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Abstract: This paper presents the main results and latest developments in a 4-year project
called autonomous subsea intervention (SEAVENTION). In the project we have developed
new methods for autonomous inspection, maintenance and repair (IMR) in subsea oil and
gas operations with Unmanned Underwater Vehicles (UUVs). The results are also relevant
for offshore wind, aquaculture and other industries. We discuss the trends and status for UUV-
based IMR in the oil and gas industry and provide an overview of the state of the art in
intervention with UUVs. We also present a 3-level taxonomy for UUV autonomy: mission-
level, task-level and vehicle-level. To achieve robust 6D underwater pose estimation of objects
for UUV intervention, we have developed marker-less approaches with input from 2D and 3D
cameras, as well as marker-based approaches with associated uncertainty. We have carried out
experiments with varying turbidity to evaluate full 6D pose estimates in challenging conditions.
We have also devised a sensor autocalibration method for UUV localization. For intervention, we
have developed methods for autonomous underwater grasping and a novel vision-based distance
estimator. For high-level task planning, we have evaluated two frameworks for automated
planning and acting (AI planning). We have implemented AI planning for subsea inspection
scenarios which have been analyzed and formulated in collaboration with the industry partners.
One of the frameworks, called T-REX demonstrates a reactive behavior to the dynamic and
potentially uncertain nature of subsea operations. We have also presented an architecture for
comparing and choosing between mission plans when new mission goals are introduced.
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1. INTRODUCTION

Underwater infrastructure plays a key role in today’s soci-
ety and includes, e.g., oil and gas installations, aquaculture
facilities, underwater cables, etc. Moreover, both, e.g.,
aquaculture and oil and gas infrastructure are expected
be installed in even more exposed areas offshore. Also, re-
newable energy installations such as offshore wind is alone
projected to reach $56.8 billion by 2026 (Nhede, 2021).
To optimize asset uptime and ensure proper HSE (Health,

⋆ This research was funded by the Norwegian Research Council,
grant number 280934 and its industry partners Equinor, Oceaneer-
ing, IKM and TechnipFMC. The work was carried out in the SEAV-
ENTION project (www.sintef.no/SEAVENTION) led by SINTEF
with NTNU as research partner.

Safety and Environment) Unmanned Underwater Vehicles
(UUVs) are used for inspection, maintenance and repair
(IMR) of offshore infrastructure, and the global underwa-
ter robotics market in general is expected to reach $4914
million at a CAGR of 12.5 % from 2018 to 2025 (Mar-
ketResearchFuture.com, 2020). Still, most UUVs in IMR
operations are piloted by humans or otherwise operating
with a limited degree of autonomy. Increased autonomy
in UUV operations can improve HSE and efficacy, lower
emissions and reduce cost in UUV-based IMR operations
(Schjølberg et al., 2016). Methods to achieve such auton-
omy are the topic of our 4-year project called Autonomous
Subsea Intervention (SEAVENTION) and in this paper we
summarize the main results and latest developments from
the project. The subsea oil and gas industry has been the
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Abstract: This paper presents the main results and latest developments in a 4-year project
called autonomous subsea intervention (SEAVENTION). In the project we have developed
new methods for autonomous inspection, maintenance and repair (IMR) in subsea oil and
gas operations with Unmanned Underwater Vehicles (UUVs). The results are also relevant
for offshore wind, aquaculture and other industries. We discuss the trends and status for UUV-
based IMR in the oil and gas industry and provide an overview of the state of the art in
intervention with UUVs. We also present a 3-level taxonomy for UUV autonomy: mission-
level, task-level and vehicle-level. To achieve robust 6D underwater pose estimation of objects
for UUV intervention, we have developed marker-less approaches with input from 2D and 3D
cameras, as well as marker-based approaches with associated uncertainty. We have carried out
experiments with varying turbidity to evaluate full 6D pose estimates in challenging conditions.
We have also devised a sensor autocalibration method for UUV localization. For intervention, we
have developed methods for autonomous underwater grasping and a novel vision-based distance
estimator. For high-level task planning, we have evaluated two frameworks for automated
planning and acting (AI planning). We have implemented AI planning for subsea inspection
scenarios which have been analyzed and formulated in collaboration with the industry partners.
One of the frameworks, called T-REX demonstrates a reactive behavior to the dynamic and
potentially uncertain nature of subsea operations. We have also presented an architecture for
comparing and choosing between mission plans when new mission goals are introduced.

