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abstract

Stochastic wave properties are crucial for the design of offshore structures. Short-crested seas
are commonly seen at the sites of offshore structures, especially during storm events. A long
time duration is required in order to obtain the statistical properties, which is challenging
for numerical simulations. In this scenario, a potential flow solver is ideal due to its com-
putational efficiency. A procedure of reproducing accurate short-crested sea states using the
open-source fully nonlinear potential flow model REEF3D::FNPF is presented in the paper.
The procedure examines the sensitivity of the resolutions in space and time as well as the
arrangements of wave gauge arrays. A narrow band power spectrum and a mildly spreading
directional spreading function are simulated, and an equal energy method is used to generate
input waves and avoid phase-locking. REEF3D::FNPF solves the Laplace equation together
with the boundary conditions using a finite difference method. A sigma grid is used in the
vertical direction and the vertical grid clustering follows the principle of constant truncation
error. High-order discretisation methods are implemented in space and time. Message pass-
ing interface is used for high performance computation using multiple processors. Three-hour
simulations are performed in full-scale at a hypothetic offshore site with constant water depth.
The significant wave height, peak period, kurtosis, skewness and ergodicity are examined in
the numerically generated wave field. The stochastic wave properties in the numerical wave
tank (NWT) using REEF3D::FNPF match the input wave conditions with high fidelity.

1 Introduction

Ocean waves are random by nature, and short-crested irregular waves are common near storm
events. The design of marine structures and the choice of sites both depend on a good
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understanding of the random irregular wave condition. In many cases, the area of interest is
large in space and the marine environment changes dramatically over time as well as from
location to location. Experiments are expensive and lack of flexibility in such situations.
Numerical models have been developed to simulate the large-scale wave propagations with
flexible scenarios. Typically, a three-hour duration is needed to obtain short term wave
statistical properties. In order to numerically simulate a multi-directional irregular wave
field at an offshore deepwater area for three hours, an appropriate model is needed and the
simulation needs to be correctly configured.

Spectral wave models such as SWAN Booij et al. (1999) are fast and efficient models that
solve the energy action equations and provide the spatial distribution of wave statistical prop-
erties. However, in many cases, time domain information is needed, especially for structure
responses and fatigue analysis. Here, phase-resolved models offer time series of wave kine-
matics and dynamics as well as the statistical properties. When the engineering application
involves a large array of structures, such as fish farms and wind farms, a phase-revolved so-
lution is needed for a large-scale domain, which requires a computationally efficient solution.
Many two-dimensional wave models solving shallow water equations, such as Boussinesq-type
wave models Madsen et al. (1991); Nwogu (1993) provide such solutions for shallow water
regions. However, offshore platforms, fish farms and wind farms are increasingly moving to
deep water, where assumptions of such models fail. Computational fluid dynamics (CFD)
solves the Navier-Stokes equations for the kinematics and dynamics of fluid and is able to
reproduce high fidelity wave field. However, the method requires fine resolutions in space and
time and tends to become too time consuming for wave propagation simulations, especially
at large-scale and with long duration.

