
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Haakon Gunnarsli & Jonathan Brooks

Comparative Analysis of Object
Recognition Techniques Using 3D
Shape Descriptors

Master’s thesis in Informatics
Supervisor: Bart Iver van Blokland
Co-supervisor: Theoharis Theoharis
June 2023

Haakon Gunnarsli & Jonathan Brooks

Comparative Analysis of Object
Recognition Techniques Using 3D
Shape Descriptors

Master’s thesis in Informatics
Supervisor: Bart Iver van Blokland
Co-supervisor: Theoharis Theoharis
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

ABSTRACT

In this thesis the extent to which shape descriptors’ object recognition abil-
ities are affected by simulating real-world scenarios is tested. We present
a benchmark consisting of three processes - Data Collection, Performance
Data Generation, and Data Analysis. This thesis aimed to answer the
lack of research on what leads to a good or bad matching performance for a
given shape descriptor, and the absence of large and varied datasets used in
shape descriptor tests. By using n=1193 objects gathered from the Google
Research dataset, a series of transformations were generated, and through
the benchmark the shape descriptors’ performance in different environ-
ments were tested and visualised. The performance of a shape descriptor
was tested through our newly proposed method, which involves comparing
the results to a previously calculated poor matching average. We found that
the Spin Image and Radial Intersection Count Images shape descriptors
gave the overall most reliable performance, while the 3D Shape Context,
Fast Point Feature Histogram, and Quick Intersection Count Change Im-
age shape descriptors gave more varied results.

1

SAMMENDRAG

I denne oppgaven har vi testet hvilken grad shape descriptors ferdigheter
knyttet til å kjenne igjen objekter påvirkes ved simulering av virkelige
scenarier. Vi presenterer en benchmark som består av tre prosesser -
Datainnsamling, Generering av ytelsesdata, og Dataanalyse. Denne opp-
gaven hadde som mål å svare på den manglende kunnskapen knyttet til
hva som fører til god eller dårlig gjenkjenningsytelse for en gitt shape
descriptor, og fraværet av store og varierte datasett brukt i tester av shape
descriptorer. Ved å bruke et datasett på n=1193 objekter samlet av Google
Research, ble en serie transformasjoner generert, og gjennom en ben-
chamark ble shape descriptorens ytelse i forskjellige scenarier testet og
visualisert. Ytelsen til en shape descriptorene ble testet gjennom vår foreslåtte
metode, som innebærer å sammenligne resultatene med en tidligere beregnet
dårlig gjennomsnittsverdi. Vi fant ut at Spin Image og Radial Intersection
Count Images shape descriptorene ga den mest pålitelige generelle ytelsen,
mens 3D Shape Context, Fast Point Feature Histogram, og Quick Intersec-
tion Count Change Image shape descriptorene ga mer varierte resultater.

2

PREFACE

Through the process of writing this thesis, we have been fortunate to
explore the object recognition domain in depth, identifying gaps in know-
ledge and highlighting the role shape descriptors play in various computer
vision applications.

A special thanks to Bart Iver van Blokland from NTNU who has been
flexible in helping us creating this framework and understanding concepts
related to shape descriptors.

3

CONTENTS

Abstract 1

Sammendrag 2

Preface 3

Contents 6

List of Figures 6

List of Tables 9

1 Introduction 2
1.1 Research Questions and Objectives 3
1.2 Stakeholders . 3

2 Background & Related Works 5
2.1 3D Object Representation 5

2.1.1 Triangle Mesh . 5
2.1.2 Point Cloud . 6

2.2 Shape descriptors . 7
2.2.1 Spin Image . 8
2.2.2 3D Shape Context 9
2.2.3 Fast Point Feature Histogram 10
2.2.4 Radial Intersection Count Images 11
2.2.5 Quick Intersection Count Change Image 12

2.3 Distance functions . 13
2.4 Other Methods for Object Recognition 14
2.5 Challenges Faced by Recognition Methods 15
2.6 Datasets for 3D Object Recognition 16

2.6.1 ABC: A Big CAD Model Dataset for Geometric
Deep Learning . 17

2.6.2 ShapeNet: An Information-Rich 3D Model Repository 17

4

CONTENTS 5

2.6.3 Google Scanned Objects: A High-Quality Dataset
of 3D Scanned Household Items 18

2.6.4 Procedural Generation for 3D Object Datasets . . . 19
2.7 Evaluating Shape Descriptors 20
2.8 Gap in knowledge . 20

3 Methods 23
3.1 Data Collection . 24

3.1.1 Dataset Requirements 24
3.1.2 Dataset: Scanned Objects by Google Research . . . 25
3.1.3 Dataset Preparation 27
3.1.4 Transformation Requirements 28
3.1.5 Transformations . 29
3.1.6 Replicability . 42
3.1.7 Transformed Objects and Metadata 43

3.2 Performance Data Generation 44
3.2.1 Comparing Descriptors 44
3.2.2 Descriptor Parameters 50
3.2.3 Implementation . 52

3.3 Data Analysis . 53
3.3.1 Implementation . 54

3.4 Architecture Overview . 55

4 Results 57
4.1 Generation Times . 58
4.2 Comparison Times . 58
4.3 Basic Matching Performance 60

4.3.1 Rotated Objects . 60
4.3.2 Resized Objects . 60
4.3.3 Moved Objects . 60
4.3.4 Mirrored Objects . 60

4.4 Deformation Resistance . 65
4.4.1 Twisted Deformation of Objects 65
4.4.2 Rippled Deformation of Objects 65

4.5 Noise Resistance . 65
4.5.1 Gaussian Vertex Displacement Along Normals . . . 65
4.5.2 Deviation and Rotation of Vertex Normals 69

4.6 Clutter Resistance . 69
4.6.1 Clustered Objects 69
4.6.2 Ability to Match with Partial Overlap 69

4.7 Occlusions and Incomplete Surfaces 69
4.7.1 Objects with Holes 73
4.7.2 Partial Surface Visibility 73

6 CONTENTS

5 Discussion 77
5.1 Evaluating the Shape Descriptors 77

5.1.1 Basic Matching Performance 77
5.1.2 Deformation Resistance 78
5.1.3 Noise Resistance . 78
5.1.4 Clutter Resistance 79
5.1.5 Occlusions and Incomplete Surfaces 79
5.1.6 Overall . 79

5.2 Project Architecture . 80

6 Conclusions 81
6.1 Future Work . 82

References 85

Appendices: 93

A Github repositories 94

LIST OF FIGURES

2.1.1 Representations of a bottle using a triangle mesh and point
cloud . 6

2.1.2 Visualisation of an object’s normals 7

2.2.1 Example of a Support Radius 8

2.2.2 Spin Image taken from different points in an object [10] . . 9

2.2.3 Support Volume of the 3DSC sphere [11] 10

2.2.4 Visualisation of how FPFH only connects each point to its
closest neighbours [12] . 11

2.2.5 Radial Intersection Count Image Generation Example [13] . 12

2.2.6 How QUICCI generates its histogram [14] 13

2.5.1 Example of a cluttered environment 15

2.5.2 Example of an object with occlusion 16

2.5.3 Example of object with Gaussian noise 16

2.7.1 Sketch of Spin Image’s evaluation method [10] 21

2.7.2 Performance of different descriptors in a cluttered environ-
ment [13]. Red representing areas they managed to recog-
nise, and blue being the original object 21

3.1.1 Setup of Google’s scanning rig for high-quality model cre-
ation [49] . 26

3.1.2 The original object (left) and its transformed versions with
gradually increasing twisting intensity, illustrating the im-
pact of twisted deformation on the object’s surface. Object
ID 0009. 33

3.1.3 Original object (left) and its transformed versions with gradu-
ally increasing ripple effect intensity, showcasing the impact
of ripple deformation on the object’s surface. Object ID 0036 34

7

8 LIST OF FIGURES

3.1.4 Original object 0069 and its ten transformed versions with
gradually increasing Gaussian distributed vertex displace-
ment, ranging from the original object on the right to the
version with the largest noise on the left. Each transformed
object is individually tested, allowing for a comprehensive
evaluation of shape descriptor performance under varying
levels of noise. 35

3.1.5 Simultaneous depiction of deviated normals for ten object
categories for illustrative clarity: the left portion displays
an overlay of normals with deviations from 0 to 45 degrees,
while the right portion presents the normals after under-
going a random rotation in addition to the deviation. The
right one is used for evaluating the shape descriptors bench-
mark. During testing, each object category is assessed in-
dividually. 36

3.1.6 An example of a clustered arrangement of objects, where
the primary object (Object ID 0054) is surrounded by 0, 5,
10, 20 and 100 other objects within the cluster. 38

3.1.7 An illustration of objects with varying degrees of partial
overlap. The overlapping regions can be observed as the
main object becomes increasingly covered by the additional
objects. Object ID 0098 . 39

3.1.8 Illustration of object number 0476 in its original state and
through various stages of the "Object with Holes" trans-
formation, showcasing the gradual increase in the number
and size of holes in the object’s surface. 41

3.1.9 Illustration of the Partial Surface Visibility transformation
using Unity raycasting. The image shows a side view and
a raycast start position view of an object, along with the
raycast path traced for visualization. Two androids are also
shown, one shot from one angle and the other one demon-
strating raycasting from two closely positioned points. . . . 43

3.2.1 Floor tests for the shape descriptors. Red line = Average
distance, Green line = 90th percentile 48

3.2.2 Standard Deviation distribution for the shape descriptors . 49
3.2.3 Red sphere representing the area taken into consideration

with a 2.5 support radius 51
3.3.1 Examples of diagrams with all distances per category and

average . 54
3.4.1 Overview of Benchmark architecture 56

4.2.1 Generation time sorted on object’s vertex count from low
to high . 59

4.3.1 Rotated Objects Results . 61
4.3.2 Resized Objects Results . 62
4.3.3 Moved Results . 63
4.3.4 Mirrored Results . 64

LIST OF FIGURES 9

4.4.1 Twisted Deformation Results 66
4.4.2 Rippled Deformation Results 67
4.5.1 Gaussian Vertex Displacement Along Normals Results . . . 68
4.5.2 Deviation and Rotation of Vertex Normals Results 70
4.6.1 Clustered Objects Results 71
4.6.2 Ability to Match with Partial Overlap Objects Results . . . 72
4.6.3 Ability to Match with Partial Overlap Objects results for

RICI, when object 977’s result in category “65.1-75.0” is
ignored . 73

4.7.1 Objects With Holes Results 74
4.7.2 Partial Surface Visibility Results 75

LIST OF TABLES

2.3.1 Recommended shape descriptor and distance function com-
binations . 15

3.2.1 Average Distance and 90th percentile for each shape descriptor 47
3.2.2 Average Distance for test on equal objects 47
3.2.3 Bin sizes and resolutions of the shape descriptors 51

4.0.1 Amount of time spent running each test, in hours 58
4.2.1 Average generation time for each descriptor 59
4.2.2 Average comparison time for each descriptor 59

1

CHAPTER

ONE

INTRODUCTION

1In the field of computer vision, 3D shape descriptors play a critical role
in the identification and understanding of 3D object surfaces. These al-
gorithms extract numerical values representing specific attributes of an
object, which enables the analysis and processing of visual data. Which
is faster than comparing the 3D surfaces directly. Shape descriptors have
been utilised in various applications including shape registration [2–4],
shape segmentation [5–7], and retrieval [8, 9]. Despite these advance-
ments, the general consensus of the most suitable descriptor for different
scenarios and applications is lacking.

The shortcomings are twofold: a) current evaluation strategies have
only tested a narrow set of objectives, and b) they lack a proper meas-
urement strategy. Thus, this thesis aims to address these issues by pro-
posing a more comprehensive and systematic evaluation method, thereby
enhancing our understanding of the strengths and weaknesses of different
descriptor methods.

The scope of this study is limited to the evaluation of five widely used
shape descriptors: the Spin Image [10], 3D Shape Context [11], Fast Point
Feature Histogram [12], Radial Intersection Count Image [13], and the
Quick Intersection Count Change Image [14]. This thesis aims to evaluate
the effectiveness of these descriptors in various situations, encompassing
categories of scenarios such as changes in either object orientation and
scale, the introduction of noise, and the presence of clutter. To ensure a
reliable and robust benchmark, attention is dedicated to the design and
implementation of the testing environment and dataset, enabling evalu-
ation across diverse scenarios.

1This chapter is based on the Autumn 2022 preparatory project [1].

2

CHAPTER 1. INTRODUCTION 3

1.1 Research Questions and Objectives
With the lack of research in which shape descriptor has the best perform-
ance in different scenarios we define the following research question:

RQ1: To what extent are the object recognition abilities of shape descriptors
affected when simulating real-world scenarios?

In order to answer this research question we define the following ob-
jectives, which will help us structure how to solve the challenges related
to the research question:

1. Identify the criteria by which a shape descriptor should be evaluated.

2. Develop a method to measure these criteria in an objective manner.

3. Evaluate the performance of popular shape descriptors based on the
identified criteria.

1.2 Stakeholders
This project’s main stakeholders can be split into three different groups:

Authors: The authors, Haakon Gunnarsli and Jonathan Brooks, are act-
ive stakeholders in this project, as they are the ones building the
framework and writing the thesis. Their main motivation for this
project is to get a deeper understanding of shape descriptors, and
helping future researchers within the field by constructing the bench-
mark.

Supervisor: This project’s supervisor, Bart Iver van Blokland, is also an
active stakeholder in this project. He has aided the authors with
understanding concepts and in development. This project will be a
useful tool for van Blokland in further understanding how to compare
shape descriptors, and can be used in his future research.

Researchers: Researchers are passive stakeholders in this project. This
group will benefit from the framework, as they get a universal stand-
ard that can be used to compare their own shape descriptors to
others, which will help in improving their performance.

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

BACKGROUND & RELATED WORKS

1This section will present the different methods and theories relevant for
the thesis and 3D object recognition in general, as well as introduce the
different shape descriptors and their corresponding distance functions that
were chosen. In addition to the theory, the gap in knowledge that this
research aims to answer will be presented.

2.1 3D Object Representation

There are many ways to represent 3D objects, where each method has its
own pros and cons. Some popular methods include voxels, skeletons, point
clouds, and triangular meshes [15]. However for this thesis only the point
cloud and triangular mesh methods are utilised, since these are the ones
used by the shape descriptors in this thesis. Point clouds are an effective
digital representation of 3D scans, from for example LiDAR sensors [16],
while triangular meshes provide an effective way to store digital 3D object
data for rendering [17]. These two differ in what data they store for
an object, which gives them some advantages over the other in specific
situations (see Figure 2.1.1 for a visual representation). The following
subsections will present these two methods for 3D object representation.

2.1.1 Triangle Mesh

A triangle mesh is a data structure for representing and visualising 3D
objects. As a minimum, a mesh must have vertex coordinates, but it
may also include additional attributes such as vertex normals and texture
coordinates. The number and arrangement of these elements determine
the overall shape and detail of the mesh.

Vertexes are used as a reference in order for a program to know where
to place an object in 3D space. They are defined as a three dimensional

1This chapter is based on the Autumn 2022 preparatory project [1].

5

6 CHAPTER 2. BACKGROUND & RELATED WORKS

(a) Triangular Mesh (b) Point Cloud

Figure 2.1.1: Representations of a bottle using a triangle mesh and point
cloud

point, with an x-, y-, and z-coordinate. An object’s normals are values
that determine how an object should interact with light [18] (example can
be seen in Figure 2.1.2). Faces determine which vertices are connected
together. Usually, three vertices are connected together to form a triangle
and the empty room between them is filled in. Meshes are useful for a
variety of applications, including 3D modelling, animation, and simulation.
Programs such as Unity use meshes extensively for this reason [19]. In
addition to their computational efficiency, meshes have the advantage of
being able to represent a wide range of shapes and geometries, from simple
geometric primitives to complex organic looking forms [20].

2.1.2 Point Cloud

A point cloud is a collection of points in 3D space, typically representing
the surface of a real-world object. It consists of a set of points in 3D
space, which are defined using x-, y-, and z-coordinates [21]. They are
the output of real world 3D scanners such as the aforementioned LiDAR
scanner [16] and other laser based scanners [22]. Point clouds are also often
used in computer graphics and computer vision applications, as converting
a point cloud from a scanner to a triangle mesh, or other representations,
is a demanding task [23].

Point clouds lack connectivity information between points, which is
crucial for creating a triangle mesh. Converting a point cloud to a tri-
angle mesh requires additional algorithms to establish connectivity and

CHAPTER 2. BACKGROUND & RELATED WORKS 7

Figure 2.1.2: Visualisation of an object’s normals

create a coherent surface representation [23]. This conversion can be diffi-
cult for several reasons; real world scanning methods often produce point
clouds with noise and outliers, leading to inaccuracies and artefacts in
reconstructed triangle meshes [24]. Point clouds may also have missing
or sparse data, resulting in an incomplete or non-uniformly sampled rep-
resentation, making continuous and coherent triangle mesh creation more
challenging [25]. Furthermore, given only the point cloud, there might
be multiple plausible ways to connect the points to form a triangle mesh,
leading to ambiguity in surface reconstruction and potentially resulting
in incorrect or sub-optimal surface reconstructions. Several algorithms,
such as Poisson Surface Reconstruction [26], Ball Pivoting [27], and Al-
pha Shapes [28], have been developed to address these challenges. Despite
these methods, unforeseen results may still occur.

Unlike meshes, which are made up of vertices, normals, and faces, point
clouds do not have any inherent structure or connectivity between the
points. In addition, point clouds cannot store any information about an
object’s texture or colour, making them less attractive to use in rendering
applications [29].

2.2 Shape descriptors

A shape descriptor is a method used to describe the features and shape
of an object, by registering and performing calculations on the 3D volume
around given points of the object. They are generally used to compare
an object to a set of predefined objects, in order to find the best match.
The main idea being that computing numbers from descriptors is compu-
tationally cheaper than trying all different permutations when comparing
object surfaces. The volume that is used in the calculations around a
given point is called the Support Volume, and its shape is based on the
shape descriptor in use. The volume can in some cases be a sphere (Figure
2.2.3), while others a cylinder. Additionally, the width and height used
from a given point is called the Support Radius, and changes the area a

8 CHAPTER 2. BACKGROUND & RELATED WORKS

Figure 2.2.1: Example of a Support Radius

shape descriptor takes into account (see Figure 2.2.1).
How these calculations are done and how the output is used to rep-

resent the object varies from descriptor to descriptor, additionally some
descriptors utilise point clouds [10–12] as their object reference while oth-
ers use triangle meshes [13, 14]. This section aims to provide a compre-
hensive rundown of the chosen shape descriptors, along with their respect-
ive operational principles2.

2.2.1 Spin Image

The Spin Image (SI) descriptor was introduced by Johnson in 1997 [30].
The goal of creating the Spin Image was to create a descriptor that man-
aged to match surfaces well in real life scenes, where clutter and occlusion
are common occurrences.

The descriptor utilises Oriented Points, points in 3D space with an
associated direction, to generate the spin images. These points are defined
by an objects’ vertex positions and their corresponding surface normal.
For each vertex SIv a plane consisting of Nbin ∗Nbin bins of equal size is
created. The plane rotates around the vertex’s normal SIn, and increases
the value for each bin if a point intersects with it. The Spin Image also has
some parameters that can be changed, depending on the use case. The
size of each of its bins can be modified, in order to change the resolution
of the output. Additionally, the Support Angle can be modified which is
the maximum angle between the given point’s direction and the normal
of points within the Support Radius [10].