Keywords: Autonomous and remotely operated marine vessels; Intelligence and autonomy in
marine systems and operations

1. INTRODUCTION

Underwater infrastructure plays a key role in today’s soci-
ety and includes, e.g., oil and gas installations, aquaculture
facilities, underwater cables, etc. Moreover, both, e.g.,
aquaculture and oil and gas infrastructure are expected
be installed in even more exposed areas offshore. Also, re-
newable energy installations such as offshore wind is alone
projected to reach $56.8 billion by 2026 (Nhede, 2021).
To optimize asset uptime and ensure proper HSE (Health,

⋆ This research was funded by the Norwegian Research Council,
grant number 280934 and its industry partners Equinor, Oceaneer-
ing, IKM and TechnipFMC. The work was carried out in the SEAV-
ENTION project (www.sintef.no/SEAVENTION) led by SINTEF
with NTNU as research partner.

Safety and Environment) Unmanned Underwater Vehicles
(UUVs) are used for inspection, maintenance and repair
(IMR) of offshore infrastructure, and the global underwa-
ter robotics market in general is expected to reach $4914
million at a CAGR of 12.5 % from 2018 to 2025 (Mar-
ketResearchFuture.com, 2020). Still, most UUVs in IMR
operations are piloted by humans or otherwise operating
with a limited degree of autonomy. Increased autonomy
in UUV operations can improve HSE and efficacy, lower
emissions and reduce cost in UUV-based IMR operations
(Schjølberg et al., 2016). Methods to achieve such auton-
omy are the topic of our 4-year project called Autonomous
Subsea Intervention (SEAVENTION) and in this paper we
summarize the main results and latest developments from
the project. The subsea oil and gas industry has been the
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main focus for the SEAVENTION project, but the results
are also applicable to IMR operations in other sectors such
as offshore wind and aquaculture.

The subsea oil and gas industry has been a long-term
user of UUVs for IMR. In particular, Remotely Oper-
ated Vehicles (ROVs) have been the standard for IMR.
ROVs are tethered and typically have two robot arms for
intervention operations such as turning valves, cleaning,
etc. Over the recent years, UUVs have been endowed with
autonomous capabilities, but these are mainly limited to
non-intervention type tasks such as inspection, hovering,
follow-pipeline, move from A to B, etc. Intervention oper-
ations (e.g., cleaning, turn valves) are mostly remotely pi-
loted by one or more human operators. Thus, the efficiency
and success-rate of such operations rely on the operator
skills. Hence, factors such as limited visibility and ocean
currents can make operations very challenging to perform
in a safe and efficient manner. Hence, there is a need for
methods for robust perception and intervention to meet
these industry challenges.

In this paper we present main results and recent develop-
ments on UUV autonomy from the SEAVENTION project
ranging from perception and control to automated high-
level mission/task planning. We discuss the status and
trends in IMR with UUVs in the oil and gas industry
and provide an overview of the state of the art on UUV
intervention. Moreover, we list IMR use-cases, present a
3-level taxonomy for UUV autonomy, and we summarize
our results on marker-based (with associated uncertainty)
and marker-less approaches for object detection and local-
ization for UUV intervention. We also present an approach
to UUV localization sensor autocalibration. Lastly, we pro-
vide an architecture for comparing plans for UUV missions
in a planning framework called ROSPlan and compare
ROSPlan with a another framework called T-REX.

2. BACKGROUND

2.1 State of the industry

In this section, we provide an overview of how subsea IMR
operations with UUVs are typically being performed in
the oil and gas industry today and what are the subsea
operational concept trends.

The main mode of operation for IMR is that ROVs and
ROV pilots are brought by large topside support vessel to
the area of subsea installations in need of IMR. The ROVs
are tethered and operated by ROV pilots often onboard
the surface vessel (typically large ships, see Fig.1). In re-
cent years, remote support of operations with ROV pilots
and/or subject matter experts onshore have become more
commonplace. E.g., SEAVENTION project partner IKM
has demonstrated remote controlled ROV operations over
a distance of 11 000 km (IKM Subsea, 2019). Moreover,
SEAVENTION partner Oceaneering reports that ROV re-
mote piloting from shore can increase safety and reduce the
environmental footprint of operations, potentially achiev-
ing up to 25% reduction in offshore personnel on board
(POB) and provide a significant reduction in emissions
associated with the work (Oceaneering, 2021).

