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A bacterial biofilm is an aggregate of micro-organisms growing fixed onto a solid surface, rather than
floating freely in a liquid. Biofilms play a major role in various practical situations such as surgical
infections and water treatment. We consider a non-linear partial differential equation (PDE) model of
biofilm growth subject to initial and Dirichlet boundary conditions, and the inverse coefficient problem
of recovering the unknown parameters in the model from extra measurements of quantities related to the
biofilm and substrate. By addressing and analysing this inverse problem, we provide reliable and robust
reconstructions of the primary physical quantities of interest represented by the diffusion coefficients of
substrate and biofilm, the biomass spreading parameters, the maximum specific consumption and growth
rates, the biofilm decay rate and the half saturation constant. We give particular attention to the constant
coefficients involved in the leading-part non-linearity, and present a uniqueness proof and some numerical
results. In the course of the numerical investigation, we have identified extra data information that enables
improving the reconstruction of the eight-parameter set of physical quantities associated to the model of
biofilm growth.
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1. Introduction

Communities of microbial cells create biofilms that are encountered in various processes related to
plant growth promotion and protection, sewage bio-remediation, chronic infections and industrial bio-
fouling Wallace et al. (2016). One of the typical consequences of biofilm formation is that resident
microbes become significantly resistant to physical stresses and anti-microbial agents. It is therefore
very important to model the biofilm growth for characterization, modelling and control. In this spirit, in
this paper we consider the inverse problem of recovering the constant parameters in a reaction–diffusion
model of biofilm growth. Biofilms are created when bacteria form a highly resilient matrix, rather than
float freely. For more on biofilms, see reviews such as Mazza (2016); Wilson et al. (2017).
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2 TOMMI BRANDER ET AL.

Biofilm growth can be modelled by a system of coupled partial differential equations with initial and
boundary conditions, see system (1) below, originally due to Eberl et al. (2001) and later investigated by
Efendiev et al. (2009). The equations have parameters that relate to the growth rate, the death rate and
the spreading of the biofilm, as well as the behaviour of nutrients the biofilm feeds on. We identify these
parameters from information that could be provided by measurements of physical quantities related to
the biofilm and the substrate. For numerical reconstruction, we use a nonlinear least-squares solver,
where we minimize the discrepancy between the observed density flux of nutrients and the computed
solution produced by the parameters we are optimizing for.

The main challenges are the nonlinear nature of the mathematical problem and recovering the
parameters that are involved in the nonlinearity.

Consider a biofilm whose density 0 ≤ M(x, t) < 1 is a measurable function, and a substrate whose
density 0 ≤ S(x, t) ≤ 1 is also measurable for (x, t) ∈ Ω × R+, where Ω ⊂ R

n is a Lipschitz bounded
domain with piecewise smooth boundary ∂Ω . Here, substrate density means the density of nutrients; in
the literature on biofilms, substrate can also mean the material the biofilm is growing on and attached to,
but we do not use the word in this sense. The following pair of nonlinear parabolic Lotka-Volterra-type
equations provides a continuum model for the growth of biofilms (Efendiev, 2013, section 5.1):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tS = d1ΔxS − K1
SM

K4+S + F(x, t), (x, t) ∈ Ω × R+,

∂tM = d2∇x ·
(

Mb

(1−M)a ∇xM
)

− K2M + K3
SM

K4+S + G(x, t), (x, t) ∈ Ω × R+,

S|∂Ω×R+ = 1, M|∂Ω×R+ = 0,

S|t=0 = S0, M|t=0 = M0,

(1)

with biological constants d1 > 0, d2 > 0, K1 ≥ 0, K2 ≥ 0, K3 ≥ 0, K4 > 0, a ≥ 0 and b ≥ 1, where F
and G are given source functions. For simplicity, we assume K1 > 0 and K3 > 0; otherwise, at least one
of the two partial differential equations decouples. Injectivity proofs and numerical reconstructions can
also be established in the decoupled case with the same techniques of this paper. The physical meaning
of the quantities present in the mathematical model (1) are as follows:

• d1: substrate diffusion coefficient

• d2: biofilm diffusion coefficient

• K1: maximum specific consumption rate

• K2: biofilm decay rate

• K3: maximum specific growth rate

• K4: Monod’s half saturation constant (Monod, 1949, p. 383)

• a, b: biomass spreading parameters

• S0 and M0 are the initial densities at time t = 0 of the substrate and biofilm, respectively, satisfying
the compatibility conditions S0|∂Ω = 1 and M0|∂Ω = 0 with the Dirichlet boundary data. Zero
Neumann insulated boundary condition on the density M may also be prescribed instead of the zero
Dirichlet boundary condition.

