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Summary

We investigate saddlepoint approximations of tail probabilities of the score test statis-
tic in logistic regression for genome-wide association studies. The inaccuracy in
the normal approximation of the score test statistic increases with increasing imbal-
ance in the response and with decreasing minor allele counts. Applying saddlepoint
approximation methods greatly improves the accuracy, even far out in the tails of the
distribution. By using exact results for a simple logistic regression model, as well as
simulations for models with nuisance parameters, we compare double saddlepoint
methods for computing two-sided 𝑝-values and mid-𝑝-values. These methods are
also compared to a recent single saddlepoint procedure. We investigate the methods
further on data from UK Biobank with skin and soft tissue infections as phenotype,
using both common and rare variants.
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1 INTRODUCTION

In genome-wide association studies (GWAS), each single nucleotide polymorphism (SNP) is tested individually for association
with a particular phenotype. If the phenotype is binary (e.g. disease / not disease) a logistic regression model may be used to
model the probability of disease, and our interest lies in testing one SNP at a time against a specified null model. In a modern
biobank including several hundred thousands of SNPs, rejection of the null hypothesis for each individual SNP needs to be
evaluated at a low 𝑝-value threshold, typically 5 ⋅ 10−8, in order to control the family-wise error rate.1,2 Tests applied under
an assumption of normality may yield inflated error rates if the response variable in a logistic regression model is imbalanced.
The severity in this flaw increases with decreasing minor allele frequencies (MAF).3,4 Hence there is a need to develop tests
for logistic regression models where the response and covariate of interest are imbalanced. Since the null model is the same
for all SNPs in a GWAS, the score test - which only requires estimation of parameters under the null - can be computationally
advantageous.

As an example, we consider a follow-up study on skin and soft tissue infection (SSTI) using UK-biobank data, motivated
by Rogne et al.5 Using data on unrelated white European individuals with no prior history of SSTI at recruitment, we obtain
6.5 years of follow-up data on approximately 300 000 individuals, out of which approximately 0.7% were diagnosed with SSTI
during follow-up, and classified as cases. The overall sample size is large, but there are relatively few cases. Relying on asymptotic
normality of the score test statistic may therefore yield spurious results. Both Ma et al.3 and Dey et al.4 have illustrated the
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inaccuracy of the normal approximation for logistic regression models in GWAS. A solution proposed by Ma et al.3 is to apply
the Firth6 bias-corrected logistic regression test. As Firth’s test was found to be computationally slow in genome-wide testing,
a test based on a saddlepoint approximation to a score statistic was proposed by Dey et al.4 Saddlepoint methods to compute
𝑝-values in logistic regression have previously been developed for example for small sample inference7 and evaluated against
some specific exact conditional one-sided tests8. Although GWAS sample sizes in constrast are large, similar issues with the
assumption of normality may arise when the response and covariate of interest are both highly imbalanced.3

Our theoretical contribution to the ongoing development of score tests for genome-wide association studies also concerns the
use of saddlepoint approximations. First, in Section 2 we establish the discrete and bounded nature of the score, and derive the
exact conditional distribution of the score test statistic for particular examples of logistic regression models, the simplest being
a model with intercept and genetic variant only. Second, in Section 3 we propose a continuity-corrected double saddlepoint
approximation to conditional tail probabilities of the score statistic for models with more complex covariate patterns. Due to
the discrete nature of the proposed tests, we also consider saddlepoint methods for computing mid-𝑝-values.9 We then show
that a single saddlepoint method for computing mid-𝑝-values based on the efficient score, or equivalently a null-orthogonal
reparameterization of the logistic regression model, coincides with the SPA-test by Dey et al4 for discrete genetic covariates. A
continuity-correction to the SPA-test then follows naturally, and we compare this approach to the double saddlepoint method. On
simulated data where an exact test is available, we study in Section 4 the type I error rates of saddlepoint methods, as compared
to the normal assumption and the exact test. We also study the performance of saddlepoint approximation methods on simulated
data with more complex covariate patterns. Finally, we apply these methods in the follow-up study of SSTIs using UK-biobank
data in Section 5.

2 THE SCORE TEST

2.1 Notation, statistical model and hypotheses
We consider tests for genotype–phenotype associations in large cohorts or populations. We assume that binary phenotypes, 𝑌𝑖,
non-genetic covariates 𝒙𝑖 and allele counts 𝑔𝑖 for a single variant, 𝑖 = 1, . . . , 𝑛, have been collected from 𝑛 individuals. We
consider biallelic counts in which 𝑔𝑖 = 0, 1 or 2. We model the relationship between the response and the covariates in a logistic
regression model in which the 𝑌𝑖 are independent and Bernoulli distributed with success probability 𝜇𝑖 and

logit 𝜇𝑖 = 𝒙T
𝑖 𝜷 + 𝛾𝑔𝑖, (1)

𝑖 = 1, . . . , 𝑛. Here, 𝒙𝑖 is a vector of dimension 𝑑 containing the constant 1 (corresponding to an intercept) and observed values
for 𝑑−1 covariates, 𝜷 is a 𝑑-dimensional vector of nuisance parameters and 𝛾 is the parameter of interest. Our aim is to perform
the hypothesis test

𝐻0 ∶ 𝛾 = 0 against 𝐻1 ∶ 𝛾 ≠ 0. (2)
In a GWAS, the test is performed for each individual genetic variant at a time. To control the family-wise error rate at 5%, a
significance level of 5 ⋅ 10−8 is commonly used for each test.1

2.2 The score test statistic
The score vector is the gradient of the log-likelihood function with respect to the parameters, which for the logistic regression
model (1) is

𝑼 =
(

𝑼𝜷
𝑈𝛾

)

=
(

𝑋T(𝒀 − 𝝁)
𝒈T(𝒀 − 𝝁)

)

, (3)

where 𝒀 and 𝒈 are column vectors of length 𝑛 with 𝑌𝑖 and 𝑔𝑖 as elements respectively, 𝝁 = 𝐸𝒀 , and 𝑋 is an 𝑛 × 𝑑 matrix with
𝒙T
𝑖 as rows. We have partitioned the score vector according to the parameter of interest, 𝛾 , and the nuisance parameters, 𝜷. The

score vector has mean 𝟎 and covariance matrix E(𝑼 𝑇𝑼 ) = 𝐹 , by definition referred to as the expected Fisher information. Here,

𝐹 =
(

𝐹𝜷𝜷 𝑭 T
𝛾𝜷

𝑭𝛾𝜷 𝐹𝛾𝛾

)

=
(

𝑋T𝑊𝑋 𝑋T𝑊 𝒈
𝒈T𝑊𝑋 𝒈T𝑊 𝒈

)

, (4)

where 𝑊 is a diagonal matrix with 𝜇𝑖(1−𝜇𝑖) as the 𝑖𝑖 entry. Using the score test, the null hypothesis of (2) is rejected if there is
sufficient distance between the null value 𝛾 = 0 and the maximum likelihood estimate of 𝛾 under the alternative hypothesis. To
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judge this distance, without actually calculating the estimate of 𝛾 under the alternative hypothesis, one uses the partial derivative
𝑈𝛾 of the log-likelihood with respect to 𝛾 at 𝛾 = 0, along with the probability distribution of 𝑈𝛾 under the null.

