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Abstract: Landslide risk mitigation is limited by data scarcity; however, this could be improved
using continuous landslide detection systems. To investigate which image types and machine
learning models are most useful for landslide detection in a Norwegian setting, we compared the
performance of five different machine learning models, for the Jølster case study (30 July 2019),
in Western Norway. These included three globally pre-trained models; (i) the continuous change
detection and classification (CCDC) algorithm, (ii) a combined k-means clustering and random
forest classification model, and (iii) a convolutional neural network (CNN), and two locally trained
models, including; (iv) classification and regression Trees and (v) a U-net CNN model. Images used
included Sentinel-1, Sentinel-2, as well as digital elevation model (DEM) and slope. The globally
trained models performed poorly in shadowed areas and were all outperformed by the locally trained
models. A maximum Matthew’s correlation coefficient (MCC) score of 89% was achieved with a
CNN U-net deep learning model, using combined Sentinel-1 and -2 images as input. This is one
of the first attempts to apply deep learning to detect landslides with both Sentinel-1 and -2 images.
Using Sentinel-1 images only, the locally-trained deep-learning model significantly outperformed the
conventional machine learning model. These findings contribute to developing a national continuous
monitoring system for landslides.

Keywords: NDVI; SAR; change detection; Norway; Sentinel-1; Sentinel-2; deep learning; U-Net;
CCDC; Google Earth Engine

1. Introduction

Landslides are the most widespread geologic hazard, yet are amongst the least
reported type of disasters. In the period 1998–2017, landslides affected an estimated
4.8 million people globally, resulting in over 18,000 fatalities [1]. Landslides can occur
in soil or rock materials and include a variety of slope failure mechanisms such as falls,
slides, spreads, and flows [2]. They may occur as single events, or multiple events sharing a
common triggering event such as heavy rainfall or an earthquake and occur most frequently
in regions with high hydrogeological or seismic hazard [3].

Accurate knowledge of past landslide events is needed to mitigate risk from future
events. This knowledge is used to develop an understanding of the local hazard conditions,
needed for accurate hazard and susceptibility mapping, spatial planning and landslide
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early warning systems [4,5]. A lack of systematic information on the type, abundance, and
distribution of historic landslides is a major limitation for landslide risk mitigation.

Landslides are generally detected from field observations or remotely sensed imagery [5].
There have been an increasing number of studies investigating automated methods for
landslide detection and mapping using machine learning models and satellite images,
particularly since 2017 [6]. Operational monitoring and alert systems using similar ap-
proaches exist for deforestation [7–9] and are being developed for other types of natural
hazards, including flood [10] and wildfire detection [11,12]. Similar systems for landslide
detection would be extremely valuable for obtaining timely and objective data on landslide
events. This would lead to an improved understanding of the controlling factors and spatial
distribution of past and future landslides and improved reliability of susceptibility and
hazard maps [13].

Many of the same change detection methods and data types used for continuous
monitoring of forest loss are also relevant for landslide detection, given that landslides often
result in the removal of vegetation. Change detection with machine-learning techniques
can be performed using temporal or spatial data from satellite images. Temporal methods
can detect abrupt changes in time-series data due to a change in ground cover properties.
For example, the continuous change detection and classification (CCDC) algorithm [14] can
detect gradual and abrupt changes in land cover types. This involves detecting deviances
from expected values based on patterns of historic seasonal spectral behavior for a given
pixel. The original CCDC model has been run for all existing Landsat data globally, with
results made available on Google Earth Engine [15]. We did not find any examples of
automated landslide detection using similar time-series-based change detection methods.

Spatial methods on the other hand, are popular for both deforestation and landslide
detection. Pixels showing vegetation loss can be identified from post-event, or from sets of
pre- and post-event images, using various machine learning methods. Deep learning, and
particularly, U-net architecture, has proven to be a powerful segmentation tool in scenarios
with limited data, simple structure, and high recognition accuracy. These methods typically
follow a workflow that involves training a model using an existing local landslide inventory.
The pre-trained model is then used to predict landslides in the surrounding regions that
are similar to the training area [16]. Recently U-Net has been widely used in landslide
mapping, e.g., [17–21].

In terms of image types used, optical multispectral and LiDAR (light detection and
ranging) data are common. However, event detection may be delayed by months due to
persistent cloud cover. Hence, there has recently been increasing use of synthetic aperture
radar (SAR) data for landslide detection [22–24] and continuous monitoring systems for
deforestation [7,25,26]. SAR data are also useful for change detection in areas where there
are strong seasonal variations, including snow, seasonal darkness, and lack of vegetative
biomass (e.g., in temperate and cold climates). Using U-net architecture, a combination
of both Sentinel-1 and Sentinel-2 input data, was found to achieve improved accuracy
compared to optical data only, for detecting illegal logging events in both summer and
winter in Ukraine. The input was stacks of optical and radar images in summer and spring,
and radar images only in winter and autumn [27]. However, there are barriers to using
SAR data for landslide detection, due to more complicated pre-processing, and a lack of
understanding of how to interpret landslides in SAR backscatter data [24]. Therefore, most
machine learning models for landslide detection use optical or multispectral images as
input data [6].

