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Abstract— This paper proposes a distributed Kalman filter (DKF)
with enhanced robustness against Byzantine adversaries. A Byzan-
tine agent is a legitimate network agent that, unlike an honest
agent, manipulates information before sharing it with neighbors to
impair the overall system performance. In contrast to the literature,
the DKF is modeled as a distributed optimization problem where
resiliency against Byzantine agents is accomplished by employing
a total variation (TV) penalty term. We utilize a distributed subgra-
dient algorithm to compute the state estimate and error covariance
matrix updates of the DKF. Additionally, we prove that the proposed
suboptimal solution converges to a neighborhood of the optimal
centralized solution of the Kalman filter (KF) with a bounded radius
when Byzantine agents are present. Numerical simulations corrob-
orate the theoretical findings and demonstrate the robustness of the proposed DKF against Byzantine attacks.

Index Terms— Multiagent network, Kalman filtering, Distributed optimization, Byzantine attack, attack robustness

I. INTRODUCTION

D ISTRIBUTED filtering techniques have found
widespread use in diverse applications such

as environmental monitoring, smart grids, and state
estimation [1]–[4]. Due to the lack of a fusion center
in distributed Kalman filtering scenarios, agents rely on
local interactions to complete a common task across the
network [5], [6]. However, the local collaboration renders
distributed Kalman filtering susceptible to security attacks.

Attacks on multi-agent networks can be classified as ei-
ther active or passive; for example, a passive attack can be
an eavesdropper intercepting a communication link between
agents in order to obtain information [7]. On the other hand,
active attacks include denial-of-service attacks (DoS) and
data falsification attacks. During DoS attacks, agents cannot
exchange information due to link blockages [8]. In contrast, in
data falsification attacks, false information is injected into the
network [9] by either external adversaries or malicious agents,
also termed Byzantine agents, to degrade the overall system
performance. Data falsification attacks can be performed inde-
pendently by each Byzantine agent or designed cooperatively
in order to maximize system degradation [9].

Data falsification attacks, in general, have been extensively
studied to analyze the impact of malicious behaviors on
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distributed filtering and estimation [10]–[18]. One approach to
reducing the impact of malicious adversaries on the network
performance is to detect them and counteract their actions
by implementing correction measures [19]–[21]. For example,
[22] proposed a defense strategy for a distributed recursive
filter by detecting adversarial attacks based on changes in
innovation signals of agents and redesigning their gains.
Several studies have been proposed in the literature to design
an optimal data falsification attack from the perspective of an
adversary that evades detection [23]–[26]. For example, the
authors in [23] and [24] propose stealthy linear data falsifica-
tion attacks in remote state estimation scenarios assuming K-
L divergence and χ2 detectors, respectively. Furthermore, the
integrity attack also includes stealthy attack strategies, which
inject false data into the network without being detected [27]–
[29]. In contrast, [25], [26] mainly focus on designing attacks
to ensure that the probability of detection does not exceed
a given threshold. These have shown that relying on attack
detection to limit the impact of adversaries has limited utility
in the presence of stealth attacks. Hence, there is a need for
a robust algorithm that can operate effectively even when
unidentified attacks occur [30].

To that end, works in [31], [32] propose using the statistics
of innovation signals to re-design the consensus weights of
agents in distributed signal detection and filtering scenarios
to minimize the impact of Byzantine agents. A Byzantine-
resilient distributed state estimation algorithm is proposed
in [33], which allows agents to update state estimates locally
by selecting the best subset of neighbors to be effective in
updating the state estimate. To reduce computational resources,
in [34], [35], distributed state estimation approaches provide
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resilience against measurement attacks by assigning adaptive
weights to received measurements from neighbors. By assign-
ing smaller weights to measurements whose norm exceeds
a certain threshold, they would have a smaller impact on
updating state estimates. The studies in [36], [37] investigate
the problem of multi-sensor estimation under undetectable
attacks. From the perspective of an adversary, authors in [36],
[37] design the attack to maximize the estimation error of the
network. Moreover, the gains of the estimator are re-designed
in order to mitigate the impact of the designed optimal attack.
In addition, a secure state estimation strategy with triple-loop
local state observers is proposed in [38], while in [39], the
secure state estimation problem is solved by a local observer
that achieves robustness against sensor attacks by employing
the median of its local estimates.

Homomorphic encryption schemes have been proposed to
further ensure the confidentiality of the signals sent over
the network [40]. In [41], the authors propose employing
additively homomorphic encryption, which enables the cloud
server and security module to integrate the information of
multiple parties while maintaining data privacy. However, the
authors in [42] propose a modified encoding and decoding
scheme that, unlike the previous work in [43], does not nega-
tively affect estimation performance in the absence of attacks
and further protects data integrity in multi-sensor networks.
Moreover, utilizing randomization-based methods to disrupt
and mislead attackers in their malicious activities is a less
resource-intensive method to mitigate the impact of adversarial
attacks in the network [44]. Furthermore, to improve network
resistance in the presence of adversarial attacks, [45], [46]
introduced a redundancy-based approach for CPSs at different
levels of communication, channels, software, and hardware.
Redundant subsystems serve as backups or parallel integrity
verification units to reduce the effect of malfunctioning be-
haviors in the network [47]. However, an approach based on
redundancy demands strict network requirements and can only
tolerate a few Byzantine adversaries. Accordingly, the authors
in [48] reduce the stringent requirements of redundancy to only
a group of agents and make them resistant to attacks. Gener-
ally, these approaches reduce the impact of adversarial attacks
on the network. Still, they require more local computations
and information transfer in the network, which is undesirable
in resource-constrained situations.