A next step beyond today’s need for large topside support
vessel is to have UUVs that perform IMR on subsea

Fig. 1. Example of ROV support vessel (Ken Doerr, CC
BY 2.0 https://creativecommons.org/licenses/by/2.0,
via Wikimedia Commons)

Fig. 2. A Merlin Resident ROV with its “garage” from
IKM. Image courtesy of IKM.

templates without topside vessels present. In June 2017,
the world’s first commercial ROV operation with a “work-
class” ROV was carried out from IKM Subsea’s operation
center in Stavanger, Norway (See Fig.2. Even though such
“resident” UUVs are still not commonplace in subsea IMR,
oil and gas companies such as Equinor are pushing toward
such operational capabilities and thus we may see more
of it in the future. As an example, Equinor has engaged a
company called Saipem to deliver resident UUVs (Saipem,
2019). In addition to resident UUVs designed to operate
within limited areas, e.g., close to a subsea template-type
of infrastructure, other UUVs are starting to appear, such
as the Freedom Autonomous Vehicle from Oceaneering
(see Fig. 3) with a survey range of 120 km and offshore
trials reported to be in 2021 (Oceaneering, 2022). To
support UUVs traveling between subsea assets, companies
such as Equinor in cooperation with Blue Logic are testing
UUV docking stations with standardized interfaces for
UUV charging (BlueLogic, 2019).

In the past, UUVs were divided into mainly two cate-
gories; 1) ROVs (tethered, limited operational area, hov-
ering capabilities, typically equipped with two robot arms
and a range of inspection and intervention tools) and 2)
Autonomous Underwater Vehicles (AUVs). AUVs were
often ”torpedo shaped”, designed for long-range surveys
and monitoring missions (e.g., seabed mapping, pipeline
inspection) without hovering and intervention capabilities.
However, we now see more “hybrid” types of UUVs capa-
ble of hovering, intervention, and more long-range survey
operations. Such UUVs include, e.g., the Freedom Au-
tonomous Vehicle, Aquanaut by Nauticus Robotics (nauti-

Fig. 3. The Freedom Autonomous Vehicle from Oceaneer-
ing. Image courtesy of Oceaneering.

cusrobotics.com) and a snake-like UUV called the Eelume
Vehicle (Fig. 4). Some of these can switch between being
tethered and un-tethered. Equinor has coined the term
“Underwater Intervention Drones” (UIDs) for UUVs that
can operate without a tether and perform intervention
tasks.

Fig. 4. The Eelume vehicle. Image courtesy of Eelume.

2.2 The state of the art on autonomous intervention

UUVs are to an increasing extent equipped with manipu-
lators for intervention purposes. Such vehicles are referred
to as underwater vehicle manipulator systems (UVMS)
(Antonelli, 2014). This provides a moving base for the
manipulator that strengthens manipulation capabilities
and enables more autonomy in intervention operations.
Autonomous underwater intervention is relevant in a vast
amount of diversified scenarios, from pipelines and opera-
tional panels in offshore industry to collecting organisms
such as plants and fish. The latter case requires gentle and
agile grasp in order to not damage or injure the object
of interest (Huang et al., 2020). Such scenarios would
require a system with high accuracy and delicate move-
ments which again set the requirement for both hardware
and software. A manipulator is a versatile tool with its
potential for accessibility and maneuverability, and the
flexibility to use a range of end-effector tools and different
manipulator assemblies for modular arms. They are used
in the oil and gas industry (Schjølberg and Utne, 2015),
aquaculture (Bjelland et al., 2015), ocean mapping, envi-
ronmental monitoring, surveillance, etc. (Simetti, 2020).
The high variation in scenarios where manipulators and
UVMSs are deployed is met with an equally high variation
in available systems. Underwater manipulators vary in the
range from small electric manipulators with limited lifting
capacity and depth rating to large hydraulic manipulators

capable of lifting hundreds of kilos at depths of up to
several thousand meters. Manipulators in all sizes vary
from simple setups with few to none joints and simple
open/close gripper functionalities to more advanced ma-
nipulator that may inherit a variety of integrated capabil-
ities, e.g., force feedback, joint position readings, multiple
internal controllers and so on (Sivčev et al., 2018).

Autonomous underwater intervention has long been a
prominent research topic, with considerable variations of
innovative solutions in the research community. One of
the first autonomous underwater intervention operations
in the oceanic environment was conducted through the
SAUVIM project (Marani et al., 2009). Since then, among
other projects that targeted autonomous intervention op-
eration we find, e.g., TRIDENT (Simetti et al., 2014),
MARIS (Simetti et al., 2018) and DexROV (Gancet et al.,
2015). One of the leading projects in autonomous in-
tervention today is the SUONO project (Topini et al.,
2021), which aims to develop autonomous systems capable
of performing underwater intervention operations such as
free-floating manipulation tasks on a subsea panel.

3. USE CASES AND LEVELS OF AUTONOMY

Typical IMR operations subsea which involves the use
of UUVs (mostly ROVs) include cleaning, visual in-
spection, valve operations, hot stab operations, instal-
lation/retrieval/replacement of modules and components
(e.g., flying leads, jumpers, cables, sensors, meters), elec-
trical faultfinding and hydraulic lead detection, operat-
ing hatches, cutting, surveying (e.g., with cameras) and
Cathodic Potential (CP) measurements of structures and
pipes (Schjølberg et al., 2016).

