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In many models, the sources of ultrahigh-energy cosmic rays (UHECRs) are assumed to accelerate
particles to the same maximum energy. Motivated by the fact that candidate astrophysical accelerators
exhibit a vast diversity in terms of their relevant properties such as luminosity, Lorentz factor, and magnetic
field strength, we study the compatibility of a population of sources with nonidentical maximum cosmic-
ray energies with the observed energy spectrum and composition of UHECRs at Earth. For this purpose, we
compute the UHECR spectrum emerging from a population of sources with a power-law, or broken-power-
law, distribution of maximum energies, applicable to a broad range of astrophysical scenarios. We find that
the allowed source-to-source variance of the maximum energy must be small to describe the data if a
power-law distribution is considered. Even in the most extreme scenario, with a very sharp cutoff of
individual source spectra and negative redshift evolution of the accelerators, the maximum energies of 90%
of sources must be identical within a factor of 3—in contrast to the variance expected for astrophysical
sources. Substantial variance of the maximum energy in the source population is only possible if the
maximum energies follow a broken-power-law distribution with a very steep spectrum above the break.
However, in this scenario, the individual source energy spectra are required to be unusually hard with
increasing energy output as a function of energy.

DOI: 10.1103/PhysRevD.107.103045

I. INTRODUCTION

Ultrahigh-energy cosmic rays (UHECRs) are charged
particles that reach Earth with energies of up to several
1020 eV. The identification of the astrophysical sources
capable of accelerating particles to these energies is one
of the unsolved mysteries of high-energy astrophysics
(see e.g. [1,2] for recent reviews). A correlation between
astrophysical objects and the measured arrival directions of
cosmic rays has not yet been established at high signifi-
cance [3], but the source properties are constrained by
measurements of the diffuse particle flux and composition
at Earth; see e.g. [4–20].
Most of these studies assume an acceleration mechanism

that is universal in rigidity1 up to a maximum rigidity of
Rmax, leading to consecutive flux suppressions of the
elemental spectra at energies of Emax ¼ ZRmax, where Z
denotes the cosmic-ray charge. Assuming such a “Peters
cycle” [21,22] at the sources gives a good description of
the flux and composition measured at Earth at ultrahigh
energies; see e.g. [11]. Depending on the source environ-
ment, the maximum energy can follow a different functional

form [23]. Here, we consider primarily the canonical
scenario where the maximum energy scales in proportion
to the nuclear charge and briefly discuss the effect of alternate
scalings on our results.
A major caveat of many studies is that the sources are

typically assumed to be identical—a description that is
unlikely to hold for realistic sources. The most probable
astrophysical candidates for the sources of UHECRs,
e.g. active galactic nuclei (AGN) and gamma-ray bursts
(GRBs), are generally not very similar—even within a
single source class—but exhibit an enormous diversity in
terms of key parameters like luminosity, size, magnetic
field and jet power.
Only a few studies have relaxed the assumption of

identical sources in the past, by focusing on a low number
of discrete local sources [24–26] or by considering
the superposition of a few (≤ 3) source classes, e.g.
[15,18,20,27–29]. The time variation of Rmax in AGN jets
was studied in Ref. [30], and the effective spectrum
produced by sources with nonidentical spectral shapes
and spectral indices has been discussed in the context of
gamma-ray spectra [31] and Galactic cosmic-ray sources
[32]. Populations of sources with nonidentical maximum
cosmic-ray rigidities were considered previously, for a pure
proton UHECR composition [33], for Galactic cosmic rays
[34], and for gamma-ray bursts [16].

*domenik.ehlert@ntnu.no
1The rigidity of a particle with charge Ze and momentum p is

R ¼ pc=ðZeÞ ≃ E=Z (using natural units and with energy E).
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Here we present, for the first time, a rigorous explora-
tion of the population variance of Rmax compatible with
current observations of the spectrum and composition
of UHECRs. This is achieved by convolving the distribu-
tion of source properties, parametrized by the maximum
rigidity, with the individual source spectra to obtain an
analytical description of the total population spectrum,
as detailed in Sec. II. We simulate the propagation of
UHECRs to Earth through the extragalactic photon fields
and find the best source parameters by comparing the
model predictions to UHECR data in Sec. III. From this, we
derive lower limits on the source variance allowed by the
data, as described in Sec. IV. We conclude in Sec. V that
only a limited amount of population variance is permitted,
and UHECR sources are required to be nearly identical in
terms of maximum rigidity under realistic choices of the
model parameters if a power-law distribution of maximum
rigidities is assumed. The variance can be large for broken-
power-law distributions, provided the source spectra are
sufficiently hard. However, we find the distributions pre-
dicted for most candidate source classes—blazars, gamma-
ray bursts, and tidal disruption events—to be incompatible
with the limits obtained from the UHECR fit. Only sources
with luminosity distribution similar to the one of Seyfert
galaxies can potentially satisfy the constraints.

II. POPULATION SPECTRUM
OF NONIDENTICAL SOURCES

In this study, we assume that the rigidity spectra of
individual sources of UHECRs are well described by the
aforementioned Peters cycle, and thus we assume a power
law with a high-rigidity cutoff:

ϕsrc ¼
d2N
dRdt

¼
X
i

ϕ0ðZiÞR−γsrcfðR;RmaxÞ; ð1Þ

where the sum runs over all accelerated chemical ele-
ments with charge Zi and the spectral index is assumed
to be universal.2 The term fðR;RmaxÞ describes the high-
rigidity cutoff at maximum rigidity Rmax. We refer to the
sum of the spectra of all sources within a certain volume
as the population spectrum ϕpop.
In the limit of identical sources, the population spectrum

will necessarily have the same shape as the spectra of
individual sources. A source-by-source variation of the
normalization factors ϕ0ðZiÞ does not lead to a qualitatively
different population spectrum since it is equivalent to
identical sources with the source-averaged normalizations
ϕ0, and thus we will not consider it in the following. It
should, however, be kept in mind that the elemental
fractions obtained from the fits presented later in this paper

should be understood as source-averaged fractions. A
phenomenologically more interesting source property is
the maximum rigidity. If the probability for an individual
accelerator to reach a certain maximum rigidity is distrib-
uted as pðRmaxÞ≡ dp=dRmax and the source spectra follow
ϕsrcðR;RmaxÞ, then the combined spectrum of the entire
population is given by the convolution

ϕpopðRÞ ¼
Z

∞

0

ϕsrcðR;RmaxÞpðRmaxÞdRmax: ð2Þ

Here and in subsequent occurrences of ϕsrc, the sum over
all chemical elements of charge Zi [cf. Eq. (1)] is assumed
implicitly. In the following, we specify the functional forms
of individual source spectra and probability distribution of
Rmax that will be studied in this work.

A. Source spectra

In general, the rigidity cutoff of astrophysical acceler-
ators depends on the acceleration mechanism and the
source environment, in particular on the dominant energy-
loss process; see e.g. [37,38]. The simplest description of
the shape is given by a sharp termination when particles
exceed the maximum rigidity

ϕhs
src ¼ ϕ0R−γsrcθðRmax − RÞ; ð3Þ

where θðxÞ denotes the Heaviside step function. The
population spectrum corresponding to this function has
been studied previously in Ref. [33]. Since ϕhs

src describes
the sharpest-possible rigidity cutoff, it provides a useful
extreme case that will allow for a maximum variation of
maximum rigidity among the sources in the population.
A more commonly used choice, expected under certain

astrophysical conditions (see e.g. [38,39]), is given by an
exponential cutoff

ϕexp
src ¼ ϕ0R−γsrc exp

�
−

R
Rmax

�
: ð4Þ

However, this function has the disadvantage that the effect
of the cutoff already starts to become noticeable well below
the maximum rigidity and the interpretation of the spectral
index γsrc is complicated. For this reason, some phenom-
enological studies assume a broken-exponential source
spectrum (e.g. [11]):

ϕb-exp
src ¼ ϕ0R−γsrc

8<
:

1 R < Rmax exp�
1 − R

Rmax

�
otherwise;

ð5Þ

which alleviates the issue but lacks physical motivation.
Finally, we consider spectra with an exponential cutoff

raised to the power of λcut:
2γsrc ≈ 2 for diffusive shock acceleration [35,36], but in this

study the value of γsrc is a free parameter.
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ϕs-exp
src ¼ ϕ0R−γsrc exp

�
−

R
Rmax

�
λcut

; λcut > 0: ð6Þ

We refer to this description as a “superexponential” cutoff.
The function can be used to interpolate continuously
between classical, exponential cutoffs (λcut ¼ 1) and sharp,
Heaviside-like terminations (λcut ¼ ∞). Additionally, for
λcut < 1 the cutoff shape becomes subexponential up to
no cutoff when λcut → 0. Superexponential cutoff profiles
were obtained e.g. in Ref. [39] with λcut ¼ 2 for synchro-
tron losses during acceleration.
An illustration of the source spectrum for different

choices of the cutoff is shown in the left panel of Fig. 1.

B. Distribution of maximum rigidities

1. Power law

In this paper, we mainly consider a population of sources
with a distribution of maximum rigidities that follows a
power law (PL) with spectral index βpop above a minimum
allowed maximum rigidity R0:

pðRmaxÞ ¼
(
0 Rmax < R0

βpop−1
R0

ðRmax
R0

Þ−βpop otherwise;
ð7Þ

which is also known as a Pareto distribution. This Rmax
distribution was previously considered in Ref. [33].
Because of the asymmetric nature of the power-law
distribution, the standard deviation is of limited use to
characterize the source variance, and instead we will report
the one-sided 90% quantile R0.90

max defined as

Z
R0.90
max

R0

dRmaxpðRmaxÞ ¼ 0.90: ð8Þ

For a power-law distribution of maximum rigidities, the
quantile q is given by the relation

Rq
max=R0 ¼ ½1 − q�1=ð1−βpopÞ: ð9Þ

For illustration, population diversity of more than a decade,
i.e. R0.90

max=R0 ≥ 10, is obtained if βpop < 2.