However, even if cloud-free optical images are available shortly after a triggering
event, applying U-Net models for rapid landslide mapping in emergencies is often not
feasible. This is the case when there is a lack of historic and local landslide data, represented
as polygon features, available to pre-train the model [3]. In response to this problem, there
have been attempts to produce globally-trained generalized machine learning models
capable of detecting and mapping landslides in previously unseen locations. The first
attempt was by Prakash et al. (2021) with a convolutional neural network (CNN) model
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that was trained on seven locations around the seismically active Pacific Ring, with high
vegetation coverage [28]. Another example was by Tehrani et al. (2021), who developed an
object-based method using k-means clustering to perform semantic segmentation, followed
by random forest classifiers that determine whether the segments represent landslides or
not [29]. This model was trained on data from 29 locations around the world.

In this study, our main goal is to determine which elements of existing automatic
landslide detection and deforestation monitoring approaches could be feasible to include in
a national landslide detection system in Norway. This represents one of the first attempts
to use machine learning to detect and map landslides in Norway. With a glacially sculpted
landscape with steep slopes, and strong seasonal variability, the environment in Norway
is relatively unique, and it is unknown how well the generalized models will perform in
such a setting. We investigate the performance of five different machine learning models
using satellite images from Sentinel-1 and -2, along with elevation and slope rasters. The
well-verified landslide inventory from the Jølster case study (30 July 2019) [30] is used to
test which approaches could be adapted for larger-scale use in the future.

We test the performance of three pre-existing globally-trained models, including (i) the
time-series-based CCDC algorithm, (ii) the object-based model from Tehrani et al., (2021),
and (iii) the pixel-based CNN model from Prakash et al. (2021). Two locally-trained
models were also tested, including: (iv) a classification and regression tree (CART) machine
learning model [31] and (v) a CNN U-net deep learning model.

The following research questions are investigated:

1. How do globally pre-trained machine learning models for landslide detection perform
in a glacial landscape?

2. Which locally-trained model and input data combination gives the best results?
3. Which elements of the investigated models could be implemented in an operational

national landslide detection system?

In the following section, we describe the current situation in Norway in terms of
landslide hazards and introduce the case study. In the results, we show that the globally
trained models generally did not perform well in a glacial landscape, particularly for
landslides on north-facing slopes. The locally trained deep learning model outperformed
the machine learning model with all input data combinations, except for one. The best
performance (MCC score: 89%) was achieved using combined Sentinel-1 and Sentinel-2
data as input. We did not attempt to retrain or modify the existing globally pre-trained
models in this study, although we provide suggestions as to how their performance could
be improved in the discussions.

2. Norwegian Setting and Case Study

Landslides occur almost daily in mountainous regions in Norway and are the natural
hazard responsible for most fatalities [32]. In addition, they cause large economic losses
due to damage to infrastructure and disruption to transportation [33]. In comparison to
other countries in Europe, Norway has a relatively high proportion of land area that is
susceptible to landslides, with over 70% of municipalities affected [34]. This is due to
the geological landscape with high mountains, valleys with steep slopes, and post-glacial
isostatic rebound that has resulted in sensitive clays in valley bottoms in coastal regions [32].

The most frequent types of landslides in Norway include rock fall, rock slides, debris
avalanches, and debris flows [13]. In addition, there are unstable mountains and deep-
seated landslides that can evolve into large rock avalanches and quick clay slides [32].

To mitigate the increasing risk to society due to landslide hazards, there are several
national initiatives coordinated by the Norwegian Water Resources and Energy Directorate
(NVE). These include, among others, the preparation of susceptibility and hazard maps
and close communication with spatial planners at municipalities to protect inhabitants
and key infrastructure already located in hazardous areas. NVE is also working with the
prediction of hydro-meteorologically induced landslide occurrences through a national
early forecasting and warning service [35]. The early warning system allows municipalities
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and individuals to take timely action to reduce risk, including evacuations and closure of
transport routes in areas with high hazards.

These initiatives rely on knowledge of historic landslide occurrence and are lim-
ited by the quality and completeness of historic landslide records [13]. The Norwegian
Mass Movements Database (available from: https://nedlasting.nve.no/gis/, accessed
on 20 December 2022) contained 84,768 reports at the time of writing, from the year 900
to 2022. Yet there are some significant limitations in the existing landslide dataset that
make it unsuitable for spatial analyses; for instance, determining statistical relationships
between landslide occurrence and the topographical, geological, hydrological, vegetation,
or meteorological factors. These include low locational and qualitative (i.e., information on
landslide type, size, and trigger) accuracy of older events that have been extracted from
historic church and municipality records. These reports are generally limited to events that
caused death or destroyed property.

While modern reporting is performed systematically by the road and rail authorities [36],
reporting focuses on events that directly impact transport infrastructure. The given loca-
tions are typically represented by the point where a landslide impacted the road, and the
initiation point is not usually specified. Although these data generally have high spatial
and temporal accuracy, there remain some qualitative inaccuracies. Furthermore, compared
to 11 other national landslide databases, there is a spatially biased distribution, with many
reports located along roads but relatively few events reported in remote areas [37], as
illustrated in Figure 1. NVE use aerial and satellite images to manually map polygons rep-
resenting the landslides and periodically perform quality control of the existing landslide
point data. However, detecting and mapping traces of small landslide events across large
areas remain a tedious and labor-intensive process [35].
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Figure 1. Registered landslide events in Western Norway have an inherent spatial bias towards roads.
The location of the case study area, shown in the following figures, is indicated by the dashed red
lines. Data come from www.skredregistering.no (accessed on 16 December 2022), showing registered
landslide events from 1992 to 2022.

