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Abstract We investigate enhancing the sensitivity of new
physics searches at the LHC by machine learning in the
case of background dominance and a high degree of over-
lap between the observables for signal and background. We
use two different models, XGBoost and a deep neural net-
work, to exploit correlations between observables and com-
pare this approach to the traditional cut-and-count method.
We consider different methods to analyze the models’ out-
put, finding that a template fit generally performs better than
a simple cut. By means of a Shapley decomposition, we gain
additional insight into the relationship between event kine-
matics and the machine learning model output. We consider
a supersymmetric scenario with a metastable sneutrino as a
concrete example, but the methodology can be applied to a
much wider class of models.
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1 Introduction

The absence of a signal of new particles at the Large Hadron
Collider (LHC) may suggest that new physics is realized
in a scenario that is hard to detect due to the absence or
very large mass of new colored particles. Hence, this study
focuses on setups with dominant electroweak production of
color-neutral new particles and multi-lepton signals from
their decays. The conventional approach to searches for new
physics, also known as “cut-and-count analysis”, is to apply
a set of constraints on different kinematic variables (called
“cuts” or “selection”) that improve the signal-to-background
ratio. However, the scenarios we consider can be challeng-
ing for this standard approach due to the small production
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cross section and the similarity of signal and background
features. For such problems, machine learning (ML) offers
a promising alternative [1–6]. We investigate how much ML
can increase the discovery reach, and whether machine learn-
ing models can be trained in such a way that they work in
a large region of parameter space and not just for a single
point. This is an important issue, in particular in new physics
scenarios with many free parameters, as signal kinematics
vary from point to point.

As a concrete example, we consider a supersymmetry
(SUSY) scenario with a gravitino lightest supersymmetric
particle (LSP) whose mass is in the GeV range. In addition,
the next-to-LSP (NLSP) is assumed to be a sneutrino ν̃τ ,
the superpartner of a left-handed tau neutrino. Due to the
relatively large gravitino mass and its weak couplings, the
sneutrino is stable on time scales relevant for collider exper-
iments. The LHC phenomenology of this scenario has been
considered before [7–13], but not nearly as extensively as that
of the scenarios with a neutralino LSP or a gravitino LSP and
stau NLSP. Motivated in part by the nature of the NLSP, the
presence of two hadronically decaying taus and one muon
is chosen as the signature for signal events. If the cross sec-
tions for production via the strong interaction are small due to
large squark and gluino masses, signatures from electroweak
processes will be crucial for detecting SUSY. Electroweak
SUSY processes have a significant Standard Model (SM)
background with very similar collider signatures. The task of
separating signal from background is therefore challenging
from two angles – predominance of SM background events
in the data and a large overlap between signal and back-
ground characteristics. As a baseline to be compared to ML
approaches, we perform simple cut-and-count analyses esti-
mating the sensitivity of the LHC experiments for two bench-
mark points in parameter space. Note that these analyses are
not intended to compete with the level of sophistication of
ATLAS and CMS searches. As our focus is on ML method-
ology, an expanded analysis with, for example, more com-
plicated cuts and a detector simulation would be beyond the
scope of the paper and draw away attention from its main
results without affecting the conclusions.

Machine learning algorithms with the ability to learn non-
linear correlations in high-dimensional data have already
proven useful in cases with a high degree of overlap between
features. While gradient-boosted decision trees have been
the most commonly used ML method [14–16], deep neural
networks have also made their appearance in recent years
[17–20]. Motivated by this, we investigate how well boosted
decision trees and a tuned deep neural network perform at
signal classification, compare the relative performance of the
two, and investigate if they generalize equally well across the
parameter space. We also compare the discovery sensitivity
of a simple cut on the value of the ML classifier output with
the sensitivity obtained using mixture estimation based on

unbinned template fits of the classifier outputs. This is novel
in the context of SUSY searches. We show that in many sce-
narios the template fit method is beneficial and advocate for
its use.

2 Physics scenario

2.1 Parameter space points considered

As a prototype for the type of new physics leading to the
signal considered here, SUSY with a gravitino LSP and a
sneutrino NLSP was chosen. In order to obtain a mass spec-
trum where a sneutrino is lighter than all other superparticles
except the gravitino, the soft mass of at least one of the slep-
ton doublets �̃L has to be smaller than the soft masses of
the superpartners of the right-handed leptons. In high-scale
scenarios for SUSY breaking, this situation can be arranged
fairly easily for non-universal soft Higgs masses [8,21].

For the study ten benchmark points with a sneutrino NLSP,
a Higgs mass close to the measured value1 and sufficiently
large branching ratios for decays producing taus are selected.
The superparticle and Higgs mass spectra are computed by
SPheno 4.0.3 [23,24] and FeynHiggs 2.14.2 [25–
32], respectively. Herwig 7.1.3 [33,34] serves to calcu-
late the cross sections for the production of SUSY particles
while SPheno 4.0.3 computes the branching ratios of
their decays.

The benchmark points are shown in Fig. 1. The detailed
input parameters are reported in appendix A. These points
represent qualitatively different parts of the parameter space,
covering in particular a wide range of M2 and At because
these parameters have the biggest impact on the signal yield.
As the focus is on the methodology for new physics searches,
no attempt is made to find points that lie just beyond the cur-
rent exclusion limits. Instead, the set of benchmark points
includes both points that are excluded2 by direct SUSY
searches in Run 2 of the LHC and points that remain allowed,
thus ensuring that the parameter space region containing the
benchmark points is relevant for Run 2 and Run 3. In gen-
eral we expect the signal to be harder to separate from the
background for points that are not excluded yet; this can be
due to smaller SUSY production sections, smaller branching
ratios for decays leading to the considered signature, or more
similar kinematic features of signal and background events.
Point 0 and Point 12 are used for comparing a cut-and-count
analysis and ML approaches.

1 Given the theoretical uncertainty of the Higgs mass calculation in
the minimal supersymmetric extension of the SM [22], we consider a
deviation of about a GeV from the measured value acceptable.
2 Specifically, Points 12–16, 30, 40, and 50, according to SModelS
2.0.0 [35–42].
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Fig. 1 Overview of SUSY-breaking parameters for the points considered in the analysis. See Appendix A for complete details

Point 0 is a benchmark for a scenario that is very dif-
ficult to detect. Its mass spectrum is shown in Table 1.
The SUSY production modes are summarized in Table 2.
The dominant production modes are chargino + neutralino
and chargino + chargino with a combined cross section of
87.5 fb. The first two generations of sleptons are produced
at a much lower rate of 16.8 fb in total. Direct production of
τ̃1 and ν̃τ does not lead to final states considered in the given
analysis (further discussed in Sect. 2.3).

The mass hierarchy among the lighter superpartners is

mχ̃0
2
,mẽL ,mμ̃L ,mχ̃±

1
,m ν̃e ,m ν̃μ

,mχ̃0
1

> m τ̃1 > m ν̃τ
,

where the masses are arranged in descending order, and the
masses of χ̃±

1 , χ̃0
1 , χ̃0

2 , and the first two generations of slep-
tons are all within 15GeV of each other. This limits the avail-
able decay modes, which are listed in detail in Table 12.
The lighter chargino decays predominantly into ν̃τ τ , with a
contribution of about 6% from τ̃1ντ . The lighter neutralinos
decay into ν̃τ ντ and τ̃1τ , with the former mode dominating
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Table 1 Masses of SUSY and Higgs particles for parameter space Point
0

Particle Mass [GeV]

τ̃1 314.3

ν̃τ 304.2

τ̃2 2480.8

ẽL 369.5

ν̃e 361.0

ẽR 1078.2

μ̃L 369.1

ν̃μ 360.6

μ̃R 1078.0

g̃ 2729.5

t̃1 7847.1

t̃2 8195.9

b̃1 7846.2

b̃2 8051.8

ũL 2382.8

ũ R 2099.4

d̃L 2384.0

d̃R 2310.9

c̃L 2382.8

c̃R 2099.4

s̃L 2383.9

s̃R 2310.9

χ̃0
1 360.5

χ̃0
2 − 375.6

χ̃0
3 527.9

χ̃0
4 995.8

χ̃±
1 369.1

χ̃±
2 995.8

h 123.9

H 4475.1

A 4475.1

H± 4457.6

for χ̃0
1 and the latter for χ̃0

2 . The lighter selectrons and smuons
�̃L decay into χ̃0

1 � over 95% of the time.3 The sneutrino ν̃e
decays primarily into χ̃0

1 νe, with the three-body decay ν̃τ eτ
happening only 4% of the time. However, for ν̃μ the χ̃0

1 νμ

decay is suppressed due to the masses being very close to
each other; this leads to the ν̃τμτ decay occurring with a
branching ratio of roughly 50%. Finally, τ̃1 can decay into
ν̃τ �ν�, ν̃τ τντ , ν̃τdū, and ν̃τ sc̄, where the decays producing
quarks dominate with a branching ratio of around 70%.

