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d The response to the object was distributed and did not

depend on specific cells
Nagelhus et al., 2023, Neuron 111, 2091–2104
July 5, 2023 ª 2023 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.neuron.2023.04.008
Authors

Anne Nagelhus,

Sebastian O. Andersson,

Soledad Gonzalo Cogno,

Edvard I. Moser, May-Britt Moser

Correspondence
soledad.g.cogno@ntnu.no (S.G.C.),
edvard.moser@ntnu.no (E.I.M.),
may-britt.moser@ntnu.no (M.-B.M.)

In brief

Objects are crucial for guiding navigation.

Nagelhus, Andersson, et al. show that

CA1 cells change their spatial firing

pattern in response to salient objects in

the environment. At the population level,

these changes are widely distributed and

smoothly organized according to the

animal’s distance from the object.
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SUMMARY
Objects and landmarks are crucial for guiding navigation and must be integrated into the cognitive map of
space. Studies of object coding in the hippocampus have primarily focused on activity of single cells.
Here, we record simultaneously from large numbers of hippocampal CA1 neurons to determine how the pres-
ence of a salient object in the environment alters single-neuron and neural-population activity of the area. The
majority of the cells showed some change in their spatial firing patterns when the object was introduced. At
the neural-population level, these changes were systematically organized according to the animal’s distance
from the object. This organization was widely distributed across the cell sample, suggesting that some fea-
tures of cognitive maps—including object representation—are best understood as emergent properties of
neural populations.
INTRODUCTION

Objects and landmarks are crucial for guiding navigation and

must be part of the brain’s cognitive map of space.1 A long his-

tory of work has shown that objects influence spatial firing in the

hippocampus in a variety of ways. In place cells,2,3 the number,

size, position, and directionality of firing fields may be changed

when a salient object is introduced in the environment.4–9 The

hippocampus has also been reported to have cells with specific

firing at the location of the object.5,10 These ‘‘object cells’’

consistently move their firing fields along with the object when

the object is moved.

One synapse upstream of the hippocampus, in the medial en-

torhinal cortex (MEC), specialized cells fire whenever the animal

is at a fixed distance from the object in a given direction (i.e., the

cell’s firing location is given by a vector between the animal and

the object).11,12 These ‘‘object-vector cells’’ fire independently of

the object’s shape, size, and identity. A similar set of cells, ‘‘land-

mark-vector cells,’’ has been reported in the hippocampus13,14

but these cells only began to fire at fixed distances and direc-

tions from objects after the animal gained experience with the

object.13 However, limited amounts of data made it difficult to

characterize the nature of these cells in a systematic manner.

Despite numerous studies on object coding in the hippocam-

pus, the exact nature of object representation remains unclear.

Early studies used limited quantitative criteria to identify object
Neuron 111, 2091–2104,
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cells and landmark-vector cells. Moreover, cells in the hippo-

campus often show complex responses that lack a simple rela-

tionship with the object location.7,15 In the present study, we

considered the possibility that information about the presence

and location of the object is expressed in the collective activity

of the hippocampal population in ways that cannot be extracted

from the firing of individual neurons.16–18 Thus, with access to

spike activity from almost 1,200 unique principal neurons and

more than 600 neurons recorded simultaneously, we set out to

determine how the presence of objects influences population

activity in the CA1 area of the hippocampus in freely moving

rats. We report that population activity shows a strikingly smooth

organization according to the animal’s distance from the object.

RESULTS

Object cells and object-vector cells in the hippocampus
To investigate single-cell and population coding of objects in the

hippocampus, we implanted tetrodes or Neuropixels probes in

the CA1 of rats (7 and 2 rats, respectively; Figure S1) and re-

corded activity daily for four trials as the rats foraged in a

150 cm 3 150 cm open field arena (Figure 1A). Each session

began with an empty box trial (no object [NO]). Then, on the sec-

ond trial (object [O]), a multi-colored Duplo tower 52 cm 3

10 cm 3 10 cm (height 3 width 3 length) was placed in the

arena. On the third trial (object moved [OM]), the object was
July 5, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 2091
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Figure 1. Object-tuned cells in CA1

(A) Schematic of experimental protocol. Each

recording session consisted of four consecutive

trials where rats foraged freely in the same

150 cm 3 150 cm open field arena. In the two

middle trials (object [O] and object moved [OM]), a

Duplo tower was placed into the environment (red

squares).

(B) Schematic of iterative template matching pro-

cedure that we used to identify cells that fired at

the object (object cells; top row) or at fixed dis-

tances and directions from it (object-vector cells;

bottom row). (Left) In each iteration, we placed a

Gaussian template at a specific location in the O

trial, moved it to the same location relative to the

object in the OM trial, and then calculated the

Pearson correlation between rate map and tem-

plate in the two trials separately. (Right) We

repeated this procedure with the template offset

from the object location in different directions (8

offsets from 10 to 60 cm and 8 cardinal directions)

and for 8 different variances of the Gaussian firing

field (not shown). For each repetition, the minimum

of the two Pearson correlations was taken as an

‘‘object-tuning score’’.

(C) Distribution of object-tuning scores (n = 1,189

unique CA1 cells). Blue bars, cells classified as

object-tuned cells; gray bars, cells not classified as

object-tuned.

(D) Polar scatter plot showing orientation (polar

axis, in degrees) and distance (radial axis, in cm,

red) of object-tuned cells (one dot per cell).

(E) Color-coded firing rate maps from example

object cell (top) and example object-vector cell

(bottom). Object locations are indicated by the

white square. Object-tuning score is indicated at

the left and peak firing rate at the bottom of each

rate map.

(F) Orientation coverage of firing fields of object-

tuned cells as a function of distance to object. The

nearer the cell’s firing field is to the object, the

larger is the orientation coverage.

(G) Object-tuning score as a function of the number

of days the animal had been exposed to the object

(day #) for all cells recorded across different days

and that were identified as object-tuned at least in

1 day (n = 62). Each dot indicates a cell.

(H) Color-coded matrix showing object-tuning

scores as a function of recording day in two

different rooms for 35 object-tuned cells that were

recorded on 2 days or more. Left column, object-

tuning scores the 1st day the cells were recorded

(‘‘day 0’’). Middle and right column, object-tuning

scores for the same cells on additional days in the

same room (roomA) or in a different room (roomB).

Only 11 of the 35 cells (31.4%) passed the criteria

for object-tuned cells on more than 1 day (cells

indicated by blue asterisks). Gray regions indicate

that the cell was not recorded on the specific day.

Bar, range of object-tuning scores (lighter colors,

high score; darker colors, low score).
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moved to a new, semi-random location, before it was taken out

from the box for the last trial (no object0 [NO0]).
We first set out to identify individual cells with activity related to

the presence of the object. We developed an iterative template
2092 Neuron 111, 2091–2104, July 5, 2023
matching procedure (Figure 1B) that identified cells with object-

related activity (‘‘object-tuned cells’’) regardless of whether they

fired at the location of the object (object cells)5,10 or at fixed dis-

tances and directions from the object (object-vector or
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landmark-vector cells).11–14 In this procedure, a Gaussian tem-

plate was placed successively at 65 locations and at 8 different

widths in each location in the O and OM trials (Figure 1B; STAR

Methods). For each iteration, the correlation between rate map

and template was determined for each trial. The smallest of the

two correlations was then taken as the iteration’s object-tuning

score. We classified a cell as object-tuned cell if at least one of

the 653 8 scores was larger than the 99th percentile of a shuffled

distribution created by randomly choosing the template location in

both trials.

Using the template matching procedure, 19.9% of CA1 cells

were classified as object-tuned (237/1,189 cells) (Figures 1C,

S2A, and S2B). This fraction was significantly higher than a

chance level determined by running the same templatematching

procedure on control trials without objects (11/219 cells, 5.03%;

19.9% compared to chance level of 5.03%, p < 5.73 3 10�141,

binomial test). The firing fields of the object-tuned cells covered

a wide range of distances from the object (range: 4.8–80.7 cm;

mean ± SD: 37.7 ± 16.0 cm) and the entire azimuthal range (Fig-

ure 1D). We did not observe a correlation between the proximo-

distal recording location and the percentage of cells classified as

object-tuned (Figures S1 and S2C). Object-related activity was

present also in CA313,19 (Figures S1 and S3).

To enable a rough comparison between the present dataset

and previous literature, we estimated that 4.1% of all recorded

cells were object cells (49/1,189 cells, object-tuned cells with

firing fields <15 cm from the object, Figure 1E top) and 13.3%

were object-vector cells (158/1,189 cells, object-tuned cells

with firing fieldsR15 cm distance from the object, Figure 1E bot-

tom) (note that in 30 object-tuned cells, firing fields could not be

detected because the object-related activity was not confined to

contiguous regions—these 30 cells were therefore not classified

as object cells or object-vector cells; see STAR Methods for de-

tails). While object cells have fields covering all orientations

around the object (Figure 1F),5,10 the data suggest a continuum

between object cells and object-vector cells (Figures 1E and

1F). We observed no significant effect of day of exposure to

the object on the object-tuning score (Figure 1G) (r = �0.080,

p = 0.57369, Pearson correlation).

We next asked if the object responses were stable across time

and environments. A total of 35 object-tuned cells were recorded

on more than 1 day (in room A and room B) (Figure 1H). Only 13

of these cells (31.4%) had significant object-tuning scores on

more than 1 day (Figure 1H). However, object-tuned cells were

more stable than expected by chance, with higher probability of

passing the classification on later days compared to other cells

(13/35 object-tuned cells vs. 36/370 other cells, p = 3.35 3 10�4,

binomial test). In addition, during the course of a single trial, cells

with larger object-tuning scores tended to be more stable than

cells with lower scores (Figure S2E) (Pearson correlation between

within-trial stability and object-tuning score, r = 0.45, p = 3.65 3

10�13), pointing to the existence of a discrete cell class with tran-

sient object-tuning.

The majority of hippocampal cells change spatial firing
patterns in the presence of objects
Many CA1 cells that did not pass criteria for object-tuned cells

still responded in some way or other to the object (Figure 2A). In
the cell sample as a whole, introducing the object led to larger

changes in spatial firing patterns (i.e., smaller Pearson correla-

tions of rate maps) than in pairs of control trials with no object

(Figures 2B, 2C, and 2D, top left; NO-O vs. CON1-CON2:

z = 12.17, p = 4.75 3 10�34, Wilcoxon rank-sum test). While

firing locations changed, the overall rate change, estimated

as the mean firing rate in the less active trial divided by mean

firing rate in the more active trial (rate overlap), was not different

between trial pairs with objects (NO-O) and control trials

(CON1-CON2) (Figure 2D, top right; z = 0.57, p = 0.57, Wil-

coxon rank-sum test). Using a shuffling procedure to determine

chance levels (see STAR Methods), we estimated that 67.5% of

the cells (n = 803/1,189 cells) expressed either spatial change,

rate change, or both between NO and O. Considerable change

was also observed between the O and OM trials (Figure 2D,

second row; O-OM vs. CON2-CON3; spatial correlation:

z = 13.23, p = 5.87 3 10�40; rate overlap: z = 3.43,

p = 0.001, Wilcoxon rank-sum tests). In these trials, 69.7% of

the cells changed their spatial firing pattern, firing rate, or

both when the object was moved (n = 829/1,189 cells). Major

changes were evoked also when we removed the object (Fig-

ure 2D, third row; OM-NO0 vs. CON3-CON4; spatial correlation:

z = 11.85, p = 2.11 3 10�32; rate overlap: z = 1.79, p = 0.074,

Wilcoxon rank-sum tests). Upon removal of the object, many

cells retained firing fields from the preceding trial, consistent

with previous observations of hysteresis in CA1 place

cells13,20,21 (Figures 2A and S4). In line with this observation,

major changes in spatial firing were also observed between

NO and NO0 (Figure 2D, fourth row; NO-NO0 vs. CON1-

CON4; spatial correlation: z = 11.85, p = 2.11 3 10�32, Wil-

coxon rank-sum test).

We observed extensive changes in firing locations and rates

also in CA3 (Figures S3D–S3F).

Decoding the presence of an object from neural-
population activity
To determine the extent to which information about object loca-

tion is present in the collective firing of hippocampal neurons,

we first reasoned that if hippocampal population activity contains

object-related information, we would be able to use population

activity to decode whether an object is present in the environ-

ment. For all decoding analyses, we used recordings from 15

tetrode sessions with 25–39 cells in each recording and 2 Neuro-

pixels sessionswith 620and135cells, respectively, unless other-

wise indicated (total of 4 rats). Building upon an existing Bayesian

decoding algorithm,22 we developed an approach where we fed

data from the NO trial and the O trial into a decoder, which clas-

sified testing data into either of these two types of trial (Figure 3A).

The decoding accuracy was above chance (50%) in all experi-

mental sessions (Figure 3B), showing that we can infer the pres-

ence of the object using population activity. The decoder’s per-

formance increased approximately logarithmically with the bin

size of the testing data vector (Figure 3C) and the success of de-

coding increased with the number of cells included (Figure 3D).

