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A B S T R A C T

This paper presents an artificial neural network (NN) modelling approach to represent a connector model
in large-scale finite element explicit crash simulations. The NN model was established to describe the local
force–deformation response of point connectors in automotive applications, namely self-piercing rivets and
flow-drill-screws. The study is limited to two-sheet connections and to the use of feedforward NNs. Successive
loading and unloading of the joints is not studied. Various architectures and complexities of the feedforward
NNs were evaluated and trained based on data generated from a constraint model found in the literature. This
forms a proof of concept for implementing a modelling technique not based on physics-motivated constitutive
equations. The impact of the network complexity and training data diversity was investigated. The NN model
was implemented as a cohesive zone model for incremental force prediction in an explicit finite element code.
In order to have a wide selection of joint types, five different joint configurations including self-piercing rivets
(SPR) and flow-drill screws (FDS) were investigated. Numerical results from the NN model were compared to
physical tests from all joint configurations. It was shown that a rather basic machine learning technique like
a feedforward NN was able to reproduce path-dependent force–deformation behaviour for the application in
explicit FE solvers.
1. Introduction

Placing the right material in the needed position of a car body, in
a plane fuselage or in a building structure is a key to a purposeful
design. Structural joining of multi-material parts requires appropriate
techniques and fastener types. In designs where welding is not possible
because the materials are too dissimilar, other techniques like adhesive
bonding and/or mechanical fasteners must be considered. Modelling of
such joints for engineering purposes is a challenge, and an interdisci-
plinary research is necessary to understand the deformation behaviour
including damage and fracture.

A combination of physical testing and numerical methods are nor-
mally used to investigate the joint behaviour, serving as a basis for
large-scale predictions of a final product. The term large-scale simu-
lations is hereby used for full car crash simulations. The investigated
modelling techniques could be applied to these large scale simula-
tions. In addition to quasi-static conditions, dynamic loadings are also
commonly investigated for typical joints used in automotive applica-
tions [1]. In the design process of structures, finite element analyses
with large shell elements are usually used in order to increase compu-
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tational efficiency. This always means a trade-off between accuracy and
computational time with respect to material modelling [2], for instance.
Modelling the strength and ductility of mechanical fasteners, spot welds
and structural adhesives is also subjected to the same constraints. These
connections are traditionally represented by simplified models, see for
instance Combescure et al. [3], Sønstabø et al. [4], Reil et al. [5],
Porcaro et al. [6].

These simplified models are usually developed for specific joining
techniques, see for instance the model proposed for SPR by Hanssen
et al. [7], and must be carefully validated if applied to represent the
behaviour for other techniques. Most of the models share common
features like elasto-plastic force–displacement response under various
loading mode mixities, loading/reloading and damage/failure. Marzi
et al. [8] for example presented a rate-dependent cohesive zone model
for modelling of structural adhesive. This model was applied by Bier
et al. [9] for the large-scale modelling of spot weld connections, show-
ing that some modelling techniques can also be applied to joining
techniques where the model was not initially intended for. As per
today, for every new joining technique a new simplified model has
vailable online 28 January 2023
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Nomenclature

𝑑n, 𝑑t Normal and tangential stretch
𝛿n, 𝛿t Normal and tangential stretch history
𝑓n, 𝑓t Normal and tangential force
𝑓n, 𝑓t Dimensionless normal and tangential force
�̂�m Normal vector, master sheet
�̂�s Normal vector, slave sheet
�̂�o Out-of-plane normal vector
𝑓max

n Maximum normal capacity, model parameter
𝑓max

t Maximum tangential capacity, model parameter
𝑖 Time step
𝑡 Time
𝛼1, 𝛼2, 𝛼3 Dimensionless model parameters
𝜹 Total stretch
𝛿n, 𝛿t Scalar value of normal and tangential stretch

vector
𝛿fail

n Normal deformation at failure (pure normal
loading)

𝛿fail
t Tangential deformation at failure (pure tangential

loading)
𝜂 Effective displacement measure
𝜂max Maximum effective displacement measure, dam-

age
𝜃 Loading direction
𝜉n Dimensionless model parameter, defining soften-

ing region for normal loading
𝜉t Dimensionless model parameter, defining soften-

ing region for tangential loading

Fig. 1. Tied cluster of four cohesive elements between master and slave mesh.

o be developed or an existing one must be adapted and thoroughly
alidated. As the need for joining materials of dissimilar nature seems
onsistently increasing, the need for such simplified models is expected
o grow as more and more joining techniques appear on the market.

According to Bonatti et al. [10], the modelling of materials and
specially history-dependent mechanical behaviour has recently seen
he advantage of machine learning methods. Bock et al. [11] states that
achine learning tools empower material scientists and engineers to

ccelerate the development of new materials, processes and techniques.
urton et al. [12] brake down the application of machine learning into
hree areas in structural engineering. These areas are the improvement
f empirical models, the surrogate modelling of expensive structural
asks, and information extraction methods. Both surrogate modelling
nd information extraction methods could be used to improve me-
hanical joint modelling techniques. Both in terms of modelling the
hysical joint behaviour in structural analyses as well as exploring the
ast amount of potential joint-material combinations. Such an approach
2

will give more flexibility for fitting of different joint types rather than
having specific simplified models for each type of joint.