The Kalman filtering algorithm has been modeled as an
optimization problem. However, this optimization-based ap-
proach has not been analyzed in adversarial situations or
adapted for robustness in the presence of Byzantine agents.
Therefore, contrary to the literature, we propose a distributed
Kalman filtering algorithm modeled as an optimization prob-
lem with total variation-based constraints that provides ro-
bustness to coordinated Byzantine attacks. First, we design
the filtering algorithm by adapting the framework proposed
in [49] to model the Kalman filtering operations as a so-
lution to an optimization problem and using the TV-norm
penalty in the objective function to enforce resiliency against
data-falsification attacks in [50]–[52]. Then, we solve the
TV-norm-penalized optimization problem using a distributed
subgradient algorithm that updates the state estimate for all

agents through local collaborations. Furthermore, we model
the error covariance update of agents as a TV-norm-penalized
optimization problem, which is solved by a similar subgradient
approach in the presence of Byzantine agents. Moreover,
we show that the proposed TV-norm penalized optimization
problem corresponding to the state estimate update results
in the same solution as the centralized Kalman filter (CKF).
In addition, in the presence of Byzantine agents, we show
that the proposed suboptimal solution for the state estimate
update, obtained by the subgradient algorithm, converges to
a bounded neighborhood of the optimal solution. Finally, we
provide numerical simulations to demonstrate the resiliency
against Byzantine behavior by obtaining lower filtering mean
square error (MSE).

The remainder of this article is organized as follows.
Section II presents the problem formulation and provides
background information. Section III proposes a DKF with a
TV-norm penalized objective function that is robust against
Byzantine agents. Section IV presents the convergence of the
proposed TV-norm-penalized distributed optimization problem
to a bounded neighborhood of the CKF solution. Finally,
numerical results are provided in Section V to demonstrate
the resiliency against Byzantines, and Section VI concludes
the article.

Mathematical Notation: Scalars are denoted by lower-
case letters, column vectors by bold lowercase, and matrices
by bold uppercase. Superscripts (·)T and (·)−1 denote the
transpose and inverse operators, respectively. The symbol 1m

represents the m × 1 column vector with all entries equal
to one, and Im is the m × m identity matrix. The trace
operator is denoted as tr(·), whereas the greater than and
less than symbols in the scalar inequalities are represented
by > and <, respectively. A positive semidefinite matrix A
is denoted by A ≽ 0 and A ≽ B indicates that A − B is a
positive semidefinite matrix. The element-wise sign function
is represented by sign(·) where given x > 0, sign(x) = 1
and sign(x) = −1 when x < 0. In case of x = 0, the
value of sign(x) can be any arbitrary value within [−1, 1].
The half vectorization of a symmetric matrix M ∈ Rm×mis
denoted by vech(M) ∈ Rm(m+1)/2, where vech(M) =
[M1,1, · · · ,M1,m,M2,2, · · · ,M2,m, · · · ,Mm,m]T with Mij as
the ijth element of M. The operator of vec−1

h (·) denotes the
inverse function of vech(·), i.e., vec−1

h (vech(M)) = M. The
stacked vector x = [a]Ni=1 ∈ RNm corresponds to N times
stacking the smaller vector a ∈ Rm together.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a network modeled as a connected graph G =
{N , E}, where the node set N represents agents of the network
and E is the set of edges that represent communication links
between agents, i.e., (i, j) ∈ E if nodes i and j are connected.
Additionally, the set Ni specifies the neighborhood of node
i and does not include the node itself. The cardinality of the
set Ni is denoted by |Ni|, while N = |N | is the number of
agents in the network.
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A. Distributed Kalman Filter (DKF)
We revisit the DKF problem that is modeled as a maximum

likelihood estimation problem and represents the relationship
between a KF [5] and an optimization problem [49]. The
state-space model characterizes the state vector evolution and
observation vectors and is given by

xk+1 = Fxk +wk (1)
yi,k = Hixk + vi,k (2)

where for time instant k, F ∈ Rm×m denotes the state
transition matrix, H = [HT

1, · · · ,HT
N ]T ∈ RNn×m denotes the

network observation matrix, yk = [yT
1,k, · · · ,yT

N,k]
T ∈ RNn

is the network observation vector, and wk ∈ Rm and vk =
[vT

1,k, · · · ,vT
N,k]

T ∈ RNn, are process and observation noises,
respectively. The process noise wk and observation noise vk

are zero-mean white Gaussian noise processes with a covari-
ance matrices Q ∈ Rm×m and R ∈ RNn×Nn, respectively,
where R ≜ diag({Ri}Ni=1) and Ri = E{vi,kv

T
i,k} ∈ Rn×n.

We assume that the pair (F,H) is observable and observation
noise sequences are uncorrelated. Every agent estimates the
state of the network by processing its local and neighboring
information. A local estimate for each agent must be provided
in a way that the local mean squared error of the agent is
minimized.