2.2.1 The normal approximation
Asymptotically, 𝑼 ∼ MVN(𝟎, 𝐹 ), and in many applications one may approximate the distribution of the score vector 𝑼 by a
multivariate normal distribution. Under the null hypothesis, maximum likelihood estimates 𝜷 of the nuisance parameters are
obtained by solving 𝑼𝜷 = 𝟎 and the conditional distribution of 𝑈𝛾 given 𝑼𝜷 = 𝟎 is asymptotically a normal distribution with
mean 0 and variance

𝐹𝛾𝛾 = 𝒈T𝑊 𝒈 − 𝒈T𝑊𝑋(𝑋T𝑊𝑋)−1𝑋T𝑊 𝒈. (5)
A score test can be performed by comparing the observed test statistic 𝑢 = 𝒈T(𝒚 − 𝝁̂), where 𝝁̂ satisfies logit 𝜇̂𝑖 = 𝒙T

𝑖 𝜷, to the
univariate normal distribution with mean 0 and variance 𝒈T𝑊̂ 𝒈−𝒈T𝑊̂ 𝑋(𝑋T𝑊̂ 𝑋)−1𝑋T𝑊̂ 𝒈. Of relevance to the next sections,
Lin (2005) showed that the score test in GWAS can be expressed in terms of the efficient score10,11, here denoted by 𝑈̃𝛾 , and for
model (1) defined by

𝑈̃𝛾 = 𝑈𝛾 − 𝑭𝛾𝜷𝐹
−1
𝜷𝜷𝑼𝜷 . (6)

As noted by Bickel et al.11 (p. 30) the efficient score may be interpreted in general as the score corresponding to a reparame-
terization (𝜷, 𝛾) → (𝜶, 𝛾), by letting 𝜷(𝜶, 𝛾) = 𝜶 − 𝐹 −1

𝜷𝜷 𝑭
𝑇
𝛾𝜷𝛾 . With this reparameterization the logistic regression model can

be expressed as logit(𝜇𝑖) = 𝒙T
𝑖 𝜶 + 𝛾𝑔̃𝑖, with 𝒈̃ = 𝒈 − 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊 𝒈 the vector of all components 𝑔̃𝑖, and defined as in

Dey et al4. Let 𝐹 denote the expected Fisher information of 𝑼̃ =
(

𝑼̃T
𝜶 𝑈̃𝛾

)T, the reparameterized score vector. The parameter
𝛾 and the nuisance parameters 𝜶 are locally information orthogonal at 𝛾 = 0, which means that 𝑭𝜶𝛾 and 𝑭𝛾𝜶 in the expected
Fisher information 𝐹 are zero-vectors (see e.g. Lindsey12 p. 237). Asymptotically, 𝑼̃ is multivariate normal, and so will 𝑼̃𝜶 and
𝑈̃𝛾 (univariate) be. As covariance equal to zero (𝑭𝛾𝜶 = 0) for two normal distributed random variables implies independence,
this means that the distribution of 𝑈̃𝛾 conditional on 𝑼̃𝜶 = 𝟎 is asymptotically the same as the unconditional distribution of 𝑈̃𝛾
when the null hypothesis is true with 𝝁̂ treated as a plug-in constant for 𝝁. As 𝑈̃𝛾 is asymptotically 𝑁(0, 𝐹𝛾𝛾 ) and the observed
efficient score 𝑢̃ from (6) equals the observed score 𝑢 from (3), unconditional inference on 𝑈̃𝛾 (𝝁̂) with 𝝁̂ treated as a plug-in
constant, leads to the same asymptotic test as conditional inference on 𝑈𝛾 given 𝑼𝜷 = 𝟎.

2.2.2 Discrete test statistics
As outlined in Section 1, the normal approximation to the score vector may lead to spurious results for genotype–phenotype
associations in logistic regression. Even in large samples the normal approximation may be inaccurate if the sample contains
few individuals with response 𝑦𝑖 = 1 (e.g., having the disease under study) and genotype 𝑔𝑖 > 0 (carrying the minor allele) since
the score 𝑈𝛾 will be discrete, skewed and bounded. When 𝑔𝑖 ∈ (0, 1, 2), we note that 𝒈T𝒀 is an integer and 𝒈T𝝁 a constant, so
that 𝑈𝛾 = 𝒈T𝒀 − 𝒈T𝝁 has support on a subset of a lattice with step 1. The minimum is obtained for 𝒀 = 𝟎 and the maximum for
𝒀 = 𝟏 (a vector of ones), which leads to the following observation:

Observation 1. When 𝑔𝑖 ∈ {0, 1, 2}, the score 𝑈𝛾 with respect to 𝛾 is a bounded lattice random variable with support on −𝒈T𝝁,
1 − 𝒈T𝝁, 2 − 𝒈T𝝁, . . . , 𝒈T𝟏 − 𝒈T𝝁.

The distribution of 𝑈𝛾 given 𝑼𝜷 = 𝟎 will be a lattice distribution with a narrower support than described in Observation
1 (see Appendix A). The discrete and potentially skewed nature of the conditional score test might best be illustrated by the
construction of the following exact tests for simple logistic regression models. Proofs are given in Appendix B.

Observation 2. Consider a logistic regression model as in (1), but with logit 𝜇𝑖 = 𝛽0 + 𝛾𝑔𝑖, henceforth denoted the intercept
model. Let 𝑛𝑗 be the number of individuals with genotype 𝑔𝑖 = 𝑗, 𝑗 = 0, 1, 2, and let logit 𝜇 = 𝛽0 under the null. Then, the null
distribution of 𝑈𝛾 given 𝑈𝛽0 = 0 is a sum of trivariate hypergeometric point probabilities,

𝑃 (𝑈𝛾 = 𝑢 ∣ 𝑈𝛽0 = 0) =
∑

(𝑣0,𝑣1,𝑣2)∈𝑆

(𝑛0
𝑣0

)(𝑛1
𝑣1

)(𝑛2
𝑣2

)

( 𝑛
𝑛𝜇

) =
min(⌊𝑢∗∕2⌋,𝑛2)

∑

𝑘=max(⌈(𝑢∗−𝑛1)∕2⌉,0)

( 𝑛0
𝑛𝜇−𝑢∗+𝑘

)( 𝑛1
𝑢∗−2𝑘

)(𝑛2
𝑘

)

( 𝑛
𝑛𝜇

) ,

where the sum is taken over all triples (𝑣0, 𝑣1, 𝑣2) of integers in the set 𝑆 defined by 0 ≤ 𝑣𝑗 ≤ 𝑛𝑗 for 𝑗 = 0, 1, 2, 𝑣0+𝑣1+𝑣2 = 𝑛𝜇
and 𝑣1 + 2𝑣2 = 𝑢∗, and 𝑢∗ = 𝑢 + (𝑛1 + 2𝑛2)𝜇.
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Observation 3. Consider a logistic regression model as in (1), where logit 𝜇𝑖 = 𝛽0+𝛽1𝑥𝑖+𝛾𝑔𝑖, and 𝑥𝑖 is a binary covariate taking
value 0 or 1. Let 𝑙𝑗 be the number of individuals with 𝑥𝑖 = 0 and genotype 𝑔𝑖 = 𝑗, 𝑗 = 0, 1, 2, and let 𝑙 = 𝑙0 + 𝑙1 + 𝑙2. Define
similar counts 𝑚𝑗 and 𝑚 for individuals with 𝑥𝑖 = 1. Let logit 𝜇0 = 𝛽0, and logit 𝜇1 = 𝛽0 + 𝛽1. Then, under the null hypothesis,