The output of the descriptor can be seen as a 2D image, where the
darker parts are areas with a high number of overlapping points. An
example of this can be seen in Figure 2.2.2, where the β axis denotes the
vertical displacement of a point concerning the reference point SIn and
the α axis represents the horizontal distance of the same point from the

2Implementations for the following descriptors can be found in the libShape-
Descriptor Github repository (Appendix A).

CHAPTER 2. BACKGROUND & RELATED WORKS 9

Figure 2.2.2: Spin Image taken from different points in an object [10]

said reference point [10].
Johnson et al. performed a test in their paper on using Spin Images

for 3D Object Recognition, where they observed how well the descriptor
worked in environments containing a varying amount of occlusion and
clutter. They then compared the results of the common Spin Image to a
compressed version using the Principle Component Analysis. The data-
set they utilised consisted of 20 objects, where 10 where toys and the
rest where types of pipes. They found that the recognition rate of the
Spin Image decreased in cluttered environments when occlusion was more
prevalent. Recognition will work up to around 70% occlusion where the
recognition rate will begin to drop off for both the compressed and non-
compressed spin images [10].

2.2.2 3D Shape Context

The 3D Shape Context (3DSC) shape descriptor was proposed by Frome et
al. in 2004, and is built as a 3D version of the 2D Shape Context descriptor
by Belongie et al. [31]. One of the goals of the 3DSC shape descriptor was
to be able to perform object recognition in noisy and cluttered scenes, for
example the output of a range scanner. Another problem that can occur
in these environments is occlusion, where a part of an object is not visible
in the scan. Similar to other shape descriptors, 3DSC takes an oriented
point 3DSCp as its starting point and orients itself in the same direction
as its normal 3DSCn. The support volume is represented as a sphere and
is divided into bins, which have equally spaced boundaries in the azimuth
and elevation dimensions and logarithmically spaced boundaries along the
radial dimension (visualised in figure 2.2.3).

The bins closest to 3DSCp are very small compared to the others,
therefore in order to compensate for not being to sensitive to small differ-

10 CHAPTER 2. BACKGROUND & RELATED WORKS

Figure 2.2.3: Support Volume of the 3DSC sphere [11]

ences in the shapes a minimum radius is used. It is also possible to change
the max radius of the sphere (i.e. Support Radius), which can be changed
determined of the size of the objects. Each bin uses a weighted count of
all the points which fall inside its boundaries. Since the descriptor doesn’t
take into account the orientation of an object, to be able to compare two
descriptors one of the descriptors needs to be rotated around its axis.
Then the lowest distance of the different permutations will be chosen [11].
This results in a slower matching rate than other descriptors [13].

In its paper, the 3DSC descriptor’s performance was compared to the
Harmonic shape contexts (HSC) and Spin Image descriptors. The dataset
used was a set of 56 3D models of different cars, scaled up to their actual
sizes. Further, the objects where converted into point clouds using a laser
sensor simulator. The 3DSC descriptor outperformed both SI and HSC
when adding Gaussian noise to the query scans. Additionally, it also
managed to outperform the other descriptors in cluttered environments
where it on average managed to identify 78% of the models using the top
five choices for each scene [11].

2.2.3 Fast Point Feature Histogram

The Fast Point Feature Histogram was proposed in 2009 by Rusu et al.,
and is an optimised version of the previous Point Feature Histogram (PFH)
descriptor [32]. FPFH has a significantly better algorithmic run-time com-
pared to the previous version, at O(nk) as opposed to PFH’s O(nk2).
It works by taking each point FPFHp and calculates the relationships
between it and its neighbours (figure 2.2.4), called Simplified Point Fea-
ture Histogram (SPFH). Following this, for each point its k neighbours
are redetermined and the neighbouring SPFH values are used to weight

CHAPTER 2. BACKGROUND & RELATED WORKS 11

Figure 2.2.4: Visualisation of how FPFH only connects each point to its
closest neighbours [12]

the final FPFH value for that point [12]. With FPFH’s default paramet-
ers, of 11 bins, the output histogram will be a 33-byte array of float values
[33]. Which compared to the other descriptors only a QUICCI with 32x32
bin size, equivalent to the size of 32 floats, would out perform [12].

2.2.4 Radial Intersection Count Images

The Radial Intersection Count Images (RICI) was proposed by van Blok-
land et al. in 2020. As clutter has been named one of the larger factors to
contribute towards poorer performance in current shape descriptors [34],
RICI aimed to provide a clutter-resistant descriptor with faster generation
times than previously existing shape descriptors. The RICI descriptor uses
a similar concept to the Spin Image in how to computes the descriptors.
Using Oriented Points, it creates a histogram using a square, of size
Nbin ∗Nbin, which can be visualised as an image. The difference between
SI and RICI is how the histogram is calculated. Instead of counting ori-
ented points, RICI counts the amount of intersections made with circles
which surrounds the vertex normal. Each column in the histogram rep-

12 CHAPTER 2. BACKGROUND & RELATED WORKS

Radius
L
a
ye
r

L
a
ye
r

Radius

Figure 2.2.5: Radial Intersection Count Image Generation Example [13]

resents a layer of the object, while the rows represent the different circles
(visualised in Figure 2.2.5). As with the Spin Image, it is also possible to
increase or decrease the Support Radius which will determine the radius
of covered by the circles [13].

In its original paper, the RICI descriptor was compared to the Spin
Image and 3D Shape Context descriptors. The criteria tested were clutter
resistance, generation time, and matching performance. SHREC2017 [35]
was used as the dataset of choice, with over 51000 triangle meshes over
55 common categories. As both the 3DSC and SI descriptors utilises
point clouds, while RICI uses triangle meshes, it was important when
converting the triangle meshes to point clouds to use a high sample count
to ensure a low level of noise. The tests show that RICI significantly
outperforms the others in both clutter resistance and generation time,
while RICI only outperformed the rest while using an early exit when
looking at the matching rate. When the early exit is not used RICI has
a similar matching rate to the SI, but they both outperform the 3DSC
descriptor [13].

2.2.5 Quick Intersection Count Change Image
The Quick Intersection Count Change Image descriptor (QUICCI) was
also proposed by van Blokland et al. in 2020, and was made to solve
the problem of retrieving partial objects efficiently. Searching for objects
containing a specific feature in a large dataset can be quite memory in-
tensive, as the descriptors generated has to describe the object in such
small detail. QUICCI addresses this by basing itself on how RICI gener-
ates histograms, but instead of storing the sum of intersection changes it
only stores boolean values (example can be seen in Figure 2.2.6). These
boolean values represent if there has been any changes in intersections
from one circle to the next. This results in a much smaller descriptor size
compared to other descriptors, which utilises datatypes such as floats or
integers in their output [14].

Using the same testing environment as in the RICI tests, QUICCI’s
performance was compared to the RICI, SI, 3DSC, and Fast Point Fea-
ture Histogram shape descriptors. It is found that QUICCI performs at

CHAPTER 2. BACKGROUND & RELATED WORKS 13

Central Axis

Nearby Mesh

0 0 2 2 4 2 2 0 Intersection counts

QUICCI bit sequence

Figure 2.2.6: How QUICCI generates its histogram [14]

the same level as RICI in clutter resistance, but with a slightly higher
performance. Additionally, with QUICCI’s binary output it manages to
have a much higher comparison and generation rate than the other shape
descriptors [14].

2.3 Distance functions

When performing object recognition, distance functions can be used to
compare the sets of descriptor features. Many of the shape descriptor
papers provide a recommendation for which distance function should be
used in tandem with them (can be seen in Table 2.3.1). The distance
functions work in different ways by weighting various factors, which can
cause the confidence of two objects being similar to change depending on
which distance function you choose. There are a lot of different distance
functions, for example Euclidean and Pearson Correlation which have been
used in the previously mentioned tests [11, 13]. The following section will
give an introduction to the different distance functions relevant for the
paper, which will show how they differ to each other.

Euclidean Distance is one of the more commonly used distance met-
rics for computer vision tasks, it was the metric of choice for the original
3DSC paper [11] and is also used in the Point Cloud Library3 [36] with
FPFH. The distance output is the direct distance between two points in
Euclidean space [37].

euclidean distance(A,B) =

√√√√ n∑
i=1

(Ai −Bi)2 (2.1)

Clutter Resistant Distance was introduced together with the RICI
3https://pointclouds.org/

https://pointclouds.org/

14 CHAPTER 2. BACKGROUND & RELATED WORKS

descriptor. It uses the same principles as RICI, but instead of just counting
intersection changes it sums up the the difference in intersection counts
for the rows where there is a change from one descriptor to another, then
it squares the sum. As only the rows where there has been a change in
the intersection count is included, the clutter is safely ignored [13].

D(rici, r, c) = rici(r, c)− rici(r, c− 1) (2.2)

CRD(n, h) =

Nbins∑
r=0

Nbins∑
r=1

{(
D(n, r, c)−D(h, r, c)

)2
, if D(n, r, c) ̸= 0

0, otherwise

Weighted Hamming Distance is a modified version of the Hamming
Distance made for the QUICCI descriptor. The Hamming Distance is a
metric used to compare binary strings, where the result is the amount of 1s
after doing the XOR operation [38]. The WHD is a solution to when the
output descriptor has a large surplus of either 1 or 0, which would cause
the normal Hamming Distance to give irrelevant shapes when performing
shape retrieval. WHD addresses this by weighting the bits depending on
the amount proportion of 1s and 0s [14].

DWH(In, Ih) =

∑N
r=0

∑N
c=0(In[r, c](1− Ih[r, c]))

max
(∑N

r=0

∑N
c=0 In[r, c], 1

) (2.3)

+

∑N
r=0

∑N
c=0((1− In[r, c])Ih[r, c])

max
(
N −

∑N
r=0

∑N
c=0 In[r, c], 1

)
Pearson Correlation is a commonly used metric to measure the

linear correlation, which has been previously used to compare Spin Image
descriptors [13]. It is used to determine the strength and direction of the
relationship between two variables. Its output is between 1 and -1, where
1 indicates a strong correlation, 0 is no correlation, and -1 represents a
negative correlation between the variables [39].

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(2.4)

2.4 Other Methods for Object Recognition
In addition to the improvements and introduction of new methods in
the field of shape descriptors, there have also been done considerable ad-
vancements in object recognition through machine learning. Such as the
MCRBM model proposed by Han et al. in 2016, which was compared
amongst others to the Spin Image and even proved to perform better in
the task of shape retrieval [40]. Even though machine learning methods
can in some situations perform better than shape descriptors, they come

CHAPTER 2. BACKGROUND & RELATED WORKS 15

Shape Descriptor Distance Function
RICI Clutter Resistant Distance [13]

QUICCI Weighted Hamming Distance [14]
SI Pearson Correlation [10]

3DSC Euclidean Distance [11]
FPFH Euclidean Distance [33]

Table 2.3.1: Recommended shape descriptor and distance function com-
binations

Figure 2.5.1: Example of a cluttered environment

with some computational problems compared to shape descriptors. As
they require a lot of processing power, re-training a model can become
quite resource intensive which could limit them to using smaller datasets.
Additionally, the task of how to structure 3D data for a neural network
has been deemed not trivial [41].

2.5 Challenges Faced by Recognition Meth-
ods

In the real world, shape descriptors need to be able to handle a wide range
of different challenges which can be introduced by the environment the
objects are in or the scanner used. As mentioned, many of the previously
named shape descriptors were created to tackle the problem of cluttered
environments. Such as SI, 3DSC, and RICI [10, 11, 13]. An environment is
cluttered when the original object you want to recognise is surrounded by
other objects, as can be seen in Figure 2.5.1. As the shape descriptors use
the volume around given points in an object, if another object is within
that volume it can affect the values the shape descriptors’ output. Making
it harder to perform object recognition.

Another problem which is usually present in real world scans is oc-
clusion [42]. Occlusion can happen when an object is not fully scanned,
leaving parts of the object out of the scan. The amount of occlusion can
vary significantly, but it can still affect the shape descriptors’ outputs. If

16 CHAPTER 2. BACKGROUND & RELATED WORKS

Figure 2.5.2: Example of an object with occlusion

Figure 2.5.3: Example of object with Gaussian noise

parts of an object is not present it can have an effect on the shape of the
object, leading to descriptors for the same given point in two objects being
dissimilar. We can see an example of an object with occlusion in Figure
2.5.2, here the back side of the doll has not been scanned.

Noise from scans can also be a problem shape descriptors are affected
by. This can be caused by inaccuracies in the scanners’ optical components
or electronic noise [43]. This noise is usually distributed following the
Gaussian distribution, meaning that it follows a normal distribution [44].
A scan that has been exposed to this type of noise can often look disfigured,
such as in Figure 2.5.3. Even with the advancements of algorithms that
can remove this type of noise [43, 45, 46], it can still be present and is a
problem shape descriptors need to be aware of.

2.6 Datasets for 3D Object Recognition

In the field of 3D object recognition, numerous datasets have been de-
veloped to facilitate research and evaluation of various methods and tech-
niques [35, 47–49]. These datasets provide researchers with comprehens-

CHAPTER 2. BACKGROUND & RELATED WORKS 17

ive collections of 3D objects, which serve as benchmarks for evaluating
the performance of their algorithms. The significance of discussing these
datasets lies in their wide usage in related research fields, as they allow for
comparison of results and promote standardisation across different studies.
In this study, we examine three prominent datasets: the ABC-Dataset, the
ShapeNet dataset, and the Google Scanned Objects dataset.

Moreover, the process of creating large, diverse datasets can be labour-
intensive and time-consuming, particularly if done manually. Therefore,
an automated process, such as procedural generation, can be invaluable.
Procedural generation uses algorithms to produce vast datasets with di-
verse content. This approach enables researchers to generate specific
datasets tailored to their needs, offering potential advantages in terms of
scalability and customisation. Therefore, we explore the use of procedural
generation techniques for creating 3D object datasets.

2.6.1 ABC: A Big CAD Model Dataset for Geometric
Deep Learning

Introduced by Koch et al., the ABC-Dataset is a unique resource that
houses over one million CAD models, predominantly featuring mechanical
shapes. These models are defined by parameterised curves and surfaces
and offer valuable ground truth data for tasks such as patch segmentation,
geometric feature detection, and shape reconstruction. The richness of
this dataset lies in its diversity, which allows for meaningful testing and
refinement of algorithms that analyse and characterise mechanical shapes.

Supported by Onshape’s extensive CAD model repository, the dataset
has been utilised for benchmarking surface normal estimation, enabling
comparison between data-driven methods and traditional geometry pro-
cessing algorithms. The models’ encoding as triangle meshes allows for
resampling at arbitrary resolutions, offering flexibility for research, such
as testing shape descriptor algorithms on objects with varying levels of
detail.

The ABC-Dataset offers an ever-growing resource for geometric deep
learning research, with new models continually being added to the public
collection [47].

2.6.2 ShapeNet: An Information-Rich 3D Model Re-
pository

ShapeNet is an ongoing, collaborative effort between researchers at Prin-
ceton, Stanford, and TTIC to establish a richly-annotated, large-scale
dataset of 3D shapes [48]. The aim of ShapeNet is to provide researchers
worldwide with data that enables research in computer graphics, computer
vision, robotics, and related disciplines. ShapeNet contains 3D models
from various semantic categories, organised under the WordNet taxonomy
[50]. The dataset offers numerous semantic annotations for each 3D model,

18 CHAPTER 2. BACKGROUND & RELATED WORKS

such as consistent rigid alignments, parts and bilateral symmetry planes,
physical sizes, keywords, and other planned annotations.

Currently, ShapeNet consists of several subsets, including ShapeNet-
Core and ShapeNetSem. ShapeNetCore is a subset of the full ShapeNet
dataset, with single clean 3D models and manually verified category and
alignment annotations. The dataset covers a range of 55 object categories,
which includes the 12 object categories from PASCAL 3D+, a well-known
computer vision benchmark dataset [51]. In total, the dataset consists
of approximately 51,300 unique 3D models. ShapeNetSem, on the other
hand, is a smaller and more densely annotated subset, consisting of 12,000
models spread across a broader set of 270 categories. These models are
annotated with real-world dimensions, material composition estimates at
the category level, and total volume and weight estimates.

ShapeNet has indexed more than 3 million models, with 220,000 mod-
els classified into 3,135 categories (WordNet synsets) [48]. It provides
extensive sets of annotations for every model and links between models in
the repository and other multimedia data outside the repository. Annota-
tions in ShapeNet include geometric attributes such as upright and front
orientation vectors, parts and key points, shape symmetries, and the scale
of objects in real-world units.

The raw 3D model data for ShapeNet comes from public online re-
positories or existing research datasets. ShapeNet’s data is collected from
two popular public repositories, Trimble 3D Warehouse and Yobi3D. The
Trimble 3D Warehouse contains 2.4 million user-designed 3D models and
scenes, while Yobi3D contains 350,000 additional models collected from a
wide range of other online repositories. Together, these sources provide a
diverse set of shapes from various object and scene categories.

In the study “Radial intersection count image: A clutter-resistant
3D shape descriptor” [13], the researchers chose to use the combined
SHREC2017 dataset, which consists of 51,162 triangle meshes, emphas-
ising the relevance of ShapeNet for benchmarking shape descriptors [35].

2.6.3 Google Scanned Objects: A High-Quality Data-
set of 3D Scanned Household Items

The Google Scanned Objects dataset, developed by Google Research, is
a collection of 3D-scanned common household items consisting of 1,030
objects [49]. Presented in the paper titled “Google Scanned Objects: A
High-Quality Dataset of 3D Scanned Household Items” at the ICRA 2022
conference, this dataset addresses the need for realistic 3D object models
in interactive 3D simulations, synthetic perception, and robotic learning
applications. Focusing on real scans of objects, the dataset offers a more
accurate representation of real-world scenarios compared to CAD models
or other artificial representations.

Comprising a diverse range of household items, such as furniture, ap-
pliances, tools, and decorative items, the Google Scanned Objects dataset
is well-suited for training and testing algorithms across various computer

CHAPTER 2. BACKGROUND & RELATED WORKS 19

vision and robotics domains. Each object in the dataset comes with high-
resolution shape and texture information in the form of Simulation De-
scription Format (SDF) models, which are compatible with Gazebo and
PyBullet robotics simulators [49].

The 3D models in the dataset are generated from real scans, ensuring
that the shape and texture data are of high quality and closely resemble
real-world objects. The scanning process involves capturing images of ob-
jects from multiple angles under controlled and calibrated conditions using
a structured-light 3D scanner, thereby providing an accurate representa-
tion of the objects’ geometry and appearance [49].

An automated pipeline preprocesses and cleans the dataset by filtering
out invalid or duplicate objects, estimating simulation properties, con-
structing collision volumes, and downsampling the models to usable sizes.
Additionally, the pipeline converts the models to SDF format, creates
thumbnail images, and packages the models for use in simulation systems.

The Google Scanned Objects dataset offers a diverse and variable set
of objects that reflect real-world object properties rather than idealised
recreations. This diversity facilitates the transfer of learning from sim-
ulation to real-world scenarios and promotes the development of robust
computer vision algorithms.

