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Abstract
Surface roughness is gaining increasing recognition in the processing design methods of additive manufacturing (AM) due to 
its role in many critical applications. This impact extends not only to various AM product manufacturing but also to indirect 
applications, such as molding and casting. This review article discusses the role of processing on the surface roughness of 
AM-printed polymers with limited post-processing by summarizing recent advances. This review offers a benchmark for 
surface quality improvement of AM processes, considering the surface roughness of polymeric parts. For this purpose, it lists 
and analyzes the key processes and various printing parameters used to monitor and adjust surface roughness under given 
constraints. Four AM techniques for manufacturing polymeric parts are compared: fused filament fabrication (FFF), selective 
laser sintering (SLS), vat photopolymerization (VPP), and material jetting (MJT). A review and discussion of recent studies 
are presented, along with the most critical process parameters that affect surface roughness for the selected AM techniques. 
To assist in selecting the most appropriate method of 3D printing, comparable research summaries are presented. The out-
come is a detailed survey of current techniques, process parameters, roughness ranges, and their applicability in achieving 
surface quality improvement in as-printed polymers.
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UAV  Unmanned aerial vehicle
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1 Introduction

Additive manufacturing (AM), often known as 3D print-
ing, combines materials to fabricate products from 3D 
model data, typically in a layer-upon-layer process [1]. 
AM has continued its exponential growth in many applica-
tions because of its attributes, such as mass customization, 
waste minimization, and on-demand design revisions [2]. 
However, AM parts cannot precisely replicate 3D CAD 
models due to the inherent surface roughness and accuracy 
limitations of the AM process. In-process enhancing the 
quality of the surface in AM technology is presently one 
of the most significant challenges of advanced manufactur-
ing. It is a critical element for compatibility with surface 
coatings, the fatigue resistance of the products, liquid trap-
ping, and the presence of moving particles [3].

Recently, the influence of the primary processing 
parameters (PPP) on the quality assessment of 3D-printed 
(3DP) objects has received considerable attention from 
academia and industry, mainly because optimizing these 
PPPs provides more fabrication competence based on mass 
customization, on-demand design revisions, and waste 
minimization. Enhancing the 3D model, material and pro-
cess selection, and surface modification can satisfy the 
performance constraints of the 3DP parts, such as tooling 
[4], jewelry [5], sensors [6], performance improvement, 
production, personalization and customization, spare parts, 
maintenance, repair, art, design, and architecture [7]. Con-
sidering the growing applications of personal 3D printers 
(shortened form as “printer”) and the small-scale market 
for AM technologies, it is increasingly essential to thor-
oughly understand the surface morphology created by var-
ious 3DP methods. Not surprisingly, most post-processing 
machines are currently either unavailable or high-priced 
to most AM users.

Polymers have been the center of attention in fabricating 
3D parts because of their cost, availability, ease of produc-
tion, and appearance options, particularly in the case of 
entry-level 3DP machines [8, 9]. The Wohlers Report 2021 
[10] reported 7.5% growth in AM industry. It shows almost 
half of AM service providers offer polymer 3D printing, 
and 29% provide polymers besides other materials, such 
as metals and ceramics. As a result, over 80% of the AM 
market is involved with polymeric materials. In addition, 
polymer powder consumption is mentioned as rising by 
43.3% in 2021, overtaking photopolymers as the most com-
monly used additive manufacturing material. In total, the 
polymer 3DP market is expected to increase to $24 billion 
in 2024 and $55 billion in 2030 [11]. Since 2012, 14,150 
out of 54,275 (26.1%) publications in the field of additive 
manufacturing applied to polymer-based techniques (data 
from Web of Science, 2023). As almost 80% of the AM 
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market is dedicated to polymer-containing materials, this 
is still growing, and there is significant potential for future 
research and development of polymeric AM objects.

The polymeric AM parts suffer from poor surface finish 
and geometric deviation. Among textural appearance attrib-
utes, surface roughness is a critical indicator for assessing 
the quality of a product and the manufacturing process. For 
many direct and indirect applications, the surface of the 
printed object must meet specific criteria and properties 
such as mechanical [12], physical [13], tribological [12], 
and other quality attributes (QAs) [14].

Surface roughness is a metric relating to the QAs of AM 
parts because of its impact on the aesthetic appearance and 
the integrity of the piece in terms of its ability to interface 
with other components. It influences not only the appearance 
but also the functional properties of a part [15].

In most circumstances, the finishing process is rarely used 
to modify the part dimensions except for reducing the sur-
face roughness via sandblasting and polishing or for struc-
tural applications [16]. In some cases, various painting and 
coating methods are used to achieve the required surface 
finish. These practices are insufficient to form the printing 
process and must overcome several challenges. For instance, 
material accumulation in fused filament fabrication (FFF), 
as a material extrusion (MEX) AM process, occurs along 
the edges and inside the products, which cannot be resolved 
by painting or coating [17, 18]. To choose a process based 
on the specifications of a part, Gordon et al. [19] provided a 
decision tree as a framework. They suggested the appropri-
ate design modifications considering the desired surface to 
account for the selected techniques.

Various kinds of polymers are primarily supplied for 
AM in the shape of filaments, pellets, resin, or powder [20]. 
Furthermore, composite polymers reinforced by fibers and 
particles offer a favorable combination for almost all the 
existing AM methods [20]. While there are many choices of 
available AM processes to 3D print polymers, the mecha-
nisms of the different AM methods distinctly differ from 
one another. Polymers are sensitive to printing parameters, 
mainly changes in temperature. Hence, the printing process 
and material should be carefully considered according to the 
end-user applications [11]. Several review papers have previ-
ously discussed roughness in AM processes, including mate-
rial extrusion [18, 21], vat photopolymerization [22, 23], 
material jetting [24, 25], and selective laser sintering [26, 
27] techniques. However, the reviews have not yet observed 
a thorough study of methods and quality evaluation trends 
in AM polymer products.

The AM process for polymers presents different challenges 
in surface quality than conventional manufacturing. A uniform 
standard for evaluating the roughness and dimensional accu-
racy of 3D-printed objects does not exist at present. Studying 
the surface roughness issues and the various PPP techniques 

for improving surface quality is also lacking in the literature. 
The roughness of AM technologies differs considerably, as 
was reported in this study and in the studies that compared 
3DP methods [3, 16, 28].

This study focuses on recent advances in investigating the 
roughness of 3D-printed surfaces. It describes the primary 
AM processes for polymers and the corresponding PPP in 
the pre-processing and printing steps. The next section pro-
vides an overview of the AM processes for polymers and the 
research methodology. This is followed by an explanation 
of roughness measurements and metrics in the next section. 
For each of the AM methods studied, including FFF, selec-
tive laser sintering (SLS), vat photopolymerization (VPP), 
and material jetting (MJT), the main process parameters as 
well as surface roughness studies have been presented in 
separate sections. Furthermore, a discussion on the issues 
surrounding the setting up of polymer key AM processes. In 
another section, studies on several AM methodologies and 
their results were compared. This review study concludes 
with a summary, as well as a discussion of future trends and 
capabilities in the later sections.

2  Overview

2.1  AM processes for polymers

This work defines AM techniques by ISO 52900 – 2021 [29] 
and their generally accepted terms. A wide range of advanced 
manufacturing techniques is available, from the nanoscale 
to the macroscale. Part size is primarily determined by the 
working volume afforded by the system of motion of the 
machine. This literature review is focused on manufacturing 
at the meso- and micro-scales, where surface roughness can 
significantly affect the visible quality of parts [30]. Table 1 
lists relative characteristics overview of AM techniques for 
polymers and their most relevant AM applications, including 
prototypes, medical devices, and precision mechanisms.

In many applications, AM is still in its infancy and 
requires post-production finishing techniques (PPFTs), 
which include post-processing and surface finishing [17]. 
The process can either be used as the primary manufactur-
ing process or as part of a chain of manufacturing processes. 
Figure 1 classifies finishing as a critical step and quality 
assurance information flow in a digital thread in additive 
manufacturing (DTAM). A series of pre- and/or post-pro-
cessing is available to alter the surface and significantly 
enhance the appearance of AM parts. However, some of 
these methods are limited in changing the surface morphol-
ogy of complex shapes inexpensively and reliably over time 
[31]. The following sections will provide a detailed descrip-
tion of AM key processes.
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Fig. 1  Stepping through the digital thread in additive manufacturing (DTAM)

Table 2  Characteristic overview of different unfilled AM polymers for general purposes

* Data are compiled from various sources, including material datasheets and publications

Materials AM technology* Material properties Ref

Tensile 
strength 
(MPa)

Tensile modulus 
(MPa)

Elongation 
at Yield 
(%)

Flexural 
strength 
(MPa)

Heat deflection 
temperature 
(°C)

ABS FFF, SLA, BJT, MJT 15–68 1500–4000 1.6–6 48–110 51–99 [35–37]
ASA FFF, BJT 29–52 1510–2340 2–9 48 91–98 [35, 36]
PA (Nylon)
6, 11, 12

FFF, SLS, BJT, MJT, 
SHS

45–76 944–1350 4–8 37–85 55–182 [35, 36]

PBS FFF 16–27 46–50 22–27 3.3–5.6 50–65 [36, 38]
PC FFF, SLA, SLS, BJT, 

MJT
61–72 2200–2500 3.5–7 92–160 48–55 [35–37]

PCL FFF, SLS, BJT 5–42 343–441 3.5–8 23–117 41–50 [39, 40]
PE (HDPE) FFF, MJT, SLS 25–31 1070–1550 6–15 22–28 34–42 [32, 41]
PEEK FFF, SLS 80–110 2843–3950 4–6 165–185 51–107 [32, 42]
PEKK FFF, SLS 88–112 2900–3790 3–8 128–168 60–98 [42]
PETG (PET, PETT) FFF 55–86 2800–3710 3.8 80–116 65–80 [37, 43]
PLA FFF, SLS, BJT 15–72 2020–3600 3.5 48–115 49–52 [35, 36, 44]
PMMA transparent FFF, SLA, BJT, MJT 38–72 1940–2250 2–10 73–76 41–48 [43, 45]
PP FFF, SLA, SLS, MJT 19–58 1600–1950 6–25 55–58 46–122 [37, 46]
PPSF/PPSU FFF 36–52 2068–2100 1–3 110 100–135 [35, 36]
PS FFF, SLS, MJT 14–53 1900–3500 1–4 62–100 62–80 [37, 47]
PVC FFF 37–55 2450–4700 2–6 67–96 30–75 [48, 49]
TPU
(Flexible Polyure-

thane)

FFF, SLA, SLS, MJT 21–44 8–36 N/A 6–10 85–110 [50, 51]
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Thermoplastics and their composites are the primary 
polymer materials used for AM [33], which can be divided 
into crystalline and amorphous states. Table 2 lists some 
of the main polymers and their specifications used in the 
AM process. The publication share of main AM polymers 
is shown in Fig. 2. Most of these polymers are mixed and 
enhanced by manufacturers under various commercial mar-
ket trademarks, especially resin-based feedstocks. Besides, 
many other polymeric compounds are used in specific AM 
processes, such as polydimethylsiloxane, ethylene vinyl 
acetate (EVA) [34], and commercial digital materials from 
3DP machine manufacturers.

2.2  Research method

This literature review focused on the current state of 
academic investigation with the broadest possible analysis 
of all recently published articles on surface roughness and 
3D printing parameters. The review process was based 
on the content analysis of 55 articles. This review paper 
benefited from the preferred reporting items for systematic 
reviews and meta-analyses extension for scoping reviews 
method (PRISMA-ScR) for reporting scoping reviews as 
a general guide [52].

By utilizing the PRISMA-ScR method, a systematic 
and comprehensive scoping review approach is provided. 
A clear reporting framework facilitates transparency 
and replication of the review process, and a reduction 
of bias in the selection and interpretation of findings is 
achieved. It should be noted, however, that the method 
used had a few limitations. The scoping review meth-
odology used may not provide a comprehensive review 
of all literature on surface roughness for polymer AM, 
particularly considering the broadness of the topic. A 

review process may have been limited by the quality of 
the selected articles and their generalizability for some 
methods. Thus, the content analysis of the articles may 
have been influenced by subjective judgments [52, 53]. 
For instance, available MJT papers in the studied field 
were considerably fewer than those for FFF (Fig. 3), 
resulting in more challenges for generalizations of the 
results. Besides, there were a variety of hand-made and 
tweaked 3D printers studied in the literature that may 
affect the review procedure.

The publications were explored on Web of Science and 
Scopus to be as comprehensive as possible, as these scien-
tific databases have high coverage of reputed high-impact 
publications.

Figure  3 shows the most common terminology and 
methods for polymers mentioned in the literature. Based 
on the number of publications in each AM category, 5 key 
processes are determined to be studied further. Accord-
ingly, the authors selected the FFF process for MEX, SLA, 
and DLP processes for VPP, the SLS process for powder 
bed fusion (PBF), and the MJT category, including the 
PolyJet process. Other AM methods which generally use 
polymers in the fabrication of different materials and com-
posites have been excluded, such as binder jetting (BJT) 
and sheet lamination (SHL). The market report on poly-
mer 3DP machine sales [33] also confirms the same trend 
and technological share for selected key processes. Other 
techniques which were not mainly dedicated to polymers 
or rarely used for research are not included in our study. As 
AM growth is dynamic on a daily basis, their capabilities 
are sporadically mentioned.