The alternatives to achieve fast deepwater wave simulations are potential flow based nu-
merical models. One of the widely used models is the boundary element method (BEM)
model Li and Fleming (1997). Many efforts have been made to introduce nonlinearity in the
model to be able to represent steep waves Grilli et al. (1994); Grilli and Horrillo (1997); Grilli
et al. (2001). However, these methods tend to require the evaluation of dense matrix–vector
products Brink et al. (2017), making it difficult to implement high-order numerical schemes
and parallel computation techniques for large-scale long-duration wave modelling. Finite ele-
ment method (FEM) based Laplace solvers have also been developed Ma et al. (2001a,b); Ma
and Yan (2006). The resulting sparse system of equations is much easier to solve. However,
additional numerical stabilisation or specially constructed meshes are often needed to prevent
numerical instabilities Brink et al. (2017). Another field solver is based on the harmonic
polynomial cell (HPC) method Shao and Faltinsen (2012, 2014b,a), where a similar sparse
matrix as in the FEM models is achieved. The method has been validated for regular waves
and is found to be especially useful for the studies on wave-structure interaction. For the
application of large-scale irregular wave simulations, the high-order-spectrum (HOS) models
Ducrozet et al. (2012); Ducrozet et al. (2016); Yates and Benoit (2015) are seen to be effi-
cient alternatives thanks to the usage of fast Fourier transform (FFT), especially for constant
water depth in the offshore waters. Short-crested seas can be generated both in a numerical
wave tank (NWT) or in an open ocean condition with periodic boundary conditions. How-
ever, the representations of steep and breaking waves as well as wave transformation over
complex bathymetry and coastlines are challenging and require special treatments. In com-
parison, finite difference method (FDM) based fully-nonlinear-potential-flow (FNPF) models
Bingham and Zhang (2007); Engsig-Karup et al. (2009) are seen to be flexible alternatives.
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The FDM based FNPF model REEF3D::FNPF Bihs et al. (2020) is recently introduced as a
general purpose wave model that is flexible with varying bathymetry and coastlines as well
as steep and breaking waves. REEF3D::FNPF is a sub-model of the open-source hydrody-
namic model REEF3D Bihs et al. (2016b). REEF3D uses high-order discretisation schemes
for the free surface and fully supports parallel computation via domain decomposition. The
numerical robustness has been seen from a wide range of applications with its CFD module
REEF3D::CFD, such as irregular breaking waves Aggarwal et al. (2019a), breaking wave in-
teraction with a monopile Chella et al. (2019) and a jacket structure Aggarwal et al. (2019b).
REEF3D::FNPF inherits all the high-order numerical schemes and high performance compu-
tation capacity. The model has also been used to investigate steep focused waves Wang et al.
(2019).

Choosing the correct numerical wave models for a certain engineering application is im-
portant, a correct usage of numerical model is also critical. The user inputs and configurations
influence the results of the simulations significantly. In the case of simulating short crested
waves, the results are especially sensitive to user configurations, as many parameters play
important roles in the distribution and transition of wave energy. There are several criteria
to evaluate whether a simulation represents a short-crested sea state sufficiently, for example,
the significant wave height, peak period, shape of the spectrum, ergodicity of the simulated
wave field and the directional spreading.

The directional spreading information is usually obtained from the time series from an ar-
ray of wave gauges. Similar techniques can be used both for field measurements and numerical
simulations. One of the common configurations is a wave array consisting of 4 wave gauges,
one in the middle, and three forming a triangle around the centric point Nwogu (1989). The
method requires the least number of wave gauges. A more advanced configuration is proposed
and mathematically derived Ochi (1998) with five wave gauges forming a pentagon. Several
other wave gauge arrangements that consist of 4, 5 and 6 wave gauges have also been inves-
tigated Panicker and Borgman. Those arrangements have an impact on the quality of the
direction spreading information obtained from a wave field though the same radius is used
in each wave array. Most recently, an 8-gauge array arrangement is widely used Stansberg
(1998); Tannuri et al. (2007). There, one wave gauge is located at the centre, while the other
7 wave gauges form a heptagon around the centre. A fixed radius of 0.5 m is used in this
arrangement and no further correlation to wave length is explored. While the arrangement of
the wave gauges in field measurements is mostly based on experience, the optimal arrangement
can be straightforwardly tested thanks to the flexibility of the numerical models. However,
few attempts have been made to test the configurations of wave gauges. In the numerical
simulations performed by Ducrozet et. al. Ducrozet et al. (2012), 3D freak wave occurrence
in a short-crested sea is examined with a truncated pentagon wave gauge arrangement Benoit
and Teisson (1994). However, the radius of the wave gauge array is fixed at 1 m rather than
correlated to the characteristic wavelength. In another simulation Ducrozet et al. (2016),
wave number spectra are reconstructed from the free surface elevation in the entire wave tank
at different time steps. Therefore, wave gauge arrangement is not studied since the analysis
is not based on time series.

Due to the different numerical techniques and practices, there is a lack of a guideline to
configure and evaluate a short-crested sea in a numerical wave tank. In the presented paper,
the authors attempt to demonstrate a procedure of configuration and analysis to control the
quality of a short-crested sea-state in a FDM based FNPF NWT using REEF3D::FNPF. Nu-
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merical details regarding grid arrangements as well as the optimal radius for wave gauge arrays
in correlation to characteristic wavelength are provided. Several considerations regarding the
choice of the vertical grid structure and horizontal resolution for irregular waves are discussed
to ensure a good representation of wave spectrum in the numerical wave model. The ergodicity
of the wave field is analysed with several statistical wave properties. Finally, the directional
spectrum obtained using different wave gauge arrangements are compared to investigate how
the different wave gauge arrangements influence the quality of the directional spectrum in the
numerical wave tank. The procedure provides insights to several key considerations in order
to reproduce a multi-directional wave field with the correct energy distribution, ergodicity as
well as the correct directional spreading.