This dataset, which is publicly available and has already been util-
ised in over 25 papers across various projects, including computer vision,
computer graphics, robot manipulation, robot navigation, and 3D shape
processing. The majority of these projects have employed the dataset to
provide synthetic training data for learning algorithms, with applications
such as Kubric [52], an open-source generator of scalable datasets for over
a dozen vision tasks, and LAX-RAY[53], a system for searching shelves
with lateral access X-rays to automate the mechanical search for occluded
objects on shelves [49].

2.6.4 Procedural Generation for 3D Object Datasets

Procedural generation is a technique that uses algorithms and rules to
artificially generate content. It is used to create intricate and diverse
3D objects that are essential for a variety of applications such as com-
puter graphics, virtual reality, video games, and simulations [54, 55]. This
approach enables the creation of vast datasets of 3D objects without re-
quiring manual design or modelling [56].

A common method for generating 3D objects through procedural gen-
eration is L-systems, which were initially proposed by Aristid Lindenmayer
to model plant growth [57]. L-systems use formal grammars and produc-
tion rules to generate 3D shapes iteratively. These grammars dictate how
a starting shape, known as an axiom, transforms into a more complex
shape by recursively applying production rules. L-systems have been suc-
cessfully employed to create a wide array of 3D objects, including plants,
trees, and fractals.

Another technique for generating 3D objects involves shape grammars,

20 CHAPTER 2. BACKGROUND & RELATED WORKS

which rely on a set of rules to determine how shapes can be combined or
transformed to create new shapes. Shape grammars have been used in
various fields, such as architecture, where they have facilitated the gener-
ation of building models and cityscapes. For example, Müller et al. [58]
introduced a procedural modelling system for creating buildings based on
user-defined shape grammar rules. This system enables the generation of
large datasets containing diverse and realistic building models with min-
imal manual input.

Recently, machine learning techniques have been incorporated into
the procedural generation of 3D objects. Deep learning models, such as
Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs), have been employed to learn the underlying distribution of 3D
object shapes and generate new objects by sampling from this distribu-
tion [59]. This method can create extensive datasets comprising diverse
and realistic 3D objects, which can be utilised for a range of applications,
including the training and evaluation of computer vision and robotics al-
gorithms.

2.7 Evaluating Shape Descriptors

During the creation of a shape descriptor it is important to be able to eval-
uate its performance against existing ones. This can aid in the develop-
ment phase, as a researcher is able to constantly see what can be improved.
As well as, when it is fully developed evaluate it to existing alternatives to
discover where it outperforms the rest. Each of the aforementioned shape
descriptor papers [10–14] have their own evaluation methods, however they
follow similar steps. Usually they start by calculating all the descriptors
for an object O and all the descriptors in a comparison object C. Then
they map the descriptors in O to the descriptors in C with the lowest dis-
tance between them, for example if euclidean distance is used, they want
to find the corresponding descriptor which gives the distance closest to 0.
Then it is possible to use some sort of ground truth, that can analyse how
well the shape descriptor managed to find the correct descriptors in C. A
take on this process can be seen in the SI paper’s sketch, where Johnson
et al. [10] presents their evaluation method (Figure 2.7.1).

This method can work, but as brought into light in the RICI paper self-
similarity within the objects can cause this test to be up to luck [13]. As
seen in Figure 2.7.2, some of the bookcase’s shelfs are practically identical
which causes the descriptors to be matched with a descriptor that is the
same, but just at the wrong place. This shows a clear need for a more
general method in order to evaluate shape descriptors.

2.8 Gap in knowledge

The available documentation regarding the effectiveness of each shape
descriptor is inadequate, and the factors that contribute to a good or bad

CHAPTER 2. BACKGROUND & RELATED WORKS 21

Figure 2.7.1: Sketch of Spin Image’s evaluation method [10]

Figure 2.7.2: Performance of different descriptors in a cluttered envir-
onment [13]. Red representing areas they managed to recognise, and blue
being the original object

22 CHAPTER 2. BACKGROUND & RELATED WORKS

matching performance have not been adequately tested. The limited or
small sets of objects used in previous tests may lead to biased data, which
is not optimal. For example, the Spin Image paper tested only 20 models
[10], and the 3D Shape Context paper tested their descriptor on only 56
car models [11]. By using such a small sample of objects, and in 3DSC’s
case only using cars, the tests become too specific to gather any general
conclusions from. The tests presented in the previous papers also usually
only cover one or two different challenges shape descriptors can face in
the real world. It is clear that more extensive and diverse performance
tests are required to accurately assess the effectiveness of various shape
descriptors. Additionally, a new evaluation method for comparing shape
descriptors without any biases or luck needs to be created to ensure fairness
while testing. These gaps in knowledge will be addressed by this thesis.

CHAPTER

THREE

METHODS

The main challenge of this thesis is to determine an effective method for
comparing 3D shape descriptors. As previously mentioned, these shape
descriptors are used in a wide range of different computer vision applica-
tions. Therefore it is important to figure out which shape descriptors are
best for certain types of tasks. Previous papers [10–14] have showed how
their shape descriptors perform in different environments. However, their
findings are varied and they have utilised different methods for evaluation.
Hence, the necessity for a new standardised evaluation method becomes
apparent.

This necessity can be met by implementing a shape descriptor bench-
mark. A benchmark is a standardisation of how things should be com-
pared or assessed, according to the Cambridge Dictionary. By creating a
standardisation we can define general methods for comparing the shape
descriptors’ performance, as well as defining which metrics should be used
to analyse them. It is important to standardise these metrics, as when
future researchers want to compare their shape descriptors to existing
ones, using a benchmark will legitimise their findings and save them from
time spent creating a testing environment. Additionally, it would guide
researchers and developers in selecting the optimal shape descriptors for
their specific applications.

There are however many requirements and challenges related to imple-
menting this. Defining these requirements will ensure that the implement-
ation covers the necessary areas in order to answer the question of how
shape descriptors are affected in different real world scenarios. Further-
more, they will provide an overview of the challenges related to creating
a benchmark. Three separate categories were identified for the require-
ments. Each of these categories represent an individual process within the
benchmark, and they go as follows:

• Data Collection (Section 3.1): The process of selecting a dataset
and produce transformations that can be used for performance data
generation.

23

24 CHAPTER 3. METHODS

• Performance Data Generation (Section 3.2): Running the datasets
through a set of tests, in order to generate performance data for each
shape descriptor.

• Data Analysis (Section 3.3): Analysing the generated performance
data in order to draw conclusions on how the shape descriptors are
affected.

Another general requirement that is relevant for all these categories, is
making sure that all generated results are replicable. Replicability allows
other researchers to verify, validate, and build upon the findings of a previ-
ous study [60, 61]. Ensuring replicability in a master’s thesis demonstrates
the rigor, transparency, and reliability of the research methodology, con-
tributing to the production of high-quality and trustworthy results [62,
63].

As the aforementioned benchmark categories represent the individual
processes of the benchmark, they all represent their own unique challenges.
Each of processes’ challenges and requirements to solve these challenges
will be separately introduced in the following sections.

3.1 Data Collection
The data collection process is divided into two primary stages. The first
stage involves establishing the criteria for a suitable dataset and then
detailing the process of obtaining a dataset that meets these require-
ments. The second stage focuses on identifying the requirements for ne-
cessary transformations, which will ensure appropriate testing of a shape
descriptor. The subsequent sections will elaborate on the process of cre-
ating these transformations, but first we will introduce some general prin-
ciples regarding the data collection implementation.

3.1.1 Dataset Requirements

We define the following requirements for finding a suitable dataset:

Adoption and Relevance: An ideal dataset should have been adopted
by other researchers for evaluating applications within the same field.
This demonstrates the dataset’s relevance and suitability for the task
at hand, allowing for better comparisons against other work and
fostering advancements in the field.

Availability: Prioritising availability promotes transparency, reproducib-
ility, and collaboration within the scientific community, enhancing
the credibility and reach of our research.

Datatype: The datatype the shape descriptors will have as input, with
some based on point clouds and others on triangle meshes. Con-
verting from triangle mesh to point cloud is relatively simple, as a

CHAPTER 3. METHODS 25

point cloud can be sampled from the vertices of the triangle mesh.
However, converting from point cloud to triangle mesh poses more
challenges due to the inherent nature of point clouds and the in-
formation they contain [23, 26], as previously discussed in section
2.1.2.

Diversity: A suitable dataset should encompass a wide variety of object
classes, capturing the rich complexity of real-world objects ranging
from small everyday items like matches to large objects like planes.
Such diversity allows for a more comprehensive evaluation of shape
descriptors, as it ensures that they are tested on a diverse set of
shapes and surface characteristics.

Labelling: A satisfactory dataset has great labelling so that structuring,
sorting, and filtering the results of a shape descriptor benchmark.
Detailed and accurate labels provide a means of categorising and
organising the data, simplifying the task of data analysis.

Large cardinality: The cardinality influences the statistical significance
and precision of empirical findings. Generally, increased dataset car-
dinality tends to promote enhanced accuracy and reliability in res-
ults, subject to various assumptions.

Real Objects: Using 3D scanners to capture real objects ensure accurate
evaluation of shape descriptors performance on real object detection.
As many computer vision and robotic applications require interact-
ing with genuine objects in everyday environments, it is crucial to
test shape descriptors under conditions that accurately represent the
complexity and randomness of real-world objects [64].

Single-Entity Objects When designing a testing methodology such as
this benchmark, an important step is to minimise uncontrolled vari-
ables in order to obtain accurate and reliable results. By isolating
individual variables, researchers can focus on measuring the effects of
these variables without introducing confounding factors that might
compromise the integrity of the study. By having a dataset with
single-entity objects we can fully control the number of objects that
the shape descriptors are tested on.

3.1.2 Dataset: Scanned Objects by Google Research

As introduced in Background section 2.6, the Scanned Objects dataset, de-
veloped by Google Research, is a collection of 3D-scanned common house-
hold items. It comprises a diverse set of objects, ranging from kitchen
utensils to office supplies and toys, making it an ideal choice for evalu-
ating shape descriptors performance in various real-world scenarios [49].
The dataset has been curated to ensure high-quality scans with accurate
labelling. In this section, justification for selecting this dataset for the
project will be provided.

26 CHAPTER 3. METHODS

Figure 3.1.1: Setup of Google’s scanning rig for high-quality model cre-
ation [49]

Google Research’s Scanned Objects dataset meets our data needs primar-
ily due to its quality, diversity, and its representation of real-world objects.
The data quality is ensured by the use of a system that consists of two
machine vision cameras for object scanning, a DSLR camera for high-
quality HDR color frame extraction, and a computer-controlled projector
for pattern recognition (as seen in Figure 3.1.1). The scanning rig uses a
structured light technique that infers a 3D shape from camera images with
patterns of light that are projected onto an object. These scans represent
real items, offering a practical, real-world context to test shape descriptor
performance [49].

The diversity of the dataset derives from its inclusion of a wide assort-
ment of household items. This results in objects that are roughly similar
in size, which is beneficial for testing shape descriptors. This is because a
large variance in size introduces a performance factor not yet thoroughly
researched. Even though object size wasn’t a requirement, the relatively
equal sizes of the objects turned out to be beneficial for the benchmark.
As will be discussed in Section 3.2.2.1, objects of equal sizes makes the
performance tests more fair when comparing shape descriptors.

As this project is as much about proposing a new benchmark for shape
descriptors’ performance as it is producing relevant results, we have made
our solution with scalability in mind. A well-planned strategy for working
with a benchmark involves starting with only a few objects to enable faster
debugging and optimisation at each stage. As the solution is debugged and
improved, the number of objects can be gradually increased, eventually
adding as many as time and computational constraints allow. Which will
make the results more accurate.

This exhibits how the Scanned Objects dataset, consisting of over 1000
objects, serves as an good choice for this research project. Larger data-

CHAPTER 3. METHODS 27

sets such as the ABC and ShapeNet datasets, as well as merging several
datasets together was also considered. However, these options came with
some drawbacks:

• Pre-processing efforts: Merged datasets can have varying la-
belling systems, file formats, and data structures, which might re-
quire substantial preprocessing efforts. These tasks would add extra
work that may not align with the project timeline constraints.

• Time-consuming test runs: Larger datasets can extend the time
needed for running tests and generating results. This increased com-
putational demand makes it less feasible for timeline of this project.
However, is highly encouraged as future work for this project.

These drawbacks further encourages the use of the Scanned Objects
dataset, as it provides a good variety of objects and enables us to test all its
objects in a timely fashion. The previously presented datasets also mostly
consists of synthetic 3D models, which may not accurately represent real-
world objects. This limitation reduces their effectiveness in evaluating
shape descriptors in real-world scenarios.

The Google dataset’s validity is even further ratified by its use in the
same other computer vision research projects, indicating its applicability
and effectiveness in this field [65–70]. Lastly, its public availability facil-
itates easy access, encouraging collaboration and promoting a culture of
open-source knowledge sharing. All these attributes make the Scanned
Objects dataset a fitting choice for our project.

3.1.3 Dataset Preparation

When designing a testing methodology such as this benchmark, an im-
portant step is to minimise uncontrolled variables in order to obtain ac-
curate and reliable results. By isolating individual variables, researchers
can focus on measuring the effects of these variables without introducing
confounding factors that might compromise the integrity of the study.
Consequently, the dataset underwent several modifications to enhance its
validity and ensure that the conclusions drawn from the tests would be
meaningful. These modifications were meant to isolate variables and pro-
mote consistency throughout all tests.

Firstly, some files contained several objects that were disconnected
from one another. We addressed this by separating them into distinct
objects. Secondly, this subset of disconnected objects also contained ele-
ments that were too similar to each other. To ensure that we were working
with only distinct objects, we established a criterion for uniqueness, which
required a minimum of 15% difference in vertex count. We then removed
any elements from these objects that were too similar to each other, thus
ensuring that we were working with unique objects in our tests. This
increased our dataset to a total of 1193 unique objects.

28 CHAPTER 3. METHODS

Next, we recalculated vertex normals for all objects in the dataset.
This step was for maintaining consistency in the computation method
used for normals throughout the tests. Recalculating normals from the
beginning is important in scenarios such as noise or objects missing parts,
where all normals have to be recalculated after the transformation has
been applied to the object. Consistent vertex normal calculations helped
to eliminate variations, allowing for a more accurate comparison of objects
and their properties during the benchmark tests.

3.1.4 Transformation Requirements

This section outlines the process of determining the requirements that a
benchmark must meet to evaluate the performance of shape descriptors
under various real-world scenarios. A well-constructed test should be de-
signed to evaluate the algorithm’s performance across various scenarios,
replicating the complexities and challenges that would typically be en-
countered in real-world applications.

In the real world, objects are subject to transformations, including
rotations, scaling, deformations, noise, clutter, occlusions, and surface in-
completeness. These transformations can significantly impact the per-
formance of a shape descriptor algorithm. With this in mind, we have
identified the following key performance requirements:

Basic matching performance: To determine whether the algorithm con-
sistently produces the same descriptor for the same surface point on
two copies of the same shape, even when one of the copies is ro-
tated or scaled. This requirement tests the algorithm’s robustness
to basic transformations that are common to encounter in real-world
scenarios. These are transformations such as rotation, scaling, trans-
lation, and mirroring. These types of experiments should test the
shape descriptor performance when faced typical object variations
that is frequently encountered in real-world applications.

Deformation resistance: Everyday objects are not rigid; they bend,
warp, and deform. If shape descriptors can successfully resist these
deformations and recognise the object, it demonstrates their ap-
plicability in a dynamic, real-world environment and not just static
scenarios.

Noise resistance: Noise can be introduced to 3D objects in application
where there is environmental factors or limitations of the data col-
lection equipment. Thus, it is valuable to test the algorithm’s ability
to produce reliable descriptors in the presence of noise.

Clutter resistance: In real-world scenarios, an object of interest may
be surrounded by other objects, leading to partial overlap or clus-
tering. This makes it challenging to isolate and analyse them. This
requirement aims to promote experiments that produces tests that

CHAPTER 3. METHODS 29

can be used for testing clutter resistance as this is something that
computer vision applications are likely to encounter.

Occlusions and Incomplete Surfaces: A relevant scenario is partial
visibility of objects or incomplete surfaces, typically due to occlu-
sions or limitations in data collection techniques. These limitations
often come to the forefront when an object is placed on a surface.
For example, consider scanning a book lying flat on a table. The
scanner will only capture the visible parts of the book, including its
cover, spine, and pages if opened. However, the underside, which is
resting on the table, remains hidden and therefore unscanned. As a
result, the 3D representation of the book will be incomplete.

3.1.5 Transformations

This section presents how we addressed the previously stated transform-
ation requirements and the transformation implementations that accom-
modates them. The purpose, implementation, limitations, and, if applic-
able, a comparison to existing methods will be discussed. While the chosen
transformations cover a diverse range of scenarios, it is important to ac-
knowledge that real-world situations are infinitely varied. However, we
believe that our selection tests some of the most crucial aspects in the
field of shape recognition.

Before diving into the each individual transformation, we will introduce
the motivation behind the technology choices made for generating the
transformed datasets. Our end goal was creating a system that uses that
takes a suitable 3D object dataset as input, and generates transformations
which fulfils the transformation requirements stated above.

To reach this goal we needed a tool that could automate transforma-
tions for a whole dataset. Through looking at available alternatives such
as Aspose.3D, OpenTK, Unity [1] and Blender, we found that there was no
one tool that could effectively produce the entire range of transformations
we needed. We therefore selected two well-known software applications,
Unity and Blender, which between them did everything we needed.

These tools were chosen as they are both very versatile, free1, and
provide the tools we needed to implement our transformations. Unity is a
well-optimised game engine with a built-in physics engine. Additionally,
Unity uses C# as its scripting language which is extensively documented2

making development a lot easier [71]. Blender is a open-source 3D creation
suite, which can be used for animation, VFX shots, and object creation.
Blender was chosen for its boolean operations implementation. In addi-
tion, Blender’s scripting language is Python which makes scripting very
efficient [72]. Blender and Unity also follow standard practices for hand-
ling and modifying triangle meshes, making sure the project adheres to
the usual norms and conventions in the 3D modeling and design industry.

1Unity is only free for non-commercial use
2https://learn.microsoft.com/en-us/dotnet/csharp/

30 CHAPTER 3. METHODS

The benefit of both of these being free for research purposes, is that future
researchers can easily access our work and modify it for their own tests.
This makes the project a more suitable framework for future work.

3.1.5.1 Basic Matching Performance

Based on the Transformation requirements, basic matching performance
has been tested by creating the following transformations:

Rotated objects The primary objective of the rotation transformation
is to assess a shape descriptor’s capability to identify objects irrespective
of their orientation in 3D space. Objects in real-world situations can
be viewed from various angles and orientations, making it essential for a
robust shape descriptor to be invariant to these changes.

The objects in the original dataset undergo a series of rotation trans-
formations, resulting in four distinct instances of the entire dataset. For
each instance, one of the four types of transformations is applied: rotations
along the X-axis, rotations along the Y-axis, rotations along the Z-axis,
or simultaneous rotations across all three axes. A random rotation angle,
ranging from 0 to 359 degrees, is used for each transformation.