We chose 1 s bins for the main analyses because performance

saturated around this level (Figure 3C). As expected from the

trace analysis, we were also able to decode the NO trial from

the NO0 trial using population activity (Figure S5A).
Neuron 111, 2091–2104, July 5, 2023 2093
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Figure 2. CA1 cells change spatial firing patterns in response to objects

(A) Color-coded firing rate maps of 4 example cells recorded in CA1 (experimental protocol as in Figure 1A). The red square indicates the object. The first cell

changes its spatial firing pattern only upon introduction of the object (top row). The second cell changes its spatial firing pattern when the object is introduced but

it preserves the firing pattern during the next trials, leaving a trace of the original firing field (second row). The third cell changes its firing pattern when the object is

moved and maintains a trace on the last trial (third row). The fourth cell changes its firing pattern when the object is moved, but the spatial firing pattern is more

diffuse than in the other cells (last row). Rat ID and cell ID are indicated to the left of the firing rate maps, and peak firing rate in each trial is indicated at the top of

each rate map. Bars, color-coded firing rate.

(B) Control experiments used to compare object-induced changes to changes that occur due to passage of time. Four consecutive trials were run with rats

foraging freely in the same 150 cm 3 150 cm empty open field arena.

(C) Color-coded firing rate map from an example CA1 cell in the control experiment.

(D) Cumulative normalized frequency distributions showing spatial correlation (left column) and rate overlap (right column) between pairs of trials. Each row shows

a given pair of trials in sessions with objects (as in Figure 1A; dark purple lines; n = 1,189 principal cells recorded from 9 rats) and the corresponding pair of control

trials (as in Figure 2B; brown lines; n = 219 principal cells recorded from 3 rats). NO, no object; O, object; OM, object moved; NO0, no object0; CON 1–4, control

1–4.
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Having established as a proof-of-concept that we can use

population activity to decode the presence of the object, we

next asked if decoding accuracy differed as a function of the

animal’s spatial relationship with the object. We divided the envi-

ronment into 5 distance bins, consisting of concentric rings radi-

ating out from the object (Figure 4A). By feeding data from each

distance bin into the decoder, we found that decoding perfor-

mance decreased gradually with increasing distance from the

object (Figure 4B) (H = 44.559, p = 4.91 3 10�9, Kruskal-Wallis

test, n = 16 experimental sessions; significantly different decod-

ing accuracies for distance bins 1 vs. 2; 2 vs. 3; and 4 vs. 5,WR

111, p % 0.0049, Wilcoxon signed-rank tests). Such a decrease
2094 Neuron 111, 2091–2104, July 5, 2023
was also seen in the individual experiments (Figure 4C). In the

main analyses, we optimized distance bins for each experiment

so that we had an equal number of samples in each bin. We

found the same decrease in decoding accuracy using fixed dis-

tance bins rather than optimized bins (Figure S5B) (fixed bins of

0–20, 20–40, 40–60, 60–80, and 80–100 cm).

To test if the reorganization was equally large in all directions

relative to the object, we divided the environment into 5 angular

bins, with each bin covering a different set of allocentric angles

relative to the object (Figure 4D). The decoding accuracy was

the same in different angular bins (Figures 4E and 4F)

(H = 3.75, p = 0.4416, Kruskal-Wallis test, n = 16 experimental
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Figure 3. Decoding the presence of an object in the animal’s

environment

(A) Schematic of the conceptual framework. A Bayesian decoder infers

whether a 1 s sample of population data (highlighted in gray) occurred in the

absence or presence of an object (bottom left and right, respectively).

(B) Decoding accuracy in all sessions (n = 16). The decoding accuracy is given

by the fraction of samples that the decoder classified correctly.

(C) Decoding accuracy as a function of bin size (ms), expressed on a loga-

rithmic scale. The bin size was 101, 53 101, 102, 53 102, 103, 53 103, and 104

ms. Each color shows a different experimental session.

(D) Decoding accuracy as a function of number of cells used to perform the

decoding. Cells were randomly subsampled 100 times for each specific n and

dataset. Data points show means and error bars show standard deviations

(calculated on decoding accuracies pooled from all datasets). Stippled lines

indicate the chance level (0.5). Color scale shows howmany datasets (i.e., rats)

contribute to each datapoint. 2 datasets are from tetrode rats (between 25 and

39 cells) and 2 datasets are from Neuropixels rats (135 and 620 cells,

respectively).
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sessions). This shows that the distance-dependent reorganiza-

tion of population activity is general and not specific for certain

compass directions.

To ensure that the result reflects a genuine phenomenon in the

population activity we performed several controls. First, we

observed no decrease in decoding accuracy across the same

distance bins when attempting to decode the first half of the

NO trial from the second half of the NO trial (Figure S5C) or

when performing decoding in NO control trials (Figures 2B and

S5D). Second, we randomly shuffled the trial labels of the spike

count vectors (labels being ‘‘NO’’ and ‘‘O’’), destroying the asso-

ciation between spike count vectors and trials. On the shuffled

data, the decoder performed with a mean accuracy of 50% in

all distance bins (Figure S5E). Third, we partitioned the data

into training and testing in a random manner (in the standard

decoder the first half of the session was used for training and

the second half for testing and then vice versa). The results
from this decoder showed the same decline in decoding accu-

racy as a function of distance from the object (Figure S5F).

Finally, across all cells, firing fields were widely distributed

across the environment and not concentrated at the object loca-

tion (Figures S5G and S5H), whereas firing rates were similar be-

tween trials, being largest at middle distances from the object

(peaking in distance bin 3; Figure S5I). These observations indi-

cate that firing field locations and firing rates cannot trivially

explain our findings.

To further visualize the hippocampal object representation, we

took the entire stack of ratemaps from theNO trial andO trial and

computed the pairwise Pearson correlation between the two

stacks. This gives a correlation value (from �1 to 1) for each

spatial bin (size: 3 cm3 3 cm). The correlationmaps had low cor-

relations in the central regions near the object, but high correla-

tions in peripheral regions further away from the object (Fig-

ure 4G). Next, we binned the environment into 5 distance bins

and collected the correlation values in each bin (number of

correlation values for each bin: 489 ± 27; mean ± SEM; n = 16

experimental sessions). This showed a stepwise linear increase

in correlation values as a function of distance from object, with

saturation at larger distances (Figure 4H) (H = 30.1, p = 4.67 3

10�6, Kruskal-Wallis test; significantly different correlation

values for distance bins 1 vs. 2; 2 vs. 3; and 3 vs. 4, W % 19,

p% 0.0113, Wilcoxon signed-rank tests). Altogether, these find-

ings suggest that the object acts as a pivot around which the

hippocampal population activity reorganizes in a distance-

dependent manner. The internal walls of the recording environ-

ment did not play a similar role as the free-standing object, since

position decoding accuracy and population vector correlations

were comparable near and far away from the walls

(Figures S5J and S5K).

Behavioral analyses
We next reasoned that if the animals’ behavior is different be-

tween the NO andO trials, and increasingly different near the ob-

ject, this could also produce decoding accuracy that falls with

object distance (Figure 4B). To ask if such a behavioral confound

was present in the previous analyses, we developed decoders

that attempted to infer the trial (NO vs. O) based on the animal’s

behavior (see STAR Methods). Decoders for speed, head direc-

tion, and occupancy performed only slightly above 50% correct,

with accuracies independent of object distance (Figures S6A,

S6C, and S6E). We verified that all behavioral decoders worked:

when simulating speed, head direction, or occupancy that was

clearly different between the NO and O trials in all distance

bins, the decoders performed with virtually 100% accuracy

(Figures S6B, S6D, and S6F, left). Similarly, when simulating

speed, head direction, or occupancy that was increasingly

different near the object, the decoders had distance-dependent

accuracies (Figures S6B, S6D, and S6F, right). That the behav-

ioral decoders show flat accuracies in the experimental data

(Figures S6A, S6C, and S6E) is therefore a strong indication

that variations in behavior are not sufficient to explain our find-

ings (Figures 4B and 4C).

We further reasoned that we could test for any role of behavior

by artificially removing any behavioral differences between the

trials prior to running the decoder on the neural data (example
Neuron 111, 2091–2104, July 5, 2023 2095
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Figure 4. Graded reorganization of hippo-

campal population activity

(A) Schematic of partitioning of the environment for

the main analysis. We divided the recording arena

(150 cm 3 150 cm) into 5 distance bins, forming

circles around the object. We then applied the

decoder to data from each distance bin to assess

how decoding accuracy scales with distance from

object.

(B) Boxplot of decoding accuracy as a function of

distance from object. The central dashed line in-

dicates the median, and the top and bottom lines

indicate upper and lower and quartiles, respec-

tively. The length of the whiskers indicates 1.5

times the interquartile range. Distance bin 1 is

nearest the object; distance bin 5 furthest away.

Each distance bin had an equal number of

samples.

(C) Decoding accuracy as a function of distance

from object for each individual experiment (n = 16).

Data are the same as in the previous panel,

but each color shows a different experimental

session. Note that all experimental sessions have

decreasing curves.

(D) Schematic of the partitioning of the environ-

ment for angular binning. We divided the arena into

5 angular bins, each bin spanning 72� and applied

a decoder to each bin.

(E) Boxplot of decoding accuracy as a function of

angle relative to object. Outliers exceeding 1.5

times the interquartile range are shown as crosses.

(F) Similar to (C) but for angle relative to object. All

experimental sessions have flat curves.

(G) Correlation map showing similarity of time-

averaged population firing on trials with and

without the object (rat 27207). The correlations are

closer to zero (near 0.3) in the vicinity of the object

(white square) and more positive (beyond 0.8) in

the periphery.

(H) Correlation between stacks of rate maps (NO

trial vs. O trial) as a function of distance from the

object. For each experimental session, we calcu-

lated a correlation map as in the previous panel.

Then, we binned all values in the correlation map

into 5 distance bins (based on distance to object)

and calculated the mean correlation inside each

distance bin. Plot shows mean ± SEM for all

experimental sessions (n = 16) from all animals.
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for speed distributions before and after removing behavioral dif-

ferences in Figure S6G). We still observed a graded decrease in

decoding accuracy for the neural activity decoder after matching

distributions for speed (Figure S6H), head direction (Figure S6I)

and occupancy (Figure S6J), confirming that behavioral differ-

ences between the trials were not necessary to obtain our

results. The standard decoder used a prior that included infor-

mation about the animal’s occupancy (see STAR Methods for

details). As expected from the behavioral analyses, removal of

this prior had no effect on our results (Figure S6K).

Finally, in the presence of the object there will be some regions

that the animal cannot explore, preventing certain neural activity

patterns from occurring in the O trial, which might lead to high

decoding success near the object. To test that possibility, we

included only spatial bins in which the animal had spent a mini-
2096 Neuron 111, 2091–2104, July 5, 2023
mum amount of time (either 100, 500, 1,000, or 2,000 ms) in

both the NO and O trials (i.e., excluding all spatial bins that the

animal had not occupied for that duration in both trials). Regard-

less of the threshold value, the result was the same as before,

with accuracy declining along with object distance (Figure S6L;

note that to perform this analysis, the rate map bin size had to

be increased from 3 to 10 cm2).

Objects are encoded by distinct patterns of joint activity
in CA1 cells
We next asked if specific features of the population activity

become different when the object is introduced. To parametrize

the population activity, we introduced the concepts of ‘‘words’’

and ‘‘counts’’ as used previously to study population cod-

ing.23–25 We defined words as unique patterns of spiking and
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Figure 5. Objects are represented by distinct patterns of joint activity in the CA1 cell population

(A) Framework for analyzing population activity. We represent neural data in an N3 T spike matrix, where N is the number of recorded cells and T is the number of

time points in the trial sampled at 10 ms. We define a specific pattern of spiking across the neural population as a word. In the schematic, each unique word is

(legend continued on next page)
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silence across neurons in the population in a single time bin (Fig-

ure 5A, time bins of 10 ms) and counts as the total sum of spikes

across the population in a single time bin (Figure 5A, bottom

row). We then calculated the mutual information (MI) between

words and trial, and between counts and trial (see STAR

Methods). Words were much more informative than counts (Fig-

ure 5B) (U R 439, p % 1.19 3 10�6, Wilcoxon rank-sum tests).

Importantly, the amount of information gained from words

decreased as a function of distance from the object

(Figures 5B and 5C) (H = 24.29, p = 6.98 3 10�5, Kruskal-

Wallis test), reproducing the pattern of the decoder. In contrast,

the amount of information from counts did not depend on object

distance (H = 4.08, p = 0.3947, Kruskal-Wallis test) and was not

significantly above zero (t % 1.46, p R 0.1636 for all compari-

sons, t tests).

To visualize the word representation, we calculated howmany

times each word occurred in each trial and sorted the words by

frequency in the NO trial (Figure 5D, top). By applying the same

sorting in the O trial (Figure 5D, bottom) we could see which

words were up- and down-regulated with objects present.

Many low-frequency words in the NO trial were high-frequency

words in the O trial, standing out as spikes (Figure 5D, bottom).

No such spikes were present in shuffled versions of data (Fig-

ure S7A), suggesting that theNOandO trials recruit different pat-

terns of neural activity.

