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This paper presents a reinforcement learning-based observer/controller using Moving Horizon Estimation
(MHE) and Model Predictive Control (MPC) schemes where the models used in the MHE-MPC cannot
accurately capture the dynamics of the real system. We first show how an MHE cost modification can
improve the performance of the MHE scheme such that a true state estimation is delivered even if the
underlying MHE model is imperfect. A compatible Deterministic Policy Gradient (DPG) algorithm is then
proposed to directly tune the parameters of both the estimator (MHE) and controller (MPC) in order to
achieve the best closed-loop performance based on inaccurate MHE-MPC models. To demonstrate the ef-
fectiveness of the proposed learning-based estimator-controller, three numerical examples are illustrated.
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1. Introduction

In the context of model-based control approaches, Model Pre-
dictive Control (MPC) is a well-known control scheme, which uses
a dynamic model to predict the future behavior of the real system
over a finite time horizon. At each time instant, MPC calculates the
input and corresponding state sequence minimizing a given cost
function while satisfying constraints over a given prediction hori-
zon [26]. In many real applications, a state estimator (observer) is
needed to provide an estimation of the current system states to the
MPC scheme. In this paper, we adopt a Moving Horizon Estima-
tion (MHE) scheme as a state observer, which is a simple choice in
combination with an MPC scheme. MHE is an optimization-based
state observer that works on a horizon window covering a limited
history of past measurements [21].

Accurate models of dynamical systems are often difficult to ob-
tain due to uncertainties and unknown dynamics. It is also worth
noting that even if an accurate model is available, it may be in gen-
eral too complex to be used in MHE and MPC schemes. However, if
the model is imperfect, the inaccuracies can significantly degrade
the performance of the MHE-MPC scheme. To cope with this prob-
lem, data-driven methods can be used in order to either improve
the MPC and MHE models [3,16,18,31] or modify the MHE/MPC
cost functions [10,11].
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The data-driven MPC/MHE schemes mentioned above often in-
corporate Machine Learning (ML)-based techniques such as Rein-
forcement Learning (RL) and Gaussian Process (GP). RL is a power-
ful ML method for Markov Decision Processes (MDPs), which seeks
to improve the closed-loop performance of the control policy de-
ployed on the MDPs as observations are collected [28]. Most RL
methods use a Deep Neural Network (DNN) to approximate either
the optimal policy underlying the MDP directly or the action-value
function from which the optimal policy can be indirectly extracted
[2].

The idea of using an MPC scheme as a value function/policy ap-
proximator in the RL context was proposed in [11,35]. Specifically,
the motivation was to replace the DNN-based approximators with
the MPC schemes such that some challenging issues in the con-
text of RL including stability guarantee and safety were addressed.
In an MPC-based RL, it was established that an MPC scheme can
generate jointly the optimal (action-) value function and optimal
policy underlying an MDP even if the MPC model does not cap-
ture the real system dynamics accurately. As a data-driven MPC,
the MPC-based RL framework has shown promising results for dif-
ferent applications [6-9,17]. Inspired by the researches mentioned
above in the context of MPC-based RL, in the present paper, we
will use an MHE-MPC scheme as a policy approximator for a de-
terministic policy gradient algorithm.

In some real-world control applications, the measurements
available from the real system at a given time instant do not con-
stitute a Markov state. In the context of RL, these systems are
then formulated as Partially Observable MDPs (POMDPs) [15,36].
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To tackle a POMDP, one solution is to formulate a belief MDP
where the information about the current state is described as
a probability distribution over the state space a.k.a belief state.
Hence, POMDPs can be regarded as traditional MDPs using the
concept of belief states as complete observable states [32].

Most previous works in the context of POMDPs rely on train-
ing a Neural Network (NN) or a Recurrent Neural Network (RNN)
to summarise past observations and learn a policy based on DNN-
based approximators [14,19,33]. An NN-based framework (poste-
rior distributions over states) was proposed in [12,29] in order
to estimate a belief state based on historical information. These
NN-based algorithms are formulated as completely model-free ap-
proaches. Most recently, as a combined model-based/data-driven
technique for dealing with POMDPs, a Q-learning method based on
MHE-MPC with inaccurate models was developed in [10]. In this
research, the authors proposed to integrate MHE and MPC to treat
the hidden Markovian state evolution. More specifically, a struc-
tured solution by using MHE as a model-based approach was pro-
posed to build a state from the measurement history.

In this paper, we seek to improve the performance of MHE-
MPC as a combined observer/controller based on an inaccurate
model. Assuming the real system is fully observable and the MHE
model has a correct state structure, we show that both the arrival
cost and the stage cost of the MHE scheme can be modified such
that a perfect state estimation is delivered even if the underlying
model is imperfect. However, the proposed method can arguably
perform well on an incomplete model structure (partially observ-
able), which is demonstrated by a numerical example. To tackle
the performance degradation of the MHE scheme due to the use of
an imperfect model, we propose to modify the MHE cost function
rather than adapting the MHE model. An NN-based approximator
is proposed to deliver the modified MHE cost. To achieve the best
closed-loop performance even if the underlying MHE-MPC model
is imperfect, we then propose to jointly tune the MHE-MPC pa-
rameters using a compatible Deterministic Policy Gradient (DPG)
reinforcement learning algorithm.

The paper is structured as follows. The central theorem upon
the cost modification of the MHE scheme using an imperfect
model is detailed in Section 2. Section 3 describes a tractable ap-
proach for the MHE cost modification. Section 4 is dedicated to
the parameterization method upon the MHE cost and the MPC
scheme in order to formulate an adjustable and learning-based
MHE-MPC scheme. To achieve the best closed-loop performance
for an MHE-MPC scheme, a policy gradient-based RL algorithm is
detailed in Section 5 to adjust the parameterized MHE cost func-
tion and learn a policy captured from a parameterized MHE-MPC
scheme. Section 6 provides three numerical examples: 1) a linear
system with model mismatch 2) a POMDP test case in which a
smart building is described as an imperfect dynamical model and
its climate is controlled by the proposed approach, and finally 3)
a Continuous Stirred Tank Reactor (CSTR) as a nonlinear system is
investigated.

Notation. a is a scalar while a is a vector. For n vectors
X1, ...,Xn we define col(Xq,...,Xp) :=[X!,...,X]|T. R is the set of
real numbers and T is the set of integers.

2. Modified MHE with imperfect model

In this section, we first consider an ideal stochastic MHE, which
is formulated as a Full Information Estimation (FIE) problem. The
FIE problems are fundamentally formulated based on an optimiza-
tion problem in which the entire history of the measurements is
used at each time instant [25]. We then formulate an MHE scheme
using an imperfect model, and show that the stage cost function
can be modified so that the MHE delivers the same estimation as
an ideal MHE. At the end of this section, as opposed to the FIE ver-
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sion of the MHE, we will formulate a finite version of the modified
MHE scheme in order to make it computationally tractable.

2.1. Stochastic MHE scheme

To formulate an ideal stochastic MHE scheme, we consider dis-
crete dynamical systems evolving on a continuous state space over
R", with stochastic states s, € S C R", where k denotes the time
index. Let g, be a probability measure associated with the stochas-
tic states as follows:

Sk NQk(-) (1)

We will consider a measure space for s, which is equipped with
the Lebesgue measure as a reference measure, and the set of
Lebesgue-measurable sets as o -algebra. Let us define stochastic dy-
namics as a conditional probability density as follows:

C[Skr1 | Sk ar] (2)

where s;,a, € ACR™ and s;,; are the current state-input pair
and subsequent state, respectively, and A is the set of inputs avail-
able for the system.