The implementation applies Quaternion Euler rotations to the vertices
of the 3D object mesh. Quaternions are mathematical constructs that
can represent 3D rotations without suffering from gimbal lock, a prob-
lem that occurs with Euler angles when two axes become aligned. The
function generates a quaternion rotation for each axis. The rotations are
then applied sequentially to each vertex in the mesh by multiplying the
quaternion by the vertex position. This operation preserves the relative
relationships between vertices while adjusting their positions. After up-
dating the vertex positions, the mesh normals are recalculated to maintain
the consistency of the object’s faces and normals. This method enables
an accurate evaluation of shape descriptor performance on rotated objects
while preserving the original 3D structure’s integrity.

Resized objects The primary objective of the resizing transformation
is to evaluate a shape descriptor’s behaviour when provided objects with
different scale. It is essential to recognise that the results from shape
descriptors are dependent on the users’ interests, and that both high and
low matching scores can be suitable, provided they are consistent and
significant. For instance, in a real-life scenario, two objects with different
sizes can never be the same object; however, if the scanners used to capture
the 3D data are not calibrated to provide the same size, it could lead to
a situation where the same object appears to have different sizes in the
data. This scenario underscores the importance of scale invariance in
shape descriptors.

The objects in the original dataset undergo a series of resizing trans-
formations, resulting in several instances of the entire dataset. For each
instance, a scale factor is applied to the object’s dimensions, enlarging

CHAPTER 3. METHODS 31

or reducing its size while maintaining its shape. To investigate the shape
descriptor’s response to different degrees of size change, we chose to exam-
ine both small and large change of size. Consequently, we selected scale
factors of 0.5, 0.9, 1.1 and 2.0 for each transformation, as these values
represent modest and significant changes in size.

The implementation applies scaling transformations to the vertices of
the 3D object mesh. The function accepts a mesh and a scale factor as
input parameters. Each vertex in the mesh is then multiplied by the scale
factor, resulting in a resized object. This approach allows for an accur-
ate evaluation of shape descriptor performance on resized objects while
preserving the original 3D structure’s integrity. Next, we recalculated ver-
tex normals for all objects in the dataset. This step was for maintaining
consistency in the computation method used for normals throughout the
tests.

Moved objects The primary objective of the moved objects transform-
ation is to evaluate a shape descriptor’s behaviour when provided with
objects at different positions. In contrast to the scale transformation, it
is crucial for a robust shape descriptor to be invariant to translations, as
objects in real-world situations can be located at various positions.

In many instances, objects provided to shape descriptors may not align
with the original object’s positioning. This misalignment can result from
factors such as arbitrary origins chosen by 3D scanners, noise, partial
overlap, or the presence of multiple objects. While it is relatively simple
to calculate the centroid of an object and centre it, this may not be possible
when dealing with the aforementioned scenarios. Therefore, it is essential
to test the shape descriptors’ ability to handle translated objects and
investigate how translation alone can affect performance. To examine the
shape descriptors’ response to different degrees of translation, we chose
to explore both small and large displacements. Consequently, we selected
distances of 0.2 and 10.0 meter for each transformation, as these values
represent modest and significant changes in position, respectively. The
direction of translation was chosen randomly to reflect the unpredictable
nature of real-world scenarios.

For each translation value that is tested, a new instance of the dataset
is created, and the translation value is applied to the object’s x, y, and z
position, moving the object in 3D space while maintaining its shape. The
implementation applies translation transformations to the vertices of the
3D object mesh. This approach allows for an accurate evaluation of shape
descriptor performance on translated objects while preserving the original
3D structure’s integrity.

Mirrored Objects The primary goal of the mirror transformation is
to assess a shape descriptor’s capacity to distinguish between original and
mirrored objects. In real-world scenarios, objects might appear mirrored
due to the presence of another identical but mirrored object. An interest-
ing aspect to consider when analysing the results from mirrored objects is

32 CHAPTER 3. METHODS

symmetric objects. These, when mirrored, are identical to their original
form. For instance, a perfect sphere or cube will look unaltered when
mirrored.

To evaluate a shape descriptor’s ability to handle mirrored objects,
we introduce a mirror transformation that reflects the object across a
plane. This transformation is applied to the 3D object mesh by altering
the scale of the vertices within the mesh. The function takes a mesh and
a scale factor as input parameters. The scale factor is applied to only
the x-coordinates of the mesh vertices and is set to -1.0 for the mirrored
transformation. This effectively inverts the object’s vertices, producing
a mirrored object. After implementing the mirror transformation, the
mesh normals are recalculated. However, we acknowledge that selecting a
different axis or a combination of axes might produce different results and
could be considered for future improvements to the study.

The mirror transformation serves to test the shape descriptor’s capa-
city to differentiate between original and mirrored objects, which is es-
sential for real-world applications where objects may be mirrored due to
various factors.

3.1.5.2 Deformation Resistance

Based on the transformation requirements essential for accurate testing,
we have assessed Deformation Resistance using the transformations out-
lined below. Upon reviewing current literature and previous experiments
conducted for this project, we have found no prior research that has spe-
cifically explored deformation resistance. This absence of previous studies
makes the upcoming experiments particularly intriguing. They might po-
tentially fill an existing knowledge gap in our understanding of 3D shape
descriptors.

The selection of tests is influenced by time and feasibility considera-
tions. While broader deformation tests — such as those involving bend-
ing or stretching deformations — could potentially provide additional in-
sights, they would necessitate extensive resources and exceed the scope of
this study. However, the selected twisted and rippled deformation tests
provide initial insights and establish a foundation for further research into
deformation resistance.

Twisted Deformation of Objects The primary goal of the twisted
deformation transformation is to evaluate a shape descriptor’s ability to
identify and analyse objects that have undergone twisting deformations.
In real-life scenarios objects may undergo twisting, making their recog-
nition and analysis more difficult. For example, a computer vision ap-
plication may need to recognise soft objects that have been deformed in
various ways since the original scan of the object. The twisted deforma-
tion dataset focuses on objects with different degrees of twisting, allowing
evaluation of the shape descriptor’s performance.

The twisted deformation transformation comprises a 3D object with

CHAPTER 3. METHODS 33

Figure 3.1.2: The original object (left) and its transformed versions with
gradually increasing twisting intensity, illustrating the impact of twisted
deformation on the object’s surface. Object ID 0009.

twist angles ranging from 2 to 10 degrees. The aim was to simulate twis-
ted deformation as closely as possible to real situations while remaining
feasible for generation. A custom script in the Unity engine, along with
an asset, was developed and customised for this purpose, using algorithms
to manipulate object vertices based on the twist angle and twist size.

The implementation starts by importing the object to the game ob-
ject class. Once the object is imported, it will undergo twist deformation
by adding a TwistDeformer component to each game object, which is re-
sponsible for applying the twist deformation. The transformation involves
adjusting the object’s vertices based on the twist angle, twist size, and
an AnimationCurve for fine-tuning the deformation. To rotate the object,
we selected the X-axis, as it was the most feasible option for our time
constraints. However, testing on multiple axes is recommended to provide
a more comprehensive evaluation of the shape descriptor’s performance.

Figure 3.1.2 presents the original object number 0009 on the left and
its transformed versions with gradually increasing twisting intensity. Each
transformation showcases the impact of twisted deformation on the ob-
ject’s surface.

Regardless of the selected axis (X, Y, or Z), the code calculates the
new vertex positions by rotating them around the axis using trigonometric
functions sine and cosine. In this study a asset for Unity engine named
the Mesh and Object Deformers for Unity 3D, which is available for free in
the Unity Asset Store, was used to handle and manipulate the 3D object’s
twist [73].

Rippled deformation of objects Rippling may occur in applications
recognising objects such as, wrinkled clothes or distorted vehicle parts
after a collision. A custom Unity script was used for this purpose. This
script adjusts the object’s vertices based on the ripple frequency, peak
multiplier, and the chosen deformation axis (X-axis in this case) using
a sine function. The frequency and peak multiplier values control the
number of ripples and their heights, respectively. The peak multiplier
values used in this dataset range from 0.005f to 0.030f.

Figure 3.1.3 displays the original object on the left and its transformed
versions with gradually increasing ripple effect intensity. Each category of

34 CHAPTER 3. METHODS

Figure 3.1.3: Original object (left) and its transformed versions with
gradually increasing ripple effect intensity, showcasing the impact of ripple
deformation on the object’s surface. Object ID 0036

transformation showcases an increase in the ripple effect, demonstrating
the impact of the ripple deformation on the object’s surface.

The ripple deformation dataset, consisting of objects with diverse ripple
patterns generated using different peak multiplier values, enables a com-
prehensive evaluation of the shape descriptor’s performance in recognising
and analysing objects with rippled surfaces. While the current imple-
mentation focuses on the X-axis for deformation, testing on multiple axes
is recommended for a more complete assessment. This dataset proves
valuable for understanding and improving shape descriptor algorithms in
various real-world applications involving objects with ripple deformations.

3.1.5.3 Noise Resistance

The ability to withstand various kinds of noise is an important measure
of how well local shape descriptors perform. In this research, we concen-
trate on two noise resistance evaluations: Gaussian vertex displacement
along normals, and deviation and rotation of vertex normals. We chose
these tests due to their applicability in real-world situations, their capacity
to offer an extensive analysis of shape descriptor performance, and with
established research on shape descriptor evaluation.

Other noise types such as speckle, salt-and-pepper, and Poisson noise
could also have been implemented for this requirement. However, due to
considerations of feasibility and time, they were not incorporated in this
study. Although broader, they provide a foundation for future investig-
ations into the performance of shape descriptor algorithms under diverse
noise scenarios.

Gaussian vertex displacement along normals The purpose of this
transformation is to evaluate the robustness of shape descriptors in match-
ing objects despite the presence of random vertex displacements with
Gaussian distribution. This transformation is essential as it simulates
noise commonly encountered in real-world applications, such as 3D scan-
ning or object reconstruction. Gaussian noise is a more realistic repres-
entation of real-world noise compared to uniform noise, as it models the
distribution of errors and imperfections often found in real datasets [74].

CHAPTER 3. METHODS 35

Figure 3.1.4: Original object 0069 and its ten transformed versions with
gradually increasing Gaussian distributed vertex displacement, ranging
from the original object on the right to the version with the largest noise
on the left. Each transformed object is individually tested, allowing for a
comprehensive evaluation of shape descriptor performance under varying
levels of noise.

For context, existing experiments, such as [11], have tested against
Gaussian noise, but only on a limited scale. In their case, they only
tested based on 5 and 10 cm of Gaussian distributed noise along the nor-
mals. Moreover, they only used 20 randomly selected models from their
56 vehicle database. In contrast, the current evaluation involves testing
against 1193 objects with ten different vertex displacement values.

The Gaussian noise, also called normal noise, models the distribution
of errors and imperfections often found in real datasets, making it particu-
larly suitable for simulating the noise encountered in real-world scenarios,
such as those generated by 3D scanning and object reconstruction pro-
cesses [74]. Moreover, Gaussian noise takes into account the accumulation
of various factors that contribute to the errors in measurement and re-
construction, which result in a normal distribution of deviations. This
characteristic of Gaussian noise allows for a more accurate evaluation of
the shape descriptors’ ability to handle imperfections and noise in real-
world applications.

The implementation iterates through each object and applies random
displacements to its vertices based on the defined list of displacement
ranges. The displaced 3D meshes are saved to the specified directory.
The displacement ranges are selected to cover a wide spectrum of possible
vertex displacements, ensuring a comprehensive evaluation of the shape
descriptors’ performance. The values in the list represent the maximum
deviation, and the displacement value will be a random number within
this range generated using a Gaussian distribution. Vertices are displaced
along the direction of the normal, resulting in a more realistic represent-
ation of noise. Example can be seen in Figure 3.1.4. Some limitations
of this method include the assumption that random displacements follow
a Gaussian distribution and that the displacement ranges themselves are
representative of real-world noise levels.

Deviation and rotation of vertex normals The purpose of this
transformation is to evaluate the performance of shape descriptor al-

36 CHAPTER 3. METHODS

Figure 3.1.5: Simultaneous depiction of deviated normals for ten object
categories for illustrative clarity: the left portion displays an overlay of
normals with deviations from 0 to 45 degrees, while the right portion
presents the normals after undergoing a random rotation in addition to
the deviation. The right one is used for evaluating the shape descriptors
benchmark. During testing, each object category is assessed individually.

gorithms when handling objects with altered normal vectors. Normal
deviations may occur during the process of scanning objects with LiDAR
and transforming the outputted point cloud into a mesh, making it essen-
tial to assess shape descriptor algorithms’ robustness in such scenarios.

To create the transformation a method which computes a new vector
by deviating a given input normal vector by specified angles is imple-
mented. This method takes three parameters: an input normal vector, a
deviation angle in degrees, and an orientation deviation angle in degrees.
The method aligns the normal with the z-axis before applying deviation
to simplify the rotation process, easily apply the deviation, and avoid edge
cases such as Gimbal lock.

The parameter selection for the transformation determines the range
of deviation angles applied to the normals. The delta angles represent
a gradual increase in deviation, allowing for a sensitivity analysis. By
testing the performance of shape descriptor algorithms on the generated
dataset, it is possible to identify trends and patterns that highlight their
strengths and weaknesses in handling altered normal vectors.

Figure 3.1.5 demonstrates the deviated normals for the ten object cat-
egories, each with deviations ranging from 0 to 45 degrees. The figure
presents an overlay of all object categories to illustrate the deviation pro-
cess effectively. The left portion of the figure displays the deviated nor-
mals, while the right portion shows the normals after undergoing a random
rotation in addition to the deviation. This rotation varies from 0 to 360
degrees and is unique for each normal in the object. During testing, each
object category is assessed individually.

CHAPTER 3. METHODS 37

3.1.5.4 Clutter Resistance

Several previous studies have addressed the effects of clutter [10, 11, 13,
14]. In particular, the clutterbox experiment, a method that investigates
the relationship between increasing levels of clutter and descriptor per-
formance, has been proposed [13]. In these experiments, objects were
clustered in an intersecting manner, forming an artificial environment
where objects exist within each other. In addition to this, there are over-
lapping triangles resulting from the maintained intersections. Building on
these previous works, this study proposes evaluating shape descriptors by
creating clusters in a more controlled way. This approach is subdivided
into two transformations. The initial transformation involves clustering
objects together, but without any overlapping. The subsequent trans-
formation creates partially overlapping objects but includes the removal
of intersected triangles. The goal of this approach is to better simulate
real-world scenarios as they would be captured by a 3D object scanner. It
will also provide more control over the factors that affect a shape descriptor
algorithm. Further details of these transformations will be provided in the
subsections below.

Clustered Objects The Clustered Objects transformation covers the
understanding how shape descriptors respond to varying degrees of ob-
ject clustering. The primary object and the other objects are placed in
close proximity to create a clustered 3D environment forming a cluster as
depicted in Figure 3.1.6. The goal was to simulate a cluster that was real-
istic and likely to be encountered, while still remaining feasible to develop.
To achieve this, a simulation in the Unity Engine was created, simulat-
ing gravitational forces and collisions, allowing the objects to collide and
bounce away from each other in a natural way.

In the implementation of this transformation, the meshes are first
loaded into a game object class provided by the Unity Engine Library.
These objects then receive two extensions to the game object class: rigid
bodies and mesh colliders. Rigid bodies enable the objects to be affected
by the physics engine, allowing them to interact with other objects and
the environment, while mesh colliders define the shape of the objects for
collision detection. The clustering process is simulated by applying strong
attractive forces between the objects, causing them to cluster tightly to-
gether. Additionally, regular gravitational and collision physics are ap-
plied to the objects, enabling natural interactions with each other and the
environment. The strong force between the objects is gradually reduced
over the simulation period, causing the objects to first cluster together
intensely and then fall naturally into a pile on the floor 3.1.6.

A timer is used to control the interaction between objects, and it re-
cords their final positions within the cluster. After a predefined time, the
objects’ positions and rotations are saved for the purpose of replicability
(see Section 3.1.6), and the combined mesh is generated by merging the
objects’ meshes into one larger mesh. The dataset was created for five

38 CHAPTER 3. METHODS

Figure 3.1.6: An example of a clustered arrangement of objects, where
the primary object (Object ID 0054) is surrounded by 0, 5, 10, 20 and 100
other objects within the cluster.

different cluster sizes, n=1, n=5, n=10, n=20, n=100, resulting in a total
of 1193 tests for each cluster size.

Partial Overlapping objects The main purpose of the partial overlap
transformation is to assess a shape descriptor’s capability to identify ob-
jects that are partially overlapped with others. In real world situations,
objects may partially overlap, making the separation and analysis of indi-
vidual objects more challenging. For instance, a robotic arm in an indus-
trial setting might need to recognise and pick up objects from a cluttered
environment with items partially overlapping. The sensor scanning these
objects captures a large scan with several objects connected in a single
outer mesh shell.

To analyse the shape descriptor’s performance in partially overlapping
environments, a dataset containing various degrees of object partial over-
lap was generated. A dataset instance includes one main object and a
random selected additional object that is positioned to partially overlap
the main object as depicted in Figure 3.1.7. A custom script in Python
using Blender was developed for this purpose.

The Python class library implementation begins by importing and pro-
cessing objects using the Blender Python API. The objects then undergo
random rotations and translations, followed by scaling adjustments to
control the overlap percentage. Boolean operations create new objects
from the overlapping sections, with the Union operation merging their

CHAPTER 3. METHODS 39

Figure 3.1.7: An illustration of objects with varying degrees of partial
overlap. The overlapping regions can be observed as the main object
becomes increasingly covered by the additional objects. Object ID 0098

geometry. The algorithm identifies all shared vertices, edges, and faces
between the two objects, combines unique vertices, edges, and faces, and
removes any internal geometry, retaining only the outer shell[75].

The proportion of altered vertices after overlapping is calculated, and
the resulting objects and vertex maps are saved in corresponding sub-
category folders based on the specified percentage ranges. A recursive
divide-and-conquer algorithm controls the partial overlap process, adjust-
ing the object’s scale to achieve the desired overlap percentage range for
each subcategory. These subcategories are defined by the following over-
lap ranges: (5.1-15.0%), (15.1-25.0%), (25.1-35.0%), (35.1-45.0%), (45.1-
55.0%), (55.1-65.0%), (65.1-75.0%), (75.1-85.0%), and (85.1-95.1%). This
approach allows a comprehensive evaluation of shape descriptor perform-
ance on partially overlapping objects.

However, it is important to note that only manifold meshes guarantee
proper results. Other cases, particularly open meshes and non-manifold
meshes without self-intersections, may usually work well but could produce
odd glitches and artefacts in certain scenarios. Although some objects may
not perfectly represent real-life scenarios, they still serve their purpose of
testing shape descriptors ability to detect partially overlapping objects.

3.1.5.5 Occlusions and Incomplete Surfaces

In this benchmark have we focused on two tests for this requirement:
objects with holes and partial surface visibility. These tests were selected
based on their relevance to real-world scenarios and their ability to provide
a comprehensive assessment of shape descriptor performance under chal-
lenging conditions.

Object with Holes The Object with Holes transformation is designed
to simulate the effect of missing or incomplete surface data by introdu-
cing holes in the objects’ mesh. The purpose of this transformation is
to evaluate the performance of local shape descriptors under the presence
of incomplete surfaces. In real-world scenarios, objects may have missing
data due to various reasons, such as occlusion, sensor noise, limited view
angles, or physical damage.