𝑃 (𝑈𝛾 = 𝑢 ∣ 𝑼𝜷 = 𝟎) =
∑

𝒔∈𝑆

(𝑙0
𝑣0

)(𝑙1
𝑣1

)(𝑙2
𝑣2

)

( 𝑙
𝑙𝜇0

)

(𝑚0
𝑤0

)(𝑚1
𝑤1

)(𝑚2
𝑤2

)

( 𝑚
𝑚𝜇1

) ,

where the sum is taken over all sextuples 𝒔 = (𝑣0, 𝑣1, 𝑣2, 𝑤0, 𝑤1, 𝑤2) of integers in the set𝑆 defined by 0 ≤ 𝑣𝑗 ≤ 𝑙𝑗 , 0 ≤ 𝑤𝑗 ≤ 𝑚𝑗
for 𝑗 = 0, 1, 2, 𝑣0 + 𝑣1 + 𝑣1 = 𝑙𝜇0, 𝑤0 +𝑤1 +𝑤2 = 𝑚𝜇1 and 𝑣1 + 2𝑣2 − (𝑙1 + 2𝑙2)𝜇0 +𝑤1 + 2𝑤2 − (𝑚1 + 2𝑚2)𝜇1 = 𝑢.

The exact conditional score test defined in Observation 2 reduces to Fisher’s exact test for 2×2 contingency tables when
𝑛2 = 0. From Observations 2 and 3, it follows that an exact 𝑝-value can be computed for special cases of the logistic regression
model (1). An extension of Observation 3 can also be derived for regression models with several categorical nuisance covariates.
However, for more complex covariate patterns, this approach becomes computationally infeasible, and even intractable when
continuous covariates are included. Section 3 introduces methods for computing 𝑝-values under conditional inference using
saddlepoint approximations.

2.2.3 Two-sided 𝑝-values and mid-𝑝-values
In the following, we obtain two-sided 𝑝-values by computing exactly or estimating 𝑃 (|𝑈𝛾 | ≥ |𝑢| ∣ 𝑼𝜷 = 𝟎) (under the null) for
some observation 𝑢. For an observation 𝑢 > 0, we define the opposite grid point on the lattice defined in Observation 1, 𝑢opp, as
the nearest grid point to −𝑢 from the left. If 𝑢opp lies within the support of the conditional distribution (Appendix A), two-sided
𝑝-values are defined by 𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎)+ 𝑃 (𝑈𝛾 ≤ 𝑢opp ∣ 𝑼𝜷 = 𝟎), and otherwise 𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎). Two-sided mid-𝑝
values are defined by 1

2
𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎)+ 1

2
𝑃 (𝑈𝛾 ≥ 𝑢+1 ∣ 𝑼𝜷 = 𝟎)+ 1

2
𝑃 (𝑈𝛾 ≤ 𝑢opp ∣ 𝑼𝜷 = 𝟎)+ 1

2
𝑃 (𝑈𝛾 ≤ 𝑢opp−1 ∣ 𝑼𝜷 = 𝟎),

or 1
2
𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎)+ 1

2
𝑃 (𝑈𝛾 ≥ 𝑢 + 1 ∣ 𝑼𝜷 = 𝟎) if 𝑢opp is outside the grid. A similar procedure holds for negative

observations 𝑢 < 0, then defining 𝑢opp as the nearest grid point to −𝑢 from the right.

3 SADDLEPOINT APPROXIMATIONS

Saddlepoint approximations to cumulative distribution functions are often accurate in situations when the normal approximation
might have been used, and - relevant for our situation - can be accurate far into the tails of a distribution13. Below, we consider
saddlepoint methods for approximating the cumulative distribution of 𝑈𝛾 given 𝑼𝜷 = 𝟎 as well as the univariate distribution of
the efficient score 𝑈̃𝛾 .

3.1 Double saddlepoint approximation
Conditional tail probabilities 𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎) may be estimated by double saddlepoint approximation13. This will require
the cumulant generating function of 𝑼 and 𝑼𝜷 from Equation (3). The joint cumulant generating function of 𝑼 is defined by
𝐾(𝒕) = ln𝐸

(

𝑒𝒕T𝑼), were 𝒕 is a vector of dimension 𝑑 + 1. By using the fact that 𝑌𝑖 is Bernoulli distributed with parameter 𝜇𝑖,
we obtain

𝐾(𝒕) =
𝑛
∑

𝑖=1

(

ln
(

1 − 𝜇𝑖 + 𝜇𝑖𝑒
𝒕T𝒛𝑖

)

− 𝜇𝑖𝒕T𝒛𝑖
)

, (7)

∇𝐾(𝒕) =
𝑛
∑

𝑖=1
𝜇𝑖

(

1
(1 − 𝜇𝑖)𝑒−𝒕

T𝒛𝑖 + 𝜇𝑖
− 1

)

𝒛𝑖, and (8)

𝐻(𝒕) =
𝑛
∑

𝑖=1

𝜇𝑖(1 − 𝜇𝑖)𝑒−𝒕
T𝒛𝑖

(

(1 − 𝜇𝑖)𝑒−𝒕
T𝒛𝑖 + 𝜇𝑖

)2
𝒛𝑖𝒛T

𝑖 , (9)

where ∇𝐾 and 𝐻 denote the gradient and the Hessian of 𝐾 , respectively, and 𝒛𝑖 =
(

𝒙T
𝑖 𝑔𝑖

)T. The cumulant generating function
of 𝑼𝜷 , its gradient and Hessian, 𝐾𝜷 , ∇𝐾𝜷 and 𝐻𝜷 , respectively, are obtained by replacing 𝒛𝑖 by 𝒙𝑖 and letting 𝒕 have dimension
𝑑 in (7)–(9). The survival function (right-tail probability) 𝑆(𝑢) = 𝑃 (𝑈𝛾 ≥ 𝑢 ∣ 𝑼𝜷 = 𝟎) can be approximated as given by
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Barndorff-Nielsen14,
𝑆̂(𝑢) = 1 − Φ

(

𝑤 − 1
𝑤

ln 𝑣
𝑤

)

, (10)
where Φ denotes the standard normal cumulative distribution function. Since 𝑈𝛾 is lattice random variable we use the so-called
second continuity correction of Daniels15 to define 𝑤 and 𝑣. Using 𝑓 (𝒕1, 𝒕2) as shorthand for 𝑓

((

𝒕T
1 𝒕T

2

)T), where 𝑓 is a function
and 𝒕1, 𝒕2 vectors, we have

𝑤 = sgn(𝑡𝛾 )

√

2
(

−𝐾(𝒕𝜷 , 𝑡𝛾 ) + 𝑡𝛾
(

𝑢 − 1
2

)

)

and

𝑣 = 2
(

sinh
𝑡𝛾
2

)

√

det𝐻(𝒕𝜷 , 𝑡𝛾 )
det𝐻𝜷(𝟎)

,

(11)

where
(

𝒕T
𝜷 𝑡𝛾

)

T is the saddlepoint satisfying ∇𝐾(𝒕𝜷 , 𝑡𝛾 ) =
(

𝟎T 𝑢 − 1∕2
)T(Skovgaard16, see Butler13, p.114). In general, also the

𝑑-dimensional vector 𝒕𝜷 satisfying ∇𝐾𝜷(𝒕𝜷) = 𝟎 is involved in the expressions for 𝑤 and 𝑣, but 𝒕𝜷 = 𝟎 in our case (see Appendix
C). Left-tail probabilities can be approximated, taking into account that 𝑈𝛾 is a lattice variable with step 1, by 1 − 𝑆̂(𝑢 + 1).