If a = b = 0, then the system (1) yields a well-investigated semilinear two-species predator–prey
Lotka-Volterra model, but with the assumptions a > 0 and b ≥ 1, the nonlinear diffusivity λ(M) =

Mb

(1−M)a makes the quasilinear biofilm model-problem challenging.
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 3

Although biofilms are heterogeneous Costerton et al. (1999); Mazza (2016), the model we use treats
them as homogeneous masses. We deem this necessary to keep the model sufficiently simple. The
inverse problem approach allows fitting the model to actual biofilms and thereby checking its validity.
Other possible developments include more complicated models with several species of biofilms or
antibiotics. Alternatively, one might wish to consider more elaborate models of nutrient flow, rather
than the simple diffusion we have used here.

Returning to the model at hand, we remark that if all the eight biological constants contained in
the vector X = (

d1, d2, K1, K2, K3, K4, a, b
)

are known, then the direct problem has a unique solution
(S(x, t), M(x, t)). This is also true for mixed Dirichlet-Neumann boundary conditions, but pure Neumann
boundary conditions may cause problems (Efendiev, 2013, section 5.1).

Now, suppose we can observe the densities of the biofilm M and the substrate S over some suitable
set of space-time points, and that the coefficients in the governing PDEs are unknown. Can all or some
of the eight coefficients above be uniquely recovered from such observations?

First, we note a trivial obstruction:

Remark 1. In the homogeneous case F = G = 0 in (1), if S0 ≡ 1 and M0 ≡ 0, then it follows that
S ≡ 1 and M ≡ 0 form a trivial solution of the system (1) and none of the coefficients can be recovered.
Even if only M ≡ 0, the most interesting parameters a, b and d2 are unrecoverable, as there is no biofilm
to observe. We assume tacitly throughout that this is not the case.

Next, we consider special situations which lead to uniqueness. These are similar in spirit to the
critical couples used by Lorz et al. (2019). When investigating uniqueness we assume no noise in the
input data. On the other hand, noisy data are necessary to be considered when investigating the stability
of the solution.

Theorem 2. Assume that S and M are known everywhere and that there exist special points with
properties given by the assumptions below. Then, all the 8 coefficients d1, d2, K1, K2, K3, K4, a and
b can be uniquely determined. The assumptions are:

(i) There exists a point (x0, t0) /∈ ∂
{
(x, t) ∈ Ω × R+; M(x, t) = 0

}
where ΔxS(x0, t0) 	= 0 and

either S(x0, t0) = 0 or S(x0, t0) > 0 and M(x0, t0) = 0.

(ii) There exist points (xj, tj), j ∈ {1, 2}, such that the vectors

(
∂tS(xj, tj) − d1ΔxS(xj, tj) − F(xj, tj), S(xj, tj)M(xj, tj)

)
, j = 1, 2,

are linearly independent.

(iii) There exist times tj, j ∈ {3, 4}, such that the vectors

(∫
Ω

M(x, tj)dx,
∫

Ω

S(x, tj)M(x, tj)

K4 + S(x, tj)
dx

)
, j = 3, 4, (2)

are linearly independent.

(iv) There exist points (xj, tj), j ∈ {5, 6, 7}, with M(xj, tj) taking different values, and for all j ∈
{5, 6, 7} it holds that ΔxM(xj, tj) 	= 0, ∇xM(xj, tj) = 0 and 0 < M(xj, tj) < 1.
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4 TOMMI BRANDER ET AL.