2. Broken power law

Alternatively, the distribution of maximum rigidities can
be modeled as a broken power law (BPL) which can be
written as

pðRmaxÞ ¼
R−1
0

C
×

8<
:

ðRmax
R0

Þ−β1 Rmax ≤ R0

ðRmax
R0

Þ−β2 Rmax > R0;
ð10Þ

with C a normalization constant. A detailed discussion of
the BPL scenario is provided in Appendix B.

C. Population spectrum

1. Power law

Assuming a power-law distribution of Rmax, it is possible
to derive an analytical description of the population
spectrum for all source spectra presented in Sec. II A. In
the case of sources with a Heaviside termination in rigidity,
the population spectrum is given by

ϕhs
pop ¼ ϕ0R−γsrc

�
1 R < R0

ð RR0
Þ−βpopþ1 otherwise:

ð11Þ

For source spectra with a broken exponential cutoff, the
population spectrum becomes

ϕb-exp
pop ¼ ϕ0R−γsrc

�
1 R < R0

ð RR0
Þ−βpopþ1fð RR0

; βpopÞ otherwise
ð12Þ

with

FIG. 1. Left: cosmic-ray source spectra for the different rigidity cutoff functions. Rmax denotes the maximum rigidity and the y axis is
scaled to show the ratio to an unmodified power law with spectral index γsrc. Right: population spectra resulting from the convolution of
a power-law distribution of maximum rigidities above rigidity R0 and the source spectra displayed in the left panel (βpop ¼ 4).
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f

�
R
R0

; βpop

�
¼ 1þ eðβpop − 1Þ

×

�
γ

�
βpop − 1;

R
R0

�
− γðβpop − 1; 1Þ

�
:

Finally, for sources with a (super)exponential cutoff, the
population spectrum is given by

ϕs-exp
pop ¼ ϕ0R−γsrc

�
R
R0

�
−βpopþ1 βpop − 1

λcut

× γ

�
βpop − 1

λcut
;

�
R
R0

�
λcut

�
: ð13Þ

For a standard exponential distribution, i.e. λcut ¼ 1, this
simplifies to

ϕexp
pop ¼ ϕ0R−γsrc

�
R
R0

�
−βpopþ1

ðβpop − 1Þ × γ

�
βpop − 1;

R
R0

�
;

ð14Þ

whereas for λcut → ∞, Eq. (11) is recovered. Here γ denotes
the lower incomplete gamma function, not to be confused
with the source spectral index γsrc.
Population spectra for a particular choice of parameters

are shown in Fig. 1, right. The main impact of the cutoff
parameter λcut is a later onset and faster turnover of the
spectral break around R0. The limiting behavior of the
population spectrum is independent of the source cutoff
function. The asymptotic rigidity dependencies of the
population spectra are

lim
R→0

ϕpopðRÞ ∝ R−γsrc ð15Þ

and

lim
R→∞

ϕpopðRÞ ∝ R−γsrc−βpopþ1: ð16Þ

2. Broken power law

In the broken-power-law scenario, the resulting popula-
tion spectrum for sources with superexponential cutoff is

ϕs-exp
pop ¼ ϕ0

C · λcut
R−γsrc × ½LþH�; ð17Þ

with

L ¼
�
R
R0

�
−β1þ1

· Γ
�
β1 − 1

λcut
;

�
R
R0

�
λcut

�
;

H ¼
�
R
R0

�
−β2þ1

· γ

�
β2 − 1

λcut
;

�
R
R0

�
λcut

�
: ð18Þ

Here “C” is a normalization factor (see Appendix B), “L”
reflects the contribution from sources with Rmax ≤ R0 and
“H” represents sources above the break. Γ and γ are the
upper and lower incomplete gamma function, respectively.
The single-power-law scenario is retrieved as a limiting
case of the more general broken-power-law case for
β1 → −∞, i.e. when the contribution L of low-Rmax sources
vanishes. We discuss the broken-power-law scenario in
more detail in Appendix B. Here we only mention that
the same expression for the population spectrum as in the
power-law picture holds approximately after defining the
effective spectral index γpop ¼ γsrc þ β1 − 1 and Rmax-
distribution index βpop ¼ β2 − β1 þ 1.

D. Relation to astrophysical quantities

The population spectra derived in the previous section
provide simple analytic expressions that are well suited for
fits to UHECR observations at Earth, with which the key
parameters βpop and γsrc can be derived. The connection of
these parameters to the properties of UHECR sources is
discussed in the following for a few examples. We will
show that the assumed power-law distribution in maximum
rigidity can be attributed to different acceleration scenarios.

TABLE I. Summary of parameters used for the three illustrative scenarios. See sections given in the first column for further details.

Scenario Parameter Description Equation

Power law (Section II B) γsrc True spectral index of the sources ϕsrc ∝ R−γsrc

γpop Effective spectral index of the sources [same as the true spectral
index for a power-law distribution of pðRmaxÞ]

ϕpop ∝ R−γpop

βpop (Effective) spectral index of the pðRmaxÞ distribution pðRmaxÞ ∝ R
−βpop
max

β1, β2 Spectral index of the distribution of maximum rigidities
below (above) the break for a broken power law in pðRmaxÞ

pðRmaxÞ ∝ R−β1
maxðR−β2

maxÞ

Lorentz factor (Section II D 1) η Spectral index of the power-law distribution of Lorentz factors dp=dΓ ∝ Γ−η

α Energy boosting by the relativistic motion of the jet E ¼ E0Γα

ξ Time dilation caused by the relativistic motion
of the source region

t ¼ t0Γξ

Luminosity (Section II D 2) y1, y2 Spectral index of the broken-power-law luminosity function
of sources below (above) the break

dp=dL ∝ L−y1ðL−y2Þ
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The relevant parameters of these scenarios are summarized
in Table I and the reinterpretation of the fitted parameters
βpop and γsrc in terms of proposed underlying physical
properties are listed in Table II. Through the reinterpreta-
tion of the fitted parameters, all considered physical
scenarios can be reduced to the same population spectra
that are obtained for a power-law distribution of Rmax. The
process is illustrated in Fig. 2.

1. Jet Lorentz factor

In some scenarios, for sources with relativistic jets,
the maximum rigidity is directly related to the bulk
Lorentz factor of the motion, Γjet. For instance, the Hillas
criterion [48] for relativistic sources gives Rmax ¼ R0Γjet,
with R0 ∝ lB, where l is the size of the source and B the
magnetic field.
It is also possible that UHECRs are galactic cosmic rays

that receive a “one-shot” boost of a factor of ∼Γ2
jet in the

jet of their host galaxies, in which case Rmax ∼ R0Γ2
jet,

where R0 is the maximum energy of the cosmic rays
before reacceleration. This is referred to as the espresso

mechanism [49–51]. Cosmic rays that do not enter the most
relativistic parts of the jet are only partially boosted with
Rmax ∝ Γα

jet; α < 2. Thus, here we investigate the general
case of

Rmax ¼ R0Γα
jet; ð19Þ

where the aforementioned cases are described by α ¼ 1
(Hillas) and α ≤ 2 (espresso).
Assuming, for example, a power-law distribution of the

Lorentz factors, as found consistent with observations of
jetted AGN in Refs. [40,52],

dp
dΓjet

¼ ðη − 1ÞΓ−η
jet ; ð20Þ

the distribution of maximum rigidities can be calculated as

pðRmaxÞ ¼
dp
dΓjet

				 dΓjet

dRmax

				
¼ η − 1

α
R−1
0

�
Rmax

R0

�1−η
α −1

θðRmax − R0Þ: ð21Þ

TABLE II. Effective fit parameters, βpop, the spectral index of the maximum rigidity distribution of the UHECR source population,
γsrc, the assumed spectral index of the UHECR spectrum of individual sources, and their interpretation in terms of source properties for
various scenarios considered in this work. The scenarios are (I) a distribution of pðRmaxÞ that follows an ad hoc single PL or BPL; (II)
maximum rigidity that scales as Rmax ∝ Γα with Γ the PL-distributed bulk Lorentz factor of the acceleration region (see Sec. II D 1) with
dp=dΓ ∝ Γ−η; and (III) Rmax as a function of source luminosity, Rmax ∝

ffiffiffiffi
L

p
, with PL or BPL distribution of dp=dL (see Sec. II D 2).

For power-law distributions the parameter in brackets denotes the slope, e.g. dp=dΓðηÞ ∝ Γ−η, while for broken-power-law distributions
the parameters give the slope before and after the break, respectively. Scenario I represents our baseline model that we use to com-
pute the population spectra for different source spectral cutoff functions. Cases II and III can be reduced to the former after
reinterpretation of the source and population parameters (η, α, y1, y2, β1, β2, and γsrc) in terms of the parameters βpop;max and γpop. For
scenario III we quote the slopes for dp=dL, as opposed to dp=d logðLÞ which is often used in the literature. This introduces a factor of
L−1, i.e. y1=2 → y1=2 þ 1.