3.1.1 Two-sided 𝑝-values and mid-𝑝-values
As previously mentioned, for an observation 𝑢 > 0, we define the opposite grid point 𝑢opp as the nearest grid point to −𝑢 from the
left. Assuming 𝑢opp lies within the bounds of the lattice distribution, we compute a two-sided 𝑝-value by 𝑆̂(𝑢) + 1− 𝑆̂(𝑢opp +1),
where the first term involves the saddlepoint

(

𝒕T
𝜷 𝑡𝛾

)

T satisfying ∇𝐾(𝒕𝜷 , 𝑡𝛾 ) =
(

𝟎T 𝑢 − 1∕2
)𝑇 and the latter term involves the

saddlepoint
(

𝒕T
𝜷 𝑡𝛾

)

T satisfying ∇𝐾(𝒕𝜷 , 𝑡𝛾 ) =
(

𝟎T 𝑢opp + 1∕2
)𝑇 . For negative observations 𝑢 < 0, the two-sided 𝑝-value is given

by 𝑆̂(𝑢opp) + 1− 𝑆̂(𝑢+1). Mid-𝑝-values may be obtained using double saddlepoint methods without continuity corrections (see
e.g. Butler13, p.188). We compute mid-𝑝-values by 𝑆̂(𝑢) + 1 − 𝑆̂(𝑢opp), but now using

𝑤 = sgn(𝑡𝛾 )

√

2
(

−𝐾(𝒕𝜷 , 𝑡𝛾 ) + 𝑡𝛾𝑢
)

and 𝑣 = 𝑡𝛾

√

det𝐻(𝒕𝜷 , 𝑡𝛾 )
det𝐻𝜷(𝟎)

,

instead of (11), and where
(

𝒕T
𝜷 𝑡𝛾

)

T is the saddlepoint satisfying ∇𝐾(𝒕𝜷 , 𝑡𝛾 ) =
(

𝟎T 𝑢
)T, or ∇𝐾(𝒕𝜷 , 𝑡𝛾 ) =

(

𝟎T 𝑢opp
)T.

3.2 Single saddlepoint approximation using the efficient score
The above method is related to the test proposed by Dey et al.4, which may be interpreted as a saddlepoint approximation
to the distribution of the efficient score (Equation 6). The efficient score can be expressed as 𝑈̃𝛾 = 𝒈̃T(𝒀 − 𝝁) with 𝒈̃ =
𝒈 − 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊 𝒈 the vector of all components 𝑔̃𝑖, and defined as in Dey et al4. Using the normal assumption, the
unconditional distribution of the efficient score with 𝝁̂ treated as a plug-in constant is the same as the conditional distribution
of 𝑈𝛾 |𝑼𝜷 = 𝟎. Therefore, it is of interest to study whether inference based on the univariate distribution of 𝑈̃𝛾 (𝝁̂) as estimated
by a single saddlepoint approach and with 𝝁̂ treated as a plug-in constant, resembles conditional inference of 𝑈𝛾 given 𝑼𝜷 = 𝟎
based on the double saddlepoint approach described above. Tail probabilities of the efficient score may be approximated by a
single saddlepoint method via the univariate cumulant generating function of 𝑈̃𝛾 , given by

𝐾(𝑡) =
𝑛
∑

𝑖=1
ln(1 − 𝜇̂𝑖 + 𝜇̂𝑖𝑒

𝑔̃𝑖𝑡) − 𝑡 𝒈̃𝑇 𝝁̂,

and similarly to the continuity-corrected double saddlepoint method outlined in the previous section, we propose that left-tail
probabilities should be estimated as in Equation (10), now with

𝑤 = sgn(𝑡)
√

2(𝑡(𝑢 − 1∕2) −𝐾(𝑡)), and 𝑣 = 2sinh(𝑡∕2)
√

𝐾 ′′(𝑡),

where 𝑡 is the saddlepoint obtained by solving 𝐾 ′(𝑡) = 𝑢 − 1∕2. Since such a two-step approach does not require a double
saddlepoint approximation, this method will require less computational time. Methods for computing two-sided 𝑝-values and
mid-𝑝-values follow from the previous discussion.
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4 COMPARISON OF METHODS

4.1 Intercept model
Our aim is to develop approximation methods to compute 𝑝-values in situations where the normal assumption is inaccurate and
exact tests are intractable or unavailable. However, we find it useful to first study the properties of such approximation methods in
situations where an exact test is available, namely for the intercept model. For a specified significance level 𝛼, a valid test satisfies
𝑃 (type I error) ≤ 𝛼. Under the null, 𝑌𝑖 ∼ binom(1, 𝜇) for all 𝑖 = 1,… , 𝑛, where 𝜇 = exp(𝛽0)∕(1 + exp(𝛽0)). For a particular
realization 𝒚, and using a conditional score test, we compare the observed score test statistic 𝑢 = 𝒈𝑇 (𝒚 − 𝝁̂) = 𝒈𝑇 (𝒚 − 𝑦̄𝟏) to
the null distribution of 𝑈𝛾 given

∑

𝑖 𝑌𝑖 = 𝑛𝑦̄ = 𝑣. For all datasets in which the response vector 𝒚 satisfies
∑

𝑖 𝑦𝑖 = 𝑣, tests are
conditionally valid when 𝑃 (type I error|

∑

𝑖 𝑌𝑖 = 𝑣) ≤ 𝛼. The overall probability of type I error for a specified null model (fixed
𝜇 and 𝒈) is given by

𝑃 (type I error) =
∑

𝑣

[

𝑃

(

type I error ∣
𝑛
∑

𝑖=1
𝑌𝑖 = 𝑣

)

𝑃

( 𝑛
∑

𝑖=1
𝑌𝑖 = 𝑣

)]

. (12)

As the exact test is conditionally valid for all 𝑣, it will also be valid overall. Approximation methods may be conditionally
valid for some 𝑣, but invalid overall, or valid overall but conditionally invalid for some 𝑣.

We will illustrate the methods presented in Sections 3 and 4 with a simple numerical example. Let 𝑛 = 10 000, define 𝒈 such
that 𝑛0 = 8100, 𝑛1 = 1800 and 𝑛2 = 100 (MAF = 0.1) and consider significance level 𝛼 = 5 ⋅ 10−8. For each 𝑣 ∈ {1,… 𝑛− 1},
we use the exact conditional distribution of Observation 2 to obtain the largest critical region so that the exact two-sided test is
conditionally valid, and in a similar fashion we use approximation methods to establish critical regions. Conditional type I error
rates of approximation methods are calculated using the exact conditional distribution on these critical regions. For a given 𝜇,
the overall type I error rate may then be calculated as in Equation (12).

For 𝜇 ∈ (0, 0.5), overall type I error rates of the exact test and the saddlepoint approximations described above (double saddle-
point with continuity correction, DSPA-CC, and single saddlepoint approximation based on the efficient score with continuity
correction, ESPA-CC) are plotted in Figure 1. Type I error rates of the normal approximation are also plotted. We first observe
that the exact test is always conservative, an observation which of course is well-known for discrete test statistics. Further, we
observe that the DSPA-CC method closely resembles the exact test, while the ESPA-CC method is somewhat more conservative
for 𝜇 < 0.2 in this example. The normal approximation is clearly inaccurate and anti-conservative for 𝜇 < 0.3.