Let us define a transition operator 75, : M x A — M as the map
from a probability measure g to its successor gy, under input
ay, and M is the set of probability measures over S such that the
sequence of probability measures g, € M,k=0,---,c0. We then
define the Law of Total Probability (LTP) with stochastic dynamics
(2) as follows:

01 () = Ta,0k () = fs ¢[. I alox(dsy) (3)

Let us label Es o, [.] the expected value operator with respect
to probability measure g, € M. To formulate a stochastic MHE
scheme a.k.a Full Information Estimation (FIE), its cost function can
be derived using a functional stage cost where this functional is
either an expectation or the Maximum A Posterior (MAP) [23]. In
the present paper, we use an expectation to formulate a stochastic
MHE under some conditions detailed in the remainder of the pa-
per. We then define a value functional associated with the stochas-
tic MHE scheme as follows:

k
Vo 0r] = Y ¥ B, |:L(515311,Yi):|, (4)

i=—o00

where y e€(0,1] is a discount factor, y;eYCS, o=
colfa_y_ 1.y _x} €0 is the available history of measurements
up to time k, L:S x Ax )Y — R is a fitting function. It is worth
noting that the discounting above ensures the existence of the
estimation problem on an infinite horizon for an MDP. However,
the basic Theorem on the cost modification structure detailed
in the remainder of this section also holds for the undiscounted
setting, e.g., ¥ = 1. We assume that the forward transition op-
erator 7a, has a backward transition operator 7;;11 such that
Oi_1= 7;?_11 0i, Vi e I. Note that we use the backward transition
operator since an MHE scheme at the current time k is formulated
based on past information. Then the aim of the stochastic MHE
scheme is to find the best probability measure p* as a function of
o, that minimizes V[g,, 0,]. More specifically:

Pi (0r) € argming, V[0, 0] (5)

However, we only have access to an imperfect model of (2) (typ-
ically deterministic). To cope with this issue, in the remainder of
this section, we first develop the central theorem on the modifi-
cation of the stochastic MHE schemes with imperfect models. We
then propose a more practical formulation of the modified stochas-
tic MHE in which a deterministic state estimation can be delivered.
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2.2. Modification of the MHE cost function

The main contribution of this paper is described by the next
theorem, where an MHE scheme equipped with a modified stage
cost function is proposed to tackle the performance degradation
due to an imperfect MHE model. It will be shown that one can,
under some assumptions, find a modified MHE cost such that a
probability measure equal to (5) is delivered even if the underlying
model is inaccurate. In this paper, we define a cost functional @ :
M x A x Y — R such that this cost functional linearly depends on
the stage cost function as follows:

D[0i,a;_1,¥i] = Esino [L(Si, A1, V)] (6)
Note that the above equality is valid under some conditions de-
tailed in the next section. Then, the value functional (4) can be
rewritten as follows:

k
Vigr.ol = Y v ®loi.ai1.yi]. (7)

i=—o0

Let Cy[sk 1Sk a_1] and y[8 1|8 a, 1] be a backward model
of (2) and an imperfect model of ¢, respectively. We then la-
bel 7;7}1 the corresponding imperfect backward transition operator.
Now we propose to modify the MHE cost & detailed in the next
theorem in order to cope with the performance degradation of an
MHE scheme where the MHE model is imperfect. Hence, the cor-
responding value functional for a modified stochastic MHE scheme
is formulated as follows:

k
V[dw ol := ) ¥y P[0, 0] (8)
1=—00

where ¢;_1 = 7,1 6;, Viel and & : M x O — R is an MHE cost
functional based on the measurement history for the model. Note
that the arguments of the stage cost ® in (7) include a;_;, y; while
they are shown as a measurement history o; for the arguments
of the modified stage cost & in (8). More precisely, the modified
stage cost will be a function of the measurement history at each
time step i, which is detailed in the proof of the next theorem.

Analogous to the previous, we define the best probability mea-
sure resulting from the imperfect model, as follows:

Ib\;('(ok) € arg min@k\A/[QAk, ok] (9)

We then aim to propose ¢ such that P;(0r) = pg (o). In the fol-
lowing, we make mild assumptions on the boundedness of the dis-
counted value function.

Assumption 1. There exists a non-empty set of probability mea-
sures Mg S M, including gy, such that for all g, € Mg and for all
y € (0, 1] it holds that

|YMV[Bk-n, Orn]| <00, ¥Nelg (10)
where o,y =75 - Ta.!, O

Assumption 2. For a discount factor y € (0,1] and Jy_y €
Mo, YN € Lq:

1\}1_{{)10 YNV[Gk-n. 0] =0 (11)
Theorem 1. Under Assumptions 1, 2, there exists a modified stage

cost functional & : M x © — R such that the following equalities
hold for all §) € My and all oy, € O:

V[Ok. 0kl = VI ol 03 (0) = 0f(0k) (12)

Proof. Let us define the modified stage cost functional & as fol-
lows:

®[0i, 01 = V[0, 01] — V[ 75101, 011 ] (13)
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By substituting the modified stage cost (13) in (8), the value func-
tional then becomes a telescoping sum as follows:

k
V[ék? Ok] = Z ykilq)[éi?oi]

i=—o00

k
>y (VI 0] - yV[di-1, 0i1])

i=—o00
=V[0k. 0k] — ¥V[0k-1, 0k_1]
+ YVI[0k-1. 0k-1] — ¥V[Bk-2. 0 2]

+ Vzv[ék—Zv 0 o] —...— ’\51_)1‘1;10 VNV[Q/LN’ o_n]
=V[ox, 0r] - 1313}@ yY"VI[0-n.0_n] (14)

for all 9, € My. Note that under Assumption 1 all terms in (14) are
bounded and the following equality holds:

V[0k 0] = V[&r. 0] (15)
and under Assumption 2,

argmin V[, 0] = argminV[Qy. 0;] (16)
Ok Qk

implies g} (0y) = 0}(0y) since g5 € Mo. O

It is worth noting that the modified stage cost function
(13) proposed as a cost modification is constructed based on a full
history of the measurements. Hence, this fundamental observation
can impact on the practical implementation of the modified cost.
More specifically, the central Theorem 1 aims to show that there
exists such a modification and to understand its structure. How-
ever, the proposed modification structure above is not tractable in
terms of implementation since it is too complex to compute the
modified stage cost (13) and apply it to the modified MHE scheme
directly. To tackle this problem, we will provide a finite H-step
structure of the modified stage cost in the next section. Finally, we
will propose to construct an approximate structure of the modified
stage cost using a Neural Network (NN) and adopt a reinforcement
learning algorithm to learn the parameters of the NN in practice,
which is detailed in the Section 4.

Although Theorem 1 shows that the modified stochastic MHE
scheme with the corresponding value functional (8) can deliver a
correct estimation of the probability measure using an imperfect
model, this infinite-horizon model-based fitting problem requires
an infinite amount of data, which makes this full information ob-
server unsuitable in practice. To cope with this problem, we pro-
pose a more practical formulation detailed by the next theorem,
which provides a finite-horizon stochastic MHE problem so that it
delivers the same optimal density and value functional as (8).

It is worth mentioning that the proposed modified state cost
(13) has been constructed based on the value functionals, and
then Assumption 1 ensures that all intermediate terms (value func-
tionals) appeared in the telescoping sum (14) cancel out. How-
ever, there are infinitely many intermediate terms in the telescop-
ing sum (14) that must be bounded while Assumption 1 may not
be satisfied for a situation with an arbitrarily large N, e.g., let
us consider the case y =1, which then imposes the condition
limy_, o V[ @k_n- Ok_n ] = 0. Hence, the additional Assumption 2 is
needed to establish the Theorem 1. To address this issue, one can
consider a milder assumption with a specific horizon window N
to be used in a finite-horizon MHE problem. We then provide the
following assumption and develop the corresponding theorem.

Assumption 3. There exists a non-empty set of probability mea-
sures My € M, including g}, such that for all §; € M; and for all
y € (0, 1] it holds that

|V [Okny: Ok, ]| <00 0<Ng <N (17)
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where 0y_y, =72,

an, ... T3} 0k and N < oo is labeled the horizon

window.

Note that this assumption is weaker than Assumption 1, indeed
we have Mgy € M;.

Theorem 2. Consider the MHE scheme with a horizon window of N
steps at the current time k :

VN[Ok. 0] := ¥Ne[Ok_n. 0 _n]

k

+ Y yHidlai 0, (18a)
i=k—N+1
oy (0y) € argming, VN[0, 0] (18b)

where £ : M x O — R reads as an arrival cost functional. Then, under
Assumption 3, the following equalities hold for all 6, € My and all
0, cO:

VN[Ok. 0] = V[Ok. 0k, 03 (01) = 0}(0y) (19)

Proof. Let us define the modified stage cost & as (13) and arrival
cost ¢ as follows:

£[Ok_n: Ok_n] = V[Ok-n. O_n] (20)

By substituting the modified stage cost (13) and the modified ar-
rival cost (20) in (18a), the value functional then becomes a tele-
scoping sum as follows:

VN[Ok. 0] = YNV[Ok_n. Ok _n]

k
+ 2 v(VIgn 0] - yV[Gi1. 0i1])

i=k—N+1
= Y"V[0k_n. 0k_n] + V[Ok- k] — YV[Bk-1. 0 1]
+YV[0k-1, 0 1] — YV[Bk-2. O 2] + ...
+ YN W0k Ns1. Ok ni1] — YNV[Bkn. O]
= V[0, 0] (21)

for all 9, € My, and

argminVV [ 0] = argminV[{y. o] (22)
Ok Ok

delivers 9y (o)) = 0} (0y), since ¢}, € M. Then it delivers (19). O

As an observation in the proposed finite-horizon MHE scheme
(18a), the modified stage cost still depends on the complete mea-
surement history despite using an arrival cost. Therefore, a practi-
cal modification of the stage cost will be detailed in the next sec-
tion.