ID Parameter Distribution βpop γpop Sources βpop;max

I. 1 Rmax PL, pðRmaxjβpopÞ βpop γsrc
I. 2 Rmax BPL, pðRmaxjβ1; β2Þ

β1 < 1 ≈β2 ≈γsrc
β1 > 1 β2 − β1 þ 1 γsrc þ β1 − 1

II Rmax ∝ Γα PL, dp=dΓðηÞ ðη − 1Þ=αþ 2 γsrc Blazars [40]a: η ¼ 1.4�0.2
−γsrc þ ξ=α + Hillas: α ¼ 1, ξ ¼ 1 3.4�0.2 − γsrc

+ Espresso: α ¼ 2, ξ ¼ 0 2.2�0.1 − γsrc

III. 1 Rmax ∝
ffiffiffiffi
L

p
PL, dp=dLðy2Þ 2y2 − 3 γsrc BL Lacs [41]b: y2 ¼ 2.61�0.37 2.22�0.74

FSRQs [42]b: y2 ¼ 2.36�0.10 1.72�0.20
Blazars [42]b: y2 ¼ 2.32�0.08 1.64�0.16
TDEs [43,44]: y2 ¼ 2.30�0.20 1.60�0.40

III. 2 Rmax ∝
ffiffiffiffi
L

p
BPL, dp=dLðy1; y2Þ
y1 < 2 ≈2y2 − 3 ≈γsrc GRBs [45]: y1 ¼ 1.2þ0.2−0.1, y2 ¼ 2.4þ0.3−0.6 1.8þ0.6−1.2

FSRQs [42]b: y1 ¼ 0�2.07, y2 ¼ 2.67�0.17 2.34�0.34
Blazars [42]b: y1 ¼ 0.49�1.15, y2 ¼ 2.79�0.19 2.58�0.38
Seyferts [46]: y1 ¼ 1.96�0.04, y2 ¼ 3.71�0.09 4.42�0.18

aA steeper distribution of η ¼ 2.1� 0.4 was found in [47] when fitting only blazars with Γ ¼ 1–40, resulting in reduced population
variance of βpop ¼ 4.1� 0.4 for the Hillas and βpop ¼ 2.6� 0.2 for the espresso scenario.

bAssuming the pure-luminosity-evolution (s=m) PLE model.
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Of course, R0 is also expected to vary from source to
source, and therefore the distribution of Rmax should be
broader and the above equation can be understood as a
lower limit on the source-to-source variation of Rmax.
The boosting of particle energies also affects the

expected flux emitted by individual sources. This intro-
duces additional terms into Eq. (21) but we show in
Appendix A that the convolution of the source spectra
and the Rmax distribution lead to the same functional forms
as derived in the last section. However, the parameter βpop
can now be related to physical properties of the source
population, namely the spectral index γsrc, the Lorentz-
boosting factor Rmax ∝ Γα

jet, and the distribution of Lorentz
factors pðΓjetÞ ∝ Γ−η

jet via

βpop ¼
η − 1

α
þ 2 − γsrc þ ξ=α; ð22Þ

where the time dilation factor ξ ¼ 1 for an acceleration
region comoving with the jet and ξ ¼ 0 for espresso-type
reacceleration.

2. Luminosity

Another plausible distribution of the maximum rigidity
can be derived from the minimum luminosity requirement
for particle acceleration in expanding flows. Here, the
minimum luminosity L0 needed to accelerate CRs to
maximum rigidity R0 is given by3 [53–59]

L0 ≈ 1045.5
1

β

�
R0

1020 V

�
2

erg s−1; ð23Þ

where β is the speed of the flow in units of c. In this
scenario, we can relate Rmax and observed luminosity L of a
source via

Rmax ∼ R0β
1=2

�
L
L0

�
1=2

: ð24Þ

The impact of the variance of β in a population can be
approximately neglected for highly as well as mildly and
nonrelativistic sources.4

In this scenario, where we relate the maximum rigidity to
the source luminosity,

pðRmaxjzÞ ¼
dp
dL

ðzÞ
				 dL
dRmax

				; ð25Þ

where dpðzÞ=dL is the luminosity function of the sources.
For a single-power-law distribution of luminosities, which
can adequately describe many proposed source classes,
and without taking into account the redshift evolution,5 we
can write

dp
dL

¼ y2 − 1

L0

�
L
L0

�
−y2

: ð26Þ

FIG. 2. Schematic description of how the parameters of the
considered astrophysical scenarios (η, α, ξ, y1, y2, β1, β2, and γsrc)
are connected to the parameters (βpop and γpop) that describe the
effective population spectrum ϕpop. In the first step, the single-PL
or BPL distributions of physical parameters are converted to a PL
or BPL distribution of maximum rigidities. This conversion is
exact, assuming that Eqs. (19) and (24) are valid. If Rmax follows a

PL distribution, with slope R
−βpop
max above the threshold at R0, we

obtain our default case for the population spectrum. If Rmax is
distributed according to a broken power law, with break at RT and
slope R−β1

max=R
−β2
max before or after the break, the same parametriza-

tion of ϕpop is possible but only after a reinterpretation of the
parameters. This approach is exact except around the break at R0.

3The normalization value varies slightly between different
papers.

4If the acceleration region is highly relativistic, then β ∼ 1 and
there is no additional variance introduced by the nonidentical
outflow speeds. Even in non- or mildly relativistic source
environments, the impact is expected to be small. For example,
the authors of [60] found that the relation between luminosity
and outflow speed in a sample of AGN outflows is L ∼ v4.6out.
The additional contribution in Eq. (24) is thus β1=2 ∼ L1=9,
which constitutes only a subdominant effect compared to
the original Rmax ∝ L1=2.

5For our purposes, luminosity and density redshift evolution of
sources are indistinguishable in terms of the total contribution to
the observed UHECR energy flux. However, as the maximum
rigidity is related to the source luminosity [Eq. (24)], an evolution
of maximum rigidities, LðzÞ → RmaxðzÞ, would be introduced.
The impact of such an evolution is studied in Sec. IV D, where we
find that the cosmic-ray fit is not very sensitive to this behavior
but negative evolutions, i.e. Rmax ∝ zζ; ζ < 0, are preferred at
moderate significance.

D. EHLERT, F. OIKONOMOU, and M. UNGER PHYS. REV. D 107, 103045 (2023)

103045-6



We assume that the emitted flux of a single source scales
with the luminosity as ϕsrc ∝ L=L0. Noting Eq. (24), this
introduces an additional dependency of the source flux
on the maximum rigidity, which can be absorbed into
the pðRmaxÞ distribution by adjusting the definition of the
effective slope βpop. The distribution of maximum rigidities
is then

pðRmaxÞ ¼
2ðy2 − 1Þ

R0

�
Rmax

R0

�
−2y2þ3

; ð27Þ

which, except for an additional normalization constant κ,
reduces to the PL expression in Eq. (7) after defining

βpop ¼ 2y2 − 3 and κ ¼ βpop þ 1

βpop − 1
: ð28Þ

The situation is more complex if sources follow a
broken-power-law luminosity function dp=dLðy1; y2Þ.
By defining β1 ¼ 2y1 − 3 and β2 ¼ 2y2 − 3, it is possible
to express the maximum rigidity distribution as a broken
power law.
The expected values of βpop (labeled βpop;max) are listed

in the last column of Table II for a selection of possible
source candidates. These can be compared directly to
the fitted values of βpop discussed below. For the inves-
tigated sources βpop;max is in general low, meaning that we
would expect to observe the effect of the variance of the
population in the UHECR data. It should be kept in mind
that the estimates given in this section are only a lower limit
on the source variance (upper limit on βpop) as we focused
only on the variation of a few key parameters and treated
others as a constant (e.g. R0) and therefore the real source
variance will be larger. In addition, for sources observing a
broken-power-law distribution the variance predicted from
Eq. (8) with the tabled βpop will underestimate the true
population variance since only sources above the break are
considered if the approximation as a single power law is
made (case III. 2 of Table II). Depending on the distribution
of sources below the break, the true variance can be much
larger if β1 is not small. The discrepancy is smaller if the
subbreak distribution is inverted (β1 < 0) and approaches
zero for β1 → −∞, in which case the expression reduces to
a single power law [Eq. (7)].

III. METHODS

A. UHECR data

We use the latest publicly available data from the Pierre
Auger Observatory for comparison with our numerical
simulations. These are the energy spectrum of UHECRs
from Ref. [61] and the mean and standard deviation of the
maximum depth of air showers [62,63] that are sensitive to
the composition of cosmic rays; see e.g. [64].

B. UHECR propagation

UHECR injection and propagation are simulated with
the numerical Monte Carlo framework CRPropa3 [65],
including the production of cosmogenic neutrinos and
gamma rays. Upper limits and measurements of the latter
are qualitatively taken into account in what follows. These
are the Fermi-LAT isotropic diffuse gamma-ray back-
ground [66], the observed IceCube high-energy starting-
event neutrino flux [67], and the IceCube 90% upper limits
above 5 × 106 GeV [68]. The UHECR sources are simu-
lated in the continuous-source approximation out to maxi-
mum redshift zmax ¼ 4. For UHECRs in the energy range
that we fit, the effective horizon is much closer at no more
than z≲ 1 (e.g. [69]), but sources at larger distances can
have a strong impact on the predicted flux of cosmogenic
neutrinos.
All relevant interactions are taken into account during

propagation [11,65,70]; these are (i) redshift energy loss,
(ii) photopion production, and (iii) electron-positron pair
production on the cosmic microwave background (CMB)
and the infrared background (IRB) [71], and for heavier
cosmic rays also (iv) photodisintegration on CMB and IRB
and (v) nuclear decay.
We assume that UHECRs propagate in the ballistic

regime and neglect the effects of extragalactic magnetic
fields on the trajectories of UHECRs. Based on the results
of previous studies [29,72–76], these propagation effects
are mainly important at low rigidities, where they can lead
e.g. to an apparent hardening of the UHECR flux at Earth,
but are not expected to alter our conclusions about the
source variance of maximum rigidities.