B. Byzantine Attack Strategy
We assume a distributed setting in which a subset of agents

B are Byzantines, i.e., B ⊂ N , and unlike honest agents,
they share the manipulated version of their local estimates. In
order to update the a posteriori state estimate, agents need
information exchange with neighbors; we, therefore, assume
that Byzantine agents falsify their state estimate before sharing
it with neighbors at each iteration. The shared state estimate
can be modeled as

x̃l
i,k =

{
xl
i,k + δli i ∈ B

xl
i,k i /∈ B

(3)

where at agent i and iteration l, xl
i,k denotes the state estimate

and δli ∈ Rm is the perturbation sequence of the Byzantine
agent. To maximize the attack stealthiness, as shown in [53],
[54], we consider the perturbation sequence to be a zero-
mean Gaussian sequence with covariance matrix Σi ∈ Rm×m.
Moreover, in order to maximize the damage caused by the
Byzantine attack, we assume that Byzantines design a co-
ordinated attack with covariance matrix Σ = E{δl(δl)T} ∈
RNm×Nm where δl = [(δl1)

T, · · · , (δlN )T]T is the network-
wide perturbation sequence and δli = 0 if i /∈ B.

III. BYZANTINE-ROBUST DISTRIBUTED KALMAN FILTER
(BR-DKF)

We consider a network of N agents and assume each agent
runs a local KF without sending information to a fusion center.
Instead, agents exchange information with their neighbors to
develop their optimal estimates. The communication network
is considered as graph G with adjacency and Laplacian ma-
trices E and L, respectively. Each agent i ∈ N updates its

local estimate by employing the local observation vector in (2).
Similar to the centralized case in [49], the DKF also requires
two steps of prediction and correction, where for each agent
i and time instant k, the prediction updates are modeled as

x̂i,k|k−1 = Fx̂i,k−1 (4)

Pi,k|k−1 = FPi,k−1F
T +Q (5)

with x̂i,k−1 and Pi,k−1 = E{ei,k−1e
T
i,k−1} being the state

estimate and error covariance matrix at time instant k − 1,
and ei,k−1 = xk−1 − x̂i,k−1. The a priori state estimate
and error covariance are denoted by x̂i,k|k−1 and Pi,k|k−1 =
E{ei,k|k−1e

T
i,k|k−1}, respectively, with ei,k|k−1 = xk −

x̂i,k|k−1.
The correction steps of the DKF can be modeled as the solu-

tion of a constrained optimization problem [49]; in particular,
the a posteriori state estimates can be obtained by solving the
optimization problem

min
{xi,k}N

i=1

N∑
i=1

fi(xi,k)

s. t. xi,k = xj,k, ∀j ∈ Ni, i = 1, 2, · · · , N
(6)

where the local objective function fi(xi,k) is given by

fi(xi,k) =
1

2

(
(yi,k −Hixi,k)

TR−1
i (yi,k −Hixi,k) (7)

+
1

N
(xi,k − x̂i,k|k−1)

TP−1
i,k|k−1(xi,k − x̂i,k|k−1)

)
and the constraints enforce consensus across all the agents
in the network. The distributed Kalman filtering problem can
be solved by any distributed algorithm that finds the optimal
solutions in (6), i.e., x∗

i,k for each i ∈ N . Subsequently, the
a posteriori state estimates of agents are obtained as x̂k =
[x̂T

1,k, · · · , x̂T
N,k]

T where x̂i,k = x∗
i,k.

Motivated by [50], [51], the constraints in (6) can be approx-
imated by a TV-norm penalty which also endows robustness to
data falsification attacks. In the absence of a Byzantine agent
in the network, the TV-norm-penalized problem of (6) can be
formulated as

x∗
ck

= min
{xi,k}N

i=1

N∑
i=1

fi(xi,k) +
λtv

2

∑
j∈Ni

∥xi,k − xj,k∥1


(8)

where x∗
ck

= [(x∗
1,k)

T, · · · , (x∗
N,k)

T]T and λtv is a penalty
parameter. Due to the penalty parameter λtv, estimates xi,k

and xj,k are forced to be close. The larger the λtv, the closer
xi,k and xj,k become. However, the TV-norm penalty allows
for some pairs of xi,k and xj,k to be different, which is crucial
when Byzantine agents are present in the network.

We solve the optimization problem in (8) with a subgradient
method [51], and derive the state estimate update at each agent
i ∈ N as

xl+1
i,k = xl

i,k−αk

∇xi,k
fi(x

l
i,k) + λtv

∑
j∈Ni

sign(xl
i,k − xl

j,k)


(9)

where αk > 0 denotes the step size and xl
i,k is the state

estimate of the subgradient method at agent i and iteration
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l. Assuming that a group of agents is conducting Byzantine
attacks on the network, i.e., B ⊂ N , and by substituting the
gradient ∇xi,k

fi(xi,k), we obtain

xl+1
i,k = xl

i,k − αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑
j∈Ri

sign(xl
i,k − xl

j,k)

+ λtv

∑
j∈Bi

sign(xl
i,k − x̃l

j,k)

)
(10)

where x̃l
j,k = xl

j,k + δlj is the state estimate received from
the jth Byzantine neighbor, Ri and Bi include honest and
Byzantine members of Ni, and

Ωi,k = HT
iR

−1
i Hi +

1

N
P−1

i,k|k−1

θi,k = HT
iR

−1
i yi,k +

1

N
Ωi,k|k−1x̂i,k|k−1

(11)

with Ωi,k|k−1 = P−1
i,k|k−1. Regardless of the state estimate

received from neighbors, the value of sign(xl
i,k − x̃l

j,k) is
restricted to [−1, 1]. Thus, the last term in (10) limits the effect
of perturbed data received from a Byzantine agent, so that the
state estimate update is more resistant to Byzantine attacks.