2 Numerical Model

The governing equation in the open-source fully non-linear potential flow code REEF3D::FNPF
is the Laplace equation:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (1)

Boundary conditions are needed to solve for the velocity potential Φ from this elliptic
equation. At the free surface, the fluid particles remain at the surface and the pressure in
the fluid is equal to the atmospheric pressure for inviscid fluid. These conditions must always
hold true and they define the kinematic and dynamic boundary conditions at the free surface
respectively:

∂η

∂t
= −∂η
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− w̃2

(
1 +

∂2η

∂x2
+
∂2η

∂y2

))
− gη (3)

where Φ̃ = Φ(x, η, t) is the velocity potential at the free surface, x = (x, y) represents the
horizontal location and w̃ is the vertical velocity at the free surface.

At the bottom, the vertical water velocity must be zero at all times since the fluid particle
cannot penetrate the solid boundary. This gives the bottom boundary condition:

∂Φ

∂z
+
∂h

∂x

∂Φ

∂x
+
∂h

∂y

∂Φ

∂y
= 0, z = −h. (4)

where h = h(x) is the water depth from the seabed to the still water level.

The Laplace equation and the boundary conditions are solved with a finite difference
method on a σ-coordinate system. The σ-coordinate can be transferred from a Cartesian grid
following:
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σ =
z + h (x)

η(x, t) + h(x)
(5)

In the vertical direction, the grid can be clustered towards the free surface:

σi =
sinh (−α)− sinh

(
α
(

i
Nz
− 1
))

sinh (−α)
, (6)

where α is the stretching factor and i and Nz stand for the index of the grid point and
the total number of cells in the vertical direction.

Let φ represent the velocity potential after the σ-transformation. After φ is obtained, the
velocities can be calculated:

u (x, z) =
∂φ (x, z)

∂x
=
∂φ (x, σ)

∂x
+
∂σ

∂x

∂φ (x, σ)

∂σ
, (7)

v (x, z) =
∂φ (x, z)

∂y
=
∂φ (x, σ)

∂y
+
∂σ

∂y

∂φ (x, σ)

∂σ
, (8)

w (x, z) =
∂σ

∂z

∂φ (x, σ)

∂σ
. (9)

The Laplace equation is solved using the parallelised geometric multi-grid algorithm pro-
vided by hypre van der Vorst (1992). Second-order central differences are used for the dis-
cretisation of the Laplace equation. For the free surface, the fifth-order WENO (weighted
essentially non-oscillatory) scheme Jiang and Shu (1996) is used to achieve high accuracy as
well as numerical stability. For the time treatment, a third-order accurate TVD Runge-Kutta
scheme Shu and Osher (1988) is used. Both fixed time step and adaptive time stepping can
be applied.

The model is fully parallelised using domain decomposition strategy. Ghost cells are used
to update with the values from the neighbouring processors with Message Passing Interface
(MPI).

3 Irregular wave generation

The waves are generated using the relaxation method Mayer et al. (1998) with the relaxation
function proposed by Jacobsen Jacobsen et al. (2012), as shown in Eqn. (10). In the wave
generation zone, the free-surface elevation and velocities are increased to the designated the-
oretical values. In the numerical beach, a reverse process takes place and the flow properties
are restored to hydrostatic values following the relaxation method. With the numerical beach,
unintended wave reflection from the outlet boundary is eliminated to ensure the quality of
the simulated wave field.

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (10)

where x̃ is scaled to the length of the relaxation zone.
Irregular wave is represented by a linear superposition of a finite number of individual

regular wave components with different amplitudes, frequencies and phases:
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η(1) =
N∑
i=1

Ai cos(kix− ωit− εi.). (11)

where Ai is the amplitude and Ai =
√

2S(ωi)dωi, ωi and εi are angular frequency and
phase of each component, which is a random number within range [0, 2π]. Here, a large
number of frequency component (2048) is used, and thus the error due to the deterministic
calculation of Ai is minimised.