For a proof of the theorem, see section 2. The derivatives exist due to Lemma 8 in Appendix A.
Below we give some justifications as to why the above assumptions (i)-(iv) are sensible and practically
realistic.

• A typical situation for biofilm is that it starts from a configuration where it covers only part of the
domain Ω , that is, the support of M0 is compactly contained in Ω . In such a case, the numerical results
(Efendiev, 2013, section 5.1, numerical example (d)) suggest that the biofilm density will continue to
have compact support for an extended period of time. Further, many other equations of porous medium
type do enjoy finite speed of propagation (Vázquez, 2007, section 1.2.1).

Outside of the support of M, the substrate density satisfies a diffusion equation, and there is no
reason to assume this density to be a stationary harmonic function.

• There is no reason for the substrate density to be constant.
• There is no reason to assume that the biofilm mass and the biofilm feeding rate remain linearly

coupled in a nonlinear model.
• If the biofilm density has a strict local maximum that changes value over time, or if the biofilm

density has several strict local maxima at any time, condition (iv) is satisfied. Both of these are
reasonable scenarios to assume.

Finally, we remark that Theorem 2 provides the unique retrieval of the 8 coefficients forming the
vector of unknown parameters X ∈ R

8, but this recovery does not guarantee that the coefficients belong
to the physically admissible set

X = (
d1, d2, K1, K2, K3, K4, a, b

) ∈ X := (0, ∞)3 × [0, ∞) × (0, ∞)2 × [0, ∞) × [1, ∞) ⊂ R
8.

Further discussions on this point are made in section 2.

1.1 Imaging and measuring biofilms

Both optical coherence tomography Xi et al. (2006); Wagner & Horn (2017) and confocal scanning laser
microscopy (CSLM) Lawrence et al. (1991); Schlafer & Meyer (2017) (Surman et al., 1996, section
2.2.5) have been used to effectively observe the fine structure of biofilms in a non-destructive way.
Optical measurements have also been used to measure biofilm thickness Bakke et al. (2001), even
continuously in time Milferstedt et al. (2006). Different techniques are reviewed in the articles Surman
et al. (1996); Wolf et al. (2002); Janknecht & Melo (2003); Azeredo et al. (2017).

The imaging of biofilm metabolism has been reviewed in Kühl & Polerecky (2008). Since biofilms
grow fairly slowly (Xi et al., 2006, section 3), in the time span of hours and days, measurements of their
density can be effectively performed continuously in time. Thus, we feel justified in assuming that the
biofilm density M is accessible to measurement, as employed in our model.

Many spectral methods, e.g. hyperspectral imaging Kühl & Polerecky (2008), nuclear magnetic
resonance imaging (NMR) Grivet & Delort (2009) and spectroscopic techniques Sankaran et al. (2018),
can distinguish concentrations of chemicals as a function of depth of certain chemicals biofilms feed on
Atci et al. (2017), which also allows determining the substrate density S.

1.2 Models of biofilm growth

There are several different models of biofilm growth; we refer to the reviews Klapper & Dockery (2010);
Wang & Zhang (2010); Horn & Lackner (2014); Mattei et al. (2018). The model we are using makes
the following noteworthy simplifications or assumptions:
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 5

• Substrate is governed by a diffusion equation. An equation of fluid flow would be more realistic in
many situations.

• The growth rate of the biofilm is proportional to the density of substrate for small substrate densities.
The proportionality might not be true in biofilms, though it holds for free-floating bacteria Møller
et al. (1995). A sufficiently small half-saturation constant K4 makes the proportionality only true for
very small values of S.

• The diffusion rate of the substrate is a function of biofilm density. Our model ignores this
for the sake of simplicity. However, the fact that the biofilm consumes the nutrients will
effectively slow down the diffusion of nutrients deep into regions of biofilm with high
density.

The book of Efendiev (2013) discusses the model (1) that we use here in detail and presents several
generalizations, with numerics studied in Ghasemi & Eberl (2018).

1.3 Related inverse problems

Prior research on inverse problems of cell biology and population dynamics concerns, for example,
population models Dülk (2015), biochemical reactions Dülk (2015), antibiotics Serovajsky et al. (2018),
and chemotaxis Egger et al. (2017).