Saddlepoint approximation methods without continuity corrections will give less (approximately 1∕2) weight to the obser-
vation 𝑢 (and the opposite grid point) when calculating a 𝑝-value, and can therefore be considered approximations of exact
mid-𝑝-values in this setting. Type I error rates of such methods (denoted DSPA and ESPA) and exact mid-𝑝-values are also pre-
sented in Figure 1. The DSPA method closely resembles the exact test with mid-𝑝, although the type I error rate is slightly higher
for small values of 𝜇. The ESPA method is somewhat more conservative than the exact mid-𝑝 method. In this example, the mid-
𝑝 method is at times slightly anti-conservative, and so are the approximation methods. Although the overall type I error rates lie
close to the desired significance level 𝛼 = 5 ⋅ 10−8, Figure 1 illustrates that these methods will often be conditionally invalid.

4.2 Simulations resembling genetic association studies with an imbalanced response
The purpose of the following simulation study is to compare methods in a setting resembling a genome-wide association study
with an imbalanced response, for which exact tests are not available. The simulation set-up is motivated by Dey et al.4 and we
estimate type I error rates conditional on the number of cases. The sample size considered is 𝑛 = 20000 of which 2% are cases.
We consider the logistic regression model

logit(𝜇𝑖) = 𝛽0 + 𝑥1𝑖 + 𝑥2𝑖 + 𝛾𝑔𝑖,

with 𝑋1 ∼ Bernoulli(0.5), 𝑋2 ∼ 𝑁(0, 1) and 𝐺 ∼ binom(2, 𝑚) with the parameter 𝑚 (representing a minor allele frequency)
taking the values 0.05, 0.005, 0.0005 and 0.00025. Since we are evaluating validity of tests we set 𝛾 = 0, and we set 𝛽0 = −5.6 so
that the disease prevalence is 1% in the population. The covariates 𝑥1𝑖 and 𝑥2𝑖 are sampled conditionally on the phenotype value
𝑦𝑖, while the genotype value is sampled independently of this under the null hypothesis. See Supplementary File for details.
Holding 𝒚 fixed and sampling the covariates ensures that the number of cases is equal for all simulations. For each minor allele
frequency (0.05, 0.005, 0.0005 or 0.00025), we simulate 109 data sets and record the number of times the null hypothesis is
rejected at the 𝛼 = 5 ⋅ 10−8 significance level when using the double saddlepoint approximation with continuity correction
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FIGURE 1 Left: Overall type I error rates for the intercept model where 𝑛 = 10 000, 𝑛0 = 8100, 𝑛1 = 1800 and 𝑛2 = 100.
Two-sided critical regions on the lattice of 𝑈𝛾 |𝑈𝛽0 = 0 are determined (for the exact test) or approximated (using saddlepoint
methods and the normal approximation) based on the criterion 𝑃 (type I error) ≤ 5 ⋅ 10−8. Right: The probability of sampling a
response (𝒀 ) under the null such that the conditional type I error rate exceeds the significance level 𝛼 = 5 ⋅10−8, or equivalently
the proportion of conditionally invalid tests for each value of 𝜇.

(DSPA-CC), the continuity-corrected single saddlepoint approximation based on the efficient score (ESPA-CC), as well as the
double and single saddlepoint approximations without continuity corrections (DSPA and ESPA). The resulting empirical type
I error rates are presented in Figure 2, along with 95% Clopper-Pearson confidence intervals. The simulation results resemble
some of the observations made in the previous section. The DSPA-CC and ESPA-CC are always conservative, while the mid-𝑝
methods (DSPA and ESPA) are less conservative, or even anti-conservative for small minor allele frequencies. Methods based on
the efficient score are somewhat more conservative than those based on the double saddlepoint method. An additional simulation
example is presented in the Supplementary File.

5 APPLICATION TO UK BIOBANK DATA

5.1 Common variants
We consider a recent GWAS in the UK Biobank with motivation from Rogne et al.5 The phenotype of interest is skin and
soft tissue infections (SSTIs), and individuals are defined as cases if they have been hospitalized with main ICD-10 codes
A46 (erysipelas), L03 (cellulitis and acute lymphangitis), or M72.6 (necrotizing fasciitis) in the period between the end of the
recruitment period (2010-10-01) and April 2017 (2017-03-31). Individuals who had reported ICD-10 codes, or corresponding
ICD-9 codes (035 and 729.4), before 2010-10-01 are removed as well as individuals with date of death reported after 2010-10-
01 in the death register (see Data-Field 40000 in the UK Biobank data). As nuisance covariates we include age when attended
assessment centre, genetic sex, and four principal components. To avoid complexities due to cryptic relatedness we only include
unrelated individuals reported as White British (achieved through Data-Field 22006 and 22020 in UK Biobank). The principal
components are calculated using EIGENSOFT (version 6.1.4) SmartPCA.17,18 Only directly genotyped SNPs are considered,
and phenotype-independent quality control of the genetic data is completed using PLINK1.9, with details given in the Supple-
mentary File. This results in a total of 293 964 individuals and 529 024 SNPs with 2051 individuals defined as cases and 291
913 controls, resulting in a case proportion of 0.7 %.

All SNPs were first investigated by computing 𝑝-values using the normal approximation to the score test statistic. As this
test is proven to be too optimistic, SNPs with 𝑝-values less than 𝛼 = 5 ⋅ 10−5 were investigated more thoroughly by using the
DSPA-CC and ESPA-CC methods as implemented by us, as well as the SPA-test of Dey et al.4. This test should resemble the
ESPA method used in simulations in the previous section. In Dey et al.4, a computationally more efficient approximation to their
SPA-test is also proposed by essentially assuming that the nuisance covariates are balanced. In a double saddlepoint setting, this
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FIGURE 2 Empirical type I error rates for simulations with covariates using the double saddlepoint method with continuity
correction (DSPA-CC), the single saddlepoint method based on the efficient score with continuity correction (ESPA-CC) and,
for comparison, the double saddlepoint method without continuity correction (DSPA) and the single saddlepoint method based
on the efficient score without continuity correction (ESPA). Error rates are estimated for genetic variants with minor allele
frequencies 0.00025, 0.0005, 0.005, and 0.05.

assumption may be generalized to argue that the score vector 𝑼𝜷 approximately has a multivariate normal distribution under the
null hypothesis. By taking a similar approach, we may partition the joint CDF of 𝑼𝜷 and 𝑈𝛾 into a sum over all individuals with
genotype value 𝑔𝑖 > 0 and those with 𝑔𝑖 = 0. For the latter sub-sample, the CGF simplifies to a CGF of the score vector 𝑼 ∗

𝜷
including individuals with 𝑔𝑖 = 0. Assuming that also 𝑼 ∗

𝜷 is normal, this part of the joint CGF may be replaced by a normal CGF,
and by pre-computing the variance of 𝑼 ∗

𝜷 , an approximated double saddlepoint method may be computed based only on the
sub-sample of individuals with genotypes 𝑔𝑖 > 0. Details may be found in the Supplementary File. For comparative purposes,
we compute 𝑝-values based on the fastSPA method of Dey et al.4 and our related fastDSPA-CC approach.