3. Tractable method for the MHE cost modification

Although Theorem 2 proposes the modified finite-horizon
stochastic MHE as a more practical scheme than an infinite prob-
lem, there are still two implementation issues to address: (1) im-
plementing a stage cost functional (13) is not tractable in practice
because it is constructed based on time-varying value functionals
in which the current distribution function ¢, as given probability
measure at the current time k is difficult to model and calculate
exactly. Then, it is reasonable to consider a function version of the
cost functional in the modified MHE scheme. (2) implementing a
modified stage cost based on the full measurement history is not
tractable. In the rest of this section, we discuss the solutions to
tackle these problems.
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3.1. Modified stage cost function

To construct a practical cost modification based on the above
results, one can consider a deterministic state estimation at the
physical time k such that the modified cost is then constructed
based on a value function instead of a value functional. Although
this choice makes the implementation more practical, the estima-
tion of a single state rather than a probability measure will sac-
rifice the MHE capability in order to explicitly describe the state
estimation uncertainty. More specifically, we replace a belief state
with a unique state such that the MHE solution cannot incorporate
any information upon the uncertainty level of the current state.

In order to form an MHE scheme with a deterministic estima-
tion of the state at time k, the proposed structure entails signif-
icant characteristics established by the next propositions. In the
next Propositions 1,2, we first show that the backward transition
operator 7-! is a linear transformation and the value functional
Vl]o;, 0;] is linear in the probability measure.

Proposition 1. The inverse of a linear operator T is a linear back-
ward transition operator 7~ such that:

T o+0)=T'o+T 0 (23a)
TN ao)=aT 10 (23b)
where the probability measures 0,0 € M and o € C.

Proof.

T e+0) =T (T(T )+ T(T7'3))
THT(T'e+T7'0)=T"o+T'0 (24)
and

T (@) =T (aT(T "))

T (T(aT "0))=aT "0 (25)

Then, the backward operator 7! fulfills the requirements of a lin-
ear transformation. O

Proposition 2. The value functional V[g;, 0;] is linear in the proba-
bility measure.

Proof. According to (4), the value functional V[p;, 0;] at time step
i is defined as follows:

i
Vigi.0il= Y ¥y Es |:L(S]" aj 1, Yj):| (26)

Jj=—00
= ES,‘“Q:‘[L(SIV " )] + yEsi—INQi—1 [L(S,',], ) )] +...

First a backward transition 7! is a linear transformation, as es-
tablished by Proposition 1. We then conclude that each gj; is lin-
ear in p;. Hence, each expected stage cost term, appearing on the
right-hand side of (26) is linear in ;. Then, the summation of dis-
counted expectations on the right-hand side of the above equa-
tion will also be linear in the probability measure, which proves
the proposition. O

Now, in the next proposition, we will show a relation between
the value functional and the value function such that the following
assumption must be satisfied:

Assumption 4. Let us assume that the expected value function v
is bounded for all p; e M and s; € S:

Es~[|V(Si, 01)|] < 00 (27)
Note that the assumption above ensures that the expected value

of the value function v(s;, 0;) will remain finite for all g; € M and
s; € S, a harmless restriction in practice.
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Proposition 3. Let the value function v(s;, 0;) be a Lebesgue measur-
able function (a.k.a Borel measurable) on the o -algebra of Borel sets,
and the probability measure o; be a compactly supported continuous
function. A value functional then can be represented as an expected
value function as follows:

V[0i, 0;] = Esi~o,[V(Si, 0)] (28)
Proof. Under Assumption 4 and the linearity of V|[g;, 0;] in g;, see

Proposition 2, the proof follows the Riesz-Markov theorem, see [4],
chapter 9, page 105, such that:

View o] = [ v(si.0)ai(ds) = Ex-o[v(s: 0]
and a value function v(s;, 0;) can be found so that the equality
above holds. O

Now we choose the probability measure at time k as a Dirac
measure centered at the current state such that g, =ds, (.). Ac-
cording to Proposition 3, the value functional then becomes a value
function:

VoK 0kl = Espes,, () [V(Sk: O1)] = V(Sk, Ok) (29)

Then, the ideal stochastic MHE scheme with the value functional
(4) can be rewritten as follows:

k
V(S ) i= Y Y sy, |:L(5i~ai1sYi):|7 (30a)
i=—00
s (0y) € arg rr;in V(Sk, Og) (30Db)
k

where p;_1 = 7;;11 0i and gy = &, (-). We next show that the mod-
ified stage cost functional (13) can be rewritten as stage cost func-
tion at each time step i, which is constructed based on the value
functions defined as (30a).

We first remind that the linear relation (6) between the stage
cost functional and the stage cost function is valid based on the
same synthesis as Proposition 3 using two underlying conditions:
1) expected stage cost function is bounded Es,~o,[|L(S;, a;_1,¥i)|] <
oo 2) stage cost functional & is linear in ;. Hence, this relation
also holds for & in (13) considering the next remark.

Remark 1. The modified stage cost functional (13) is also linear
in the probability measures since it is defined based on a linear
equation of the value functionals, which are linear in the probabil-
ity measures, see Proposition 2.

Now the modified stage cost functional can be described as:
B[, 0] = Eq,,[L(81. 04)] (31)

where [ : S x O — R reads the modified stage cost function.

By considering Proposition 3, equality (31) and adopting §; =
(Sgi(~), one can obtain a practical cost modification of (13) at each
time step i as follows:

Egi“lséi(‘)[l‘(s” ’)] = Bgs, ()[ (S,, ’)] VEs o 1[”(§i71*°f71)]
= U(S,-, oi) —VEs -0, [U(S,',l, 0"*1)] (32)
where ¢;_1 = 5[ 18;.a;_1]-

Hence, the modified cost functional & can then be replaced by
the stage cost function L at time step i in practice:

L(3i,0) = v(51 0,) — ¥Es, 5, [V(3i-1.0i-1)] (33)
We then adopt the above-modified stage cost function to formu-

late a modified MHE scheme using an imperfect model in practice.
Hence, the modified stochastic MHE scheme based on the value
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(stage cost) function instead of the value (stage cost) functional
(8) is formulated as follows:

600) = 3y 5o 1)

(34a)

8(0,) € argmin¥(8;, o) (34b)
Sk
where ¢;_1 =7, 6; and gy = 85 ().

Now, according to the developments above, we have shown
that the modified MHE scheme with a stage cost functional &
can be formulated as a tractable MHE (34) in which the modified
cost function L (33) is practically constructed based on the value
functions instead of the value functionals. The following corollary
shows that the structure (34) can still preserve the property estab-
lished by Theorem 1.

Corollary 1. By adopting the same approach as was detailed to prove
Theorem 1 and under the assumption

yNEgkaN@ka[|v(§k_N’ ok—N) |] < 00, VN e ]IZO (35)
one can show that the following equalities hold:

") =v().  K=s; (36)
Proof. By substituting the modified stage cost function (33) in the

value function associated to the problem (34) and using a telescop-
ing sum argument, one can observe that:

(5. 00) — z P vfs)

~VEs -6 [V(5i1, 01‘_1)]:| = (8. o) (37)

and

arg min (8, o) = argminv(8y, o) (38)
§ $

results in 8;(0y) = s;(0y). O

3.2. Tractable modified stage cost

In the proposed modified stage cost function (33), the value
functions captured from the MHE scheme (30) are based on the
complete measurement history, and the amount of historical data
is growing at each time instant. Hence, constructing the corre-
sponding modified stage cost is intractable in practice. We then
propose to formulate a finite version (H-step) of the optimization
problem (30) so that the corresponding value function reads as:

(s, 00) i= Y Es_ 0, [ Zkot (Skohs Ok-n)]

k

+ Z Y Es o, |:L(Si~3i1,Yi):| (39)
i=k—H-+1

where 0;_; :7;;]1@- and gy = s, (-). Notice that the cost term

Zi_11(Sk—n- Oy is labeled the exact arrival cost function, which
summarizes the effects of past information before time k — H.
Then, under an exact arrival cost, the stochastic MHE scheme
based on the value function (39) can be regarded as an ideal MHE
scheme, i.e.,