The mass spectrum of uncolored superparticles for Point
12 is relatively close to the one considered in the analysis

3 Here and in the following � represents e and μ.

of Ref. [9], but with parameters adjusted to obtain the right
Higgs mass. The full spectrum is shown in Table 3. Point 12
serves as a benchmark for a point with a high signal cross
section; in fact, it is now excluded by an ATLAS search for
direct stau production [43], as determined by recasting the
results of that analysis using SModelS 2.0.0 [35–41].
The dominant production modes for superparticles are sum-
marized in Table 4. The cross section for the production of
charginos and neutralinos is 457.2 fb, much higher than for
Point 0. The production of the heavier neutralino χ̃0

2 is irrele-
vant here because it is much heavier than χ̃0

1 . The production
of first- and second-generation sleptons has a cross section
of 100.2 fb. Again, direct τ̃1 and ν̃τ production rates are neg-
ligible.

At Point 12, the mass hierarchy among the lighter sparti-
cles is

mχ̃±
1
,mχ̃0

1
> mμ̃L > m ν̃μ

> mẽL > m ν̃e > m τ̃1 > m ν̃τ
.

Unlike Point 0, here mχ̃0
1

> m
�̃L

,m ν̃�
, allowing for a wider

range of decay modes and forcing the first two generations of
sleptons into three-body decay modes. The branching ratios
are summarized in Table 13. The lightest neutralino has the
decay modes τ̃1τ , ν̃τ ντ , �̃L�, and ν̃�ν�. The decays are dom-
inated by the τ̃1 and ν̃τ channels with branching ratios of
about 35% and 40%, respectively. The decay modes of the
lighter chargino χ̃±

1 are τ̃1ντ , ν̃τ τ , ν̃��, and μ̃Lνμ, with the
τ̃1 and ν̃τ decays contributing 35% and 45%, respectively.
Decays into ν̃� account for another 15% while �̃L modes are
heavily suppressed. The first two generations of sleptons �̃L
have the decay modes ν̃τ τν�, τ̃1τ�, and ν̃τ �ντ , where a tau
is produced in almost 80% of the decays. Electron and muon
sneutrinos decay into ν̃τ τ�, ν̃τ ντ ν�, τ̃1�ντ , and τ̃1τν�, where
the branching ratios are about 10% for τ̃1τν� and about 30%
for each of the other three decay modes. The τ̃1 decay modes
are virtually the same as for Point 0.

For both Point 0 and Point 12, taus are quite likely to
be produced in the prompt sparticle decay chains, since
these end in the ν̃τ NLSP, in particular from neutralinos
and charginos, whose production cross sections dominate.
In order to arrive at the signature of two taus and one muon,
which we will use in the following, an additional muon is
required. This muon can be produced in slepton decays. How-
ever, this happens only in about 10% of τ̃1 decays. Decays
of first- and second-generation sleptons are more likely to
yield muons, but these sleptons are unlikely to arise from
neutralino and chargino decays and have a relatively small
direct production cross section. Depending on the point con-
sidered it can suppress or enhance the overall yields greatly.

Comparing the two parameter space points, an important
difference is obviously the larger SUSY production cross sec-
tion for Point 12. However, for our analysis it turns out to be
more important that the Point 0 mass spectrum of the lighter
superparticles is much more compressed and has a neutralino
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Table 2 Dominant SUSY production modes for Point 0. Only channels contributing more than 1% are included

Electroweakino χ̃0
1 χ̃+

1 χ̃0
1 χ̃−

1 χ̃+
1 χ̃−

1 χ̃0
2 χ̃+

1 χ̃0
2 χ̃−

1 χ̃0
2 χ̃0

1 Total
Cross section [fb] 19.4 9.3 16.2 18.3 8.7 14.5 87.5

Slepton ẽ+
L ν̃e μ̃+

L ν̃μ ẽ−
L ν̃∗

e μ̃−
L ν̃∗

μ ν̃e ν̃
∗
e ν̃μν̃∗

μ ẽ−
L ẽ

+
L μ̃−

L μ̃+
L Total

Cross section [fb] 3.7 3.7 1.6 1.7 1.4 1.4 1.4 1.4 16.8

Table 3 Masses of SUSY and Higgs particles for Point 12

Particle Mass [GeV]

τ̃1 119.1

ν̃τ 90.7

τ̃2 193.2

ẽL 225.1

ν̃e 211.4

ẽR 1202.0

μ̃L 249.1

ν̃μ 236.7

μ̃R 1391.7

g̃ 2552.7

t̃1 2174.0

t̃2 4885.4

b̃1 3537.1

b̃2 4880.2

ũL 2429.7

ũ R 1658.6

d̃L 2430.8

d̃R 1771.8

c̃L 3008.2

c̃R 2066.3

s̃L 3009.0

s̃R 2234.5

χ̃0
1 278.4

χ̃0
2 726.7

χ̃0
3 − 765.0

χ̃0
4 797.6

χ̃±
1 278.7

χ̃±
2 771.6

h 125.5

H 4741.3

A 4741.2

H± 4742.6

Table 5 Steps of the overlap removal algorithm. If two or more different
objects are separated by less than the matching condition, only one is
retained, according to these rules. For example, if a muon and a jet are
separated by �R = 0.1, rule 2 is invoked and the muon is kept; if the
separation is 0.3, rule 5 is invoked and the jet is kept. Only surviving
objects participate in subsequent steps

Object discarded Object kept Matching condition

1. Jet Electron �R < 0.2

2. Jet Muon �R < 0.2

3. Jet Had. tau �R < 0.2

4. Electron Jet �R < 0.4

5. Muon Jet �R < 0.4

6. Had. tau Jet �R < 0.4

7. Electron Had. tau �R < 0.4

8. Muon Had. tau �R < 0.4

χ̃0
1 that is lighter than the first- and second-generation slep-

tons, which leads to very different decay chains. In particu-
lar, the lighter charginos and neutralinos can decay to first-
and second-generation sleptons and leptons with a branch-
ing ratio of more than 1% only for Point 12. In combination,
these factors lead to a much higher yield of events with two
taus and one muon for Point 12 than for Point 0, see Table 6
below.

2.2 Event generation

The events are assumed to be produced in proton–proton
collisions at a center-of-mass energy of 13 TeV. Monte Carlo
SM background events are generated by SHERPA 2.2.4
[44], using the NNPDF3.0 [45] parton distribution functions
(PDF) set and αs(MZ ) = 0.118. The types of background
processes and corresponding numbers of events are given in
Table 7 below.