Various generic keywords, such as “3D*print,” “addi-
tive manufacturing,” and “additive tech*,” were employed 
as criteria in the search section of the title, abstract, and 

Fig. 2  Total number of publica-
tions corresponding to polymers 
and their composites in additive 
manufacturing since 2012 (data 
from Web of Science, 2023)
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keywords. The following is a formulation of research key 
strings for AM processes:

(("3d*print*" OR "advanced manuf*" OR "additive 
manuf*" OR "additive fabric*" OR "additive proces*" 
OR "additive tech*" OR "additive method*" OR "addi-
tive layer* manuf*"))

To examine the role of PPP on roughness, the post-
processing of samples should be restricted to 1st level pro-
cesses, as suggested by the Wohlers report [54]. It secures a 
minimal impact of post-processing on the roughness of the 
as-printed samples compared to the slightly post-processed 
replicas. It is usually less than a 20% deviation, depending 
on the specific needs of the project or application. Most stud-
ies reviewed here limited the PPFTs to a minimum number 
of steps to minimize the dimensional variations.

This work considered journal articles and confer-
ence proceedings to obtain a broader understanding of 
the topic. Upon eliminating duplicates, the titles and 
abstracts, availability of full text, and English language 
were screened before the full-text review. Following this, 
papers were controlled by their relevance to the present 
review paper, their originality in providing roughness 
evaluation for polymers, and their comprehensiveness 
and uniqueness in terms of the studied parameters and 
reported roughness metrics. Thus, papers that were out 
of these criteria were excluded from the study, which 
resulted in 55 articles separately being exported to End-
note and OriginPro 9.9.5 for in-depth analysis. Figure 4 
summarizes the selection procedure used in the current 
study. The authors have 3D-printed several specimens for 
each AM category to visualize the surface roughness and 
texture conditions discussed.

3  Roughness measurements and metrics

Additively manufactured surfaces are composed of various 
spatial frequency components, including profile, form, wavi-
ness, and roughness (Fig. 5). Each of these components has 
different origins and influences the appearance and functional 
performance of products differently. The waviness may reveal 
machine vibration, the form is usually produced by the poor 
performance of the manufacturing system, and the profile 
can be ascribed to layer-by-layer manufacturing. Roughness, 
however, is generated by surface irregularities due to printing 
and material removal errors. The waviness appears as a signal 
noise because of the planarity of the motion system and any 
deformations caused by weight or residual stress [55]. As a 
result of the specific printing process and materials used, there 
may be other sources of waviness, including defects in the 
printing process, thermal distortion, poor adhesion between 
layers, inadequate support structures, and mechanical defor-
mation during post-processing [56, 57].

Specifically, surface roughness is a critical texture com-
ponent for assessing the quality of manufactured items 
by investigating the distribution of topographical features 
on the surface. Different metrics describe surface rough-
ness because different industry sectors refer to various 
measures. Due to uncertainty in the surface quality of 
3D-printed products, using several metrics would also be 
efficient [58]. For instance, Triantaphyllou et al. [59] con-
cluded that average area roughness (Sa) and area root mean 
squared height (Sq) are appropriate metrics for measuring 
area surface roughness, as they were not sensitive to meas-
urement parameters such as sampling length and evalua-
tion length. In contrast, area height distribution skewness 

Fig. 3  The most widely used polymer AM technologies and the total number of publications since 2012 (data from Scopus and Web of Science, 
2023)
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(Ssk) was found to sufficiently characterize the upside and 
downside surfaces from SLM parts.

Surface topography measurements based on data 
obtained from the 3D scanned images of a sample surface 
are either reported from a linear measurement, referred to 
by R, or from an aerial surface measurement indicated by 
S. The R and S metrics are defined and parameterized in 
ISO 21920–2 [60] and ISO 25178 [61], respectively. Area 
ratio, or the overall real surface area over the theoretical 
area of a smooth surface, can reveal how rough a surface 

is. Generally, the standard height-based metrics employed 
to describe surface roughness based on a linear profile can 
be derived from Eqs. (1)–(10) in Table 3. On the other 
hand, area roughness parameters are sometimes used to 
describe the roughness variation on a surface (Table 4).

The roughness parameter Ra is widely used by research-
ers in AM studies as a straightforward metric to define and 
measure. Considering height variation as a general con-
cept makes it easier to understand, but Ra is insensitive to 
wavelength variations [63]. Li et al. [64] revealed that the 
highest peak-to-valley distance parameter (Rz) was supe-
rior to Rq and Ra as standard metrics for measuring surface 
roughness. Li et al. reached a more significant correlation 
between Rz, tactile evaluation outcomes, and visual assess-
ment results. Other appearance factors, however, influence 
sensory judgments, such as surface texture and color of 
the build material. Therefore, Rz alone is insufficient to 
comprehensively characterize the differences in human 
perception and surface QAs among samples.

Extraction of the roughness profile is not a common 
reproducible method because it depends highly on the 
operational instrument, shape, rotation, and displacement 
speed [3], as reported in several studies [3, 65]. While 2D 
profile measurements based on the stylus, according to 
ISO 4287, are still popular, there is a growing interest in 
X-ray computed tomography (CT) scan and contactless 3D 
optical profilometry, according to ISO 25178–2, to obtain 
more information without scratching the surface.

Fig. 4  An overview of the screening procedure employed in this study

Fig. 5  General spatial frequency components of additively manufac-
tured surfaces
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Launhardt et al. [66] evaluated four alternative methods 
for evaluating the surface roughness of Polyamide 12 com-
ponents produced by SLS. According to them, stylus-based 
techniques scratch the surface somewhat without substan-
tially altering its roughness. Despite being unable to measure 
the valley depth, the tactile method was the most reproduc-
ible among other studied techniques.

On the other hand, optical methods do not physically 
alter the surface but are hypersensitive to light reflec-
tion and surface transparency, leading to defect detection 
[67]. The advantages of this method, such as contactless 
measurement and a comparable Ra and roughness trend 
to tactile systems in the focus variation mode, make it a 
viable technique for smooth polymeric surfaces. The focus 

variation is a vertical scanning method with a shallow 
depth of focus. It simultaneously allows the measurement 
of steep flanks, form, and surface roughness [68]. Optical 
methods could also detect a three-dimensional topography 
of the surface and its roughness.

The focus variation method suffers from error because 
of the translucent polymer. The fringe projection and 
confocal laser scanning microscope represent higher 
roughness values and more sensitive measurements prone 
to outliers and faults [66]. The lower wear resistance of 
polymers in tactile methods and the possibility of the 
semi-translucent appearance in optical techniques make 
them more sensitive to method selection in roughness 
measurement.

Table 3  Surface roughness metrics based on linear measurement [60, 62]

* X =
{
x ∈ � ∣ 0 ≤ x ≤ le

}
 , m0 = AVG

(
Z2

)
 , m2 = AVG

((
dZ

dx

)2
)

 , m4 = AVG
(

d2Z

dx2

)2

,� =
m0m4

m2

2

Parameter Description Equation*

Ra (roughness average) The arithmetic average of the absolute values of the roughness profile 
ordinates

Ra =
1

le
∫ le

0
|z(x)|dx Equation 1

Rq Root Mean Squared of measured microscopic peaks and valleys Rq =
√

1

le
∫ le

0
z2(x)dx Equation 2

Rt (total height of profile) The vertical distance between the maximum profile peak height and the 
maximum profile valley depth along the evaluation length

Rt = max
x∈X

(z(x)) − min
x∈X

(z(x)) Equation 3

Rsk (skewness) Positive skewness indicates that the surface is made up of peaks and 
asperities, whereas negative Rsk refers to dominant valleys on the surface

Rsk =
1

R3
q

1

le
∫ le

0
z3(x)dx Equation 4

Rku (kurtosis) A measure of the sharpness of profile peaks Rku =
1

R4
q

1

le
∫ le

0
z4(x)dx Equation 5

RzDIN The average distance of peaks to valleys (German Standard) RzDIN =
1

s

∑s

i=1
Rti

Equation 6

RzJIS The average distance of peaks to valleys (Japanese Standard) RzJIS =
1

5

∑5

i=1
Rti

Equation 7

η Asperity-peak density
� =

m4

m2

6�
√
3

Equation 8

ρ Asperity-peak radius
� = 0.375

√
�

m4

Equation 9

σs The standard deviation of asperity-peak heights
�s =

�
1 −

0.8968

�

√
m0

Equation 10

Table 4  Area roughness parameters [28, 65, 66]

Parameter Description Equation

Sa Deviations in the height of the surface points concerning the Mean Reference Plane 
of the measurement area (A)

Sa =
1

A
∬

A
|z(x, y)|dxdy Equation 11

Sz Sum of the largest peak height value and the largest pit depth value within the defined 
area

Sz = max(z(x, y)) + min(z(x, y)) Equation 12

Sq Root mean square surface height
Sq =

√
1

A
∬

A
z2(x, y)dxdy

Equation 13

Ssk The skewness of the surface Ssk =
1

S3
q

1

A
∬

A
z3(x, y)dxdy Equation 14

Sku The kurtosis of the surface Sku =
1

S4
q

1

A
∬

A
z4(x, y)dxdy Equation 15

RRP The reduction in surface roughness
RRP =

Si
a
−S

f
a

Si
a

× 100
Equation 16
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Beitz et al. [69] used a confocal laser scanning micro-
scope (CLSM) and X-ray micro-computed tomography 
(XMT) to measure surface roughness. They reported that 
roughness resulting from XMT data diverged substantially 
from those obtained from CLSM data. Due to the inability 
to level peaks, smaller measuring lengths result in higher 
arithmetic roughness values. The method also has a smaller 
sample size, resulting in lower surface roughness along 
the measurements section. Thus, assessing the roughness 
metrics of AM polymeric surfaces requires identifying the 
roughness evaluation method.

Regarding test artifacts for quality surface evaluation, 
most studies have used the twisted pillar (truncheon) [24, 
65, 70], sloped surfaces [70–72], standard test artifact [65], 
or faceted sphere [24, 73] to measure roughness (Fig. 6). The 
design of an AM artifact should consider adaptability to var-
ious AM processes and machine sizes, as well as its ability 
to perform non-contact and contact measurements, editable 
geometry, and minimal material, and energy consumption. 
The twisted pillar is the preliminary design for this purpose 
which consists of a sequence of square segments rotated 0 
to 90° around a central axis with 3° or 5° increments. The 
design is appropriate for measuring the surface roughness 
of an angled plane in the range of 0 to 360° [24]. Yet, it can-
not meet all the above requirements of the measurement. 
Understanding the measurement process is an essential step 
in interpreting the results.

4  Fused filament fabrication (FFF)

Even though FFF 3DP has made significant advances so 
far, the fabricated parts tend to have a poor surface finish, 
including rough surfaces, voids, and prominent striations 
[2]. The morphology is relatively rough due to various limit-
ing factors such as phase transformations, fast cooling, and 
exhaustive energy (Fig. 7). Although FFF is attractive for 
demanding applications, printed parts deviate from their 
initial designed geometry, volumetric error, and hardware 
settings in translating a CAD file to a physical object [74, 
75]. To control the shape deviation, the corresponding 

Fig. 6  3DP designs for studying build orientation (wedge angles): a Twisted tower, b tilted surfaces, c faceted sphere, and d Standard Test Arti-
fact (STAR)

Fig. 7  Appearance and accuracy of gradient lattice-based struc-
tures in as-printed FFF samples using PLA filament and Prusa i3 
mk3s + (scale bar represents 1 cm)
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allowances are approximately estimated before printing [76]. 
However, the FFF parts still required PPFTs to meet the 
market [17]. For instance, temperature variation during the 
layer-by-layer part fabrication procedure undesirably affects 
the printing quality [2].

Generally, there are two types of bonding in the FFF pro-
cess: inter-layer and intra-layer (Fig. 8). The high thermal 
expansion in polymers can play an important role in the 
weak bonding among the layers during the build process, 
leading to staircase (stairstep) formation. As an inherent 
issue, the formation of staircases has a considerable negative 
impact on the surface quality of FFF components [18, 75].

Among literature reviews on the process parameters of 
FFF, Turner et al. in 2014 [77] summarized the process 
design and modeling of FFF. They reviewed the bonding of 
the raster, the model spread of the deposited raster, and the 
motor torque and power. Chohan et al. [21] have reported 
a literature review on pre- and PPFTs to improve surface 
characteristics of FFF parts. In 2018, Singh et al. gathered 
results from studies on the effect of pre- and post-processing 
procedures on FFF patterns to develop biomedical implants 
from the route of AM and investment casting (IC) [78]. Sev-
eral AM materials and their mechanical performance have 
been reviewed by Popescu et al. (2018) [79]. In addition, 
deliberately structuring the polymeric surfaces using FFF 
3D printing has become a popular choice for AM processes. 
Cuan-Urquizo et al. [17] reviewed the literature on the char-
acterization and projection of the mechanical behavior of 
FFF products using analytical and computational approaches 
(2019).

4.1  Process parameters

In FFF, pre-processing includes instructions generated by 
a slicer software to gain data, slice the design file into 
layers of 3D pixels (voxel), model construction, optimiza-
tion of the toolpath for the printing process, and material 
preparation. Parameters directly affecting the process are 

categorized based on operation, geometry, material, and 
machine-specific parameters [80]. Generally, the accuracy 
of the motion system limits the precision of the part. To 
minimize the issues due to the design and pre-production 
phase, each voxel must have accurate position information 
and print-process parameters in tool pathing. In the follow-
ing, the main process parameters influencing the surface 
roughness of FFF polymeric surfaces are discussed.