C. Model fit

We compare the model-predicted UHECR spectrum and
composition after propagation to observations by the Pierre
Auger Observatory. For that purpose we convert the model
composition into the air shower observables—the mean
depth of the shower maximum hXmaxi and its standard
deviation σðXmaxÞ—following Ref. [77].
The agreement between simulation and observations is

evaluated with a standard χ2 estimator plus additional
penalty terms

χ2 ¼
X

Ei≥Emin

�
di −mðEi;pÞ

σstatðdiÞ
�

2

þ χ2UL þ χ2zero þ χ2shifts ð29Þ

and minimized adjusting the model parameters p. The sum
runs over all Auger data points at energies Ei above
the threshold energy. Here, di denotes the three measured
quantities, i.e. the energy spectrum, average Xmax and
standard deviation of Xmax. We select a high value of
Emin ¼ 1018.8 eV as the minimum fitted UHECR energy to
reduce the impact of a possible low-energy cosmic-ray
component, different from the one responsible for the
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highest energies (Hillas’ “component B” [78]). We have
verified that the results are consistent within uncertainties
under small changes of Emin.
The smallest set of free fit parameters p are the minimum

rigidity R0 and slope βpop of the single-power-law distribu-
tion of maximum rigidities, source spectral index γsrc, total
population emissivity L0, and elemental injection fractions
fRA which are defined as relative flux ratios at the same
rigidity.6 A combination of five injection elements—1H, 4He,
14N, 28Si and 56Fe—is used as an effective approximation of
mass groups in the cosmic-ray composition.
For alternative “interaction limited” scenarios (e.g. [23]),

a scaling of the maximum energy with the CR mass is
typically predicted. Yet, for most stable injection elements,
except hydrogen, there is an approximately constant
relation between CR mass and charge, with A=Z ≈ 2,
and the transition from Emax ∝ Z to Emax ∝ A would
thus only result in a rescaling of the reference rigidity
R0 by a constant factor. For proton injection, where
A=Z ≠ 2, the maximum energy will not follow the same
linear scaling but will be offset by a relative factor of
ðA=ZÞp=ðA=ZÞelem≠p. However, since in our fits this com-
ponent consistently sits below the ankle, the impact on the
results is expected to be negligible.
We treat spectral data points below the threshold as one-

sided χ2 penalty terms that only contribute to the overall
goodness of fit if the predicted flux exceeds the observa-
tions. This component is denoted as χ2UL in Eq. (29) and is
analogous to the first term but only evaluated if the model
exceeds the data.
No cosmic rays were observed in the two highest-energy

bins at E ≥ 1020.2 eV and only 90% upper limits are given
in [61]. The χ2 penalty derived for this type of zero-event
data points follows from the asymptotic χ2 term assuming a
Poissonian distribution of events [79] and is estimated as

χ2zero ¼
XULs
i¼1

2nmodel
i ; ð30Þ

where nmodel
i is the number of particles predicted by the

simulation at the energy EðULiÞ after taking into account
the detector exposure [61].
Finally, we consider the systematic uncertainties in the

absolute scale of the energy, hXmaxi and σðXmaxÞ. They are
included in the fit as nuisance parameters with

χ2shifts ¼
X

k∈fE;hXmaxi;σðXmaxÞg

�
δk
σk

�
2

; ð31Þ

where the energy uncertainty is assumed as σE ≤ 14% [80]
and the shower depth uncertainties are taken directly from

the dataset [62,63]. The scale shifts can be fitted freely in
the range δk ∈ ½−σk; σk�, but unless indicated otherwise, we
fix the values of the systematic shifts δk to fiducial values,
as detailed below.

IV. RESULTS AND DISCUSSION

A. Fiducial model

The observed variance of Xmax consists of two sepa-
rate contributions: (i) shower-to-shower variations and
(ii) intrinsic shower variability. To allow for stronger
source diversity, it is necessary that σðXmaxÞ is not already
dominated by the latter. Air showers originating from light
primary cosmic rays have a larger variability [77], and
intrinsic shower variations are minimized by shifting the
observational data to the heaviest composition that is
allowed within systematic uncertainties—corresponding
to an adjustment of hXmaxi by about −8.5 g cm−2 at the
ankle and −7 g cm−2 at the highest energies [62,63]. In
addition, we shift the observed variance of the shower
maximum up by the systematic uncertainty to allow for
the largest reasonable source variance. We adopt these
shifts as our fiducial model to allow for maximum intrinsic
source diversity. An adjustment of the energy scale is also
possible, but we found our conclusions to be invariant
under such a shift and neglect it for simplicity.
We furthermore select Sibyll2.3c [81] as our default

hadronic interaction model to convert the predicted
UHECR composition to mean shower depth and variance.
This is motivated by the fact that interpreting the Xmax data

TABLE III. Best-fit parameters for several variations of the
source model. From left to right: the base scenario with Sibyll2.3c
as air shower model and no shifts of the energy and Xmax scales of
the data; our fiducial model, Sibyll2.3c and the hXmaxi [σðXmaxÞ]
data points shifted by −1 (þ1σsyst), respectively; the same scale
shifts but with Epos-LHC as air shower model. The injection
fractions are given in descending order for p, He, N, Si and Fe. An
asterisk indicates that the confidence interval extends to the edge
of the scan range and the parameter is not properly constrained in
that direction.

Model
Sibyll2.3c
(no shifts)

Sibyll2.3c
(fiducial shifts)

Epos-LHC
(fid. shifts)

R0 [EV] 1.73þ0.20
−0.18 0.57þ1.88

−0.11 1.6þ0.6
−0.4

βpop 29.9þ1.7�
−18.1 5.2þ26.4�

−0.5 4.4þ0.5
−0.5

γsrc −0.23þ0.18
−0.26 −0.8þ1.4

−0.5 0.1þ0.4
−0.5

fRA½%� 0þ0
−0 0þ36.4

−0 0þ0
−0

58.1þ0.4
−1.9 0þ51.3

−0 36.9þ7.4
−22.8

35.0þ1.6
−0.2 93.7þ0.5

−53.5 50.3þ16.3
−5.4

5.7þ0.5
−0.6 0.3þ7.7

−0.3 11.3þ6.6
−3.8

1.16þ0.12
−0.11 6.0þ0.2

−3.8 1.41þ0.27
−0.04

R0.90
max ½R0� 1.083þ0.155

−0.005 1.72þ0.13
−0.64 1.97þ0.22

−0.17
χ2=d:o:f: 45.0=26 40.4=26 56.3=26

6Fractions are sometimes defined at the same energy instead of
rigidity. A transformation between the two parametrizations can
be achieved via fRA ¼ fEA · ZðAÞ−γsrcþ1.
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of Auger with Sibyll yields a heavier composition than when
using Epos-LHC [82]. As default, we assume a flat redshift
evolution of the source density and an exponential source
cutoff. Alternative redshift evolutions are explored in
Sec. IV C and different cutoff functions in Sec. IV E.
In line with our outlined considerations, we find that the

fiducial scale shifts allow for increased population variance
compared to the unshifted observations, as shown in
Table III. This is true independent of the choice of hadronic
interaction model.
The predicted spectrum and composition at Earth for the

best-fit source parameters of the fiducial model are shown
in Fig. 3. The viable range of βpop is sharply bounded from
below (Fig. 4), approximately as

βpop ≳ −γsrc þ 4; ð32Þ

and appreciable source diversity is only possible for soft
source spectra γsrc ≳ 1. Yet, when assuming acceleration
following a Peters cycle, soft source spectra imply a
significant amount of mixing between the different mass
groups, which leads to an increase in shower variance, a
prediction that is in tension to the low values of σðXmaxÞ
measured by the Pierre Auger Collaboration, and the
resulting agreement between simulation and observations
is poor. This problem is exacerbated for the soft spectra

expected from diffusive shock acceleration, and values
above γsrc ≈ 2 are excluded.
Realizations of the source model where Eq. (32) is

violated are characterized by a population spectrum with
an extreme UHE tail, a consequence of limR→∞ðϕpopÞ ∝
R−βpop−γsrcþ1. Such extremely UHE cosmic rays experience
strong interactions during propagation, producing a large
flux of light secondary cosmic rays with energies up to the
Greisen-Zatsepin-Kuzmin (GZK) [84,85] limit. In combi-
nation with the remaining nondisintegrated component of
heavy primaries, the predicted flux at Earth exhibits a large
amount of mixing between the mass groups, which leads to
strong intrinsic shower variance in excess of observations
and an overall bad fit to the observed spectral shape.
The parameter space where a good fit to the measured

UHECR spectrum and composition is achieved can be
divided into two different regimes: one that runs approx-
imately parallel to the boundary with βpop þ γsrc ≈ 4–6 in
the range γsrc ∈ ½−1; 0.5� and a second that is effectively
degenerate in the population variance βpop ≳ 5 with
γsrc ∈ ½0; 1�. The former is associated with a sub-EV
maximum rigidity threshold R0 and a heavy composition
dominated by nitrogenlike nuclei with little contribution
from lighter elements. The second regime allows for a
lighter composition of up to ∼50% protons/helium with
R0 ∼ 2 EV. Only the second region is present in the
scenario without fiducial scale shifts applied. In both
regimes, sources are effectively identical and population
variance of half a decade or more, i.e. R0.90

max=R0 > 5, and

FIG. 3. Predicted spectrum and composition at Earth for the
best-fit scenario of the fiducial model [Sibyll2.3c, hXmaxi − σsyst,
σðXmaxÞ þ σsyst]. The colored bands indicate the contributions of
the separate mass groups with ½Amin; Amax�, including the 68%
uncertainties (1 d.o.f.). Hatched areas indicate systematic un-
certainties of the data. Data points at E < 1018.4 eV (crosses) are
taken from [83] and are only shown for visual guidance. Only
points above 1018.8 eV are used in the fit.