Word frequency distributions appeared different near the ob-

ject (Figure 5D, distance bin 1) but more similar further away

from the object (Figure 5D, distance bins 2–5; note that the

same pattern was obtained when we sorted both histograms

according to word frequencies in the O trial rather than the

NO trial; Figure S7B). Consistent with this, the Kullback-

Leibler (KL) divergence between the NO and O distributions

became smaller with increasing object distance (Figure 5E,

blue curve) (H = 16.22, p = 0.0027, Kruskal-Wallis test; KL di-

vergences in 1st distance bin vs. 5th distance bin: W = 102,

p = 6.10 3 10�4, Wilcoxon signed-rank test). No decrease in

the KL divergence was present in shuffled data (Figure 5E,

green curve). In contrast to the identity of words, the number

of words was independent of trial type and distance from the

object (Figures S7C and S7D).

Because the number of observed states is much larger for

words than counts, the entropy was higher for words than counts
labeled by a different color. We define counts as the total number of spikes in t

bottom row.

(B) Mutual information between trial type (NO or O) and population response (eit

Distance bins were constructed to contain the same number of samples, as in Fig

14 from tetrodes data, 2 from Neuropixels data where the number of cells was sub

the object; distance bin 5 furthest away. Words but not counts are informative abo

(C) Mutual information from words (blue) or counts (orange) for each individual ex

different experimental session. Notice that all orange curves overlap.

(D) Histograms of word frequencies from the NO trial (top) and the O trial (bottom)

shows howmany times each uniqueword appeared during each trial, in each dista

in the NO trial are plotted). All distributions are sorted according to how frequently

trial are decreasing (top) while distributions from the O trial have more arbitrary sh

bottom (word #1 at the top is the same as word #1 at the bottom).

(E) Kullback-Leibler (KL) divergence betweenword distributions in the O (D, bottom

trial labels of the words (blue curve); in shuffled data, trial labels were randomly

frequencies in the NO trial (as described in the previous, D).
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(entropy of words: 1.65 bits ± 0.06; entropy of counts: 0.84 bits ±

0.02; mean ± SEM). However, the difference in entropy could not

trivially explain why words were more informative than counts,

because after downsampling the number of states to be equal

for words and counts, words were still much more informative

(Figure S7E).

Distance-specific reorganization of the hippocampal
map is widely distributed across the CA1 population
We next wondered to what extent the distance-based reorgani-

zation of the hippocampal map is distributed across the cell

population. The reorganization may be driven by a dedicated

subpopulation of cells with ‘‘strong tuning’’ to distance from

the object, or it could be distributed across most of the cells,

as an emergent property of the network, independently of the re-

sponses at the single-cell level.

To understand how many cells are necessary to see the reor-

ganization, we first asked if it is present already at the level of sin-

gle cells. To estimate the distance modulation of individual cells,

we first ran the decoder (Figure 3A) with one cell at a time

(n = 1,189 cells and runs of the decoder). Individual cells showed

no obvious decrease in decoding accuracy as a function of dis-

tance, with medians just slightly above 0.5 (Figure 6A, compare

to Figure 4B). We then calculated

distance tuning = decoding accuracy bin #1

� decoding accuracy bin #5 (Equation 1)

as a proxy for distance modulation of individual cells, where a

more positive value implies stronger distance modulation. CA1

cells had a slight positive bias in distance tuning (mean: 0.02;

for reference, the same mean calculated from populations is

0.19; Figure 4C) and nearly all cells were contained between

the bounds �0.2 and 0.2 (98.7% of cells). By shuffling data

(circularly shifting spike trains) and re-calculating the distance

tuning, we observed that some cells had significant positive dis-

tance tuning (12.2%, n = 145/1,189 cells) (Figure 6B, red bars)

and some cells had significant negative distance tuning (3.8%,

n = 45/1,189 cells) (Figure 6B, yellow bars). However, while these

cells were individually informative, they were dispensable: after

removing cells with significant positive distance tuning

(12.2%), we still observed a gradual drop in decoding accuracy
he neural population in any given time bin. The total count is illustrated in the

her words, in blue, or counts, in orange) as a function of distance from object.

ures 4B and 4C. Data points showmean ± SEM (n = 16 experimental sessions,

sampled to 30, see STARMethods for further details). Distance bin 1 is nearest

ut trial type, and they are more informative if activity is sampled near the object.

periment. Data and analysis are as in the previous panel. Each curve shows a

of an example session with 26 simultaneously recorded cells. Each histogram

nce bin. Thewords are indexed from 1 to 100 (only the 100most frequent words

each word occurred in the NO trial. For this reason, distributions from the NO

apes (bottom). This also means that indices of words match between top and

) and NO (D, top) trial as a function of distance to object. Real data use the true

assigned to each word (green curve). Word distributions were sorted by word
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Figure 6. The distance-specific reorgani-

zation is widely distributed

(A) Decoding accuracy as a function of distance

from object for individual cells (15 tetrode ses-

sions and 2 Neuropixels sessions, n = 1,189 cells).

Individual cells have mostly flat decoding accu-

racy. Boxplot conventions are as in Figures 4B.

(B) Distance tuning of individual cells (n = 1,189

cells). Some cells had significant positive distance

tuning (red bars) and other cells had significant

negative distance tuning (yellow bars), compared

to shuffled data. Note the slight positive bias of

distance tuning values in the entire population.

(C) Decoding accuracy as a function of distance

from object, based on different subsets of cells of

size n (n = 1, 5, 20, 30, 50, 100, 200, 300, 400, and

500). Cells were randomly selected from a total

population of N = 620 cells simultaneously re-

corded. Data points show means over 20 random

realizations; error bars show SEM. When error

bars cannot be seen it is because they are too

small. Stippled line indicates chance level.

(D) Distance reorganization as a function of num-

ber of cells used in the decoding. The left y axis

(blue curve) shows the distance difference (de-

coding accuracy in bin #1—decoding accuracy in

bin #5) and the right y axis (orange curve) shows

the slope of the least-square line (fitted to de-

coding accuracy vs. distance curves in the pre-

vious panel). These two measures are proxies for

the amount of distance reorganization. Data

points show means; error bars show SEM. Note

the increasing distance difference, as well as the

decreasing slope, as a function of the number of

cells.

(E) Decoding accuracy as a function of distance

from object, depending on the fraction of cells

with lowest distance tuning retained. We ran the

decoder using the k% of cells with lowest tuning,

with k being 100, 80, 60, 40, and 20. Keeping 20%

of cells with the least tuning is sufficient to see

reorganization of neural-population activity ac-

cording to distance from the object. Data are from

the same Neuropixels rat as in (C) and (D).

(F) Distance reorganization as a function of the

percentage of cells with the lowest distance tun-

ing retained. Conventions are as in (D).
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obtained with population data as a function of object distance

(Figure S5L). This is consistent with the idea that many cells

contribute to the smooth change in population activity according

to object distance (Figures 4B and 4C).

We next asked how the reorganization scales with the number

of cells used in the decoder. For this, we first used Neuropixels

data from a rat implanted with two probes in the left hippocam-

pus, yielding 620 CA1 cells with a wide variety of properties,

including place cells, object cells, and object-vector cells. To

simulate different population sizes, we picked random subsets

of cells (subsets of size n = 1, 5, 10, 30, 50, 100, 200, 300, 400,

and 500) from the 620 cells. For each n we ran the decoder on

20 different randomly chosen subsets of cells. All curves showed

reduced decoding accuracy as a function of distance, except the

curve constructed using only a single cell (Figure 6C) (n = 1 curve:
W = 2.48, p = 0.6489; all other curves: W R 11.89, p % 0.0182,

Wilcoxon signed-rank tests). The difference between bins #1 and

#5 grew systematically with the number of cells (Figure 6D; left y

axis, blue) (H = 174.57, p = 3.143 10�32, Kruskal-Wallis test) and

reached its maximum at n = 500 cells. In parallel, the slope of

the least-square line (fitted to the curves in Figure 6C) became

increasingly negative (Figure 6D, right y axis, orange)

(H = 157.6, p = 1.011 3 10�28, Kruskal-Wallis test) and reached

its minimum at n = 500 cells, creating the appearance of two

curves that were mirror-images of one another. First, this implies

that even a small number of cells picked randomly is sufficient to

see the distance modulation, independently of the individual cell

properties (Figure 6C, blue and green curves). Second, the more

cells we include, the stronger the distance-modulated reorgani-

zation of the map is (Figure 6D). This suggests that the factors
Neuron 111, 2091–2104, July 5, 2023 2099
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Figure 7. Single-cell properties are not predic-

tive of distance tuning

(A) Relationship between each cell’s object-tuning

score and its distance tuning. Due to the large number

of cells, we bin the data to aid visualization (10 bins,

ranging from minimum object-tuning score to

maximum object-tuning score). Data points show

mean ± SD for each bin. Inset shows scatterplot of

original data before binning (n = 1,189 cells). Note lack

of a strong correlation between object-tuning score

and the distance tuning.

(B) Relationship between each cell’s spatial informa-

tion (bits/spike) (in the O trial) and its distance tuning

(n = 1,189 cells).

(C) Relationship between each cell’s spatial correla-

tion (between rate maps from the NO and O trials) and

its distance tuning (n = 1,189 cells).

(D) Relationship between each cell’s rate overlap

(between the NO and O trials) and its distance tuning

(n = 1,189 cells). In all panels, note absence of re-

lationships between single-cell properties and tuning

to distance from the object.
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underlying the reorganization are distributed across the entire

population of hippocampal cells. The finding was upheld in

data from animals with smaller numbers of cells (135 cells in a

Neuropixels recording; 25–39 cells in tetrode recordings)

(Figures S8A–S8D).

We next asked whether we can visualize the distance reorga-

nization even when using cells that show the least ‘‘distance

tuning.’’ After calculating the distance tuning of single cells

(Figures 6A and 6B; Equation 1), we sorted the cells according

to this variable, starting with the lowest value. We then sub-

sampled the same Neuropixels data (Figures 6C and 6D), keep-

ing either 100%, 80%, 60%, 40%, or 20%of cells with the lowest

distance tuning. As expected, curves gradually became flatter

when using smaller populations of cells (Figure 6E). However,

even the 20% of cells with lowest tuning was sufficient to

demonstrate the distancemodulation, in the form of positive dis-

tance tuning aswell as a negative slope (Figures 6E and 6F; right-

most point on blue curve: 0.121; on orange curve: �0.0267).

Thus even the ‘‘worst’’ cells (with lowest distance tuning)

contribute to a distance-specific reorganization of the hippo-

campal map. As before, the finding also held in smaller-sized

tetrode and Neuropixels data (Figures S8E–S8H).

Finally, we asked if any properties of single cells were predic-

tive of distance tuning. We correlated the distance tuning of indi-

vidual cells (Figure 6B; Equation 1) against their object-tuning
2100 Neuron 111, 2091–2104, July 5, 2023
score, spatial information, spatial correla-

tion, or rate overlap (Figures 7A–7D, insets).

Distance tuning did not appear to depend

strongly on any single-cell property. The ob-

ject-tuning score had a significant positive

correlation with distance tuning, but very

weakly so (r = 0.12, p = 1.953 10�5). Spatial

information had a significant negative corre-

lation, but also this was veryweak (r =�0.13,

p = 3.703 10�7). Similarly, spatial correlation

and rate overlap were also negatively but

weakly correlated with distance tuning
(spatial correlation: r = �0.08, p = 7.61 3 10�4; rate overlap:

r = �0.18, p = 1.57 3 10�9). We obtained similar results when,

instead of distance tuning, we used the slope of the regression

line fitted todecoding accuracy vs. distanceasameasureof reor-

ganization (object-tuning score: r = �0.12, p = 3.05 3 10�5;

spatial information: r = 0.10, p = 3.583 10�5; spatial correlation:

r = �0.08, p = 7.98 3 10�4; rate overlap: r = 0.19, p = 1.13 3

10�12). After removing all object-tuned cells (19.9%) from the

data and re-running the decoder, we observed the same gradual

fall in decoding accuracy as a function of distance (Figure S5M).

Collectively the observations suggest that cells can contribute to

the distance fall-off independently of whether they are object-

tuned cells (Figure 7A), place cells (Figure 7B), or exhibit small

or large changes in spatial selectivity (Figure 7C) or firing rate (Fig-

ure 7D). The dissociation of our findings from single-cell proper-

ties (Figures 7 and S5M) is supportive of the notion that distance-

dependence is widespread throughout CA1 cells and manifests

at the neural-population level (Figure 6).

DISCUSSION

By simultaneously recording up to 620 principal neurons in the

hippocampal area CA1 of freely moving rats, we could evaluate

single-cell and population-level perspectives on how local ob-

jects influence representations of space. Some cells fired at the
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object (object cells), others at fixed distances and directions from

it (object-vector cells, reminiscent of landmark-vector cells13). In

addition, the majority of the CA1 cells changed their spatial firing

patterns when the object was introduced, moved, or taken out

from the environment. At the level of neural populations, the het-

erogeneous responses were coherently organized across cells

so that the amount of reorganization of the hippocampalmap de-

pendedondistance from theobject in agradedmanner. The reor-

ganization of the hippocampal map in the presence of objects

was widely distributed and did not require specific subsets of

cells or the presence of object cells and object-vector cells.