In the present study, a feedforward NN model was trained based on
the point-connector model developed by Hanssen et al. [7]. The trained
NN model was then implemented as a cohesive material subroutine
in the commercial explicit solver LS-DYNA [13] for computing the
force–displacement responses of the joints. The model by Hanssen
was applied to self-piercing rivet (SPR) and flow-drill screw (FDS)
connections. One SPR and four FDS joints characterised by Sønstabø
et al. [4,14,15] were taken as experimental foundation and benchmark
for the present work. The work of Sønstabø included joint characterisa-
tion with model parameter fitting, component testing and simulation.
The applied workflow is briefly described as follows:

• Choosing five unique joint configurations.
• Creation of a training database for each joint model with param-

eters obtained by Sønstabø et al. [4,14–16]
• Training of various NN architectures and selection of one reliable

design for all joints.
• Verification of NN models applied as a cohesive material model

with single joint unit test/simulation.
• Validation of NN cohesive material model with complex compo-

nent tests.
• Repetition of NN training with varying amount and quality of

training data.
• Repetition of selected component simulation.

The data set generation and the NN training were done using Python
and Keras packages [17], afterwards the trained weights were parsed
to the user subroutine as parameters. While impact loadings are consid-
ered in this work, the rate sensitivity of the connections is neglected.
For instance, the work of Porcaro et al. [18] showed no rate effects
when aluminium sheets joined by self-piercing rivets were subjected to
impact loadings. In this context the present paper aims at demonstrat-
ing the applicability of NNs to the modelling of joints in large-scale
crash analyses. This work will then serve as a proof of concept and
pave the way for future data-driven models dedicated to joints.

2. Modelling of joint behaviour

When using shells in large scale crash analyses, the modelling
approach for connecting two mating sheets is realised by a connector
element or a constraint model. In this paper the constraint model by
Hanssen et al. [7] is applied. The governing equations of the model
were used for training of the NN. Depending on the relative nodal
deformations between the shells representing the sheets, the resulting
force and moment components were calculated for various mode angles
and loading/unloading cases. The model by Hanssen et al. [7] was
initially intended for SPR connections, but Sønstabo et al. [16] showed
that it could be successfully applied to FDS connections as well.

2.1. Constraint model introduction

In the model by Hansen et al. [7], a master and a slave sheet are
defined, represented by master and slave node regions. The spatial
relative deformation is decomposed into a normal and tangential part,
where the normal direction is orthogonal to the sheets’ mid-surface and
the tangential direction is in-plane of the sheets.

The relative nodal displacements between the sheets are named
stretches, and denoted 𝛿n (normal) and 𝛿t (tangential) stretch, respec-
tively. The model takes those stretches as input variables and calculates
a normal 𝑓n and tangential force component 𝑓t. The governing equa-
tions of the constraint model, which link forces and displacements,
are given in Table 1. In addition to the force components, a damage
variable named maximum effective displacement 𝜂max is calculated. It
evolves during joint deformation and depends on the loading mode.

The damage variable indicates maximum joint opening and drives joint
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Fig. 2. Failure loci of investigated connections; maximum effective displacement levels [0.7, 0.8, 0.9, 0.95, 1.0].
Table 1
Constraint model, governing equations [7,16].

Total stretch 𝜹 defined as the vector between slave
end and original location on the deformed slave
sheet. Normal and tangential stretch:

Loading direction:

𝜹 = 𝜹n+𝜹t , 𝛿n = |𝜹⋅�̂�m|, 𝛿t = |𝜹⋅�̂�t|, �̂�t = �̂�0×�̂�m 𝜃 = arctan
(

𝛿t
𝛿n

)

Forces are calculated directly from mathematical
expressions:

Damage variables:

𝑓n =
𝑓max

n 𝛿n

𝜂max𝛿fail
n

𝑓n , 𝑓t =
𝑓max

t 𝛿t

𝜂max𝛿fail
t

𝑓t , 𝜂 =
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𝜉n−𝜂max
𝜉n

)8
, 𝜂max ≤ 𝜉n
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𝜋
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+ 27
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𝜋
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𝑓t =
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1 −
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𝜉t−𝜂max
𝜉t

)8
, 𝜂max ≤ 𝜉t

1 − 𝜂max−𝜉t
1−𝜉t

, 𝜂max > 𝜉t

𝛼 =

⎧

⎪

⎨

⎪

⎩

𝜉t−𝜂max
𝜂t

𝛼1 +
𝜂max
𝜂t

𝛼2 , 𝜂max < 𝜉t
1−𝜂max
1−𝜉t

𝛼2 +
𝜂max−𝜉t
1−𝜉t

𝛼3 , 𝜂max ≥ 𝜉t

Exponent of 8 suggested by Hanssen et al. [7] but
can be changed in the LSDYNA solvers.
deletion. The model needs nine parameters which are found by inverse
engineering of experimental tests in different loading directions. The
moment acting on the master and slave sheets is calculated based on
the force component and the sheet thicknesses. The models do allow
for twisting around the fastener axis, as connections like SPR and FDS
show neglectable twisting resistance.