Similarly, the error covariance update also requires design-
ing an optimization problem to obtain the average consensus
of the information matrices NΩi,k throughout the network.
To this end, we propose the following optimization problem
that derives the error covariance update

min
{ζi}N

i=1

N∑
i=1

∥ζi − vech(NΩi,k)∥2F

s. t. ζi = ζj , ∀j ∈ Ni, i = 1, 2, · · · , N ·
(12)

The optimal solution of (12) is denoted by ζ∗ =
[(ζ∗

1)
T, · · · , (ζ∗

N )T]T which returns the average of
vech(NΩi,k) throughout the entire network. Subsequently,
the error covariance matrix can be updated as
Pi,k = (vec−1

h (ζ∗
i ))

−1. Motivated by the TV-norm-penalized
optimization problem in (8), we modify the optimization
problem in (12) as

ζ∗ = min
{ζi}N

i=1

N∑
i=1

gi(ζi) +
λtv

2

∑
j∈Ni

∥ζi − ζj∥1

 (13)

where gi(ζi) = ∥ζi − vech(NΩi,k)∥2F . Employing a similar
subgradient approach as in (9), results in

ζl+1
i = ζl

i − γk

∇ζi
gi(ζ

l
i) + λtv

∑
j∈Ni

sign(ζl
i − ζl

j)

 (14)

where γk > 0 denotes the step size and the update equation
in (14) is simplified as

ζl+1
i =ζl

i − γk

ζl
i − vech(NΩi,k) + λtv

∑
j∈Ni

sign(ζl
i − ζl

j)


(15)

After a large enough number of iterations, say l∗, the subopti-
mal solutions in (10) and (15) converge to (xl∗

i,k, ζ
l∗

i ) and the

Algorithm 1 Byzantine-Robust DKF (BR-DKF)
• For each agent i ∈ N
• Initialize x̂i,0 and Pi,0

1: for all k > 0 do
2: x̂i,k|k−1 = Fx̂i,k−1

3: Pi,k|k−1 = FPi,k−1F
T +Q

4: Ωi,k|k−1 = P−1
i,k|k−1

5: Ωi,k = HT
iR

−1
i Hi +

1
NΩi,k|k−1

6: θi,k = HT
iR

−1
i yi,k + 1

NΩi,k|k−1x̂i,k|k−1

7: Set x1
i,k = 0 and ζ1

i = 0
8: for l = 1 to l∗ do
9: Share xl

i,k + δli with neighbors if i ∈ B
10: xl+1

i,k = xl
i,k − αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑
j∈Ni

sign(xl
i,k − x̃l

j,k)
)

11: ζl+1
i = ζl

i − γk

(
ζl
i − vech(NΩi,k) + λtv

∑
j∈Ni

sign(ζl
i − ζl

j)
)

12: end for
13: x̂i,k = xl∗

i,k

14: Pi,k = (vec−1
h (ζl∗

i ))−1

15: end for

filtering a posteriori state estimate and error covariance matrix
can be updated as

x̂i,k = xl∗

i,k

Pi,k = (vec−1
h (ζ∗

i ))
−1·

Assuming that Byzantine agents manipulate only state esti-
mates, i.e., falsify the state estimate xl

i,k at each iteration l,
Algorithm 1 summarizes detailed operations of the proposed
BR-DKF. It can be seen in Algorithm 1 that two additional
sign(·) operations are computed at each iteration l, compared
to conventional consensus-based DKFs. The complexity of
sign(·) operator is dominated by the complexity of O(m2) for
the multiplication of Ωi,kx

l
i,k at each iteration l. As a result,

the local computational complexity of the proposed method
is the same as that of the conventional consensus-based DKF
algorithms.

IV. PERFORMANCE ANALYSIS

In this section, we demonstrate that the TV-norm-penalized
problem in (8) yields a feasible solution when the penalty
parameter λtv is sufficiently large. We also show that the
suboptimal solution in (10) converges to a neighborhood of the
optimal solution of the problem in (8) with a bounded radius
when Byzantine agents are in the network. To assist in future
calculations, we define A = [aij ] ∈ RN×|E| as the node-edge
incidence matrix where for each edge e = (i, j) ∈ E with
i < j, we set aei = 1 and aje = −1, otherwise, the elements
of A remain zero. In the following Theorem, we establish the
optimality of the proposed solution in (8) to yield the same
solution as the centralized solution x̂∗

k in [49]. We provide
a lower bound threshold for the penalty parameter λtv that
guarantees convergence of the solution in (8) to the centralized
solution in [49].

Theorem 1: Given that the network topology is connected,
if λtv ≥ λ0 where

λ0 =

√
N

σmin(A)
max
∀k

max
i∈N

∥Ωi,kx
∗
i,k − θi,k∥∞ (16)
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with σmin(A) being the minimum non-zero singular value of
A, Ωi,k and θi,k defined in (11); then, for the optimal solution
x∗
ck

in (8) and the optimal solution of the CKF problem x̂∗
k

in [49], we have x∗
ck

= [x̂∗
k]

N
i=1.