Although past studies have already raised the possibility that

the hippocampal representation of objects may be non-factor-

ized,15 we here demonstrate how by describing (1) a strikingly

smooth change in population activity according to object dis-

tance, and (2) an emergent property of the code, where the dis-

tance-based representation becomes more evident as sample

sizes are increased.Our findings hint that someaspects of hippo-

campal cognitive maps may not be understood through proper-

ties of dedicated functional cell types—such as object cells, ob-

ject-vector cells, or placecells—but throughemergent properties

of cell populations whose activities appear random and disorga-

nized when viewed individually.

We first set out to estimate how many object cells and object-

vector cells are present in CA1 when animals explore two-

dimensional spaces, in a dataset where the number of cells is

an order of magnitude larger than in previous studies of such

cells.5,10,13,14 We found both object cells and object-vector cells

(4.1% and 13.3%, respectively, if using an arbitrary 15 cm dis-

tance cut-off between the two groups). Object-tuned cells had

variable tuning across time and environments, unlike their MEC

counterparts,11 which are stable over weeks and across different

tasks.11,26 A different type of ‘‘instability’’ across time was re-

ported in hippocampal landmark-vector cells, which only began

to fire at fixed distances and directions from objects once the rat

had gained experience with the objects.13 In the present study

we did not observe such experience-dependence. Other studies

have reported stable object tuning at the level of individual cells,5

whereas we only find hints of stability during the course of a sin-

gle trial (30min). While this may reflect differences in training pro-

cedures (B. Rivard, personal communication), a broader lesson

from our work may be that even if a stimulus (for example, an ob-

ject and its location) is not represented via stable activities of in-

dividual cells, it may still be represented stably at the level of the

network.

How exactly did objects influence the spatial firing patterns?

Our findings are consistent with studies that report remarkable

heterogeneity of object responses in the hippocampus.7,15 We

observed appearance and disappearance of firing fields, move-

ment of firing fields, object cells, object-vector cells, and firing

fields that persisted after objects were removed. This heteroge-

neity points to a transformation of the object-centered spatial

codes within the entorhinal-hippocampal circuit, where the rep-

resentation of space is changed from a low-dimensional code in

MEC with coherence between cells’ responses across environ-

ments27–29 to a higher-dimensional code in the hippocampus

that orthogonalizes distinct representations of space.20,30,31

The higher dimensionality of hippocampal responses is closely
linked to the phenomenon of global remapping, where distinct

place-field codes are created for distinct environments.4,32,33

In parallel with the large variability of responses at the level of

single hippocampal cells, we observed a striking organization of

the cells’ collective activity. The object acted as a pivot for reor-

ganizing hippocampal population activity: in the object’s neigh-

borhood, the reorganization was large, leading to high decoding

accuracy, whereas further away from the object, the reorganiza-

tion became increasingly smaller, leading to low decoding accu-

racy. Thus, the highly variable activity of the CA1 cells was

brought together into a unified population code, where activity

was largely determined by the state of a single variable: the an-

imal’s distance from the object. In that sense, the population

response had a simple and predictable structure, in comparison

with the disorganized activities of individual cells. The graded

reorganization of the population response between NO andO tri-

als could not be explained by differences in the animal’s

behavior: (1) we were unable to decode the trial type based on

behavior and (2) downsampling data to match behavior between

the trials had no effect on the main result.

Remapping restricted to subsets of place cells has been

shown in many contexts.10,34–37 However, the reorganization of

population activity described here does not correspond to forms

of place-cell remapping described in the literature,4,32,33,35,38

one key difference being the smoothness of the change in the

population representation. Remapping in place cells often ap-

pears in one of two forms: global remapping or rate remapping.32

During global remapping, place cells collectively reorganize their

spatial firing patterns, providing an entirely new and orthogonal

representation of space. This form of remapping is thought of

as discrete,33,39–41 and during periods of ambiguity, there may

even be flickering between distinct maps.40,42,43 Such discrete-

ness is clearly different from the smooth reorganization seen in

the present study. Rate remapping44 can also be smooth during

gradual changes of the environment.21 However, these smooth

changes, expressed in the firing rates of individual cells, took

place all over the environment. Those changes were clearly

different from the smooth reorganization across space seen in

the present study, where the amount of reorganization of the hip-

pocampal map was a continuous function of the animal’s

distance from an object. The presence of this smooth reorgani-

zation, combined with the simultaneous presence of place cells

and object-tuned cells, suggests that population-level represen-

tations co-exist with single-cell representations in CA1. Future

work will have to determine if such co-existence arises de

novo in the hippocampus or already at input stages such as

the MEC. While responses of individual MEC cells may show

less heterogeneity than their hippocampal counterparts (MEC

cells fractionate into discrete functional cell types11,45–48), we

cannot exclude the possibility that similar population-level repre-

sentations exist on top of the cells’ individual firing profiles in

MEC. This possibility would be consistent with topological ana-

lyses demonstrating population structure in grid cells not

apparent in individual neurons.27

A critical element of our findings is how widely distributed the

object-centered population coding is across the recorded cells.

The more cells we put into the decoder, the larger the improve-

ment in decoding accuracy near the object (relative to far from
Neuron 111, 2091–2104, July 5, 2023 2101
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the object). In addition, we could still visualize some degree of

distance-based reorganization when only the cells with the

weakest distance tuning were retained in the analysis. While dis-

tance tuning is generally weak in individual cells, at the popula-

tion level the responses transform into a smooth distance-

dependent code. The transformation has parallels to classic

work in the vertebrate retina, where weak pairwise correlations

are transformed into strong correlations in population activity,23

and supports recent work in the hippocampus showing that

place cells and non-place cells encode information in a collective

and distributed fashion.16,17 Taken together, the findings sug-

gest that some neural representations may be best described

as emergent properties of large numbers of cells.18
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(2017). Fully integrated silicon probes for high-density recording of neural

activity. Nature 551, 232–236. https://doi.org/10.1038/nature24636.

50. Steinmetz, N.A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rat: Long-Evans Bred inhouse at KISN Kavli Institute for Systems Neuroscience

Software and algorithms

Matlab 2020a MathWorks https://mathworks.com/products/matlab.

html RRID: SCR_001622

Cheetah 6.3.1 Neuralynx https://neuralynx.com/

MClust A.D. Redish https://redishlab.umn.edu/mclust

SpikeGLX Jun et al.49 https://billkarsh.github.io/SpikeGLX/

Kilosort Steinmetz et al.50 https://github.com/MouseLand/Kilosort

Phy Jun et al.49 https://github.com/cortex-lab/phy

OptiTrack Motive OptiTrack https://optitrack.com/software/motive/

Custom software This paper https://doi.org/10.5281/zenodo.7797252

Other

Axona Microdrives Axona https://www.axona.com

Neuralynx Acquisition System Neuralynx https://neuralynx.com/

Neuropixels Probes Neuropixels https://www.neuropixels.org/

Neuropixels Control System Neuropixels https://www.neuropixels.org/control-

system

Optitrack Flex 13 USB cameras OptiTrack https://optitrack.com/cameras/

Zeiss AxioImager Zeiss N/A

Deposited data

Datasets This paper https://doi.org/10.25493/Q0FG-1X8
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, May-Britt Moser

(may-britt.moser@ntnu.no).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data are publicly available as of the date of publication (https://doi.org/10.25493/Q0FG-1X8).

d Code has been deposited on Zenodo (https://doi.org/10.5281/zenodo.7797252).

d All information is provided in the key resources table. Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data were obtained from 10 male Long-Evans rats aged 2-3.5 months (320-470 grams) at the time of implantation. The rats were

housed with 2-4 littermates prior to surgery. After implantation, the rats were housed individually on a single floor in large, dual-floor

metal cages (95 x 63 x 61 cm) with access to food and water ad libitum throughout the entire experiment. The cages contained

nesting material and were enriched with cardboard and plastic houses and contained a heightened platform. The rats were kept

in a temperature and humidity controlled environment and kept on a 12 hour light/12 hour dark schedule. All testing occurred during
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the dark phase. All experiments were performed in accordance with the Norwegian AnimalWelfare Act and the European Convention

for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes and were approved by the Norwegian

Food Safety Authority (permit numbers 7163 and 18011).

METHOD DETAILS

Surgery and electrode implantation
Tetrode experiments

Seven rats were implanted with one or two "microdrives," each containing a single bundle of four or eight tetrodes. Five of these rats

were implanted with a single eight-tetrode microdrive targeting the CA1 and CA3 areas of the hippocampus, whereas two rats were

implanted with one four-tetrode microdrive targeting CA1/CA3 in one hemisphere and one eight-tetrode microdrive targeting the

medial entorhinal cortex (MEC) of the opposite hemisphere. Few cells were recorded on the MEC tetrodes and the data from these

tetrodes was not used. Choice of hemisphere varied across rats. Tetrodes were constructed from four twisted 17-mm polyimide-

coated platinum-iridium (90–10%) wires (California Fine Wire). The electrode tips were plated with platinum to reduce electrode im-

pedances to between 120 and 220 kU at 1 kHz.

Anaesthesia was induced by placing the rat in a closed glass induction chamber filledwith 5% isoflurane (air flow: 0.4 l/min; oxygen

flow: 0.4 l/min). The rat was given subcutaneous injections of buprenorphine (Temgesic, 0.03 mg/kg), meloxicam (Metacam,

1 mg/kg), and atropine (0.05 mg/kg). The local anaesthetic bupivacaine (Marcain, 1 mg/kg) was injected subcutaneously before

the incision was made. After injections the rat was moved to a raised platform with a mask and a stereotactic frame and the head

was secured in place with a set of ear bars. The rat’s body was resting on a heating pad (38�C) to ensure that the body temperature

was maintained throughout the surgery. Isoflurane levels were gradually reduced to 0.5-1.5 % depending on the physiological con-

dition of the rat, which was evaluated by reflex responses and breathing patterns.

After the incision had been made, the periost was removed and the craniotomies were drilled. Tetrodes targeting CA1/CA3 were

implanted without an angle at 3.2 mm lateral to the midline and 3.8-4 mm posterior to bregma. Tetrodes targeting MEC were im-

planted at 4.5 mm lateral to the midline and 0.1 mm anterior to the transverse sinus edge, with an anterior angle of 25� relative to

the bregma/lambda horizontal reference. The initial depth of the tetrode tips varied between 1500 and 2000 mm relative to the

dura mater. The microdrives were secured to the skull using an adhesive (OptiBond, Kerr), dental cement (Meliodent), and 2-5

Jeweller screws (M1.4) that were placed in vertically drilled holes in the parietal bones. One or two screws were placed in the occipital

bone over the cerebellum and were connected to the drive grounds.

After the surgery, the rat was left in a heated chamber (30 �C) for 30-60minutes for the immediate recovery phase, after which it was

transferred back to the home cage. Additional doses of buprenorphine were administered 8-12 and 24 hours after the first injection.

Meloxicam was administered once every 24 hours for as long as was assessed necessary (usually 3-4 days). The rat was left to

recover for 3-5 days before the experiments began.

Neuropixels experiments

Three rats were implanted bilaterally with four-shank Neuropixels 2.0 silicone probes49,50 targeting the CA1/CA3 in one hemisphere,

and the MEC in the opposite hemisphere. The MEC data were not used in the present study due to the small number of cells and

experimental sessions. Two rats were implanted with one probe in each hemisphere, whereas one rat was implanted with two probes

in the left hippocampus and one probe in the right MEC. In this case, the two hippocampal-targeting probes were glued together at

the probe base prior to surgery and the in total eight probe shanks were implanted in the same craniotomy. The hippocampal probe

tipswere lowered to 7000-7500 mmrelative to the duramater. The stereotactic coordinates and the surgical procedurewere the same

as described above for tetrode experiments and have been described in detail elsewhere.27 The probes were secured to the skull

using Optibond and Venus (Kulzer) and protected by fitting amodified falcon tube. After surgery and the initial recovery in the heating

chamber, the rat was kept in the home cage for approximately 3 hours before experiments began. Post-operative analgesia was

administered as described above.

Behavioral procedures
Before surgery, the rats were habituated to being handled by the experimenter and familiarised with the experimental task and envi-

ronment during training sessions. Each rat underwent 7-15 training sessions, lasting at least 20 minutes each on separate days. Dur-

ing each training session, the rat foraged for randomly scattered corn puff crumbs in a 150 cm x 150 cm square arena with 50 cm tall

black walls. The floor mat was either matt black or dark blue/green. Tetrode rats were not familiarised with the object prior to surgery,

whereas Neuropixels rats had six or seven extra training sessions before surgery where the object was placed into the arena in order

to avoid novelty effects of the object during recordings.