Test results for the SNPs with the smallest normal-approximated 𝑝-values are given in Table 1. In this setting, we no longer
know whether the null hypothesis is true or not for each variant. However, we expect only a tiny proportion of all variants where
the null hypothesis is false. Even though no SNPs reached the significance level 𝛼 = 5 ⋅ 10−8, we see a pattern similar to our
previous simulation results. The normal approximation is the most optimistic, followed by the SPA and fastSPA tests which
give mid-𝑝-values. The DSPA-CC test is more conservative, while the most conservative test is ESPA-CC. The fastDSPA-CC
method is slightly less conservative than DSPA-CC. As would be expected based on the aforementioned simulation results, the
greatest difference between tests is observed for the SNP with a low minor allele frequency (rs113113104, MAF = 0.03). The
difference between the 𝑝-values reduces for increasing MAFs. For the SNP rs566530 with MAF = 0.48, the SPA test gives a
smaller 𝑝-value than the normal approximation, while the other methods give larger 𝑝-values.

5.2 Rare variants
We have so far observed that the difference between approximation methods is most pronounced when minor allele frequencies
are low, and the response is highly skewed. To further study such situations, we consider the UK Biobank exome sequence data
consisting of 45 596 unrelated individuals of European origin. We limit ourselves to White British individuals using the same
requirements for the definition of SSTIs as for the common variants. This results in a total number of 30 210 individuals to
investigate with 210 individuals defined as cases, once again leading to a case proportion of about 0.7 %. See the Supplementary
File for further information about quality control. The principal components are computed as for the common variants analysis,
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TABLE 1 The common variants with the smallest computed 𝑝-values using the normal approximation to the score test statistic
for the GWAS of skin and soft tissue infections. Results from saddlepoint approximation methods are included for comparison.

SNP CHR MAF Norm SPA fastSPA ESPA-CC DSPA-CC fastDSPA-CC
rs113113104 6 0.03 2.39⋅10−7 5.97⋅10−7 6.04⋅10−7 7.27⋅10−7 7.10⋅10−7 6.52⋅10−7

rs6551253 3 0.28 8.38⋅10−6 8.47⋅10−6 8.78⋅10−6 9.18⋅10−6 9.00⋅10−6 8.92⋅10−6

rs78404737 2 0.10 8.50⋅10−6 9.63⋅10−6 9.78⋅10−6 1.08⋅10−5 1.06⋅10−5 1.00⋅10−5

rs78696065 7 0.02 8.80⋅10−6 1.54⋅10−5 1.55⋅10−5 1.89⋅10−5 1.87⋅10−5 1.75⋅10−5

rs479947 6 0.11 1.19⋅10−5 1.29⋅10−5 1.33⋅10−5 1.44⋅10−5 1.42⋅10−5 1.35⋅10−5

rs566530 6 0.48 1.46⋅10−5 1.40⋅10−5 1.48⋅10−5 1.50⋅10−5 1.47⋅10−5 1.48⋅10−5

rs56355912 10 0.03 1.51⋅10−5 2.16⋅10−5 2.16⋅10−5 2.57⋅10−5 2.54⋅10−5 2.38⋅10−5

rs72733294 5 0.36 1.58⋅10−5 1.60⋅10−5 1.60⋅10−5 1.72⋅10−5 1.69⋅10−5 1.69⋅10−5

rs11074743 16 0.40 1.69⋅10−5 1.68⋅10−5 1.71⋅10−5 1.80⋅10−5 1.77⋅10−5 1.77⋅10−5

rs1562963 11 0.07 2.02⋅10−5 1.99⋅10−5 2.33⋅10−5 2.26⋅10−5 2.23⋅10−5 2.13⋅10−5

however separately on these 30 210 individuals. We have only considered rare variants in chromosome 6 with a minor allele
count (MAC) of 3 or higher. The results of single variant tests applied to rare variants are given in Table 2.

TABLE 2 The rare variants with the smallest computed 𝑝-values using the normal approximation to the score test statistic for
the GWAS of skin and soft tissue infections. Results from saddlepoint approximation methods are included for comparison.

SNP CHR MAC Norm SPA fastSPA ESPA-CC DSPA-CC fastDSPA-CC
6:26045407:G:A 6 4 2.07⋅10−36 4.31⋅10−5 4.31⋅10−5 2.20⋅10−4 2.20⋅10−4 2.20⋅10−4

6:41097421:T:C 6 4 2.21⋅10−32 4.92⋅10−5 4.92⋅10−5 2.60⋅10−4 2.60⋅10−4 2.50⋅10−4

6:24852645:G:T 6 4 1.37⋅10−25 8.93⋅10−5 8.93⋅10−5 4.40⋅10−4 4.30⋅10−4 4.20⋅10−4

6:31772925:C:A 6 5 6.36⋅10−23 1.30⋅10−4 1.30⋅10−4 6.00⋅10−4 6.00⋅10−4 5.80⋅10−4

6:20402579:C:T 6 3 4.19⋅10−22 2.00⋅10−3 2.00⋅10−3 1.00⋅10−2 1.00⋅10−2 1.00⋅10−2

6:132588925:C:T 6 6 8.78⋅10−22 1.50⋅10−4 1.50⋅10−4 6.90⋅10−4 6.90⋅10−4 6.70⋅10−4

6:17675831:G:A 6 3 8.94⋅10−22 2.20⋅10−3 2.20⋅10−3 1.00⋅10−2 1.00⋅10−2 1.00⋅10−2

6:110960684:T:G 6 3 2.05⋅10−21 1.70⋅10−3 1.70⋅10−3 4.90⋅10−3 4.90⋅10−3 4.90⋅10−3

6:7894854:T:C 6 16 1.88⋅10−20 3.07⋅10−5 3.07⋅10−5 1.20⋅10−4 1.20⋅10−4 1.00⋅10−4

6:148514044:G:T 6 3 1.94⋅10−20 2.20⋅10−3 2.20⋅10−3 1.10⋅10−2 1.10⋅10−2 1.10⋅10−2

Clearly, the normal approximation to the score test statistic can be very inaccurate in this setting. We also observe that the
saddlepoint approximations with continuity correction can differ from the SPA test (mid-𝑝) in about one order of magnitude.
As a result, we expect the use of the continuity correction to be most consequential for rare variants. Another observation
is that ESPA-CC and DSPA-CC are practically identical in this application. The speed-up approximation methods are more
accurate for rare variants, which can be explained by the fact that the accuracy of the multivariate normal approximation of 𝐔∗

𝛃
in fastDSPA-CC, depends on the number of individuals with 𝑔𝑖 = 0, which increases for decreasing MACs.

6 DISCUSSION

We have investigated different saddlepoint approximations for GWAS with binary phenotypes and in particular showed how
to apply the double saddlepoint method to approximate conditional tail probabilities for the score test statistic. We have also
illustrated the use of a double saddlepoint approach without continuity correction as a means to compute two-sided mid-𝑝-
values. The continuity-corrected double saddlepoint approximation, DSPA-CC, and single-saddlepoint approximation based on
the efficient score, ESPA-CC, are both found to perform well and are at times remarkably similar. However there are situations
in which ESPA-CC is somewhat more conservative than DSPA-CC and so DSPA-CC will be more powerful.