The SUSY signal events are produced with Herwig
7.1.3 [33,34] at the leading order. A computation by

Table 4 Dominant SUSY
production modes for Point 12.
Only channels contributing
more than 1% are included

Electroweakino χ̃0
1 χ̃+

1 χ̃−
1 χ̃0

1 χ̃+
1 χ̃−

1 Total
Cross section [fb] 199.2 108.5 147.1 457.2

Slepton ẽ+
L ν̃e μ̃+

L ν̃μ ẽ−
L ν̃∗

e μ̃−
L ν̃∗

μ ν̃e ν̃
∗
e ν̃μν̃∗

μ ẽ−
L ẽ

+
L μ̃−

L μ̃+
L Total

Cross section [fb] 23.7 14.9 13.3 7.31 11.9 6.8 8.7 5.9 100.2
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Prospino2 [46] shows that the next-to-leading-order cross
section is about 25% larger. Importantly for our analysis,
however, the kinematical distributions of uncolored final-
state particles are not drastically altered by higher-order
effects [47,48], especially for the dominant electroweakino
production modes. For simplicity, only production via gluon–
gluon fusion and quark annihilation is considered, which are
the dominating production modes at a proton collider.

For the signal generation the MMHT2014 [49] PDF set is
used, as it is the default for version 7.1 of Herwig. Also here
the strong coupling αs(MZ ) is set equal to 0.118. A compari-
son with alternative PDF sets, CT14 [50] and NNPDF3.0, is
performed for signal samples and used as an uncertainty. The
MMHT2014 PDF set results in the most conservative cross
section prediction (with a difference of up to 10%), while the
modelling of the kinematic variables remains consistent. The
values of renormalization and factorization scales are varied
by a factor of 2 and the difference with the nominal is used as
an additional systematic uncertainty. The effect on the shape
of the kinematic variables and overall normalization has been
found to be negligible.

All relevant two- and three-body sparticle decays are
included. Their branching ratios are computed by SPheno
4.0.3.

2.3 Event selection

For the purpose of the analysis it is assumed that the events
are recorded by a general-purpose particle detector like CMS
[51] or ATLAS [52]. The definitions of physical objects
reflect the usual selection criteria used by such detectors. In
particular, this implies an upper limit on the pseudorapidity
|η| to match the typical detector geometry. Rivet 2.5.4
[53] is used for event selection and object definitions.

Jets are reconstructed using the anti-kT clustering algo-
rithm [54] with distance parameter R = 0.4 implemented
via the FastJet package [55,56]. They are required pT ≥
20GeV and |η| < 2.8. Electrons, muons and taus are required
to have pT of at least 15GeV and |η| < 2.5. Note that we treat
only hadronically decaying taus as physical objects. For lep-
tonic decays, the daughter particles are considered instead.
The reason for this separation is that it is generally hard to
identify leptonically decaying tau leptons as such in proton–
proton collisions.

An overlap removal procedure is applied to all events to
mirror what would be done when dealing with real data.
When multiple objects are reconstructed from the same
detector signature all but one are ignored. This is done to
improve the likeness of simulated events to what could be
seen in an experiment and to make sure that the training of
the ML models excludes features that are only accessible in
Monte Carlo events. Even if the overlapping objects are real
this information is not available to a detector and hence all

but one of them are removed. The successive steps of the
overlap removal procedure are summarized in Table 5.

Events that contain at least two hadronically decaying tau
leptons with the same electric charge and a muon of oppo-
site charge are selected. The signature τ±

h τ±
h μ∓ is used for

several reasons. First of all, ν̃τ being the NLSP leads to a
plethora of decay modes of SUSY particles with tau leptons
in the final states, see above and Tables 12 and 13. Secondly,
a three-lepton signature with same-sign same-flavour leptons
heavily reduces SM background. This is especially important
to suppress SM events with Z boson production in association
with jets while not particularly hurting the signal yields. The
τ±
h τ±

h μ∓ signature is chosen over, e.g., μ±μ±τ±
h because

the signal-to-background ratio is higher. The three lepton
requirement by itself is also very effective at suppressing the
production of a W boson in association with jets. Requiring
only one or two leptons would lead to an explosive growth
of the SM background. The study presented is inclusive to
events with four or more leptons, but due to the low yields
of such processes it would not be beneficial to require more
than three leptons.

Finally, in the context of this study there is no particular
difference in whether an electron or a muon is used in the final
state. The SUSY yields might change slightly depending on
the parameter space point, but the methodology (which is
our main focus) remains the same. Muons are chosen as the
default as they are generally easier to detect.

For each parameter space point, Table 6 shows the
expected number of signal events satisfying all requirements
described in this section (i.e., after overlap removal the events
contain τ±

h τ±
h μ∓ with pT > 15GeV and |η| < 2.5). In addi-

tion to the total expected yield, the table contains the number
of events from each production mechanism for the original
superparticles.

3 Cut-based analysis

Simple cut-and-count analyses are performed on parameter
space Point 0 and Point 12 to serve as a baseline for the eval-
uation of various ML methods. The selections used for the
analyses are optimized by maximizing the statistical signifi-
cance z defined as

z =
√

2
[
(S + B) ln

S + B

B
− S

]
, (1)

where B is the theoretical prediction for the number of SM
background events and S + B is the observed yield, or sum
of the theoretical signal and SM backgrounds. The kinematic
variables are scanned in significance, i.e., a cut maximizing z
is selected for a given variable. This procedure is performed
sequentially for all variables considered. No further correla-
tion information is used. This is done to contrast with the ML
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Table 6 Expected number of signal events for the parameter points
used in the analysis after the event selection described in Sect. 2.3 is
applied. An integrated luminosity of 149 fb−1 is assumed. The last three

columns specify the production type of the SUSY particles, viz. slep-
ton, electroweakino (neutralino and chargino), and strong (squark and
gluino) production

Slepton Electroweakino Strong Total yield

Point 0 14.9 7.6 1.4 23.9

Point 12 248.1 270.1 3.6 521.8

Point 13 282.5 350.9 2.7 636.1

Point 14 305.5 385.7 0.5 691.7

Point 15 442.9 612.1 1.7 1056.7

Point 16 421.5 878.4 6.9 1306.8

Point 20 13.2 30.2 1.2 43.6

Point 30 19.5 26.1 0.3 45.9

Point 40 439.2 471.2 4.4 914.8

Point 50 841.5 726.4 1.3 1569.2

Table 7 Expected number of background events after the event selec-
tion described in Sect. 2.3 is applied. An integrated luminosity of
149 fb−1 is assumed

Events Expected yield

ttZ 133

ttW 82

ZZ 189

WZ 443

WWW 11

ZWW 11

WWbb 6094

Total 6963

models that typically do take the correlation between input
variables into account.

We are assuming 149 fb−1 integrated luminosity to deter-
mine the numerical values of S and B. This choice is moti-
vated by the integrated luminosity recorded by the ATLAS
and CMS experiments during the 2015–2018 proton–proton
collisions at

√
s = 13TeV (Run 2). The expected background

yields before any optimization is applied are summarized
in Table 7. Note that W/Z+jets production is heavily sup-
pressed by the event selection and is expected to contribute
less than 0.1% of the total background yields. Therefore, it is
not considered further on. Similar comments apply to multi-
jet production.

We do not expect significant contributions from fake taus
given that sufficiently tight tau reconstruction and identi-
fication algorithms are used in actual analyses. A precise
fake tau background estimation would have to be data-driven
and experiment-specific, as Monte Carlo generators are not
always reliable for modeling fake taus.

Table 8 Overview of the input features used for the cut-based analysis
and for the training of the ML models

Object Variables

Leading tau pT , φ, η

Second tau pT , φ, η

Muon pT , φ, η

Missing momentum pmiss
T , φmiss

Transverse momenta HT

Leptons and jets ne, nμ, nτ , njet

3.1 Input features

The same discriminating variables are used for the cut-and-
count analysis and for the training of the ML methods. The
selection is based on preliminary studies to optimize the num-
ber of necessary input features. These variables include pT ,
η and azimuthal angle φ of the three objects used for the
event selection – the two hadronically decaying tau leptons
with the same charge and the muon with the opposite charge.
The physical objects are ranked by pT ; whenever “leading”
or “second” tau lepton is mentioned, it is in this context. If
more than one muon satisfying the selection criteria is present
only the one with the highest pT is used. The absolute value
pmiss
T and the azimuthal angle φmiss of the missing transverse

momentum are also included in the input features. Finally, the
scalar sum of the transverse momenta of all visible objects in
the event, HT , and the numbers of jets, hadronically decay-
ing tau leptons, electrons and muons in the event are used.
The list of variables used is summarized in Table 8.