The above operations are complex and can be broken down
to subtasks such as change tool; detect, locate and move to
valve; record camera data; operate tool; docking; charging;
etc. where the latter is specifically for non-tethered UUVs.
IMR operations require UUV capabilities ranging from
low-level vehicle control to high-level mission planning. To
this end, we propose a 3-level division of autonomous UUV
capabilities:

Mission-level: UUV capabilities in terms of planning its
own missions fully or partly (in collaborating with a
human operator). Such mission planning can include
sequencing and coordinating a variety of task-level ca-
pabilities to achieve mission goals while taking into
account vehicle and environment constraints.

Task-level: Capabilities to carry out single tasks au-
tonomously or through high-level cooperation with a hu-
man pilot. Such tasks could include turn valve, inspect
gauge, follow-up pipeline, etc.

Vehicle-level: These capabilities include autonomous
hovering, collision avoidance, and object detection and
localization.

With the above taxonomy, we see from Sec. 1 and 2.1 that
today’s UUV operations in oil and gas are mostly limited
to vehicle-level autonomous capabilities, while for inspec-
tion operations (e.g., pipeline following), UUVs show, to
some extent, task-level autonomy.
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(e.g., flying leads, jumpers, cables, sensors, meters), elec-
trical faultfinding and hydraulic lead detection, operat-
ing hatches, cutting, surveying (e.g., with cameras) and
Cathodic Potential (CP) measurements of structures and
pipes (Schjølberg et al., 2016).

The above operations are complex and can be broken down
to subtasks such as change tool; detect, locate and move to
valve; record camera data; operate tool; docking; charging;
etc. where the latter is specifically for non-tethered UUVs.
IMR operations require UUV capabilities ranging from
low-level vehicle control to high-level mission planning. To
this end, we propose a 3-level division of autonomous UUV
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Mission-level: UUV capabilities in terms of planning its
own missions fully or partly (in collaborating with a
human operator). Such mission planning can include
sequencing and coordinating a variety of task-level ca-
pabilities to achieve mission goals while taking into
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Task-level: Capabilities to carry out single tasks au-
tonomously or through high-level cooperation with a hu-
man pilot. Such tasks could include turn valve, inspect
gauge, follow-up pipeline, etc.
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some extent, task-level autonomy.
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4. ROBUST 6D UNDERWATER POSE ESTIMATION

To achieve reliable autonomous UUV intervention we
need robust 6D (6-Degrees of Freedom) pose estimation
(vehicle-level autonomous) capabilities. To achieve such
pose estimation, we have developed and tested marker-less
deep learning (DL) approaches with input from 2D and 3D
underwater cameras, as well as marker-based approaches
with associated uncertainty with 2D cameras (e.g., with
Aruco markers). We have carried out controlled experi-
ments with varying turbidity to evaluate if the proposed
systems provide robust 6D pose estimates in challenging
conditions. To facilitate the training of machine learning-
based perception systems, we have also implemented an
approach to collect and automatically annotate under-
water 6D pose estimation datasets. In the following, we
summarize our efforts on these topics.

Collection and automatic annotation of dataset for 6D
pose estimation The performance of 6D localization has
significantly improved with the advent of deep learning
– especially in terrestrial application. Our research has
focused on how 6D DL methods can be adapted to images
acquired in the underwater environment while retaining
their superior performance. One of the main challenges is
that the visual appearance of the same object will vary
with the turbidity. The higher turbidity, the more noise
and less contrast we will observe in the images. To reliably
train such DL networks requires large annotated datasets
which can be costly to generate.

One approach which we have developed (and published
in Mohammed et al. (2021)), is a way of generating a
dataset for 6D localization with automated 6D labeling
even under turbid conditions. We created a mockup subsea
panel which contained objects such as valves, gauges and
fish-tails. A number of Aruco markers were placed around
the panel (both above and below the water). Two cameras
were rigidly attached to each other, where one camera was
located underwater while the other (an underwater 3D
camera) was located above water. Since the positions of the
Aruco markers in relation to the objects of interest were
well calibrated, we could use the Aruco detections above
water to annotate the 6D localization of the objects in
the underwater camera even under very turbid conditions.
The level of water turbidity is varied by adding clay.
We measured the water turbidity, by way of attenuation
lengths, to be in the range of 8.3m (clear) to 2.2m (turbid).