40 CHAPTER 3. METHODS

This transformation is implemented in the same manner as partial over-
lapping objects, using Blender. This is made possible thanks to Blender’s
advanced Boolean operations, specifically the Difference operation, used in
this case. The Difference operation requires two input meshes: the target
mesh and a subtraction mesh. The subtraction mesh subtracts its over-
lapping surface from the target mesh, leaving everything outside of the
target mesh intact. In this experiment, we are using a very long cylinder
to subtract holes in the target mesh.

However, Blender’s Boolean operations primary limitation is its reli-
ance on objects being manifold. Non-manifold or open meshes can lead
to occasional glitches and artefacts. According to Blender’s document-
ation, only manifold meshes are guaranteed to provide accurate results
[75]. While non-manifold meshes without self-intersections typically work
well, they may produce odd glitches and artefacts in some cases. Addi-
tionally, the transformation does not account for the possible variations in
hole shape, size, or distribution that might be encountered in real-world
scenarios, which may limit its overall effectiveness.

In this implementation, the number of holes and their placement are
dynamically adjusted based on the object’s size and position. The process
begins by calculating the initial and maximum radii for the cylinders that
will be used to create the holes. These radii are determined by taking
a fraction of the average dimension of the object. The code then gener-
ates a grid of cylinders, where the space between them is determined by a
function which ensures that the space between cylinders increases as the
radius of the cylinder decreases. The code then performs the ’Difference´
operation, between the original object and the grid of cylinders. This op-
eration creates holes in the original object at the intersection points with
the cylinders (see Figure 3.1.8). After creating the holes, the code gener-
ates a vertex mapping that maps the vertices of the original object to the
vertices of the modified object. The script performs a series of transform-
ations and calculations to generate the vertex map and categorises the
objects based on the percentage of vertices removed. This categorisation
ranges from 10 to 90 percent.

The objects with the lowest vertex count, specifically 21 objects, were
not included in this process due to the limitations of the re-meshing al-
gorithm used. When a hole is created, a high number of faces are required
to maintain the round shape, leading to issues with the algorithm when
the object has too few vertices. This is something that can be improved
in the future but was not prioritised due to the amount of work required
and the limited number of objects affected.

The code also categorises the modified objects based on the percentage
of changed vertices. It uses a divide-and-conquer approach to find the
correct radius for each subcategory by having a function that recursively
calls on itself. This function adjusts the radius until the correct percentage
range for each subcategory is achieved. It is important to note that some
objects might be skipped if the maximum number of attempts is reached.

CHAPTER 3. METHODS 41

Figure 3.1.8: Illustration of object number 0476 in its original state
and through various stages of the "Object with Holes" transformation,
showcasing the gradual increase in the number and size of holes in the
object’s surface.

Partial Surface Visibility The purpose of this transformation is to
evaluate the robustness of local shape descriptors when handling the par-
tial visibility of 3D objects. In real-world scenarios, sensors capturing 3D
objects might not fully capture the entire object due to occlusions, limited
sensor range, or the object’s position relative to the sensor. To simulate
such scenarios and evaluate the performance of local shape descriptors
under partial surface visibility, we introduce the Partial Surface Visibility
dataset. This method is based on generating new meshes consisting only
of the faces visible from specific points, mimicking the partial visibility
that may occur in real-world conditions.

The implementation of the Partial Surface Visibility transformations
employs Unity raycasting to create the dataset, as illustrated in Figure
3.1.9. Each 3D model is divided into individual faces, which are then
converted into separate game objects with colliders. These colliders are
what makes the faces detectable by the Unity raycasting class. To ensure
that the rays hit all the faces and each face is shot by the raycasting twice,
the implementation casts rays from two predetermined points towards
the 3D model’s faces. For each face, the implementation calculates the
directions from the ray starting points to the triangle formed by the face’s
vertices. These directions are then used to cast rays from the starting
points.

If a ray intersects a face collider, it signifies that the face has been hit
from the specified viewpoint, as demonstrated with the two androids in
Figure 3.1.9. The raycasting class will also tell us if the hit was the first
intersected face or not, this enables us to only pick the first intersection.
The implementation then adds the vertices of the hit face to a list of
new vertices, ensuring that each vertex is only added once. After all rays
have been cast and hit faces have been identified, the implementation
creates a new mesh that includes only the vertices of the visible faces. It
then calculates the new triangles that connect these vertices, based on the
original mesh’s triangles. The new mesh represents the visible portion of
the original 3D model and is saved to a file for further analysis. By using
Unity raycasting and properly configuring colliders, the implementation
can simulate real-world sensor limitations and partial visibility scenarios,

42 CHAPTER 3. METHODS

allowing for the evaluation of local shape descriptors’ robustness in various
conditions.

One limitation of the current implementation is that it only tests par-
tial visibility from one angle (Two angles placed close together). Future
work could include testing the transformation with more angles, varying
sensor-object distances, and incorporating more complex occlusion pat-
terns.

During our research and development related to the creation of this
transformation, we encountered two issues. The first issue is that many
triangles that should have been hit were not. To address this, we trans-
formed each triangle into a triangular prism by duplicating each face and
shifting it slightly along the raycast direction. This technique signific-
antly improved the Unity engine’s physics and collision detection system’s
ability to detect hits.

We also discovered that employing raycasting from two distinct angles
effectively addresses the issue of specific faces not being hit by a single
angle, as illustrated in the left and right Android object in Figure 3.1.9.
However, despite the problem being mitigated, two remaining inaccuracies
may arise from numerical issues, such as floating-point errors, limitations
of Unity’s physics engine and its raycasting method, or certain edge cases
where the angles approach zero degrees, and our mathematical functions
fail to handle them appropriately.

The raycasting process is represented by the red lines (ray hits) and
white lines (ray misses), as seen in Figure 3.1.9. The white misses predom-
inantly impact objects at the outer edges rather than those in the centre.
These white lines indicate a minor issue that we were unable to resolve;
nonetheless, it has minimal impact as it only affects the object’s outer
edges and could be attributed to minute numerical inaccuracies related to
the choice of datatype or collision detection accuracy in the Unity engine.

The other issue, evident in the left Android object, reveals the number
of triangles not detected in the object’s centre despite being visible from
the raycast starting point. This problem was addressed by implementing
two raycast starting points and performing the raycast twice. Note that
the few triangles not hit in the right Android object are not visible from
the raycast shooting angles and that shooting from two angles as far we
know have worked perfectly.

3.1.6 Replicability

We have facilitated for replicability for all transformations by making
sure the code is available for further development and research. This
allows other researchers to expand our benchmark with additional shape
descriptors. Moreover, we have employed pseudo-randomisation with a
fixed seed to guarantee that all datasets can be regenerated with the same
random state. This approach ensures that all random functions will pro-
duce the same results each time, preserving the consistency and reliability
of the all generated data. The random state is saved regularly and has been

CHAPTER 3. METHODS 43

Figure 3.1.9: Illustration of the Partial Surface Visibility transformation
using Unity raycasting. The image shows a side view and a raycast start
position view of an object, along with the raycast path traced for visual-
ization. Two androids are also shown, one shot from one angle and the
other one demonstrating raycasting from two closely positioned points.

incorporated into all recovery functions that are used to skip already gen-
erated objects when restarting the generator midway through processing
a transformation. By taking these steps, we have made our benchmark
implementation replicable, fostering transparency and encouraging further
research and development in the field of local shape descriptor benchmark-
ing.

3.1.7 Transformed Objects and Metadata

In the process of generating transformations, each transformed object is
saved as a new file together with is corresponding metadata. The metadata
is generated by mapping the vertex indices from the original object to the
corresponding indices in the transformed object. This mapping process
allows for accurate evaluation of the descriptors’ performance in matching
the original and transformed objects. In the case of objects with missing
parts, the mapping is achieved by finding all matching vertices between
the original and transformed objects. For objects that are resized or have
their vertex values altered in any way, a one-to-one mapping is main-
tained by keeping the vertex indices in the exact same order. This ensures
that the metadata accurately reflects the relationship between the original
and transformed objects, enabling a comprehensive evaluation of the local
shape descriptors’ performance.

44 CHAPTER 3. METHODS

3.2 Performance Data Generation

One of the more difficult challenges when trying to evaluate the perform-
ance of shape descriptors, as previously pointed out, is to ensure fairness
in all tests. If we accept any factors that might lead to randomness or
advantages for any of the shape descriptors, we can’t confidently extract
any conclusions from our results. These factors can be small, such as
modifying the shape descriptors’ parameters, to more general ones which
includes how to set up the testing environment. Therefore, in order to
handle these challenges the following requirements are set:

1. Create a method for fairly evaluating the performance of different
shape descriptors.

2. Find the optimal parameters for each shape descriptor, to ensure
their best performance.

3. Make it easy for future researchers to implement their own shape
descriptors and distance functions.

These requirements are general enough to give some creative freedom
in order to produce new methods, and still being concrete enough to be
able to directly answer.

3.2.1 Comparing Descriptors

To be able to answer the first requirement we need to look at the previ-
ous evaluation methods and find areas of improvement, this will help us
find a foundation which we can base our new method on. As previously
introduced, each shape descriptor has their own methods for generating
descriptors which have been compared using a set of different distance
functions. Additionally, each of the papers have their own methods for
evaluating the performance of their shape descriptors. Their methods
followed similar principles, by first creating two descriptor sets from an
original and a comparison object. Then matching the descriptors to each
other using a distance function. As discussed, this introduced randomness
into the tests which has led to the need for a more general evaluation
method in order to ensure fairness while testing new shape descriptors.

The first possible approach we considered was generating a similarity
score within in the range of 0 to 1, which represented how similar a shape
descriptor considered two objects. To counteract the aforementioned self-
similarity problems, we used a ground truth to correctly map descriptors
from one object to another. This mapping was created for all the different
transformations, and acted as a summary of changes from the transforma-
tion. This approach, for any given shape descriptor and distance function
combination, would consist of the following steps:

1. Choose two objects; one original object and one to compare it with.

CHAPTER 3. METHODS 45

2. Calculate two separate descriptor sets for each of the objects.

3. Using the ground truth, create a set of distances for the correspond-
ing descriptors.

4. Find the total average distance, and convert it into a similarity score.

The original idea was that with this score we could easily compare the
performance difference between the different shape descriptors, as they all
ended up with values in the same range. However, determining what makes
one distance score better than another turned out to be a difficult task.
This resulted from the values from different distance functions representing
entirely different things. For example, the Euclidean distance representing
how far one point is to another in Euclidean space, while the Pearson
Correlation represents a linear correlation between two sets of data. To
further exemplify, if the average Euclidean distance between two objects
is 12 and the Pearson Correlation says 0.8, how can we determine which
is better?

To solve this challenge we experimented with only using one distance
function, as this would allow us to create a general score for the differ-
ent shape descriptors. However, this also presented some problems. First
off, as previously presented the different shape descriptors have a prefer-
ence for which distance function to use. Which can lead to some shape
descriptors getting an advantage if their distance function of choice was
chosen. Secondly, the output of the different shape descriptors don’t cal-
culate the shape and features of an object in the same way. This can be
exemplified by comparing the outputs of QUICCI and SI. The QUICCI
shape descriptor represents a given points intersections through binary
data, while SI counts the amount of points within a volume around given
points in the object. Since a distance function measures the difference in
two values, if one of these shape descriptors always outputs lower numbers
than the other it will seem like it always performs the best.

With this we needed to consider a new method for comparing the shape
descriptors’ performance. In order to comply with the requirements of
creating a fair evaluation method and ensuring that the shape descriptors
would perform at their best, we decided that another solution could be
defining a floor which would represent when a given performance is con-
sidered bad. As the distance between two descriptors could potentially be
infinite, defining a floor would aid us in identifying good results. A pos-
sible downside of using this approach is that we cannot directly compare
the performance of the shape descriptors to each other, since the results
depend on each individual shape descriptor and distance function com-
bination. However, this will give us a good indication for how well each
shape descriptors performs in different environments. In future studies, a
method for directly evaluating the performance of each shape descriptor
to each other would be a valuable contribution.

To create this floor we needed to get insight into what a bad matching
performance for each shape descriptor and distance function combination

46 CHAPTER 3. METHODS

would look like. To do this we created some requirements for a dataset,
which would ensure us that we got as bad results as possible:

• Items should not be the same.

• Items should represent a range of different categories (shoes, boxes,
toys).

With this we hand-picked a dataset of 9 dissimilar objects from differ-
ent categories. Regardless of its small size, this dataset would give a good
indication of how we could expect a bad result for each shape descriptor to
be. Additionally, observing how the different shape descriptors act when
two completely equal objects are used is also useful. This will give us a
realistic range of where we can expect good performances to be within.

Following the creation of the dataset, we created a testing environment
to register how the different shape descriptors performed when given two
different objects. Each combination of dissimilar objects were sent through
the following steps, which were the same for all shape descriptor and
distance function combinations:

1. Choose two dissimilar objects.

2. Separately compute the descriptors for each of the objects, with the
chosen shape descriptor.

3. Calculate a set of distances for pairs of descriptors from the two
objects3.

The same steps are also followed when looking at equal objects. By
looking at the distribution of distances for each set of objects, one can
get an insight into how a bad matching performance would look like for
a given shape descriptor. The results for unequal objects can be seen in
Figure 3.2.14 and Table 3.2.1, and the results when using equal objects
can be seen in Table 3.2.2. These results show that the distribution of
distances keep the same throughout the tests, which makes it a bit hard
to define where the floor should be. However, looking at the results we set
the floor to be the average of the total distances calculated from the tests.
This gives an indication of where an average distance for a test should be
in order to be considered to be a good performance. We also considered
using the 90th percentile of the worst distances to represent the floor. As
we could more confidently say that any distance above that floor would
be noise, but when we tried to use it with the transformed objects this
floor was hardly ever reached. This led to using the average for the sake of
comparing the different shape descriptors. For the reason that if a shape
descriptor produces a distance above the average, we can conclude that

3No ground-truth is needed as the objects don’t have any corresponding descriptors
4Note: SI’s best possible distance is 1 and every distance below that is worse, while

the other’s best distance is 0. This results in its distances being a good match when
they are over the floor, while the others are good when they are under.

CHAPTER 3. METHODS 47

Shape Descriptor Average Distance 90th percentile
RICI (3.2.1a) 52.7 148.0

QUICCI (3.2.1b) 513 1027.0
SI (3.2.1c) 0.49 0.19

3DSC (3.2.1d) 3.6 8.0
FPFH (3.2.1e) 342.4 982.4

Table 3.2.1: Average Distance and 90th percentile for each shape
descriptor

Shape Descriptor Average Distance
RICI 0.0

QUICCI 0.0
SI 1.0

3DSC 0.0
FPFH 0.0

Table 3.2.2: Average Distance for test on equal objects

result being an above average poor performance. On the other hand, when
we compared equal objects we see that all the shape descriptors generate
perfect scores. This aids in defining the range of good performances, as
we now know that it is possible to get a perfect score for all the shape
descriptors.

Additionally, even though the distribution of distances are equal through-
out the tests we noticed that the variation of distances within each test
is quite large. This could indicate that a bad matching performance is
not only defined by the previously created floor, but also by the variation
of distances calculated. We expect a good matching performance to have
a smaller variation, as most of the distances should be close to the best
possible distance. With this we came to the conclusion that the stand-
ard deviation for each test should also be taken into account, together
with the floor. Using them together will prevent the case of where two
descriptors create consistently bad distances, which the standard deviation
would interpret as a good result. Using the same test as before, each shape
descriptors’ average standard deviation was calculated (Figure 3.2.2) and
was used together with the floor to determine if a descriptor had a good
match or not.

With this we propose a new solution for fairly comparing the perform-
ance of shape descriptors, which we used in our final experiments. First off
we start by finding the average poor performance for each shape descriptor
and distance function combination. By using a dataset of dissimilar ob-
jects we calculate the distance between all pairs, and take the average
of all of them. This average defines a floor which represents a range of
where a good performance for a given shape descriptor should be. Then
by calculating the total average distance between two objects, using the

48 CHAPTER 3. METHODS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
3.2.1:

F
loor

tests
for

the
shape

descriptors.
R

ed
line

=
A
verage

distance,G
reen

line
=

90th
percentile

CHAPTER 3. METHODS 49

(a
)

R
IC

I:
70

.4
av

g
(b

)
Q

U
IC

C
I:

27
8.

7
av

g

(c
)

SI
:0

.2
av

g
(d

)
3D

SC
:1

.9
av

g

(e
)

F
P

F
H

:1
51

.8
av

g

F
ig

u
re

3.
2.

2:
St

an
da

rd
D

ev
ia

ti
on

di
st

ri
bu

ti
on

fo
r

th
e

sh
ap

e
de

sc
ri

pt
or

s

50 CHAPTER 3. METHODS

same steps as when we tried to create a similarity score, we compare it to
the floor and determine if the performance is good or poor.

3.2.2 Descriptor Parameters

As previously introduced, each shape descriptor has a set of parameters
that can be modified in order to optimise the shape descriptors for differ-
ent uses. The introduction papers and later papers have presented each
of the shape descriptors’ optimal parameters which we will base our ex-
periments on. All the shape descriptors have at least some parameters in
common, while others have a couple that are specific to them. What these
parameters are and how their values were chosen will be further discussed
here.

3.2.2.1 Support Radius

The Support Radius is the width and height from a given point, which
defines the area a shape descriptor takes into consideration when perform-
ing calculations. It is also a parameters shared between all of the shape
descriptors. Choosing the correct radius is important, as it needs to be
able to pick up on smaller features of an object which makes that object
unique as well as larger ones. In a perfect world, the radius would change
from point to point in an object depending on the level of detail. For
example on an aeroplane where a larger support radius can be used on the
wings while a smaller one on the buttons inside the cockpit. This would
ensure us that all the details which makes an object unique are taken into
account. How to implement such a feature is a thesis in its own right,
and would therefore be a significant contribution in future work. In light
of this, a radius which can be used for all the objects in the dataset was
chosen, as it ensures that the shape descriptors test equal parts of the
objects. This choice depends on that all the objects in the dataset are of
similar size. The radius was chosen based on the tests done in the 3DSC
paper, where they performed extensive experimentation to figure out the
optimal parameters [11]. For all the shape descriptors a support radius of
2.5 units was chosen. In Figure 3.2.3 you can see an approximation of the
area this support radius would represent, as most objects in the dataset
are the same size this would be the case for all objects.

3.2.2.2 Point Cloud Conversion Parameters

As the chosen dataset consists of triangle meshes, some of the shape
descriptors need to have them converted into point clouds. This conver-
sion has two parameters; Point Cloud Sample Count and Random Seed5.
The sample count represents how many points the point cloud will have,
while the seed enables us to create the exact same point cloud every time.
To ensure that the objects using point clouds are not affected by noise,

5Chosen value for all tests: 4917133789385064

CHAPTER 3. METHODS 51

Figure 3.2.3: Red sphere representing the area taken into consideration
with a 2.5 support radius

Parameter Value
RICI/SI Resolution 64*64
QUICCI Resolution 63*64

3DSC Horizontal Slice Count 15
3DSC Vertical Slice Count 11

3DSC Layer Count 12
FPFH Bins Per Feature 11

Table 3.2.3: Bin sizes and resolutions of the shape descriptors

a sample count which is high enough to represent all the objects in the
dataset needs to be chosen, but not too high as it affects the generation
rate of the descriptors [13]. In the end a value of 200,000 was chosen, as
it through our tests had showed to provide a good combination between
the two requirements.