The cut-and-count analysis relies on constructing com-
binatorial variables that are commonly used in high energy
physics searches, such as the angular difference between two
objects. These “advanced” variables are not used as input for
the ML training as it is assumed that a sufficiently sophisti-
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cated algorithm should be able to achieve the same (or better)
performance based on the basic input variables alone.

3.2 Point 0

Point 0 is in a “hard” part of the parameter space with
only around 25 signal events expected on top of 6963 back-
ground events after the initial event selection (as described
in Sect. 2.3). A scan in significance is performed for all input
features described in Table 8. The variables φ and η are not
particularly interesting by themselves, so a scan over the
angles between physical objects �φ and �R is performed
instead. In addition, we scan over the transverse masses of
hadronically decaying tau leptons defined as

mτ
T =

√
2pτ

T p
miss
T

[
1 − cos(φτ − φmiss)

]
. (2)

The simple cut-based approach is not appropriate for Point
0 due to the extremely low number of expected signal events
and the difficulty in reducing the number of background
events. While there are noticeable differences between the
signal and the backgrounds in the distributions for some of
the variables, see Fig. 2 for two examples, there are no obvi-
ous selection criteria that could efficiently exploit these dif-
ferences. As a result, no tightening in selections leads to an
increase over the nominal significance of z = 0.3. However,
an improvement is expected with the ML methods as they
should be better at exploiting the signal-background differ-
ences.

While the significance of z = 0.3 might seem completely
hopeless at the first glance, it should be noted that z scales
with the square root of the luminosity. Combining Run 2
with the future Run 3 would double the expected integrated
luminosity. The high-luminosity LHC project [57] aims to

Table 9 Final selection for the cut-based analysis of parameter space
Point 12

Variable Cut (GeV)

HT ≥ 125

mτ1
T + mτ2

T ≥ 250

increase the current LHC luminosity by a factor of 10 and to
bring the total integrated luminosity yields up to 4000 fb−1 of
data. Although the conditions during Run 3 will be different
from Run 2, this is, by the numbers, already almost enough
for exclusion by itself. If the ML methods can improve the
sensitivity even slightly, Point 0 is worth considering.

Note also that the absolute significance determined by our
analyses is subject to considerable uncertainties (e.g., due to
the lack of a detector simulation and the generation of sig-
nal events at leading order), since our focus is on comparing
different methods and thus on relative values, where uncer-
tainties are expected to cancel out to a large degree.

3.3 Point 12

Point 12 is comparatively “easy” to detect. More than 520
signal events are expected for this point on top of 6963 back-
ground events. This is already enough to reach 5σ discovery
significance by itself. Hence, it is not surprising that Ref. [43]
was able to rule out this point.

Significance scans are performed on all the input features,
on the tau lepton transverse masses mτ

T , and on the angular
variables �φ and �R. The selection maximizing the signif-
icance includes requiring HT > 125GeV and the sum of the
tau lepton transverse masses to be larger than 250GeV, see
Table 9. Plots of signal and background variables used for

Fig. 2 Distributions of various variables for SM background and Point
0 SUSY signal, normalized to 1. The hatched bands show the combined
statistical and theoretical uncertainties of the signal and the statistical

uncertainty of the background. The asymmetry of the signal uncertainty
stems from the comparison with alternative PDF sets
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the selection (both normalized to 1) are presented in Fig. 3.
After the optimization we expect 143 background and 148
signal events, corresponding to zCut&count = 10.8.

3.4 Tau selection efficiency

Initial event selection requires at least two hadronically
decaying tau leptons. It is important to notice that at hadron
colliders the tau selection efficiency ετ can be significantly
lower than 1 depending on the desired purity and rejec-
tion rates [58]. It follows that the significance values quoted
should be scaled by a factor of

√
ετ · ετ = ετ to obtain a

realistic estimate of what can be achieved at a hadron col-
lider. This is not particularly important for the comparison
of different algorithms and we assume ετ = 1 everywhere
for simplicity. However when deciding whether a point in
the parameter space can be tested in an experiment this is a
crucial point to consider.

4 Machine learning methods

Let X be a set of observable variables in an event, such as the
features listed in Table 8, and let y be the corresponding value
representing the class of the process responsible for the event,
i.e., SM (labeled 0) or SUSY (labeled 1). In principle, for a
properly selected set X there exists a mapping of X to y. Due
to the limitations of real-life detectors, including the inability
to measure stable neutral particles, X cannot be mapped to
y unambiguously in realistic experiments. The relationship
becomes f (X) = ŷ, where 0 ≤ ŷ ≤ 1 is called the predicted
value and represents the degree of certainty in the class of
the process responsible for the event. A statistical model can

then be constructed to approximate the relationship by the
function f̂ (X) = ŷ.

For this model construction an ML algorithm can be used.
There are a variety of ML algorithms available, suitable for
different tasks, all having parameters and hyperparameters
which must be tuned to fit the task at hand. This is the learn-
ing part, and relevant for the present discussion is so-called
supervised learning. The learning happens during a train-
ing phase, for which the algorithm’s parameters are usually
randomly initialized and subsequently fitted. Fitting is done
using a training data set containing input features X as well
as data labels y. It consists in adjusting the parameters to
minimize some loss function, whose value is the lower the
closer the output ŷ is to the true label y. Hyperparameters
can be set manually before training, or adjusted as part of the
training process, using a hyperparameter optimization pro-
cedure, e.g., cross validation. The result is a parameterized
ML model, or classifier, and its output is referred to as a pre-
diction. In the following, two ML algorithms are considered,
described in Sects. 4.2.1 and 4.2.2 after a brief discussion of
the data sets.

4.1 Data preparation

A key ingredient in ML is the data used for training, in our
case consisting of SM background and SUSY signal pro-
cesses. In the part of the parameter space relevant for our
analysis, the background processes dominate the signal pro-
cesses by at least 10:1. Nevertheless, the same number of
signal and background events is used in the training data set,
since the ML model should manage to identify both classes
equally well.

Fig. 3 Distributions of variables used for the cut-based analysis, SM
background and Point 12 SUSY signal, normalized to 1. The hatched
bands show the combined statistical and theoretical uncertainties of the

signal and the statistical uncertainty of the background. The asymmetry
of the signal uncertainty stems from the comparison with alternative
PDF sets
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While the relative distribution among the processes in the
background data is known from SM predictions, this is not
the case for the signal data, since the relative occurrence of
the SUSY processes depends on the sparticle spectrum. The
three types of signal processes are slepton, electroweakino
and strong production. However, our analysis concerns a part
of the parameter space where very few signal events from
strong production are expected, see Table 6. For instance, for
Point 12, only one event from strong processes is expected
per 132 signal events. Therefore, we choose not to include
events from strong production in the training data.

Furthermore, it is certainly possible to train a classifier
to identify each of the three types of signal processes sep-
arately. We choose not to do so and to treat all three as a
single “signal” class. The focus of the presented analysis is
on discovery, not on classifying different channels. A further
argument against doing multi-class classification is that this
would add additional degrees of freedom to the final statisti-
cal analysis (discussed in Sect. 4.4), and thus potentially lead
to an artificially increased discovery significance.

When training a classifier to make predictions for a par-
ticular parameter point, a distribution of the signal events
according to their expected yields is necessary. However,
when training a classifier to be sensitive to a wide selection
of parameter points, one should be as general as possible,
and in this analysis, most points have yields for slepton and
electroweakino production that are approximately the same
(after initial event selection), see Table 6. The training data
for Point 12 is therefore equally distributed between slepton
and electroweakino production.