U (sk. 01) = v(sk. 0y). (40)

Now the modified stage cost (33) can be rewritten based on the
value function (39) as follows:

L(3i.0) =v(51.01) — ¥Es, 5, , [V (311, 011) ] (41)
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Note that the expectation above is taken over the imperfect model
whereas the expected values appeared in the definition of the
value functions v (-) in (39) are on the real system. Although
the value function (39) is based on the full measurement history,
the implementation of the modified stage cost (41) will be finally
tractable for a finite MHE scheme with a horizon N proposed in
the next theorem. More specifically, the full history of the mea-
surements due to the arrival cost term of 1" is transferred to the
arrival cost Z;_y, which can be approximated in practice. A practi-
cal implementation based on the mentioned argument above will
be discussed in detail in Section 4. Now we develop the next the-
orem for a modified MHE scheme based on the above-modified
stage cost function. To this end, let us consider the following as-
sumption:

Assumption 5. There exists a non-empty set Sp € S such that for
all § € S and for all y € (0, 1] it holds that

Y Es 0 [V (koo ok_No)]‘ <oo, 0<No<N  (42)

where N is labeled a specific horizon window. Note that the expec-
tation in the above inequality is taken over the imperfect model

. ~ —1 A
density Or_n_1 = Ta,__, Ok—N-

Then, the following theorem is defined under the above-
mentioned assumption:

Theorem 3. There exists an exact arrival cost function including some
prior information as available observation Z,_n:S x O — R and a
modified stage cost function L:S x © — R. We then formulate the
following finite stochastic MHE scheme at the current time k:

(81, 01) i= ¥MEs_ g, [Zen(Skn: Okn) ]

k
+ Y YMEg, |:Z(§i, oi)] (43a)
i=k—N+1
sV e arg min 7" (8, o) (43b)
Sk

where 0;_y =T, 0i, Or = 85, ().
Then under Assumption 5, the MHE scheme above will deliver the
following equalities for all §, € Sy:

N (8k. o) = " (51 o). 5" () = s (00) (44)

Proof. Let us select the modified stage cost (41) and define the
arrival cost Z,_y as follows:

Zyn = VH(§1<—N, ok—N) (45)

By substituting the modified stage cost function (41) and the ar-
rival cost function (45) in the value function (43a), it then becomes
a telescoping sum as follows:

(8, 0) = YVEs o [V (ks 0kn) ]

k
+ > V""'Esmg,["”(ﬁiﬂi)—VE@.,w@H["H(gf-l*m-l)]]

i=k_N+1
=V sy [V (B 0w) [+ 17 (81 04)
- VEs ~6. 4 [VH (§k71, ok—l)]
+VEs g, [V (Sko1. 0k1) ] + -
— V" Bs [V (Stn: Ok ]
=t (§k, ok) (46)
for all §; € Sp, and

arg min " (8, o) = arg min v (8, o) (47)
Sk Sk
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delivers §;'N (o)) =sp(0g). O

Note that the horizon H is the length of the measurement his-
tory used in the modified stage cost in the MHE scheme (43) with
a horizon of length N. In the next section, we will describe how
this measurement history of length H can be used in the proposed
convex neural network to modify the MHE stage cost in practice.
It is worth noting that the horizon H may be selected larger than
N to capture the modified stage cost accurately. However, one can
choose a small length of H in order to provide an acceptable trade-
off between the computational effort and the approximate value
captured from the neural network.

4. Proposed learning-based MHE-MPC scheme
4.1. Practical implementation

In what follows, we provide a practical version of the modified
MHE scheme (43). We then discuss the approaches in order to ap-
proximate both the arrival cost Z,_y and the modified stage cost
L(g,‘, 0,').

4.1.1. Learning-based arrival cost

To approximate the arrival cost, we adopt a common approach
so that the arrival cost takes the form of a quadratic function as
follows:

N . - 2
Zjn = ||Skn — Sien| ', (48)
where §;,_y is obtained as:

Sk-N = Si_Njk1 (49)

Note that Sk NJk_1 is the first element of the horizon window at
the previous physical time k — 1. The prior weighting I1;_p is ob-

tained from the Kalman filter covariance update rule [30]:
-1
M1 =AdLAL — ATLG (GG +R) GITAL (50)

initialized with the covariance matrix of the initial state ITj. Let

f(§, a) be a nonlinear model as a deterministic approximation of

(2). The matrices A, and G, are then obtained by linearization as

follows:

ad dh
/ G

Ak = ﬁ'gk\k—l’ k= £|§k\k71

(51)

and R is the covariance of the output noise v, where the mea-
surements are delivered as y, = h(8;) + v. However, the approach
detailed above is based on classic Kalman filtering that may not
be the best choice from a parameterization standpoint where the
model is imperfect. More specifically, the update rule (50) cannot
deliver a perfect approximation of Il since the matrices A, C cap-
tured, respectively, from the dynamical model f and the measure-
ment model h are imperfect. To tackle this problem, we propose to
adopt reinforcement learning in order to adjust the entries of the
matrices Ag,CE and the covariance matrix Ry used in (50), where
6 will be parameters that can be adjusted via RL. Then, the param-
eterized covariance update rule reads as:

My =AY Hk(AZ)T
1
—A;’I'[k(cff(c,?nk(c,‘j)T +R9> o (a7)" (52)

It is worth noting that the policy 7 captured from the MHE-MPC
scheme will have an extra state ITj, which is obtained from the
above dynamics. More specifically, I, has its own dynamics in the
MHE scheme such that the state estimation and the policy deliv-
ered, respectively, from the MHE and MHE-MPC will depend on
IT,. We then consider the effect of I on the policy gradient in an
MHE/MPC-based reinforcement learning detailed in the next sec-
tion.
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4.1.2. Learning-based MHE stage cost

According to Theorem 3, a finite stochastic MHE scheme can
deliver a true state estimation using an imperfect model of the real
system by adopting a cost modification.

Remark 2. In this paper, we denote the true state estimation (per-
fect estimation) by the estimation captured from the FIE problems
with the correct model in (30) and (39).

In this theorem, we have proposed to construct a modified
stage cost (41) based on the H-step value function (39), and we
practically propose to approximate this modified stage cost. To this
end, let us consider the MHE scheme (43) and the value function
(39) where §; = 851,(-). We then observe that all expected arrival
cost functions Z;_p,Z;_y_1,i=k—N+1,---, k including entire his-
tory can be transferred to the arrival cost Z,_y. More precisely, the
time step i used in the modified stage cost of the MHE scheme
(43) is in the interval i=k—-N+1,--- ,k, and this stage cost de-
fined in (41) is basically constructed based on the value functions
v"(8;, 0;) and v¥(8;_1, 0;_;) captured from (39). The corresponding
arrival costs then read as Z;_y and Z;_y_q fori=k—-N+1,--- k.
Hence, the modified stage cost can practically be constructed based
on a finite history as follows:

L(gi, Of-l) = L(gi, a1, y,) + Lh (gi—H,»»-,i—1 s Oﬁ]) (53)
where the cost term L, is constructed based on a finite history and
oi” = col{y;_y41,---.¥i-Ai_H,...,aj_1}. We then propose to some-
how approximate this part of the modified stage cost L in practice.

As one practical solution to approximate Ly, one can use a Neu-
ral Network (NN) as follows:

Ly (3, 0f) ~ Ly, (31, ai_1. Vi) + Lun (Yi, Onn) (54)

where Ly is a parameterized least-squares cost at the current time
step i used for an output noise MHE scheme [21] and

Y; = col{8; .. ;1.0 }

of | =colly, g, .. LA} (55)

Note that 0?_1 e OH c O is regarded as a finite history of the mea-
surements and Y; € R"™ is labeled the Neural Network (NN) in-
put. To adjust the parameters 6, Oyy, we will use a reinforcement
learning algorithm based on the policy gradient method.

Neural networks are well-known universal function approxima-
tors so an NN including three layers is capable to approximate any
continuous multivariate function down to prescribed accuracy, if
there are no constraints on the number of neurons [34].