3.2.2.3 Resolution

All the shape descriptors also have parameters which define the size of
their output. These are usually referred to as resolution or bin sizes. The
ones chosen for this thesis are based on the testing environment in the
QUICCI paper6 [14] and can be seen in table 3.2.3.

3.2.2.4 Support Angle

The SI shape descriptor has the support angle parameter, which represents
the maximum angle between a given point’s normal direction and the
normals of points within the support radius. Based on the original spin
image paper, this parameter was set to 60° [10].

6Which are further based on the parameters chosen in the shape descriptors’ original
papers

52 CHAPTER 3. METHODS

3.2.2.5 Minumum Support Radius and Point Density

The 3DSC shape descriptor has a minimum support radius, in addition
to the maximum. The value of this was set to 0.1 units, which was also
based on the experiments done in their paper. Following this, 3DSC’s
point density radius was set to 0.2 [11].

3.2.3 Implementation

Our last requirement was to make sure that it was easy for future re-
searchers to utilise our work. In order approach this, we decided to follow
the modifiability software quality. Which refers to the degree of which
a software system can be modified, adapted, and extended. This would
enable future researchers to add their own shape descriptors and distance
functions, as well as changing previous implementations. This requirement
would also entail making the code understandable and creating a logical
structure.

In order to make the code as understandable as possible, we made
sure to use precise variable names and follow standard object oriented
principles. With this anyone with some experience with object oriented
programming would be able to read the code. We also structured the
project by separating out larger parts of the software, such as creating
descriptors and matching descriptors to each other using metadata. This
would help future researchers to find the code they are looking for quicker,
without going through one large file.

Our implementation was built on top of the already existing libShape-
Descriptor library7, which is implemented using C++ and CUDA. This
library includes implementations for all the shape descriptors and distance
functions, as well as tools for importing objects. CUDA provides GPU ac-
celeration of computations, which speeds up the amount of time spent
creating and comparing descriptors [76]. Additionally, C++ is a low-level
language with great performance and efficiency. This lets us go through
larger datasets at the time, without taking too much extra time, which
leads to our results being more accurate. Our contributions to this library
has been making a benchmarking tool that utilises the aforementioned
shape descriptor implementations, and lets users send in datasets in order
to generate performance data for the different shape descriptors.

The implementation also utilised the libShapeDescriptors’s features
for ensuring replicabilty when converting triangle meshes to point clouds.
This is done through defining a random seed, which ensures that the points
in the point cloud always are put in the same spot when the same seed
is used. This ensures that it’s possible to generate the same results every
time when using triangle meshes as the dataset.

The benchmarking tool was made to compare two large dataset folders,
however it is also possible to directly compare two objects. The output, in
the case of comparing two folders, will be a large JSON file containing all

7https://github.com/bartvbl/libShapeDescriptor

CHAPTER 3. METHODS 53

relevant data for evaluating the shape descriptors’ performances. JSON is
very versatile, which makes it easy to extract the data needed after the fact
and create in-depth comparisons. The JSON includes data about what
transformation has been tested, categories within each transformation,
and all the objects. Each object has data about:

• The total average distance for each shape descriptor

• The standard deviation of distances for each shape descriptor

• The generation time and the time it took to compare the descriptors

• Vertex and face counts for the original and comparison objects

These data points will let us perform the necessary analysis based on our
proposed method, as well as giving us some freedom in how we choose to
visualise the data.

All tests were run on the same computer to ensure that all data are
based on the same premises. Additionally, as the project is based on
the RICI test environment [13] it also utilises the same random seed sys-
tem, which leads to reproducible results. The computer uses the NVIDIA
GeForce RTX 3090, AMD Ryzen 9 3900X 12-Core CPU, and has 32 GB
of RAM.

3.3 Data Analysis
In order to gather any interesting conclusions from the performance data,
it is important to define how to visualise it. This will help us to get a
better insight into what the data represents. Additionally, as a part of a
benchmark it is important to standardise how the shape descriptors are
being ranked, which will help researchers see how well their new shape
descriptors are performing. With this we define the following requirement
for the data analysis process:

1. Create a visualisation for the performance data, which lets research-
ers easily see how well their shape descriptors performs.

First off we need to analyse the data from the performance data gen-
eration process. As previously mentioned, for each test we have data rep-
resenting the total average distance, standard deviation, face and vertex
counts, and generation and comparison time. We also have the previ-
ously calculated distance floor and standard deviation boundary for each
shape descriptor. Additionally, some of the object transformations include
multiple categories, while others only one. With this we need create a visu-
alisation which conveys how the average distance and standard deviation
for a test compares to the set floors, and also accommodates for different
amounts categories.

In the case of when a transformation has multiple categories, there
would potentially be over 1000 tests per category. If we wanted to visualise

54 CHAPTER 3. METHODS

Figure 3.3.1: Examples of diagrams with all distances per category and
average

all specific tests the diagram might seem very messy, and it could become
hard to extract any conclusions from it. Therefore a decision had to be
made for how we wanted to show the performance for each category. There
were two possible options, show all the distances from the tests for a given
category or calculate an average for each category. As seen in Figure
3.3.1, we see that by using only the average per category we get a much
better understanding of how the performance changes over the different
categories. However, we lose insight into the variation of distances, but
this insight will be minimised by also showing the standard deviation as
it gives a good indication of how the different the distances are.

When there is only one category only showing one average distance
wouldn’t really tell us much. Therefore it is possible to show all the
different distances for the tests, but we need to find a good metric to
sort the tests by. This can show how the distances for a shape descriptor
changes based on the test. There are several good alternatives for this,
such as the vertex count of the object tested, individually based on the
distance, and based on the standard deviation. In the end we chose to
sort individually based on the average distance for a test, as it would give
a clear overview over all the tests and it enables us to approximate how
the shape descriptors would normally perform in the given environment.

3.3.1 Implementation

The diagrams were created using the Python library MatPlotLib. Mat-
PlotLib is a library for creating static, animated, and interactive diagrams,
and additionally provides a lot of resources for customising these [77]. We
had also experimented with using software such as Microsoft Excel and
Google Sheets, which worked well with smaller datasets, however their
performance and usability was tremendously impacted when the datasets
increased in size. We therefore chose MatPlotLib to produce diagrams as
it provides tools for optimising performance, and because of its simple to
use API [78]. Using MatPlotLib also aids researchers as they can use our
scripts to visualse their generated performance data, which helps when
comparing their new shape descriptors.

CHAPTER 3. METHODS 55

3.4 Architecture Overview
An overview over the standardised benchmark can be seen in Figure 3.4.18.
This diagram shows how the data flows through the different processes of
the architecture, and how the different parts communicate. Further dis-
cussion of the reasoning behind the architecture will be done in section 5.2.
The different GitHub repositories for the parts can be found in appendix
A.

8The benchmark is built upon code from the Autumn 2022 preparatory project [1]

56 CHAPTER 3. METHODS

Figure 3.4.1: Overview of Benchmark architecture

CHAPTER

FOUR

RESULTS

In this chapter the results for all the tests done will be presented and
explained1. The results will also be further discussed in the next chapter.
Each category contains n=1193 objects, and the amount of categories
differ from transformation to transformation. The amount of time spent
on running each test can be seen in Table 4.0.1. Some tests were run in
parallel, which reduced the total amount of time spent on running all the
tests.

As previously mentioned, each shape descriptors’ results are repres-
ented using an average distance and an average standard deviation for a
given category. These results are compared to the previously calculated
average distances and standard deviations when two unequal objects were
compared (values for each shape descriptor can be seen in Table 3.2.1
and Figure 3.2.2). These will be referred to as a shape descriptors poor
matching floor and standard deviation boundary, respectively. If either the
average distance or average standard deviation crosses their given bound-
ary, it indicates a poor performance. However, if the opposite is true it
indicates a good performance.

Each shape descriptor and distance function combination has their own
unique output. This can be represented through ranges, which show what
values are optimal for the combinations:

• RICI - CRD | QUICCI - WHD | 3DSC - Euclidean | FPFH - Euc-
lidean:

– Best: 0

– No maximum value, but the higher it is the worse it is.

• SI - Pearson:

– Best: 1
1Results and code used to produce these graphs can be found in our Benchmark

repository https://github.com/masteroppgaven/Benchmark

57

https://github.com/masteroppgaven/Benchmark

58 CHAPTER 4. RESULTS

Test Time (hours)
Rotated Objects 23
Resized Objects 23

Moved 13
Mirrored 6

Twisted Deformation 33
Rippled Deformation 38

Gaussian Vertex Displacement 48
Deviation and Rotation of Vertex Normals 31

Clustered Objects 103
Partial Overlap 59

Objects with Holes 52
Partial Surface Visibility 6

Table 4.0.1: Amount of time spent running each test, in hours

– Worst: 0 (would be -1, however since all values generated from
the shape descriptors are positive it is not possible to go lower
than 0)

The following diagrams will show how the shape descriptors performed in
the different simulated real world scenarios.

4.1 Generation Times

A visualisation of the generation time for each shape descriptor can be
seen in Figure 4.2.1 and their average generation time can be seen in Table
4.2.1. These results show that both RICI and QUICCI are considerably
faster than the rest. Only SI is close to their performance, but is still four
times slower. We also see that FPFH has a large spike at the end, when
the vertex counts are higher. We got similar results to what van Blokland
et al. got in his tests in the QUICCI paper [14].

4.2 Comparison Times

The average time used to compare the descriptors can be seen in Table
4.2.22. As expected the 3DSC shape descriptor uses the most time, as it
has to perform more comparisons than the other shape descriptors. RICI
and SI has similar results, and FPFH and QUICCI perform the quickest
comparisons given their small descriptor sizes. van Blokland et al. also
got the same results in his QUICCI paper [14].

2Note: These results are based on the time used when calculating
on the CPU, as these show the differences more clearly. The results
can be viewed at https://docs.google.com/spreadsheets/d/1mTGLzFWl7z1YiuJ_
t7dx6D9xkwdpI4roUY_xLKNDd6c/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1mTGLzFWl7z1YiuJ_t7dx6D9xkwdpI4roUY_xLKNDd6c/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mTGLzFWl7z1YiuJ_t7dx6D9xkwdpI4roUY_xLKNDd6c/edit?usp=sharing

CHAPTER 4. RESULTS 59

Shape Descriptor Average Generation Time (s)
RICI 0.09060

QUICCI 0.09341
SI 0.39163

3DSC 2.67576
FPFH 6.37923

Table 4.2.1: Average generation time for each descriptor

Figure 4.2.1: Generation time sorted on object’s vertex count from low
to high

Shape Descriptor Average Comparison Time (s)
RICI 0.05757

QUICCI 0.01049
SI 0.05596

3DSC 1.49970
FPFH 0.01185

Table 4.2.2: Average comparison time for each descriptor

60 CHAPTER 4. RESULTS

4.3 Basic Matching Performance

The Basic Matching Performance transformations will test the different
shape descriptors abilities to identify objects which have had simple trans-
formations applied to them. Such as, the objects being rotated or resized.

4.3.1 Rotated Objects

The results from the Rotated Objects tests can be seen in Figure 4.3.1. All
the shape descriptors, except 3DSC, produces perfect results for objects
that are rotated. We see that 3DSC is somewhat affected by how the object
is rotated, but not by much. Additionally, another interesting observation
is that when the object is rotated in all three axes the distance ends up
being lower compared to when the object is only rotated in one axis.

4.3.2 Resized Objects

The results from the Resized Objects test can be seen in Figure 4.3.2.
First off we see that all the shape descriptors behave relatively similarly
to the varying degrees of size change. However with further analysis, we
also see that the shape descriptors get quite different results when looking
at the average distances for when the object are reduced to half their
size compared to when they double in size. RICI, SI, and 3DSC’s results
indicate that an object half its original size is more equal in comparison to
an object double its original size. On the other hand, QUICCI and FPFH’s
results indicate the opposite. Only RICI and SI manage to produce results
that are consistently better than the poor matching floor, while the other
descriptors seem to struggle with larger changes in size.

4.3.3 Moved Objects

As can be seen in Figure 4.3.3, moving an object in 3D space does not
affect the performance of the shape descriptors. All of them have perfect
scores.

4.3.4 Mirrored Objects

The results of the mirrored transformation test can be seen in Figure
4.3.4. The results are sorted individually on the average distance. We see
here that RICI, SI, and FPFH manage to consistently produce average
distances better than the set floor. While 3DSC and QUICCI seemed
to struggle with this task, as most of their distances are above the floor.
An interesting observation is that 3DSC manages to keep a few distances
very low, but most of its results are considered poor. When observing the
QUICCI results we also see that its distances are a lot more spread out
than the others, which can be deduced by looking at its standard deviation
values that are nearly uniformly above the standard deviation boundary.

CHAPTER 4. RESULTS 61

(a
)

R
IC

I
(b

)
Q

U
IC

C
I

(c
)

SI
(d

)
3D

SC

(e
)

F
P

F
H

F
ig

u
re

4.
3.

1:
R

ot
at

ed
O

bj
ec

ts
R

es
ul

ts

62 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.3.2:

R
esized

O
bjects

R
esults

CHAPTER 4. RESULTS 63

(a
)

R
IC

I
(b

)
Q

U
IC

C
I

(c
)

SI
(d

)
3D

SC

(e
)

F
P

F
H

F
ig

u
re

4.
3.

3:
M

ov
ed

R
es

ul
ts

64 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.3.4:

M
irrored

R
esults

CHAPTER 4. RESULTS 65

4.4 Deformation Resistance

The deformation resistance tests include the twisted and rippled trans-
formations. These test the shape descriptors ability to recognise objects
that have been deformed in some sort of way.

4.4.1 Twisted Deformation of Objects

The results from the Twisted Deformation of Objects test can be seen in
Figure 4.4.1. The first thing to notice is that 3DSC is the only shape
descriptor that passes its poor matching performance floor, but not before
after the third category. FPFH and 3DSC’s average distances also increase
relatively fast, compared to the other shape descriptors which keep a more
stable distance in the different categories. In addition, QUICCIs standard
deviation gets proportionally close to its boundary.

4.4.2 Rippled Deformation of Objects

The results of the Rippled Deformation of Objects test can be seen in
Figure 4.4.2. Here we see that only 3DSC goes above the set poor matching
floor, but not before the most extreme variation of the rippled categories.
The other shape descriptors manage to perform well for all the categories.
However, we see that QUICCI’s standard deviation crosses its boundary
from category 0.02. This shows that the variation of distances for QUICCI
are quite drastic with higher amounts of the rippled deformation, which
might indicate that it is a bit more unsure than the other shape descriptors.

4.5 Noise Resistance

The Noise Resistance transformations test how the shape descriptors are
affected by different types of noise. This includes Gaussian noise and
changing the orientation of an object’s normals.

4.5.1 Gaussian Vertex Displacement Along Normals

The results for the Gaussian Vertex Displacement Along Normals test can
be seen in Figure 4.5.1. We can see that all the shape descriptors generally
manage to keep a good performance throughout the different categories,
however 3DSC goes outside the poor matching floor at the 0.003 category.
We also see that no shape descriptor manages to keep a smooth average
distance, and are all converging towards their own poor matching floor.
Additionally, RICI and QUICCI’s standard deviation ends up crossing
their standard deviation boundary, while SI and 3DSC barely goes above.
FPFH manages to keep its standard deviation steadily under the boundary
in all the categories.

66 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.4.1:

T
w

isted
D

eform
ation

R
esults

CHAPTER 4. RESULTS 67

(a
)

R
IC

I
(b

)
Q

U
IC

C
I

(c
)

SI
(d

)
3D

SC

(e
)

F
P

F
H

F
ig

u
re

4.
4.

2:
R

ip
pl

ed
D

ef
or

m
at

io
n

R
es

ul
ts

68 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.5.1:

G
aussian

V
ertex

D
isplacem

ent
A

long
N

orm
als

R
esults

CHAPTER 4. RESULTS 69

4.5.2 Deviation and Rotation of Vertex Normals
The results the Deviation and Rotation of Vertex Normals tests can be
seen in Figure 4.5.2. As we can observe in the diagrams, all the shape
descriptors manage to keep inside of the poor matching floor when the
normal deviation is under 20°. 3DSC goes outside the poor matching
floor at 20°, while FPFH doesn’t go above before 45°. The other shape
descriptors manage to consistently keep inside of the floor.

4.6 Clutter Resistance
The Clutter Resistance transformations test the shape descriptors ability
to identify an object in cluttered environments.

4.6.1 Clustered Objects
The results from the Clustered Objects test can be seen in Figure 4.6.1.
We see that only QUICCI manages to keep a distance that is consistently
under its poor matching floor, while on the other hand 3DSC and FPFH
starts above it at the lowest amount of clustering. RICI and SI is under
the floor at category 5, but both of them go outside on the next category.
Another observation is that while the others’ standard deviation stays
steady throughout the test, RICI’s increases together with the increasing
average distance.

4.6.2 Ability to Match with Partial Overlap
The results from the objects with partial overlap can be seen in Figure
4.6.2. QUICCI is the only shape descriptor that seems to be resistant to
this transformation. 3DSC and FPFH start above their respective poor
matching floors, while SI goes under at the “45.1-55.0” category, and RICI
goes over after the “35.1-45.0” category. An interesting observation is
RICI’s spike at the third to last category, through further investigation
we found that this spike is caused only by object 977 which produced an
average distance of 36,202. If we ignore this object the graph would follow
a more natural growth pattern (figure 4.6.3). However, even with that
removed the average still ends above the poor matching floor. As with
the Clustering test, RICI’s standard deviation increases together with an
increasing average distance, while the others stay relatively flat. Another
interesting observation is that both SI and FPFH’s standard deviation
decreases towards the highest amount of overlap.

4.7 Occlusions and Incomplete Surfaces
The Occlusions and Incomplete Surfaces transformations will test the
shape descriptors abilities to recognise objects that have had some parts
of it removed.

70 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.5.2:

D
eviation

and
R

otation
of

V
ertex

N
orm

als
R

esults

CHAPTER 4. RESULTS 71

(a
)

R
IC

I
(b

)
Q

U
IC

C
I

(c
)

SI
(d

)
3D

SC

(e
)

F
P

F
H

F
ig

u
re

4.
6.

1:
C

lu
st

er
ed

O
bj

ec
ts

R
es

ul
ts

72 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.6.2:

A
bility

to
M

atch
w

ith
P
artialO

verlap
O

bjects
R

esults

CHAPTER 4. RESULTS 73

Figure 4.6.3: Ability to Match with Partial Overlap Objects results for
RICI, when object 977’s result in category “65.1-75.0” is ignored

4.7.1 Objects with Holes
The results for the Objects with Holes transformation can be found in
Figure 4.7.1. RICI and SI seem to be the best performers with this cat-
egory, as they manage to both keep away the poor matching performance
floor and their distances are not affected by the amount of holes in the
object. 3DSC starts above the poor matching performance floor, while
FPFH only reaches it in the “60.1-70.0” category. QUICCI also manages
to keep under the poor matching performance floor, but doesn’t manage
to keep a stable distance after the “40.1-50.0” category.