To our knowledge, there are no prior publications on inverse problems for biofilm growth. There is
an inverse problems study on diffusion through biofilms Ma et al. (2010), but it does not discuss the
growth rate of biofilms themselves. Ad hoc estimation of some parameters has also been done in relation
to antibiotics and biofilms in, for example, Birnir et al. (2018).

For a review of inverse problems for parabolic equations, we refer to (Isakov, 2017, section
9). The literature on parameter recovery for quasilinear parabolic equations is extensive, especially
when it comes to recovering a dependency on the solution itself; see the references in Mierzwiczak
& Kołodziej (2011) for many older papers. For newer results, we mention the study in multiple
dimensions by Egger et al. (2015). Recovering multiple coefficients has been discussed in Pilant
& Rundell (1989); Lesnic (2002). There are more recent results on the recovery of diffusion
coefficient in the presence of lower-order terms Egger et al. (2017) and on the simultaneous
recovery of diffusion and lower-order terms Egger et al. (2014). The investigated problems are not
degenerate.

Cortazar & Elgueta (1990) investigated a degenerate quasilinear problem. Degenerate-singular
problems have been studied less; we are aware of the works on the elliptic quasilinear variable exponent
p(·)-Laplace equation, where a linear factor in the diffusion is recovered Brander & Ringholm (2019);
Brander & Winterrose (2019) and where the non-linearity itself is recovered Brander & Siltakoski
(2021). There is prior work on parameter recovery in non-linear systems of semilinear Isakov (2001)
and quasilinear nature Egger et al. (2017). We also mention inverse problems for non-linear reaction-
diffusion equations with zeroth-order non-linearity Dülk (2015); Sgura et al. (2019) and recovering
lower-order terms in degenerate parabolic equations with a non-linearity in the zeroth-order terms Tort
& Vancostenoble (2012).

In this paper, we consider the singular-degenerate quasilinear parabolic system (1) and investigate
the determination of all the parameters, both leading and lower order. The task is manageable due
to the very particular forward model, which means that we are only trying to recover a finite
set of constant parameters. Whenever needed, we also may assume interior knowledge of the
system.
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6 TOMMI BRANDER ET AL.

2. Uniqueness results

In this section, we present several lemmas that indicate that a solution to the inverse problem is unique
in an ideal situation with perfect measurements and no noise. The linear terms are easy to recover, while
for the non-linear terms we reduce the problem to the analysis of a one-dimensional real function, in
the same spirit as in certain boundary determination procedures for p-Laplace type equations Brander
(2016); Brander & Ringholm (2019).

We note that the required derivatives exist in the classical sense due to the regularity of the solutions,
which is documented in Lemma 8 of Appendix A for F = G ≡ 0.

2.1 Equation for the substrate

The results in this section follow immediately from the equation for the substrate in (1), namely,

∂tS = d1ΔxS − K1
SM

K4 + S
+ F, (x, t) ∈ Ω × R+. (3)

Lemma 3. If assumption (i) of theorem 2 is satisfied,

d1 = ∂tS(x0, t0) − F(x0, t0)

ΔxS(x0, t0)
. (4)

The lemma shows that the recovery of d1 is unique. Moreover, d1 ∈ (0, ∞) if the right hand side of
(4) is a positive number.

Proof. When evaluated at (x0, t0), the last term in equation (3) vanishes under the assumption (i) of
theorem 2, and the identity (4) follows immediately. �

The equation (3) for the substrate can be re-arranged to read

S(x, t)M(x, t)K1 + (
∂tS(x, t) − d1ΔxS(x, t)

)
K4 = − (∂tS(x, t) − d1ΔxS(x, t) − F(x, t)

)
S(x, t). (5)

Lemma 4. Suppose d1 is known and assumption (ii) of theorem 2 is satisfied. Then, the recovery of K1
and K4 is unique.

Proof. Denote

Si = S(xi, ti), Mi = M(xi, ti), ci = ∂tS(xi, ti) − d1ΔxS(xi, ti) − F(xi, ti), i ∈ {1, 2}.