There is a strong need for improved landslide mapping techniques in Norway, which
can provide objective and accurate spatial information, and allow the detection of events
that occur away from populated areas and transport routes. Recent studies have demon-
strated there is great potential to improve the detection of landslides in remote areas using
satellite images [30,38].

https://nedlasting.nve.no/gis/
www.skredregistering.no
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In July 2019, an extremely heavy rainfall event triggered multiple landslides in the
(formerly named) Jølster municipality in Western Norway [38]. The maximum recorded
rainfall was 113 mm in 24 h, exceeding the 200-year event magnitude at the two nearest
precipitation weather stations, Botnen and Haukedalen, in the neighboring municipality of
Førde [39]. The road authority reported 14 landslides on this date, while mapping from
Sentinel-2 images detected 120 events, with only 30% being located within 500 m of a road,
compared to 100% of those registered by the road authority [30].

The study area is shown in Figure 2. The landscape consists of steep glacial valleys,
lakes, and mountains up to 1666 m. The town of Vassenden is located in a tempered
climate zone with relatively mild winters and wet summers due to its proximity to the
coast. The mean annual precipitation over the past five years is 2800 mm/yr at the Botnen
weather station, and temperatures vary from −25 ◦C to 31 ◦C, with an annual mean of
5 ◦C (https://seklima.met.no/, accessed on 27 January 2023). The hydro-meteorologically
induced landslides that pose a risk to these areas are expected to become more frequent
due to an increase in extreme precipitation events [40].
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The bedrock geology is predominantly granitic (banded and augen) orthogneiss and
quartz-monzonite. The geomorphology is shaped by old faults and glacial erosion, with
a quaternary surface cover typically consisting of highly consolidated moraine material
overlying the bedrock, with a looser veneer of colluvium on valley slopes. The surface
cover is thin to non-existent at high altitudes and increases to several meters thick in lower
areas close to the lake. The vegetation ranges from sparse moss and shrubs or light birch

https://seklima.met.no/
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forest at high elevations to spruce forest and agricultural fields lower in the valleys. Roads
and built areas are mainly located in the flatter main valleys. The area is very susceptible to
landslides due to the steep slopes and wet climate, with over 40 historic landslides recorded
in the national database [30].

3. Methods

We compare the performance of five different models: (i–iii) generalized globally
trained predictive models (CCDC, Tehrani, and Prakash), (iv) a locally trained supervised
machine learning model in Google Earth Engine (GEE) (smile.Cart classifier), and (v) a
locally trained pixel-based deep learning model (U-net). For verification of the results, we
used a set of 120 manually mapped landslides [30].

3.1. Generalized Globally-Trained Predictive Models

To run the three generalized globally trained predictive models, the steps in the
methods and accompanying documentation on GitHub were followed, with some mod-
ifications made where necessary. A summary of these methods and any deviations are
described here.

(i) CCDC time-series model [15]: The CCDC model results are available for visual-
ization purposes as an app on GEE. The results have been pre-calculated for the Landsat
bands (not including NDVI). The SWIR1 band was chosen for the change detection analysis,
as this is known to be sensitive to changes in vegetation. The changes within the period
1 July 2019 to 31 August 2019 were displayed for the study area using the app.

(ii) Tehrani machine learning model [29]: Pre-processing of the input data is performed
automatically using a script run in GEE [41]. The script takes a table of landslide coordinates
and dates, and generates sets of Geotiff images for each point, which are then used as
input for the model. Sentinel-2 Level 1C images with low cloud coverage are selected
within three months before and after the landslide event date. If no cloud-free images
are found in that period, a composite image is made using images from one year. The
pre-processing involves the normalization of the images, and the addition of brightness,
NDVI, and GNDVI (green-NDVI) bands, and the output is three images for each landslide
point; pre-event, post-event, and difference (see Figure 3I). Modifications made to this
process included uploading a shapefile to GEE, instead of a Google Fusion table, which has
been discontinued. Further, the 10 m resolution Norwegian DEM was used instead of the
global 30 m resolution ALOS DEM, because the ALOS DEM does not cover Norway.

The outputs are raster images with labeled segments in KEA file format [42] and a list
of the segments that were classified as landslides.

(iii) Prakash CNN deep learning model [16]: The required inputs are three bands (R, G,
B) pre- and post-event images, single-band slope, hillshade, DEM, bounding box, and no-
data mask rasters. In the accompanying article [16], it was not specified if Sentinel-2 Level
1C or Level-2A products were used. Pre-processing the input images involved selecting a
Sentinel-2 image at the landslide location with the lowest cloud cover within one month
of the landslide date, clipping to the area of interest, and then manually creating a mask
of snow and clouds. Again, we used the Norwegian DEM instead of a global DEM, from
which slope and hillshade rasters were created.

Greenest-pixel composite image: One modification to the methodology described in
Prakash et al. [16] was to use a greenest-pixel composite as input, as this method can reduce
noise from clouds and agriculture. These were produced using one month of images from
before and after the landslides, using the S2 cloudless algorithm for cloud filtering and
the SCL (scene classification) band for snow filtering. Using the quality mosaic function, a
composite image was then created based on NDVI, in which for each pixel—the pixel with
the maximum NDVI is taken, along with the corresponding values from the other bands
from the same date. This gives a ‘greenest pixel’ composite that is cloud-free and gives the
least snow cover and shadow within the specified date range.
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Figure 3. Optical image inputs derived from Sentinel-2 images shown for subset A. Slåtten. The
letters a and b indicate areas of agriculture and shadows respectively, where a difference is observable
between the four types of input images. (I) Difference image with three bands (brightness, red-
over-green, and NDVI derived from Level-2A images) used for the Tehrani model. (II) Sentinel-2
Level 1A Top of Atmosphere (TOA). (III) Sentinel- Level 2A, with atmospheric correction applied
to the Level-1C TOA image. Note that the shadowed areas at point b have been brightened. (IV)
Cloud-filtered, greenest-pixel composite produced from Sentinel-2 Level2A images. Images (II–IV)
were used as inputs in the Prakash model, while the locally trained model based on U-net architecture
used only image (IV), along with Sentinel-1 images.