In this work the governing equations from the constraint model
were implemented as a cohesive material model applied to a cluster
of cohesive elements representing the joint. This gives more freedom
3

when modifying the force–displacement relationship and makes it pos-
sible to implement the NN model as a user subroutine. The force
components and moments are transferred to the master and slave sheets
via the cohesive element which is placed between both sheets, as seen
in Fig. 1. When a critical value of damage is reached, the cohesive
element gets eroded and no more joint forces will be transmitted to the
previously connected sheet mesh. The nodes of the cohesive elements
stay connected to the sheet mesh.



International Journal of Impact Engineering 177 (2023) 104490V. André et al.
Fig. 3. Fully connected NN with four input variables (𝛿n, 𝛿t, 𝛿n, 𝛿t) and three output variables (𝑓n, 𝑓t, 𝜂).
2.2. Investigated joints

Five unique joint configurations were investigated in order to chal-
lenge the versatility of the NN modelling approach. Those five joints
are characterised by the joined material pairing and the fastener type,
marked with an ID for later reference:

• SPR01: a SPR connection between two rolled aluminium sheets
made from AA6016 T4 each 2 mm thick. The rivet has an overall
length of 6.5 mm with a shank diameter of 5 mm.

• FDS01: a small screw FDS connection between two rolled alu-
minium sheets made from AA6016 T4 each 2 mm thick (similar to
SPR01). The screw has an overall length of 13 mm with a thread
diameter of 4 mm and a head diameter of 8 mm.

• FDS02: a large screw FDS connection between two rolled alu-
minium sheets made from AA6016 T4 (top sheet) and AA6063 T6
(bottom sheet) each 2 mm thick. The screw has an overall length
of 25 mm with a shank diameter of 5 mm and a head diameter
of 14.4 mm.

• FDS03: a large screw FDS connection between two extruded
aluminium profiles made from AA6060 T6 each 2.5 mm thick. The
screw has an overall length of 24 mm with a thread diameter of
5 mm and a head diameter of 13 mm.

• FDS04: a large screw FDS connection between two extruded
aluminium profiles made from AA6060 T6 (top) and AA6005 T6
(bottom) each 2.5 mm thick. The screw used in FDS04 was the
same as in connection FDS03.

The failure loci, obtained from the constraint model, of the investigated
joints is shown in Fig. 2. The figure shows how the maximum effective
displacement (damage) evolves with increased stretch. The failure sur-
face has a different shape for each joint and one can see for example
how the maximum displacement is increased for mixed mode loading
for joint SPR01 and FDS01, compared to pure normal or shear. On the
other hand, joint FDS02 shows an increased maximum displacement
under normal loading mode. FDS03 and FDS04 show a similarly shaped
failure loci as they both use the same fastener type, same material
thickness but different material.

3. Neural network representation

The described constraint model was mimicked by a feedforward
neural network (NN). For a given deformation state, the network
should predict the corresponding force components and the damage
variable. The NN is not able to capture unloading and cyclic loading
as it only takes stretch components as input variables. The NN does
4

not memorise if it already had made a prediction on a given input
Table 2
History measure for NN input variables.

Analytical stretch measure for normal and tangential stretch over
deformation time 𝑡:

𝛿n = 1
𝑡 ∫

𝑡

0
𝛿n(𝑡) d𝑡, 𝛿t =

1
𝑡 ∫

𝑡

0
𝛿t(𝑡) d𝑡

Incremental stretch measure calculation over time step 𝑖:

𝛿𝑖n = 𝛿𝑖−1n +
𝛿𝑖n − 𝛿𝑖−1n

𝑖
, 𝛿𝑖t = 𝛿𝑖−1t +

𝛿𝑖t − 𝛿𝑖−1t
𝑖

set. A prediction on the same stretch input would always yield the
corresponding force output, no matter if the previously fed stretch input
was different. The NN does not distinguish between rising or decreasing
stretch paths. Therefore for the NN to be able to capture cyclic loading,
two additional input variables were introduced in order to increase
the network dimension from 2 to 4 and to capture the path-dependent
behaviour. In addition to the normal 𝛿n and tangential stretch 𝛿t, a
history measure for each stretch component is calculated. Those history
variables are denoted 𝛿n and 𝛿t. The way of calculating the history of
stretch is inspired and abstracted from Gorji et al. [19]. The measure
is realised by incrementally calculating a running mean measure of the
stretch component (see Table 2). The stretch history is only dependent
on the current stretch input and the running mean of the previous
stretches. Previous force outputs are not used as history values so that
a prediction error is not propagated to the input variables which would
result in an error accumulation over multiple iterations.

A generic NN architecture with input and output variables is dis-
played in Fig. 3. The desired NN design should give a reasonable
representation of the problem without over- or underfitting, while
keeping the number of nodes and layers to a minimum in order to
reduce computational cost. In order to find this reliable NN design, the
number of hidden layers 𝑛 and the number of nodes per hidden layer
was varied with a maximum of four hidden layers and 500 nodes per
hidden layer. The nodes contained in a hidden layer are called hidden
nodes for later reference. The effect of network architecture on the
goodness of the fit is presented in Section 3.3. The network training
was carried out using an adaptive gradient descend method, namely the
Nesterov-accelerated Adaptive Moment Estimation [20]. The objective
function was the mean squared error (MSE) between the network
prediction �̄� and the given target value 𝑦. The MSE represents the
quantitative deviation between training targets and the network predic-
tion during training. All hidden layers were activated with the Leaky
rectified linear unit function (LeakyReLU), enforcing a positive gradient
even for negative inputs. The problem with the general rectified linear
unit is the zero gradient for negative input values. When applying
the back-propagation process during training, that zero gradient would
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Fig. 4. Exemplary training paths in stretch space and corresponding normal force-stretch response.
Fig. 5. Final training (left) and validation (right) MSE for joint FDS01; error bar shows the highest, lowest and mean achieved final MSE.
stop the adjustment of the respective neurons weights. The LeakyReLU
function gives a slight positive gradient for negative input values and
therefore overcomes the problem of vanishing gradient,as shown by
Glorot et al. [21]. The NN and Hanssen model do not account for
joint compression, as compression of the joint area is constrained by
the contact formulation between sheets. Therefore, the output layer
is activated with ReLU to give strictly positive values, just like the
constraint model.