4.1.1  Filament material

The growing interest in using polymers ranging from rubber-
like materials to rigid plastics leads to new applications in 
vehicle parts, shoe soles, and biomedical applications [81]. 
While high surface quality and desired roughness are advan-
tages for 3DP parts, other material properties and manu-
facturing features are usually considered in the selection of 
the AM method. Figure 9 illustrates a general cumulative 
performance score based on the comparative scoring of each 
parameter on a scale between 1 and 9. PLA and ABS are the 
most well-known feedstock among other materials for FFF. 
Since PLA filaments can provide better surface quality and 
biodegradable polymer derived from corn, it is considered 
more eco-friendly than petroleum-based ABS [82].

In most cases, materials are already enhanced for opti-
mum performance. Their parameters are challenging to 
alter later in the production stage, but choosing the appro-
priate material to improve surface roughness is crucial. 
This may prevent the usage of FFF prototypes in some 
cases where the surface should be smooth. An overview 
of the major polymers used in FFF is presented in Table 5.

4.1.2  Print temperature

In FFF 3D printing, print temperature and cooling speed 
play an important role as it affects the quality of the 
3D-printed object. The model temperature should be high 

Fig. 8  Bonding and stages 
of neck formation in the FFF 
process
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Fig. 9  Recommended poly-
mers for the FFF process. Data 
extracted from references [43, 
83]

Table 5  Typical FFF filament specifications. Data extracted from references [43, 83]

* Data are compiled from various sources, including material datasheets and publications

Material Printing 
temperature* 
(°C)

Type Remarks Application consideration

PLA 180–235 Standard plastics Easy to print
Low-cost
Midcore thermal and mechanical properties
Available in various colors and specifications
Severely limited by application temperature 

under 50 °C
High surface roughness
Biodegradable

Generally non-critical

ABS 200–260 Standard plastics Difficult to print
Low surface roughness
Good thermal and mechanical properties

Generally non-critical

HiPS 230–250 Engineering plastics Midcore mechanical properties
Water soluble
Biodegradable

Structural purposes

PolyVinyl Alcohol (PVA) 190–220 Engineering plastics Water soluble
Glossy but rough finish
Limited mechanical and thermal properties
Biodegradable

Structural purposes

Nylons (PA) 235–280 Engineering plastics Generally difficult to print
Good thermal and mechanical properties
Low surface quality

Structural purposes

PET(G) 230–270 Engineering plastics Easy to print
Low dimensional accuracy due to shrinkage
Good thermal and mechanical properties

Structural purposes

Polycarbonate (PC) 250–320 Engineering plastics Excellent thermal and good mechanical 
properties

Structural purposes

Polycarbonate ABS (PC-ABS) 260–285 Advanced plastics Average printability
Good thermal and mechanical properties

Severe conditions

TPU 195–230 Engineering plastics Generally difficult to print
Flexible materials
Excellent resistance to abrasion and wear

Structural purposes

PEEK 350–450 Advanced plastics Generally difficult to print
Excellent thermal and good mechanical 

properties

Severe conditions
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enough to melt the outgoing feedstock before extrusion. 
However, if the temperature is too high, the filament will 
melt too rapidly, resulting in a porous and brittle object 
with poor surface quality [21]. Depending on the type of 
filament being used, the optimal printing temperature will 
vary. Typically, PLA is printed at 190–220 °C, while ABS is 
typically printed at 220–250 °C [35–37]. The ideal printing 
temperature should be referred to by the filament manu-
facturer to ensure the best results. A stable temperature at 
heaters is crucial in the fluidity of material, resulting in a 
smoother surface finish. Besides, the surface roughness can 
be decreased by increasing the model temperature because 
of the solidification delay. However, plastic adhesion with a 
base plate is problematic in very high or low printing tem-
peratures [21]. As well as affecting the quality of the printed 
part, the temperature of the nozzle can also affect the speed 
of the printing process. In general, a higher temperature 
will lead to faster printing speeds, but it is crucial to find a 
balance between speed and quality.

4.1.3  Layer thickness

The height of each deposited stairstep is a notable param-
eter that can be controlled in the extrusion nozzle tip and/
or shift in the Z-axis between consecutive slices accumu-
lated on the bed. Adjusting the height of each stairstep 
can improve print quality and reduce the printing time. In 
general, a smaller stairstep height will produce a higher 
quality print, but the printing process will take longer [84, 
85]. This parameter is the most significant challenge in 
obtaining a high surface finish in a cost-effective produc-
tion time. The minimum feature size (smallest linewidth) 
is determined primarily by the nozzle diameter, which 
affects layer thickness nonlinearly, but geometry and build 
orientation also play an essential role [86]. Correctly set-
ting up an optimum balance between layer thickness and 
printing time is highly influential in the pre-processing 
step. A smaller nozzle tip will generally result in lower 
layer thickness, better surface quality, and possibly 
decreased post-processing time. However, it increases the 
printing cost and time for the as-print parts, leading to 
more nozzle clocking and quality issues because of the 
pressure drop [21].

Since the quality of internal surfaces does not engage in 
the appearance of the part in most cases, consistent layer 
height has been seen as a waste of time [72]. Thus, it can 
be varied in different areas of the object according to the 
expected time-quality factor. For most FFF printers, the 
domain of layer thickness is variable in a certain range, 
i.e., there is a maximum and minimum value for changing 
the nozzle diameter. A few machines are limited to a single 
value, so it is required to set up other parameters to change 
the surface quality [21].

In several papers [84, 85], the layer thickness is reported 
as the most significant process parameter influencing surface 
roughness. However, this influence also depends on the other 
process parameters. Anitha et al. [87] established a set of exper-
iments that showed that layer thickness significantly impacts the 
roughness of the FFF part compared to rod width and speed of 
deposition. Haque et al. [84] attempted to minimize the surface 
roughness of FFF build features using a numerical approach. 
After investigating various equations to control FFF parameters 
such as layer thickness, overlap distance, part orientation, and 
raster width, they reported that layer thickness has more influ-
ence on roughness than other parameters. They observed that 
increasing the overlap distance between two layers and part 
orientation leads to lower surface roughness. However, higher 
layer thickness and raster width increased surface roughness.

4.1.4  Infill density and air gap

The infill density defines the level of incorporated mate-
rial inside the fabricated object. It might be varied from 0 
to 100 percent according to the required balance between 
material consumption and mechanical properties [88]. 
Generally, a higher infill density leads to a heavier and 
stronger part, which increases the cost and the amount 
of material used in the printing process. Infill density 
and pattern are significant process parameters influenc-
ing surface quality [72]. Support structures must also be 
designed appropriately to support the geometry. Thus, they 
should be accurately chosen by considering the design 
and strength requirement, as well as the build time of the 
printed part. For instance, surface artifacts such as gaps 
and porosity have been observed even for 100% infill den-
sity under a scanning electron microscope (SEM) [89].

The distances or spaces between two adjacent rasters on the 
same layer are called the air gap or road gap [90]. Figure 10 
depicts the air gap compared to other adjustable FFF process 
parameters. The default value taken for the air gap is zero, which 
means the end of the two nearest beads is in touch. There are two 
types of positive and negative gaps. The positive gap increases 
the gap to reduce the density and build time of structures, 
whereas the negative gap means overlapping two roads resulting 
in a long printing time and dense objects. While both positive 
and negative air gaps can enhance the surface finish, zero air-gap 
minimizes dimensional accuracy and part quality [21].

4.1.5  Raster width and angle

The raster width, also called road or contour width and (tool) 
path width, refers to the width of the melted bead path, which 
is added to fill interior regions of the FFF-printed samples 
[21]. According to the filament material, it is regularly 1.2 
to 1.5 times the nozzle tip size [80]. As seen in Fig. 10, the 
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contour tool path width surrounding the object is defined as 
the contour width, slightly smaller than the nozzle diameter 
[21, 86]. The width of the most minor features in the XY-
plane in FFF is about two times the path, much larger than 
the thickness of the layer in the Z-direction. To reach high 
mechanical performance, dimensional accuracy, and surface 
quality, the raster width should be minimized [86, 91]. It has 
been noticed that a wide contour width enhances geometrical 
precision and surface quality because heat evolved during 
extrusion can easily deform thin contours [92].

The raster direction compared to the X-axis of the build 
platform is known as the raster angle (Fig. 10). This parame-
ter significantly affects the internal layer bonding and object 
appearance. The main approaches to raster angle are criss-
cross (− 45°/ + 45°), cross (0°/90°), and 30/°60°. Because of 
the variation of CAD models and printing parameters, there 
is a loose correlation among the studied strategies. Sood 
et al. [91] used a bacterial foraging algorithm to show that 
the 0° raster angle is the best option for dimensional accu-
racy, and 45° results in the best surface appearance. Kumar 
et al. [93] stated − 45°/ + 45 as the best raster angle for the 
surface characteristics, including roughness.

4.1.6  Build orientation

The orientation (deposition) angle is a notable and highly 
flexible process parameter involving surface quality. It cor-
responds to the CAD model and coordinates machine system 
(Fig. 11). Wang et al. [94] considered the build orientation 
the most substantial PPP factor regarding dimensional accu-
racy. As a result of gravity and residual stresses, overhang-
ing surfaces should be supported at less than 45° from the 
horizontal plane [19]. Several papers have studied the role 
of positioning the models in various X- and Y-directions on 
the surface finish and build times. For instance, Kattethota 
and Henderson [95] reported that the orientation angle of 
0° yielded the best surface finish. Moreover, 0° and 90° 
were reported as the optimum build angles for balancing 
the build times, cost, and surface finish. By contrast, orienta-
tion angles between 40 and 60° were neither cost-effective 
nor quality-enhancing due to the maximum support material 
required for tilting the model [21].

Since different surface angles result in various surface 
roughness, the test part should comprise features consider-
ing different surface angles. In 1997, Reeves and Cobb [96] 
introduced a benchmark model called twisted pillar. It can 
consist of 18 or 31 square blocks, depending on the intervals 
(step), twisted 5° or 3° compared to the previous square (see 
Fig. 6a). Durgun and Ertan [97] also confirmed the close 
relationship between build direction and surface roughness.

Among the defects associated with different build ori-
entations are warping, layer delamination, deformed over-
hangs, and poor surface quality [98, 99]. In terms of surface 
roughness, Buj-Corral et al. [99] reported both simulated 
and experimental amplitude roughness values to rise with 
build orientation angle, due to the stair-stepping effect. As 
reviewed by Jiang et al. [98], a change in print orientation 
also affects support generation, which ultimately affects 
the surface roughness after support removal. The choice 
of support structures can have a significant impact on the 
surface roughness of FFF prints, thereby influencing the 

Fig. 10  Controllable parameters 
in FFF machine

Fig. 11  Orientations commonly used for FFF parts
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post-processing process. Furthermore, the orientation of the 
part impacts the support contact area, the build time, and the 
cost of the fabricated part.

4.1.7  Adaptive slicing

Adaptive slicing is termed as a protocol to slice various 
zones of the part into different thicknesses during building 
[78]. It contains balancing techniques needed to reach the 
optimum printing time versus surface finish. Generally, the 
CAD model is divided into polygons or closed curves by 
either the CAD software or a slicer before transferring the 
mesh model (STL file) to the printer. This process is called 
slicing, and the distance between two sequential horizontal 
planes is known as a slice [100]. The slicing process and the 
tessellation of the CAD file are expected to be the signifi-
cant parameters involved in creating rough surfaces in the 
procedures of layer fabrication. The containment problem 
causes the original CAD model to deviate from the designed 
form when slicing a tessellated CAD model. Aside from the 
containment issue, the layer deposition causes a problem 
known as staircase effects [101].

Several researchers [17, 102] have studied several types 
of stepwise refinement, adaptive slicing, and identifying 
nonuniform fillet radius at different areas of printed objects. 
These methods consider automatically slicing algorithms, 
generating variable tool paths (.gcode), reducing build time, 
and minimizing surface roughness through varying heights 

depending on geometry [103]. These specific parameters 
rely entirely on the shape and dimensions of the designed 
part [21].

The major categories of slicing methods available for FFF 
printing are flat-layer, non-planar, and mixed-layer adap-
tive slicing, respectively. Zhao and Guo [104] listed the most 
important research studies on non-planar and mixed-layer adap-
tive slicing. They suggested method planning of mixed-layer 
adaptive slicing, which discusses the strategy for the process 
planning of more straightforward adaptive slicing approaches. 
Table 6 provides an overview of these slicing methods.

4.2  Surface roughness studies and discussion

The literature on process parameter optimization is classified 
according to the resulting properties. It can be based on the sur-
face finish and smoothness, dimensional accuracy, build time, 
material behavior, dynamic and static (tribo-) mechanical/ther-
mal behaviors, and manufacturing cost. Studies have centered 
on finding the best combinations of geometry and operation-
specific characteristics. For instance, Durgun and Ertan [97] 
reported that surface roughness significantly impacts the flex-
ural strength of ABS parts manufactured with infill 100% at 
different orientations and angles. Among the factors responsible 
for PLA and ABS surface roughness, the researchers identi-
fied layer thickness [105–107], build orientation [107], printing 
speed [105, 106], nozzle diameter [105, 106], and tempera-
ture [106] as the most critical parameters. Table 7 summarizes 

Table 6  Adaptive slicing classification. Extracted from references [103, 104]

Method Specification Advantages Disadvantages Application

Planar slicing Uniform layer thickness Simple, effective, and robust Lack of strength
(poor perfor-

mance)
Stairstep effects 

(poor surface 
finish)

Large numbers 
of layers 
(longer build 
time)

Widely used in slicing simple 
designs

Non-planar (curved 
layer) slicing

The nozzle is collinear with the 
normal direction of the curved 
surface

Longer length filaments in 
curved inter-layer

Fewer layers

Preserve randomly located, min-
ute and critical surface features

Reduced stairstep effects, at least 
in the tangential direction of 
the deposited filament

High strength
Enhanced surface quality
Fewer build times

Complex method For some specific shapes like thin, 
curved shell-type structures 
(skull bones, turbine blades, 
etc.)