We then propose to use a convex class of NNs to approximate
Lyn in the MHE stage cost (54). While enforcing convexity in the
MHE stage cost does not imply that the overall MHE problem is
convex, using a non-convex stage cost will often require signifi-
cantly more caution in providing an initial guess for the NLP solver
tackling the MHE scheme than if a convex stage cost is used. To
preserve the convexity of the MHE stage cost function (54), we
then propose to compute Lyy using an Input Convex Neural Net-
work (ICNN). In this type of neural network, the partial weights
meet certain constraints such that the output of the ICNN is a con-
vex function of the input [1,5]. Compared to building conventional
neural networks, ICNN structures must meet two additional re-
quirements: (1) activation functions are convex and non-decreasing
(2) the weights of NN are constrained to be non-negative. As a
form of ICNN, we choose a Fully Input Convex NN (FICNN) architec-
ture since the scalar output of the network is convex with respect
to all inputs.

Let us consider a [-layer FICNN over Y; in order to estimate
Lyn (Yi, Onn) as follows:

S ¥Yii1,dig, -

Ziy1 =&j (VV].(Z)Zj + ij(y)Y,' + bj), (56a)
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Ly (Yi,0) =c-z (56b)

st. W2, 0w =0,2=0 (56¢)

where j=0,...,I-1 and zje RW*1 denotes the middle lay-
ers (layer activations). The neural network weights are Wj(z) €
R <1y, W) e R b; e R*1,c e RI*™. Note that ¢ is consid-
ered as the connection weight between the output layer and the
last middle layer. Then, Oyy = {W](:ZI{V WO(:’;Z], bo.i_1, c} are the
modifiable weights, and g; are nonlinear activation functions (con-
vex and non-decreasing, e.g., Rectified Linear Unit ReLU).
Then, the reformulated MHE scheme (43) reads as:

17N(§1<, Ok) = yNIEgkaN@M [Zk—N(gk—Nq OIE_N)]

k
+ Z )/k_']Egiwg*i |:L9 (g,', O,H):| (57a)
i=k—N+1
§,’;N € argmin oV (§k, Ok) (57b)
Sk

where ;1 = 7,,' 61 0 =8, ().

In the remainder of this section, we practically formulate a de-
terministic version of the above MHE scheme (57) with a fully pa-
rameterized cost function including arrival and stage cost. We then
propose a parameterization for the MPC scheme to deliver a policy
approximation required in the context of policy gradient RL.

4.2. Deterministic MHE scheme with adjustable cost

As a result of Theorem 3, a finite optimization-based state es-
timation scheme with an imperfect model can deliver a true state
estimation by modifying the stage and arrival costs. As a practical
approach, we proposed to leverage NN in approximating the mod-
ified stage cost function (54). One can also choose a parameteri-
zation method on the arrival cost detailed in the previous section.
Finally, a reinforcement learning algorithm is used to adjust all pa-
rameters.

Note that the theory proposed is very generic so that the ac-
quired result holds e.g., for the states of a stochastic dynamical
model being estimated by an MHE scheme based on an inaccu-
rate deterministic model. Hence, the transition model f[§i+1 |Si, ai]
trivially includes deterministic models as:

{[8i118a] = 5(§i+1 — JMHE(s;, ai)) (58)

We then propose to formulate the following parameterized MHE
scheme:

SL*NMHEN..J( = arg mingyNMHEZG (gk*NMHE’ g)
k
+ Y v (3 of) (59)
i=k—Nype+1
st 8 =[G a) (59b)

where Z, = ||§k_NMHE

terized updating rule (52) and § is the available estimation s;;_NMHE
at time k — 1. Note that in the case of linear systems, another solu-
tion to adjust the arrival cost is to directly modify the arrival cost
by adjusting the corresponding positive weight matrix Iy using
e.g., Semi-Definite Programming (SDP).

<112 . .
- s||n and IT; is obtained from the parame-
k
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4.3. Parameterized MPC scheme
Let us define the closed-loop performance of a parameterized

policy my delivered from an MHE-MPC scheme for a given stage
cost L(yy, ;) as the following total expected cost:

J(g) = Ex, [Z YXL(Yk. ax)

k=0

A =Tp (Si)} (60)

where the expectation En, is taken over the distribution of the
Markov chain in closed-loop with policy my. The cost L(yy, ai)
reads as a baseline cost (RL stage cost), which is a function of mea-
surable states and actions at the current time k. It is worth not-
ing that the initial conditions are defined by the environment (real
MDP), e.g., in the simulation section, the MDPs for test cases 1 and
2 are defined with fixed initial conditions while the third test case
has an MDP with random initial conditions. We then seek the op-
timal policy parameters as follows:

0, = arg n}gin](rrg) (61)

As a learning-based control approach in this paper, we propose
to use a parameterized MPC scheme as a policy approximation in
order to deliver my required in a policy gradient method. The MPC-
based reinforcement learning then allows us to leverage the ca-
pability of MPC in handling the state-input constraints. Although
a constraint violation may occur due to an imperfect MPC model,
the constraints are finally satisfied by letting RL adjust the whole
MPC scheme, e.g., the constraints can be adjusted in the case of
constraint violation.

For a given estimated state s}, obtained from the MHE scheme,
the policy delivered by a parameterized MPC scheme is

7o (st) = uj(s;. 0) (62)

where uj is the first element of the control input sequence u* de-
livered by the following parameterized MPC scheme:

- Y
min M (Ty (%) + WEOinyec)

X.u,o
k+Nmpc—1 )
+ > V(b u) +wo) (63a)
i=k

st X = [T ), (63b)
Xy =S}, (63¢)
g(u;) <0, (63d)
hy (X, W) < 01 B (Xiesnye) < Osinc (63e)
Ok,..ktNype = 0 (63f)

where Iy and T, are the parameterized stage cost and terminal
cost, respectively. Note that the imperfect MPC model fMPC is pos-
sibly but not necessarily different from the MHE model. We label
hy the mixed constraints, g the pure input constraints, and hg the
terminal constraints. The MPC initial conditions in (63c) are de-
livered by the MHE scheme at the current time instant k. To relax
the inequality constraints, an ¢ relaxation of the mixed constraints
(63e) is introduced. An exact penalty is then imposed on the corre-
sponding slack variables o} with large enough weights w, w¢ such
that the MPC scheme will not be infeasible under some constraint
violations, which appears due to inaccurate MPC model, uncertain-
ties and disturbances.
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5. Policy gradient RL with MHE-MPC

In this section, we propose a new observer-based RL framework
based on Deterministic Policy Gradient (DPG), MPC, and MHE to
deal with the partially observable and imperfect dynamics.

5.1. Compatible deterministic actor-critic

In the context of DPG-based RL algorithms, the policy parame-
ters 6 can be directly optimized by the gradient descent step such
that the best-expected closed-loop cost (a.k.a policy performance
index J) can be captured by applying the policy my. More specifi-
cally, the policy parameters € can be updated as follows:

0 <0 —aVy(my) (64)

for some « >0 small enough as the step size. In the context
of hybrid controller/observer scheme MHE-MPC, the input sig-
nal can be interpreted as a sequence of measurements 0j =
intermediate variable s; is delivered by the MHE scheme based on
the history of the measurements and fed to the MPC scheme to de-
liver the control policy. Let us assume that the measurement his-
tory o, of length N is sufficient to determine the statistics of the
next output y,, 1 such that it remains unaffected for any No > No.
It follows that 0, is a Markov state. We then consider an input-
output MDP based on 0, rather than on the state of the real sys-
tem, and consequently, this MDP can be described based on the
state estimation s}, as an implicit function of 0. Therefore, the
state estimation sj also reads as a Markov state, and one can use
it in the state (-action) value functions. Let us define the policy
performance index by the following expected value:

J(9) = Eg,~p, [Qﬂu (57(’ 7o (s/:))] = Eg~p, [V”!) (SE)] (65)
where p, is the measurement distribution at the current physi-
cal time k, e.g., a Gaussian distribution. Note that we remove 0,
from the arguments of the state (-action) value functions Q, and
Vr, above as sy is implicitly constructed (delivered from the MHE
scheme (59)) based on the history 0. It also follows that the con-
trol policy 7y (s}) = ug(s;. 6) captured from the MHE-MPC reads
as an implicit function of the measurement history. The action-
value function Qng is then defined as follows:

Qr, (S ak) = L(Vio &) + VB¢ [V, (Shi1) ISk ] (66)
where the expectation E, is taken over the distribution of the
Markov chain (2). Based on the proposed DPG theorem by [27] and
the fact that both the my and Qx, are functions of Sis the policy
gradient equation is described as follows:

Vol (7t9) = Ex, [ Vo719 (5}) Va,Qu, (S @) la=r, | (67)

where the expectation Ey, is taken over the distribution of the
Markov chain resulting from the real system in closed-loop with
1y. To represent the effect of the parameterized MHE upon the
policy gradient, the sensitivity of the policy w.r.t 8 can be updated
such that the new policy gradient is described by the following ex-
pectation:

Vol (g) = Ex, [Eva,(oﬂg (si. ak>|ak:m,] (68)

—

where the Jacobian matrix E is obtained by the following chain
rule:

8 = Vors + (Vosi + Vo1,V s}) Vs, 7 (69)

Hence, the Jacobian matrix above is constructed based on both the
MHE and MPC sensitivities where the optimal policy is delivered
by a combined MHE-MPC scheme. In this paper, we adopt a com-
patible deterministic actor-critic algorithm [27] in which the action-
value function Qg (S}, a;) can be replaced by a class of compatible
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function approximator QW (s}, a,) such that the policy gradient is
preserved. Therefore, the compatible function for a deterministic
policy my delivered by the parameterized MHE-MPC scheme can
be expressed as follows:

Q¥ = (a—7p) "W+ V" (s}) (70)
The first term in the above compatible function as the critic part
is an estimation for the advantage function and the second term
estimates a value function for the history of the measurements
delivered as a summarized variable s; by the MHE scheme. Both
functions can be computed by the linear function approximators
as follows:

V¥ (s;) = Y(sp) v. (71a)

A% (st ar) = ¥(s;. ak)Tw (71Db)

where Y(s;) is the summarized measurement feature vector in
order to constitute all monomials of the history of the measure-
ments with degrees less than or equal to 2. The vector \Il(s,*(, ak) =

E(ay — g (s})) includes the state-action features. Considering (70),
the policy gradient (68) is then rewritten as follows:

Vol(9) = B, [EE W] (72)

In this paper, the parameterized policy in the context of policy gra-
dient RL is proposed to be captured by the MPC scheme (63). To
evaluate the policy gradient (72), one needs to calculate some sen-
sitivities upon the MPC and MHE schemes in order to compute the
Jacobian matrix E. Hence, the Jacobian matrices Vymy and Vs;ﬂg
can be computed by the sensitivity analysis for the parameterized
MPC scheme while the gradient Vjys; and the Jacobian matrices
VoI, V, s}, are obtained as sensitivity terms for the parameter-
ized MHE scheme.

5.2. Sensitivity analysis and LSTD-based DPG

5.2.1. Sensitivity computation

We describe next how to compute the sensitivities (gradients)
needed in the proposed policy gradient RL framework based on
MHE-MPC. To that end, let us define the Lagrange functions £y, £y
associated to the MHE and MPC schemes (59), (63) as follows:

ﬁg (2) = [\9 + RTCQ (73)

,Cg (Z) = Ag + )LTGQ =+ MTHQ (74)

where A, and A, are the total parameterized costs of the
MPC and MHE schemes, respectively. The inequality constraints of
(63) are collected by Hy while G, and G, gather, respectively, the
equality constraints in the MPC and MHE schemes. We then la-
bel A, A the Lagrange multipliers associated with the equality con-
straints Gy, G, of the MPC and MHE, respectively. Variables 4 are
the Lagrange multipliers associated with the inequality constraints
of the MPC scheme. Let us label T' = {x,u, o} and I =3 the pri-
mal variables for the MPC and MHE, respectively. The associated

primal-dual variables then read as z={I', A, u} and 2 = {f, 5\].

The sensitivity of the policy delivered by the MPC scheme
(63) w.r.t policy parameters and the sensitivity of the estimated
state associated with the MHE scheme (59) can be obtained via
using the Implicit Function Theorem (IFT) on the Karush Kuhn
Tucker (KKT) conditions underlying the parametric NLP. Assuming
that Linear Independence Constraint Qualification (LICQ) and Sec-
ond Order Sufficient Condition (SOSC) hold [20] at z* and Z*, then,
the following holds:
dzr  dky ' dky

30 = 9z 90 (752)
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0z Ry Ok
30~ 9z 90 (75b)
where
\% "
B rLe Vel
Kg = G@ , Kp= C (76)
diag(11)Hy o

are the KKT conditions associated with the MPC and MHE schemes,
respectively. As 7y and s;, are, respectively, part of z* and Z*. Then,
the sensitivity of the MPC policy Vymy and the sensitivity of the
MHE solution Vgsj, required in (72) can be extracted from gradi-

daz* 0z* :
ents 55 and %%, respectively.

5.2.2. LSTD-based policy gradient
In the context of compatible DPG, one can evaluate the opti-

mal parameters w and v of the action-value function approxima-
tion (70) as solutions of the following Least Squares (LS) problem:

min 2[ (Qx (5;. 1) - Q¥(5;. 1)), 7

In the context of RL, the Least-Squares Temporal Difference (LSTD)
algorithms offer efficient use of data and tend to converge faster
than other methods [9]. The LSTD update rules for a policy gradi-
ent RL are then obtained as follows:

v=Q:'h,, (78a)
w = Q' b, (78b)
0 <6 —ab, (78¢)

where the matrices €2 and the vectors b, are calculated by tak-
ing expectation (E;;) over m episodes as follows:

T
Q) = Ey [Z [ (st) (r(s0) - yT(s;H))T]] (79a)
k=1
Ty .
Qu = Ey |:Z[\Il(s;, a,)¥(s;, ay) ]} (79b)
k=1
Iy
by =En |:Z T(SE)L(ykv ak):|, (79C)
k=1

Tr
bw =En |:Z [(L(Yk, ) + VVU(SZH) -V (52))‘1’(52’ ak)]:|,

k=1

(79d)
Ty

by =Em|:z EETwi| (79e)
k=1

where Ty is the final time instant at the end of each episode.
6. Simulation results

In this section, we illustrate the performance of the proposed
learning-based control and estimation algorithm to deal with three
types of problems. In the first test case, we consider a linear sys-
tem evaluating a model mismatch problem where the MHE model
in a combined MHE-MPC scheme is wrong and cannot capture the
real system. In the second test case, we show that the proposed
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Fig. 1. Real system behavior and state estimations for a set-point tracking (x4, = 0.8 and x4, = 0) in the presence of the model mismatch on the MHE. The solid lines of blue
color indicate the states while the estimations are indicated as dashed lines of red color. The correct states and estimations without model mismatch are shown in green.

framework achieves a better closed-loop performance for the con-
trol of systems using inaccurate models where a reduced model is
used for both the control and estimation goals. We implement our
algorithm for a smart building in order to maintain the room tem-
perature in its comfort range even if there is no sufficient knowl-
edge about the building dynamics. Finally, we investigate the pro-
posed learning-based framework applied to a Continuous Stirred
Tank Reactor (CSTR) as an example with nonlinear dynamics.

6.1. Test case 1

In this case study, we consider a model mismatch upon the
MHE and evaluate a set-point tracking using an MHE-MPC for a
two states linear system X, = AX; + Bu;, where x; is selected as
measurement. The real system and MPC model are chosen as:

1 0.25 0.0312
A:[o 1 } B:[ 0.25 } (80)
while the MHE model is selected as:
R 09 035], 0.0813
X1 = [ 0 11 i|xk+ |: 0.2 i|uk (81)

We then use the MHE scheme (59) where the arrival cost is
adjusted based on the updating rule (52) and the stage cost is ap-
proximated based on the parameterization (54). The input convex
NN has two hidden layers with 15 neurons and both the MHE and
MPC horizons are set to 8. We use a smooth version of ReLU as an
activation function g; in ICNN (56).

g;(x) =log (1 +exp(x)) (82)

Note that in this example only the MHE scheme is learned by RL
and the MPC scheme is not parameterized. Fig. 1 shows that the
model mismatch on the MHE scheme can affect both the estima-
tion performance and the set-point tracking performance. Indeed,
the MHE model mismatch causes a large estimation error on Xx;
and the set-point 0.8 on x; cannot be tracked. As it is shown in

10

Fig. 2, the mentioned problems due to model mismatch have been
solved and a correct state estimation is delivered where the pro-
posed modification of the MHE cost is implemented. Fig. 3 shows
the learning progress including the system states x;,x, and their
estimations during 60 RL steps such that the closed-loop perfor-
mance J(my) is improved by the MHE cost modification, and the
correct state estimations shown in Fig. 2 are delivered.