Proof: The proof begins with stating the fact that for
each i ∈ N , the optimal solution x∗

ck
= [x∗

i,k]
N
i=1 satisfies the

optimality condition

∇xi,k
fi(x

∗
i,k) + λtv

∑
j∈Ni

sign(x∗
i,k − x∗

j,k) = 0· (17)

Let us assume sij = sign(x∗
i,k − x∗

j,k) and νi,k =

∇xi,k
fi(x

∗
i,k);

1 then knowing that sji = −sij , we have

νi,k + λtv

∑
j∈Ni,i<j

sij − λtv

∑
j∈Ni,i>j

sij = 0· (18)

Assuming νk = [νT
1,k, · · · ,νT

N,k]
T and s = [sT

1, · · · , sT
|E|]

T

with st = sij for each (i, j) ∈ E , we have

νk + λtvAs = 0· (19)

Now the problem is to show that (19) has at least one solution
s∗ and due to the structure of s its elements are within [−1, 1]
or ∥s∥∞ ≤ 1. The rank of A is N − 1 with the column
null space of one vector, i.e., 1N , since G = {N , E} is
bidirectionally connected. In addition, the optimality condition
of the centralized solution in [49] satisfies∑

i∈N
νi,k =

∑
i∈N

∇xi,k
fi(x

∗
i,k) = 0 (20)

which means λtvA and νk share the same null space and have
the same rank that consequently, states that we will have at
least one solution for (19). In order to find the solution that
satisfies ∥s∥∞ ≤ 1, we consider the least-squares solution as
s = − 1

λtv
A†νk where † denotes the pseudo inverse. The least-

squares solution is bounded as

∥s∥2 =
1

λtv
∥A†νk∥2· (21)

Then, we have

∥s∥2 ≤ 1

λtv
σmax(A

†)∥νk∥2 ≤ 1

λtvσmin(A)
∥νk∥2 (22)

where σmax(·) and σmin(·) represent the maximum and min-
imum non-zero singular values of the argument matrix, re-
spectively. Since ∥s∥∞ ≤ ∥s∥2 and ∥νk∥2 ≤

√
N∥νk∥∞, we

have

∥s∥∞ ≤
√
N

λtvσmin(A)
∥νk∥∞ =

√
N

λtvσmin(A)
max
i∈N

|νi,k|·
(23)

Thus, ∥s∥∞ ≤ 1 if λtv ≥
√
N

σmin(A) maxi∈N |νi,k| for each k,
which results in the requirement of λtv ≥ λ0 where

λ0 =

√
N

σmin(A)
max
∀k

max
i∈N

∥∇x∗
ci
fi(x

∗
ci)∥∞

=

√
N

σmin(A)
max
∀k

max
i∈N

∥Ωi,kx
∗
i,k − θi,k∥∞

1Throughout the article, we remove the index k from sij in order to
simplify the notation.

that completes the proof.
After showing the convergence of the proposed method to

the desired centralized case, we need to theoretically analyze
the performance of the proposed solution in the presence of
Byzantines. The following theorem shows that the proposed
suboptimal solution in (10) converges to a neighborhood of the
optimal centralized solution within a bounded radius despite
the presence of Byzantine agents.

Theorem 2: Given the assumptions in Theorem 1 and λtv ≥
λ0, at each agent i ∈ N and the presence of Byzantine agents,
the solution proposed in (10) stays in the neighborhood of the
optimal solution x∗

ck
= [x∗

i,k]
N
i=1 in (8) with radius

lim
l→∞

El{∥xl+1
i,k − x∗

i,k∥2} ≤ ∆0

1− ∥∆∥
(24)

where ∆ =
(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
I − 2αkΩi,k, ∆0 =

λ2
tvαk(4αk+

1
ε )(4|Ri|2+|Bi|2)m, and the step size αk satisfies

αk ≤ min
i∈N

{
λmin(Ωi,k)− ε

∥Ωi,k∥2

}
· (25)

Proof: The proof begins by computing the gap between
the optimal solution in (8) and the proposed solution in (10)
after l iterations as follows

El{∥xl+1
i,k − x∗

i,k∥2} = El{∥xl
i,k − x∗

i,k (26)

− αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑
j∈Ni

sign(xl
i,k − xl

j,k)
)
∥2}·

In this case, (26) can be further simplified as

El{∥xl+1
i,k − x∗

i,k∥2} = El{∥xl
i,k − x∗

i,k∥2} (27)

+ α2
k El{∥Ωi,kx

l
i,k − θi,k + λtv

∑
j∈Ni

sign(xl
i,k − xl

j,k)∥2}︸ ︷︷ ︸
β1

− 2αk < xl
i,k − x∗

i,k,Ωi,kx
l
i,k − θi,k + λtv

∑
j∈Ni

sign(xl
i,k − xl

j,k) >︸ ︷︷ ︸
β2

Considering the optimality condition for the optimal solution
x∗
ck

in (8) as

Ωi,kx
∗
i,k − θi,k + λtv

∑
j∈Ri

sign(x∗
i,k − x∗

j,k) = 0, (28)

we have

β1 =El{∥Ωi,kx
l
i,k − θi,k + λtv

∑
j∈Ri

sign(xl
i,k − xl

j,k)