Mixed-layer slicing Multi-direction and variable 
layer thickness

Reduced stairstep effects
Alleviated support structures
Less building times
Less anisotropy

No detailed 
automatic 
algorithms

Complexity in 
decision-mak-
ing logic

Complex parts
Requiring more capable slicing 

methods
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some of the significant literature on the essential parameters 
in the process optimization of FFF on the roughness range. 
Optimizing these parameters is one of the highly critical tasks 
for acquiring the desired surface quality and improving superior 
mechanical properties and material response.

Table 7 indicates that layer thickness can be considered 
the most significant FFF parameter that affects surface 
roughness and surface finish. Based on the results, surface 
roughness was reported primarily by Ra, Sa, Rz, and Rq. 
Furthermore, the range of roughness can be significantly 
different depending on the processing conditions from 
sub-micrometers to 33.65 µm for Ra in the studied works. 
Although the reported roughness varies tremendously, it 
is generally between 0.1 and 1 times the layer thickness, 
depending on the materials and measurement geometry. 
Also, build orientation is crucial in determining print qual-
ity, as horizontal and vertical surfaces differ. Slicing set-
tings, object orientation, and considerations regarding 
the design for additive manufacturing (DfAM) guidelines 
could enhance roughness and resolution while decreasing 
the number of PPFTs required [118]. These results did not 
consider more complex features, such as ridges, holes, slots, 
and posts, coupled with motion and material flow dynamics.

5  Selective laser sintering (SLS)

Parts produced by SLS are expected to have a high surface 
quality because of the precise nature of the laser, result-
ing in extensive usage in meeting functional needs. On the 
other hand, SLS-produced components have generally a 
greater surface roughness than other polymer AM techniques 
[119]. Several functional properties are affected by surface 
roughness, including frictional properties, heat transfer, and 
fatigue resistance in polymers, as well as the possibility of 
powder becoming loose, e.g., as a medical implant in the 
human body [120]. During SLS, the build platform is heated 
uniformly to exactly below the material melting point; this is 
a highly effective method to boost the build rate. However, it 
can cause unwanted “caking” of powder on the outer surface 
of the part. A preheating lamp to maintain the temperature 
under the melting temperature reduces thermal stresses, 
leading to part distortion, shrinkage, and lower dimensional 
accuracy at the surface. Due to entrapped air, many grainy 
features, voids, and porosities can be formed inside the 
packed powder (Fig. 12). Therefore, porosity is an inherent 
defect in SLS objects that can appear on the surface [3, 121].

SLS typically prints features as fine as 0.1–0.5 mm, 
making them an excellent choice for printing intricate lat-
ticework with thin walls and beams. While SLS parts do 
not need support due to a powder bed, temperature gradi-
ents during printing may deform the part and create very 
thin surface issues. In addition, because of thicker layers 

(90–150 µm) in SLS, the technique is more sensitive to the 
staircase effect. This effect in an SLS object is most preva-
lent on semi-horizontal surfaces [3]. In a similar method, 
SLM, since the melt pool is typically more extensive than 
the laser spot, the scan contour tracks are naturally shifted 
inwards to account for this issue and, consequently, rougher 
surfaces [122]. PPFTs usually improve the quality of large 
surfaces in these cases, but it would be more demanding for 
more complex and minor features.

There is a direct correlation between the amount of poros-
ity in a part and material properties, such as the shape and 
size distribution of the powder and part processing condi-
tions. Compared to semi-crystalline thermoplastics, amor-
phous thermoplastics produce more porous parts, which can 
either be an advantage or a disadvantage depending on the 
desired property of the piece. The fundamental problems 
with sintering are porosity and shrinkage in the parts. Still, 
they can be overcome with an optimal packing density (for 
porosity) and a careful choice of the sintering parameters 
[123, 124].

Low porosity is required if the appearance and mechani-
cal properties are essential. The size distribution, reduced 
porosity, and enhanced surface finish affect powder flowa-
bility and packing density. Using infrared lamps or ambient 
heating helps prevent nonuniform shrinkage by keeping the 
polymer above the glass transition temperature, allowing 
the shrinkage process to be controlled. This requires slow 
cooling after the build is complete and must be considered 
when calculating the processing time for each part. On the 

Fig. 12  2D laser scanning image of a part made of PA6, showing 
the typical surface texture of solid part samples printed with an EOS 
P500 FDR system
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other hand, semi-crystalline thermoplastics experience a vol-
ume reduction during cooling due to crystallization, making 
amorphous thermoplastics the better choice [123, 124].

Poor surface quality is a common complaint when work-
ing with powdered raw materials. The conventional rough-
ness range (referred to by Ra) of PBF is 5–25 µm. As well 
as the printing parameters, the quality of the surface can 
also be affected by the 3DP machine itself. Depending on 
the SLS machine, Ra can range from 10 to 20 µm with a 
peak-to-valley distance of up to 0.2 mm [3]. Sachdeva et al. 
reported a range of 8–12 µm for Ra [124]. Mechanical prop-
erties, particularly fatigue, can be affected by different sur-
face roughness.

The AM powder-based procedure comprises semi-molten 
grains adhering to the outer surface, with occasional sharp 
grooves in between, prone to crack initiation [3]. Figure 13 
depicts the three states influencing the surface quality in PBF.

The incomplete composition of powder materials may 
cause “orange peel” surfaces (Fig. 14). Incorrect powder 
reuse or non-homogeneous mixing is the main reason for 
this surface issue in the SLS technique [125, 126].

5.1  Process parameters

Several factors influence the performance of SLS systems. 
Precision and resolution are limited by the combination of 
powder particle size, layer thickness, and laser spot diameter. 
The selective melting of powder is done using two main 
tracks, including the contour and hatching tracks. In contour 
tracking, the outer layer of the required profile is melted, 
while the hatching track is used to melt the internal area 
bounded by the contour track [122].

The SLS as-printed surface roughness values differ con-
siderably based on the preparation method, the equipment 
utilized, and the position of the sample surface concerning 
the layer accumulation [3]. The SLS parameters of the pro-
cess (see Fig. 15) have been widely investigated in engineer-
ing fields [32, 127]. They can be classified into three major 

categories: laser, material, and chamber. The average powder 
size, layer thickness, and surface orientation all influence sur-
face roughness. The physics of melting and solidification are 
also important. It is influenced by scan speed, laser power, 
hatch spacing (distance) or laser scan spacing, material vis-
cosity, surface tension, and thermal boundary conditions like 
bed temperature. Research has shown that materials that have 
been degraded for enough time adversely affect the surface 
quality and increase the viscosity of melted powder [119]. 
Several factors determine the accuracy of the part and the 
minimum feature size, including powder sizes, laser spot 
sizes, feature orientation, aspect ratio, ability to control the 
melted region, and the resulting solidified geometry of the 
scanned areas. A thin layer of unfused powder adheres to 
the part surface due to heat dispersion into the surrounding 
powder, which must be eliminated during post-processing to 
achieve the best surface finish [32]. Overall, the main SLS 
printing factors influencing surface roughness can be classi-
fied as design, laser, material, and build chamber.

Fig. 13  Typical PBF surface 
configurations that impact 
surface quality

Fig. 14  Orange peel surface texture on PA12 (2200) SLS part
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Particle size distribution and particle shape can impact 
the quality and strength of the manufactured objects. These 
procedures are continued until the component has been pro-
duced entirely. SLS processes encounter many difficulties 
due to the complexity of the thermal interactions involved, 
which calls for technology-appropriate design and process 
planning. Relative stresses, microstructural formation, and 
surface quality are a few difficulties resulting in part defor-
mation or failure [19]. To avoid thermal deformation, the 
component stays in the powder bed throughout the slow 
cooling phase [9, 128].

5.1.1  Design

The position and orientation of the SLS chamber are crucial 
when using 3D nesting during the design stage. As a result 
of the lower temperature of the platform, the bottom sec-
tion of the construction volume is not as warm as the upper 
area. Due to the high temperature in the top half of the build 
volume, this area is more likely to experience powder adhe-
sion. Process modeling for powder sintering might aid in 
predicting essential aspects that must be addressed during 
the early design phase [16].

The size of geometrical features has been discovered to 
be a significant determinant for the volume of partly sintered 
powders adhering to the component surface owing to heat 

intensities, severely impacting manufacturing precision. SLS 
design criteria should consider massive hot masses, a well-
known phenomenon. For this purpose, Minetola et al. [16] 
suggested the SLS modulus, a metric developed to detect 
crucial heat concentrations in the chamber that can affect 
the dimensional accuracy of the produced part. Generally, an 
approximate part accuracy of ± 200 µm for small dimensions 
and ± 0.1–1% for large dimensions, as well as a minimum 
feature size of 0.5–1 mm, should be considered in the design 
of SLS parts [32, 121]. In Fig. 16, SLS shows sensitivity to 
feature size where there is a distinct area of separation using 
a gradient lattice-based design.

A cross-section of SLS parts shows how local and global 
features in the design influence part quality. The microscale 
portion comprises fused polymer powder particles ranging 
from 10 to 100 µm in diameter. The laser heats the parti-
cles, fusing them together before solidification. However, 
incomplete fusion can leave pores within the part, reduc-
ing strength, durability, and surface inhomogeneity. SLS 
parts feature a coarse surface texture at the mesoscale due 
to particle size polydispersity and unfused powder adhesion 
based on heat diffusion into the surrounding powder. Non-
vertical features are stepped based on layer thickness and 
orientation [28, 129].

The laser spot size and heat dispersion into the powder 
limit the minimum feature size in the design step. Freeform 

Fig. 15  A schematic of the SLS 
3D printing process
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geometries, interior cavities (with holes for loose powders), 
and delicate lattice structures are all possible with SLS. Liv-
ing hinges, latches, and interlocking parts can also be devel-
oped. Then, the interior features must be constructed so that 
loose powder may evacuate when the component is formed.

Because no support structures are required, and cool-
ing warpage is minimal, unsupported walls and horizontal 
bridges are more flexible than the MEX system. Neverthe-
less, design and tolerancing must consider temperature 
gradients during printing shrinkage. Otherwise, very thin 
features can deform due to temperature variations in the 
print environment [130]. SLS cannot attain the same surface 
quality as other polymer AM, such as photopolymerization 
(SLA). In general, PBF AM processes, including SLS, slice 
in the Z-direction with constant or adaptive layer thickness, 
whereas the slicing method in filament-based AM is strictly 
a limiting factor due to lower dimensional precision because 
of the staircase effect, the required support structures for 
overhangs, and poor performance because of the anisotropic 
design caused by the slicing method [104].

5.1.2  Materials

SLS is versatile as it can process many types of polymers 
available in powder form, either thermoset or thermoplas-
tic. The powder is vital for the packing density, which is 
influenced by other parameters, including particle size 

distribution, particle shape, and spreading system. Bimodal 
powder distribution can improve the packing density [131, 
132], which is given by other parameters, such as particle 
shape, size width, distribution exponent, and packing mode 
[133]. Particle shape can affect the powder size distribution 
as the finer powder can facilitate reaching higher packing 
densities and improve flow and spreadability. The spread-
ing system is also responsible for optimizing the packing 
density. A wrong method for the powder on the bed can 
cause flaws in the packing process and entail artifacts or 
holes in the part once sintered [134, 135]. The most com-
mon materials used in SLS are semi-crystalline polymers of 
PA12 and PA11 due to their well-defined melting tempera-
ture and melt-freeze thermal hysteresis [32]. Compared with 
amorphous thermoplastics, these polymers result in more 
favorable processing conditions and improved powder recy-
clability. Table 8 lists the common polymers used in SLS 
and their applications.

SLS can fabricate complex internal cavities with 3D lat-
tice structures, but features for draining unfused powder 
must be included. Powder parameters, such as diameter, 
morphology, size distribution, crystallinity point, flowability, 
and melting point, also significantly affect the SLS method 
and the part quality. As a result, there is an increased demand 
for powders capable of performing SLS [137].

Powders were described as pre-processing parameters but 
can also be included as printing parameters. Since lasers and 

Fig. 16  Accuracy of gradient 
lattice-based structures in as-
printed SLS samples

Table 8  SLS AM polymer powders classified by structure and performance [32, 129, 136]

* Commercially not available, only studied in the scientific literature

Application class Structure Main applications

Amorphous Semi-crystalline

High-performance polymers - PEK, PEEK, PEKK Motorsports, medical engineering, aerospace
Engineering polymers PC* PA6, PA11, PA12, TPE, 

 POM*,  PCL*,  UHMWPE*, 
 PLA*

Automotive industry, mechanical components, housings

Commodity polymers PS,  SAN*,  PMMA* PP, HDPE Piping, chemical containers, tooling, medical devices, 
low-cost prototyping
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powder are connected, it is necessary to study and determine 
the power based on the powder that will be melted before 
picking up a laser. Polymers must be considered in terms of 
their heating properties to be suitable for SLS. Furthermore, 
the optical characteristics of powders determine the wave-
length of light the materials absorb [138]. Semi-crystalline 
polymers are preferred because of their processability (e.g., 
PA12). There is a clear temperature range for these poly-
mers, ranging from the glass transition temperature to the 
melting temperature, with a hysteresis window between 
melting and re-crystallization. The powder type, including 
recycled and virgin, can affect the surface quality. In general, 
recycled powders increase the instability of the feedstock 
properties, resulting in a higher surface roughness [119]. 
High flowability is a critical property of materials in the SLS 
technique. Powders must be highly flowable to minimize 
highly jagged and microscopic particles with strong inter-
particle forces that lead to agglomeration and surface issues. 
Goodridge et al. [139] reported 45 and 90 µm as the most 
favorable range for powder size in SLS 3DP.