3.2. Locally-Trained Machine and Deep Learning Models

(iv) smile.CART machine learning model: Landslide predictions were performed in
Google Earth Engine using the ee.Classifier.smileCart algorithm [31], which uses a CART
(Classification and Regression Trees) classifier. This involved the following steps.

First, the images were pre-processed. For Sentinel-2, one month of Level-2A images
from before and after the event were used to create cloud-filtered, greenest-pixel composites.
Cloud filtering was performed using the s2cloudless algorithm to remove cloudy pixels [43].
Greenest-pixel composites were then created from the pre- and post-event image collections,
using the quality mosaic function. All bands from the same image the selected pixel with
the highest NDVI value was taken from are included in the output. For Sentinel-1, again,
one month of images from pre- and post-event were used to create terrain-corrected
median composites. The terrain correction was performed using the volumetric scattering
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model [44]. Then, median composites for VV and VH bands separately were created from
each of the pre- and post-event image collections, using both ascending and descending
orbit geometries. Finally, the Sentinel-1 and -2 bands were combined, along with elevation
and slope, into a single 13-band image.

Secondly, the supervised classification was performed following the tutorial by S.
Levick [45]. This involved selecting training points from which to train the classifier—18
points were manually selected in the landslide class, and 112 points were from seven
different non-landslide classes (water, snow/ice, bare rock, agriculture, forest, alpine scrub,
and urban). Care was taken to sample from diverse slope aspects, elevations, and within
shadow areas. The 13-band image was then sampled at each point, and these values were
used to train the classifier and perform a classification across the whole image. In addition,
classifications were performed using the same points for a 3-band, and 2-band subsets of
the full 13-band image, as shown in Table 1.

Table 1. Input data used in locally trained models for four different settings.

Model Run No. of Bands Bands

S1, S2, and DEM 13

Sentinel-1: pre-VV, post-VV, diff-VV, pre-VH,
post-VH, diff-VH

Sentinel-2: post-R, post-G, post-B, post-NIR, dNDVI

Terrain: elevation, slope

S1 (VV) and S2 3
Sentinel-1: pre-VV, post-VV

Sentinel-2: dNDVI

S1 (VV) only 2 pre-VV, post-VV

S2 only 5 post-R, post-G, post-B, post-NIR, dNDVI

The results were inspected to see if any misclassification was apparent. Then, finally,
a binary image of landslide–non-landslide was produced by combing the non-landslide
classes, and salt-and-pepper noise was reduced using the focal mode function.

(v) U-net CNN deep learning model: The entire algorithm was implemented in a
Jupyter Notebook using ArcPy, Keras, and TensorFlow 2. The chosen model is a scaled-
down version of a deep-learning architecture called U-net, for automatic semantic segmen-
tation [46] with Keras implementation. The U-net is a convolutional network architecture
for fast, effective, and precise segmentation of images with its symmetric U-shape. U-net
has proven to be a powerful segmentation tool in scenarios with limited data, simple
structure, and high recognition accuracy. The network is based on the fully convolutional
neural network (FCNN) for semantic segmentation [47,48].

The same input dataset was used for the GEE smile.CART model is described in
Section 3.2 (Table 1). We exported random samples as classified tiles for all four settings
by generating a minimum of 10,000 samples using an Image Analyst license and ArcGIS
Pro [49]. The most suitable tile size in our case was 128× 128 pixels, and stride (the distance
to move in the x- and y-directions when creating the next image chips) of 64 × 64, to have
50% overlap in each sample tile. The output was a dataset of classified image tiles, the
format primarily used for pixel classification. During the training process, an input image
flows through the CNN network that recognizes it with a set of trainable kernels, resulting
in a group of feature maps [50]. The dataset was divided into training, validation, and test
subsets. The trained model was saved as a ‘Deep Learning Package’ (‘.dlpk’ format), which
is the standard format used to deploy deep learning models on the ArcGIS platform and
can be used further as a pre-trained model.

3.3. Performance Evaluation

The landslide inventory produced from the Sentinel-2 dNDVI [51] image was used for
verifying the results of the other approaches.
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Qualitative and quantitative analyses: The results of the CCDC and Tehrani models are
briefly described in a qualitative manner, as both these methods produced limited landslide
predictions. Additionally, it was not possible to download the CCDC model results from
the GEE app; therefore, it was not possible to do quantitative pixel scale analyses on
these results.