Two sets of data are generated, representing Point 12
and Point 0, respectively. The first contains 825,294 back-
ground events, distributed according to Table 7, and 825,280
signal events, simulated using the Point 12 parameters but
equally distributed, similar to the expected yields in Table 6,
among slepton and electroweakino production channels. The
second training data set contains 1,003,686 background
events, distributed according to Table 7, and 1,003,590 sig-
nal events, simulated using the Point 0 parameters and dis-
tributed according to Table 6. Each of these data sets is split
into two to yield one training and one validation data set per
point. The validation data set serves several purposes. First,
it is used during the training phase of the classifiers. Sec-
ond, it is sampled from to find the optimal classifier output
threshold in Sect. 4.3. Finally, it is used to construct templates
in Sect. 4.4.

The test data sets, on the other hand, are constructed dif-
ferently. One test data set is constructed for each of our ten
parameter space points, according to the signal and back-
ground admixture predicted by the theory, see Table 6 as
would be observed at colliders. Note that the background
class is the same in all parameter space points, and only the
number of signal events as well as the distribution within the

signal class vary. Also note that the test data sets do include
processes from strong production.

4.2 Classifiers

We employ two different ML algorithms that are commonly
used for classification – XGBoost and a deep neural network
(DNN). The input variables used for both are listed in Table 8.

4.2.1 XGBoost

XGBoost [59] is a commonly used tree ensemble ML algo-
rithm, and has become popular for being both fast and easy to
use out of the box. We train an XGBoost4 model to separate
SUSY signal events from SM background events, tuning its
architecture and parameters using a cross-validation search
[60]. We use a maximum depth of 10 and an early stopping
criterion that stops the training if the loss does not improve
for 50 rounds. This yields a model with a receiver operating
characteristics (ROC) area under curve (AUC)5 of 0.87 on
training and test data from Point 12, and 0.77 for Point 0.

4.2.2 Deep neural network

A DNN is trained to separate SUSY signal events from
SM background events.6 The hyperparameters are again
optimized using a cross-validation search. These are the
architecture-related ones (numbers of layers and nodes per
layer), batch size, dropout rate, and learning rate. The
final architecture used has five hidden layers containing
500, 500, 250, 100, and 50 nodes, respectively, a batch-size
of 50, a dropout rate of 0.21, and an initial learning rate of
10−3 in the Adam optimizer algorithm. If the accuracy does
not improve over 10 consecutive epochs, the learning rate is
reduced by a factor of 100 until it reaches 10−7. The training
process stops if there is no improvement in the validation
loss over 15 consecutive epochs. The LeakyRelu activation
function is used in the hidden layers, and the sigmoid acti-
vation function is used in the output layer’s single node, to
yield output values in the range [0, 1]. The loss function is
binary crossentropy.

The resulting model achieves a ROC AUC of 0.88 on train-
ing and test data from Point 12, i.e., approximately the same
as for the XGBoost model, and 0.83 for Point 0. This does not
necessarily mean that the classifiers behave in the same way,
merely that the area under the curve spanned by the True
Positive Rate (TPR) and False Positive Rate (FPR) when

4 XGBoost 1.3.3 is used for the XGBoost implementation.
5 A ROC AUC value of 1 is the theoretical maximum and corresponds
to a perfect classifier, while 0.5 represents random guessing.
6 TensorFlow 2.4.1with the Kerasmodule is used for the DNN
implementation.
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Fig. 4 Predictions of the ML
models on the test data set for
Point 12, in a solid black line.
The true classes are shown in
dashed green (SM background)
and dashed purple (signal), and
the optimized cutoff in dashed
red

varying the classification threshold between the background
and signal classes is the same. In fact, the results presented
in Fig. 6 show that the two classifiers’ respective outputs are
not distributed equally.

4.3 Cutting on classifier output

As a first comparison to the cut analysis described in Sect. 3,
the validation data is used to determine the classifier output
value which best separates the signal from the background
class, i.e., for which the discovery significance in Eq. (1) is
maximized. We refer to this value as the optimized cutoff
value. The validation data set is resampled to contain the
number of events listed in Table 6. The significance is cal-
culated by removing the events which have classifier output
value lower than the optimized cutoff value and using the
true positive (S) and false positive (B) events in Eq. (1). As
noted in Sect. 3.2, the relative differences of the significance
values obtained by different methods should be considered
more reliable than the absolute values.

For Point 12, the optimized cutoff values are found at
0.9081 for the XGBoost classifier and 0.8896 for the DNN.
The classifier outputs are shown in Fig. 4, with the optimized
cutoff values indicated. Applying these cutoff values to the
Point 12 test data set using the two classifiers leaves 108
background events (out of 6963) and 198 signal events (out of
522), corresponding to z = 15.5 for the XGBoost classifier.
The classifier is not able to correctly identify any of the four
QCD events, which is not surprising as it was not trained on
identifying such events. For the DNN, there remain 77 back-
ground and 188 signal events, corresponding to z = 16.7.
This is fewer signal events than for XGBoost, but the DNN
performs better on the background with 99% correctly iden-
tified. This means that both classifiers outperform the cut
analysis described in Sect. 3, where the maximum signifi-
cance achieved on Point 12 is z = 10.8.

For Point 0, the optimized cutoff values are found at
0.8535 for the XGBoost classifier and 0.7356 for the DNN.
The classifier outputs and optimized cutoff values are shown
in Fig. 5. For the Point 0 test data set these cutoff values lead

to 275 background and 10 signal events (out of 24), corre-
sponding to z = 0.57, for the XGBoost classifier and to 270
background and 10 signal events, corresponding to z = 0.63,
for the DNN. Thus, also for this parameter space point both
classifiers outperform the cut analysis, whose maximum sig-
nificance is z = 0.3 here. However, this improvement is not
sufficient for detection with the considered luminosity.

The classifier for Point 12 is also applied to the other
points, i.e., Points 0, 13–16, 20, 30, 40, and 50, using the same
method. We use the optimized cutoff value from Point 12 on
the classifier output to select signal and background events.
Since some of the points contain very few signal events this
could lead to an over- or underestimation of the significance.
We therefore scale up the number of test events and then
scale down again S with the same factor. The significances
using both the XGBoost and DNN classifiers can be found
in Table 10 in the columns zXGB-cut and zDNN-cut, respec-
tively.

4.4 Estimating the signal mixture parameter

While it is encouraging that ML models can outperform our
analysis from Sect. 3, this is on the one hand not a novelty,
and on the other hand of limited practical usefulness, given
that we do not know which combination of SUSY parameters
is realized in nature. One way of approaching this is by iden-
tifying regions in the parameter space which share similar
signal kinematics and train an ML classifier on the expected
signal and the SM background. Such a classifier should then
show robust performance within such a region, by recogniz-
ing the familiar (and unchanging) SM background and partly
recognizing the signal, which changes only a little bit within
the region and in any case resembles the background less than
the similar signal from the training data. However, not only
the kinematics of the signal change throughout the parameter
space but also the signal-to-background ratio, upon which our
optimized cutoff value depends. Ideally, a detection method
should be independent of the signal admixture, and so we
reformulate our problem as a mixture parameter estimation
task in the following section. Although only XGBoost and
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Fig. 5 Predictions of the ML
models on the test data set for
Point 0, in a solid black line. The
true classes are shown in dashed
green (SM background) and
dashed purple (signal), and the
optimized cutoff in dashed red

Table 10 Estimated mixture parameters for the different points using the two classifiers described in the text and the corresponding discovery
significances. Both ML classifiers are trained on Point 12