In PBF processes, loose powder is typically removed 
manually. However, it can be more aggressively removed by 
shockwave cleaning or dry-ice blasting [140], which alters 
the surface roughness significantly. Low-temperature heat 
treatment would be beneficial to improve surface quality. 
It would relieve imposed stress during laser sintering and 
improve mechanical properties.

Surface modification of powders can increase laser light 
absorption, flow, and spreadability. Feedstock enhancement 
could be used to investigate various powder blends with 
various or multi-modal particle size distributions (PSDs) 
and create particle-based models for forecasting the deposi-
tion parameters (e.g., spreading speed) and the powder bed 
packing (e.g., inter-particle friction) and [69]. The thermal 
history of the polymers is also essential as the molecular 
weight of the polymer can change when it goes through heat 
cycles, influencing its melting and solidification behavior. 
The working conditions significantly impact this powder, 
and the sintered cake cannot be recycled near the com-
ponent. Fresh powder must be mixed with the remaining 
powder from the previous 3D printing procedure to closely 
match the specifications [3].

This technology works with a higher layer thickness 
(90–150 µm), making it more susceptible to the staircase 
effect. Because of the sintered grains on the surface, clean-
ing is difficult [3]. Powder bed systems are exposed to a 
frictional force with the bed and an inter-particle force that 
restrains their motion. For this reason, chemical additives 
can be added to the powder to have a higher spreadabil-
ity [141, 142]. There is a variation in the laser beam over 
the whole build plate. The angle of incidence can signifi-
cantly impact the outcome of the part [143]. Therefore, 
new machines with two laser beams are currently available. 

However, having two different power sources leads to a 
slightly different sintering process. Furthermore, portions of 
the stage where the two lasers work almost simultaneously 
cause a point or line of poor or no sintering.

5.1.3  Laser

The mechanical strength and density of SLS objects depend 
heavily on the laser beam energy density. As the laser ras-
terizes over the powder bed, its movement strategy and 
direction are essential. Generally, higher laser beam energy 
density results in higher densities and greater mechanical 
strength of the final part, up to a certain point. If the powder 
particles are over-melted beyond this threshold, the proper-
ties of the part may begin to deteriorate [144]. The most 
often used SLS printers use diode lasers. The laser power 
(P), the laser scan speed (v), the focus diameter, and the 
hatch distance (scan line distance) all affect energy density 
(ED) [145]. The hatch distance includes two parameters: 
layer thickness (t) and scan space (s). Depending on the laser 
power (P) and beam movement on the materials, the powder 
bed obtains the proper heat for fusion. Accordingly, ED is 
the laser beam input energy per unit area (J/mm2), and it can 
be calculated using Eq. (17) [146]:

In this equation, if the hatch distance (in mm) is more 
than the effective laser diameter (in mm), the effective 
laser spot size would be considered [147].

Sintering requires a certain amount of laser power due 
to laser-powder interaction, which depends on the mate-
rial and layer thickness. Because the laser beam diameter 
and material formulation affect absorption, they can raise 
or lower the sintering/melting temperature. It affects the 
laser wavelength required for sintering. In addition, pulse 
durations (for pulsed lasers), geometries, and frequencies 
can impact surface quality. Shorter pulse durations can lead 
to more precise melting and less heat buildup, resulting in 
smoother surfaces with less porosity. There is usually an 
offset between the laser and the design border because of 
the light spot that must be considered. During the sintering 
process, a low-power laser is used to smear the particles that 
can remain attached along the contour [134, 148].

The dimensional accuracy of the printed product causes 
excellent process accuracy in SLS. Shrinkage is one of the 
critical factors influencing accuracy, and the quantity of 
shrinkage seen hugely depends on materials and laser sources. 
Laser power and scan length have a substantial impact on 
X-direction shrinkage, whereas beam speed and laser power 
have a significant effect on Y-direction shrinkage. In contrast, 
bed temperature, beam speed, and hatch spacing considerably 
affect shrinkage in the Z-direction [130].

(17)ED = P/(v × t × s)
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5.1.4  Build chamber

A typical mainstream SLS system has a medium build size 
of 340 × 340 × 600 (mm). When a product exceeds the build 
platform volume, it must be split into multiple pieces, design-
ing separation planes, and considering subsequent assembly 
procedures affecting the surface quality [149]. The part size 
is constrained on the upper end, restricted by the build vol-
ume of the printer and the ability of the optics system to 
scan the entire area. This volume typically ranges between 
10 and 1000 L (0.01–1  m3). However, it is possible to reach a 
smaller size in some designs as 0.005  m3. Due to the minimal 
residual stresses, the entire build volume may be utilized by 
stacking pieces on top of one another without the require-
ment for support to connect the parts to the build platform. 
The size of small parts is constrained by the minimal feature 
size, the related precision and resolution, and the assembly 
of the components [149]. The powder particle and laser spot 
size restrict the precision of less prominent features. All 
these variables, coupled with the powder material and ther-
mal boundary conditions, affect solidification kinetics and, 
hence, dimensional accuracy. In terms of depth and length, 
the larger-the-better rule applies to the part size to obtain the 
desired object, whereas roughness and geometric precision 
are determined by the nominal-the-better rule [127].

Several build chamber parameters, such as layer thick-
ness, roller speed, heating–cooling rates, build size, and 
powder and feed bed temperatures, impact the SLS process. 
There are several gradients of temperature in the build cham-
ber to be considered [150]. Besides the Z-axis, where the 
part suffers a decrease in temperature for the higher layers 
while the stage moves downward, the platform has some 
increased temperature along the diagonals, and the center 
can be caused by the presence of heaters or mechanical 
components underneath. The blade shape used for powder 
application also affects the surface quality. Beitz et al. [69] 
demonstrated that a flat bottom form was more advantageous 
than sharp or slightly rounded edges. Due to the larger hori-
zontal contact zone between the powder bed and blade, the 
powder material is compressed evenly, resulting in a more 
dense and consistent powder layer.

5.2  Surface roughness studies and discussion

SLS allows the production of components with high levels of 
complexity, almost no geometrical constraints, and no need 
for a tool or a mold. The resulting parts have an enhanced 
surface roughness due to optimizing the processing settings, 
the build orientation, and the powder characteristics [66]. 
Although roughness cannot be removed entirely, several 
researchers have attempted to decrease the deficiency by 
modifying the printing process parameters and operating at 
different parameter levels.

In many cases, PPFTs primarily affect the surface rough-
ness obtained through SLS. Nevertheless, several studies 
have attempted to optimize the parameters of the process. 
Sachdeva et al. [124] investigated and used response surface 
methodology (RSM) to optimize the SLS process parameters 
for roughness (Ra, Rz, and Rq). Beitz et al. [66] reported 
that the CLSM measurement yielded roughness ranges 
of Ra: ~ 24–31 µm and Rz: ~ 157–181 µm, while the XMT 
method produced Ra: ~ 22–27 µm and Rz: ~ 128–148 µm for 
PA12 powder. Most research has focused on PA12 as the 
feedstock material to determine optimal parameters for pro-
cessing based on roughness conditions. However, limited 
research [151, 152] has been conducted on other materials. 
As listed in Table 9, different process parameters were con-
sidered in the method.

In agreement with the reviewed papers in Table 9, the 
average particle size, layer thickness, and surface orienta-
tion can substantially influence surface roughness among a 
wide range of variables. Material viscosity, surface tension, 
and thermal boundary conditions such as bed temperature 
play a role in melting and solidification. Heat dispersion into 
the surrounding powder generates a thin layer of unfused 
powder to cling to the component surface to achieve the 
most delicate surface quality. The powder size and the laser 
spot restrict the part accuracy of less prominent features. 
These parameters, coupled with the powder material and 
temperature boundary conditions in the system, influence 
solidification dynamics, which can also affect dimensional 
accuracy. Shrinkage during cooling can cause additional 
losses in part accuracy for bigger features. Concerning laser 
power, a low energy density can result in loose powder par-
ticles that are unable to melt and fuse together sufficiently, 
resulting in parts that are weak and porous. In contrast, if 
the energy density is too high, the powder may melt and fuse 
excessively, resulting in rough surfaces, distortions, and even 
cracks in the finished parts [119, 127].

While the SLS parts generally show higher sur-
face roughness (10  µm < Ra < 20  µm) compared to FFF 
(1 µm < Ra < 10 µm), SLS offers many benefits compared to 
other polymer-based AM techniques [158]. To begin with, no 
support structures or foundations are needed during the SLS 
process, since the unused powders support the components. 
Therefore, there is no roughness caused by support removal. 
Even though SLS uses unused powders to support the com-
ponents being printed, this is usually insufficient to prevent 
all types of deformations. As a result, post-processing steps 
such as stress relieving and annealing may be required to 
reduce residual stresses and deformations [119, 157].

Additives such as initiators, binders, and catalysts are not 
required, which implies that the components are more likely 
to be utilized in the medical field since additives may cause 
toxicity. Moreover, although SLS resolution is not as excel-
lent as other AM methods, such as SLA, the mechanical 
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properties of SLS components are usually superior, making 
the surface of these components more stable over time. The 
resolution issue may be addressed by improving the laser 
system. In theory, SLS technology is not material-restricted, 
and most powders may be utilized in SLS, provided that 
the laser wavelength and power meet the sintering mate-
rial requirements. However, this kind of laser/point-based 
technology (e.g., SLA or SLS) has a common drawback 
of low processing speed because of the methodology of 
“point → line → face (slice) → body” [157].

6  Vat photopolymerization (VPP)

Vat photopolymerization produces parts with a resolution 
close to 100 nm [159], leading to superior surface quality. 
While the design choice can bring some advantages and 
some disadvantages in terms of texture, the process selec-
tion is still critical. In a top-down VPP setup, the build 
plate dips in the resin to create a new layer, and generally, 
a recoating system makes the printed surface smoother. 
Despite this mechanism and a consequent reduction of the 
necessary supports, the recoating procedure may cause some 
convex undulations on the resin surface and on the printed 
layer afterward. It is due to tensions, especially with highly 
viscous resins or really thin layers. Thus, surface bubbles 
can remain trapped inside the part but also can groove the 
surface [160, 161]. Using scraper blades can attenuate these 
issues by adjusting the layer thickness of the new resin on 
top of the part [162].

Alternatively, the bottom-up approach, where the light 
source is placed below the vat, and the build platform 
move stepwise upwards, resulting in accurate details but 
a more corrugated surface [163]. Moreover, confined lay-
ers due to the space in between the transparent window 
at the bottom of the vat and the build plate allow the sys-
tem to achieve better Z resolution. However, the layer, 
once cured, attaches to the glass window, and the detach-
ment step might cause it to lose material and have defects. 
To reduce detachment forces during this phase, the vat 
is usually coated with a polydimethylsiloxane (PDMS) 
layer or an anti-adhesive membrane made of PTFE [161, 
164] with an additional protective layer of fluorinated eth-
ylene propylene (FEP) to have good anti-sticking effect 
and durability [165]. The latter seems more resistant to 
degradation and all the problems this may cause to the 
quality of microfeatures [166] but has a more complex 
tightening method that can lead to deformed features and 
light refraction when applied incorrectly [161]. These 
approaches constitute a layer-wise method and generate 
staircases along vertical surfaces.

VPP defects generally occur due to non-optimized 
print parameters, insufficient supports, improper model 

generation, and contamination in the build platform and 
resin material. For each layer to be cured entirely through 
its thickness and uniformly recoated, the print parameters, 
such as scan speed, power source, and recoating process, 
must be optimized [167]. Another common problem with 
VPP resins is their tendency to turn yellow quickly. This is 
mainly because of overexposure to ultraviolet light, which 
also causes clear prints to appear matte yellow (Fig. 17).

6.1  Process parameters

6.1.1  Design

The design role in PPP regards creating the model system on 
a CAD system and handling the photosensitive resin inde-
pendently of the technology used. CAD format is tessellated 
into the STL data, and this is the phase where decisions about 
surface modeling are made. For instance, essentially flat and/
or thick sections are prone to warp because of shrinkage. The 
STL file approximates three-dimensional surfaces with trian-
gular facets, which may result in errors in dimension, form, 
and surface [168]. Incorrect conversion of a solid model into 
an STL file can cause missing or distorted features. In ste-
reolithographic technology, the STL file is sliced into several 
horizontal layers and then commonly saved in CLI file format 
[169]. Similar to the FFF method, many parameters such as 
print direction, layer thickness, the inclination of the part, 
hatch spacing, fill spacing, hatch over-cure, border over-cure, 
and fill cure depth are essential to improve surface quality 
without resorting to a large number of facets and a long build 
time [168, 170]. Considering the presence of supports is cru-
cial because if the support density is insufficient, the part 
can also shift or detach entirely from inadequate supports 

Fig. 17  Appearance and accuracy of gradient lattice-based structures 
in as-printed SLA samples using PrimaCreator Value resin. After 
12 h, a yellowish color began to appear
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[171]. The supports cause unavoidable staircase effects on 
bent or sloped surfaces, but they can be reduced by adjusting 
the printing parameters mentioned above [172]. In this case, 
the adaptive slicing method, as a typical practice in FFF, is 
acquiring more attention to improve the surface quality and 
surface roughness in VPP methods [96, 173].