3.1. Virtual data creation

The training data for fitting the NN was directly generated using the
constraint model described in Section 2.1. The input variables fed to the
constraint model were stretch paths. The stretch paths corresponded to
loading a joint from a virgin state to failure, including non-proportional
loading and unloading. If one or both of the stretch components de-
creases, the model experiences unloading with a decrease of force while
𝜂 remains constant, storing the maximum occurred value.
5

max
An output variable should not dominate others in magnitude when
using gradient based optimisation methods. Thus, the NN was trained
on normalised data. The stretch components and their corresponding
history measures should be scaled down by their maximum occurring
value. In this case, they were scaled by the model parameters 𝛿fail

n
and 𝛿fail

t , which are not the maximum occurring values but still in the
higher range. The force components were scaled respectively by 𝑓max

n
and 𝑓max

t . Scaling of input and output values improved the NN training
since it brought the magnitudes of the gradient closer together [22].
For example the target error of the normal force component 𝑓n should
have the same impact on the optimisation algorithm as a target error
of 𝜂, as all output variables are equally important.

3.2. Load case definition

A NN can make predictions on any input value, but it only gives
reasonable predictions on data it has seen before. This is called super-
vised training, with the typical application of the present regression
task. A sufficient representation of the input variable space with the
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P
a

Fig. 6. Contour plots with equal max. effective displacement values; 𝜂max = [0.7, 0.8, 0.9, 0.95, 1.0], radially increasing.
Fig. 7. Training MSE versus number of hidden nodes in three hidden layers (left); predicted failure loci for all joints with respective 3_100 NN model.
corresponding output is necessary to train any NN. Since the joint
can experience infinite loading modes and unloading scenarios, a NN
capable of working under any scenario was targeted. A more dense
mapping of loading modes would probably result in better prediction
capabilities, but it would also increase the amount of training data
needed. In order to determine how complex the training set should
be for a reliable representation, the networks were trained on three
different data sets, with an increasing level of complexity:

• Proportional loading with a steady loading mode/angle.
• Non-proportional loading (e.g. diverging from pure shear into

mixed).
• Unloading and reloading of the joint.

rediction of the stretch-force response and the damage evolution
6

re critical since both features have direct influence on the global
deformation behaviour of a joined component. Fig. 4 shows exemplary
training cases with various modes in the stretch space, non-proportional
loading and unloading. While the figure is only symbolising the train-
ing database creation, the actual database used for the NN training
consisted of ca. 1000 paths with much finer mode discretisation.

3.3. Network architecture

The ability of a NN to output reliable predictions strongly depends
on the general architecture in terms of the number of hidden layers and
hidden nodes. In general, more layers and neurons give a better fit to
more complex and higher dimensional problems. Nevertheless, it was
shown by Fahlman et al. [23] and Nakama [24] that a higher number
of layers is not always better. Not only does it increase the number of
trainable weights, but gradient based training can become ineffective
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Fig. 8. Cross test mesh (a) and results from FDS01 simulation (b).
Fig. 9. Cross test simulations; Legend: Con-Constraint, Coh-Cohesive element.
because of the vanishing gradient problem in the back-propagation
process. NNs with high dimensionality can also lead to overfitting of
the task.

In order to find a feasible combination of hidden layer amount and
nodes per hidden layer, a full factorial design of experiments was set
up and the performance of the various architectures was evaluated.
With the combination of one to four hidden layers and each layer
7

having 5, 10, 20, 30, 50, 70, 100, 200 or 500 nodes, the full factorial
design resulted in 36 different architectures. The amount of nodes
per hidden layer was kept equal for every hidden layer. The NNs
performance was evaluated based on the MSE of the training set and
of a separate validation set. Each network design was trained until the
MSE converged.
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Fig. 10. FE mesh for component tests.
The training data basis was equal for each joint consisting of stretch
paths and the corresponding history measures. The training data was
a combination of all three loading scenarios described in Section 3.2;
called a fully trained network. That results in 50 proportional loading
paths, 20 load paths with each having 20 unloading points and 200
non-proportional loading paths. Additional validation data was created
which is not seen by the network during training. That validation set is
a collection of non-proportional loading paths with two points of mode
change and full unloading or failure. The validation data set is meant
to describe an even more complex loading scenario than the one given
during training. The same training and validation set was used while
the network design was changed.