Tetrode sessions were performed in one of two different rooms. In one room, the arena was encircled by a set of lightproof blue

curtains. A large white paper sheet was attached to the curtain on one side as a distal cue. The arena in the second room had curtains

hanging on only one side of the arena and various distal cueswere visible to the rat on the remaining sides. Neuropixels sessionswere

performed in a single room, where the arena was surrounded by a set of lightproof blue curtains on three sides. On the fourth side, the

curtains were open towards a white wall on which a shelf containing the recording apparatus was placed.
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During experimental testing, each recording session consisted of either three or four trials. In all trials, the rat was freely foraging for

randomly scattered corn puff crumbs. Each trial typically lasted 20-30minutes, depending on how long it took the rat to fully cover the

extent of the arena. The first trial was always an empty arena (No Object). This was followed by a trial in which a colourful Duplo tower

(52 cm x 10 cm x 10 cm) was placed at or close to the middle of the arena (Object). In the third trial, the Duplo tower was moved to

another, semi-random location in the arena, usually towards one of the four corners (Object Moved; approximate range of distance

from the corner: 35-55 cm). A fourth trial in which the object was removed was used to check for carry-over (hysteresis) of firing at the

former object location (NoObject’). In the few caseswhere the rat would stop exploring the arena, the fourth trial was omitted from the

experiment (this happened to 8.5% of the cells). Between each trial, the rat was placed on a towel in a flowerpot on a pedestal next to

the arena for 1-3 minutes and given a cookie with vanilla cream and access to a water bottle.

It has previously been shown that the activity of CA cells can change dynamically over time without changes in context51–53 To

control for this, a separate set of experiments was performed, where cells were recorded as the rat foraged freely in the same

open field arena during four consecutive trials without an object (Control sessions; Figure 2B). All other parameters were the

same as for sessions with the object.

In the tetrode experiments, recordings typically started 3-5 days after implantation. The tetrodes were turned down in steps of

50 mm per day. To determine if the tetrodes were in the CA1 pyramidal cell layer, cells were recorded as the rat explored the empty

open field arena and the presence of theta modulation together with the presence of at least 5-10 place cells was used as criteria.

When the criteria weremet for the first time, the full experimental protocol was started. The tetrodes were subsequently moved down

in steps of 50 mm per day at the most, and the experiment was repeated several times over the course of 1-2 months (up to 25

recording sessions per animal). In two of the rats, the tetrodes were subsequently lowered to the CA3 and experiments were repeated

as for the CA1 recordings.

The Neuropixels data were obtained from a total of four recording sessions from the three rats. Two of the rats were only recorded

once, whereas the third was recorded two times (first in CA1 and then in CA3) with a 3-day interval between the two recording ses-

sions. All recording sessions were performed within 72 hours after recovery from surgery.

Recording procedures
Tetrode experiments

During electrophysiological recordings, the microdrives (with tetrodes) were connected to a Neuralynx data acquisition system

(Neuralynx, Tucson, AZ; Neuralynx Digital Lynx SX) through a multichannel, impedance matching unity gain head stage. The output

of the head stage was conducted via a lightweight multi wire tether cable and a slip-ring commutator. Unit activity was amplified by a

factor of 3000-5000 and band-pass filtered from 600 to 6000 Hz. Spike waveforms above a threshold of 30 or 40 mV were time-

stamped and digitized at 32 kHz for 1 ms. Local field potential (LFP) signals were recorded from each tetrode, amplified by a factor

of 250-1000, low-pass filtered at 300-475 Hz and sampled at 1800-2500 Hz. An overhead camera recorded the position of two light-

emitting diodes (LEDs) on the head stage in order to track the rat’s movements at a sampling rate of 25 Hz. The diodes were sepa-

rated by 4 cm.

Neuropixels experiments

Signals were recorded using a Neuropixels acquisition system as described previously.27,49,50 Briefly, the spike band signal was

amplified at a gain of 80, low-pass-filtered at 0.5 Hz, high-pass-filtered at 10 kHz, and digitalised at 30 kHz on the probe circuit board.

The signal was then multiplexed and transmitted to a Neuropixels PXIe acquisition module via a 5 m tether cable made using twisted

pair wiring. A 3Dmotion capture system consisting of six OptiTrack Flex 13 cameras and Motive software was used to track the rat’s

movement at a sampling rate of �120 Hz. Five reflective markers glued to a rigid body was attached to the rat’s implant during

recording. Randomised sequences of digital pulses were generated by an Arduino microcontroller. In order to synchronise the time-

stamps of the two recording systems, the pulses were sent to the Neuropixels acquisition system as direct TTL input and to the

OptiTrack system via infrared LEDs that were placed on the edge of the arena.

Histology and reconstruction of electrode placement
The rat was placed in a closed glass induction chamber filled with 5% isoflurane (air flow 1.2 l/min) to induce anaesthesia. It was then

given an overdose of pentobarbital injected intraperitoneally and perfused intracardially with saline followed by 4% formaldehyde.

The brain was removed and stored in formaldehyde. Frozen 30 mm sagittal sections were cut, mounted on glass, and stained

with Cresyl violet (Nissl).

The final position of the tip of each tetrode or the placement of the probe shank was identified on photomicrographs obtained with

an Axio Scan.Z1 microscope and ZEN software (Zen 2.6; Carl Zeiss). The tip of the tetrode was used to determine the anatomical

location of the recorded cell. For the Neuropixels experiments, the depths of the probe shank tips were measured in ZEN software.

The known position of active recording sites relative to the tip was then used to determine the location of the recorded cells. CA1 and

CA3 recording locations were distinguished based on depth and activity profiles along the probe shanks. Recorded cells that were

judged to be in the cortex overlying the CA1 or in the dentate gyrus were excluded from all analyses.
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Spike sorting and cell-inclusion criteria
Spike sorting of tetrode data was performed offline using the graphical cluster-cutting software MClust (A.D. Redish, https://

redishlab.umn.edu/mclust). Spikes were clustered manually in 2D projections of the multidimensional parameter space (consisting

of waveform amplitudes and waveform energies), using autocorrelation and crosscorrelation functions as additional separation tools

and separation criteria. To follow cells across recording sessions, clusters of successive sessions were compared and identified to

be the same unit if the locations of the spike clusters in the multidimensional parameter space were stable. Spike sorting of

Neuropixels data was performed using a version of KiloSort 2.550 with customisations as described previously.27

For both types of experiments, all trials in a session were clustered together. Single units were discarded if more than 1% of their

inter-spike intervals were less than 2ms. Further, cells were excluded if they had amean spike rate of less than 0.05Hz or greater than

10 Hz across the full recording session.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analyses were performed with custom-written scripts in MATLAB (Version 2020a). The study did not involve any experimental

subject groups; therefore, random allocation and experimenter blinding did not apply and were not performed.

Firing rate maps and identification of firing fields
2D rate maps that displayed the firing rate as a function of the position of the animal in the arena were calculated for each trial sepa-

rately. First, position estimates were binned into a square grid of 2.5 cm x 2.5 cm bins. Next, the firing rate in each position bin was

calculated as the number of spikes recorded in the bin, divided by the time the rat spent in the bin. The 2D rate map was smoothed

with a Gaussian kernel with standard deviation of 2 bins in both the x and the y direction. Only time epochs in which the animal was

moving at a speed above 2.5 cm/s were used for constructing the rate maps and for spatial analyses.

Firing fields in the ratemapwere detected by iteratively applying theMatlab "contour" function (Mathworks), starting from the cell’s

peak firing rate until it reached 3 3 median absolute deviation (MAD) of the firing rates of all bins in the rate map. Firing fields were

defined as contiguous areas within a contour with a size of at least 225 cm2 and with a minimum firing rate of at least 1 Hz.

Spatial information content
To calculate the spatial information content in each cell’s firing, the rate map was used. First, the spatial information rate54 was

computed as

XN
i = 1

Pi

l

li
log2

�
l

li

�
;

where N is the total number of bins (3200 bins in total), li is the firing rate in the i-th bin of the rate map, l is the mean firing rate in the

trial, and Pi is the probability of the rat being in the i-th bin, calculated as the occupancy in the i-th bin (time spent in the bin) divided by

the total duration of the trial. Spatial information content (in bits per spike) was then obtained for each trial by dividing the spatial in-

formation rate by the mean firing rate of the cell in that trial.

Shuffling of spike data
To determine significance for spatial information content, a per-trial shuffling procedure was implemented for each cell separately.

For each trial, the sequence of spike timestamps was circularly shifted (with the end of the trial wrapped to the beginning of the trial)

by a displacement that took random values between 20 seconds and 20 seconds less than the duration of the trial. Time shifts varied

randomly between trials and between cells. The shuffling procedure was repeated 1000 times per trial per cell. For each shuffle iter-

ation, the rate maps were recalculated and the spatial information content was computed using the position of the rat, which re-

mained unchanged, and a shuffled distribution of spatial information content values was built. A cell was judged to be spatially modu-

lated in the trial if the spatial information content calculated on the experimental data was above the 99th percentile of the shuffled

distribution.

Template matching procedure to identify object-tuned cells
We developed a template matching procedure to identify cells firing at the location of objects ("object cells") and cells firing in fixed

distances and directions from objects ("object-vector cells"). Throughout the paper, we refer to such cells as "object-tuned cells."

First, we placed a Gaussian template at a specific location in the Object trial. The template was then transferred to the same loca-

tion in the Object Moved trial, relative to the object. For example, the template’s location (i.e. the mean of the Gaussian) could be

15 cm North from the object, or directly at the object (as in Figure 1B, left). The template location (relative to the object) was always

the same in both trials.

Second, we calculated the Pearson correlation between the template and the cell’s actual firing rate map in both the Object and

ObjectMoved trials. This gave ameasure of how strongly the cell’s firing pattern resembled the template in each of the trials. Because

an object-tuned cell should fire relative to the object consistently in both trials, we took the minimum of these two Pearson
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correlations as an "object-tuning score." Taking the minimum ensures that we only classify cells as object-tuned cells if their firing

patterns move along when the object moves.

object tuning score = minðcorrobject; corrobject movedÞ

Parametric variations

Since cells can fire at a variety of distances and directions from the object, we repeated the calculation of object-tuning score with the

template in different locations (9 offsets, including the template located at the object, and 8 directions, Figure 1B, right). Similarly, we

repeated the calculation with 8 different variances (s2) of the Gaussian template. Each combination of offsets, angles and variances

gives one object-tuning score and constitutes a specific hypothesis about how the cell’s firing could be related to the object.

The offsets between the object and the template’s center were 0, 5, 10, 15, 20, 30, 40, 50 and 60 cm. The angles between the object

and template varied between 0 and 2p, in steps ofp/4. That is, the template could be shifted in 8 cardinal directions. The variances of

the Gaussian template were 5, 10, 25, 75, 50, 100, 150 and 200 cm.

This meant that, for each cell, we calculated 520 object-tuning scores: 8 variances3 (8 angles3 8 offsets + 1 offset at the object) =

520. In other words, we evaluated 520 different hypotheses of how the cell’s firing could be related to the object.

To determine whether the obtained scores were statistically significant, we compared the actual object-tuning scores to scores

calculated on shuffled data. We created shuffled data by choosing the template location randomly in both the Object and Object

Moved trials, and then re-calculated the object-tuning score. We repeated this procedure 500 times. 8 shuffling distributions were

created for each cell (1 for each variance of the Gaussian template), because we only compared actual scores to shuffled scores

using the same variance of the Gaussian template. For example, if the template’s variance was s2 = 50 when calculating the actual

object-tuning score, the template’s variance was also s2 = 50 for the shuffled scores. We therefore had a total of 83 1189 shuffling

distributions, where 8 is the number of variances and 1189 is the number of cells. If the cell had one or more object-tuning scores

larger than the 99th percentile of the shuffled distribution, we considered the cell object-tuned.

Most object-tuned cells (88.6%) had more than one significant object-tuning score, while only a small fraction (11.4%) had one

significant score (Figure S2B). Since object-tuned cells typically fitted more than one template (with slight variations in template pa-

rameters), this means that an approximate fit between the template and the cell’s actual firing pattern is sufficient for detection. The

result also suggests that step sizes in our parameters were small enough.

To roughly estimate the number of object-tuned cells that were object cells and object-vector cells, we used the distance between

the cell’s firing field and the object. Cells with firing fields less than 15 cm from the object were considered object cells; cells with firing

fields more than 15 cm from the object were considered object-vector cells. In a small number of object-tuned cells, the firing field

detection algorithm did not identify any firing fields, either because the activity was too low or scattered to form firing fields (see Firing

ratemaps and identification of firing fields for details about the algorithm). These cells were therefore not separated into object cells or

object-vector cells (30/1189 cells).

Chance level

To estimate the chance level in classification of object-tuned cells (5.03%), we repeated the same template matching procedure for

cells recorded in control trials without objects (Figure 2B) (n = 219 CA1 cells). For this, we used the middle of the arena as the object

location in the Object trial (x = 75 cm, y = 75 cm) and the upper-left corner of the arena as the object location in the Object Moved trial

(x = 35 cm, y = 120 cm) (the most common object location in Object Moved trials).

Object-vector score and object-vector cell criteria
To confirm that the general template matching procedure (see above) identified object-vector cells, we applied the methods used in

previous publications to identify object-vector cells.11,12 For this, we constructed "vector maps" that expressed each cell’s firing as a

function of the animal’s distance and direction from the object. After constructing vector maps from the Object and Object Moved

trials, we used the Pearson correlation between the two maps as an "object-vector score." To create shuffled data, we circularly

shifted each cell’s spike train 500 times (as described under Shuffling of spike data) and re-calculated the object-vector score. Ob-

ject-vector scores from cells that were above the 99th percentile of the shuffled distribution were considered significant.