Deep learning model for 6D pose estimation We also
developed and trained a DL pipeline to predict the 6D
pose of the annotated objects. Fig. 5 shows the developed
DL pipeline. The DL network includes 4 sub-tasks that
combined solves the task of object 6D pose estimation.
Class and box prediction sub-networks handle detecting
objects with 3D data while handling multiple object cate-
gories and instances. The processing time for a single frame
is 62.5msec or 16 frames per second using a single GPU
(GeForce RTX 2080 Ti, 11GB). In Fig. 6 (a), we show
the annotated detections (ground truth) overlaid on the
intensity image across turbidities. Fig. 6 (b) shows the
estimated pose projected on the intensity image.

Fig. 5. 6D pose estimation pipeline: The deep learning
model takes both intensity and depth image as an
input. The network is trained in a single stage to
detect and regress the 6D pose under different level
of water turbidity.
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Fig. 6. Qualitative results for detection and pose estima-
tion: Column (a) and (b) shows ground truth and
estimated pose projected on the intensity image re-
spectively. The top, middle and last row shows ground
truth and predicted pose result for increasing turbid-
ity.

Uncertainty of 6D pose estimation Basing critical au-
tonomous decisions on highly uncertain localization in-
formation can potentially lead to catastrophic outcomes
that not only risk the success of the autonomous vehicle’s
mission, but also endanger human lives. As current DL-
approaches to pose estimation do not associate an uncer-
tainty with the 6D pose prediction, we have developed
methodology for associating 6D predictions with the in-
herent model and data uncertainty.

Aruco markers are often used as an effective way for
autonomous systems to be able to locate themselves in
relation to rigid objects. Here we summarize an approach
published in Risholm et al. (2021) where we developed a
system for 6D estimation of Aruco markers with associated
uncertainties in the challenging underwater environment.
A state-of-the-art object detection framework (Efficient-
Det) was adapted to predict the corner locations of Aruco
markers, while dropout sampling at inference time is used
to estimate the predictive 6-DoF pose uncertainty.

We captured a dataset of Aruco markers in a wide variety
of turbidities, with ground truth position of the corner

Fig. 7. Gripper in relation to the predicted distribution
of the location of the fish-tail handle. As the gripper
is moving closer to the handle and closing its grip
distance, the probability of having a solid grip will
increase according to the uncertainty field.

locations, to train the network to robustly predict the
6D pose. We report translational errors of 2.6cm at low
turbidity (8.5m attenuation length) and up to 10.5cm
at high turbidities (0.3m attenuation length) while the
associated uncertainty (inter-quartile range) ranges from
3.2cm up to 27.9cm. The rotational errors varied from
5.6◦ to 10.7◦ with uncertainty of 6.4◦ to 26.2◦. Com-
pared to OpenCV Aruco library with standard detection
parameters, we observe that the detection rate falls off
rapidly with higher turbidities, while the proposed method
provides a detection rate of 100% Risholm et al. (2021).

One direct application of the proposed approach to 6D
pose estimation is for autonomous interventions subsea. If
an Aruco marker is rigidly placed in relation to a fish-tail
handle which an UUV should intervene with, the UUV can
automatically position itself and the gripper in relation to
the fish-tail. In Fig. 7 we show an example where we have
used the pose distribution given by the proposed algorithm
to create a probability volume of the location of the fish-
tail in relation to the gripper. When the gripper (the yellow
model) is closing its grip, we can report the probability
of whether it is now gripping the fish-tail. The gripping
procedure can be adjusted according to the uncertainty of
the pose estimate of the fish-tail. With high uncertainty,
the movements can be slower, and the gripper can open up
more before closing up the gripper. This will help reduce
the risk of damaging the gripper and the fish-tail.

5. AUTOCALIBRATION

This section presents an autocalibration method for local-
ising a vehicle with two or more sensors that we published
in Bjerkeng et al. (2019). In this context, the calibration is
the problem of finding the relative positions/orientations
and time delays between the different sensors used on an
UUV. If this calibration is not accurate, then a sensor
fusion for e.g. localization will have poor performance.
The method, which we have validated with real data from
experiments, was first proposed by Furgale et al. (2013),
and uses B-splines to represent vehicle trajectories. The
calibration is performed by capturing time series data
from all the sensors during vehicle motions, then an op-
timization problem is solved off-line. Our implementation
splits the dataset into 1) identication and 2) validation, as
in cross-validation. To avoid over-parametrization, one is
used during optimization and the other is used to check
the result after the optimization has terminated.

Fig. 8. Vehicle trajectory before and after calibration. Note
that on-board sensors and base stations/transponder
poses are calibrated at the same time.

The method does not need extra equipment or external ref-
erences, other than a data series which sufficiently excites
all the relevant degrees of freedom. It will calibrate relative
poses between on-board and external sensor references, as
well as scaling and sensor time-delays. Our main contri-
bution is the integration of cross-validation in the solver.
Cross validation enables the user to see if the calibration
result is correct, and can detect over-fitting.