FIG. 4. Results of the source parameter scan for the fiducial
model marginalized along all but two axes respectively. The
surface plot shows the agreement between prediction and Auger
observations in terms of the χ2 estimator and the contour lines
indicate the one (green) and three (red) sigma confidence interval
for two degrees of freedom. The best fit is marked with a
white cross.
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βpop ≲ 2.4, can be excluded at a confidence level above 6σ.7

With Epos-LHC, we obtain increased source variance at the
best fit Δβpop ≈ −0.8 but at the cost of a significantly
reduced fit quality.
A statistically significant lower limit on the population

variance cannot be established, and identical sources
cannot be rejected.

B. Broken-power-law distribution
of the maximum rigidity

We find that a broken-power-law distribution in Rmax can
fit the observed UHECR flux in the regime of highly
nonidentical sources ðβ1 ≳ 1Þ if
(I.a)the Rmax distribution satisfies

β2 ≳ β1 þ 3

as can be seen in Fig. 5 and

(I.b) the effective index of the rigidity spectra of the
sources satisfies

γpop ¼ 1.22þ0
−0.04;

as illustrated in Fig. 6.
This suggests that the effective population spectra R−γpop

must be moderately soft and the break must steepen the
Rmax distribution by at least ×Rmax

−3. Assuming reasonable
source spectra, i.e. γsrc > 0ð> 1Þ½> 2�, we can place an
upper limit on the steepness of the subbreak Rmax distri-
bution of β1 ≲ 2.2ð1.2Þ½0.2�.

FIG. 5. Fit quality for the population model with broken-power-
law distribution of maximum rigidities, marginalized onto β1 ×
β2 space (the spectral index of the population spectrum below and
beyond the break). Contours indicate the one (green) and three
(red) sigma confidence intervals (2 d.o.f.). The white-shaded
region denotes the parameter space where R0.90

max=R0 < 10, i.e.
where the spread in maximum rigidity is less than a decade for
90% of sources. The best fit is marked with a white cross.
Parameters of potential source classes predicted based on their
luminosity functions [Eq. (24)] are shown as black points. The
allowed values of β2 for blazars in the RmaxðΓÞ scenario [Eq. (19)]
for the Hillas-constrained case and under the assumption that
γsrc ≥ 2 are indicated on the left side.

FIG. 6. Best-fit source spectral index γsrc (top) and break
rigidity R0 (bottom) as a function of β1 and β2 for the population
model with a broken-power-law distribution of maximum rigidi-
ties. Best-fit confidence contours and source candidates are
indicated as in Fig. 5. The structures in the upper left of the
plots are artifacts from the limited resolution of our sampling grid
and some degeneracy in the choice of ðR0; γsrcÞ for a particular
combination of ðβ1; β2Þ.

7A penalty factor S that corrects for the quality of the global
best-fit point χ2min is included in this estimate. We adopt the form
S−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2min=Nd:o:f:

p
proposed in [86]. In essence, the penalty

factor reduces the rejection strength of suboptimal fit points if the
overall best fit is poor.
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If sources are in the regime of limited population
variance ðβ1 ≲ 1Þ we find that they must satisfy
(II.a)

β2 ≳ 4.5

and
(II.b)

γsrc ¼ −0.6þ1.2
−1.0 ;

consistent with the results for standard-candle sources. In
summary, the key constraints that must be observed by
potential source classes for 68% of realizations are

γsrc ¼
�
2.22þ0

−0.04 for β1 ≥ 1;

−0.6þ1.2
−1.0 otherwise;

ð33Þ

β2 ≥
�
β1 þ 3 for β1 ≥ 1;

4.5 otherwise:
ð34Þ

Our results clearly reflect the correlation of γsrc and β1
expected from Eq. (B8). Large population variance
(large β1) is possible if individual source spectra are hard
(γsrc ≲ 1). Pareto distributions (β2 ≪ 1) with sufficient
flatness to produce substantial source variance (β2 ≲ 3)
are disfavored at 4.7σ. All studied astrophysical source
classes (Table II) are located in a region of the parameter
space where “normal” (noninverted) spectral indices are
preferred (Fig. 6) based on the values of β1 and β2 that we
can infer from the studied luminosity functions. However,
we found the predicted maximum rigidity distributions to
be generally incompatible with the constraints of the
UHECR fit. Only for Seyfert-like galaxies is the predicted
Rmax distribution above the break approximately compat-
ible with the fit to the UHECR data.
The horizontal band at β2 ≈ 6 in Fig. 6 corresponds to a

secondary family of viable solutions separate from the
global minimum, with sub-EV break rigidity and harder
injection spectra.
The best-fit parameters of the BPL and fiducial PL fit are

compared in Table V. The more general, broken-power-law
approach provides an improvement of Δχ2 ≈ 5.7—which
corresponds to a weak preference with respect to a single-
power-law description at 2σ.

C. Redshift evolution of the source density

For simplicity, we have so far assumed the distribution
of sources to be flat in redshift. However, the most probable
source classes of UHECRs do not exhibit this behavior
but have densities evolving as a function of redshift.
A common parametrization of the evolution is given by

nðzÞ ¼

8>>><
>>>:

ð1þ zÞm for m ≤ 0;

ð1þ zÞm for m > 0 and z < z0;

zm0 for m > 0 and z0 < z < zmax;

0 otherwise;

ð35Þ
which captures the general trends for the expected source
classes: a power-law increase or decrease in density up to
some break point and an approximate flattening above that.
Positive redshift evolution (m > 0) is observed e.g. for
active galactic nuclei [87] and gamma-ray bursts [45,88],
and negative evolution for some BL Lac subclasses [89]
and tidal disruption events [88,90,91]. Source densities
following the star formation rate are approximately repro-
duced for m ¼ 3.4 [92].
We study the effect of source density evolution on the

allowed level of population variance by evaluating the
fiducial model also for redshift evolutions of m ¼ −3, 3, 6
with z0 ¼ 1.5 and zmax ¼ 4. Results are shown in Table IV.
Best agreement with observations is found for predomi-

nantly local sources (m ¼ −3), and a continuous decrease
in fit quality is identified for stronger density evolutions.
The improved fit for small m is driven primarily by a better
match of the observed composition, in particular hXmaxi,
but the difference in χ2 only becomes large once m > 3.
Redshift evolutions stronger than m ¼ 6 could be excluded
at more than 3σ based on their cosmogenic neutrino
signature by future neutrino detectors such as GRAND-
200k [93] or IceCube Gen2 [94].
We find a clear anticorrelation between source density

evolution m and spectral index γsrc, in agreement with
previous studies, e.g. [10,11,69,95]. This is caused by the,

TABLE IV. Best-fit parameters for the fiducial model but with
different source density redshift evolutions, where nðzÞ ∼ ð1þ
zÞm; z < 1.5 [see Eq. (35)]. The second column (m ¼ 0) is
identical to the fiducial scenario presented in Table III. The
injection fractions are given in descending order for p, He, N, Si
and Fe. An asterisk indicates that the confidence interval extends
to the edge of the scan range and the parameter is not properly
constrained in that direction.

Redshift evolution m −3 0 3 6

R0 [EV] 0.80þ1.88
−0.16 0.57þ1.88

−0.11 0.46þ0.05
−0.09 0.52þ0.06

−0.05
βpop 4.4þ23.9

−0.5 5.2þ26.4�
−0.5 6.46þ0.36

−0.34 6.46þ0.36
−0.34

γsrc 0.2þ0.8
−0.4 −0.8þ1.4

−0.5 −2.0þ0.4
−0.5 −2.24þ0.35

−0.18

fRA½%� 3.5þ46.8
−3.5 0þ36.4

−0 0þ0.01
−0 0þ0

−0
8.7þ49.8

−8.7 0þ51.3
−0 2.6þ17.0

−2.6 0þ0
−0

81.3þ11.5
−46.7 93.7þ0.5

−53.5 90.5þ2.0
−16.2 38.5þ1.8

−15.7
1.7þ3.7

−0.8 0.3þ7.7
−0.3 0þ0.9

−0 53.0þ16.2
−3.9

4.8þ0.8
−2.8 6.0þ0.2

−3.8 6.8þ0.5
−1.3 8.5þ2.1

−0.5

R0.90
max ½R0� 1.97þ0.22

−0.88 1.72þ0.13
−0.64 1.53þ0.04

−0.04 1.53þ0.04
−0.04

χ2=d:o:f: 37.3=26 40.6=26 42.5=26 68.9=26
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on average, larger source distance for stronger density
evolutions and consequently increased interactions during
propagation. Since interactions soften the spectrum, a
harder injection spectrum is required at the sources.
The same argument applies to the progressively heavier
source composition at the best fit. For strong evolution, the
viability of the βpop-degenerate regime of the fiducial model
is reduced and the βpop þ γsrc ≈ 4 regime is preferred more
strongly but shifted to harder source spectra γsrc < 0.
Extremely identical sources are disfavored in this case
because they would lead to a worse description of the
observed spectral shape and an underestimation of the
shower variance.
As established previously for the fiducial model, there

exists an approximate boundary of βpop > −γsrc þ 4, which
dictates that larger population variance requires softer source
spectra. Local source distributions allow for softer spectra,
and the source density redshift evolution and population
variance are therefore positively correlated in the sense that
smaller values of m allow for smaller values of βpop.
To summarize, negative redshift evolutions of the source

density provide many attractive benefits: (i) a quantitatively
better fit to the observed UHECR spectrum and compo-
sition, (ii) lighter required injection composition, (iii) more
natural spectral indices γsrc > 0, and (iv) a potentially
higher, but still not very large, population variance. This
makes classes of astrophysical objects with a negative
redshift evolution, such as tidal disruption events [88,91]
and high-spectral-peak BL Lacs [89], appealing as sources
of ultrahigh-energy cosmic rays.