The training data was split into 80 % for training and 20 % for
testing. Each load path consisted of approximately 500–1000 incre-
ments which build up one training sample. The data was split randomly
among those samples with the given train/test-ratio. Each network de-
sign was trained with different weight initialisation for five repetitions
to account for the effect of network initialisation and variance of MSE.
Both the finally achieved training and the validation MSE are displayed
in Fig. 5 as a result of the chosen network design for joint FDS01. NN
training duration was between 50 and 250 epochs until convergence. A
reduction of the final training error by a factor of 10 could be seen when
two instead of one hidden layer were used. The use of a fourth hidden
layer gave marginal improvement over the use of only three hidden
layers. The network performance with designs of 200 and 500 hidden
nodes seemed to decrease, probably because the training duration was
not long enough in order to fit the higher dimension network. Higher
8

order NNs seemed to need more training epochs in order to achieve
final error convergence. Fig. 6 shows the damage loci with contour lines
at equal maximum effective displacement for proportional loading. The
nomenclature for distinguishing between NN designs is denoted ℎ_𝑛
with ℎ and 𝑛 being the number of hidden layers and the amount of
nodes per hidden layer, respectively. The corresponding MSE for each
NN design is taken from the full training which included all three
training scenarios. One can see that all designs with 100 hidden nodes
give reasonable damage loci prediction, where the most complex design
with four hidden layers performed best. On the other hand, when three
hidden layers were fixed and the number of hidden nodes altered, the
results with five and 20 hidden nodes were poor, especially for higher
damage levels.

The same trend of low MSE with higher NN complexity could be
seen for the other investigated joint types in Fig. 7. A NN design
with three hidden layers and 100 nodes seemed to be a good choice
for modelling all joints without having too many trainable weights. It
should be noted how different the shapes of the failure loci are and
how the architecture is flexible enough to account for that. Therefore
the design 3_100 was employed for the next validation steps.

4. Single connector test and component validation

The NN models from Section 3.3 were applied in large-scale FEM
analysis and verified against single connector tests, so called cross tests.
Those cross test have been used by Sønstabø et al. [4,14–16] for fitting
the constraint model parameters. The same parameters where used for
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Fig. 11. Results from dynamic axial crushing simulation FDS01 and SPR01.
the cohesive elements applying the Hanssen model and to train the NN
models. In addition, the NN models were validated with complex com-
ponent simulations and compared to the model by Hanssen et al. [7]
applied to cohesive elements. The component tests were designed to
challenge each of the investigated joints. In order to validate the NN
models the global force–displacement response and the local response
in the cohesive elements were compared.

4.1. Cross test and NN verification

The parameters for the constraint model can be found by inverse
modelling of a cross test. A cross test consists of two overlapping
sheets with the joint in the centre, shown in Fig. 8(a). The sheets are
rotated 90◦ with respect to each other so that they can be clamped
in a test machine. The two sheets are then pulled apart in a tension,
shear and mixed mode. The constraint model parameters for the inves-
tigated joints were found by Sønstabø et al. [4,14–16] and are given in
Table A.3.

The cross test simulations were set up in three ways: with the con-
straint model by Hanssen et al. [7], a cluster of four cohesive elements
replicating the constraint model, and four cohesive elements applying
the fully trained 3_100 NN model. Four cohesive elements where used
in order to give a better discretisation of the rivet area. The constraint
model itself is applied in form of a node-to-node connection using
the LS-DYNA keyword *CONSTRAINED_SPR2. The force–displacement
response of the joint FDS01 is displayed in Fig. 8. It can be observed
that the NN response is in good agreement with the constraint model
9

under tension and shear mode. Under mixed mode loading, the NN
approach showed approximately 10 % higher force and failure at higher
displacement.

The cross test results for the remaining joints can be seen in Fig. 9.
Good agreement between the NN and the Hanssen model applied to
cohesive elements was found. All five cross test simulations showed a
successful application of the NN model.

4.2. FE modelling

Fig. 10 shows the FE models used for validation with the component
tests. Validation of joints SPR01 and FDS01 was done with a crash
box model which was rigidly fixed at the bottom and axially crushed,
Fig. 10(b). The T-component test, Fig. 10(a), was used for FDS02,
where a hat-shaped part was pulled perpendicular to the U-shaped part
resulting in a shear-dominated loading of the joints. Joints FDS03 and
FDS04 were combined in the three-point-bending test, Fig. 10(c), where
a double-chamber profile was pushed while two outer beams rested on
rigid posts. All FE simulations were conducted in LS-DYNA with the
explicit solver in its version 9.3.1 [13]. The plates were represented by
a shell mesh using Belytshko–Tsay elements with reduced integration
and five integration points through the thickness. The elements had a
quadrilateral shape and an approximate size of 2×2 mm which is similar
to mesh-sizes used in full car crash analyses. Friction between parts
was modelled by a penalty-based formulation with a general friction
coefficient of 0.2. In order to account for the work hardening in the
bent parts of the cold-formed profiles, the initial plastic strain resulting
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Fig. 12. Local response from cohesive element FDS01; force normalised by cohesive element area.
from deformation was included in the models. All plates which were
connected by joints were made from aluminium. An isotropic plasticity
model was used for the plate material and the material parameters were
adopted from Sønstabø et al. [4,14–16]. Governing equations and the
respective material parameters can be found in Appendix A, Table A.4.

4.3. Component validation

The NN model was applied in a component simulation for each
of the investigated joints. The performance of the cohesive elements
applying the NN model was compared to cohesive elements applying
the model by Hanssen et al. [7] (see Section 2.1) and related to the
experimental results.