6.1.2  Materials

The most popular materials for VPP are photosensitive res-
ins, usually containing acrylates, methacrylates, vinyl, and 
epoxies monomers/oligomers. Acrylates and methacrylates 
monomers/oligomers are a subcategory of the vinyl group, 
and the presence of the carboxylic group (-COOH) in the 
vinyl position confers them high photo speed as they react 
quickly when exposed to UV radiation. Moreover, they 
behave differently in terms of radical formation. Acrylates 
tend to form secondary radical ends, whereas methacrylates 
tend to form tertiary radical ends. This difference in radi-
cal end formation makes methacrylates more stable and less 
reactive than acrylates. However, both of them undergo sig-
nificant shrinkage with associated stress that might result in 
warping or curling [174, 175]. Moreover, they suffer from 
the inhibiting influence of oxygen, and this facilitates the 
formation of a sticky surface appearance due to oligomer 
formation [176]. They also have low viscosity and critical 
energy, increased light sensitivity, relatively high depend-
ence on humidity and temperature fluctuations, and control-
lable mechanical properties [177].

Vinyl monomers appear in both radical and cationic 
polymerizations, and a mix with acrylates or epoxies 
enhances their respective characteristics. They provide rela-
tively low thermal resistance and low glass transition tem-
perature, and they tend to exhibit brittleness, low elongation, 
toughness, and impact resistance [178]. Epoxy monomers 
instead have an oxirane functional group, which is a three-
member ring formed between oxygen and two carbon atoms, 
and when they react, these rings open, resulting in vacancies 
for other chemical bonds. This opening is known to have an 
influence on the volume change because the bonds remain 
the same and, as a result, epoxy resins typically present 
much smaller shrinkage and much less tendency to warp and 
curl. Furthermore, the products have high structural stability, 
higher mechanical performance, insensitivity to oxygen, and 
lower shrinkage stresses compared to radical polymeriza-
tion of (meth)acrylates and vinyl monomers [175, 179]. All 
these monomers can be also added as additives with the 
function of chain transfer agents, specifically addition-frag-
mentation chain transfer (AFCT) agents, in a poly-functional 
way, with the intent of having, for instance, lower shrink-
age stress, higher cross-linking density, or tougher polymers 
[180, 181]. Besides monomers/oligomers and additives, the 

photocurable resin generally presents reactive diluents, UV 
stabilizers/blockers, and photoinitiators.

Also, adding particles as reinforcement in a resin can 
result in reduced or absent curing or in an accumulation of 
the particles, leading to a nonuniformity or degradation of 
the support. Studies about the size of the particles [182] and 
their interaction [183] were found essential to obtain the best 
outcome. Therefore, in VPP, the cure kinetics of the polym-
erization process related to the resin viscosity, light intensity, 
chemical functionality, illumination time, and the additives 
in the formulations play a crucial role in determining the 
final surface finishing and appearance of the prints [179]. In 
fact, the choice of light absorbers, the photoinitiator, and the 
monomers and oligomers can reduce the staircase effects, 
improve the resolution of printed objects, and produce opti-
cally more transparent layers and surfaces. Kowsari et al. 
[184] evaluated the influences of polymer formulation on 
the printing resolution and surface quality. In particular, 
by trying different formulations of (meth)acrylates-based 
monomers and oligomers with some of the most common 
photoinitiators, they found that dimethacrylate-based resins 
can improve the surface finishing by reducing the staircase 
effects and removing jagged edges. Moreover, enhancing the 
expected reflectance at the same wavelength is possible with 
different photopolymer formulations [177]. The selection of 
photocurable resins is usually according to the properties 
needed, such as quality of finish [185], durability [186], 
flexibility [187], transparency [188], bio-compatibility [185, 
187], and cost [189]. They need to be stored in dark rooms 
to avoid the photopolymerization process initiates.

Moreover, when the resin is poured into the vat, it may 
contain air bubbles that reduce the achievable resolution 
and cause surface artifacts in the final object. Therefore, 
removing all the impurities and air from the photopolymer 
is necessary. It is possible to do so by shaking the resin 
manually or with the help of some machines, such as roller 
grills or shaking machines [161]. When the resin is not fully 
polymeric but with a mole percentage of other compounds, 
another step that is part of the pre-processing is the mixing 
process, which is requested to be as uniform as possible.

Polymers are not the only materials that can be used 
in photopolymerization processes. Diptanshu et al. [182] 
assessed how introducing fine ceramic powder can improve 
the density and reduce the porosity of the prints. The interac-
tion between photopolymer and photons greatly influences 
the surface quality of the part. As well as laser power and 
uncontrolled photon flux, a nonuniform surface relief dur-
ing the material solidification generates features much larger 
than the voxel size. Ambient factors, such as vibrations and 
jittering of the laser and its scattering while impinging the 
surface, may cause voxel displacements and fluctuations of 
printed voxels, inducing a weaker photon flux and defects in 
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the layer so formed [184, 190]. During the printing process, 
contaminants, such as partially cured regions or external 
particles, can cause voids and deficiencies in the build since 
the resin cannot be recoated evenly. A damaged resin tank 
or dirty optics may also result in improperly cured regions, 
resulting in internal voids or inclusions. Last, voids within 
the resin caused by trapped air or not uniformly recoating the 
next layer will result in voids in the printed part [177]. Pho-
topolymerization can also be affected by oxygen inhibition 
due to a different air in the room (with an inert gas), high-
intensity irradiance lamps, or physical barriers [191, 192].

6.1.3  Printer setup

The setup of the printer and the influence of polymer mass 
and viscosity can also affect the surface finish, which is 
divided into two major categories:

• The bottom-up approach: the material is cured through a 
window, and a membrane of PTFE is placed in the bot-
tom of the vat with a light source. In this setup, the build 
plate is raised every time to let the new resin occupy 
the volume underneath, and a “peel” step is necessary 
to detach the cured resin from the bottom of the vat. The 
“peel” step is time-consuming because the resin needs 
extra time to recover the initial state before starting the 
new layer [193].

• The top-down approach: a light source above the vat cures 
the material, and the build plate is submerged. Instead of 
“peel” steps, this setup employs continuous light expo-
sure to cure the resin. It enables the achievement of high 
resolutions and printing speeds for this approach. The 
surface is traversed with a scraper to recoat and minimize 
eventual surface tensions [162] or can provide a dynamic 
characterization of the shape of the surface of the resin 
and adjust the light intensity accordingly [194].

Regarding the exposure strategies, in the bottom-up 
approach, there are no micro-fluctuations or contamination 
of the resin during the process since the bottom of the vat 
flattens each layer, but the detaching step might cause a cor-
rugated surface with accurate details in the surface of the 
products [163]. However, in the top-down approach, there 
is not as much stress on the printed part during the print-
ing process as in the bottom-up approach since the subse-
quent layer is not being sheared off after each layer is cured. 
Nonetheless, the overall distortions of the surface due to the 
motion of the stage normally require a recoating procedure 
that still can cause undulations on the printed layer. Moreo-
ver, longer printing times and slightly better resolution and 
quality of the printing drive the choice for the bottom-up 
approach. Other setups are related to different components 

that make the technology unique and solve some of the 
drawbacks. For instance, an oxygen-permeable window in 
CLIP technology solves the peeling step issue by preventing 
the resin from attaching to the window. At the same time, it 
controls the curing of the resin letting it have sufficient time 
to flow underneath the build plate and completely homoge-
neously the curing of the subsequent layer. In this way, the 
platform can move almost continuously upward [191, 192].

DPP technology uses an LCD unit to project the sliced 2D 
images, which has great potential resolution/cost-wise but 
has overall limited optical efficiency and lower resolution. 
In addition, working with an electric field that blocks the 
passage of light has a low switching speed (within 20 ms), 
and this may cause a few liquid crystals to remain trapped, 
resulting in weak light leakage and lower resolution [169, 
179]. Hot lithography has the advantage of having a heating 
element able to control the viscosity of the resin and the 
temperature of the process. A higher temperature increases 
the reactivity of the monomers and the polymerization rate 
and the efficiency of the process [195].

Two-photon photopolymerization employs a femtosecond 
compact laser beam as a light source that absorbs two photons 
simultaneously. The photons are absorbed by the photoinitiators 
at the same frequency (degenerate process) in the near-infrared 
range (NIR). To trigger the third-order nonlinear two-photon 
absorption process, light sources with very high photon density 
are required. Since the light intensity in the laser beam respects 
a Gaussian distribution, in TPP, the square value is considered, 
and the region where polymerization occurs is lower than in 
normal conditions. In this way, a pulsed femtosecond laser with 
an acoustic-optical modulator (AOM) to disperse the beam into 
zero- and first-order diffractions or two light beams (stimulated 
emission depletion or STED) are the most preferred setups, 
because they can modulate the intensity and better control over 
the cross-linking process. Therefore, the resolution of the pro-
cess and the connected feature size of the voxel improve until 
reaching details of 100 nm [32]. The concept is described in 
more detail in a study by Malinauskas et al. [258].

6.1.4  Curing system

In most cases of VPP, the substance is sensitive to light (but 
not necessarily), i.e., it will absorb the energy of the photons 
[177]. This energy induces either phase transitions (evapora-
tion, melting, plasma) or chemical reaction in the material. 
As many materials can absorb light energy, VPP is a very 
versatile method for selection. However, there are significant 
variations in the specifications of the main VPP branches, 
such as the light source (UV or laser), feature size (nm to m), 
applicable materials, sensitivity to processing parameters, 
and the possibility of multi-material printing and commer-
cialization capability.
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In most VPP technologies, the object is created by irra-
diation of the photosensitive resin with a UV or laser beam 
source that enables the cross-linking of the polymer chains. 
It is scattered and absorbed when UV radiation or a laser 
beam hits the surface. This creates a threshold for the pen-
etration of the light in the resin and, therefore, a cure depth 
for the photopolymerization process. The cure depth is given 
by Eq. (18) [169]

where the maximum exposure energy is represented by Emax, 
the critical energy required from the resin to begin the reac-
tion is denoted by Ec, and Dp is the depth of penetration 
defined by

where [I] is the concentration of the photoinitiator and ε is 
the molar extinction coefficient.

The energy dose considerably affects surface roughness 
and dimensional accuracy through the curing process [196]. 
In SLA, the projection system is the key factor that can sen-
sibly modify the appearance of the part. A galvanometer 
scanning technology provides the steered beam through a 
movable mirror system to the resin surface and determines 
the precision grade. The exposure energy at the surface is 
determined by the steered beam as follows:

where P denotes the laser power, W0 is the beam radius, and 
Vs represents the scan speed [169]. In line with the equations 
above, it is possible to see how much the entire process can 
undergo the projection system.

The power, velocity, and hatching of the laser spot deter-
mine the depth and size of the feature. Independently from 
the build orientation, there is a low anisotropy set by the 
cure depth according to the layer thickness. In fact, the layer 
thickness is lower than the cure depth, which means that an 
additional beam dose passes through to the previous layer 
to facilitate the adhesion and the bonds between subsequent 
layers [161, 197]. Furthermore, the width of cured resin 
(Lw), as determined by the center of the laser beam, influ-
ences the resolution and dimensional accuracy. When the 
laser beam passes over the same points while hatching the 
layer, some points might be over-cure or under-cure. For 
a successful solidification, it is essential to define a hatch 
spacing related to the width of the cured resin [169]. Nonu-
niform laser power density is another important parameter 
that can be caused by either acceleration or deceleration of 
the galvanometer at the end of the hatching and along the 
boundaries. This can be overcome by either modulating the 

(18)Cd = Dpln
[
Emax∕Ec

]

(19)Dp = 1∕(2.3�[I])

(20)E =
√
2∕�(P∕WoVs)

laser power as a function of scanning speed during accel-
eration or deceleration or keeping the same scanning speed 
while switching on and off throughout the job [198].

6.2  Surface roughness studies and discussion

The parameters affecting the surface quality can be identified 
by further examination of the most critical technologies in 
VPP. Nowadays, the research in surface quality for the Vat 
photopolymerization technique is extensive, mainly because 
it combines an affordable price with high performance in 
terms of printing precision and time. There has been con-
siderable research on SLA and DLP, the oldest and most 
commercialized technologies. Still, new trends are emerg-
ing due to their faster print speeds, such as CLIP [32, 191], 
and higher and higher resolution, like TPP [194]. Instead 
of surface roughness, recent significant research results are 
presented, focusing on SLA and DLP in Table 10.

According to Table 10, the quality of VPP printing is 
primarily determined by the photopolymerization process, 
exposure strategies, and projection systems. Generally, the 
projection system plays a prominent role in the resolution 
and printing quality outcome. The microstructure heavily 
depends on the technology used, and even if all the param-
eters are optimized, there will always be an error that is 
impossible to entirely remove. For instance, the light per-
manently distorts how it impinges on the resins. However, 
the sum of errors can also outperform other optimizations.

In the same VPP technique, the most predominant param-
eters influencing the roughness are the build orientation 
and the layer thickness. Indeed, they are directly connected 
with the staircase effects. In the top-down approach, once 
immersed in the resin, the part goes down with a depth based 
on the layer thickness [183]. Reeves and Cobb [207] found 
a mathematical model for the approximation of the surface 
roughness considering the layer thickness and the plane ori-
entation (Fig. 18). It consists in

where Ra is the roughness average, Lt is the layer thick-
ness, φ is the layer profile angle, θ the surface angle, and 
K is the composition roughness (up-facing or down-facing 
roughness).