D. Redshift evolution of the maximum rigidity

In addition to the interactions with ambient photon
fields, cosmic rays lose energy due to the adiabatic
expansion of the Universe, with Eobs ¼ Einj=ð1þ zÞ. For
a population of sources, this will lead to different effective
maximum rigidities for sources at different distances and
result in a naturally broadened population spectrum at
Earth, even in the limit of identical sources.
We have previously assumed that the distribution of

maximum rigidities pðRmaxÞ does not depend on distance.
However, most classes of astrophysical objects exhibit
larger luminosities at higher redshifts [45,87,88]. If the
maximum rigidity and luminosity of a cosmic-ray source
are connected, as outlined in Sec. II D 2, then Rmax should
also evolve as a function of redshift. We study this scenario
by evolving the starting point of the Rmax distribution with
redshift,

R0ðzÞ ¼ R0ð1þ zÞq; q ∈ R: ð36Þ

In the limit of q ¼ 0, we obtain the default no-redshift-
scaling case while for q ¼ 1 adiabatic losses are exactly
compensated, and sources would have the same effective
maximum rigidity at all redshifts. Overcompensation

(q > 1) and even enhancement of local sources (q < 0)
are also possible.
We find that the cosmic-ray fit has only moderate

sensitivity to the value of q, and no appreciable correlation
with R0, βpop or γsrc is observed. Nevertheless, negative
evolutions are preferred, with the best fit at q ¼ −4.3þ1.0

−0.8�,
and positive values of q ≥ 1 excluded at 3σ confidence
level. The difference is explained by a marginally better fit
of the mean shower depth and a better description of the
observed spectral shape, which is related to the stacking of
contributions from different redshift shells.
Intuitively, the largest possible population rigidity vari-

ance should be allowed for a redshift scaling of RmaxðzÞ ¼
Rz¼0
max · ð1þ zÞ as this would compensate the intrinsic

broadening of the maximum rigidity termination via
adiabatic energy losses. This expectation is not reflected
in the results (Fig. 7), and we find a lower limit of βLLpop ≈ 4

almost independent of q. A weak positive correlation of
βLLpop and q can be observed, especially for the 3σ contour.
This trend is related to the reduced fragmentation of heavy
cosmic rays during propagation if the highest energies are
reached only at the most local sources. As a consequence,
negative evolutions of RmaxðzÞ allow for more extrinsic
mixing of the mass groups due to nonidentical sources.
Perhaps the most tantalizing result of this scan is not the

precise best fit but rather the realization that strongly
positive rigidity-redshift scalings lead to an important
multimessenger signature in the form of a large flux of

FIG. 7. Results of the source parameter scan for the population
model with redshift evolution of the distribution of maximum
rigidities marginalized onto βpop × γsrc space. The agreement
between prediction and Auger observations in terms of the χ2

estimator is displayed with different color levels, and the contour
lines indicate the one (green) and three (red) sigma confidence
intervals for two degrees of freedom. The best fit is marked with a
white cross.
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cosmogenic high-energy and ultrahigh-energy neutrinos
(Fig. 8). If the evolution is strong, then the more distant,
high-Rmax sources are screened from our view in cosmic
rays because of the interactions experienced during propa-
gation. At the same time, these interactions produce a large
flux of cosmogenic neutrinos that can reach us even from
high redshifts. Around the peak at Eν ≈ 1017.4 eVmore than
95% of the predicted neutrino flux is produced by UHECRs
from sources at redshift z > 1. Based on this prediction,
existing UHE limits of IceCube [68] and Auger [96] are able
to constrain the redshift evolution of maximum rigidities to
q≲ 2. However, we stress that this high neutrino flux is only
obtained as themost extreme scenariowithin 3σ and only for
a low number of specific realizations. With the increased
sensitivity of future detectors, such as IceCube Gen2 and
GRAND-200k, this upper limit can be reduced to q≲ 1
assuming a nondetection of UHE neutrinos.
The expected neutrino spectra differ substantially from

predictions that are obtained without redshift scaling of the
maximum rigidity both in shape and magnitude, especially
for nonidentical sources and for strongly positive evolu-
tions of Rmax. The 99.7% upper limit (2 d.o.f.) in Fig. 8,
with a peak in the neutrino flux between 0.1 and 1 EeVof
up to E2dN=dE≳ 10−8 GeV cm−2 sr −1 s−1, is obtained for
approximately R0 ¼ 1.8 EV;βpop ¼ 14.5;γsrc ¼ 0.3;q¼ 2,
and injection fractions fRA∶ 0; 0.020; 0.875, 0.055, 0.050
(1H 4He, 14N, 28Si, 56Fe). The large value of βpop means that
population variance is not an important ingredient for the
large predicted neutrino flux in this scenario. The positive
redshift evolution of Rmax decreases the quality of the
UHECR fit. For the same source parameters but no evolution
(q ¼ 0), and matching injection fractions, the fit improves
by Δχ2 ¼ −7.9.

We have verified that the predicted neutrino flux is in
qualitative agreement with Refs. [69,95] if no redshift
evolution of Rmax and the same maximum source distance
are assumed. Our upper limit of the cosmogenic neutrino
flux is similar in magnitude to the flux predicted from
interactions in the source environment in Ref. [17] but
offset in energy by a factor of ∼10.
Also visible in Fig. 8 is a new “shoulder” feature at

ultrahigh neutrino energies beyond the classical CMB-
induced peak. This feature is produced by cosmic rays
with trans-GZK energies from the highest-energy tail of
the population spectrum and is also present in the other
scenarios we have studied. The extent and magnitude are
linked to the strength of the UHECR tail and consequently
to the amount of population variance.
The neutrino spectra in Fig. 8 are derived under the

assumption of a source density that does not evolve as a
function of distance. For sources that are more abundant in
the local Universe the predicted flux is reduced while it is
enhanced for most other realistic source classes (AGN [87]
and GRB [45,88]).

E. Other variations of the source model

We have considered additional variations of the
source model to study the impact on the allowed level

FIG. 8. Predicted cosmogenic neutrino flux associated with the
best fit (solid line) of the population model with redshift evolution
of pðRmaxÞ. The shaded one and three sigma uncertainty bands
correspond to the contours in Fig. 7. We show the observed
IceCube HESE flux [67], upper limits from IceCube [68] and
Auger [96], and predicted sensitivities of planned detectors
[93,94,97,98] as a reference.

TABLE V. Best-fit source spectral index γsrc and maximum
rigidity variance βpop plus corresponding χ2 for different varia-
tions of the source model. These are (fd) the fiducial model, (bp)
broken-power-law distribution of pðRmaxÞ, (zr) redshift evolution
of pðRmaxÞ, (zn) redshift evolution of the source density, (zm)
larger minimum source distance, (sc) superexponential source
cutoff function, (fg) relative injection fractions similar to the
composition observed for Galactic cosmic rays, and (ex) the
extreme scenario that yields the largest amount of population
variance with negative redshift evolution of the source density
(m ¼ −3) and Heaviside rigidity cutoff at the source. The best-fit
values of the additional free parameters are β1 ¼ 5.7þ0.8

−0.4 and β2 ¼
23.1þ8.5�

−10.8 for (bp), q ¼ −4.3þ1.0
−0.8 for (zr), λ ¼ 5.4þ1.7

−2.3 for (sc), and
μ ¼ 64.0þ10.3

−8.8 for (fg). Confidence intervals that reach a limit of
the scan range are marked with an asterisk.

Model Parameter βpop γsrc χ2

fd 5.2þ26.4�
−0.5 −0.8þ1.4

−0.5 40.4
bp β1, β2 18.4þ8.5

−11.2 −3.5þ0.2
−0.8 34.7

zr q ∈ ½−5; 2� 4.8þ26.9�
−0.5 −0.19þ0.89

−0.18 33.7
zn m ¼ −3 4.4þ23.9

−0.5 0.2þ0.8
−0.4 37.3

m ¼ 3 6.46þ0.36
−0.34 −2.0þ0.4

−0.5� 42.5
m ¼ 6 6.46þ0.36

−0.34 −2.24þ0.35
−0.18 68.9

zm zmin ¼ 0.01 29.9þ1.7�
−25.5 0.38þ0.18

−1.22 46.2

sc λ ∈ ½1; 50� 4.0þ3.2
−0.4 1.43þ0.16

−0.16 33.6
fg fRA 4.9þ0.5

−0.5 0.73þ0.16
−0.16 45.5

ex Epos-LHC 3.17þ0.18
−0.17 1.43þ0.09

−0.09 40.6
Sibyll2.3c 3.5þ0.6

−0.5 1.69þ0.09
−0.09 34.7
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of population diversity in maximum rigidity (Table V).
They are described briefly in the following. In all scenarios,
a small but generally nonzero level of population variance
on the order of βpop ∼ 4–6 is recovered at the best fit to
Auger observations. The largest amount of source diversity
—the most extreme case—is obtained for negative redshift
evolution of the source density and Heaviside cutoff of the
source spectra, which yields βpop ∼ 3–3.5 depending on the
choice of hadronic interaction model.

