden layers of ICNN 

n the modified MHE scheme are regarded as crucial issues since 

hey determine the number of the parameters required in the 

roposed modification. Although, the horizon H could be larger 

han N to approximate the modified stage cost accurately, we 

ay choose a small size of H even smaller than N in order to 

rovide an acceptable trade-off between the computational ef- 

ort and the approximate value captured from the NN. To miti- 

ate the computational efforts for all three numerical examples, 

he horizon length of the modification step H has been set to the 

ame value as the prediction/estimation horizon N. Fortunately, the 

raining stage of the proposed MHE/MPC-based RL can be accom- 

lished offline, and it is worth mentioning that the MPC param- 

terization is quite flexible so that the MPC cost can be param- 

terized from a numerical perspective that makes the MPC im- 

lementation as tractable and effective as possible. However, the 

HE/MPC-based RL combined with NN in the loop may strug- 

le a bit in the real-time applications, in particular those cases 

ith very small sampling times and large estimation/prediction 

orizons. Nonetheless, the progress in the optimization algorithms 

nd in the computational hardware makes the deployment of real- 

ime MHE/MPC possible for most of the real applications. The 

omputation times for three test cases above are provided in the 
18 
able 3 . Note that we do not use real-time solvers in the present 

aper. 

. Conclusion 

In this paper, we have shown how an MHE scheme can be mod- 

fied such that its performance degradation due to using an im- 

erfect MHE model is tackled. The stage cost modification in both 

ersions of the stochastic and deterministic MHE schemes is pro- 

osed so that a correct probability measure and state estimation 

an be delivered even if the underlying model cannot capture the 

eal system. A practical implementation of the proposed approach 

pon the MHE cost modification is discussed. To achieve the best 

losed-loop performance for a combined MHE-MPC scheme using 

n imperfect model of the real system, we detail a parameteriza- 

ion method for both the deterministic MHE and MPC schemes and 

evelop an MHE/MPC-based policy gradient reinforcement learning 

lgorithm. The effectiveness of the proposed learning-based esti- 

ator/controller has been established for three examples includ- 

ng a model mismatch problem, a climate control of smart building 

here the building model used in the MHE-MPC is simplified and 

ifferent from the real dynamics, and a CSTR estimation/control 

roblem. Further work will aim to implement a modified stochastic 

HE scheme proposed in this paper. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

This work was funded by the Research Council of Norway (RCN) 

roject Safe Reinforcement Learning using MPC (SARLEM). 

https://doi.org/10.13039/501100005416


H. Nejatbakhsh Esfahani, A. Bahari Kordabad, W. Cai et al. European Journal of Control 73 (2023) 100880 

R

[  

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

eferences 

[1] B. Amos, L. Xu, J. Z. Kolter, Input convex neural networks, 2017. 1609.07152 

[2] K. Arulkumaran, M.P. Deisenroth, M. Brundage, A .A . Bharath, Deep reinforce- 

ment learning: a brief survey, IEEE Signal Process. Mag. 34 (6) (2017) 26–
38 . 

[3] J. Berberich, J. Köhler, M.A. Müller, F. Allgöwer, Data-driven model predic- 
tive control: closed-loop guarantees and experimental results, at - Automa- 

tisierungstechnik 69 (7) (2021) 608–618 . 
[4] S. Bezuglyi, P.E.T. Jorgensen, Transfer Operators, Endomorphisms, and Measur- 

able Partitions, Springer International Publishing, 2018, pp. 105–111 . 

[5] F. Bünning, A. Schalbetter, A. Aboudonia, M.H. de Badyn, P. Heer, J. Lygeros, 
Input convex neural networks for building MPC, 2020, arXiv:2011.13227 

[6] W. Cai, H.N. Esfahani, A.B. Kordabad, S. Gros, Optimal management of the peak 
power penalty for smart grids using MPC-based reinforcement learning, in: 

Proceeding of the 60th IEEE Conference on Decision and Control (CDC), IEEE, 
2021a, pp. 6365–6370 . 