The method requires that a user models the bias character-
istics of each sensor. Steps building on the cross-validation
were taken to automate this step, but no simple solution
was found. It was seen that the quality of the calibration
result was quite sensitive to bias modeling. If the user has
little information about the bias characteristics of e.g. a
gyroscope, then this modeling error would be a significant
source of error.

6. AUTONOMOUS UNDERWATER GRASPING AND
MANIPULATION

Autonomous intervention relies heavily on both software
and hardware. An autonomous system requires software
that provides intelligent solutions regarding navigation,
guidance, perception, pose estimation, grasp position, de-
cision making, and more. In order for this to be possible, its
software demands the hardware to provide the necessary
sensor information (e.g., joint feedback, sonars, cameras,
etc.). However, sensors give additional cost and payload of
the system. In the work presented in this section, we have
therefore focused on intelligent software solutions with
minimal additional sensors to provide intelligent systems
capable of autonomous functionalities at low cost. In (Hau-
galøkken et al., 2020) we developed a grasping procedure to
grasp known objects using monocular vision with a small
UVMS. This work followed the work presented in Skaldebø
et al. (2019), where we presented a large image dataset of
the object of interest, an automatic labeling procedure of
the image dataset, training of the detection model and the
object detection procedure. One of the main goals was to
provide an effective solution for object retrieval mission for
a small, low cost UVMS. Moreover, in these works we also
designed a navigation, guidance, and control system for the
vehicle to maintain a desired position relative to an object
detected through monocular vision and object detection
using the vehicle’s camera. The system proceeded to grasp
the object while maintaining the desired position relative
to the object and thus provided a task-level autonomous
capability. The system was validated in experimental test-
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calibration is performed by capturing time series data
from all the sensors during vehicle motions, then an op-
timization problem is solved off-line. Our implementation
splits the dataset into 1) identication and 2) validation, as
in cross-validation. To avoid over-parametrization, one is
used during optimization and the other is used to check
the result after the optimization has terminated.

Fig. 8. Vehicle trajectory before and after calibration. Note
that on-board sensors and base stations/transponder
poses are calibrated at the same time.

The method does not need extra equipment or external ref-
erences, other than a data series which sufficiently excites
all the relevant degrees of freedom. It will calibrate relative
poses between on-board and external sensor references, as
well as scaling and sensor time-delays. Our main contri-
bution is the integration of cross-validation in the solver.
Cross validation enables the user to see if the calibration
result is correct, and can detect over-fitting.

The method requires that a user models the bias character-
istics of each sensor. Steps building on the cross-validation
were taken to automate this step, but no simple solution
was found. It was seen that the quality of the calibration
result was quite sensitive to bias modeling. If the user has
little information about the bias characteristics of e.g. a
gyroscope, then this modeling error would be a significant
source of error.

6. AUTONOMOUS UNDERWATER GRASPING AND
MANIPULATION

Autonomous intervention relies heavily on both software
and hardware. An autonomous system requires software
that provides intelligent solutions regarding navigation,
guidance, perception, pose estimation, grasp position, de-
cision making, and more. In order for this to be possible, its
software demands the hardware to provide the necessary
sensor information (e.g., joint feedback, sonars, cameras,
etc.). However, sensors give additional cost and payload of
the system. In the work presented in this section, we have
therefore focused on intelligent software solutions with
minimal additional sensors to provide intelligent systems
capable of autonomous functionalities at low cost. In (Hau-
galøkken et al., 2020) we developed a grasping procedure to
grasp known objects using monocular vision with a small
UVMS. This work followed the work presented in Skaldebø
et al. (2019), where we presented a large image dataset of
the object of interest, an automatic labeling procedure of
the image dataset, training of the detection model and the
object detection procedure. One of the main goals was to
provide an effective solution for object retrieval mission for
a small, low cost UVMS. Moreover, in these works we also
designed a navigation, guidance, and control system for the
vehicle to maintain a desired position relative to an object
detected through monocular vision and object detection
using the vehicle’s camera. The system proceeded to grasp
the object while maintaining the desired position relative
to the object and thus provided a task-level autonomous
capability. The system was validated in experimental test-
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ing with a UVMS consisting of a BlueROV2 vehicle and
a SeaArm manipulator. Moreover, in the experimental
validation of the system, the gripper was closed manually,
making it a semi-autonomous operation. The experiments
were conducted in the Marine Cybernetics Laboratory
(MC-lab) pool at NTNU, where two out of a total of seven
experimental trials were successful. A test was considered
successful if the object was grasped. The five unsuccessful
experiments failed when the manipulator stopped, either
due to singularities or hitting the vehicle because of oc-
clusion. Thus, occlusion avoidance presented itself as the
greatest challenge.