A JONSWAP spectrum is used to describe the distribution of the wave energy as a function
of the angular frequency ω. Wave height Hs, peak angular frequency ωp, and number of
components N are given as input values to the JONSWAP spectrum DNV (2011):

S (ω) =
5

16
H2
sω

4
pω

−5
i exp

(
−5

4

(
ωi
ωp

)−4
)
γ
exp

(
−(ω−ωp)2

2κ2ω2p

)
Aγ . (12)

where the peak-shape parameter γ = 3.3 and the spectral width parameter κ is 0.07 for
ωi ≤ ωp and 0.09 for ωi > ωp. The normalising facor Aγ = 1− 0.287ln(γ).

The Mitsuyasu directional spreading functionG(θ) Mitsuyasu (1975a) is used for the short-
crested sea. It introduces a single shape parameter s and multiplies a normalisation factor
G0(s), as shown in Eqn. (13), where θ = θi−θ and θ is the principal direction representing the
major energy propagation direction and θi is the direction of each incident wave components
measured counter-clockwise from the principal direction.

G(θ) = G0(s) cos2s(
θ

2
) (13)

where

G0(s) =
1

π
2(2s−1) Γ2(s+ 1)

Γ(2s+ 1)
(14)

By multiplying Eqn. (12) and Eqn. (13), the directional spectrum is obtained. An equal en-
ergy method (EEM) is used to discretise the frequency spectrum and the spreading function to
prevent phase-locking in the directional wave field and ensure ergodicity Duarte et al. (2014);
Jefferys (1987). The method discretises the frequency spectrum and directional spreading
function based on equal energy bin, resulting in more components close to the peak frequency
and the principal direction. As an analogy, a spectrum energy density function is considered
as a probability density function (pdf), its integration results in a cumulative distribution
function (cdf), which is divided evenly on y-axis. As an example, a JONSWAP spectrum and
Mitsuyasu spreading function are discretised using EEM, with each vertical line representing
a component, see Fig. 1 and Fig. 2.
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Figure 1: The discretisation of the frequency spectrum based on the Equal Energy method
with 50 components.

- /2 -3 /8 - /4 - /8 0 /8 /4 3 /8 /2
0

0.2

0.4

0.61

pdf

cdf

Figure 2: The discretisation of the directional spreading function based on the Equal Energy
method with 10 components.

In the offshore area, most wave breaking are steepness-induced. Here, a wave-front steep-
ness criterion is introduced to detect a breaking in the numerical model, as shown in Eqn. 15
Baquet et al. (2017).

∂η

∂xi
≥ β. (15)

Where β = 1.25, which is calibrated from the comparison of numerical wave simulation
results with model test data Baquet et al. (2017). The horizontal area between the location
corresponding to a steepness of 0.1β at the wave-back and the location corresponding to a
steepness of β at the wave-front is applied with a viscous damping term to dissipate wave
energy in the process Baquet et al. (2017). The breaking algorithm has been used for numerical
simulations with different wave steepness and water depth and is seen to be effective in
representing irregular wave fields with different wave breaking scenarios Baquet et al. (2017);
Huang and Guo (2017); Huang and Zhang (2018); Pakozdi et al. (2020b).
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4 Results

Numerical wave tank configuration

In the presented study, a full-scale domain is simulated with REEF3D::FNPF. Both the
longitudinal and transverse dimensions of the computational domain are 2000 m, the water
depth is constant at 600 m. The significant wave height (Hs) and peak period (Tp) of the
input wave are 4.5 m and 12.0 s. The JONSWAP spectrum recommended by DNV-GL
DNV (2011) and the Mitsuyasu directional spreading function Mitsuyasu (1975b) are used to
represent the directional spectrum. In the JONSWAP spectrum, the peak-shape parameter
γ = 3.3. A narrow frequency band is used in the study to avoid resolving the wave-wave
interaction at lower and higher frequency range, which are not focuses of the presented work.
The frequency range of [0.75ωp, 2ωp] is used, representing about 94.5% of the total wave
energy. In the Mitsuyasu directional spreading function, the spreading parameter s = 10.0,
representing a mildly spreading sea state.