4.3.1. Crash box test with FDS01/SPR01
Fig. 11 shows the global force–displacement response from a dy-

namic axial crushing simulation for joint FDS01 and SPR01. The
component experienced buckling and characteristic folding patterns
(Fig. 11(c)) with a total crushing displacement of approximately
150mm. The simulations were able to reproduce the deformation seen
in the experiments, both with the model by Hanssen and the NN-model.
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Buckling of the profile was governing the force–displacement response
so individual joint failure could not be assessed.

The local response from each of the cohesive elements resembling
the seven joints is compared in Fig. 12. Each graph shows the evo-
lution of the normal or tangential stress over the maximum effective
displacement during axial crushing. Element deletion was initiated in
elements II and V (see Fig. 11(c)) when reaching an effective maximum
displacement 𝜂 = 1. It is worth noticing that the effective maximum
displacement cannot decrease as the value describes the amount of
damage accumulated. A sudden decrease in stress without decreasing
the effective maximum displacement implies unloading. The local be-
haviour is complex with multiple points of unloading and eventual
failure with multiple changes of loading mode. The NN model was able
to reproduce the force–deformation behaviour in many loading scenar-
ios with relatively small stress deviation compared to the constraint
model.

The crash box component was made from a hat-section profile and
a flat plate joined with 14 rivets (seven per side) along the seam
line. Symmetry was applied to reduce simulation time. The component
was fixed at one end using rigid boundary conditions. The full-size
component was subjected to an impacting mass of 395.5 kg at 10m∕s.
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Fig. 13. Result from T-component simulations FDS02.
Fig. 14. Normal force 𝑓n (top) and tangential force 𝑓t (bottom) versus effective displacement 𝜂; forces normalised by cohesive element area.
The NN model was able to reproduce the local stress versus effective
maximum displacement behaviour compared to the Hansen-model. The
local response for the SPR01 simulation can be found in Appendix B
Fig. B.27 and Fig. B.28.

4.3.2. T-component with FDS02
The global force–displacement response from the quasi-static T-

component tests with joint FDS02 is displayed in Fig. 13(a). The
specimen was composed of one U-shaped profile and one hat-section
profile aligned at a 90◦ angle. The profiles were joined with three FDS
on each side. The U-shape profile was clamped at both ends while the
hat-profile was pulled axially at the free end, giving shear-dominated
loading on the joints. Boundary conditions along the symmetry plane
where applied to save computational cost. While the initial stiffness and
shape of force–displacement curve of the experiments was not captured
by the simulation, the NN-model gave exactly the same response as
the constraint model it was trained on. The local stress versus effective
maximum displacement response from the cohesive elements is seen in
Fig. 14, where the NN-model copies the constraint model again.
11
4.3.3. Three-point bending test with FDS03/FDS04
Fig. 15 shows the global force–displacement response from the

quasi-static three-point bending test for joints FDS03 and FDS04. The
specimen consisted of an extruded double-chamber profile and two
rectangular profiles attached in a 90◦ angle with L-brackets. The FDS03
joint was applied between the L-brackets and the rectangular profiles
whereas the FDS04 joint was applied between the L-brackets and
the double-chamber profile. The rectangular profiles rested on rigid
posts and the double-chamber profile was axially loaded resulting in
three-point bending. Joint failure of FDS04 could be seen between the
L-brackets and the double-chamber profile. No deviation in stiffness
could be seen between the constraint and the NN model in the be-
ginning of the test due to deformation in the parts only. The sudden
failure of elements IV and III was captured by both models, and is in
good accordance with the experimental force drop. The NN model led
to a sudden failure of elements II and III whereas the constraint model
gave failure of the remaining joints at later point. The local stress versus
the effective maximum displacement in the cohesive elements can be
seen in Fig. 16 and in Fig. 17. The local response for joint FDS03 shows
minor deviation between the constraint and the NN model. Both models
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Fig. 15. Result from three-point bending simulation.
Fig. 16. FDS04: Normal force 𝑓n (top) and tangential force 𝑓t (bottom) versus maximum effective displacement 𝜂; forces normalised by cohesive element area.
were only challenged to an effective maximum displacement of 0.1. The

deviation between the constraint and NN-model was relatively small for

element I with an equal stress-response and point of failure. Elements II

and III showed a good match of stress response but a premature failure

of the NN model. Element IV showed no deviation between both models

keeping in mind that the joints were only challenged until an early

stage.
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It was shown that a feedforward NN applied to a cohesive element
could model the joints in the component and they performed well com-
pared the cohesive elements applying the model by Hanssen. The local
response showed how the NN model reproduces the model by Hanssen
which served as the training basis. A common network architecture for
all examined joints was found. With a large enough amount of training
data, the NN model could probably replicate the constraint model even
better.
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Fig. 17. FDS03: Normal force 𝑓n (top) and tangential force 𝑓t (bottom) versus maximum effective displacement 𝜂; forces normalised by cohesive element area.
Fig. 18. Failure loci for NN trained on proportional loading with various amounts of modes, maximum effective displacement levels [0.7, 0.8, 0.9, 0.95, 1.0], joint FDS01.
5. Effects of partial training