As discussed above, different systems can offer various 
methods to get very high resolution, but many other param-
eters must be considered. Regarding the resin material, the 
interplay with different photoinitiators, monomers, or oli-
gomers [184], the addition of additives such as stabilizers or 
light absorbers [32], the addition of ceramic powder [182], 
and the resulting viscosity [183] in the resin can influence 
the cross-linking process on the resultant resolution and 

(21)Ra =
(
Lt(tan�sin� + cos�)∕4

)
+ K
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quality of the features fabricated. On the other side, volu-
metric shrinkage throughout the curing course is the primary 
source of errors and the primary parameter of geometrical 
error [169]. Local temperature variations [208], UV intensity, 
and exposure time are critical factors that can affect surface 
roughness and cause under-cured or over-cured parts leading 
to geometrical errors.

Although various researchers have examined the level of 
mechanical anisotropy for SLA-printed parts [197, 209], Shan-
mugasundaram et al. [202] and Hague et al. [210] reported 
that SLA-printed components can be considered isotropic. 
The capability to produce isotropic components with SLA is 
a significant advantage over other AM techniques, such as FFF.

7  Material jetting (MJT)

PolyJet technology typically produces high-quality parts 
with a smooth surface. However, dimensional accuracy for 
large pieces is usually not similar to other processes, such as 
VPP, since it uses large droplets, and the accuracy decreases. 
The accuracy for medium-small size parts is comparable to 
the other AM technologies [134].

The amount of surface roughness depends on several geo-
metrical and process parameters. MJT produces full-density 
parts by overlapping adjacent droplets and curing or solidify-
ing them on the spot [8, 211]. A defect can be caused by a 
clogged nozzle or, in rare instances, by errors in the jetting 
toolpath. Most AM jetting systems used by professional AM 
companies are well calibrated and deposit uniform layers 
without accumulating errors and porosities. However, local 
variations in topography and layer thickness must be con-
sidered when mixing multiple materials and at the interface 
between the part and the support (Fig. 19). This is caused by 
the formation of a mini pool and droplets similar to that seen 
in welding [212, 213].

A variety of methods are available to address and mitigate 
porosity during the material jetting process, such as using 
appropriate printing parameters [8, 211], optimizing material 
properties [214], increasing the number of printed layers to fill 
in any gaps or voids, as well as modifying the printing pattern 
[215]. The use of appropriate printing parameters such as drop-
let size, spacing, and temperature; optimization of material 
properties such as viscosity, surface tension, and curing time; 
and modification of the printing pattern such as zigzag instead 
of straight lines [216] can reduce void formation by ensuring 
that the material is deposited uniformly and consistently.

While polymer jetting improves the quality and tailor 
ability of mechanical properties, in general, the properties 
(particularly toughness and elongation) do not match those 
of photopolymer parts made by SLA. Jetting compatibility 
requires resin formulations, compromising the selection of 
optimal photocuring chemistries [134].*  A
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7.1  Process parameters

MJT performance is determined by the fundamentals of the 
process, such as placement and fusion of consecutive drop-
lets, as well as droplet impact, spreading, and curing. Since 
the MJT system contains many functions, as described, the 
printing QAs undergo a higher range of parameters that need 
to be considered. For instance, part quality in MJT depends 
on the substrate, material velocity, dynamic viscosity, noz-
zle distance, total pressure, surface tension, density, the 
diameter of the nozzle, position accuracy of the XYZ motion 
stages, platform movements, etc. [134]. This section dis-
cusses these parameters in four main categories: materials, 
designs, surface finish settings, and printheads and rollers.

7.1.1  Design

Design plays a crucial role in achieving greater accuracy and 
preventing printing errors. Due to the layer-by-layer setup 
of the technology, most of the aspects related to the design 
of the model described in the section for FFF also have an 
impact here. However, the layer thickness, orientation, hatch 

spacing, and speed are more relevant for this technology. 
Droplet size, spacing, and how they impact the build plat-
form affect the line surface finishing. The less space between 
droplets results in defects in the reduction of line edges and 
improvement of the resolution [217]. Accordingly, layer 
thickness is the most crucial parameter, as seen for most 
other AM technologies. Generally, a lower layer thickness 
improves the QAs of the prints. At the same time, a lower 
space between lines causes a decrease in the eventual ripple 
along the top and bottom of a layer, resulting in different 
surface roughness based on the design orientations [24, 70, 
217].

Design orientation, including the building location on 
the build plate, also affects the surface roughness. Accord-
ing to the study by Yang et al. [218], orientation induces 
different roughness values in the parts. XZ build orientation 
seems to give the highest surface roughness value, while 
XY has the lowest, with the top and the bottom surface 
reaching high smoothness [218, 219]. Similar to FFF, lev-
eling the build platform prevents distortions and failures 
and reduces surface defects. An infill density of less than 
100% is not regularly achievable for AM parts made from 

Fig. 18  Surface roughness for 
a stepped plane.  Adapted from 
Reeves and Cobb [96]

Fig. 19  a Deposited droplets in a layer-by-layer structure and b porosities in the structure of parts printed by Stratasys PolyJet J55 printer
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photo resins since support is needed for overhanging fea-
tures during the printing process to avoid collapse [64]. 
Figure 20 illustrates how build orientation (wedge angle) 
can affect the surface texture of samples printed under 
similar conditions.

7.1.2  Materials

In most cases, the MJT process uses polymers and plastics, 
such as Tango and Vero commercial resin. Each of these 
series has different ingredients. For instance, the FullCure 
870 VeroBlack digital material comprises acrylic mono-
mers, epoxy acrylate, urethane acrylate oligomers, and pho-
toinitiators. As an example of support material, FullCure 
705 contains acrylic monomers, polyethylene glycol, pro-
pane, glycerol, and a photoinitiator [24]. Due to the small 
and expensive range of materials that can be printed, MJT 
is limited in its material availability. In particular, waxes 
and photopolymers are the only commercially available 
polymers.

MJT “inks” are photo resistors mixed (blended) with 
waxes and some photopolymers. In modern systems, six 
liquids (CMYK-W + Support) can be handled simultane-
ously in separate containers. The printhead can combine 
multiple materials in a single part and blend pairs and trios 
of selected base resins to create hybrid properties and colors. 
They are also called digital materials, defined as composite 
materials developed for AM (mainly PolyJet 3D printing) 
with predetermined mechanical and visual properties [220]. 
Additionally, jetting of multiple materials facilitates support 
removal and allows high-detail visual representations and 
functional prototypes to be generated in full color.

Materials are divided into two main categories of base 
resins and support materials. The term “resin” refers to sol-
ids and highly viscous materials, but more commonly to 
liquids that harden in response to an agent (e.g., heat, set-
ting agents, or light). Base resins carry the main functional 
characteristics and colors, each with unique characteristics. 
Thus, a machine can use them as a palette to receive hybrid 
materials. They are the basis for inks and can be used with-
out mixing or combined to reveal new properties. Resins are 

a wide variety of different natural and synthetic materials. 
They consist of long monomer chains, forming cross-link 
bonds during the curing process. According to their chemi-
cal compounds, resins can be silicones, epoxies, acrylics, 
alkyds, etc. They can be divided into several categories: 
strong engineering, rigid general-purpose material, biocom-
patible, transparent rigid, castable, strong and tough, flex-
ible, simulated (digital) polypropylene, simulated (digital) 
ABS, and composite resins [221, 222].

Material jetting requires supporting structures, and some 
resins are optimized for easy removal. They come in vari-
ous types with different solubility parameters, which affect 
the range of the chemicals needed to fully dissolve them. 
Besides, support materials used on the surface will deter-
mine whether the surface is glossy or matte, which affects 
the surface roughness. The supporting resins can become 
soft during the printing process, which allows them to be 
removed manually, and the final touches are applied using 
a water jet. Wax-like support material is generally more 
rigid than gel-like material and, therefore, cannot be easily 
removed, resulting in a reduction in surface quality [223].

One of the most challenging aspects of this type of tech-
nology is the ejecting of the photocurable resin. For this rea-
son, the materials in play assume a crucial role in the process.

In order to be jetted, resins need to have the correct vis-
cosity according to their composition. For instance, Cheng 
et al. [224] heated the resin to 70 °C, while Jabari et al. [225] 
mixed and sonicated the resin with a graphene dispersion to 
obtain an appropriate flowability. There are many methods 
to gain the correct viscosity for various resins. Still, a resin 
generally needs to be as liquid as possible to avoid suspend-
ing particles that might cause artifacts or reduced accuracy 
[134]. Particles in the resin lead to imbalances during the 
drop creation, with sizes that may differ from each other. In 
fact, this occurs because there are disturbances during the 
ejection that may change the extrusion setup with an earlier 
breakup of the drop. Moreover, the droplet spreading and 
roller performance at each layer deposition can assume dif-
ferent physiognomy [226].

As with binder jetting, another critical parameter to con-
sider is the impact of the droplet on the surface. According 

Fig. 20  MJT-printed samples at different wedge angles: a 0°, b 45°, and c 90° (scale bar represents 1 mm)
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to Zhou et al. [227], three forces describe the droplet impact 
dynamics: inertia, surface tension, and viscous force. At the 
build plate level, the inertia force is converted into surface 
energy, and it needs to overcome the surface tension to 
obtain a flat shape. It means that the inertial force needs to 
be greater than the surface tension, which is helped by the 
viscous force. Moreover, the potential difference imparted by 
the piezoelectric system strengthens the surface tension and 
increases the impact angle or the height of the ejection [227, 
228]. On the other hand, if the height is excessive, head 
and rear vortexes on the droplet can be formed because the 
ejection and the drop may impact the surface with different 
angles and energies [228].

7.1.3  Printhead and roller

Material jetting can print very tiny liquid droplets that reach 
resolutions around 1600 dpi and 16 μm [229]. The resolu-
tion depends on the ejection system but is also related to the 
droplet size. However, decreasing the specimen thickness 
increases the magnitude of distortions in the photopolym-
erization process [219].

Two printing modes are available in PolyJet technology: 
high speed and high quality with a low layer thickness. If 
the ejected droplet size is not big enough to cover the spac-
ing between two subsequent ones, the printhead must pass 
over the same point one more time. According to the offset 
to fulfill, up to four rounds of jetting may be needed [230]. 
It is common for MJT printers to jet photocurable resin from 
different nozzles simultaneously; however, the build plat-
form function may differ (Fig. 21). A roller module leveling 
mechanism is required to remove the excess resin and flatten 

the surface to reach the desired layer thickness. After this 
step, the droplet is immediately cured [223].

The hatch spacing in MJT, like other AM techniques such 
as SLS and BJT, contributes to the texture and morphology 
of the surface [134, 231]. It comprehends the pulse width 
and the frequency with which droplets are ejected, and the 
ejection system series of rounds passes over the same point 
to create an entire surface. Printing speed is connected with 
the hatch spacing because it is also based on the sweep speed 
at which the hatch arises [134].

The quality of the droplet is another aspect to consider. 
Bussmann et al. [232] showed that impact velocity and angle 
are essential in terms of quality printing and surface roughness. 
The effect of rough cured drops may avoid the impact of fin-
gering (perturbed leading edges) and splash (refer to Fig. 20).

Droplet impact, spreading, and curing limit the accuracy 
of parts and the motion system, which is often a gantry oper-
ated by a motor. Droplet spreading and curing restrict the 
wall thickness, also known as the minimum in-plane feature 
size (X, Y). As a result of droplet spreading, the wall thick-
ness is much thicker than the layer thickness (Z) [233]. The 
minimum feature size increases with the aspect ratio because 
of the precision of layer-layer registration. Regarding the 
maximum feature size, it is generally constrained by the 
build volume of the printer. The foundations of MJT do not 
restrict feature width; however, few printhead components 
contain blocking features.

Droplets size and printing speed are the key points for 
a correct saturation rate and quality printing. Droplets of 
smaller size can give a better resolution of the printing, but 
if they are too small, they do not spread effectively. High 
printing speed can cause a loss of accuracy and resolution 
because the droplet does not have time to spread effectively 
[217]. Therefore, adjusting the printing speed makes it pos-
sible to favor better material spreading. Accordingly, every 
droplet indeed has a spreading radius time-dependent, r(t), 
given by

where t is time and a, b, and n are constants that determine 
the growth rate, initial size, and shape of the droplet. These 
constants can also be related to other factors, such as the 
viscosity of the liquid, the surface tension between the liquid 
and the surface, and the contact angle between the liquid and 
the surface as in other hydrodynamic theories [234].

Imperfections in finishing are a common problem on 
the surface of MJT parts, which frequently have a rough or 
ribbed surface finish caused by overlapping material lay-
ers [235]. Miyanaji et al. [236] reported that the three most 
common jetting techniques for polymeric droplets are single, 
overlapping, and overlaying droplets. Overlapping droplets 
give better control for fine sizes.

(22)r(t) = (a + bt)n

Fig. 21  An illustrative photo of the rotary build tray of the PolyJet 
J55 printer
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7.1.4  Surface finish setting

Surface roughness values vary depending on the surface fin-
ish settings, and a correlation between surface roughness and 
finish settings can be complicated to establish [8]. In the case 
of a glossy finish, surfaces will not be covered by support 
materials except overhanging structures and the bottom of 
the part. Support materials will be covered when a matte 
finish is selected [223]. A glossy surface finish produces a 
lower surface roughness level, resulting in longer fatigue 
life. Generally, printing parts with a glossy finish setting is 
recommended to achieve higher surface quality [237].