+ λtv

∑
j∈Bi

sign(xl
i,k − x̃l

j,k)−Ωi,kx
∗
i,k + θi,k

− λtv

∑
j∈Ri

sign(x∗
i,k − x∗

j,k)∥2} (29)

=El{∥Ωi,k(x
l
i,k − x∗

i,k) + λtv

∑
j∈Bi

sign(xl
i,k − x̃l

j,k)

+ λtv

∑
j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)

)
∥2}·
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Due to the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

β1 ≤ 2El{∥Ωi,k(x
l
i,k − x∗

i,k)∥2}

+ 2λ2
tvEl{∥

∑
j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)

)
+

∑
j∈Bi

sign(xl
i,k − x̃l

j,k)∥2} (30)

≤ 2El{∥Ωi,k(x
l
i,k − x∗

i,k)∥2}

+ 4λ2
tv El{∥

∑
j∈Bi

sign(xl
i,k − x̃l

j,k)∥2}︸ ︷︷ ︸
≤|Bi|2m

+ 4λ2
tv El{∥

∑
j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)

)
∥2}︸ ︷︷ ︸

≤4|Ri|2m

·

Since for the matrix norm ∥ · ∥, we have2

tr(AB) ≤ min {∥A∥tr(B), ∥B∥tr(A)} (31)

where A and B are positive semi-definite and ∥AB∥ ≤
∥A∥∥B∥, we can show that

∥Ωi,k(x
l
i,k − x∗

i,k)∥2 ≤ ∥Ωi,k∥2∥xl
i,k − x∗

i,k∥2,

and subsequently

β1 ≤ 2∥Ωi,k∥2∥xl
i,k −x∗

i,k∥2 +4λ2
tv(4|Ri|2 + |Bi|2)m· (32)

Additionally, we have

−2× β2 = −2 < xl
i,k − x∗

i,k,Ωi,kx
l
i,k − θi,k

+ λtv

∑
j∈Ni

sign(xl
i,k − xl

j,k)

−Ωi,kx
∗
i,k + θi,k − λtv

∑
j∈Ri

sign(x∗
i,k − x∗

j,k) >

= −2 < xl
i,k − x∗

i,k,Ωi,k(x
l
i,k − x∗

i,k) >

− 2 < xl
i,k − x∗

i,k, λtv

∑
j∈Bi

sign(xl
i,k − x̃l

j,k) >

− 2 < xl
i,k − x∗

i,k, λtv

∑
j∈Ri

(
sign(xl

i,k − xl
j,k)

− sign(x∗
i,k − x∗

j,k)
)
> · (33)

The inequality −2ab ≤ εa2 + b2

ε for each ε ≥ 0 gives

−2 <xl
i,k − x∗

i,k, λtv

∑
j∈Bi

sign(xl
i,k − x̃l

j,k) >

≤ ε∥xl
i,k − x∗

i,k∥2 +
λ2

tv

ε
|Bi|2m (34)

and

−2 <xl
i,k − x∗

i,k, λtv

∑
j∈Ri

(
sign(xl

i,k − xl
j,k)

− sign(x∗
i,k − x∗

j,k)
)
>

≤ ε∥xl
i,k − x∗

i,k∥2 +
4λ2

tv

ε
|Ri|2m· (35)

2The matrix norm ∥ · ∥ is defined as ∥A∥ ≜ σmax(A) with σmax(·)
representing the largest singular value of the argument matrix.

After substituting (29) and (33) in (27), we get

El{∥xl+1
i,k − x∗

i,k∥2}
≤

(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
El{∥xl

i,k − x∗
i,k∥2}

− 2αkEl{(xl
i,k − x∗

i,k)
TΩi,k(x

l
i,k − x∗

i,k)}

+ λ2
tvαk(4αk +

1

ε
)(4|Ri|2 + |Bi|2)m (36)

= El{(xl
i,k − x∗

i,k)
T
((

1 + 2α2
k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k

)
(xl

i,k − x∗
i,k)}+ λ2

tvαk(4αk +
1

ε
)(4|Ri|2 + |Bi|2)m·

To guarantee that the error is decreasing with each iteration,
we must have(

1 + 2α2
k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k ≼ I (37)

that yields

2αk

(
αk∥Ωi,k∥2I+ εI−Ωi,k

)
≼ 0 (38)

Since αk ≥ 0 and by assuming ᾱk = αk∥Ωi,k∥2+ ε, we only
need to have

Ωi,k − ᾱkI ≽ 0 (39)

which requires ᾱk ≤ λj(Ωi,k) for each j = 1, 2, · · · ,m that
means

αk ≤ λmin(Ωi,k)− ε

∥Ωi,k∥2
·

Thus, to ensure that the error gap El{∥xl+1
i −x∗

i ∥2} is bounded
for all agents, the step size must satisfy

0 ≤ αk ≤ min
i∈N

{
λmin(Ωi,k)− ε

∥Ωi,k∥2

}
(40)

where 0 ≤ ε ≤ λmin(Ωi,k). Defining

∆ =
(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k

∆0 = λ2
tvαk(4αk +

1

ε
)(4|Ri|2 + |Bi|2)m

and assuming that αk satisfies (40), we get ∥∆∥ ≤ 1. Now,
employing (31), the error gap in (36) turns into