One of the challenges in obtaining the directional spectrum using time-domain information
is a correct arrangements of wave gauge arrays. Here, three different types of arrangement are
tested: triangle arrangement, pentagon arrangement and heptagon arrangement, as seen in
Fig. 3. In each arrangement, a centric wave gauge is located at x=800 m and y=1000 m. The
other wave gauges are evenly arranged on a circle around the centric wave gauge with a certain
radius. For each arrangement, four different radii in relation to the wavelength corresponding
to the peak period (Lp) are used: 0.125Lp, 0.25Lp, 0.5Lp and Lp. Consequently there are 12
different sets of wave gauge arrays.

x

y

(a) (b) (c)

r r r

Figure 3: The configurations of wave gauge arrays used to obtain directional spectrum from
time series in the 3D numerical wave tank, (a) triangle arrangement, (b)pentagon arrange-
ment, (c)heptagon arrangement.

Another important factor of irregular sea states is that all theories are based on the
assumption that ocean is spatially ergodic. Therefore, it is important to show that the
simulated area of interest fulfils the assumption. Hypothetically, there is a semi-submersible
located at (800, 1000) and it is 120 m long and 120 m wide, roughly the dimension of the
biggest semi-submersible Ocean GreatWhite. An area of 25 times of the semi-submersible is
numerically investigated to ensure the ergodicity at the site. In this area, 36 wave gauges are
arranged in a grid, as shown in Fig. 4. The blue circle is located at (800, 1000), the shaded
area represents the semi-submersible, and the red dots are the wave gauge locations.
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Figure 4: 36 wave gauges (red circles) are arranged in a grid around the hypothetic semi-
submersible (shaded area) with a constant distance of 120 m between each other. The coor-
dinate of the blue circle is (800, 1000) m.

With the chosen frequency range, the longest wave and shortest wave components in the
wave train have wave lengths of 404.9 m and 60.4 m. As a result, for all the wave components,
the chosen scenario is of deep water condition. It is typical to use one wavelength to generate
a regular wave using a relaxation zone. Here, a relaxation zone of the longest wave length is
used to allow a sufficient distance to generate all wave components Bihs et al. (2016a, 2020).
Similarly, a numerical beach of the same length is used at the outlet of the numerical wave
tank to eliminate reflections. At the side boundaries, symmetric boundary conditions are
applied.

Grid convergence study

Previous research Wang et al. (2019) shows that 10 cells in the vertical direction is usually
sufficient to represent steep waves using REEF3D::FNPF. Therefore 10 cells are arranged
vertically in the current study, a constant-truncation-error method Pakozdi et al. (2019) is
used to choose the stretching factor of the stretching function that decides the size of each
of the 10 cells so that a correct dispersion relation is ensured in the σ-coordinate system.
The peak period and water depth are used as inputs in the method. The optimised grid
arrangement for 10 cells is shown in fig. 5. It is seen that the vertical grid arrangement
obtained using a stretching factor of 2.875 in REEF3D::FNPF aligns well with the optimal
vertical grid arrangement.
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Figure 5: The optimisation of the vertical grid stretching following the constant-truncation-
error method Pakozdi et al. (2019). The x-axis is the number of grid and the y-axis shows
the water depth. The black line is the theoretical optimal arrangement of the 10 cells in the
vertical direction and the green line is the arrangement obtained using the stretching function
in REEF3D::FNPF.