αtrue α̂XGB α̂DNN zXGB zDNN zXGB-cut zDNN-cut zCut&count

Point 12 0.070 0.069 ± 0.011 0.071 ± 0.011 15.7 18.5 15.5 16.7 10.8

Point 13 0.084 0.076 ± 0.011 0.078 ± 0.012 17.2 20.3 16.6 17.3 12.7

Point 14 0.090 0.075 ± 0.011 0.079 ± 0.012 16.3 19.2 15.9 16.4 11.0

Point 15 0.132 0.093 ± 0.012 0.096 ± 0.012 19.4 22.9 19.9 20.1 13.6

Point 16 0.158 0.124 ± 0.013 0.126 ± 0.013 25.9 29.7 22.7 22.6 19.0

Point 20 0.007 0.005 ± 0.008 0.006 ± 0.006 1.5 2.2 1.5 1.6 1.2

Point 30 0.007 0.005 ± 0.009 0.005 ± 0.007 1.4 1.5 1.9 2.1 1.6

Point 40 0.116 0.081 ± 0.012 0.081 ± 0.012 17.8 20.2 16.5 16.8 11.2

Point 50 0.184 0.137 ± 0.014 0.137 ± 0.014 28.7 32.5 28.2 28.7 20.5

Point 0 0.004 0.001 ± 0.006 0.001 ± 0.004 0.0 0.0 0.2 0.2 0.1

Fig. 6 Signal and background
class templates created using a
the XGBoost and b DNN
classifier, trained on Point 12
data (see Sect. 3.3)

a DNN are considered here, the method can be used for any
classifier which maps the input features to continuous values.

The distribution of signal and background data can be
expressed as a simple mixture model

p = αps + (1 − α)pb, (3)

where pb/s denote the probability density7 functions for
background and signal, respectively, and α represents the
signal mixture parameter.

We can estimate the probability densities p by construct-
ing class templates from the trained classifiers as follows.
We let the classifiers predict on one data set containing only

7 Strictly speaking, probability mass functions.

background events, which yields pb, and on one data set con-
taining only signal events, which yields ps . We use kernel
density estimation with a Gaussian kernel, renormalized on
the edges to properly cover the area around 0 and 1, to have a
continuous representation of the templates. From the training
data we set aside 400,000 events and use these to construct
the templates, which are shown for Point 12 in Fig. 6. The
optimal number of events to use for template creation was
found by testing. In our approach, uncertainty due to the
amount of Monte Carlo events available arises in two places
– in training the classifiers and in constructing the templates.
For the former, the relationship between prediction uncer-
tainty and number of training events is not trivial, as it also
depends on the classifier’s complexity and the training pro-
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cedure itself, including issues such as under- or overfitting.
One can assume, however, that the uncertainty for a given
classifier will decrease with increasing number of training
events, until a plateau is reached, where additional improve-
ment would require a more complex model (i.e., the classifier
is underfitting). Uncertainty in the template shape is more
directly related to the number of Monte Carlo events used,
but complicated by the fact that the tail of the background
template distribution (shown in Fig. 6) is the most important
for the signal mixture estimation.

Next, we perform the admixture estimation by letting the
classifiers predict on a set of previously unseen data, and fit
the templates in Fig. 6 to the corresponding classifier outputs
using an unbinned maximum likelihood fit. The fit returns
the estimated admixture of the two models described by a
background and signal template, respectively, that maximizes
the likelihood of the classifier’s output for the given data set.
We use α̂ to denote the method’s estimate of the mixture
parameter.

The test data set for Point 12 (cf. Sect. 3.3) has a signal
mixture parameter of αtrue = 0.07, which is challengingly
small. Using the described procedures, we obtain best-fit esti-
mates of α̂xgb = 0.069 ± 0.011 and α̂DNN = 0.071 ± 0.011,
respectively, where the uncertainties are statistical. Theoret-
ical uncertainties on the fit results are discussed in Sect. 1.
The corresponding log-likelihood curves with the n sigma
regions indicated are shown in Fig. 7a.

Nature may choose any SUSY parameter point, resulting
in some signal mixture parameter αtrue, which is of course
unknown to us. The determination of this mixture parameter
from potential data collected in a particle collider will aid
primarily in signal detection and furthermore in fixing the
parameters of the underlying SUSY model. Since there is
an uncountable number of different SUSY parameter points,
we want to investigate whether a classifier trained on kine-
matics representing one parameter point can generalize to,
i.e., estimate the signal mixture parameter of, other param-
eter points featuring the same type of signal, but different
kinematics. In order to test this, we train a classifier on Point
12 and use this classifier to predict on the different parameter
points listed in Tables 6 and 11. Based on how these differ-
ent points are distributed, we claim to have a representative
sample for investigating how well the method generalizes as
the SUSY input parameters change. To estimate the different
points’ signal mixture parameters, we perform an unbinned
maximum likelihood fit to the classifier output for each point
to determine the best-fit estimate mixture parameters α̂. The
results are listed in Table 10. We also show the log-likelihood
curves indicating the n sigma region in Fig. 7, along with the
best-fit values.

4.5 Shapley decomposition of labels and model predictions

Before comparing the two ML based approaches, we address
the well known challenge that large ML models, such as
DNNs, have a black-box nature. Although we have access to
the input data and all the tuned parameters, this does not nec-
essarily tell us to which features or combinations of features
the model assigns importance. This is the central issue in
the field of explainable AI (XAI), and various methods have
been proposed to address this challenge. One of these is the
Shapley decomposition, a solution concept from cooperative
game theory first introduced in [61], which has become popu-
lar in the XAI literature [62–68]. Recent studies [69–73] also
used a variety of methods based on Shapley decomposition
to explain their ML models, and the importance of explana-
tion methods for interpreting the output of ML models used
in particle physics is discussed in the overview provided in
[74].

To understand the importance our ML classifiers give the
different features in Table 8, and whether our models accu-
rately capture the dependence structure between these fea-
tures and the labels, we calculate the Shapley decomposition
among the features and the labels, denoted attributed depen-
dence on labels (ADL), as well as the Shapley decomposi-
tion of the features and the classifiers’ predictions, denoted
attributed dependence on predictions (ADP), using as utility
function the distance correlation [75], as detailed in [76].

We can calculate point estimates for the ADL and ADP
Shapley values using our test data. For calculating confidence
intervals for the Shapley values, the asymptotic distribution
of the utility function must be known, and have a finite vari-
ance. As noted in [75, section 2.4], the distance correlation
can be written as a V-statistic with a degenerate kernel, which
implies that the asymptotic distribution is not normal. Hence,
we are not able to calculate confidence intervals exactly for
this utility function,8 but as explained in [78], we can quan-
tify the variability in the Shapley values via bootstrap. We
do this by resampling 2000 events ten times from a data set
containing 9000 events equally distributed between signal
and background. Figure 8a shows the ADL and ADP values
obtained by doing this for both the XGBoost and the DNN
model. The gray lines are drawn between the average value in
each group, and Fig. 8b shows the average values per feature
for the ADLs, and the ADPs for both models. The model pre-
dictions show an overall stronger correlation with the input
features than the labels, which is expected as long as the
model performs reasonably well, since the predictions are
then a function of the features with no irreducible error term.

8 Using as utility function the more traditional coefficient of determina-
tion, the R2, the confidence intervals can be calculated [77]. However,
the R2 captures only linear correlations, which we know are not suffi-
cient for our problem.
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Fig. 7 Maximum likelihood fits to the different parameter points, using the XGBoost (dashed red) and DNN (solid blue) models. The true mixture
parameter α and the best-fit mixture parameters α̂ are given in the subcaptions, and listed in with their 95% confidence intervals in Table 10
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Fig. 8 a ADLs (green circles)
and ADPs for the XGBoost
(purple squares) and the DNN
(blue stars) models, using the
distance correlation as utility
function for the Shapley value. b
The average ADL (dotted green)
and ADP for the XGBoost
(purple) and the DNN (hashed
blue) models, per feature as
indicated on the y-axis, in
increasing order sorted
according to the ADL

The most important input features are pmiss
T and the two tau

pT s. In general, pmiss
T is an important signature for models

with an uncharged (N)LSP at the end of decay chains, as
these do not interact with detectors. Hence, it is as expected
to see pmiss

T correlating strongly with the target class for this
particular analysis, and the observation that the ML models
have modeled this correlation structure is reassuring.