Presented with the challenges from (Haugaløkken et al.,
2020) we developed a new system in (Skaldebø et al.,
2022) with a new manipulator, a SeaArm-2. This work
presented fixed-base autonomous underwater grasping of
objects using a monocular camera integrated in the ma-
nipulator end-effector as the main sensor. In addition, the
work presented a novel distance estimator enabling relative
distance estimation between object and manipulator with-
out prior knowledge of the object size or shape using only
a monocular camera. The distance estimator combines
state-of-the-art object detector and tracker systems for
2D footage with the inherent information of end-effector
translation through joint manipulation. In this way the
system estimated the size and shape of objects of unknown
size, e.g. underwater infrastructure, fish, plastic waste,
etc., and further calculated the relative distance based on
the estimated sizes. The distance estimator was validated
in experimental testing using an experimental procedure
consisting of the modes 1) Search, 2) Estimate distance, 3)
Grasp and 4) Retrieve. In the grasp mode, the system also
estimates preferred gripping angle in order to best grasp
the object. This is especially relevant for elongated objects
, where it might be impossible to grasp it lengthwise. The
experiments were performed in the MC-lab pool with the
SeaArm-2 fixed at the bottom of the pool. The manipula-
tor was able to find, estimate relative distance, grasp and
retrieve the relevant object in 12 out of 12 trials. In the
experimental validation the distance estimator found the
relative distance between the object and manipulator with
a root mean square error of 9.21 mm.

7. AUTOMATED TASK PLANNING AND ACTING

While typically, UUVs operation rely either on tele-
operation or pre-scripted missions, neither of those ap-
proaches are tractable when mission objectives or envi-
ronments are continuously and unpredictably evolving.
Instead the UUV needs to autonomously determine what
needs to be done by balancing its (human) user-specified
objectives, and the current context the UUV is in. Goal-
directed high level control (Ghallab et al., 2016) provide
such capability: it aims at making the acting control loop
of the robot being informed by automated planning.

Acting is the process to identify and execute, at any point,
the best course of actions to execute a command, given
its “contract” (e.g. maximum duration, allowed battery
budget, successful completion, ...). This process is tightly
embedded within the UUV control loop and therefore
focuses primarily on the current actions at hand rather
than how they contribute to the long term objective of

the operation. Those long term objectives are handled by
planning: it is an inference process that given 1) a model
of possible actions, 2) the current state of the actor – in
our case the UUV – within the world, and 3) a set of
desired objectives; identifies a sequence of actions that
should allow the actor to fulfil its objective. The idea is
then to give this plan to the acting pare of the UUV.

Integrating acting in planning is far from trivial as both
processes affect each other but yet both have conflicting
temporal constraints and scope. Many different designs
have been introduced to address this tension but our work,
in following sections, focused on two specific frameworks:

ROSPlan (Cashmore et al., 2015) is a popular framework
for integrating AI Planning tools with a Robot Operat-
ing System (ROS)-enabled system (Quigley et al., 2009).
It supports planners that use the Planning Domain
Definition Language (PDDL) standard (Fox and Long,
2003). The planner is seen as a service which, when
called upon, will search for a complete plan for the
mission. This plan is then given to the action loop that
will call upon the planner only if the observed world
state has deviated from what was planned. The clear
functional separation of planning and acting simplifies
the architectural design which greatly contributed to its
popularity and the impressively wide range of planning
frameworks it supports. Still seeing the planner as a
service also means that whenever the system plans, the
acting loop can only wait.

T-REX (Py et al., 2010) on the other hand aims for
tighter integration of planning and acting. It allow multi-
ple planning and acting decision loops – called reactors –
to be composed by having a well-defined model of owner-
ship of state variable (each state variable is maintained
by one and only one reactor, that declare it internal,
while others can only receive observation updates and
request future goal values to this variable) along with
requiring every reactor planning to be suspended at a
specified “tick” rate in order for each to identify their
internal state for other reactors to consume. This blurs
the line between planning and acting as each reactor do
both concurrently, but at the cost of a much more com-
plex integration of any planning framework. Therefore,
as far as we know, the only planner it fully supports is
the EUROPA planning framework (Frank and Jónsson,
2003).