4.7.2 Partial Surface Visibility
The results from the Partial Surface Visibility test can be seen in Figure
4.7.2. The results are sorted individually on the test’s average distance.
RICI and SI show clear signs of being the most resistant to this type of
transformation, with most of their distances performing better than the
set floor. SI’s standard deviations follow the standard deviation boundary.
QUICCI, 3DSC, and FPFH all have distances that vary from under to
above the floor, but 3DSC has the highest quantity of distances above the
floor indicating a worse performance.

74 CHAPTER 4. RESULTS

(a)
R

IC
I

(b
)

Q
U

IC
C

I

(c)
SI

(d
)

3D
SC

(e)
F
P

F
H

F
igu

re
4.7.1:

O
bjects

W
ith

H
oles

R
esults

CHAPTER 4. RESULTS 75

(a
)

R
IC

I
(b

)
Q

U
IC

C
I

(c
)

SI
(d

)
3D

SC

(e
)

F
P

F
H

F
ig

u
re

4.
7.

2:
P
ar

ti
al

Su
rf

ac
e

V
is

ib
ili

ty
R

es
ul

ts

76 CHAPTER 4. RESULTS

CHAPTER

FIVE

DISCUSSION

This chapter will discuss what we found from our results, as well as discuss
more technical parts of the project.

5.1 Evaluating the Shape Descriptors

As previously discussed, we can’t compare the shape descriptors directly
to each other using the method we proposed. Therefore we need to see how
well they perform overall within each set of transformations and determine
which of them perform good and which of them are lacking. This will
be done using the results of each test, and examining how their average
distances and standard deviations compares to the previously set floors.

5.1.1 Basic Matching Performance

The Basic Matching Performance transformations included the following
tests: Rotated (Figure 4.3.1), Resized (Figure 4.3.2), Moved (Figure 4.3.3),
and Mirrored Objects (Figure 4.3.4). We see that throughout these tests
all the shape descriptors generally perform well, however 3DSC tends to
stand out. In all the tests, except Moved Objects where they all got a per-
fect score, 3DSC is never in the top performers. This is clear in both the
Mirrored results and Rotated Objects. In the mirrored results 3DSC for
the most part ends up outside its poor matching floor. While the others,
with exception of QUICCI, produces good results. Even though 3DSC’s
results in the Rotated Objects is considered good, all the others are not
affected by the rotation. Since we are looking at how shape descriptors’
object recognition abilities are affected by transformations, this indicates
a poorer performance than the other shape descriptors. This fault might
be caused by 3DSC’s support volume having a free axis of rotation, which
can have led to small areas of the object ending up in different bins than
in the original. The two shape descriptors that stand out in a positive
way in these tests are the RICI and SI shape descriptors. We see that for

77

78 CHAPTER 5. DISCUSSION

all the tests they for the most part manage to stay within their respective
poor matching and standard deviation floors. FPFH and QUICCI man-
ages to produce equal results to RICI and SI in both the Rotated and
Moved Objects test, but they both seem to struggle in the Resized Ob-
jects test. They have at least one category where they end up outside
their poor matching floor. However as pointed out, their results indicate
that an object half of its original size is less equal than an object double
its original size. This is opposite to the other shape descriptors, which
suggests that they are more sensitive to one direction of resizing than the
shape descriptors.

5.1.2 Deformation Resistance

The Deformation Resistance transformations included the following tests:
Twisted Deformation (Figure 4.4.1) and Rippled Deformation of Objects
(Figure 4.4.2). The shape descriptors act similarly in the two tests. This
is not unexpected as they both deform the objects, just using different
methods. We see here that only 3DSC goes outside its poor matching
floor, but not before some of the more extreme deformations (Category 8 in
Twisted and 0.03 in Rippled). This shows that 3DSC performs worse than
the others for this transformation. QUICCI’s standard deviation moves
above its boundary at category 0.02 in the Rippled Deformation test,
which indicates that its results are a lot more varied than the others. This
can be sub-optimal in situations where you depend on the results being
more stable. Other than this RICI, QUICCI, SI, and FPFH produce good
results in both environments, even at the most extreme transformations.

5.1.3 Noise Resistance

The Noise Resistance transformations included the following tests: Gaus-
sian Vertex Displacement Along Normals (Figure 4.5.1) and Deviation and
Rotation of Vertex Normals (Figure 4.5.2). Both of these tests show that
the shape descriptors are generally resistant to moderate amounts of these
types of noise. However, on the more extreme levels we see that 3DSC
in both tests goes above its poor matching floor and FPFH goes above
its floor when the normal deviation reaches 45°. We also see that RICI,
QUICCI, and SI produce good average distances throughout the different
tests. But RICI and QUICCI’s standard deviations tend to go over their
boundary. RICI’s standard deviation only goes above its boundary at the
most extreme variation of the Gaussian Noise test, while QUICCI’s stand-
ard deviation ends up above around half-way in both. These results might
indicate that SI overall is the most resistant to these noise tests, however
RICI, QUICCI, and FPFH still have an acceptable performance when the
conditions are not at their most extreme.

CHAPTER 5. DISCUSSION 79

5.1.4 Clutter Resistance

The Clutter Resistance transformations included the following tests: Clustered
Objects (Figure 4.6.1) and Ability to Match with Partial Overlap (Fig-
ure 4.6.2). Even though the motivation for creating many of these shape
descriptors was to solve the problem of clutter, we see that it has a large
effect on them. Only QUICCI produces results that do not go outside
the poor matching performance floor. We chose treat RICI’s spike as
an outlier (Figure 4.6.2a), as it’s most likely something that went wrong
when calculating as it is not present in the other tests. It should there-
fore not contribute towards RICI’s overall performance. Both RICI and
SI manage to keep inside of the poor matching floor when there is low
amounts of objects in the scene and degree of overlap, but they start to
struggle when these are increased. RICI’s rapid increase in distance when
the amount of objects in the scene increases might be explained by how it
uses the squared sum of intersections around a given point. Which leads
to it calculating higher values in environments with high amount of clut-
ter. RICI’s standard deviation also stands out with it increasing at the
same pace as the the average distance, which indicates it having a larger
variation in results when the clutter gets larger. This isn’t present with
the other shape descriptors.

5.1.5 Occlusions and Incomplete Surfaces

The Occlusions and Incomplete Surfaces transformations included the fol-
lowing tests: Objects with Holes (Figure 4.7.1) and Partial Surface Vis-
ibility (Figure 4.7.2). Here we see that in both tests 3DSC and FPFH
ends up outside the poor matching floor, while the others keep a relatively
stable distance in both tests. It is difficult to determine how well QUICCI
performs in the Partial Surface Visibility test, as its distance are so var-
ied. In Objects with Holes it looks like RICI and SI are unaffected by
the amount of holes in the object and keeps a steady distance throughout.
Additionally, they both prove to have good results in the Partial Surface
Visibility test as well. Proving that they perform better than the other
shape descriptors in these types of environments.

5.1.6 Overall

Looking at the results some shape descriptors seem to be more resistant to
some of the scenarios than others. Both RICI and SI seem to provide con-
sistently good performance in the different tests, while 3DSC and FPFH
seems to provide a more varying degree of reliability. QUICCI has also
been a good contender, but its outputs appear to be a lot more varying
than the others. However, with its quick comparison and generation time
it is definitely a good candidate for many tasks.

80 CHAPTER 5. DISCUSSION

5.2 Project Architecture
There were many different ways we could have split the architecture of the
project. It could have been one large project with the same programming
language and libraries, which would have made communication between
the different parts a bit easier to implement. Or we could have merged the
dataset transformations into the benchmarking tool, which would have en-
abled us to generate new simulations on-demand if we for example wanted
to merge together two transformations. However, by choosing to split the
project into the Data Collection, Performance Data Generation, and Data
Analysis parts we were able to freely choose the technologies that fit for
each task, without adhering to specific technology requirements for the
entire project. For example we could choose Unity and utilise its features
to dynamically create transformations, without having to create the rest
of the project within a game engine. This made it easier to develop and
optimise each component independently, without affecting the others. Ad-
ditionally, separating the components also allowed for easier testing and
debugging, as issues could be isolated to a specific component rather than
having to search through the entire project. There is however no correct
answer to what the best architecture would look like, and it might be
necessary to change ours in the future if new requirements are presented.

CHAPTER

SIX

CONCLUSIONS

We originally created three objectives which would be used in order to an-
swer our research question: To what extent is the object recognition abilities
of shape descriptors affected when simulating real-world scenarios?. These
objectives were:

1. Identify the criteria by which a shape descriptor should be evaluated.

2. Develop a method to measure these criteria in an objective manner.

3. Evaluate the performance of popular shape descriptors based on the
identified criteria.

These objectives have defined the structure of how we have attempted to
answer the question.

Through reading previous papers and related works, we found that
there was a lack of research on what factors make the performance of a
shape descriptor good or bad, and a lack of a standard method for evalu-
ating their performance. This motivated the creation of a new benchmark,
which tested shape descriptor’s performance in a diverse set of real world
scenarios. The benchmark also utilised our new method to fairly test their
performance. By comparing two completely unrelated objects we calcu-
late a poor matching floor and standard deviation boundary for each shape
descriptor and distance function combination, and use these to identify if
a shape descriptor’s performance in a given environment is good or not.

The benchmark consisted of three separated processes: Data Collec-
tion, Performance Data Generation, and Data Analysis. All of the dif-
ferent parts were developed with replicability and modifiability in mind,
which lets researchers generate the same results as us and build upon our
code to add their own shape descriptors and transformations. This will en-
able researchers to use this benchmark as a standard in the future, which
will legitimise improvements for a given shape descriptor.

We have evaluated the performance of five shape descriptors: Spin
Image (SI), 3D Shape Context (3DSC), Fast Point Feature Histogram

81

82 CHAPTER 6. CONCLUSIONS

(FPFH), Radial Intersection Count Image (RICI), and Quick Intersection
Count Change Image (QUICCI). These shape descriptors where tested
in five different environments: Basic Matching Performance, Deformation
Resistance, Noise Resistance, Clutter Resistance, and Occlusions and In-
complete Surfaces. Which represents a wide range of different real-world
scenarios which shape descriptors might face. We found that both SI and
RICI provide overall consistent good performance, while the others lack
reliability for some of the different transformations. Through these results
our original research questions has been answered. Additionally, they will
allow future researchers and developers to take educated choices for which
shape descriptors to choose for their research or applications.

With our results and research contributions we have expanded the
knowledge of how shape descriptors perform across a broader range of
scenarios. Our testing environments have been more closely modelled after
real-world scenarios than those used in previous studies. Furthermore, we
have developed transformations to isolate the variables that may impact
the results of the tests more effectively. For instance, we’ve subdivided
cluster resistance into separate categories: partial overlapping of objects
and clustering of objects. These contributions have enabled more precise
and relevant analysis in our research. This is a field in research where
there is still a lot to figure out. We hope that our thesis and benchmark
project will aid future researchers in developing new shape descriptors,
which hopefully further improve the field of computer vision.

6.1 Future Work

As discussed in different parts of the thesis, there are some areas which
we think can contribute to improved results. These are features we didn’t
have time to implement ourselves or they were out of our scope, because
of their complexity. First off, looking into methods on how to directly
compare the different shape descriptor and distance function outputs. An
approach to this could be to figure out how to normalise their values.
This feature would greatly benefit the benchmark, as one wouldn’t need
to speculate on which shape descriptors had the best performance.

Following this a method that changes the support radius parameter of
a shape descriptor based on the level of detail in the current scene. An
important factor here is that the support radius has to always be the same
for the same point in an object, as if otherwise an equal object might not
get recognised by the shape descriptor. This could increase the object
recognition abilities of the different shape descriptors, as both smaller and
larger features of an object would be guaranteed to be taken into account.

Another area that would greatly benefit the benchmark, is to further
research how much the calculated poor matching floor is affected by the
size of the objects. As our objects were mostly the same size, hand-picking
some objects to calculate the floor was a viable option. However, if you
are working with a more diverse set of objects some more research could

CHAPTER 6. CONCLUSIONS 83

be needed.
In the end, an even more diverse and larger dataset in addition to im-

plementing more shape descriptors into the benchmark would benefit the
results substantially. As the benchmark has been made with modifiability
in mind, adding these features shouldn’t be a complex task. This would
give researchers more data to analyse, which would further help them in
their research.

84 CHAPTER 6. CONCLUSIONS

REFERENCES

[1] H. Gunnarsli and J. Brooks. Autumn 2022 Project Summary. Dec.
2022.

[2] John Novatnack and Ko Nishino. “Scaledependent/invariant local
3D shape descriptors for fully automatic registration of multiple
sets of range images”. In: European conference on computer vision.
Springer, 2008, pp. 440–453.

[3] Sotiris Malassiotis and Michael G Strintzis. “Snapshots: A novel local
surface descriptor and matching algorithm for robust 3D surface
alignment”. In: IEEE Transactions on pattern analysis and machine
intelligence 29.7 (2007), pp. 1285–1290.

[4] Sameh M Yamany and Aly A Farag. “Surface signatures: an ori-
entation independent freeform surface representation scheme for the
purpose of objects registration and matching”. In: IEEE transactions
on pattern analysis and machine intelligence 24.8 (2002), pp. 1105–
1120.

[5] Maks Ovsjanikov and et al. “Exploration of continuous variability in
collections of 3D shapes”. In: ACM Transactions on Graphics (TOG)
30.4 (2011), p. 33.

[6] Ruizhen Hu, Lubin Fan and Ligang Liu. “Cosegmentation of 3d
shapes via subspace clustering”. In: Computer graphics forum 31.5
(2012), pp. 1703–1713.

[7] Zizhao Wu and et al. “Unsupervised cosegmentation of 3D shapes via
affinity aggregation spectral clustering”. In: Computers & Graphics
37.6 (2013), pp. 628–637.

[8] Cong Feng, Andrei C. Jalba and Alexandru C. Telea. “A Descriptor
for Voxel Shapes Based on the Skeleton Cut Space”. In: Eurographics
Workshop on 3D Object Retrieval. Ed. by A. Ferreira, A. Giachetti
and D. Giorgi. The Eurographics Association, 2016. isbn: 978-3-
03868-004-8. doi: 10.2312/3dor.20161082.

85

https://doi.org/10.2312/3dor.20161082

86 REFERENCES

[9] Daniela Craciun, Guillaume Levieux and Matthieu Montes. “Shape
Similarity System driven by Digital Elevation Models for Nonrigid
Shape Retrieval”. In: Eurographics Workshop on 3D Object Retrieval.
Ed. by Ioannis Pratikakis, Florent Dupont and Maks Ovsjanikov.
The Eurographics Association, 2017. isbn: 978-3-03868-030-7. doi:
10.2312/3dor.20171051.

[10] A.E. Johnson and M. Hebert. “Using spin images for efficient ob-
ject recognition in cluttered 3D scenes”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 21.5 (1999), pp. 433–449.
doi: 10.1109/34.765655.

[11] Andrea Frome et al. “Recognizing Objects in Range Data Using
Regional Point Descriptors”. In: Computer Vision - ECCV 2004.
Ed. by Tomáš Pajdla and Jiří Matas. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 224–237. isbn: 978-3-540-24672-5.

[12] Radu Bogdan Rusu, Nico Blodow and Michael Beetz. “Fast Point
Feature Histograms (FPFH) for 3D registration”. In: 2009 IEEE In-
ternational Conference on Robotics and Automation. 2009, pp. 3212–
3217. doi: 10.1109/ROBOT.2009.5152473.

[13] Bart Iver van Blokland and Theoharis Theoharis. “Radial intersec-
tion count image: A clutter resistant 3D shape descriptor”. In: Com-
puters & Graphics 91 (2020), pp. 118–128.

[14] Bart Iver van Blokland and Theoharis Theoharis. “An indexing scheme
and descriptor for 3D object retrieval based on local shape query-
ing”. In: Computers & Graphics 92 (2020), pp. 55–66. issn: 0097-
8493. doi: https://doi.org/10.1016/j.cag.2020.09.001.
url: https://www.sciencedirect.com/science/article/pii/
S009784932030128X.

[15] Adam Finkelstein. COS 426 Lecture. 2005. url: https://www.cs.
princeton.edu/courses/archive/spr05/cos426/lectures/12-
reps.pdf.

[16] Tiange Xiang et al. “Walk in the cloud: Learning curves for point
clouds shape analysis”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2021, pp. 915–924.

[17] Steve Marschner. CS 4620 Lecture. 2014. url: https://www.cs.
cornell.edu/courses/cs4620/2014fa/lectures/02trimesh1.
pdf.

[18] Safe Software. Vertex Normals. url: https://docs.safe.com/
fme/html/FME_Desktop_Documentation/FME_ReadersWriters/
!FME_Geometry/Vertex_Normals.htm.

[19] Unity Technologies. Anatomy of a Mesh. 2022. url: https://docs.
unity.cn/560/Documentation/Manual/AnatomyofaMesh.html.

https://doi.org/10.2312/3dor.20171051
https://doi.org/10.1109/34.765655
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/https://doi.org/10.1016/j.cag.2020.09.001
https://www.sciencedirect.com/science/article/pii/S009784932030128X
https://www.sciencedirect.com/science/article/pii/S009784932030128X
https://www.cs.princeton.edu/courses/archive/spr05/cos426/lectures/12-reps.pdf
https://www.cs.princeton.edu/courses/archive/spr05/cos426/lectures/12-reps.pdf
https://www.cs.princeton.edu/courses/archive/spr05/cos426/lectures/12-reps.pdf
https://www.cs.cornell.edu/courses/cs4620/2014fa/lectures/02trimesh1.pdf
https://www.cs.cornell.edu/courses/cs4620/2014fa/lectures/02trimesh1.pdf
https://www.cs.cornell.edu/courses/cs4620/2014fa/lectures/02trimesh1.pdf
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/!FME_Geometry/Vertex_Normals.htm
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/!FME_Geometry/Vertex_Normals.htm
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/!FME_Geometry/Vertex_Normals.htm
https://docs.unity.cn/560/Documentation/Manual/AnatomyofaMesh.html
https://docs.unity.cn/560/Documentation/Manual/AnatomyofaMesh.html

REFERENCES 87

[20] William R. Sherman and Alan B. Craig. “Chapter 6 - Presenting the
Virtual World”. In: Understanding Virtual Reality (Second Edition).
Ed. by William R. Sherman and Alan B. Craig. Second Edition.
The Morgan Kaufmann Series in Computer Graphics. Boston: Mor-
gan Kaufmann, 2018, pp. 398–536. isbn: 978-0-12-800965-9. doi:
https://doi.org/10.1016/B978- 0- 12- 800965- 9.00006- 4.
url: https://www.sciencedirect.com/science/article/pii/
B9780128009659000064.

[21] Juana Valeria Hurtado and Abhinav Valada. “Chapter 12 - Semantic
scene segmentation for robotics”. In: Deep Learning for Robot Per-
ception and Cognition. Ed. by Alexandros Iosifidis and Anastasios
Tefas. Academic Press, 2022, pp. 279–311. isbn: 978-0-323-85787-1.
doi: https://doi.org/10.1016/B978-0-32-385787-1.00017-8.
url: https://www.sciencedirect.com/science/article/pii/
B9780323857871000178.

[22] Jing Wang, Juan Zhang and Qingtong Xu. “Research on 3D laser
scanning technology based on point cloud data acquisition”. In: 2014
International Conference on Audio, Language and Image Processing.
2014, pp. 631–634. doi: 10.1109/ICALIP.2014.7009871.