The methods considered here are not limited to genetic association studies, but may be considered for other applications
where both the response variable and the covariate of interest are imbalanced. However, some comments should be made with
regards to the use of these methods in genetic association studies. The use of a continuity corrected saddlepoint approach was
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motivated by Observation 1 in which the covariate of interest, 𝑔, takes values 0, 1 or 2. Due to the discrete nature of the test
statistic, these tests are conservative. And if applied genome-wide, discrete test statistics (such as DSPA-CC and ESPA-CC)
will result in deflated QQ-plots, which in turns makes the QQ-plot less effective for checking model assumptions. The mid-
𝑝 methods (DSPA and ESPA), which are saddlepoint approximations without continuity corrections, could be better suited,
although neither approach is guaranteed to control the type I error rate conditionally. Furthermore, is not uncommon to use
imputed SNPs in GWAS. With most imputation methods, the output for each imputed SNP is a probability that the minor allele
count is equal to 0, 1 or 2, denoted 𝑝0, 𝑝1 and 𝑝2. If the imputed genotype is set to be the expected minor allele count, 𝑝1 + 2𝑝2,
the score test statistic will no longer have a lattice distribution, and so the proposed continuity correction becomes inaccurate.
A work-around could be to set the imputed minor allele count equal to the most likely allele count. Otherwise, the continuous
saddlepoint approximations such as DSPA and ESPA (coinciding with the SPA-test of Dey et al4) could be more suitable.

One well-known advantage of the asymptotic score test over the likelihood ratio and Wald tests is that the test statistic only
includes parameter estimates for the null model. In genome-wide testing, the null model is the same for all tests and so the
score test is particularly appealing. However, the saddlepoint equations must be solved numerically for each genetic variant,
which can make the procedure computationally slow. The ESPA-CC test is considerably faster to compute, as it relies only on
a single saddlepoint method, and the method of Dey et al includes further alternatives for fast computations.4 When applied
to UK Biobank data in Section 6 we did not compute 𝑝-values using saddlepoint methods on all SNPs, but rather proposed to
use our methods to adjust the top results obtained by standard methods. With such an approach, QQ-plots may be plotted using
standard outputs of statistical software for GWAS. However, as the normal approximation would result in inflated QQ-plots
in imbalanced data sets, we would rather suggest to use continuous saddlepoint approximations (such as DSPA or SPA-test of
Dey et al) for model diagnostics. At the end of Section 6.2 we applied our methods for single-variant tests on rare variants.
Such tests are often low-powered and region-based tests are more commonly applied for rare variants. However, many of these
methods rely on single-variant tests as building blocks, among them SAIGE-GENE+ and ACAT19,20 which incorporate single
saddlepoint methods based on the efficient score. Using double saddlepoint methods in region-based tests for logistic regression
models with an imbalanced response could be a topic for future research.

Some comments should also be made regarding details of the saddlepoint methods. An alternative saddlepoint approximation
𝑆̂(𝑢) to the cumulative distribution of a random variable is the one introduced in Lugannani and Rice21. This approximation
gives the same results as the approximation by Barndorff-Nielsen14 in many situations, but we observed that the approximation
by Lugananni and Rice was inaccurate in simulations when the case proportion and minor allele frequency approached zero.
See for instance Booth and Wood22 for similar observations in a different application. Butler13 lists three continuity correction
methods of Davies15 for estimating discrete cumulative probabilities using saddlepoint methods, of which the second has been
applied by us. Procedures for obtaining two-sided 𝑝-values are simpler with this method. The first continuity correction was
however also investigated and gave very similar results but was slightly more inaccurate for the intercept model.

7 ACKNOWLEDGEMENTS

This research was supported by the Norwegian Research Council grant 272402 (PhD Scholarships at SINTEF) as well the fund-
ing for research stays abroad for doctoral and postdoctoral fellows financed by the Norwegian Research Council. The research
has been conducted using the UK Biobank Resource under Application Number 32285. We thank the Yale Center for Research
Computing for guidance and use of the research computing infrastructure. We thank the The Gemini Center for Sepsis Research
for establishing cooperation with Yale School of Public Health. We also thank anonymous reviewers for insightful comments.

8 DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from UK Biobank. Restrictions apply to the availability of these
data. Data are available for bona fide researchers through an open application.

9 CODE AVAILABILITY

Source code in R23 is available at https://github.com/palVJ/SaddlePointApproxInBinaryGWAS.

https://github.com/palVJ/SaddlePointApproxInBinaryGWAS


Johnsen ET AL 11

APPENDIX

A SUPPORT OF THE CONDITIONAL SCORE TEST STATISTIC

Consider the score test statistic of 𝑈𝛾 conditional on 𝑼𝜷 = 𝟎. We have −𝝁̂ ≤ 𝒀 − 𝝁̂ ≤ 𝟏 − 𝝁̂ (elementwise inequalities), where
𝟏 is a vector of ones. Since all 𝑔𝑖 ≥ 0, premultiplying the inequalities with 𝒈T gives bounds on the support of 𝒈𝑇 (𝒀 − 𝝁̂):

−𝒈T𝝁̂ ≤ 𝑈𝛾 ≤ 𝒈T(𝟏 − 𝝁̂). (A1)

The first equality holds when 𝒈T𝒀 = 0 and the second when 𝒈T𝒀 = 𝒈T𝟏. However, this combination is not achievable if it does
not satisfy 𝑼𝜷 = 𝑿𝑇 (𝒀 − 𝝁̂) = 𝟎. Specifically, the minimal and maximal achievable values of the conditional score test statistic
is given by the constraint optimization problems:

min(𝑈𝛾 ) = min
𝒚

𝒈𝑇 (𝒚 − 𝝁̂)

such that 𝑋𝑇 (𝒚 − 𝝁̂) = 𝟎,

and

max(𝑈𝛾 ) = max
𝒚

𝒈𝑇 (𝒚 − 𝝁̂)

such that 𝑋𝑇 (𝒚 − 𝝁̂) = 𝟎.

As an example, consider the intercept model with 𝑛 = 1000 and 𝒈 such that 𝑛0 = 980, 𝑛1 = 20 and 𝑛2 = 0 and 𝒀 such
that

∑𝑛
𝑖=1 𝑌𝑖 = 10. Then 𝜇̂𝑖 = 10∕𝑛 = 0.01 satisfies 𝑈𝛽0 =

∑𝑛
𝑖=1(𝑌𝑖 − 𝜇𝑖) = 0 and the minimum achievable value is indeed

min(𝑈𝛾 ) = −𝒈𝑇 𝝁̂ = −0.2, since we may have a combination where 𝑌𝑖 = 0 for all 𝑔𝑖 > 0, and still get
∑𝑛

𝑖=1 𝑌𝑖 = 10. However,
max(𝑈𝛾 ) = 10− 𝒈𝑇 𝝁̂ = 9.8 since 𝒈𝑇𝒀 can be no larger than the combinations where 𝑔𝑖 = 1 for all 𝑌𝑖 = 1, which can only occur
ten times in order to satisfy

∑𝑛
𝑖=1 𝑌𝑖 = 10.