The Prakash and locally trained modelpredictions were evaluated quantitatively, as
follows. The landslide polygons mapped with Sentinel-2 dNDVI were converted to a
binary raster of landslide or non-landslide pixels. This was used to validate the automated
landslide detection model outputs. Following the approach in ref [16], a map of confusion
matrix values was created, showing true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) values. From these, the performance metrics precision, recall,
F1-score, and MCC scores were calculated (see Table 2). Since landslides represent only a
tiny fraction of all the pixels in the study area, the learning problem is highly imbalanced
towards non-landslide pixels. Therefore, the accuracy score can become unreliable due
to the large proportion of true negatives. The MCC score is considered to be the most
appropriate metric for comparing the results [52]. For a binary model, the MCC gives a
score between 0 to 1, with 0 indicating a model with no correlation (random predictions)
and 1 indicating a perfect correlation (all correct predictions).

Table 2. Equations for performance evaluation metrics from confusion matrix values.

Metric Formula

Precision TP
TP+FP

Recall TP
TP+FN

F1-score 2TP
2TP+FP+FN

MCC TP×TN−FP×FN
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

4. Results

The performance of the three globally-trained and two locally-trained machine learn-
ing models in the Jølster case study is presented in this section.

4.1. Globally Trained Models

(i) CCDC time-series model:

The CCDC time-series model detected the large Vassenden landslide quite precisely
(Figure 4), along with one smaller debris flow to the east. The large landslides at Årnes and
Slåtten were not detected, nor were any of the other smaller landslides in the study area.

(ii) Tehrani machine learning model:

Overall, no landslides were detected using this model. The large landslide at Vassenden
was partially segmented (see Figure 4), although the initiation zone was missed, and some
nearby fields were included. The deposits of the landslides at Slåtten were also segmented.
However, no segments were classified as a landslide.

(iii) Prakash CNN deep learning model:

The Prakash model was run with three different variations of Sentinel-2 images shown
in Figure 3 (1) Level 1C, (2) Level 2A, and (3) a cloud-free greenest-pixel composite. The
results are shown as confusion matrix maps in Figure 5. The most striking differences
between the runs were firstly, that many false positives (wrongly predicted as a landslide)
appear in the Level 2A products, and secondly, in the Level 1C product, there are many
false negatives (missed landslides).
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After inspecting the results, it was noticed that the false positives in the Level 2A
results appeared to be related to unnaturally bright areas on the northern slopes. This
turned out to be due to an anomaly resulting from the terrain correction used in processing
the Level 2C products, which results in a blueish appearance in shadowed areas in true
color composite images and inaccurate surface reflectance values [53]. The problem has
been reported to the Sentinel-2 Quality Working Group (December 2021) [54]. An outcome
of their analysis is expected in the near future; changes will be reported in the Sentinel
2A Data Quality Report (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-
msi/document-library, accessed on 15 December 2021). Due to the noise introduced by
these artifacts, comparing the performance metrics of the model runs over the entire study
area was not very insightful. Therefore, for a more detailed comparison, the metrics were
calculated for the sub-plots shown in Figure 5. These are shown in Table 3.

For the entire study area, the MCC scores are below 1%. In the subplots, there are false
positives likely caused by the over-correction artifact in the results for A, B, and D, which
are on north-facing slopes. Despite this, the best score was 51% for model Input 2—S2_L2A
in subplot D (Årnes landslide). The second best was 43% for model Input 2—S2_L2A in
subplot C (Vassenden landslides). Subplots B (Svidalen) and A (Slåtten) had poor results
across all runs.

Using Level-1C images, overall, the model failed to detect landslides. Only a small
part of the Vassenden landslide was detected. The large landslides on north-facing slopes
were not detected at all. There were some false positives, mainly related to changes in
agricultural areas. Using Level 2A images (2. single date, and 3. greenest-pixel composite),
the model predicted the Vassenden and Årnes landslides fairly well. The landslides in
subplot A (Slåtten) were partially detected with the Level-2A images. However, most
of the predictions on the steep north-facing slopes are false positives due to noise, while
the deposit of the western-most of the three debris flows seems to have been detected
meaningfully. It is interesting that that particular deposit was detected, and not the other
two, given that from field observations, the deposits of the western-most debris flow were
noticeably different from the others. The western-most deposit was a very thin layer of
soil, with a high concentration of washed-out light-colored boulders and stones, whereas
the other two were much thicker (up to 2 m high) deposits consisting of darker soil and
forest debris (seen https://www.nibio.no/nyheter/skogsdrift-ikke-medvirkende-arsak-
til-jordras-i-jolster, accessed on 22 December 2022)). In subplot B (Svidalen), there is a

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
https://www.nibio.no/nyheter/skogsdrift-ikke-medvirkende-arsak-til-jordras-i-jolster
https://www.nibio.no/nyheter/skogsdrift-ikke-medvirkende-arsak-til-jordras-i-jolster
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significant difference in the number of false positives, with much fewer in the greenest-pixel
composite from run 3, compared to run 2. Again, it is not clear if this difference is due to
the artifacts or pre-processing. There appears to be just one pixel that has been correctly
identified in all three runs. However, overall, the model was not able to detect the smaller
landslides. In subplot C (Vassenden), there are more false positives using the greenest-pixel
composite in agricultural areas than the single date image. These results are more likely to
be meaningful because the slope is south-facing and not affected by the over-correction
artifacts. Finally, in subplot D (Årnes), there are slight differences in the number of false
positives between the two input image types; however, it is difficult to say whether the
difference is related to the artifacts or to the difference between the manually masked image
(single date), and the greenest-pixel composite.

Remote Sens. 2023, 15, 895 11 of 23 
 

 

 
Figure 5. Performance results from the Prakash CNN deep learning as a confusion image, from the 
three different layer settings: (1) Level 1C, (2) Level 2A, and (3) a cloud-free greenest-pixel compo-
site. 