[23] Matthew Berger et al. “A Survey of Surface Reconstruction from
Point Clouds”. In: Computer Graphics Forum 36.1 (2017), pp. 301–
329.

[24] Dirk Hahnel, Wolfram Burgard and Sebastian Thrun. “Learning
compact 3D models of indoor and outdoor environments with a
mobile robot”. In: Robotics and Autonomous Systems 44.1 (2003),
pp. 15–27.

[25] Jacopo Aleotti and Stefano Caselli. “A 3D Shape Segmentation Ap-
proach for Robot Grasping by Parts”. In: Robotics and Autonomous
Systems 60.3 (2012), pp. 358–366.

[26] Michael Kazhdan and Hugues Hoppe. “Screened Poisson Surface
Reconstruction”. In: ACM Transactions on Graphics (TOG) 32.3
(2013), p. 29.

[27] Fausto Bernardini et al. “The ball-pivoting algorithm for surface re-
construction”. In: IEEE transactions on visualization and computer
graphics 5.4 (1999), pp. 349–359.

[28] Herbert Edelsbrunner, David G Kirkpatrick and Raimund Seidel.
“A shape theory for general point sets in the plane”. In: Journal of
the ACM (JACM) 30.3 (1983), pp. 668–677.

[29] The Spatial Team. “The Main Benefits and Disadvantages of Point-
Cloud Modeling”. In: (17th Dec. 2019). url: https://blog.spatial.
com/the-main-benefits-and-disadvantages-of-point-cloud-
modeling (visited on 21/05/2023).

[30] Andrew E Johnson. “Spin-images: a representation for 3-D surface
matching”. In: (1997).

https://doi.org/https://doi.org/10.1016/B978-0-12-800965-9.00006-4
https://www.sciencedirect.com/science/article/pii/B9780128009659000064
https://www.sciencedirect.com/science/article/pii/B9780128009659000064
https://doi.org/https://doi.org/10.1016/B978-0-32-385787-1.00017-8
https://www.sciencedirect.com/science/article/pii/B9780323857871000178
https://www.sciencedirect.com/science/article/pii/B9780323857871000178
https://doi.org/10.1109/ICALIP.2014.7009871
https://blog.spatial.com/the-main-benefits-and-disadvantages-of-point-cloud-modeling
https://blog.spatial.com/the-main-benefits-and-disadvantages-of-point-cloud-modeling
https://blog.spatial.com/the-main-benefits-and-disadvantages-of-point-cloud-modeling

88 REFERENCES

[31] S. Belongie, J. Malik and J. Puzicha. “Shape matching and object
recognition using shape contexts”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 24.4 (2002), pp. 509–522. doi:
10.1109/34.993558.

[32] Radu Bogdan Rusu et al. “Aligning point cloud views using persist-
ent feature histograms”. In: 2008 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2008, pp. 3384–3391. doi:
10.1109/IROS.2008.4650967.

[33] Fast Point Feature Histograms (FPFH) descriptors. url: https:
//pcl.readthedocs.io/projects/tutorials/en/latest/fpfh_
estimation.html (visited on 10/04/2023).

[34] Yulan Guo et al. “A Comprehensive Performance Evaluation of 3D
Local Feature Descriptors”. In: International Journal of Computer
Vision volume 116 (2016), pp. 66–89. issn: 1573-1405. doi: https:
//doi.org/10.1007/s11263-015-0824-y. url: https://link.
springer.com/article/10.1007/s11263-015-0824-y.

[35] Manolis Savva et al. “SHREC’17 Track Large-Scale 3D Shape Re-
trieval from ShapeNet Core55”. In: Proceedings of the Eurographics
Workshop on 3D Object Retrieval (2017). Vol. 10. 2017.

[36] Aitor Aldoma et al. “Tutorial: Point Cloud Library: Three-Dimensional
Object Recognition and 6 DOF Pose Estimation”. In: IEEE Robotics
& Automation Magazine 19.3 (2012), pp. 80–91. doi: 10.1109/MRA.
2012.2206675.

[37] Cuemath. Euclidean Distance Formula. url: https://www.cuemath.
com/euclidean-distance-formula/ (visited on 11/04/2023).

[38] Nitya Raut. What is Hamming Distance? 2020. url: https://www.
tutorialspoint.com/what- is- hamming- distance (visited on
11/04/2023).

[39] Shaun Turney. Pearson Correlation Coefficient (r) | Guide & Ex-
amples. 2022. url: https : / / www . scribbr . com / statistics /
pearson-correlation-coefficient/ (visited on 12/04/2023).

[40] Zhizhong Han et al. “Mesh Convolutional Restricted Boltzmann Ma-
chines for Unsupervised Learning of Features With Structure Preser-
vation on 3-D Meshes”. In: IEEE Transactions on Neural Networks
and Learning Systems 28.10 (2017), pp. 2268–2281. doi: 10.1109/
TNNLS.2016.2582532.

[41] Anastasia Ioannidou et al. “Deep Learning Advances in Computer
Vision with 3D Data: A Survey”. In: ACM Comput. Surv. 50.2 (Apr.
2017). issn: 0360-0300. doi: 10.1145/3042064. url: https://doi.
org/10.1145/3042064.

[42] Mikaela Angelina Uy et al. “Revisiting point cloud classification:
A new benchmark dataset and classification model on real-world
data”. In: Proceedings of the IEEE/CVF international conference
on computer vision. 2019, pp. 1588–1597.

https://doi.org/10.1109/34.993558
https://doi.org/10.1109/IROS.2008.4650967
https://pcl.readthedocs.io/projects/tutorials/en/latest/fpfh_estimation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/fpfh_estimation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/fpfh_estimation.html
https://doi.org/https://doi.org/10.1007/s11263-015-0824-y
https://doi.org/https://doi.org/10.1007/s11263-015-0824-y
https://link.springer.com/article/10.1007/s11263-015-0824-y
https://link.springer.com/article/10.1007/s11263-015-0824-y
https://doi.org/10.1109/MRA.2012.2206675
https://doi.org/10.1109/MRA.2012.2206675
https://www.cuemath.com/euclidean-distance-formula/
https://www.cuemath.com/euclidean-distance-formula/
https://www.tutorialspoint.com/what-is-hamming-distance
https://www.tutorialspoint.com/what-is-hamming-distance
https://www.scribbr.com/statistics/pearson-correlation-coefficient/
https://www.scribbr.com/statistics/pearson-correlation-coefficient/
https://doi.org/10.1109/TNNLS.2016.2582532
https://doi.org/10.1109/TNNLS.2016.2582532
https://doi.org/10.1145/3042064
https://doi.org/10.1145/3042064
https://doi.org/10.1145/3042064

REFERENCES 89

[43] Xianfang Sun et al. “Noise in 3D laser range scanner data”. In:
2008 IEEE International Conference on Shape Modeling and Ap-
plications. 2008, pp. 37–45. doi: 10.1109/SMI.2008.4547945.

[44] Pedram Oskouie, Burcin Becerik-Gerber and Lucio Soibelman. “Auto-
mated measurement of highway retaining wall displacements using
terrestrial laser scanners”. In: Automation in Construction 65 (2016),
pp. 86–101. issn: 0926-5805. doi: https://doi.org/10.1016/j.
autcon.2015.12.023. url: https://www.sciencedirect.com/
science/article/pii/S092658051500271X.

[45] Xianfang Sun et al. “Noise analysis and synthesis for 3D laser depth
scanners”. In: Graphical Models 71.2 (2009). IEEE International Con-
ference on Shape Modeling and Applications 2008, pp. 34–48. issn:
1524-0703. doi: https://doi.org/10.1016/j.gmod.2008.12.002.
url: https://www.sciencedirect.com/science/article/pii/
S1524070308000337.

[46] Marie-Julie Rakotosaona et al. “POINTCLEANNET: Learning to
denoise and remove outliers from dense point clouds”. In: Computer
Graphics Forum. Vol. 39. 1. Wiley Online Library. 2020, pp. 185–
203.

[47] Sebastian Koch et al. “ABC: A Big CAD Model Dataset For Geomet-
ric Deep Learning”. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2019.

[48] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model
Repository. Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford Univer-
sity — Princeton University — Toyota Technological Institute at
Chicago, 2015.

[49] Laura Downs et al. Google Scanned Objects: A High-Quality Dataset
of 3D Scanned Household Items. 2022. arXiv: 2204.11918 [cs.RO].

[50] George A. Miller. “WordNet: A Lexical Database for English”. In:
Speech and Natural Language: Proceedings of a Workshop Held at
Harriman, New York, February 23-26, 1992. 1992. url: https :
//aclanthology.org/H92-1116.

[51] Yu Xiang, Roozbeh Mottaghi and Silvio Savarese. “Beyond PAS-
CAL: A benchmark for 3D object detection in the wild”. In: (2014).

[52] Klaus Greff et al. Kubric: A scalable dataset generator. 2022. arXiv:
2203.03570 [cs.CV].

[53] Huang Huang et al. Mechanical Search on Shelves using Lateral Ac-
cess X-RAY. 2020. arXiv: 2011.11696 [cs.RO].

[54] Y. Wang, Y. Li and J. Wang. “3D Modeling and Computer Graphics
in Virtual Reality”. In: Journal of Physics: Conference Series 1007.1
(2018), p. 012010. doi: 10.1088/1742-6596/1007/1/012010.

https://doi.org/10.1109/SMI.2008.4547945
https://doi.org/https://doi.org/10.1016/j.autcon.2015.12.023
https://doi.org/https://doi.org/10.1016/j.autcon.2015.12.023
https://www.sciencedirect.com/science/article/pii/S092658051500271X
https://www.sciencedirect.com/science/article/pii/S092658051500271X
https://doi.org/https://doi.org/10.1016/j.gmod.2008.12.002
https://www.sciencedirect.com/science/article/pii/S1524070308000337
https://www.sciencedirect.com/science/article/pii/S1524070308000337
https://arxiv.org/abs/2204.11918
https://aclanthology.org/H92-1116
https://aclanthology.org/H92-1116
https://arxiv.org/abs/2203.03570
https://arxiv.org/abs/2011.11696
https://doi.org/10.1088/1742-6596/1007/1/012010

90 REFERENCES

[55] S. Kumar, S. Kumar and S. K. Jena. “Mixed Reality Meets Proced-
ural Content Generation in Video Games”. In: 2021 International
Conference on Computer Communication and Informatics (ICCCI).
2021, pp. 1–5. doi: 10.1109/CCINFO53287.2021.9458584.

[56] Jessica V. Procedural Generation. https://www.mit.edu/~jessicav/
6.S198/Blog_Post/ProceduralGeneration.html. 2018.

[57] Aristid Lindenmayer. “Mathematical models for cellular interactions
in development I. Filaments with one-sided inputs”. In: Journal of
Theoretical Biology 18.3 (1968), pp. 280–299. issn: 0022-5193. doi:
https://doi.org/10.1016/0022-5193(68)90079-9. url: https:
//www.sciencedirect.com/science/article/pii/0022519368900799.

[58] Pascal Müller et al. “Procedural Modeling of Buildings”. In: ACM
Trans. Graph. 25 (July 2006), pp. 614–623. doi: 10.1145/1141911.
1141931.

[59] Jiajun Wu et al. “Learning a Probabilistic Latent Space of Ob-
ject Shapes via 3D Generative-Adversarial Modeling”. In: CoRR
abs/1610.07584 (2016). arXiv: 1610.07584. url: http://arxiv.
org/abs/1610.07584.

[60] Roger D Peng. “Reproducible research in computational science”. In:
Science 334.6060 (2011), pp. 1226–1227.

[61] Hans E Plesser. “Reproducibility vs. replicability: a brief history of a
confused terminology”. In: Frontiers in neuroinformatics 11 (2018),
p. 76.

[62] Victoria Stodden. “The case for replication in computational sci-
ence”. In: The Princeton guide to ecology. Princeton University Press,
2012, pp. 244–249.

[63] Gary King. “Replication, replication”. In: PS: Political Science &
Politics 28.3 (1995), pp. 444–452.

[64] Radu Bogdan Rusu et al. “Towards 3D Point Cloud Based Object
Maps for Household Environments”. In: Robotics and Autonomous
Systems 56.11 (2008), pp. 927–941.

[65] Zhenyu Jiang et al. “Synergies between affordance and geometry: 6-
dof grasp detection via implicit representations”. In: CoRR abs/2104.01542
(2021).

[66] iGibson challenge 2021. 2021. url: http://svl.stanford.edu/
igibson/challenge.html.

[67] Andrey Kurenkov et al. “Semantic and geometric modeling with
neural message passing in 3d scene graphs for hierarchical mechan-
ical search”. In: CoRR abs/2012.04060 (2020).

[68] Qianqian Wang et al. “Ibrnet: Learning multi-view image-based ren-
dering”. In: CoRR abs/2102.13090 (2021).

https://doi.org/10.1109/CCINFO53287.2021.9458584
https://www.mit.edu/~jessicav/6.S198/Blog_Post/ProceduralGeneration.html
https://www.mit.edu/~jessicav/6.S198/Blog_Post/ProceduralGeneration.html
https://doi.org/https://doi.org/10.1016/0022-5193(68)90079-9
https://www.sciencedirect.com/science/article/pii/0022519368900799
https://www.sciencedirect.com/science/article/pii/0022519368900799
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1141911.1141931
https://arxiv.org/abs/1610.07584
http://arxiv.org/abs/1610.07584
http://arxiv.org/abs/1610.07584
http://svl.stanford.edu/igibson/challenge.html
http://svl.stanford.edu/igibson/challenge.html

REFERENCES 91

[69] Shaoqing Ren et al. “Faster R-CNN: towards real-time object de-
tection with region proposal networks”. In: CoRR abs/1506.01497
(2015).

[70] Nathan Morrical et al. “Nvisii: A scriptable tool for photorealistic
image generation”. In: CoRR abs/2105.13962 (2021).

[71] Unity User Manual 2021.3 (LTS). url: https://docs.unity3d.
com/Manual/UnityManual.html (visited on 25/04/2023).

[72] Blender 3.5 Reference Manual. 2023. url: https://docs.blender.
org/manual/en/latest/ (visited on 25/04/2023).

[73] Mesh and Object Deformers for Unity 3D. https://assetstore.unity.com/packages/tools/modeling/mesh-
and-object-deformers-for-unity-3d-81427#description. Version 2.1.1.
Accessed: 2023-04-19. July 2019. url: https://wixarexperience.
com/.

[74] Tudor Barbu. “Variational Image Denoising Approach with Diffusion
Porous Media Flow”. In: Abstract and Applied Analysis 2013 (Jan.
2013), e856876. doi: 10.1155/2013/856876. url: https://www.
hindawi.com/journals/aaa/2013/856876/.

[75] Boolean Modifier — Blender Manual. Accessed: 2023-04-18. 2023.
url: https://docs.blender.org/manual/en/latest/modeling/
modifiers/generate/booleans.html.

[76] CUDA Zone. url: https://developer.nvidia.com/cuda-zone
(visited on 25/04/2023).

[77] Matplotlib: Visualization with Python. url: https://matplotlib.
org/ (visited on 25/04/2023).

[78] Performance. url: https: / /matplotlib. org /stable /users /
explain/performance.html (visited on 25/04/2023).

https://docs.unity3d.com/Manual/UnityManual.html
https://docs.unity3d.com/Manual/UnityManual.html
https://docs.blender.org/manual/en/latest/
https://docs.blender.org/manual/en/latest/
https://wixarexperience.com/
https://wixarexperience.com/
https://doi.org/10.1155/2013/856876
https://www.hindawi.com/journals/aaa/2013/856876/
https://www.hindawi.com/journals/aaa/2013/856876/
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/booleans.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/booleans.html
https://developer.nvidia.com/cuda-zone
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/stable/users/explain/performance.html
https://matplotlib.org/stable/users/explain/performance.html

92 REFERENCES

APPENDICES

93

APPENDIX

A

GITHUB REPOSITORIES

• Haakon Gunnarsli & Jonathan Brooks - Benchmark https://github.
com/masteroppgaven/Benchmark

– The code and data used to generate the diagrams for the bench-
mark. In addition, all the pictures generated can be found in
full size.

• Bart Iver van Blokland - libShapeDescriptor https://github.com/
bartvbl/libShapeDescriptor

– A library consisting of implementations for the RICI, QUICCI,
SI, 3DSC, and FPFH descriptors. Both GPU and CPU.

• Haakon Gunnarsli & Jonathan Brooks - libShapeDescriptor https:
//github.com/masteroppgaven/libShapeDescriptor

– A fork of the original libShapeDescriptor project, which in-
cludes a benchmark tool that compares the different shape
descriptors to one another.

• Haakon Gunnarsli & Jonathan Brooks - DatasetGenerator https:
//github.com/masteroppgaven/DatasetGenerator

– A project consisting of both Unity and Blender scripts, that
modify objects in order to create comprehensive datasets.

94

https://github.com/masteroppgaven/Benchmark
https://github.com/masteroppgaven/Benchmark
https://github.com/bartvbl/libShapeDescriptor
https://github.com/bartvbl/libShapeDescriptor
https://github.com/masteroppgaven/libShapeDescriptor
https://github.com/masteroppgaven/libShapeDescriptor
https://github.com/masteroppgaven/DatasetGenerator
https://github.com/masteroppgaven/DatasetGenerator

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions and Objectives
	Stakeholders

	Background & Related Works
	3D Object Representation
	Triangle Mesh
	Point Cloud

	Shape descriptors
	Spin Image
	3D Shape Context
	Fast Point Feature Histogram
	Radial Intersection Count Images
	Quick Intersection Count Change Image

	Distance functions
	Other Methods for Object Recognition
	Challenges Faced by Recognition Methods
	Datasets for 3D Object Recognition
	ABC: A Big CAD Model Dataset for Geometric Deep Learning
	ShapeNet: An Information-Rich 3D Model Repository
	Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items
	Procedural Generation for 3D Object Datasets

	Evaluating Shape Descriptors
	Gap in knowledge

	Methods
	Data Collection
	Dataset Requirements
	Dataset: Scanned Objects by Google Research
	Dataset Preparation
	Transformation Requirements
	Transformations
	Replicability
	Transformed Objects and Metadata

	Performance Data Generation
	Comparing Descriptors
	Descriptor Parameters
	Implementation

	Data Analysis
	Implementation

	Architecture Overview

	Results
	Generation Times
	Comparison Times
	Basic Matching Performance
	Rotated Objects
	Resized Objects
	Moved Objects
	Mirrored Objects

	Deformation Resistance
	Twisted Deformation of Objects
	Rippled Deformation of Objects

	Noise Resistance
	Gaussian Vertex Displacement Along Normals
	Deviation and Rotation of Vertex Normals

	Clutter Resistance
	Clustered Objects
	Ability to Match with Partial Overlap

	Occlusions and Incomplete Surfaces
	Objects with Holes
	Partial Surface Visibility

	Discussion
	Evaluating the Shape Descriptors
	Basic Matching Performance
	Deformation Resistance
	Noise Resistance
	Clutter Resistance
	Occlusions and Incomplete Surfaces
	Overall

	Project Architecture

	Conclusions
	Future Work

	References
	Appendices:
	Github repositories