Before applying the criteria, we excluded cells with firing fields that would fall outside of the arena in the Object Moved trial (for

example, when the object was moved to the south-east corner, when the cell fired at a south-east angle from the object) (28.8%

of CA1 cells were excluded).

Cells were considered object-vector cells if the following criteria were met:

1) The spatial information content was above the 99th percentile of the shuffled distribution in both the Object and the Object

Moved trials.

2) The object-vector score was above the 99th percentile of the shuffled distribution.

3) One or more firing fields were present in the Object and the Object Moved trials.

4) The firing field had to be at least 15 cm distance from the object (to select object-vector cells rather than object cells).
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40 out of 1189 cells (3.4%) were classified by this method but not by the template matching procedure. Manual inspection showed

that these cells were mostly false positives, confirming that the template matching procedure correctly classified object-vector cells.

Spatial correlation and rate overlap
In order to determine whether the firing activity of single cells changed or remained stable when the object was introduced, moved, or

removed from the environment, two measures were considered:

1) Spatial correlation

2) Rate overlap

The spatial correlation between two trials was defined as the Pearson correlation between the overlapping parts of the two firing

rate maps (excluding bins that contained no value in either rate map). The rate overlap between two trials was calculated by dividing

the mean firing rate in the less active trial by the mean firing rate in the more active trial.

To classify a cell’s response as changing or stable, a baseline stability of the cell’s firing within a trial ("within-trial") was first as-

sessed. The position data and the corresponding spike timestamps from the first trial (No Object) were binned into n sections of

1-second duration, where n is the full duration of the No Object trial in seconds. The bins were randomly assigned to two groups

of size n/2. New rate maps for the two groups were then constructed, and the spatial correlation and the firing rate overlap between

them was calculated. The procedure was repeated 500 times for each cell, with different bins randomly assigned to the two groups

for each permutation.

For each between-trial comparison (e.g., No Object – Object), the same procedure as for the within-trial comparison was used.

Position data and corresponding spiking data were randomly assigned to two groups of n/2 bins of 1 second duration for each of

the two trials separately. Only one of the two groups (i.e., half of the data) from each trial was used and spatial correlation and

rate overlap between the two trials were calculated as described above. The procedure was again repeated 500 times per be-

tween-trial comparison. A cell’s response was classified as changing if the mean of the between-trial distribution fell below the 1st

percentile of the within-trial distribution from the No Object trial, and if the mean ranks of the two distributions were judged to signif-

icantly different (assessed using a Wilcoxon signed-rank test).

Region-of-interest analysis for object traces
To investigate the presence of object-trace fields, we first pre-selected for cells that changed their spatial firing patterns or firing rates

between NoObject and NoObject’ (quantified with spatial correlation and rate overlap, using criteria defined in the previous section).

For these pre-selected cells (n = 919), we identified firing fields in No Object’. Then, a circular ROI was defined in the same way as

described in section Region-of-interest analysis for object responses. The ROI was transferred to the same location in the other three

trials (No Object, Object, and Object Moved). The firing rate overlap was calculated between the No Object’ ROI and the other three

ROIs. We used rate overlaps from all trials to test which trial combinations produced the largest rate overlap (and therefore the stron-

gest object traces) (Figure S4B).

To determine the presence of object traces, we used the rate overlap with the Object Moved trial. For this, a shuffling procedure

where the ROI identified in No Object’ was placed at random locations in the Object Moved rate map ("Shuffled ROI") was applied.

Bins of the Shuffled ROI that fell outside the boundaries of the rate map were wrapped around to the opposite site of the rate map.

This was repeated 1000 times, and for each shuffle iteration, the rate overlap between the actual ROI in the No Object’ trial and a

Shuffled ROI in the Object Moved trial was calculated. All 1000 values of rate overlap were then used to build a shuffled distribution.

If the rate overlap between the ROI in No Object’ and Object Moved was greater than the 99th percentile of the shuffled distribution,

the cell was classified as having an object-trace field (Figures S4C and S4D).

Bayesian decoding algorithm
For this and all other sections using population activity, we used n = 15 tetrode sessions with a minimum of 25 and a maximum of 39

cells recorded simultaneously (the threshold for including a tetrode session being that it had a minimum of 25 cells) and n = 2 Neuro-

pixels sessions with 620 cells (from two probes) and 135 cells (from a single probe), respectively.

To assess whether population activity in the hippocampus contains information about objects in the environment, we used a de-

coding approach. Building upon an existing Bayesian decoder,22 we used rate maps to infer whether samples of neural activity

occurred in the absence or presence of an object (No Object or Object trial). We divided the data into two groups, for training and

testing (first half of data used for training and second half for testing; then vice versa in a separate iteration). While the training

data was used to create ratemaps, the testing data consisted of samples that the decoder classified as coming from the ‘‘NoObject’’

or ‘‘Object’’ trial. Specifically, one sample of the testing data was a vector of spike counts from all hippocampal cells in a 1 second

time window:

Data =

0
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where di is the number of spikes produced by each hippocampal cell in the 1 second time window and N is the total number of re-

corded cells in a session. Overall, our goal is to compare the likelihood that the ‘‘Data’’ are from the ‘‘No Object’’ trial against the likeli-

hood that they are from the ‘‘Object’’ trial. This is given by the likelihood ratio:

likelihood ratio =
PðDataj No ObjectÞ
PðDataj ObjectÞ

To calculate PðDataj No ObjectÞ, because ‘‘Data’’ could have occurred when the animal was in any spatial bin, we started by intro-

ducing another term x on the right-hand side of the probability and asking how likely it is that the ‘‘Data’’ are from a specific spatial bin

x (50 3 50 spatial bins, x = 1, 2., 2500) in the No Object trial: PðDataj x;No ObjectÞ.
To calculate the likelihood PðDataj x;No ObjectÞ, we assume that each cell fires according to a Poisson distribution withmean firing

rate riðxÞ, where i is the cell index and x is the spatial location of the animal. Each riðxÞ is obtained by going to the rate map for cell i and

extracting the firing rate in spatial bin x. In that sense, rate maps constructed from training data are used as a look-up table. The likeli-

hood was calculated by:

PðDataj x;No ObjectÞ =
YN
i = 1

riðxÞdi
di!

e� riðxÞ

where di is the number of spikes produced by cell i and where the multiplication over Poisson distributions from N cells indicates the

assumption of independence between firing of different cells. Note that the more consistent the set of spike counts fdig are with the

set of firing rates friðxÞg, the larger the value of the likelihood.

The likelihood was next multiplied by a prior,

Pðxj No ObjectÞ
given by the fraction of time the animal spent in spatial bin x during the No Object trial. This accounts for the intuition that the ‘‘Data’’

are more likely to come from a given spatial bin if the animal spent a lot of time in that bin. We then marginalised over all spatial bins x

(50 3 50 bins),

PðDatajNo ObjectÞ =
X
x

PðDataj x;No ObjectÞPðxj No ObjectÞ

to obtain the overall likelihood of the No Object trial. The same calculation is performed for the Object trial to obtain the overall likeli-

hood of the Object trial, PðDataj ObjectÞ. The ratio of these terms determines the decoder’s output. That is, if PðDatajNo ObjectÞ
PðDataj ObjectÞ > 1, the

decoder infers the ‘‘Data’’ as being from the No Object trial; otherwise, from the Object trial.

Since the length of an experimental trial was 1800 seconds, 1800/2 = 900 seconds could be used as testing data. With a bin size of

1 second, this gave us 900 testing samples. Given the two iterations described above (using either the first or second half of the trial as

testing data), we had 90032 = 1800 testing samples. The decoding accuracy was the fraction of 1800 samples classified correctly.

The chance level of the decoder was calculated through a shuffling procedure (see Shuffling trial labels).

Calculation of decoding accuracy as a function of distance and allocentric angle
To understand how decoding performance depended on the animal’s spatial relationship with the object, we asked how decoding

accuracy changed as a function of the animal’s distance and allocentric angle relative to the object (Figures 4A–4C and 4D–4F,

respectively). To examine the role of distance, we divided spike and position data into 5 distance bins, forming concentric rings

around the object (Figure 4A). By creating training data and testing data for each specific distance bin and feeding these separately

into the decoder, we could assess how decoding accuracy differed as a function of distance from object. For each experimental ses-

sion, we optimized distance bins so that we had an equal number of testing samples within each bin. For example, if the animal spent

little time near the object, distance bin 1 was made larger to obtain more samples. This helped to account for differences in the an-

imal’s behavior in different experimental sessions. Specifically, the length of an experimental session was 1800 seconds, allowing

1800/2 = 900 seconds to be used for testing data. This gave 900/5 = 180 seconds of testing data per distance bin. Because the

bin size was 1 second, we had 180 testing samples per distance bin. The decoding accuracy in each distance bin was the fraction

of 180 testing samples classified correctly. To examine the role of allocentric angle, we used an analogous procedure. In this case, we

divided spike and position data into 5 angular bins, forming sectors of a circle (Figure 4D), and created training and testing data sepa-

rately for each angular bin.

Performance of decoder
Effect of bin size

To assess the performance of the decoder, we first asked how decoding performance depended on the bin size of testing data. For

this analysis, we ran the decoder separately using bin sizes of 10, 50, 100, 500, 1000, 5000 and 10000 ms and calculated the decod-

ing accuracy. Larger bin size corresponds to observing more spike counts from each hippocampal cell, which will lead to spike

counts fdig that are more similar to the mean firing rates friðxÞg. Consistent with this idea, performance increased with increasing
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bin size. Specifically, performance increased rapidly up to 1000 ms, after which it saturated and gains of increasing bin size were

lower (Figure 3C). Based on these results, we chose 1000 ms as bin size for all main analyses.

Effect of number of cells

To assess how decoding performance depended on the number of cells fed into the decoder (Figure 3E), we used a subsam-

pling approach. We randomly selected a subset of k cells from a Neuropixels dataset with a total of N = 620 cells, iterating over

k = f1; 5;10;20;30;50;100;200; 300; 400; 500g cells. For each k, we ran the decoder 100 times, using different subsets of cells

each time.

Controls for results of decoder
Fixed distance bins

To ensure that our findings did not depend on using distance bins with an equal number of samples (described in Calculation of de-

coding accuracy as a function of distance and allocentric angle), we repeated the main analysis with fixed distance bins. In this case,

we divided spike and position data into distance bins with fixed values of 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm for

all experimental sessions, ignoring differences in the animal’s behavior.

Decoding 1st half vs. 2nd half of No Object trial

To ensure that our findings could not arise without the presence of an object, we attempted to classify data samples belonging to

either the 1st and 2nd half of the No Object trial, as a negative control. For this, we divided the No Object trial at its midpoint. For

example, a 1800 seconds long trial would be split at 900 seconds, with 450 seconds for training data and 450 seconds for testing

data for each one of the halves. The two halves were then used as input to the decoder (rather than the No Object and Object trials).

Decoding in control experiments without objects

To further test whether our findings could arise without objects, we performed the decoding in control experiments without objects

present (Figure 2B). For this, the trials Control 1 andControl 2 were used as input to the decoder (rather than the NoObject andObject

trials).

Shuffling trial labels

To ensure that our findings reflected a real relationship between population activity and trial type, we shuffled the trial labels of all

testing data samples. That is, after shuffling, a spike count vector labelled ‘‘No Object’’ had 50% chance of being labelled ‘‘Object.’’

To perform the shuffling, we first concatenated testing data from the ‘‘NoObject’’ and ‘‘Object’’ trials into an N3T spikematrix, where

N is the number of cells and T the total number of timepoints. To shuffle the trial labels, we first randomly permuted the set of integers

f1;2; 3.Tg using the MATLAB function randperm. For example, consider the simple case of T = 10. The original arrangement of the

N31 spike count vectors in the matrix would be f1;2;3;4;5;6;7;8;9;10g, where timepoints 1-5 would come from ‘‘No Object’’ and

timepoints 6-10 would come from ‘‘Object.’’ The permuted rearrangement might be f7;1;2;6;10;4;8;3;9;5g. After permutation, the

first T/2 spike count vectors were labelled ‘‘No Object’’ and the last T/2 spike count vectors were labelled ‘‘Object.’’ This shuffling

procedure destroys any real relationship between population activity and trial type.

Random partitioning into training and testing data

In the main analysis, we used the first half of the session as training data and the second half as testing data (and vice versa in a

separate iteration). To confirm that our findings did not depend on such a partitioning, we used an alternative partitioning method

where we randomly chosewhich set of timepoints would constitute training data. The random partitioning was analogous to the shuf-

fling procedure above, but without concatenating spike matrices from the ‘‘No Object’’ and ‘‘Object’’ trials. For example, if data from

‘‘No Object’’ consisted of T timepoints, we generated a random permutation of the set of integers f1; 2; 3.Tg and used the first T/2

integers as timepoints for training data and the last T/2 integers for testing data (and vice versa in a separate iteration).

Removing object-tuned cells

To test whether object-tuned cells (object cells and object-vector cells) were necessary for the distance-dependent decrease in de-

coding accuracy (Figures 4B and 4C), we removed all object-tuned cells (237/1189 cells, 19.9%) (Figure 1C) and re-ran the decoder.