After inspecting the results, it was noticed that the false positives in the Level 2A 
results appeared to be related to unnaturally bright areas on the northern slopes. This 
turned out to be due to an anomaly resulting from the terrain correction used in pro-
cessing the Level 2C products, which results in a blueish appearance in shadowed areas 
in true color composite images and inaccurate surface reflectance values [53]. The problem 

Figure 5. Performance results from the Prakash CNN deep learning as a confusion image, from the
three different layer settings: (1) Level 1C, (2) Level 2A, and (3) a cloud-free greenest-pixel composite.



Remote Sens. 2023, 15, 895 12 of 21

Table 3. Prakash CNN deep learning model (iii) performance metrics. The metrics were calculated
for the entire study area, as well as for the four subplots shown in Figure 5. The model was run with
three different input image types; 1. Level-1C images, 2. Level-2A images, and 3. Level-2A images
as a cloud-free, greenest pixel composite. The MCC score (Matthew’s Correlation Coefficient) is
considered the most representative metric for the imbalanced problem of landslide classification [52].

Location Input Image Precision % Recall % F1-Score % MCC %

Entire area 1—S2_L1C 5 4 4 4
2—S2_L2A 2 45 5 9

3—S2_L2A_gr 2 37 4 7

A. Slåtten 1—S2_L1C 40 0 0 2
2—S2_L2A 19 60 29 20

3—S2_L2A_gr 30 58 40 33

B. Svidalen 1—S2_L1C 86 1 1 8
2—S2_L2A 6 28 9 8

3—S2_L2A_gr 8 6 7 5

C. Vassenden 1—S2_L1C 25 17 21 18
2—S2_L2A 40 51 45 43

3—S2_L2A_gr 35 46 40 37

D. Årnes 1—S2_L1C - 0 0 -
2—S2_L2A 33 96 49 51

3—S2_L2A_gr 35 60 44 41

The mediocre performance in these model runs is mainly due to introduced image
artifacts in shadowed areas, thererfore we find the Prakash CNN deep-learning model
is worth further investigation for use in an operational landslide detection system. With
different adjustments, such as using input images without the over-corrected shadow
areas and including NDVI or Sentinel-1 bands, to make the classification more robust in
shadowed areas, the model performance could likely be improved.

4.2. Locally Trained Models

(iv) smile.CART machine learning model:

The supervised machine learning model in GEE using the ee.smile.Cart classifier was
tested with different layer settings. We observed that some of the input data combinations
yielded promising predictions; particularlywith setting 2 (dNDVI, pre-event S1-VV images,
post-event S1-VV images), which had an MCC score of 73% (Figure 6, Table 4). The poorest
result was obtained by the third combination using only Sentinel-1 VV-polarised SAR
images as input. Although, the landslides were detected equally well as with only Sentinel-
2 data as input (recall 72%), the overall MCC score was only 20%, due to the abundant false
positives from speckle noise.

(v) U-Net CNN Deep learning model

The final approach, the locally trained deep learning model showed the best overall
predictions. The values for the MCC score varied from 51–89%, and the precision results
were between 80–85%. Setting 2: (using dNDVI, pre-event S1-VV images, and post-event
S1-VV images showed the highest values for MCC score (89%), recall (79%), F1 score (81%)
and and the best visual prediction (Table 2, Figure 7). Setting 3 (Sentinel-1 VV-polarised
data only) was second best, with an MCC score of 79%. Although, with the use of only
Sentinel-1 images in Setting 3, in subplot A. Slåtten, the upper part of the landslides is
visibly not predicted. Most of the landslides are predicted correctly however, with some
missing pixels around that were not predicted as a landslide (FN). Including the DEM
(Setting 1, all 13 bands) introduced significant amounts of mostly false negatives (red) with
poor prediction results. None of the small-sized landslides were predicted in this setting.
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Table 4. Performance metrics for landslide detection for the locally trained models using four different
input data combinations.

MODEL Setting 1 Setting 2 Setting 3 Setting 4

S1, S2 & DEM S1 (VV) & S2 S1 (VV) only S2 only

(iv) CART
precision % 62 72 6 59

recall % 73 74 72 72
F1 % 67 73 11 65
MCC 63 73 20 65

(v) U-Net CNN
precision % 80 83 85 84

recall % 33 79 74 73
F1 % 47 81 79 78
MCC 51 89 79 78
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Figure 7. Performance results from the locally trained U-Net CNN deep learning model, as a
confusion image from four different input data combinations. Setting: (1) full version (all 13 bands)
(2) dNDVI, preVV, postVV (3) preVV, postVV (4) post-R, post-G, post-B, post-NIR, and dNDVI.
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5. Discussion
5.1. Performance of Globally Pre-Trained Machine learning Models in a Glacial Landscape

Overall, the generalized models tested did not perform very well. Only the largest
landslides were detected by these models. In most of the tests, the results appeared to be
affected by the slope aspect and over-correction of shadow artifacts on north-facing slopes
in the Sentinel-2 Level-2A products.