In order to resolve all wave components, the horizontal cell size depends on the shortest
wave component. For the grid convergence study, uni-directional irregular waves of the same
input wave properties are simulated in a two-dimensional numerical wave tank using different
grid sizes. There are 7.5 cells per shortest wavelength (Lmin) in the coarse grid arrangement,
15 cells per Lmin in the intermediate grid, 30 cells per Lmin in the fine grid arrangement and
60 cells per Lmin in a further refinement. For each case, the fixed time step is calculated
by dividing the horizontal cell size by the phase velocity of the longest wave component, a
method validated by Pakozdi et. al. Pakozdi et al. (2020a). In this way, the flow information
is ensured not to jump over a cell within each time step. The resulting time step is 0.08 s. In
all cases, 2048 frequency components are used and the waves are simulated for 12800 s, where
the three-hour time window between 2000 s and 12800 s are used to produce statistical wave
properties. 2000 s allows 300 shortest waves in the wave train to propagate though the NWT
and all wave components at anywhere in the NWT reach a quasi-static status, leaving the
wave-wave interaction process to a full three-hour time window. The frequency spectra are
calculated using the time series recorded at a wave gauge that is located at x = 800 m. The
simulated spectra using different grids are compared in Fig. 6. It is seen that the coarse grid
underestimates the peak of the spectrum and the intermediate grid overestimates the spectrum
peak but looses much energy at higher frequency range. The fine grid produces a frequency
spectrum that aligns with the input wave spectrum. The significant wave height Hs from
the fine grid is 4.26 m, 98% of the theoretical Hs that corresponds to wave energy within the
chosen frequency range. With Lmin/dx = 60, the spectrum is very close to that obtained from
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Lmin/dx = 30 without significant further improvements. As a result, Lmin/dx = 30 is used
in the following simulations. The spectrum loses certain energy at the high frequency range
due to nonlinear wave-wave interactions and breaking waves, which is a common challenge in
simulating steep irregular wave fields with a potential flow based numerical model Huang and
Guo (2017); Huang and Zhang (2018).
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Figure 6: Calculated frequency spectra obtained with different grid sizes in the 2D numerical
wave tank.

Simulations of the multi-directional irregular waves

With the chosen resolution from the 2D test, the multi-directional irregular wave propagation
is simulated for 12800s in REEF3D::FNPF. 2048 frequency components and 16 directions are
used in the simulation. The principal direction is set to be zero degree. The three-hour time
series from 2000 s to 128000 s are used for all the statistical analyses. The wave free surface
elevation in the numerical wave tank at the last time step is shown in Fig. 7.
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Figure 7: Wave surface elevation in the numerical wave tank with the multi-directional ir-
regular sea state (a zoomed-in area of 1200 m x 1200 m at the centre of the numerical wave
tank.)

The significant wave height, peak period, kurtosis and skewness at the 36 wave gauges
around the hypothetic semi-submersible are calculated. The relative errors in comparison to
the mean values at all wave gauges are plotted in Fig. 8. The relative errors of Hs are all
below 5% at any wave gauge, the mean error is 0 and the corresponding variance of error is
3.16e-4. It shows that Hs are almost spatially identical with only minor variations. Similarly,
the maximum relative error for Tp is only 5.0%, mean error is 0 and the variance of error
is 0.0010. The maximum error for kurtosis is 5.72% and mean error is 0 and the variance
is only 9.86e-4. However, a significant variation of skewness is observed in Fig. 8d. The
maximum error is found to be 12.24%, the mean of error is 0, and the variance of error is
0.0052, the largest among all investigated quantities. It is also reported by Fouques et. al.
(2021) Fouques et al. (2021) that skewness tends to vary more in a nonlinear sea state. Except
for the skewness, simulated wave field does not vary much and thus shows a good ergodicity
in space.

(a) Hs
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(b) Tp

(c) kurtosis

(d) skewness

Figure 8: Spatial variations in terms of relative errors at the 36 wave gauges covering an area
25 times the size of the hypothetic semi-submersible.

A wave number directional spectrum is firstly estimated using FFT for the wave surface
elevations at all the grid points in the entire domain at the last time step t = 12800 s, as
shown in Fig. 9. It is seen that the principal direction is well represented at 0 degree. The
directional spreading is symmetric around the principal direction. The wave energy is mainly
concentrated within 30 degrees around the principal direction. The wave number at the peak
of the spectrum is 0.028, which corresponds to a wavelength of 224.4 m. The wavelength
calculated with the peak period is 224.46 m in deep water. Therefore, the peak position is
accurately captured in the spectrum too.
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Figure 9: Directional wave number spectrum using FFT in space at t = 12800s.

As the ergodicity of the simulated wave field is ensured and the wave number spectrum is
well represented, the following analyses focus on the effects of the different wave gauge arrays.
Here, the directional spectra are calculated using the time series of the surface elevations at
each set of wave gauges in a three-hour duration.