Removing effects of prior

The standard decoder used a prior that included information about the animal’s occupancy (see above). To ensure that our findings

(Figures 4B and 4C) did not depend on using this prior, we replaced it with a uniform probability distribution (a prior that assumes that

the animal spent an equal amount of time in each bin) and re-ran the decoder.

Sampling analysis

In the Object trial, the object constitutes a physical barrier preventing the animal from exploring some places. Thismay prevent neural

activity patterns associated with that place from occurring, possibly providing a trivial explanation for high decoding success near the

object. In general, parts of the environment never or rarely explored in one trial (but explored in the other trial) could potentially lead to

high decoding accuracy. To ensure that lack of sampling of some parts of the environment did not influence our results (Figures 4B

and 4C), we identified spatial bins in which the animal had spent less time than a threshold value (100 ms, 500 ms, 1000 ms or

2000 ms) in either trial and excluded those spatial bins from both trials. That is, only spatial bins explored longer than the threshold

value in both trials were included. After excluding spatial bins with low sampling, we re-ran the decoder. Note that for this analysis, we

increased the rate map bin size from 3 cm2 to 10 cm2, since otherwise almost no bins would be explored longer than the sampling

threshold.
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Behavioral analyses I: Decoding
To test whether behavioural confounds could explain the distance-dependent decrease in decoding accuracy (Figures 4B and 4C)

(which could happen, for example, if the animal behaves differently between trials, andmore different near the object), we developed

decoders that tried to infer the trial of data samples based on the animal’s behaviour. We focused on three key and independent

behavioural features: speed, head direction and spatial occupancy. The behavioural decoders were based on the same framework

as the standard decoder applied to neural data (see Bayesian decoding algorithm), used the same number of spatial bins (50 3 50

bins) and divided data into training and testing data the same way. However, there are three differences between the behavioural

decoders and the standard decoder:

- The sample of testing data is now a scalar (speed and head direction) or 2-dimensional vector (occupancy), rather than a vector

of spike counts.

- The likelihood no longer uses a Poisson distribution, but other distributions that aremore appropriate models of each behaviour.

- The training data are constructed by calculating ‘‘behaviour maps’’ rather than firing rate maps.

Speed decoder

For the speed decoder, each sample of testing datawas nowa scalar representing the animal’s instantaneous speed (cm/s) (sampled

at 25 Hz). We estimated the animal’s speed (in this section denoted by s) as the norm of the vector that has as components the speed

in the x and y directions. These were calculated as the change in position of the animal in the x and y directions in consecutive time

bins, divided by the size of the time bin and smoothed with a Lowess filter. All speed values were included, including zero speed

(immobility). Probability distributions for speed typically had a large peak at low speed values, followed by rapid decay at larger speed

values (see Figure S6G for examples). We therefore used a gamma distribution for the likelihood, which provides good fits for unim-

odal and exponentially decaying distributions (the exponential distribution being a special case of the gamma distribution). The

gamma distribution was a reasonable model for speed: after having learnt model parameters in training data, we could accurately

predict the animal’s speed in testing data (statistics in Table S1). The model parameters (aðxÞ and bðxÞ, see below) were estimated

by maximum likelihood. The likelihoods of parameters had well-defined peaks and covered small intervals of the parameter space

(size of interval covering 95%of the likelihood’s area under the curve: for aðxÞ, 1.22 ± 0.85; for bðxÞ, 4.98 ± 1.07; median interval size ±

SD), compared to the range of inferred parameter values (aðxÞ: from 0.011 to 42.40; bðxÞ: from2.69310⁻⁴ to 36.38), suggesting that we

were able to infer model parameters with reasonable precision. Using the gamma distribution, we calculated the likelihood as:

PðDataj x;No ObjectÞ = PðsjaðxÞ;bðxÞ;No Object Þ = saðxÞ� 1e
� s
bðxÞ

baðxÞGðaðxÞ Þ
where s is the animal’s instantaneous speed, x indexes the spatial bins (503 50 bins in total),GðÞ is the gamma function, and aðxÞ and
bðxÞ are shape and scale parameters that are functions of x because they describe the animal’s speed within every spatial bin (anal-

ogous to how the mean parameter of the Poisson distribution described the cell’s firing within every spatial bin).

To construct training data (using the animal’s speed from half the trial), we divided speed observations in the No Object trial into

spatial bins (based on the animal’s location at the time of the speed measurement), so that each spatial bin contained a vector of

speed values. For every spatial bin xwe then fitted a gamma distribution to the observed speed values and estimated the parameters

aðxÞ and bðxÞ via maximum likelihood. This way we obtained ‘‘maps’’ for aðxÞ and bðxÞ (analogous to firing rate maps). We repeated

this procedure using data from the Object trial. Finally, the obtained parameters aðxÞ and bðxÞ could then be used to calculate the

likelihood. As in the standard decoder, for every testing sample we then marginalise over spatial bins to obtain the overall likelihood

of the No Object and Object trials, and finally classify the sample based on the ratio of likelihoods of the No Object and Object trials

(see Bayesian decoding algorithm for details).

We verified that the speed decoder accurately identified speed differences between trials present in simulated data. For this, we

either simulated (1) speed distributions that were different between the No Object and Object trials, or (2) speed distributions that

became more and more different near the object. For (1), each speed measurement was drawn randomly from a gamma distribution

with parameters a = 2, b = 2 for all x (No Object trial) or a = 2, b = 10 for all x (Object trial). For (2), speed measurements were drawn

randomly from a gamma distribution with parameters a = 2, b = 2 (No Object trial, distance bins 1-5) or a = 2, b = 10 (Object trial,

distance bin 1), a = 2, b = 8 (Object trial, distance bin 2), a = 2, b = 6 (Object trial, distance bin 3), a = 2, b = 4 (Object trial, distance

bin 4) and a = 2, b = 2 (Object trial, distance bin 5). That is, in the Object trial, the b parameter approached the value of b in the No

Object trial with further distance from the object, while the a parameter remained the same. Simulated speed values were sampled at

25 Hz (once per position sample). The animal’s true position at the time of sampling determined the distance bin of the speed mea-

surement (and therefore the parameters of the gamma distribution in simulation 2). Position data were taken from the 16 experimental

sessions.

Head direction decoder

For the head direction (HD) decoder, each sample of testing data was a scalar representing the animal’s instantaneous HD (radians)

(sampled at 25Hz). The animal’s HDwas determined from the relative positions of LEDs or reflectivemarkers on the implant. Because

HD distributions were bimodal or unimodal, we used a mixture of two Gaussians to calculate the likelihood. As before, after having

learnt model parameters in training data (means, standard deviations and weights of the Gaussians, see below), the model could
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accurately predict the animal’s HD in testing data (statistics in Table S1). The model parameters (means, standard deviations and

weights, see below) were estimated bymaximum likelihood. The likelihood ofmodel parameters hadwell-defined peaks and covered

small intervals of the parameter space (size of interval covering 95% of the likelihood’s area under the curve: for means of Gaussians,

0.20 ± 0.096; for standard deviations of Gaussians, 0.27 ± 0.23; for weights of Gaussians, 0.18 ± 0.037; median interval size ± SD)

compared to the range of inferred parameter values (means: from 0 to 2p; standard deviations: from 6.06310⁷ to 6.18; weights: from

0.013 to 1), suggesting that we were able to infer model parameters with reasonable precision.

Using a mixture of two Gaussians, we calculated the likelihood as:

PðData j x;No ObjectÞ = Pðhjm1ðxÞ;s1ðxÞ;w1ðxÞ;m2ðxÞ;s2ðxÞ;w2ðxÞ;No Object Þ = w1ðxÞ

0
B@ e

�ðh�m1 ðxÞ Þ2
2s1 ðxÞ2

s1ðxÞ
ffiffiffiffiffiffi
2p

p

1
CA+w2ðxÞ

0
B@ e

�ðh�m2 ðxÞ Þ2
2s2 ðxÞ2

s2ðxÞ
ffiffiffiffiffiffi
2p

p

1
CA

where h is the animal’s head direction, x indexes the spatial bin, m1ðxÞ is themean of the first Gaussian, s1ðxÞ is the standard deviation

of the first Gaussian and w1ðxÞ is the weight of the first Gaussian, and similarly for the second Gaussian. Again, the mean, standard

deviation and weight of each Gaussian are functions of x, describing the animal’s HD within every spatial bin. Note that the model is

appropriate also whenHD is unimodally distributed, because amixture of twoGaussians includes oneGaussian as a special case (for

example, the weight of one Gaussian can be set to zero, or the two Gaussians can be assigned the same mean and standard devi-

ation). Finally, the model is also appropriate when the HD distribution is uniform, because the Gaussians can be assigned very large

standard deviations.

To construct training data (using the animal’s HD from half the trial), we divided HD observations in the No Object trial into spatial

bins (based on the animal’s location at the time of measurement), so that each spatial bin contained a vector of HD values. For every

spatial bin x we then fitted a mixture of two Gaussians to the observed HD values and estimated the means, standard deviations and

weights via maximum likelihood. This way we obtained ‘‘maps’’ for all 6 parameters (analogous to firing rate maps). We repeated this

procedure using data from the Object trial. Finally, the obtained parameters could be used to calculate the likelihood. As in the stan-

dard decoder, we thenmarginalise over spatial bins to obtain the overall likelihood of the No Object and Object trials, and finally clas-

sify the trial based on the ratio of likelihoods of the No Object and Object trials (see Bayesian decoding algorithm for details).

We verified that theHDdecoder accurately detected differences in HD between two trials in simulated data. For this verification, we

simulated HD distributions from a single Gaussian since this is a special case of a mixture of two Gaussians. We either simulated (1)

HD distributions that were different between the No Object and Object trials, or (2) HD distributions that became more and more

different near the object. For (1), each HD sample was drawn randomly from a Gaussian distribution with parameters m = 2 and

s = 0:5 for all x (No Object trial) or m = 5 and s = 0:5 for all x (Object trial). For (2), HD samples were drawn randomly from a Gaussian

distribution with parameters m = 2 and s = 0:5 (No Object trial, distance bin 1), m = 2 and s = 1 (NoObject trial, distance bin 2), m = 2

and s = 1:5 (No Object trial, distance bin 3), m = 2 and s = 2 (No Object trial, distance bin 4) and m = 2 and s = 10 (No Object trial,

distance bin 5). In the Object trial, the parameters were the same except that m = 5 for all distance bins. That is, the standard devi-

ations of HD distributions from the No Object and Object trials increased further away from the object, so that they both approached

uniform distributions (and could no longer be distinguished). Simulated HD values were sampled at 25 Hz (once per position sample).

The animal’s true position at the time of sampling determined the distance bin of the HD measurement (and therefore the standard

deviation of the Gaussian in simulation 2). Position data were taken from the 16 experimental sessions.

Occupancy decoder

For the occupancy decoder, each sample of testing data represented the animal’s instantaneous position in space (sampled at

25 Hz). Because the decoder itself calculates the likelihood of different spatial bins, and then marginalises over spatial bins (see

Bayesian decoding algorithm), position will now appear on both sides of the probability expressions, with different roles. On the

left-hand side is the animal’s continuous location in space, as part of the testing data; on the right-hand side is the binned location

in space, as part of the training data.

PðDatajNo ObjectÞ = PðposjNo ObjectÞ =
X
i;j

P
�
pos

��xi; yj;No Object
�
P
�
xi; yj

��No Object
�

where pos is the continuous location of the animal (a 2-dimensional vector of real numbers), as part of testing data; xi is the ith spatial

bin for the x coordinate and yj is the j
th spatial bin for the y coordinate (i and j are integers between 1 and 50), and both xi and yj are part

of training data.

The occupancy decoder can now be simplified analytically, because each sample of testing data could only have occurred within a

specific spatial bin (for example, the observation pos = ð149:2 cm; 148:0 cmÞ could only have occurred when the animal was in the

northeast corner of the environment ðx50;y50Þ – that is, when the animal was in the ‘‘last’’ bin of an environment with 50 bins in the x

coordinate and 50 bins in the y coordinate. In general, this means that:

Pðposj xk ; yl;No ObjectÞ = 1
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whenever k and l are the indices of the spatial bins that the observed position sample falls into. Also,

P
�
pos

�� xi; yj;No Object
�
= 0

whenever isk or jsl. Plugging these equations into the likelihood gives:

PðDatajNo ObjectÞ =
X
i;j

P
�
pos

�� xi; yj;No Object
�
P
�
xi; yj

�� No Object
�

= Pðposj xk ; yl;No ObjectÞ Pðxk ; ylj No ObjectÞ
= ð1Þ Pðxk ; ylj No ObjectÞ = Pðxk ; ylj No ObjectÞ
That is, the probability that the sample of testing data comes from the No Object trial is proportional to the time that the animal

spent in the relevant spatial bin. Therefore, the likelihood ratio becomes a ratio of occupancies in the relevant spatial bin:

PðDatajNo ObjectÞ
PðDataj ObjectÞ =

Pðxk ; ylj No ObjectÞ
Pðxk ; ylj ObjectÞ

so that we assign ‘‘No Object’’ if the animal spent more time in the spatial bin ðxkylÞ in the No Object trial than the Object trial (and

vice versa).