[7] W. Cai, A.B. Kordabad, H.N. Esfahani, A.M. Lekkas, S. Gros, MPC-based rein- 
forcement learning for a simplified freight mission of autonomous surface ve- 

hicles, in: Proceeding of the 60th IEEE Conference on Decision and Control 

(CDC), 2021b, pp. 2990–2995, doi: 10.1109/CDC454 84.2021.96 83750 . 
[8] H.N. Esfahani, S. Gros, Policy gradient reinforcement learning for uncertain 

polytopic LPV systems based on MHE-MPC, IFAC-PapersOnLine 55 (15) (2022) 
1–6 . 6th IFAC Conference on Intelligent Control and Automation Sciences 

ICONS 2022 
[9] H.N. Esfahani, A.B. Kordabad, S. Gros, Approximate robust NMPC using rein- 

forcement learning, in: Proceeding of the European Control Conference (ECC), 

2021a, pp. 132–137, doi: 10.23919/ECC54610.2021.9655129 . 
[10] H.N. Esfahani, A.B. Kordabad, S. Gros, Reinforcement learning based on 

MPC/MHE for unmodeled and partially observable dynamics, in: Proceeding 
of the American Control Conference (ACC), 2021b, pp. 2121–2126 . 

[11] S. Gros, M. Zanon, Data-driven economic NMPC using reinforcement learning, 
IEEE Trans. Autom. Control 65 (2) (2020) 636–648 . 

12] Z.D. Guo, M.G. Azar, B. Piot, B.A. Pires, T. Pohlen, R. Munos, Neural predictive

belief representations, CoRR abs/1811.06407 (2018) . 
[13] R. Halvgaard, N.K. Poulsen, H. Madsen, J.B. Jørgensen, Economic model predic- 

tive control for building climate control in a smart grid, in: Proceeding of the 
IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, pp. 1–6 . 

[14] M.J. Hausknecht, P. Stone, Deep recurrent Q-learning for partially observable 
MDPs, CoRR abs/1507.06527 (2015) . 

[15] L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially 

observable stochastic domains, Artific. Intell. 101 (1) (1998) 99–134 . 
[16] B. Karg, S. Lucia, Approximate moving horizon estimation and robust nonlinear 

model predictive control via deep learning, Comput. Chem. Eng. 148 (2021) 
107266 . 

[17] A.B. Kordabad, H.N. Esfahani, A.M. Lekkas, S. Gros, Reinforcement learning 
based on scenario-tree MPC for ASVs, in: Proceeding of the American Control 

Conference (ACC), 2021, pp. 1985–1990 . 

[18] S. Muntwiler, K.P. Wabersich, M.N. Zeilinger, Learning-based moving hori- 
zon estimation through differentiable convex optimization layers, 2021, 

arXiv:2109.03962 
19 
[19] X. Nian, A .A . Irissappane, D. Roijers, Dcrac: Deep conditioned recurrent actor–
critic for multi-objective partially observable environments, in: Proceeding of 

the International Foundation for Autonomous Agents and Multiagent Systems, 
in: AAMAS ’20, 2020, pp. 931–938 . 

20] J. Nocedal, S. Wright, Numerical Optimization, 2 ed., Springer, 2006 . 
21] P. Kuhl, M. Diehl, T. Kraus, J.P. Schloder, H.G. Bock, A real-time algorithm for 

moving horizon state and parameter estimation, Comput. Chem. Eng. 35 (1) 
(2011) 71–83 . 

22] H.A . Pipino, C.A . Cappelletti, E.J. Adam, Adaptive multi-model predictive con- 

trol applied to continuous stirred tank reactor, Comput. Chem. Eng. 145 (2021) 
107195 . 

23] C.V. Rao, J.B. Rawlings, Constrained process monitoring: moving-horizon ap- 
proach, AIChE J. 48 (1) (2002) 97–109, doi: 10.1002/aic.690480111 . 

24] S. Rastegarpour, L. Ferrarini, S. Gros, Economic NMPC for multiple buildings 
connected to a heat pump and thermal and electrical storages, IFAC-PapersOn- 

Line 53 (2) (2020) 17089–17094 . 21st IFAC World Congress 

25] J.B. Rawlings, L. Ji, Optimization-based state estimation: current status and 
some new results, J. Process Control 22 (8) (2012) 1439–14 4 4 . 