6.2. Test case 2

6.2.1. Building model

Let us select a model of the real system of a house floor heat-
ing system connected to a ground source-based heat pump shown
in Fig. 4. We consider a dynamical model with four states for the
building as the real system under control, which is described by a
set of ordinary differential equations as follows [24]:

dT,
Coa e = Kuaa(Ta = Tua) + Kuar (T — Toa) (83a)
dT;
Crgp = Kwar(Twa = Tr) + K (Tr = T) (83b)
dT;
dT,
CWW = Kb(Tf — Tw) +nWe (83d)

where the control input u =W, is the power used by the heat
pump. The states of the real system x" = [Twa,Tr,Tf,T,,l,]T are
labeled the wall temperature, the room temperature, the floor
(pavement) temperature, and the water pipeline temperature,
respectively. The coefficients Cwa, G, Cy, and C, read as the cor-
responding heat capacities of the above-mentioned temperatures.
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Fig. 2. Real system behavior and state estimations for a set-point tracking (x;, = 0.8 and x4, = 0) where the MHE scheme is modified. The solid lines of blue color indicate
the states while the estimations are indicated as dashed lines of red color. The correct states and estimations without model mismatch are shown in green.

80

50
Time Step

100

Fig. 3. Closed-loop performance and evolution of states and their estimations during reinforcement learning.

We label Kwga, Kwar, Ky, and K, the overal heat transfer coef-
ficients between the {Tyq, Ty} wall-ambient, {Tyq,T;} wall-room,
{Tf, Tr} floor-room and {Tf, TW} floor-water pipeline, respectively.

The Coefficient of Performance (COP) n for heat pumps varies
with type, outdoor ground temperature, and condenser tempera-
ture. In this paper, we then adopt a stochastic COP shown in Fig. 5
to make the simulations more realistic.

1

To implement a POMDP scenario, we assume that the building
dynamics can be modeled by a reduced model considering the
room and water pipeline temperatures (T, T,y) as the only measur-
able states used in the state-space model. Hence, the dynamics of
wall inertia and floor are removed from the real system (83), and
then a partially observable model with two states is adopted for
both the MHE and MPC schemes. To reduce the order of a state-
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Fig. 4. Building climate control [13] using a heat pump floor heating system. The dashed line represents the floor heating pipelines.
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Fig. 5. Stochastic COP of heat pump sampled from the last RL step.

space model captured from the real model of the building (83),
we propose to use ymodredy with option ¥MatchDCy as a built-in
function in MATLAB. By eliminating the states Tyq, Ty from the real
system, the frequency response of the reduced model is affected
so that it can no longer follow the real response shown in Fig. 6.

The parameters of the building model adopted in this simula-
tion are given in the following table.

6.2.2. Simulation settings

As we propose to adopt a reduced model of the real system
(83) as a POMDP scenario, we label x™ = [T, TW]T the model states
(measurements) used in both the MHE and MPC schemes. We
then use a parameterized MHE scheme as (59) to estimate the
model states from the noisy measurements y = X™. The stage cost
Ly (§i, off ) in this MHE scheme consists of two cost terms expressed
in (54) so that Lyy(Y;, Oyy) is approximated using an input convex
neural network defined in (56). This NN consists of two hidden

12

layers and each layer has 26 neurons where a smooth version of
ReLU is used. The cost term Ly is selected as a least square prob-
lem parameterized as follows:

Ly, = |3 —h(E") 7,

Note that the second term in the cost above reads as a gradi-
ent modification term. The adjustable weighting matrix Qp in the
equation above is tuned using RL. As a requirement, this weight-
ing matrix must be symmetric and positive semidefinite. However,
the RL steps delivered by the LSTD-based DPG do not necessarily
respect this requirement, and we need to enforce it via constraints
on the RL steps throughout the learning process. To address this
requirement, we then formulate a Semidefinite Programming (SDP)
as the following least squares optimization problem:

+ Gy X" (84)

o1 2 T
min j||A0|| —d'Ab (85a)
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s.t. Qu(0+AH) >0, (85b)

W(Z)

1:1-1 =0

(85¢)
where 0 = {Qy, Wl(f,ll} and d = —aby. We assume that the weight-
ing matrix Qy is a linear function of 6. Then, it is updated at ev-
ery RL step (epoch) due to updating A6, which is a solution of
the above SDP scheme. Note that the second term in the objective
function (85a) ensures that A is obtained in the direction of the
policy gradient at every RL step.

To keep the room temperature in a comfortable range, we for-
mulate an economic MPC scheme as follows:

i k
x%I}r Y e (Wf O—"JrNMPC)
k+Nypc—1
+ Y Y (Puilt + woy) (86a)
i=k
st x! = MO, up), (86b)
Xp =X, (86c)
0+ Tr‘j‘i“—ai <T.;< é-ﬁ-TrK)?ax-l-O',‘, (86d)
Aumin = Aui < Almax, (866)
Umin = Uj = Umax, (86f)
Ok...ketNype = 0 (86g)

where f(,’(m is the current state estimation delivered by the ap-
proximate MHE scheme, p, is the cost coefficient for the electric-
ity prices, and fMP C is captured from a model reduction approach.
To adjust the constraints upon the room temperature, we consider
two parameters (0, 0) and let RL tune them. As a result of the the-
orems developed in this paper, we propose to modify the stage

cost of the MHE scheme with a reduced model to tackle POMDPs.

13

To that end, we let RL adjust the NN weights Oyy and some param-
eters of the first stage cost term Ly, including inverse of the covari-
ance matrix Qy and gradient term Gy in (84). Hence, all RL param-
eters 6 = {ONN,%,QQ,Q,é} are adjusted by the proposed LSTD-
based DPG reinforcement learning. We adopt a baseline stage cost
in the proposed LSTD-based RL algorithm as follows:

Lk, @) = Pus-Gx +w.max(0, h(T.x))

where @, = 77y (X™) = ug(X;™,0) with the possible addition of
occasional random exploratory moves. Note that uj is the first
element of the control input sequence u* delivered by the MPC
scheme (86). We use the weight w = 100 where h(T, ;) collects the
inequality constraints upon indoor temperature Tr‘}f“ <Tk< Trf‘,:ax.

We choose a sampling time 15min and a forecast 24h for the
ambient disturbances and electricity prices. Therefore, the predic-
tion and estimation horizons (Nypc, Nvng) are set to 96. The am-
bient temperature and electricity prices are forecasted for 10 days
starting from the first day of January 2021 in Trondheim, Norway
where the data used in this simulation is provided by Nord Pool
Spot as an electricity market operator.

(87)

6.2.3. Discussion

In practice, it is very difficult to make an accurate model of
a building for the model-based control approaches, i.e.,, an MPC
scheme since there are some complex dynamics and uncertainties
that may not be captured. To address this complexity, a common
solution is to adopt some simplified and reduced models in this
context. Although these simplified models are useful to be used in
an MPC scheme in order to reduce computational complexity, they
can affect the control performance in a building climate control
system. In this simulation, we use a super-simplified and realistic
building model where its dynamics include only two measurable
states T, T, while the aim is to control the indoor temperature in
a real model (83). As it is shown in Fig. 7, the first evolution (No
learning is used) of T in blue color cannot perfectly respect the
lower variable constraint and there is a heavy violation since the
model is not truly captured.

The evolution of estimated T; is depicted in Fig. 8 in red color
and it can be observed that the first evolution of this estima-
tion is not able to follow the first evolution of the real T; in blue
color. This estimation error, where there is still no adopted learn-
ing mechanism upon MHE and MPC, can be clearly observed in
Fig. 10. To address these problems induced by adopting a reduced
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Fig. 7. Evolution of the building temperatures T;, Ty, Twq (black color) and trained optimal policy u where both the estimator (MHE) and controller (MPC) use an imperfect
model. The comfort T, is captured (green color) after 185 learning steps (epoch) for the adjustment of MHE and MPC schemes.
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Fig. 8. Evolution of the real states as measurements (temperatures T, T,, in blue color) and their estimations (red color) used in the inaccurate models of MHE and MPC as
POMDPs. The estimations in light blue color are captured from the trained MHE estimator.

model, we let an LSTD-based DPG reinforcement learning adjust
the parameters of both the MHE (cost modification) and MPC (con-
straint adjustment) schemes shown in Fig. 9 in order to capture a
correct state estimation and deliver a learned policy to tackle this
model inaccuracy.