Given the simplification above, we constructed training data for the decoder by calculating occupancy maps (amount of time an-

imal spent in every spatial bin, divided by total trial duration).

We verified that the occupancy decoder could accurately identify differences in occupancy between trials in simulated data. For this,

we either simulated (1) occupancies that were different between the No Object and Object trials, or (2) occupancies that becamemore

and more different near the object. We simulated occupancies by drawing random position samples either from a uniform distribution

with edges from 0 to 150 cm (for both the x and y coordinates) or from a uniform distribution with edges that covered only half the envi-

ronment (y edges from 0 to 75 cm in the No Object trial and y edges from 75 to 150 cm in the Object trial; x edges from 0 to 150 cm in

both trials). That is, each position sample could either be drawn from the whole environment or from half the environment. To change

how strongly occupancy differed between the trials, we varied the probability of drawing position samples from the whole or half envi-

ronment. For (1), the probability of drawing fromhalf the environment was 1. That is, all position samples were drawn from the lower (No

Object trial) or upper (Object trial) half of the environment. For (2), in both trials, the probability of drawing from (half the environment,

whole environment) was either (1, 0) (distance bin 1), (0.75, 0.25) (distance bin 2), (0.5, 0.5) (distance bin 3), (0.25, 0.75) (distance bin 4) or

(0,1) (distance bin 5). That is, in distance bin 5 position samples were drawn only from the whole environment (generating similar oc-

cupancy between the trials), while in distance bin 1 position samples were drawn only from half the environment (generating different

occupancy between the trials). Also, for (2), edges of uniformdistributionswere adjusted so that (a) drawing from thewhole environment

was replaced by drawing from the whole distance bin; and (b) drawing from half the environment was replaced by drawing from half the

distance bin. The number of position samples drawn was the same as the total number of position samples in real data.

Behavioral analyses II: Subsampling
To test whether the decoder applied to neural data (Figures 4B and 4C)made use of behavioural differences between the trials, we re-

ran the decoder after matching distributions of behaviour. We specifically matched behaviour between trials in every distance bin to

account for any distance-dependent behavioural effects (for example, if the animal ran had biased head direction near the object). To

do this, we first calculated distributions of each behaviour (speed, head direction and occupancy) in every distance bin.

The distributions for speed had bins from 0 cm/s to 100 cm/s in steps of 5 cm/s. The distributions for head direction had bins from

0 to 2p radians in steps of p/10. The distributions for occupancy were two-dimensional and had both x and y bins from 0 cm to

150 cm in steps of 30 cm.

For each speed, HD or occupancy bin, we compared the number of observations from the No Object trial (nNO) and the number of

observations from the Object trial (nO). If we found that:

nNO > nO

we threw away nNO � nO random samples from the No Object trial, so that the number of samples matched between the trials.

Conversely, if we found that,

nO >nNO

we threw away nO � nNO random samples from the Object trial. This process was repeated for all bins, until distributions were

completely matched (see example for speed in Figure S6G). After matching distributions within every distance bin, we ran the stan-

dard decoder (Bayesian decoding algorithm) on the subsampled neural data. The process was done separately for speed, head

direction and occupancy.
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Subsampling for decoder
To understand how widely distributed the object-centered population coding was across the recorded cells, we asked how

many cells we needed to see the distance-based decrease in decoding accuracy (Figure 6). To answer this, we used a subsampling

procedure before feeding data into the decoder. We used Neuropixels data from a rat implanted with two probes in left

hippocampus (N = 620 cells). The subsampling was analogous to the shuffling described under Shuffling trial labels. We took the

set of all cells f1;2;3;.;Ng, where each integer corresponds to a different cell identity, and randomly permuted the set using the

MATLAB function randperm. We then took the first k integers of the permuted set, corresponding to k cells, and used them to create

the subset. The number of subsampled cells, k, took the values 1, 5, 10, 30, 100, 200, 300, 400 and 500. For each k, we ran the

decoder 20 times, (20 times being sufficient to get negligible error bars), so that the results were independent of cell identities

and cell properties. In this way, we could determine how the number of cells influenced the decoding results (Figure 5A) and

show the distribution of distance coding across the entire hippocampal population.

Measuring strength of distance-specific reorganization
To estimate the strength of the distance-specific reorganization in populations of cells (and in individual neurons), we calculated two

separate measures (Figures 6B, 6D, and 6F). Firstly, after having run the decoder and having obtained the curve showing decoding

accuracy as a function of distance, we calculated

distance tuning = decoding accuracy bin #1 � decoding accuracy bin #5

A strong distance-specific reorganization should be associated with large distance tuning. Secondly, we fitted a line to the same

curve via least squares55,

bx = ðATA
�� 1

ATb

where A was the design matrix:

A =

0
BBBB@

1 1
1 2
1 3
1 4
1 5

1
CCCCA

b was a vector containing the decoding accuracy of the cell in each distance bin i,

b =

0
BBBB@

b1

b2

b3

b4

b5

1
CCCCA

and bx was a 2-element vector containing the intercept (bx1) and slope (bx2) of the fitted line. A strong distance-specific organization

should be associated with a more negative slope (bx2). The results obtained using the two measures (distance tuning and slope)

were consistent.

We also re-calculated these measures using distance bin #4 as the last distance bin (Table S1).

Significance of distance tuning in individual cells
To test whether distance tuning values in individual cells were significant (Figure 6B), we compared the actual values to shuffled data.

To create shuffled data, we circularly shifted spike trains (as described under shuffling of spike data) and re-calculated distance tun-

ing (100 repetitions per cell). Cells with actual values above the 99th percentile of the shuffled distribution were considered to have

significant positive tuning (Figure 6B, red bars) while cells with actual values below the 1st percentile were considered to have sig-

nificant negative tuning (Figure 6B, yellow bars).

Population vector correlation
To assess the similarity between populations of rate maps from the No Object and Object trials, we calculated the correlation between

stacks of rate maps from each trial. For each experimental session, we stacked the rate maps from the No Object trial and Object trial

separately, while preserving the cell ordering. This procedure generated twoN3m3nmatrices, whereN is the number of cells recorded

in the session,m is the number of y-bins and n is the number of x-bins of the ratemaps (m= n=50bins).We then calculated the Pearson

correlation rðx; yÞ between twoN-dimensional vectors of firing rates, one fromeach trial, for every spatial bin. After computing the Pear-

son correlations, we obtained an m3n map showing Pearson correlations as a function of space (Figure 4G). After computing the cor-

relationmap, we allocated correlation values rðx; yÞ to distance bins and calculated themean correlation in every distance bin (5 bins in

total, bin size = 20 cm). Repeating this analysis for all experimental sessions (n = 16 from both tetrode and Neuropixels data), we were

able to determine how correlations between the stacks changed as a function of distance from object (Figure 4H).
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Definition of words and counts
To understand which specific features of population activity explained the decrease in decoding accuracy as a function of distance

from object, we considered two descriptions of population activity that we refer to as words and counts. These concepts have pre-

viously been used to study neural coding at the population level.23–25 First, we expressed population activity in an N3Tmatrix, where

N is the number of cells and T the number of timepoints in one trial. Each entry of the matrix corresponds to the number of spikes

generated by each cell in specific time bin. To obtain mostly ones and zeroes (in rare cases, 2 or 3) we used 10 ms bins. We defined

a specific pattern of activity and silence across the population as a ‘‘word.’’ We had as many words as timepoints sampled at 10 ms.

The length of each word was the number of cells in the population (tetrode data: 25–39 cells; Neuropixels data: subsampled to

contain 30 cells). In contrast, we defined the total number of spikes generated by the population in a time bin as the ‘‘count.’’ Words

are a detailed description of population activity that preserves the cell identity, while counts are a coarse description of population

activity. To illustrate, in a population of 4 neurons, the word [1, 0, 0, 1] would mean that the 1st and 4th neuron fired one spike in that

time bin, while the 2nd and 3rd neurons remained silent. The total count would be 2 = 1 + 1. The word [0, 0, 0, 1] would mean that the

4th neuron fired one spike, while all others remained silent. The total count would be 1.

Mutual information
To quantify howmuch information words and counts provided about the presence of an object in the animal’s environment, we calcu-

lated the mutual information (MI)56,57 between the population response and the trial type (No Object and Object). The MI tells us how

much information one variable (e.g., thewords) provide about another variable (e.g., the trial type) independent of assuming any specific

relationship between the two variables (e.g., the relationship could be completely non-linear). For words, the calculation was given by

MIwords =
X

trial;word

Pðtrial;wordÞlog2

�
Pðtrial;wordÞ
PðtrialÞPðwordÞ

�

wherePðwordÞ and PðtrialÞ are themarginal probabilities of the words and trial type andPðtrial;wordÞ is the joint probability. Similarly,

for counts the calculations was given by

MIcount =
X

trial;count

Pðtrial; countÞlog2

�
Pðtrial; countÞ
PðtrialÞPðcountÞ

�

where PðcountÞ and PðtrialÞ are the marginal probabilities of the counts and trial type and Pðcount;wordÞ is the joint probability. All

probabilities were estimated from the frequency distributions. When calculating theMI of words, the number of bins was the same as

the number of words in both trials (No Object and Object). For counts, the number of bins was determined by the maximum counts

observed in both trials. For example, if the maximum number of spikes in a single time bin was 14, bins would range from 1 to 14 (in

steps of 1). Being highly frequent and uninformative, the all-zero vector was excluded from our analyses. For the same reason, the

zero count was also excluded.

Bias-subtraction

Calculation of MI on datasets with small numbers of samples is well-known to lead to a bias where one overestimates the amount of

information.58 To ensure that our findings were not caused by sampling problems, we used a shuffling procedure to calculate the bias

and subtract it from the mutual information. For this, we first shuffled trial labels as described for the decoder under Shuffling trial

labels. After shuffling, a vector originally labelled ‘‘No Object’’ now had a 50% chance of being labelled ‘‘Object.’’ In other words,

the shuffling destroys any relationship between the two variables (response and trial type) and shows the amount of ‘‘information’’

we should expect without such a relationship. The shuffling was performed 50 times, after which we calculated the mean MI across

all 50 shuffles. This value (the "bias") was subtracted from the MI calculated on real data.

Entropy

To estimate the entropy of words, we calculated

HðpÞ = �
XW
i = 1

pi log2ðpiÞ

where H is the entropy function, p = fpig is the entire probability distribution of words, pi is the probability of word i occurring during

the trial, and W is the total number of words. The calculation for the entropy of counts was done similarly, but with probabilities of

words replaced by probabilities of counts.

Word distributions
To directly visualize the change of words between NoObject andObject, we calculated frequency distributions of words. For this, we

first created a spikematrix based on activity from both trials (as in Figure 5A, bin size = 10ms, n = 25-39 cells). We then calculated the

occurrences of each word, plotting the result in a histogram (Figure 5D). To facilitate comparison between No Object and Object (for

example, word #8 in NoObject is the same as word #8 in Object), we applied the same sorting to the words in both trials. Specifically,

we sorted words from No Object in order of descending frequency (Figure 5D, top) and applied the same sorting to the Object trial

(Figure 5D, bottom).
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To ensure that any differences in words between No Object and Object could not arise by chance, we randomly shuffled the trial

labels (as described under ‘‘shuffling trial labels’’) and calculated word distributions on the shuffled data (Figure S7A).

Downsampling words
Because the total number of words and counts differ by an order of magnitude (in a given trial, we usually observe a few hundred

different words and approximately ten different counts), we wanted to assess how this difference influences the mutual information.

For this, we downsampled the number of words to be equivalent to the number of counts (Figure S7E). In a given trial, we identified

howmany unique counts were present, c, and then kept the cwordswith the largest frequencies. The frequency distribution was then

normalized, creating a downsampled probability distribution for words. Note that because we keep the most probable words, the

total number of samples of words and counts are roughly the same even after downsampling (so that any difference in the number

of samples should not have a large effect on the mutual information).

Kullback-Leibler divergence between word distributions
To quantify how strongly word distributions (as in Figure 5D) differed between the No Object and Object trials, we calculated the

Kullback-Leibler (KL) divergence,56,59 which is given by,

DKLðpkqÞ =
XW
i = 1

pi log2

�
pi

qi

�

where pi is the probability of word i occurring in the No Object trial, qi is the probability of word i occurring in the Object trial, W is the

total number of words from the No Object and Object trials, p = fpig is the entire probability distribution of words from the No Object

trial while q = fqig is the entire probability distribution from the Object trial. Probabilities of the words were estimated in each trial as

the normalized frequency distribution (number of times each word occurred/total number of timepoints). For visualization purposes,

we plotted histograms of only themost 100 frequent words in each trial (Figure 5D). However, the KL divergencewas calculated using

all words.

Statistical tests
All statistical analyses were performed in MATLAB (version 2020a). P-values are indicated in figures and legends. Wilcoxon signed-

rank tests were used for paired data and Wilcoxon rank sum tests for unpaired data. Kruskal-Wallis tests were used for comparing

differences between multiple groups. Binomial tests were used to compare fractions of observed cells (for example, object cells) to

chance levels. Correlations were determined using Pearson’s product-moment correlation coefficients (r). The significance level was

set to p = 0.05. All statistical tests were two-sided.
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