El{∥xl+1
i,k − x∗

i,k∥2} ≤ ∥∆∥El{∥xl
i,k − x∗

i,k∥2}+∆0, (41)

which simplifies as

El{∥xl+1
i,k −x∗

i,k∥2} ≤ ∥∆∥l+1 El{∥x0
i,k−x∗

i,k∥2}+∆0

l∑
s=0

∥∆∥s·

(42)
As a result of ∥∆∥ ≤ 1, the error gap becomes

lim
l→∞

El{∥xl+1
i,k − x∗

i,k∥2} ≤ ∆0

1− ∥∆∥
(43)

asymptotically, which completes the proof.
Remark 1: The error gap in (43) illustrates that the BR-

DKF restricts the impact of attack amplitude completely due
to the sign(·) terms; however, the number of Byzantine agents
in the network still affects the error bound in (43) by altering
∆0.

Remark 2: This work provides the analysis for an undi-
rected graph topology, and analyzing the algorithm with a
directed graph topology requires a new analysis, which is
beyond the scope of this work.
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V. SIMULATION RESULTS

The performance of the proposed Byzantine-Robust DKF
(BR-DKF) is illustrated by considering two network topolo-
gies, including a network of N = 5 agents with the edge set of
E = {(1, 2), (2, 3), (3, 5), (4, 5), (5, 1)}, same as [15], shown
in Fig. 1, and a randomly generated undirected connected
network with N = 25 agents with the topology shown
in Fig. 6. The discrete-time system and agent parameters are
considered similar to the work in [49], and are given by

xk+1 =


0.4 0.9 0 0
−0.9 0.4 0 0
0 0 0.5 0.8
0 0 −0.8 0.5

xk +wk,

yi,k =


1 0 0 0
1 1 0 0
0 0 1 1
0 0 1 0

xk + vi,k,

where the state noise covariance Q = 0.1I, and the ob-
servation noise covariance Ri = diag(0.1, 0.2, 0.3, 0.1). To
benchmark our proposed algorithm, we evaluate the following
scenarios: the centralized KF (CKF), distributed KF (DKF)
[49], DKF subject to Byzantine attack (B-DKF), and the
proposed BR-DKF subject to Byzantine attack.

Considering Byzantines as B agents with the largest node
degree in the graph topology, the corresponding perturbation
covariances are designed following the optimization problem
P1 in [16]. In problem P1, the steady-state network mean
squared error (NMSE) is maximized by designing the covari-
ance of the perturbation sequences at the Byzantine agents.
The NMSE is defined as

NMSE ≜ lim sup
K→∞

1

K

K∑
k=1

N∑
i=1

tr(Pi,k),

where Pi,k is the error covariance of the DKF in [16] at agent
i and time instant k. Accordingly, the optimization problem
to design the perturbation covariances is modeled as

max.
Σ

NMSE

s. t.
∑
j∈B

tr(Σj) ≤ η,

Σ ≽ 0,

where the first constraint limits the total power of the falsifi-
cation sequences and satisfies the detection-avoidance target
with parameter η. The second constraint ensures that the
perturbation covariance Σ is positive semidefinite. As a result,
the proposed algorithm is examined under the worst-case
scenario of an attack that maximizes the network MSE.

In the first scenario, we consider the network in Fig. 1
comprising N = 5 agents, of which B = 2 are Byzantine
agents, taken as the agents with the highest node degree. We
plot the average MSE across agents, i.e.,

MSE =
1

N

N∑
i=1

(xk − x̂i,k)
T(xk − x̂i,k)· (44)

Fig. 1. Network topology with N = 5 agents.
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-10
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0
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10

15

Fig. 2. MSE versus filtering time index k in the network with N = 5
agents.

In the absence of Byzantines, the parameters of αk, γk, and
λtv of the BR-DKF are tuned to obtain the nearest possible
MSE to the DKF algorithm. Even without a Byzantine attack,
the BR-DKF does not reach the same performance as the
DKF method; this is because the sign(·) terms in the updating
process restrict the actual values of the state estimate. Here,
Byzantine agents conduct a coordinated data-falsification at-
tack where Σi denotes the covariance matrix of perturbation
sequences of agent i ∈ B.

Fig. 2 shows the MSE in (44) versus the filtering time index
k in a network of N = 5 agents. The number of iterations for
the state estimate and the error covariance updates is set to
l∗ = 25 and the results are averaged over 2000 Monte Carlo
experiments. The BR-DKF achieves lower MSE than the B-
DKF under the same Byzantine attack, which demonstrates its
robustness. There is a performance gap between centralized
and distributed Kalman filters, even without Byzantine agents,
which is due to the number of iterations in the subgradient
solution. By increasing the number of l∗, the performance of
the DKF will approach the CKF asymptotically.

Fig. 3 shows how the actual state of the network, with m =
4, is closely estimated by various filtering methods. Tracking
performance for different filtering settings is illustrated in
shaded colors for all agents in the network, and the average
of the estimate for all agents is shown as a solid line. We see
that the proposed BR-DKF method estimates the actual state
elements with a smaller variance than the B-DKF method.