This section covers the effect of data set size and data quality on
the NN modelling. That means in particular the investigation on how
many and which shape of stretch paths are necessary as training data in
order to achieve a reasonable joint model. The amount of training paths
necessary for a reasonable joint modelling will now be presented. The
training scenarios from Section 3.2 were used in order to train a NN
13
with a fixed 3_100 architecture but with various amounts of training
paths. In order to study the effects of training amount, joints FDS01
and FDS04 were modelled with a reduced number of training paths and
their respective component simulations were repeated. In Section 5.1
the effects of the three training scenarios (see Section 3.2) will be
presented in detail with joint response predictions on virtual stretch
paths.
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Fig. 19. NN trained on proportional loading with varying mode amount; three exemplary load cases with mode change and unloading/reloading, parameters from FDS01.
5.1. Virtual evaluation FDS01

Fig. 18 shows the failure loci of FDS01 for proportional loading.
The discretisation between normal and tangential loading ranged from
3 to 100 modes. The NN trained with at least 25 modes gave a good fit
compared to the fully trained NN from Section 3.3. A NN trained with
10 modes gave a good fit for lower maximum effective displacement
values but a worse fit close to failure. The effect for networks trained
with non-proportional paths and unloading/reloading are not shown in
the failure loci diagrams but were evaluated on arbitrarily generated
stretch paths.

Fig. 19 shows the predictions made by the networks, which were
only trained on the proportional loading paths. The stretch paths used
for validation included sudden mode changes and unloading/reloading.
While training on only three and five modes gave a deviation in the
force level, the predictions with a 25, 50 and 100 mode training gave a
good representation of the force level and also copied the evolution
of maximum effective displacement. The unloading paths could not
be reproduced, but the joint stiffness was maintained and kept in a
similar range. The results from the networks trained on unloading are
shown in Fig. 20. They show better prediction capabilities for unloading
14
compared to networks trained only on proportional loading. Fig. 21
shows an equal performance from a NN trained on non-proportional
loading as a NN trained on proportional loading. There were more
training paths with non-proportional loading than with proportional
due to the combination with the mode changes. A NN trained on non-
proportional paths did not seem to outperform a NN trained on only
proportional loading when challenged with the arbitrary load cases.

5.2. Component evaluation FDS01

Two network designs, one trained only on proportional loading with
25 modes and one network trained on unloading, were compared for
the component simulation. The training with unloading consisted of
five modes and five unloading positions giving as well 25 paths, so that
both NNs saw an equal number of training paths. The global force–
displacement response is compared to the simulation with the fully
trained NN and the simulation applying the model by Hanssen applied
to cohesive elements (see Fig. 22). Due to the folding motion of the
component, governing the force-response, no large deviations between
the models can be observed. The local stress response from the cohesive
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Fig. 20. NN trained on varying amount of load/unloading paths (fixed number of five unloading points); the amount of training paths is the number of modes multiplied by 5;
there are three arbitrary load cases with mode change and unloading/reloading, parameters from FDS01.
elements in the component simulations can be seen in Figs. 23 and 24
where they are compared to the fully trained NN (see Section 4.3.1)
and the constraint model. While the force response was captured quite
well by the two partially trained NN, both showed deviation at failure
especially in cohesive elements V and VI with an increased normal
cohesive force. Both partially trained networks were not able to capture
the point of failure in cohesive element V. Even though the joints in
the crash box simulation experienced unloading and complex mode
changes, the partially trained networks performed quite well compared
to the Hanssen model. Although one NN was not trained on unloading
paths, it gave reasonable results in the unloading phase and maintained
the force level.

5.3. Component evaluation FDS04

The comparison between the fully and partially trained NNs for
modelling of FDS04 is seen in Fig. 25. The effect of partially trained
15

NNs was not investigated for FDS03 as the joint was not challenged
much during the component test. The 5/5 load/unload NN showed
an increased peak force and failure initiation at a larger displacement
while the proportional loading NN resembled the full trained model
with slightly later failure at the last two force drops. The global re-
sponse can be explained by evaluating the local behaviour (see Fig. 26)
where the increased force level in the 5/5 load/unload model is visible.
While the proportional loading model depicts the Hanssen model and
fully trained NN model quite well, the NN trained on load/unloading
paths shows the late failure initiation. All NN models reached the point
of failure in cohesive elements I, II and III while the model by Hanssen
only reached failure in elements I and II.

6. Conclusions

A constitutive model for describing the force–deformation behaviour
for a constraint model was replaced by a feedforward NN and ap-
plied to five different joint configurations. The constraint models were

calibrated with cross tests and the parameters were used to create
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Fig. 21. NN trained on varying amount of non-proportional paths and 10 points where the mode changed; the amount of training paths is the number of modes multiplied by
0; there are three arbitrary load cases with mode change and unloading/reloading, parameters from FDS01).
irtual load paths for training the neural networks. Both the NN
nd the constraint model equations were implemented as cohesive
aterial. The NN model and the constraint model could be used in

orm of cohesive elements. The NN model was first verified with single
onnector cross tests and validated with component tests. The results
ere compared on a global force–displacement level and by the local

tress–stretch response. The following conclusions were drawn:

• One common feedforward NN architecture was able to represent
the behaviour of five joints, namely one self-piercing rivet and
four different flow-drill screws.

• The amount of training data and necessary load paths for the NN
were evaluated. It was shown that even with a reduced amount
of training data, a reliable neural network fit was achieved.