Many current studies are trying to reach full-color print-
ing by improving resolution and surface finish related to 
multi-color materials. Some studies have been carried out 
by Udroiu et al. [24] on matte and glossy surfaces by setting 
different process parameters. In particular, they found a cor-
relation with the surface roughness Ra given by

where t is the layer thickness, � is the droplet contact angle,  
� is the plan orientation, and K1 is the correction coefficient 
based on the PPFTs used. Some other studies instead have 
been focused on trying to improve the tuning of colors with-
out jagged shifts between adjacent layers [238].

7.2  Surface roughness studies and discussion

Compared to other AM techniques, research concerning the 
surface roughness of MJT technology has been very limited. 
This contrasts with the fact that MJT appears more relevant 
to aesthetic applications and artistic purposes. Most of the 
research in MJT has focused on the relationship between a 
few pre-processing parameters and the surface finish. How-
ever, several publications [70, 239] have used mathematical 
models to estimate the roughness characteristics of parts 
printed with PolyJet technologies. Table 11 summarizes 
significant research related to surface roughness in MJT.

In agreement with Table 11, positioning the part along 
the build tray substantially impacts the surface roughness 
in MJT parts. There was generally less roughness on hori-
zontal surfaces than on vertical planes. On horizontal sur-
faces, roughness is determined by the droplet spreading and 
interaction of successive droplets for line and plane forma-
tion. In contrast, on vertical surfaces, it is controlled by the 
interaction of consecutive layers, resulting in stair-stepping 
equal to the layer thickness of the printed part. The spread-
ing of droplets leads to extremely thin layers, resulting in 
smooth horizontal and vertical surfaces at the mesoscale 
[233]. As Udroiu et al. [243] demonstrated, the build type 
(matte or glossy) substantially affected surface roughness. 
Although MJT with Ra generally less than 10 µm can be 

(23)Ra = t∕4(|cot𝜑sin𝜃 + cos𝜃| ∙ K1),K1 < 1

considered to be between FFF (~ 1 µm < Ra <  ~ 35 µm) 
and VPP (Ra <  ~ 5 µm) in terms of surface roughness, the 
machines show much less variability compared to FFF and 
more variation compared to VPP methods. Again, and simi-
lar to FFF, SLS, and VPP methods, Ra and Sa were the most 
commonly reported roughness parameters.

8  Comparative studies and discussion

Table 12 summarizes recent comparative studies on the sig-
nificant polymer additive manufacturing processes.

Most benchmarks developed for AM were intended to 
measure the implementation of a single technology and a 
limited number of parameters, as discussed in the previ-
ous section. The comparison of various AM methods has 
been the focus of several studies. For instance, Mou and 
Koc [118] compared three AM technologies, FFF, SLA, and 
MJT, on four machines in terms of their surface roughness, 
edge sharpness, and dimensional accuracy. According to 
their results, FFF produced a rough surface and irregular 
dimensional accuracy, SLA manufactured smoother surfaces 
but resulted in the distortion of thin features (< 1 mm), and 
MJT fabricates surfaces with comparable surface rough-
ness and dimensional accuracy. Sillani et al. [28] reported 
the trend of surface roughness on the bottom and top sur-
faces of MJT and SLS seems to be about identical. Minetola 
et al. [16] evaluated three polymer-based 3DP machines by 
analyzing their dimensional accuracy using ISO IT grades. 
They reported a thinner layer gives a greater definition of 
the features geometry and higher dimensional accuracy. Li 
et al. [64] compared FFF, SLA, and MJT based on cost, 
sustainability, and surface roughness quality factors. They 
reported MJT and SLA as the best and moderate AM meth-
ods in tactile and visual assessments, respectively. However, 
unique SLA materials were considerably more valued in the 
hedonic sensation category. Results indicated the lowest 
overall ranking for FFF but with the capability of manufac-
turing with the lowest environmental problems and costs, 
confirming its sustainability.

In terms of dimensional accuracy, for instance, Minetola 
et al. [16] reported that despite the increased layer thick-
ness (0.21 mm against 0.10 mm), the Arburg Freeformer 
machine outperformed the Prusa i3 for more comprehensive 
ISO ranges of the primary size. However, layer thickness 
was the most essential element for improved dimensional 
accuracy for smaller feature sizes. Roach et al. [2] used 
inkjet printing for PEGDA/PI material over the PEI sub-
strate manufactured by the FFF method. They reported that 
direct-ink-writing (DIW) surface modification process for 
FFF substrate reduces the surface roughness, resulting in 
improved conductivity for electronics and radio frequency 
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(RF) applications. Nazir and Jeng [252] introduced high-
speed additive manufacturing by merging PBF, MJT, and 
sintering technology without coupling 3DP with subtrac-
tive methods. They showed that while the MJF process was 
substantially quicker than the SLS method, the SLS PA12 
parts showed 15% lower Ra when compared to the high-
speed MJF.

9  Summary

The 3D-layered nature of AM processes and partially melted 
particles influence the definition of the component surface. 
Accordingly, controlling PPPs can dramatically affect the 
3D features on a rough surface for AM components. The 
deliberate surface modification based on surface texture 
metrics in 3DP products is more demanding than ever with 
3D measurement and characterization development, which 
can comprehensively reflect the surface topography.

Fabricating a part using layer-by-layer deposition in which 
the produced part exhibits a staircase effect causes the surface 
to become rougher. It is possible to reduce this problem by 
being aware of the regular surface roughness of the parts 
in advance or predicting the roughness values during pre-
processing. Accordingly, the PPPs based on process param-
eter optimization have been discussed to list the parameters 
that have the most critical influence on the roughness of as-
printed polymers. This comparative review emphasized the 
growing interest in understanding AM system restrictions and 
discrepancies so that a better selection of 3DP technology can 
be made based on project constraints. This study summarized 
the significant advances in additive manufacturing, including 
the incorporation of AM design decisions to assist in identi-
fying candidate solutions, as well as information regarding 
roughness considerations for the selected processes.

As mentioned in the previous section, the best possible 
surface and optimum roughness according to an application 
can be obtained by adjusting the fabrication parameter. The 
other choice is to investigate the optimum mix of PPFTs that 
can be applied to any AM objects. However, it increases the 
cost, time, and complexity of the process. Production set-
tings may be tweaked to favor speed above surface quality 
if this combination proves effective.

A variety of strategies have been employed by various 
groups to achieve this objective. Most studies have focused on 
the top surface of the parts because many factors contribute 
to the surface roughness distribution of a 3DP object, such as 
layer height. It is revealed from the literature review that the 
workflow of surface modification in the pre-processing step 
heavily depends on the complexity of the design and the desired 
quality-time–cost balance. Surface modification techniques are 
currently not standardized and depend on factors such as geom-
etry and intended application. As a result, the following AM Ta
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According to the studied literature, the appropriate AM 
technique selection determines manufacturing efficiency, 
accuracy, and model size. Thus, it determines whether the 
actual and nominal roughness is conforming and will allow 
AM to be better integrated with roughness requirements. For 
instance, while FFF technology has the advantage of being 
efficient and cost-effective for small-scale production, accu-
racy may be limited when the production of large and com-
plex parts is required. The recorded Ra results were generally 
less than 5 and 10 µm for the studied VPP and MJT meth-
ods, respectively, 10 to 20 µm for SLS, and between 1 and 
over 30 µm for FFF. Accordingly, SLA and DLP technolo-
gies, offer high accuracy and resolution for larger and more 
complex parts with more stable roughness results at various 
printing processes, considering SLS is at the opposite end of 
the roughness spectrum. While MJT can fabricate ultimately 
smooth parts in the sub-micrometer ranges similar to VPP, 
their 3D-printed surface can be as rough as FFF, depending 
on the selected processing method. However, both VPP and 
MJT AM categories can be time-consuming and expensive, 
limiting their suitability for competing with mass production 
in the present form.

Selection of the proper AM technique will also require an 
in-depth examination of the surface measurement techniques. 
The measuring method results in significant uncertainty in 

workflow in Fig. 22 can lead to optimum surface modification 
by altering roughness before and during processing.

Along with the literature review, the Taguchi method, full 
factorial method, response surface method (RSM), and analy-
sis of variance (ANOVA) were the most used methods for 
optimizing the surface roughness of 3D printers. In the case of 
RSM, it is generally a time-consuming method depending on 
the orthogonal matrix used [44]. Thus, it has been less widely 
used than the Taguchi method to date. The combination of 
specific optimization parameters may result in parts with 
no known surface roughness, which would have to undergo 
fundamental design changes. Current capabilities are limited 
without developing a new surface modification workflow that 
considers the PPFTs requirements during the pre-processing 
phase. Frequently, DfAM necessitates the redesign of parts 
initially planned for conventional methods such as machining. 
Post-processing must be integrated into the design process 
at an earlier stage, and the role of each component must be 
considered. Specifically, post-processing using ultraprecision 
technology is gaining increasing attention as it provides high-
quality parts with improved surface finish and dimensional 
accuracy [253]. The importance of having precise geometries 
and smooth surfaces is particularly important for polymer 
optics and devices, where optimal performance depends on 
precise geometries and smooth surfaces.

Fig. 22  Suggested 3DP work-
flow to enhance as-printed 
surfaces
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roughness evaluation due to PPP. It is reported that the stylus 
in contact-based profile measurement scratches and physi-
cally smooths the surface, leading to slight compliance with 
the actual topography. However, it is time efficient, more 
reproducible, and provides comparable results even when the 
tip radius varies [3]. Accordingly, tactile roughness measure-
ment and Ra were frequently reported as the main method 
and roughness metrics in the reviewed articles. However, Rz 
performed better than Ra since it accurately represents both 
tactile and visual roughness. Nevertheless, observers are 
influenced by appearance attributes such as color, texture, 
glossiness, and translucency when evaluating roughness and 
surface finish [254]. In particular, polymeric parts represent 
most of these appearance attributes.

Considering the results, mainstream 3DP technologies 
differ significantly in terms of surface roughness. The FFF 
method makes extending applications across various appli-
cations challenging due to its poor surface quality. However, 
FFF objects seem more appropriate for analyzing application-
based purposes. SLA is considered a low-cost desktop device 
that directly competes with FFF because of its higher print 
resolution and reduced surface roughness. The SLS technique 
is still being developed for this purpose, and MJF is emerging 
as a promising technique. In general, the surface roughness 
of the SLA and MJT was reported to be better than the SLS 
components. Compared to other polymer AM techniques, 
their inherent smooth surface finish and great dimensional 
accuracy imply that painting and coating are rarely required.

Combining these data confirms that the reviewed 3DP 
methods cannot produce ready-to-use end products and that 
PPFT is necessary. As a significant finding, it is revealed that 
there is a demand for further investigation on the appear-
ance of 3D-printed structures, dealing explicitly with their 
QAs issues. Optimization of AM should not be conducted 
to achieve complete control over roughness. It is primarily 
due to the lack of reproducibility in AM technology and the 
role mainly played by post-processing. Further research is 
required to establish the links between different PPPs and 
the quality of the surfaces of AM-made components, as dis-
cussed in the next section.

10  Future trends and capabilities

The importance of surface roughness in the final product is 
recognized by both conventional and advanced manufactur-
ing methods, especially for critical and small products. To 
increase the applicability of AM processes, it is necessary to 
assess the surface finish of as-printed polymers and to pro-
vide guidance on AM process windows and limitations [8]. 
3D and 2.5D printing with multi-materials and multi-colors 

will be key to the future development of AM technology 
[255]. The techniques mentioned in this study can also pro-
vide insight into other advanced materials, such as nano-
particle and their suspensions with functional properties 
[256–258], surface treatment [259, 260], and liquid metals 
to use in AM technology. Furthermore, fiber reinforcement 
and composition can be incorporated into almost all AM 
methods [261]. The development of eco-friendly materials, 
the use of polymers, durability, and sustainability are also 
major concerns [262]. As an emerging trend in advanced 
manufacturing, the combination of several AM technologies 
presents new challenges in terms of surface finish.

There is a growing interest in 4D additive manufacturing, 
which is a relatively new research area. Smart materials can 
be developed more quickly by developing multi-material 4D 
printing [263, 264]. A 4D-printed part can thus be carefully 
controlled in terms of surface texture and topography as a 
microstructure to achieve more complex geometrical trans-
formations. Therefore, monitoring the surface roughness 
of smart materials is an essential step. As with 3D multi-
material printing, it can present similar challenges, such as 
limited material choice, printing resolution, slow mechani-
cal performance, and dimensional accuracy [263]. It will be 
necessary to implement multi-material additive manufactur-
ing in a variety of applications as part of multidisciplinary 
research and development [262].

The lack of aesthetically appropriate materials for AM 
necessitates further investigation. An understanding of the 
induced anisotropic arrangements and their impact on the 
build platform (chamber) and product properties may be 
improved by using sophisticated algorithms and numeri-
cal techniques [211]. The fundamental material application 
procedure, as well as the actual applied stresses, heat, and 
weathering agents, requires further investigation. Aside 
from the roughness value, the roughness distribution is also 
of critical importance to the use of AM components in the 
future. Therefore, there are various capabilities available 
to examine how printing factors impact other mechanical 
performance factors, such as compressive strength and ten-
sile strength. As a result of these findings, AM products are 
likely to be applied to parts for automotive, aerospace, and 
jewelry applications that require high-dimensional accuracy 
and proper surface characteristics.
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