26] J.B. Rawlings, D.Q. Mayne, M. Diehl, Model Predictive Control: Theory, Compu- 
tation, and Design, 2, Nob Hill Publishing Madison, WI, 2017 . 

27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deter- 
ministic policy gradient algorithms, in: Proceedings of the 31st International 

Conference on International Conference on Machine Learning, JMLR.org, 2014 . 

I–387–I–395 
28] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 

2018 . 
29] T. Gangwani, J. Lehman, Q. Liu, J. Peng, Learning belief representations for im- 

itation learning in POMDPs, in: Proceeding of the 35th Conference on Uncer- 
tainty in Artificial Intelligence, 2019, pp. 1–14 . 

30] M. Tenny, J. Rawlings, Efficient moving horizon estimation and nonlinear 

model predictive control, in: Proceedings of the American Control Conference 
(IEEE Cat. No.CH37301), 6, 2002, pp. 4 475–4 480 vol.6, doi: 10.1109/ACC.2002. 

1025355 . 
31] B. Wang, Z. Ma, S. Lai, L. Zhao, T.H. Lee, Differentiable moving horizon estima- 

tion for robust flight control, 2021, arXiv:2108.03212 
32] X. Xiang, S. Foo, Recent advances in deep reinforcement learning applications 

for solving partially observable Markov decision processes (POMDp) problems: 

part fundamentals and applications in games, robotics and natural language 
processing, Mach. Learn. Knowl. Extract. 3 (3) (2021) 554–581 . 

33] Y. Wang, K. Velswamy, B. Huang, A novel approach to feedback control with 
deep reinforcement learning, IFAC-PapersOnLine 51 (18) (2018) 31–36 . 10th 

IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018 
34] A.S. Zamzam, X. Fu, N.D. Sidiropoulos, Data-driven learning-based optimization 

for distribution system state estimation, IEEE Trans. Power Syst. 34 (6) (2019) 

4796–4805 . 
35] M. Zanon, S. Gros, Safe reinforcement learning using robust MPC, IEEE Trans. 

Autom. Control 66 (8) (2021) 3638–3652 . 
36] X. Zhong, Z. Ni, Y. Tang, H. He, Data-driven partially observable dynamic pro- 

cesses using adaptive dynamic programming, in: Proceedings of the IEEE Sym- 
posium on Adaptive Dynamic Programming and Reinforcement Learning, 2014, 

pp. 1–8 . 

http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0001
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0002
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0003
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0004
https://doi.org/10.1109/CDC45484.2021.9683750
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0006
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0006
https://doi.org/10.23919/ECC54610.2021.9655129
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0008
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0009
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0010
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0011
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0012
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0013
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0014
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0015
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0016
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0017
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0018
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0019
https://doi.org/10.1002/aic.690480111
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0021
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0021
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0022
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0023
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0024
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0024
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0025
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0026
https://doi.org/10.1109/ACC.2002.1025355
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0028
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0029
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0029
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0030
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0031
http://refhub.elsevier.com/S0947-3580(23)00108-5/sbref0032

	Learning-based state estimation and control using MHE and MPC schemes with imperfect models
	1 Introduction
	2 Modified MHE with imperfect model
	2.1 Stochastic MHE scheme
	2.2 Modification of the MHE cost function

	3 Tractable method for the MHE cost modification
	3.1 Modified stage cost function
	3.2 Tractable modified stage cost

	4 Proposed learning-based MHE-MPC scheme
	4.1 Practical implementation
	4.1.1 Learning-based arrival cost
	4.1.2 Learning-based MHE stage cost

	4.2 Deterministic MHE scheme with adjustable cost
	4.3 Parameterized MPC scheme

	5 Policy gradient RL with MHE-MPC
	5.1 Compatible deterministic actor-critic
	5.2 Sensitivity analysis and LSTD-based DPG
	5.2.1 Sensitivity computation
	5.2.2 LSTD-based policy gradient


	6 Simulation results
	6.1 Test case 1
	6.2 Test case 2
	6.2.1 Building model
	6.2.2 Simulation settings
	6.2.3 Discussion

	6.3 Test case 3
	6.3.1 CSTR Nonlinear model
	6.3.2 Simulation settings
	6.3.3 Discussion

	6.4 Computation time

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