1. Minimum source distance

Cosmic rays are attenuated during propagation depend-
ing on their source distance. UHECRs with energies
around the cutoff and with the observed heavy composition
are expected to reach us only from relatively local sources.
To avoid artifacts in the simulations we have chosen
zmin¼10−3, or about 4.3 Mpc, as minimum source dis-
tance. Setting a larger minimum distance, i.e. 43 Mpc, we
observe a decrease in fit quality for our fiducial model.
This is because nearby sources contribute primarily at the
highest energies. If these are removed, sources from larger
distances must compensate for the loss in flux. However,
for a Peters cycle progression of maximum rigidities with
a preference for low maximum rigidities Oð1 EeVÞ this
compensation must come predominantly from heavier
elements since only they can reach the required energies.
Because of increased interaction due to the larger source
distance, this also leads to the production of a substantial
flux of lighter secondary cosmic rays and a stronger
mixing of the mass groups—in contrast with observations.
The tension can be partially mitigated when sources
are essentially identical and the high-rigidity tail is very
small. This shift to larger values of βpop for the best fit is
observed in our simulations; however, the viable range is
not affected strongly, and the lower limit remains approx-
imately the same.

2. Source cutoff function

Sources with an exponential UHE cutoff already include
an intrinsic dispersion in the maximum rigidity of the
produced cosmic rays even for a single source. This
contribution is reduced for sharper-than-exponential cutoffs
and becomes zero for a sudden, Heaviside-like limit. An
increased level of population variance should therefore be
expected for sources with a steeper cutoff function.
As proposed in Eqs. (6) and (13), a superexponential

cutoff can be assumed with adjustable exponent λcut.
Exactly Heaviside-like sources are obtained only for
λcut → ∞ but effectively the population spectra become
very similar already for λcut ≳ 2. Beyond that point, the
difference manifests mainly in the increasing sharpness of
the break at R0.
Resimulating the fiducial model for a range of exponents

λcut ∈ ½1; 50�, we find the global best fit at λcut ¼ 5.4þ1.7
−2.3 ,

which indicates effectively Heaviside-like sources. Overall
the fit exhibits only moderate sensitivity to the precise
shape of the cutoff except when it is close to an ordinary
exponential (Fig. 9). The latter is disfavored at a level of
2.3σ. As expected from previous results, the population
variance is poorly constrained for sources with exponential
cutoff function, but even for close-to-Heaviside source
cutoffs an upper limit cannot be placed—only at λcut ≳ 8
does a significant preference of intermediate diversity
βpop ∼ 4 emerge. This reveals substantial dependence of
the population variance on the precise shape of the spectrum
at the break. We note that for approximately Heaviside-like
sources the best-fit shifts to softer source spectra and hard
spectra of γsrc ≲ 1 are disfavored. This is in better agreement
with the expectation from diffusive shock acceleration. The
correlation between the sharpness of the cutoff and rigidity
variance is not as strong as expected, and even sources with
effectively instantaneous limit do not allow for diversities
much greater than βpop ∼ 3.5.

3. Fixed injection composition

We investigate the scenario with injection fractions
reflecting the composition observed for Galactic cosmic
rays (GCRs). It is peculiar to note that an adequate fit of
the UHECR data can be achieved with (near-)GCR-like
composition if fractions are specified at the same energy
[10,27,99]; however, this is not the case if fractions at the
same rigidity are used. In the latter case, the abundance of
heavy elements is insufficient to power the UHECR flux at

FIG. 9. Results of the source parameter scan for the population
model with superexponential source cutoff function, with ex-
ponent λcut, marginalized onto βpop × λcut space. The surface plot
shows the agreement between prediction and Auger observations
in terms of the χ2 estimator and the contour lines indicate the one
(green) and three (red) sigma confidence interval for two degrees
of freedom. The best fit is marked with a white cross.
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the highest energies, or in other words, the predicted compo-
sition at UHE is much lighter than indicated by observations.
We argue that rigidity fractions are the correct choice

since the most relevant interactions for cosmic rays, such as
electromagnetic reacceleration, magnetic horizon effects,
and approximately also disintegration, are universal in
rigidity and thus preserve the rigidity fractions but not the
energy fractions. The fit is possiblewith fractions at the same
energy since then the effective composition can be modified
by changing the spectral index, due to fRA ¼ fEAZ

−γsrcþ1.
We select the GCR composition at a fixed rigidity

(fRgal∶ 0.794; 0.190; 0.013, 0.002, 0.001) [100] as our base-
line scenario but allow for a free-floating rescaling of the
metallicity, i.e. the abundance of elements heavier than
helium, by a factor of μ ∈ ½1; 100�. With this model, the
best agreement with observations is obtained for hard source
spectra γsrc ≈ 0.7 and population variance of βpop ≈ 4.9,
which is similar to the source variance allowed in our fiducial
scenario.At the best fit, a rescaling of the injectionmetallicity
by a factor of approximately 60 is required, although values
as low as μ ≈ 20 are allowed within the 3σ confidence
interval.

V. CONCLUSION

We have performed the first systematic investigation
of the allowed population variance in maximum UHECR
rigidity. To this end, we have derived analytical expressions
for the population spectrum of an ensemble of nonidentical
UHECR sources, assuming a (broken-)power-law distri-

bution of maximum rigidities pðRmaxÞ ∝ R
−βpop
max and differ-

ent choices of the spectral high-energy cutoff at the sources.
For the first time, we have integrated this approach into a fit
of the energy spectrum and composition data to quantify
the constraints on source similarity from existing observa-
tions by the Pierre Auger Observatory.
If maximum rigidities are distributed according to a power

lawwith a sudden start (Pareto distribution)—which appears
as a suitable choice for several source candidates [e.g.
AGN, blazars, tidal disruption events (TDEs)] based on
the observed luminosity functions or under the assumption of
power-law-distributed Lorentz factors—our results show
that sources are required to be effectively identical if only
Auger data at the nominal energy and composition scale are
considered.After adjusting themeasuredmean shower depth
and variance within systematic uncertainties to the favorable
directions that result in the heaviest composition interpreta-
tion, we find that large yet finite values of βpop ∼ 5 are
preferred, corresponding to a dispersion inmaximum rigidity
of sources by a factor of approximately 2.
Increased levels of population variance up to βpop ∼ 3–4

are possible for sources with sharp UHE cutoff and for
source densities evolving negatively with redshift. Even
then, maximum rigidities do not differ between sources by
more than a factor of a few. In contrast, if sources are more

abundant at larger redshifts, they are required to be more
identical because the preferred source spectrum becomes
harder with redshift due to increased interactions during
propagation. Since the population spectrum behaves as
limR→∞ðϕpopÞ ∝ R−γsrc−βpopþ1 a smaller source diversity
(larger βpop) is required to limit the strength of the spectral
UHE tail.
For some source classes (e.g. GRBs, blazars, Seyferts),

the luminosity function motivates a broken-power-law
distribution of maximum rigidities. In this scenario, the
population variance can be large, driven by sources below
the break rigidity R0, provided the break is sharp and the
spectral index of individual sources is sufficiently hard to
counteract the variance introduced by the nonidentical
sources. This requires hard spectral indices of γsrc ≲ 1.2
if the rigidity distribution below the break is softer than
β1 ∼ 1. In addition, for any value of β1, the Rmax distribution
must steepen at the break by at least R−3

max. For β1 → −∞we
obtain the power-law scenario as an asymptotic limit, with
γsrc ≲ 1 and β2 ≳ 4.
We have derived the UHECR population spectra of

plausible astrophysical source classes by connecting lumi-
nosity and maximum rigidity via the Lovelace-Blandford-
Waxman relation [53–58], Eq. (24). For all proposed source
classes, the preferred spectral index corresponding to their
respective distribution pðRmaxjβ1; β2Þ is in the physically
plausible range of γsrc ¼ 0–2 if they produce UHECRs with
a maximum rigidity distribution which follows the one we
have derived using their observed luminosity functions and
Eq. (24). The predicted UHECR population spectra pro-
duced by blazars, tidal disruption events, and GRBs are
inconsistent with the UHECR data within our formalism.
Seyfert-like galaxies are the only investigated population
(see Table II) with sufficiently steep postbreak slope to
explain the required small variance at ultrahigh energies.
However, a hard spectral index of γsrc ≈ 0–0.5 is necessary.
The variance in maximum rigidity obtained using Eq. (24)
represents a lower limit. Additional variance of the maxi-
mum rigidity is expected as a consequence of the distri-
bution of other relevant source properties that we have not
considered here, which will likely reduce this compatibility.
In summary, we have found that the maximum rigidity

distribution of UHECR sources is remarkably narrow,
necessitating nearly identical (“standard-candle”) sources,
or a sharp cutoff in the rigidity distribution of the UHECR
source population. In the latter case, the low-rigidity tail
exacerbates the need for hard injection spectra that has been
exposed by prior studies which performed a combined fit of
UHECR observations. Our results place strong constraints
on the most plausible astrophysical source classes of
UHECRs.
Alternatively, it is possible that exotic mechanisms

limit the maximum rigidities of accelerators to the same
value (e.g. [101]) or that the observed flux of UHECRs
is dominated by a single local source. Such a single- or
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few-source scenario seems however incompatible with the
observed level of anisotropy of the cosmic-ray arrival
directions at UHE unless deflections of cosmic rays in
the Galactic and extragalactic magnetic fields are much
larger than commonly expected. An analysis of the effect of
cosmic variance is beyond the scope of this paper, but we
comment that the fitted scenarios result in typical maximum
rigidities that correspond to cosmic-ray energies below the
onset of photonuclear interactions with the cosmic micro-
wave background radiation. Thus the energy-loss lengths
of nuclei are large, and the volume of UHECR sources
contributing to the flux at Earth can be OðGpc3Þ.
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APPENDIX A: TRANSFORMATION OF THE
EMITTED FLUX