• The NN was able to give reliable predictions of the failure loci
even after relatively scarce representation of loading directions.

• The NN could make reasonable predictions for unloading situa-
tions even when it was not trained on them.
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• The NN model was compared to the constraint model in single
joint tests and component tests where the NN model showed
reasonable performance.

Numerical techniques like NN-modelling could be used in the future
to increase the accuracy of joint models in FE analyses. Large amounts
of data would be generated by detailed mesoscopic modelling of joint
behaviour subjected to different load combinations. The dataset could
then be used for training of a NN, to represent the behaviour of the
mechanical joint in a large-scale analysis.
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Fig. 22. FDS01 axial crushing, global force–displacement simulation (joint FDS01) compared to experiments, full and partially trained NN.
Fig. 23. Normal force 𝑓n versus maximum effective displacement 𝜂; force normalised by cohesive element area; for FDS01.
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Fig. 24. Tangential force 𝑓t versus maximum effective displacement 𝜂; force normalised by cohesive element area; for FDS01.
Fig. 25. Global force–displacement response, FDS03 full trained, FDS04 partially trained.
Table A.3
Constraint model parameters for each joint type; deformation to failure given in mm; force given in MPa.
JointID Top

sheet
Bottom
sheet

𝛿fail
n 𝛿fail

t 𝑓max
n 𝑓max

t 𝜉n 𝜉t 𝛼1 𝛼2 𝛼3

SPR01 AA6016 T4
2.0 mm

AA6016 T4
2.0 mm

7.0 6.0 42.0 73.0 0.9 0.6 0.124 0.488 1.750

FDS01 AA6016 T4
2.0 mm

AA6016 T4
2.0 mm

3.2 5.0 107.5 190.0 0.95 0.5 0.108 0.436 1.878

FDS02 AA6016 T4
2.0 mm

AA6063 T6
2.0 mm T6

3.5 16.0 108.0 230.0 0.72 0.45 0.05 1.169 2.0

FDS03 AA6060 T6
2.5 mm

AA6060 T6
2.5 mm

4.6 23.0 65.0 117.0 0.98 0.6 1.812 1.24 0.956

FDS04 AA6060 T6
2.5 mm

AA6005 T6
2.5 mm T6

4.6 21.0 88.8 135.0 0.95 0.6 1.17 1.23 0.788
18
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Fig. 26. Normal force 𝑓n (top) and tangential force 𝑓t (bottom) versus effective maximum displacement 𝜂; forces normalised by cohesive element area; see element labelling
Fig. 15).
Fig. B.27. SPR01: Normal force 𝑓n versus maximum effective displacement 𝜂; force normalised by cohesive element area.
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Table A.4
Material model parameters are given with a Young’s modulus of 70 GPa and a Poisson’s
ratio of 0.3; the Voce hardening parameters are given in MPa.

Material 𝜎0 𝑄R1 𝜃R1 𝑄R2 𝜃R2 𝑄R3 𝜃R3

AA6016 T4
2.0 mm

117.6 29.2 25000.0 149.5 2011.0 100.0 230.0

AA6063 T6
2.0 mm

204.6 8.0 12300.0 55.0 1472.0 0.0 0.0

AA6060 T6
2.5 mm

183.2 2.5 5746.3 52.1 985.7 0.0 0.0

AA6005 T6
2.5 mm

275.7 8.6 7095.1 48.5 702.3 12.2 166.2

Appendix A. Material and constraint modelling

This is the isotropic plasticity model used for modelling the plate
material. The Hershey-Hosford yield criterion with an exponent of
19
8 and Voce-hardening [25] were applied. The yield function can be
written as

𝑓 = 𝜎eq − (𝜎0 + 𝑅) ≤ 0, (A.1)

here 𝜎𝑒𝑞 is the equivalent stress, 𝜎0 the initial yield stress and 𝑅 is the
sotropic hardening variable. The equivalent stress 𝜎𝑒𝑞 is given as

eq = 𝑛

√

1
2
|𝜎2 − 𝜎3|𝑛 +

1
2
|𝜎3 − 𝜎1|𝑛 +

1
2
|𝜎1 − 𝜎2|𝑛 (A.2)

hich is a generalised form of the von Mises equivalent stress with the
aterial dependent exponent 𝑛 = 8, and the principal stresses 𝜎1, 𝜎2

and 𝜎3. The hardening variable 𝑅 is given by the Voce hardening law,

𝑅 =
𝑁
∑

𝑄R𝑖

(

1 − exp
(

−
𝜃R𝑖 𝑝

))

, (A.3)

𝑖=1 𝑄R𝑖
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Fig. B.28. SPR01: Tangential force 𝑓t versus maximum effective displacement 𝜂; force normalised by cohesive element area.
here 𝑁 is the number of terms used, and 𝑄R𝑖 and 𝜃R𝑖 are the final
tress where hardening saturates and the initial hardening modulus.
he term is denoted with 𝑖.

ppendix B. Crash box simulation with SPR01

Figs. B.27 and B.28 show the local response from the cohesive
lements in the crash box simulation with joint SPR01. The response
rom the NN model is in good accordance with the cohesive elements
pplying the Hanssen-model. Loading and reloading could be replicated
ut no element deletion occurred in neither of the two simulations.
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