The CCDC model (i), despite not being designed specifically for landslide detection,
showed good potential for applying time-series-based change detection methods for contin-
uous landslide monitoring. The large landslide at Vassenden was outlined quite precisely,
within the 30 m resolution of the Landsat data. However, it failed to detect the large land-
slides on north-facing slopes (i.e., in subsets A. Slåtten, and D. Årnes) and only detected one
other landslide clearly. The results were very simple to view using the Google Earth Engine
app [15]. Furthermore, by extending the time period visualized, the app allowed the user to
quickly identify other landslides outside of the study area which occurred within the past
20 years. Although CCDC is designed for monitoring land cover changes generally [14],
some modifications (e.g., running with NDVI, Sentinel-2, and perhaps Sentinel-1 data)
could enable it to be used as part of a continuous landslide monitoring service.

Using the Tehrani model (ii), only the large landslide at Vassenden was visible in the
segmentation results, although it was not classified as a landslide. This method used the
Sentinel-2 Level-1C images as input. From the different runs with the Prakash model, it was
observed that the landslides are detected more frequently when using the atmospherically
corrected Level-2A products compared to Level-1C, especially for landslides on north-
facing slopes. Thus, it can be speculated that the landslide detection on north-facing slopes
may have been improved by using the Level-2C product. However, as seen from the results
of the Prakash model runs with the Level-2C product, the anomalies caused by terrain over-
correction on shadowed areas using the Level-2C product may also have introduced false
positive predictions. The Tehrani model was also trained using landslides that were over
1000 km2, and the minimum size of pixel clusters was 80. Including more small landslides
in the training data set and adjusting the minimum size of pixel clusters may improve the
detection of smaller landslides. Adjusting the number of k-means, or perhaps training with
different indices, may improve the performance of the random forest classification.

The performance of the Prakash model (iii) was strongly affected by the Sentinel-2
product type, with very limited correct landslide detection with Level-1C (high levels
of false negatives), and improved landslide detection with Level-2A, however with the
introduction of significant areas of false positives due to the terrain over-correction anomaly.
Due to these false positives, the difference between using the single image inputs (run 2),
compared to the greenest-pixel cloud composite inputs (run 3), was not clear, even when
examining the image at the resolution of the subsets. The landslide predictions were not
as precise as in the CCDC and Tehrani models. To better understand the performance of
this model using different inputs, it is recommended to wait for the reprocessing of the
Sentinel-2 Level 2 images. This model could potentially be improved by retraining the
classifier with more Norwegian landslide data and by including a greater range of bands
and vegetation indices.

5.2. Comparison of Locally Trained Machine Learning and Deep Learning Models and Input
Data Combinations

The U-net deep learning model-(v) outperformed the CART machine learning model-
(iv) for three out of four input data combinations. These findings are in agreement with
similar machine learning vs. deep learning model comparison studies for landslide
detection [52,53]. The best MCC score achieved for our study area was 89%, using the
three-band combination of pre-VV and post-VV from Sentinel-1 and dNDVI from Sentinel-
2. In both the Sentinel-1-only and Sentinel-2-only input data settings, we found that the
model could not recognize the landslide signature in the initiation zones of the landslides
at Slåtten (subset A). We did not find any other landslide detection studies in the literature
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where both Sentinel-1 and -2 data have been used to train a deep learning model. However,
our results are in agreement with a similar study on illegal logging detection [27].

For S2-only deep learning, the false negatives appear in the shadowed area. The
signature of the landslides is very clear from the dNDVI image only, even where shadows
are present (Figure 8). It is possible that the inclusion of RGB bands reduces the performance
of the classifier in this area.
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change images (ascending, descending, and mean) change in NDVI (bottom right). Green indicates a
backscatter intensity increase; purple indicates a decrease. White outlines were mapped from the
Sentinel-2 dNDVI image.

We believe, in the case of S1-only, that the false negatives are due to the landslide
expression (i.e., the pattern of increase and decrease in backscatter intensity) in this location
being different from other areas. When viewed separately in ascending and descending
images (Figure 8), landslides in forested areas show both decreased backscatter intensity on
the side of the landslide nearest to the sensor as well as a wide parallel band of increased
backscatter intensity on the far side [51]. Averaging the ascending and descending images
tends to produce a final post-event image that shows mainly increased backscatter intensity
in the area of the landslides. Yet here, the landslides are expressed in the input SAR images
by strongly decreased backscatter intensity relative to the pre-event image, and the decrease
was not ‘averaged out’ in this case. It is also possible that geometric distortions in the
descending image and DEM distortions also affect the results, as they produce gaps in
the image.

We suspect that the performance of the classifier is strongly affected by the combination
of ascending and descending images due to the simplification of the landslide signature
and averaging out of most areas with decreased backscatter intensity. This is important
to note for others considering following this approach, as local vegetation conditions,
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landslide type, and geometry, as well as slope orientation relative to the sensor, can affect
how landslides are expressed in SAR backscatter intensity data [51]. We did not test the
U-net model using separate ascending and descending images as input; however, this
would be interesting to compare.

The deep learning model had a significant advantage over the machine learning model
for the Sentinel-1 only input data setting, with MCC scores of 73% and 20%, respectively.
The machine learning model could detect the changes due to landslides with only Sentinel-1
data; however, there were many false positives due to speckle noise. Setting 2 (preVV,
postVV, and dNDVI) performed better than Setting 1 (DEM, Sentinel-1, Sentinel-2), possibly
because of overfitting when using all 13 bands or because the resolution of the slope map
does not show the steep slopes on small-scale objects. Landslides have deposits in flat
areas which makes it possible to detect landslides predicted in both flat and steep areas.
In contrast, the deep learning model uses a sliding window approach and is capable of
differentiating speckle noise from landslide signatures. This is because the deep learning
model makes the decision whether each pixel is a landslide by taking into consideration the
pattern of pixels in the patch surrounding the pixel being classified. In this way, whether the
pixel is part of a cluster of pixels or is isolated and therefore, more likely to be random noise
due to speckle. Mondini et al. [23] noted that while, in principle, SAR data are well suited
for identifying landslides, SAR imagery remains underutilized for landslide detection. This
is due in part to the reduced clarity of landslide signatures caused by speckle noise, as
well as the side-looking sensor angle which also makes the images harder to interpret. The
comparison of the conventional machine learning model with the deep learning model in
this study shows how one of the main barriers to using SAR imagery for landslide detection
can be reduced using a deep learning model.