Fig. 4 shows the MSE versus the percentage of Byzantine
agents in the network. The BR-DKF method is significantly
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Fig. 3. State estimation accuracy for the different elements of the state
in a network of N = 5.
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Fig. 4. Steady-state MSE versus percentage of the Byzantine agents
in the network with N = 5 agents.

less sensitive to the number of Byzantines in the networks than
the B-DKF method. Fig. 5 shows the MSE versus the trace
of perturbation sequence covariance of individual Byzantine
agents. As shown, even without injecting any noise by the
Byzantine agent, the MSE in BR-DKF does not reach the
DKF method; this is because the sign(·) terms in the updating
process limit the actual value of the state estimates. Upon
starting the Byzantine attack, the obtained MSE under the B-
DKF increases dramatically as more noise is injected, but the
obtained MSE under the BR-DKF does not change. This is
due to the restriction that the sign(·) term provides, and as
stated in Remark 1, the number of Byzantine agents is the
only factor impacting the steady-state MSE in BR-DKF.

In the second scenario, we consider a network of N = 25

0 5 10 15
-10

-8

-6

-4

-2

0

2

Fig. 5. Steady-state MSE versus trace of the Byzantine agent attack
covariance in the network with N = 5 agents.

Fig. 6. Network topology with N = 25 agents.
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Fig. 7. MSE versus filtering time index k in a network N = 25 agents.

agents as in Fig. 6, including B = 5 Byzantine agents that
are chosen as network agents with the highest node degree. A
similar tuning is made to the step size parameters in order to
ensure the smallest difference in MSE for DKF and BR-DKF
algorithms in the absence of an attack. In Fig. 7, the MSE
in (44) is plotted versus the filtering time index k for different
filtering approaches. The subgradient solution for the state and
error covariance are iterated for l∗ = 25 iterations. Under the
same Byzantine attack, the proposed BR-DKF obtains a lower
MSE than the B-DKF, which verifies its robustness against
Byzantine behaviors.

Similar to the previous scenario, the estimation accuracy for
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Fig. 8. State estimation accuracy for the different elements of the state
in a network of N = 25.

different state vector elements, with m = 4, is shown in Fig. 8.
The estimated values of agents are plotted in shaded colors and
their average of the estimated values in solid colors. It can be
seen that the proposed BR-DKF reduces the variance of the
estimated values and can robustly track the actual state of the
network with higher accuracy than the B-DKF algorithm.

Fig. 9 illustrates the obtained MSE versus the percentage
of Byzantine agents in the network for different algorithms.
A similar trend is observed, showing that the greater the
percentage of Byzantine agents in the network, the higher
the MSE, while the BR-DKF sensitivity to the Byzantine
percentage is significantly less than the B-DKF. In Fig. 10,
the MSE is illustrated versus the trace of the perturbation
covariance of individual Byzantine agents, which shows that
under the BR-DKF, as the trace of attack covariance is low,
sign(·) terms in the state estimate update equations constrain
the actual values and degrade the MSE compared to the DKF.
When Byzantines inject more noise, the performance of the
BR-DKF is not degraded, while under the B-DKF algorithm,
the MSE increases significantly as more noise is injected. This
confirms the resilience of the BR-DKF to the coordinated data
falsification attack.

Simulation results are provided for a stable state matrix F,
spectral radius less than one, while the algorithm also performs
efficiently for unstable state matrices. To verify the stability
of the proposed algorithm using an unstable state matrix,
in Fig. 11 and Fig. 12, we plot the MSE versus the trace of
perturbation covariance for the case where only F is different

0 20 40 60 80 100

-15

-10

-5

0

Fig. 9. Steady-state MSE versus percentage of the Byzantine agents
in the network with N = 25 agents.
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Fig. 10. Steady-state MSE versus trace of the Byzantine agent attack
covariance in the network with N = 25 agents.
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Fig. 11. Steady-state MSE versus trace of the Byzantine agent attack
covariance, with unstable state matrix, in the network with N = 5
agents.

and is considered as

F =


0.6 0.9 0 0
−0.9 0.6 0 0
0 0 0.7 0.8
0 0 −0.8 0.7

 . (45)

It can be seen that the trend of changing MSE versus trace
of the perturbation covariance in different algorithms remains
the same.
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0

Fig. 12. Steady-state MSE versus trace of the Byzantine agent attack
covariance, with unstable state matrix, in the network with N = 25
agents.

VI. CONCLUSION

This paper proposed a distributed Kalman filter (DKF)
with resiliency against Byzantine attacks. Considering the
Byzantine agent as a network member that alters information
before exchanging it with neighbors, we investigated DKF
operations from the perspective of distributed optimization.
The resulting optimization-based DKF solution improved the
robustness of the filtering operations against Byzantine behav-
iors by employing a TV-norm penalty term for the objective
function. We utilized a distributed subgradient algorithm to
derive a suboptimal solution to update the state estimate and
error covariance matrix of the proposed Byzantine robust DKF
(BR-DKF). Furthermore, we demonstrated that the proposed
suboptimal solution converges to a neighborhood of the opti-
mal centralized solution with a bounded radius in the presence
of the Byzantine agents. Numerical simulations corroborated
the theoretical findings and demonstrated the robustness of
the proposed BR-DKF against Byzantine behaviors. In future
research, the impact of time-varying and directed graph topolo-
gies on the performance of the proposed algorithm will be
investigated.
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