The apparent brightness of a highly relativistic source
depends on the angle θ between the observer and the
direction of motion and is affected by relativistic beaming
(headlight effect) and the relativistic Doppler effect.
However, for charged particles, we can assume that their
direction of motion is isotropized after emission from the
source, rendering geometrical beaming irrelevant. Only the
Lorentz boost from the rest frame of the acceleration region
to the observer framemust be considered. For sources with a
flux cutoff fcut, the differential flux within the jet frame is
given by

ϕ0ðR0Þ ¼ d2N0

dR0dt0
¼ ϕ0

0R
0−γsrcfcutðR0=R0Þ: ðA1Þ

To transform this flux into the observer frame the following
transformations need to be taken into account

R ¼ R0Γα and t ¼ t0Γξ: ðA2Þ

Conservation of particle number implies N ¼ N0. The
first transformation is the boost in energy for particles,

with α ¼ 1 for particles accelerated in the jet frame and
emitted isotropically8 and α ¼ 2 for the espresso mecha-
nism. The second transformation is due to time dilation,
which also depends on the acceleration process. If pro-
duction of UHECRs within the jet is considered, then the
relativistic motion of the source region will stretch the
observed time by a factor of Γ (ξ ¼ 1). On the other hand, if
an espressolike mechanism is assumed, where the jet
merely reaccelerates a preexisting flux of cosmic rays
dN=dt, then no dilation is expected, assuming that the rate
of particles entering and exiting the jet is the same, i.e.
dN=dtjout ¼ dN=dtjin, and thus ξ ¼ 0. The observed flux
can then be written as

ϕðRÞ ¼ d2N
dRdt

¼ d2NðR0ðRÞÞ
dR0dt0

				 dR0

dR

				
				 dt0dt

				
¼ ϕ0

0R
−γsrcΓαðγsrc−1Þ−ξfcut

�
−

R
ΓαR0

�

¼ ϕ0
0R

−γsrc

�
Rmax

R0

�
γsrc−1−ξ=α

fcut

�
−

R
Rmax

�
; ðA3Þ

where in the last step Eq. (19) was used. To evaluate the
convolution of source spectra and Rmax distributions, the
product ϕðR;RmaxÞ × pðRmaxÞ needs to be evaluated using
the Rmax distribution from Eq. (21). The resulting product
can be rewritten in the “usual” form used in Sec. II C:

ϕðR;RmaxÞ × pðRmaxÞ

¼ ϕ0R−γsrcfcut

�
−

R
Rmax

�
βpop − 1

R0

�
Rmax

R0

�
−βpop

; ðA4Þ

with definitions

ϕ0 ¼ ϕ0
0

η − 1

ηþ αð1 − γsrcÞ − ξ − 1
ðA5Þ

and

βpop ¼
η − 1

α
þ 2 − γsrc þ ξ=α: ðA6Þ

Therefore, the same analytical forms derived in Sec. II C
can be used in this case, but the interpretation of βpop is
more complex as it depends on several source properties.

APPENDIX B: BROKEN-POWER-LAW
MAXIMUM RIGIDITY DISTRIBUTION

Source properties, e.g. luminosity (Sec. II D 2), often
follow BPL distributions for some likely UHECR source

8For a general Lorentz boost of Γð1 − β cos θÞ with isotropic
emission angle θ the high-energy tail of the rigidity spectrum
retains its spectral shape, and we concentrate on the simpler case
of a boost by Γ.
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classes rather than single PLs. A general broken-power-law
distribution of maximum rigidities can be written as

pðRmaxÞ ¼
R−1
0

C
·

8<
:

ðRmax
R0

Þ−β1 Rmax ≤ R0

ðRmax
R0

Þ−β2 Rmax > R0;
ðB1Þ

with a break at R0 and slope R−β1
max (R−β2

max) below (above).
Normalizability imposes β1 < 1 and β2 > 1. Under a
physically more plausible scenario, with some minimum
and maximum Rmax (RLL

max=RUL
max) for the population of

sources, these conditions can be relaxed and the normali-
zation constant can be expressed as

C ¼
1 − ðRLL

max
R0

Þ−β1þ1

1 − β1
þ
1 − ðRUL

max
R0

Þ−β2þ1

β2 − 1
: ðB2Þ

If β1 < 1 and β2 > 1, for RLL
max → 0 and RUL

max → ∞ this
simplifies to

C ¼ 1

1 − β1
þ 1

β2 − 1
: ðB3Þ

Assuming source spectra with superexponential cutoff
[Eq. (6)], the associated population spectrum reads

ϕpop ¼
ϕ0

C · λcut
R−γsrc · ½LþH�

L ¼
�
R
R0

�
−β1þ1

· Γ
�
β1 − 1

λcut
;

�
R
R0

�
λcut

�

H ¼
�
R
R0

�
−β2þ1

· γ

�
β2 − 1

λcut
;

�
R
R0

�
λcut

�
; ðB4Þ

with L the contribution from sources with Rmax below the
break at R0 andH for sources above. For β1 → −∞ a single
power law is recovered. Because of the convergence
properties of the incomplete gamma functions (Γ, γ),

lim
R=R0→∞

L ¼ 0 and lim
R=R0→0

H ¼ 0; ðB5Þ

i.e. in the limits of very small and very large rigidities, one
of the terms dominates. Only in the vicinity of the break are
their contributions of similar magnitude.
Equation (B4) suggests that the slope of the popula-

tion spectrum at any rigidity is completely specified by a
set of three parameters, with the most obvious choice
(γsrc; β1; β2). However, an approximate description with
only two parameters is possible, similar to the power-
law scenario. The simplification is exact in the limit of
very small and very large rigidities but not in the transi-
tion region where L and H have competitive levels. Two
different cases can be identified depending on the value
of β1. The behavior in the high-rigidity limit is unaffec-
ted by the distribution below the break and is always
ϕpop ∝ R−γsrc−β2þ1.

(i) β1 ≤ 1.—Because the probability pðRmaxÞ increases
only slowly for Rmax → 0 it can be shown that
limR→0 ϕpop ∝ R−γsrc , suggesting that after interpre-
tation βpop ¼ β2 we approximately retrieve the same
population spectrum as for the single power law
where β1 ¼ −∞. The slope of the population spec-
trum can then be adequately described by the set
of ðγsrc; βpop ¼ β2Þ.

(ii) β1 > 1.—The contribution from sources below
the break does not vanish and we obtain
limR→0 ϕpop ∝ R−γsrc−β1þ1. Initially, this does not
appear compatible with a PL-like description;
however, reinterpretation in terms of effective
population spectral index γpop ¼ γsrc þ β1 − 1 and
effective Rmax distribution βpop ¼ β2 − β1 þ 1 leads
to the usual behavior

lim
R→0

ϕpop ∝ R−γpop ; ðB6Þ

lim
R→∞

ϕpop ∝ R−γpop−βpopþ1; ðB7Þ

with the difference that the distribution is now char-
acterized by the redefined parameter set ðγpop; βpopÞ.

The above prescriptions can be used to interpret the fit
results for a PL distribution given in Sec. IV for a popu-
lation of sources with BPLðRmaxÞ. Yet, if not β1 → −∞, the
population variance predicted from Eq. (8) will under-
estimate the true variance since sources below the break
are neglected (Fig. 10). All source classes proposed in
Table II III. 2 belong to the β1 < 1 category, enabling the
simplified treatment.

FIG. 10. Power-law (solid blue) and broken-power-law (solid
red) distribution of maximum rigidities pðRmaxÞ with break or
starting point at R0, and γsrc ¼ 2, β1 ¼ −0.8, β2 ¼ 4.5. The one-
sided 90% quantile of the PL (blue dashed line) and two-sided
90% quantile of the BPL (red dotted lines) are also displayed. In
this scenario, the PL approach underestimates the population
variance by a factor of ∼3.8.
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Although we do not predict steep subbreak distributions
for any evaluated astrophysical source classes, it is still
useful to study the scenario where β1 > 1. The relevant
parameters are now ðγpop; βpopÞ, defined as

ðaÞ γpop ¼ γsrc þ β1 − 1; ðB8Þ

ðbÞ βpop ¼ β2 − β1 þ 1: ðB9Þ

Solutions of this system are degenerate and different
choices of ðγsrc; β1; β2Þ can lead to the same population
spectrum.9 One of the parameters must be fixed with
additional information to break the degeneracy. This is a
remarkable finding—a similar population spectrum can be

achieved for highly identical sources with softer spectral
index and for diverse sources with harder spectral index.
Therefore, the distribution below the cutoff can be steep
and sources very diverse, provided individual sources have
ultrahard spectra so that Eq. (B8) remains fulfilled. If this
condition is satisfied and the break at R0 is sufficiently
strong, then the UHECR flux is dominated by sources very
close to the break at R0, explaining the apparently low
population variance. Sources further below the break
still contribute to the flux at lower rigidities by modifying
the population spectrum as ϕpop ∝ R−γsrc → R−γsrc−β1þ1 if
β1 > 1. For flatter subbreak distributions, their contribution
is approximately negligible except close to the break.
This suggests that the sources of UHECRs can appear
very similar even if the underlying population is diverse,
provided the UHE termination of the Rmax distribution is
sufficiently sharp, and the distribution before the cutoff is
not too steep after taking into account the hardness of
individual source spectra.
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