5.3. Recommendations for an Operational Landslide Detection System and Future Research

Landslide detection and mapping are undertaken for different purposes, including
(i) rapid emergency response; and (ii) inventory creation for use in spatial analyses (e.g., for
hazard and susceptibility mapping or deriving local thresholds for early warning) or verifi-
cation and improvement of landslide early warnings. Each of these situations has different
priorities for the timeliness and accuracy of landslide data needed. The recommendations
based on the findings of this study and relevant literature are organized accordingly.

(i) Rapid emergency response: the priority is to detect landslides as quickly as possible,
while accurate delineation and mapping are of lower importance. In this situation, we
recommend the use of SAR-only models, as there is no need to wait for cloud-free conditions
at the time of writing; no globally trained SAR-based landslide detection models are
available. Therefore, a locally trained model is needed. If a local landslide inventory of
polygon data is available, then CNN models such as U-net give much higher performance
than a conventional machine learning model due to their ability to differentiate speckle
noise from landslide signatures. Using the methodology presented in this study, landslide
predictions could be produced within three hours of the SAR image becoming available,
but it requires computational power and a GPU. Where no local landslide inventory is
available, the simple locally trained machine learning approach using Google Earth Engine
performed in this study could be repeated for a new area in around 30 min after the image
is available in GEE. This method requires only internet access and a free GEE account.

(ii) Inventory creation: the priority is for accurate and complete landslide data (including
date, size information), while rapid detection is of lower importance. For automatically
delineating landslides, optical or multispectral images combined with terrain-corrected
multi-temporal SAR data with the best possible resolution are recommended. The locally
trained U-net deep learning approach gave the best performance in a glacial setting. The
globally trained models did not perform well in our study area due to shadows. The
best performance would be achieved using images from a similar season and could be
performed over large areas as an annual systematic survey. For obtaining date information,
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a time-series approach based on SAR data would be useful, as it is possible to back-date
landslide occurrences when the location is known.

A continuous monitoring system for landslide detection requires further research,
particularly in terms of the spatial and temporal signatures of landslides in SAR data and
how these vary in different environmental settings. Compared to deforestation, the problem
of landslide detection is more complex because landslides can occur in a range of different
land cover types, and their expression can also vary depending on seasonal conditions.
Ongoing developments in data availability and pre-processing of images will provide many
more options to explore. These include the NISAR satellites due to be launched in 2023 with
L and X band SAR capabilities [54]. Additionally, improvements to the pre-processing of
the Sentinel-2 images may result in better predictions in the generalized machine learning
models we tested.

In working towards developing a system for continuous detection of landslides over
large areas, the GEE platform is very suitable, as multiple datasets (e.g., optical, SAR,
soil moisture, precipitation, slope, and land cover type) can be combined and analyzed
performed quickly over large areas. Furthermore, there is a possibility to incorporate an
external cloud-based TensorFlow model, as used by Prakash et al., within the workflow.
The CCDC model is designed for continuous monitoring. Modifying the CCDC model
(e.g., using Sentinel data and masking to show only vegetation loss) would be a good
start. Training data should also include examples with areas likely to cause false negatives,
e.g., with forestry or agricultural activity resulting in vegetation loss.

6. Conclusions

The locally trained models outperformed the globally trained models at detecting land-
slides in a glacial setting. The best result was achieved using the deep-learning approach
with a U-net architecture and input data, including a difference in NDVI (normalized differ-
ence vegetation index) from Sentinel-2 and pre- and post-event SAR data (terrain-corrected,
mean of multi-temporal ascending descending images in VV polarization) from Sentinel-1.

The generalized globally trained machine-learning-based models did not perform
very well for landslide detection in a glacial landscape. The model from Prakash showed
good potential to be applied in Norway; however, it would require retraining and further
development to perform well in the local conditions. The model performance could be
improved by retaining the NIR band, which is more robust in shadow areas.

High rates of false negatives (missed landslides) were the main source of error for the
CCDC, Tehrani, and the Prakash model run using Sentinel-2 Level-1C images. In contrast,
the Prakash model runs using Sentinel-2 Level 2A images resulted in high rates of false
positives, mainly due to over-brightened artifacts on north-facing slopes introduced by
a terrain over-correction. The results likely could be improved by (a) rerunning the tests
when the reprocessed data are released by Copernicus, (b) including Norwegian training
data, and (c) further development of the methods.

For the development of an operational landslide detection system, a SAR-only-based
approach using a deep-learning model is recommended for rapid detection as part of an
emergency response due to the capability to observe landslides despite the cloud cover. In
contrast, for detailed mapping and back-dating of landslides, a combination of SAR and
optical data can give improved performance over optical data alone, and the time-series
approaches can be used for continuous monitoring or to back-date landslides.
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