B PROOFS OF OBSERVATIONS 2 AND 3

Proof of Observation 2. We assume throughout the proof that the null hypothesis is true, 𝛾 = 0. Denote by 𝑉𝑗 the sum of
responses 𝑌𝑖 among individuals with genotype 𝑔𝑖 = 𝑗, 𝑗 = 0, 1, 2, and let 𝑉 = 𝑉0 + 𝑉1 + 𝑉2 =

∑𝑛
𝑖=1 𝑌𝑖 be the total sum of

responses. With this notation, 𝑈𝛾 = 𝑉1 + 2𝑉2 − (𝑛1 + 2𝑛2)𝜇, and 𝑈𝛽 = 𝑉 − 𝑛𝜇, so that the condition 𝑈𝛽 = 0 is equivalent to
𝑉 = 𝑛𝜇.

The 𝑉𝑗 are independent, and 𝑉𝑗 is binomially distributed with parameters 𝑛𝑗 and 𝜇, 𝑗 = 0, 1, 2, and 𝑉 is binomially distributed
with parameters 𝑛 and 𝜇. Assume that 𝑣0 + 𝑣1 + 𝑣2 = 𝑛𝜇 with 𝑣𝑗 in the support of 𝑉𝑗 . Then

𝑃 (𝑉0 = 𝑣0, 𝑉1 = 𝑣1, 𝑉2 = 𝑣2 ∣ 𝑉 = 𝑛𝜇
)

=
𝑃 (𝑉0 = 𝑣0)𝑃 (𝑉1 = 𝑣1)𝑃 (𝑉2 = 𝑣2)

𝑃 (𝑉 = 𝑛𝜇)

=

(𝑛0
𝑣0

)

𝜇𝑣0(1 − 𝜇)𝑛0−𝑣0
(𝑛1
𝑣1

)

𝜇𝑣1(1 − 𝜇)𝑛1−𝑣1
(𝑛2
𝑣2

)

𝜇𝑣2(1 − 𝜇)𝑛2−𝑣2
( 𝑛
𝑛𝜇

)

𝜇𝑛𝜇(1 − 𝜇)𝑛−𝑛𝜇
=

(𝑛0
𝑣0

)(𝑛1
𝑣1

)(𝑛2
𝑣2

)

( 𝑛
𝑛𝜇

) ,

a trivariate hypergeometric probability.
Now, 𝑃 (𝑈𝛾 = 𝑢 ∣ 𝑈𝛽 = 0) = 𝑃

(

𝑉1 + 2𝑉2 = 𝑢∗ |

|

|

𝑉 = 𝑛𝜇
)

can be found by summing the above probabilities over
(𝑣0, 𝑣1, 𝑣2) ∈ 𝑆. This gives the first sum of the Observation. The more explicit second version of the sum is obtained by solving
the two equations in the definition of 𝑆 for 𝑣0 and 𝑣1 in terms of 𝑘 = 𝑣2. The limits of the sum is determined by the inequalities
in the definition of 𝑆.

Proof of Observation 3. We assume throughout the proof that the null hypothesis is true, 𝛾 = 0. Denote by 𝑉𝑗 the sum of
responses 𝑌𝑖 among individuals with 𝑥𝑖 = 0 and genotype 𝑔𝑖 = 𝑗, 𝑗 = 0, 1, 2, and let 𝑉 = 𝑉0 + 𝑉1 + 𝑉2. Define similar sums
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𝑊𝑗 and 𝑊 for individuals with 𝑥𝑖 = 1. With this notation, 𝑈𝛾 = 𝑉1 + 2𝑉2 − (𝑙1 + 2𝑙2)𝜇0 + 𝑊1 + 2𝑊2 − (𝑚1 + 2𝑚2)𝜇1, and
𝑼T

𝜷 =
(

𝑉 +𝑊 − 𝑙𝜇0 − 𝑚𝜇1 𝑊 − 𝑚𝜇1
)

, so that the condition 𝑼𝜷 = 𝟎 is equivalent to 𝑉 = 𝑙𝜇0 and 𝑊 = 𝑚𝜇1.
All the 𝑉𝑗 and 𝑊𝑗 are independent, and 𝑉𝑗 is binomially distributed with parameters 𝑙𝑗 and 𝜇0, and 𝑊𝑗 with parameters 𝑚𝑗

and 𝜇1, 𝑗 = 0, 1, 2. As in the proof of Observation 2, the conditional point probabilites of (𝑉0, 𝑉1, 𝑉2) given 𝑉 = 𝑙𝜇0 and
(𝑊0,𝑊1,𝑊2) given𝑊 = 𝑚𝜇1 are trivariate hypergeometric probabilities, and by independence of the two triples, the conditional
joint point probability is the product of the two. Then 𝑃 (𝑈𝛾 = 𝑢 ∣ 𝑼𝜷 = 𝟎) can be found by summing those probabilities over
𝒔 ∈ 𝑆.

C SOLUTION TO ∇𝒕𝜷𝐾𝜷(𝒕𝜷) = 𝟎

Consider the marginal cumulant generating function of 𝑼𝜷 , defined by 𝐾𝜷(𝒕𝜷) (a function of 𝑑 variables) with

𝐾𝜷(𝒕𝜷) =
𝑛
∑

𝑖=1
ln(1 − 𝜇𝑖 + 𝜇𝑖 exp(𝐱𝑇𝑖 𝒕𝜷)) − 𝒕𝑇𝜷𝑋

𝑇𝝁, (C2)

and corresponding gradient

∇𝒕𝜷𝐾𝜷(𝒕𝜷) =
𝑛
∑

𝑖=1
𝜇𝑖𝐱𝑖

(

1
(1 − 𝜇𝑖) exp(−𝐱𝑇𝑖 𝒕𝜷) + 𝜇𝑖

− 1

)

. (C3)

First, one can easily observe that 𝒕𝜷 = 𝟎 is a solution to ∇𝒕𝜷𝐾𝜷(𝒕𝜷) = 𝟎. Second, if one can prove that the CGF is a convex
function, then 𝒕𝜷 = 𝟎 is a unique solution to ∇𝒕𝜷𝐾𝜷(𝒕𝜷) = 𝟎.

Proof. Convexity of a cumulant generating function with any random variable 𝑼 , 𝐾(𝒕) = ln𝐸(𝑒𝒕𝑇𝑼 ), in general follows from
the Hölder inequality, 𝐸(|𝑋|

𝑐
|𝑌 |1−𝑐) ≤ (𝐸|𝑋|)𝑐(𝐸|𝑌 |)1−𝑐 for all 𝑐 in (0, 1), where 𝑋 and 𝑌 are random variables. A function

𝑓 is convex if 𝑓 (𝑐𝒕1 + (1 − 𝑐)𝒕2) ≤ 𝑐𝑓 (𝒕1) + (1 − 𝑐)𝑓 (𝒕2) for all 𝑐 in (0, 1). Now,

𝐾(𝑐𝒕1 + (1 − 𝑐)𝒕2) = ln𝐸𝑒(𝑐𝒕1+(1−𝑐)𝒕2)T𝑼 = ln𝐸
(

𝑒𝑐𝒕
T
1𝑼𝑒(1−𝑐)𝒕

T
2𝑼

)

≤ ln
((

𝐸𝑒𝒕
T
1𝑼

)𝑐(𝐸𝑒𝒕
T
2𝑼

)1−𝑐) = 𝑐 ln𝐸𝑒𝒕
T
1𝑼 + (1 − 𝑐) ln𝐸𝑒𝒕

T
2𝑼

= 𝑐𝐾(𝒕1) + (1 − 𝑐)𝐾(𝒕2),
showing that 𝐾 is convex.
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