4.6 Comparison of approaches

In Sects. 3, 4.3 and 4.4 we have presented three different
approaches to calculating the discovery significance in a
sample with a mix of SM and SUSY events. The first two
approaches – cut-and-count analysis and cutting on the ML
classifier output – define a selection to measure the number of

events observed and to compare it to the expected number of
events. A properly trained ML classifier will outperform or, at
worst, perform as well as the cut-and-count approach in most
situations. From the point of view of a statistical analysis it
does not matter what method the number of events is coming
from. Therefore, we only compare the ML-classifier-based
cut method with the likelihood fit of the classifier shapes.

The unbinned maximum likelihood fit described in Sect. 4.4
attempts to represent the shape of the classifier output as the
sum of signal (Point 12) and background (SM) templates.
In a fit to any other parameter point, the SM contribution
is described purely by the background template (except for
statistical fluctuations) while the signal contribution is rep-
resented as some combination of the signal (Point 12) and
background (SM) templates. It follows that the true mixture
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parameter is the upper bound for the mixture parameter as
determined by the fit, only achievable when the signal point
considered has a completely non-SM-like classifier shape.
Since the background yield is left unconstrained, this makes
the template fit approach conservative in the sense of dis-
covery and will not overestimate the signal contribution as
long as the templates are chosen properly, specifically that
the ratio between the two is a strictly monotonic function,
see e.g. [79, sec. 5] or [80, fig. 1b].

The maximum likelihood fit provides the discovery signif-
icance due to Wilks’ theorem. To obtain the exclusion signif-
icance one would run the fit under background-only assump-
tion, i.e., fitting with just the background (SM) template.

Comparing the cut on the ML classifier output with the
template likelihood fit approach, there are several factors to
consider: robustness, significance and explainability. Since
the two methods are based on the same ML classifier, the
explainability question raised by both is the same. Judging
from the selection of signal points shown in Table 10, the
template likelihood fit often leads to higher significance val-
ues while still being a conservative estimate of the mixture
parameter. An additional benefit of the template fit method
is that it makes no assumptions about the SM yields, i.e.,
it is more robust against generator acceptance effects. The
robustness of either of the two methods depends differently
on the shapes of the ML classifier outputs, and consequently
on the kinematics of the underlying physical models. Hence,
they cannot be directly compared.

The robustness issue affects other methods for search-
ing new physics in a multidimensional parameter space as
well. This includes the cut-and-count analysis, although in
that case the problem is easier to tackle because it is eas-
ier to understand how the variables (e.g., pmiss

T ) used in the
analysis depend on the model parameters. The strength of
ML methods is precisely their ability to exploit high order
and non-linear correlations between features, which neces-
sarily makes it harder to understand how these change when
changing model parameters and thus exacerbate the robust-
ness issue.

Finally, one is certainly not limited to just one approach.
The template fit and the ML classifier cut approaches are
statistically independent, since they rely purely on the shape
information and the yields, respectively. This means that a
simple best-of approach is justified, where one tries both
approaches and selects the optimal one on a point-by-point
basis. A proper statistical combination of the two methods
should also be possible but is outside of the scope of this
study.

5 Conclusions

We have investigated the increased detectability of a super-
symmetric model featuring a gravitino LSP and a metastable
sneutrino NLSP using two different machine learning mod-
els, XGBoost and a deep neural network. We have consid-
ered benchmark points from a parameter space region where
superparticles are dominantly produced by electroweak pro-
cesses and where a significant number of events with two taus
and one muon can be expected. Thus, the supersymmetric
scenario serves as a test case for other scenarios for physics
beyond the Standard Model that lead to similar signatures.

We have investigated two methods of incorporating the
machine learning models into the analysis, using a threshold
on the model output as event selection and using the model
output as an observable to which we perform a template fit.
Since we do not know which region of the parameter space
nature has chosen and optimizing the analysis for all possible
parameter points is unfeasible, we have tested the methods’
ability to generalize to parameter points they have not been
trained on. In terms of discovery significance, template fitting
generally outperforms simple cutting on classifier output. To
test the generalizability for different kinematics, we scale all
points to the same signal yield, that of Point 12, and perform
the fit again. The results, shown in Table 14, indicate that the
method indeed generalizes.

We observe that for parameter points where the event
kinematics are highly dissimilar to those the classifier was
trained on, the classifier typically considers the data to be
more background-like. Consequently, the template fit will
in such scenarios yield conservative estimates of the signal-
to-background ratio, providing robustness to type-I errors,
i.e. erroneously claiming discovery. If the method is used to
set exclusion limits, on the other hand, this effect should be
taken into consideration, for example by also considering a
cut-and-count analysis, which is independent and could be
performed in parallel.

To provide additional insight into the relationship between
event kinematics and the machine learning classifier output,
we have performed a Shapley decomposition, which to a
large extent matches our intuitive reasoning. The information
in the Shapley values does not provide full transparency to
the internal representation of the machine learning models –
leaving room for future studies – but serves as a useful tool for
investigating the correlation structure at feature level, where
comparison to human knowledge is possible.

The code used to train the classifiers and perform the tem-
plate fits will be made available at gitlab.com/BSML/sneutrino
ML after publication.
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A Parameter space points

The ten parameter space points considered in the analysis are
defined by the mass parameters listed in Table 11, together
with tan β = 10 and μ > 0. The choice of tan β = 10
yields the largest parameter space region with a sneutrino
NLSP. These values are given at the scale Qin = 1467GeV
for Point 0 and Qin = 1000GeV for the other points. Based
on these inputs, the SUSY mass spectrum is calculated by
SPheno 4.0.3 andFeynHiggs 2.14.2. As SM input
parameters, αs(MZ ) = 0.1181 and mt = 173.2GeV are
used; all other SM parameters are kept at their SPheno default
values.

B Results with equal signal yields

Here, Table 10 is recalculated with test data scaled to the
expected signal yields of Point 12, i.e., the true mixture
parameter is equal for all points. The signal events are dis-
tributed between the different production channels as before,
i.e, according to the cross sections.

Table 11 Input parameter values for the points used in the analysis. All masses are given in GeV. For expected yields, see Table 6

Name M1 M2 M3 m2
Hd

m2
Hu

At Ab Aτ

Point 0 521.6 951.3 2554.5 1.96 × 107 −3.66 × 106 −2.04 × 10−3 −5544.2 −3636.7

Point 12 754.0 267.5 2466.8 2.16 × 107 −2.05 × 106 −5218.4 −4673.7 −2933.2

Point 13 903.8 307.0 2892.0 2.09 × 107 −2.49 × 106 −5466.6 −4563.7 −2547.4

Point 14 309.1 248.2 3177.3 2.23 × 107 −9.47 × 106 −5503.4 −5089.1 −2449.2

Point 15 797.8 252.1 3693.5 2.01 × 107 −3.97 × 106 −6218.3 −6009.8 −2839.2

Point 16 308.5 258.0 3722.3 2.14 × 107 −9.37 × 106 −5053.8 −5159.8 −2526.9

Point 20 599.9 1000.0 2724.9 2.23 × 107 −3.54 × 106 −4810.6 −6746.1 −3744.5

Point 30 446.8 600.0 3529.9 2.02 × 107 −3.84 × 106 −5133.6 −5611.5 −2618.9

Point 40 853.4 2500.0 2883.4 2.50 × 107 −3.42 × 106 −5211.0 −4722.5 −3031.5

Point 50 499.3 2000.0 2514.4 2.40 × 107 −3.10 × 106 −2725.2 −4267.0 −3017.9

Name ML11 ML22 ML33 ME11 ME22 ME33 MQ11 MQ22 MQ33 MU11 MU22 MU33 MD11 MD22 MD33

Point 0 314.7 314.2 240.2 1094.1 1093.8 2485.4 2331.5 2331.5 7704.0 2044.0 2044.0 8000.0 2265.9 2265.9 8000.0