First, the directional spectra reproduced with the triangle arrangement with different
radii is presented in Fig. 10. With a radius of 0.125Lp, the spectrum represents a narrower
directional spreading as well as a sharper peak. The spectrum reproduced with a radius
of 0.25Lp shows that the main wave energy is concentrated within 30 degree around the
principal direction. As the radius increases further, the triangle arrangements fails to predict
the principal direction, as can be seen from Fig. 10c and Fig. 10d, . It shows that the distance
between the wave gauges play an important role when estimating direction spectrum from
time series.

A similar correlation between the directional spectrum and the radius of the wave gauge
circle is also observed in Fig. 11. Here, a narrower spreading is estimated with r = 0.125Lp
and an asymmetric spectrum is produced with r = Lp. However, correct directional spreading
and peak frequency are represented with both r = 0.25Lp and r = 0.5Lp. When the heptagon
arrangement is used, a correct principal direction is represented with all radii as seen in
Fig. 12. It shows that larger distance between the wave gauges is allowed with an increasing
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Figure 10: Directional spectra obtained from the triangle wave gauge arrangement, (a) r =
0.125Lp, (b)r = 0.25Lp, (c)r = 0.5Lp, (d)r = Lp. The grey curves represent the theoretical
directional spectra.
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Figure 11: Directional spectra obtained from the pentagon wave gauge arrangement, (a)
r = 0.125Lp, (b)r = 0.25Lp, (c)r = 0.5Lp, (d)r = Lp. The grey curves represent the
theoretical directional spectra.
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Figure 12: Directional spectra obtained from the heptagon wave gauge arrangement, (a)
r = 0.125Lp, (b)r = 0.25Lp, (c)r = 0.5Lp, (d)r = Lp. The grey curves represent the
theoretical directional spectra.
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In the experimental test performed by Nwogu Nwogu (1989) using a 5-gauge arrangement,
it is also found that adequate directional information can be found when the radius is smaller
than half that of the peak period wavelength. This agrees with the findings in the current
study. Therefore, a 0.5Lp radius can be considered as maximum radius for the various wave
gauge arrays. A 0.25Lp radius is seen to be a good practice in general, though the optimal
radius might still vary within each arrangement. It is also noticed that reconstructed angular
spreading tends to be narrower than the theoretical spectrum though the principal direction
and other directional information are correctly represented. The experiments presented by
Panicker Panicker and Borgman also indicates that the different arrangements show different
angular spreading properties and that the narrower the angular spreading and the higher the
peak, the better the resolving spectrum from the wave gauge arrays.

5 Conclusion

In the presented manuscript, the authors explain a procedure of reproducing directional spec-
trum in a numerical wave tank using the open-source fully nonlinear potential flow model
REEF3D::FNPF. The model solves the Laplace equation with boundary conditions on a σ-
coordinate system. The arrangement of the vertical grid follows a constant-error method that
ensures correct representation of dispersion. The grid resolution in horizontal plane depends
on the frequency band. 30 cells or more per shortest wavelength corresponding to the high-
est frequency is recommended. For extreme sea states where the occurrence of steep and
near-breaking waves is high, the horizontal resolution might be subject to further refinement.
The fixed time step is calculated by dividing the horizontal cell size by the phase velocity
of the longest wave corresponding to the lowest frequency. In all the presented simulations,
the three-hour time window for analysis starts after 2000 s to ensure a quasi-static status at
all wave gauges. An equal energy method is used in the generation of the multi-directional
irregular wave field to avoid phase-locking. The spatial distribution of the significant wave
height, peak period, kurtosis and skewness show that the wave field is ergodic. A spatial FFT
is used to estimate the wave number directional spectrum. Correct principal direction, peak
period and directional spreading are reproduced. When estimating directional spectrum from
time series from wave gauge arrays, both the configuration of the gauges and the distance
between the wave gauges influence the quality of the reproduced spectrum. In general, with
more wave gauges are involved, the arrangement is less sensitive to the distance between the
gauges. The radius of the wave gauge array is recommended to be between 0.25Lp and 0.5Lp
based on the tested configurations. When a wider frequency band is used, the wave-wave
interaction produce more complicated energy transition, a further study will be needed to
decide the recommendation for such cases. The reason behind the different results from the
triangle arrangement with half the peak period wavelength is hard to be determined in the
current study and requires further investigations. A further investigation on damping zone
locations, sizes, methods and correlations with computational domain is also suggested to
remove uncertainties on the ergodicity of the wave field.
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