7.1 Automated task replanning with ROSPlan

In this section, we contribute a previously unpublished
strategy to address the problem of automated replanning
for UUV missions in dynamically changing underwater
environments. We explicitly explored enhancements in the
replanning approach during the execution of inspection,
maintenance and repair (IMR) tasks as new goals can
emerge during IMR mission. We present a method that
analyzes the trade-off between continuing with the current
plan and deferring new goals until later, versus performing
a full replanning that incorporates the new goal. Our strat-
egy also considers the urgency of the goals to be achieved,
alongside the resources available to the mission. Imple-
mentation and testing of this approach was done within
the ROSplan framework. Simulated action components are

set up with code which includes the name and duration of
each action. Thus, we can test planning for a UUV without
having to engage a physics-based simulator in the testing
process.

The proposed architecture of our planning system is shown
in Fig. 9. An operator provides a description of the world
model the UUV is operating in and of a set of mission goals
to be achieved. These are stored in a Knowledge Base.
An initial problem is generated by a Problem Generator
and fed to a planner which produces an initial UUV
mission plan. The plan is then executed and a module
called Dispatcher updates the Knowledge Base when the
actions of the UUV are achieved or failed. If the operator
decides to add new goals while the aforementioned thread
of the initial plan is executed, a new parallel thread
handles the updated problem and generates a new plan.
We have developed and inserted a Replanning Node that
evaluates the revised plan, and if it meets the criteria of the
human operator, it then triggers a new dispatch. Hence,
our approach allows the parallel evaluation of candidate
new plans that adapt to goals that emerge during the
mission execution. This is without interrupting the current
mission and while respecting the overall mission resource
constraints, alongside possible priorities of certain actions
in the original plan.

The features of the Replanning Node sum up to:

• It prompts the operator to add possible new goals or
other facts if necessary.

• It allows the operator to select which action or
clusters of actions need to have been completed before
launching a new plan dispatch.

• It allows to update the knowledge base with the new
goals and accordingly facilitates new plans that also
consider the operator-defined priorities.

• It offers functionality that cancels the current plan
and updates the dispatcher with the new plan based
on the updated knowledge base and metrics of ur-
gency of the mission actions.

It is noted that while replanning iterations take place,
the ongoing mission as commanded by ROSPlan may
continue.

Fig. 9. The Replanning Node in the proposed architecture
of the planning system.

7.2 Comparison of AI Planning frameworks

In Xue and Lekkas (2020) we conducted a comparison
between T-REX and ROSPlan (without the extensions in
Sec. 7.1), in the context of a subsea scenario formulated

in collaboration with Oceaneering, considering the design
and capabilities of their Freedom Autonomous Vehicle.
Compared to past efforts, where mission planning per-
tained mostly to path planning tasks, such as dynamic
waypoint (re)planning, we considered a more detailed sce-
nario in terms of possible states, tasks and actions, includ-
ing, for instance, inspection of certain components (valves,
pipes), doing self-diagnosis before leaving the docking sta-
tion, installing tools depending on the tasks, and so on.

The subsea scenario in Xue and Lekkas (2020) took into ac-
count several of the novel features of the Freedom vehicle,
such as the existence of an underwater warehouse, where
the vehicle can switch tools, and a docking station, where
it can charge and communicate with a shore control cen-
tre. The mission itself included the following steps: First
perform a pipeline inspection, then an inspection of Valves
No. 1 and 3, located on Panel 1, and finally intervention of
Valves No. 3 and 4, located on Panel 2. To accomplish the
mission, numerous actions had to be planned, including
the vehicle performing self-diagnosis, undocking, moving
from one location to another, approaching a component,
performing inspection and/or intervention, and others. In
addition, we introduced an unplanned event in order to
test the replanning capability of each framework; When
the vehicle inspects Valve No.2 it finds it is not in the right
setting and therefore intervention is required. It should be
noted that only the action planning aspect of the problem
was dealt with, without simulating the complete guidance,
navigation and control system of the vehicle.

Our results showed that ROSPlan planned for 12 unneces-
sary actions compared to T-REX (56 vs. 44 actions) to
complete the task. The 12 additional actions were not
implemented (since ROSPlan updated the plan in the
next working cycle), but T-REX avoided planning them
altogether, hence demonstrating a more reactive and com-
putationally efficient behavior. To summarize further, it
can also be advantageous to use ROSPlan for planning
and execution UUV tasks with less stringent requirements
to reactive behaviors, as, e.g., ROSPlan has a rather large
user group, supports different types of planners and is well
documented.

8. CONCLUSION AND FUTURE WORK

We have presented results ranging from vehicle-level au-
tonomy (e.g., perception, autocalibration) to mission-level
autonomy (task planning). We have also focused on ro-
bustness as, e.g., perception methods tested in varying
turbidity. These aspects will be important in enabling
fully autonomous UUV missions in the cases where close
(human) operator involvement is not possible or desirable.
Further work will focus on further increasing robustness
of methods and integrating capabilities into autonomous
missions with a suitable level of operator involvement.
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