Point 12 241.8 264.2 132.1 1188.9 1380.4 1920.8 2414.0 2997.7 4838.1 1672.0 2064.6 1912.4 1771.8 2223.0 3528.1

Point 13 259.6 247.9 123.9 1842.2 1161.8 1480.7 2523.7 2594.1 4698.2 1431.4 1781.4 2977.6 2763.3 2242.7 3962.5

Point 14 311.5 236.4 118.2 1683.8 1450.7 1558.7 2987.7 2726.2 4769.3 2133.6 1411.6 1474.7 2691.8 2638.9 3337.6

Point 15 225.6 215.6 107.8 1055.6 1773.9 1422.6 2865.8 2498.3 4095.5 1313.2 1949.7 1874.1 2821.6 1871.9 3338.4

Point 16

Point 20 303.4 272.3 136.1 1767.7 1702.3 1133.5 2722.1 2696.2 5449.7 1809.8 2127.0 6552.4 1632.0 1605.7 7612.8

Point 30 384.3 306.4 153.2 1820.0 1423.8 1971.9 2950.8 2845.8 6017.0 2707.6 2191.0 6283.7 1844.6 2493.7 6981.8

Point 40 218.3 222.7 111.3 1115.7 1300.5 1553.6 2497.3 2493.9 6005.5 1327.5 1072.2 5567.1 1526.0 1037.2 6749.6

Point 50 210.3 215.5 107.7 1861.1 1315.2 1556.5 2474.9 2973.2 5785.7 2328.9 1355.2 7303.1 2902.0 2917.2 9256.5
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Table 12 Branching ratios (BRs) of Point 0. Only BRs larger than 1% are included

χ̃0
1 → τ̃ ∗

1 τ− + c.c. ν̃τ ν̄τ + c.c.

BR [%] 14.6 × 2 35.4 × 2

χ̃0
2 → τ̃ ∗

1 τ− + c.c. ν̃τ ν̄τ + c.c.

BR [%] 43.1 × 2 6.3 × 2

χ̃+
1 → τ̃ ∗

1 ντ τ+ν̃τ

BR [%] 5.7 92.9

ẽ−
L → e−χ̃0

1 χ̃−
1 νe ud ν̃e csν̃e

BR [%] 95.1 1.8 1.6 1.5

μ̃−
L → μ−χ̃0

1 ud ν̃μ csν̃μ

BR [%] 96.6 1.6 1.4

τ̃−
1 → ν̃τ e−ν̄e ν̃τ μ

−ν̄μ ν̃τ τ
−ν̄τ ν̃τ dū ν̃τ sc̄

BR [%] 11.6 11.6 10.0 34.7 32.1

ν̃e → χ̃0
1 νe ν̃τ e−τ+

BR [%] 96.0 4.0

ν̃μ → χ̃0
1 νμ ν̃τ μ

−τ+

BR [%] 52.8 47.2

Table 13 Branching ratios (BRs) of Point 12. Only BRs larger than 1% are included

χ̃0
1 → τ̃ ∗

1 τ−
+ c.c.

ν̃τ ν̄τ +
c.c.

ẽ∗
Le

−
+ c.c.

ν̃eνe +
c.c.

μ̃∗
Lμ−

+ c.c.
ν̃μνμ +
c.c.

BR [%] 17.6 × 2 21.3 × 2 3.2 × 2 4.9 × 2 1.1 × 2 2.1 × 2

χ̃+
1 → τ̃ ∗

1 ντ τ+ν̃τ e+ν̃e μ̃∗
Lνμ μ+ν̃μ

BR [%] 37.3 45.7 10.3 2.3 4.4

ẽ−
L → τ̃1τ

+e− τ̃ ∗
1 τ−e− ν̃τ e−ν̄τ ν̃∗

τ e
−ντ ν̃∗

τ τ−νe

BR [%] 3.0 8.1 5.7 14.5 68.4

μ̃−
L → τ̃1τ

+μ− τ̃ ∗
1 τ−μ− ν̃τ μ

−ν̄τ ν̃∗
τ μ−ντ ν̃∗

τ τ−νμ

BR [%] 4.3 9.5 6.7 14.1 65.0

τ̃−
1 → ν̃τ e−ν̄e ν̃τ μ

−ν̄μ ν̃τ τ
−ν̄τ ν̃τ dū ν̃τ sc̄

BR [%] 11.3 11.3 10.1 33.8 33.4

ν̃e → ν̃τ e−τ+ ν̃τ νe ν̄τ ν̃∗
τ νeντ τ̃1τ

+νe τ̃ ∗
1 e

−ντ τ̃ ∗
1 τ−νe

BR [%] 27.7 7.3 25.8 2.6 30.1 6.4

ν̃μ → ν̃τ μ
−τ+ ν̃τ νμν̄τ ν̃∗

τ νμντ τ̃1τ
+νμ τ̃ ∗

1 μ−ντ τ̃ ∗
1 τ−νμ

BR [%] 28.1 7.4 20.9 3.5 32.9 7.1
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Table 14 Template fit results for all parameter points, scaled to the same yields as Point 12, but with each point’s respective kinematics. All points
have αtrue = 0.07, and both classifiers used are trained on Point 12

αtrue α̂XGB α̂DNN zXGB zDNN zXGB-cut zDNN-cut

Point 12 0.070 0.069 ± 0.011 0.071 ± 0.011 15.7 18.5 15.5 16.7

Point 13 0.070 0.060 ± 0.011 0.063 ± 0.011 13.9 16.8 13.7 14.6

Point 14 0.070 0.058 ± 0.011 0.059 ± 0.011 13.2 15.5 12.4 13.0

Point 15 0.070 0.055 ± 0.011 0.055 ± 0.01 12.4 14.4 10.6 11.1

Point 16 0.070 0.046 ± 0.012 0.045 ± 0.01 10.9 12.2 10.3 10.5

Point 20 0.070 0.061 ± 0.011 0.063 ± 0.011 14.4 17.0 14.1 15.3

Point 30 0.070 0.083 ± 0.012 0.083 ± 0.012 19.3 22.4 17.4 18.7

Point 40 0.070 0.038 ± 0.01 0.040 ± 0.009 8.9 10.5 10.0 10.4

Point 50 0.070 0.052 ± 0.01 0.051 ± 0.01 12.3 13.4 11.1 11.6

Point 0 0.070 0.014 ± 0.008 0.012 ± 0.008 3.3 3.2 4.4 3.5

Fig. 9 Output distributions
from a the XGBoost classifier
and b the DNN classifier for
nominal and alternative signal
samples for Point 12. The lower
panel shows the relative
difference between each
alternative PDF setting and the
nominal one

Fig. 10 Output distributions
from a the XGBoost classifier
and b the DNN classifier for
nominal and alternative signal
samples for Point 0. The lower
panel shows the relative
difference between each
alternative PDF setting and the
nominal one

C Effect of theoretical uncertainty on the classifier out-
puts

In order to evaluate the theoretical uncertainty originating
from the choice of PDF set in the signal generation, classifier
outputs are computed for signal samples produced using the
alternative PDF sets described in Sect. 2.2. These are shown
in Fig. 9 for Point 12 and in Fig. 10 for Point 0. In both cases,
the classifiers trained on nominal Point 12 samples are used.
The lower panels in the plots show the ratio of each alternative
sample to the nominal. Both classifiers are very robust to
the kinematic differences between the alternative samples,
showing no apparent bias across the output range. Hence, the
results of the maximum likelihood fit to the classifier outputs

are expected to be dominated by the statistical uncertainty,
which was also verified by testing.
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