To conclude the proposed learning-based state estimation and
control, we can observe that the proposed theorem of cost modi-
fication in an MHE scheme with imperfect model works since we
achieve a perfect closed-loop performance by applying that theo-
rem in order to modify the MHE cost depicted in Fig. 9. It is worth

14

noting that, the learned policy is optimally captured from the MPC
scheme so that the heat pump power has its highest value in lower
electricity prices and it has a minimum peak for times that the
electricity is expensive shown in Fig. 7.

6.3. Test case 3
6.3.1. CSTR Nonlinear model

In this section, the proposed learning-based MHE-MPC scheme
is applied to a Continuous Stirred Tank Reactor (CSTR), where the
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Fig. 10. The building indoor temperature before and after learning the estimator and controller.

dynamical system is nonlinear and may not be modeled accurately. follows: (Table 1)
In this chemical reactor, the reaction (A — B) is accomplished by .

means of an irreversible and exothermic chemical reaction, and the V(®) = qo — g5(0),

aim is to control the concentration of A, Cg, and the reaction vol-

ume, V, by manipulating the output process flow rate, qs, and the . o r
coolant flow rate, gc, see [22]. The CSTR dynamics are described as ~ Ga(t) = m(cao —Ga(t)) — koeTo Ca(t),

15

(88a)

(88b)
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Fig. 11. Evolution of the CSTR states and their estimations during the learning progress. The system states and their estimations at the learning stage are shown as black
and green lines, respectively. The orange circles and blue lines, respectively, represent the correct state estimations and the system states delivered after 800 RL steps. The

set points are shown as red dashed lines.

Table 1
Building parameters.
Cuwa 24.2 x 10°[1] Kwaa 56[%]
G 6 x 10°[£] Kuar 386[ %
C; 24.8 x 106[%] Kp, 594 W
Cw 20.7 x 104 Ky 506[ % ]
T(t) = V(t) (T, — T(t)) + kim0 Cy ()
t ks
+k “1;((0) (1 —ewt ) (Too — T(1)), (88¢)
ky = —BHko PGy A (88d)
e e PCe

where V(t),Cy(t), T(t) are the reaction volume, the concentration
of A, and the reactor temperature, respectively. We consider V (t)
and T(t) as measurable states since it is not usually easy to mea-
sure the concentration C, directly. The measurement noises are se-
lected as (0, Q) with Q = diag(2.52, 2.52). The control inputs are
gs and q.. The constant parameters given in Table 2 are the pro-
cess flow rate qo, the feed concentration Cg,, the reaction rate ko,
the activation energy term E/R, the feed temperature T,, the inlet
coolant temperature T, the heat of reaction AH, the heat transfer
term hA, the liquid densities p, o and the specific heats Cp, Cpc.
To investigate the performance of the proposed modification of
the MHE scheme, we adopt the correct model (88) in the MPC

Table 2
CSTR Model Parameters.
o 100] 757 ] Ca, eS|
To 350[K] Teo 350[K]
AH -2 % 10%[ & ] pCp 1000[ &
ko 7.2 x 100 1] E/R 1 x 104[K]
0Cpe 1000[ hA 7 x 105 b
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scheme while the MHE scheme is formulated using an imperfect
model of the real system as follows:

V(t) = qo— qs(t). (89a)
Ca(t) = 0.93 V‘i‘;) (Ca, — Calt)) — 1.2koe T Cy (1), (89b)
T(t) = 0. 93V2) (T, — T(t)) + 1.3k e ™0 Cy(t)

+o.8k2%(1 —e%)(ra, ~T(t)) (89¢)

The constraints on the states and control inputs are 90 <V <
110, 0 < C; <0.35,400 < T <480, 80 < g5 < 120 and 75 < q. < 140.

6.3.2. Simulation settings

In this simulation, both the modification step H and the horizon
N are set to 10. The number of neurons in the hidden layers of the
ICNN is set to 18, and we consider a sampling time 0.1min. In the
reinforcement learning setting, the parameterized MHE scheme is
adjusted during 800 episodes (RL steps), where each episode in-
cludes a 4min (40 time steps) of running the real system. Hence,
in this simulation scenario, we use a total of 3.2 x 10% learning
samples to modify the MHE scheme with the imperfect model
(89), and improve the closed-loop performance. Note that the ini-
tial conditions are randomly selected for episodes of length 40.
The set-point tracking goal is set as V¢ =105 I, C¢ = 0.12 mol/l,

=433.72 K, ¢¢ =100 I/min and ¢¢ = 110 I/min.

6.3.3. Discussion

Fig. 11 depicts the evolution of the system states and their esti-
mation during the learning progress. As it is observed, the correct
state estimations (orange circles) are delivered after 800 RL steps
so that the system states (blue lines) can track the corresponding
set points accurately.
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Fig. 12. Evolution of the CSTR control inputs during the learning progress. The control inputs at the learning stage are shown as black lines while the optimal control inputs
delivered from the MHE-MPC after 800 RL steps are shown as blue stairs. The constraints and set points are shown as red-dashed and yellow-dashed lines, respectively.
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Fig. 13. Comparative analysis between the conventional MHE-MPC with an imperfect model and learning-based MHE-MPC.

Fig. 12 shows the evolution of the control inputs in black color
during the learning progress, and it is observed that the optimal
control inputs shown as stairs in blue color track the correspond-
ing set-points while the constraints are guaranteed.

The results depicted in Fig. 13 provide a comparative analy-
sis between the proposed learning-based MHE-MPC and one with-
out learning. It can be observed that the system states in black
color are struggling to track the references since the imperfect
model (89) is used in the MHE scheme, and the wrong estima-
tion is delivered, shown as blue circles. The proposed learning-

17

based modification of the MHE scheme then adjusts the MHE
stage cost function so that the state estimations (red circles) per-
fectly match the correct estimations. Note that the correct estima-
tions are those captured from the MHE scheme with the perfect
model (88).

The closed-loop performance J(7ry) is illustrated in Fig. 14, and
it is observed that the best performance is achieved after 500
episodes, and the norm of policy gradient steps V,J moves towards
zero since the policy parameters converge to the optimal parame-
ters.
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Table 3
Computation time.

Time Baseline MHE-MPC Modified MHE-MPC
Test Case 1 0.89 sec 1.68 sec

Test Case 2 10.2 min 19.47 min

Test Case 3 1.23 sec 2.15 sec

6.4. Computation time

To investigate the computation time of solving the proposed
modified MHE-MPC scheme, the choice of the modification step
H and the number of neuron used in the hidden layers of ICNN
in the modified MHE scheme are regarded as crucial issues since
they determine the number of the parameters required in the
proposed modification. Although, the horizon H could be larger
than N to approximate the modified stage cost accurately, we
may choose a small size of H even smaller than N in order to
provide an acceptable trade-off between the computational ef-
fort and the approximate value captured from the NN. To miti-
gate the computational efforts for all three numerical examples,
the horizon length of the modification step H has been set to the
same value as the prediction/estimation horizon N. Fortunately, the
training stage of the proposed MHE/MPC-based RL can be accom-
plished offline, and it is worth mentioning that the MPC param-
eterization is quite flexible so that the MPC cost can be param-
eterized from a numerical perspective that makes the MPC im-
plementation as tractable and effective as possible. However, the
MHE/MPC-based RL combined with NN in the loop may strug-
gle a bit in the real-time applications, in particular those cases
with very small sampling times and large estimation/prediction
horizons. Nonetheless, the progress in the optimization algorithms
and in the computational hardware makes the deployment of real-
time MHE/MPC possible for most of the real applications. The
computation times for three test cases above are provided in the

18

Table 3. Note that we do not use real-time solvers in the present
paper.

7. Conclusion

In this paper, we have shown how an MHE scheme can be mod-
ified such that its performance degradation due to using an im-
perfect MHE model is tackled. The stage cost modification in both
versions of the stochastic and deterministic MHE schemes is pro-
posed so that a correct probability measure and state estimation
can be delivered even if the underlying model cannot capture the
real system. A practical implementation of the proposed approach
upon the MHE cost modification is discussed. To achieve the best
closed-loop performance for a combined MHE-MPC scheme using
an imperfect model of the real system, we detail a parameteriza-
tion method for both the deterministic MHE and MPC schemes and
develop an MHE/MPC-based policy gradient reinforcement learning
algorithm. The effectiveness of the proposed learning-based esti-
mator/controller has been established for three examples includ-
ing a model mismatch problem, a climate control of smart building
where the building model used in the MHE-MPC is simplified and
different from the real dynamics, and a CSTR estimation/control
problem. Further work will aim to implement a modified stochastic
MHE scheme proposed in this paper.
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