Then, on applying equation (5) at the points (xi, ti) we obtain

K4ci + K1SiMi = −Sici, i = 1, 2. (6)

Equations (6) form a linear system of two equations with two unknowns K1 and K4, which has a unique
solution if and only if the determinant (c1S2M2 −c2S1M1) of the system is non-zero, which is equivalent
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 7

to the assumption (ii) of theorem 2 being satisfied. Then, the solution of (6) is given by

K1 = (S1 − S2)c1c2

c1S2M2 − c2S1M1
, K4 = S1S2(c2M1 − c1M2)

c1S2M2 − c2S1M1
. (7)

Moreover, K1 and K4 ∈ (0, ∞) if the right hand sides of the expressions in (7) are positive numbers. �

2.2 Linear factors in the equation for biofilm

We proceed by integrating over the domain and using both the divergence theorem and boundary
conditions on the biofilm density M. To that end, we recall that the previous results imply in particular
that K4 can be recovered uniquely if we assume the existence of certain special points.

Proposition 5. Let K4 be known. Suppose S and M are known in the entire spatial domain Ω at the
times t3 	= t4, where assumption (iii) of theorem 2 is satisfied. Then, the recovery of K2 and K3 is
unique.

Proof. By integrating the equation for the biofilm density in (1) over space and using the divergence
theorem, the highly non-linear term becomes

∫
∂Ω

Mb

(1 − M)a ∇xM · ν dS(x),

where ν denotes the outward unit normal to the boundary ∂Ω . This term vanishes due to the zero-
Dirichlet boundary condition on M. We are left with the equation

∫
Ω

(∂tM − G)dx = −K2

∫
Ω

Mdx + K3

∫
Ω

SM

K4 + S
dx. (8)

This is a linear equation with two unknowns, and hence the linear independence (2) in assumption (iii)
of theorem 2 implies the uniqueness in finding the coefficients K2 and K3. Moreover, K2 ∈ [0, ∞) and
K3 ∈ (0, ∞) if the corresponding expressions giving K2 and K3 out of the system of equations obtained
by applying (8) at t = t3 and t = t4, e.g. by Cramer’s rule, possess these sign properties. �

2.3 Critical points when substrate and some constants K are known

In this section, we assume that S and the constants K2, K3 and K4 are known, as well as the biofilm
density M. The employed methodology is similar in principle to the one in Lorz et al. (2019), and it is
based on evaluating the governing equation for the biofilm’s density at a finite set of discrete points in
order to obtain a linear system that can be solved to uniquely determine the sought parameters.

Consider a point (x0, t0) as in assumption (iv) of theorem 2 such that 0 < M(x0, t0) < 1,
ΔxM(x0, t0) 	= 0 and ∇xM(x0, t0) = 0. (According to the regularity theory ∇xM makes sense pointwise
in cylinders where M is bounded away from zero and one.) At this stage, we have

∂tM(x0, t0) − G(x0, t0) = d2
Mb(x0, t0)(

1 − M(x0, t0)
)a ΔxM(x0, t0) − K2M(x0, t0) + K3

S(x0, t0)M(x0, t0)

K4 + S(x0, t0)
.
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8 TOMMI BRANDER ET AL.

We rewrite this equation as

N :=
(

∂tM(x0, t0) − G(x0, t0) + K2M(x0, t0) − K3
S(x0, t0)M(x0, t0)

K4 + S(x0, t0)

) (
ΔxM(x0, t0)

)−1

= d2
Mb(x0, t0)(

1 − M(x0, t0)
)a .

Since N is known, we also know the mapping M �→ d2λ(M) = d2
Mb

(1−M)a at critical points with non-zero
values of M where ΔM does not vanish. Hence, we also know

M �→ log
(
d2λ(M)

) = log(d2) + b log (M) − a log (1 − M) (9)

at the critical points.
Suppose there are three critical points with non-vanishing Laplacian, with the values of M denoted

by M1, M2 and M3, which are all distinct from each other, as in assumption (iv) of theorem 2. Then,
from (9) we have three equations

− log
(
1 − Mi

)
a + log

(
Mi

)
b + log

(
d2

) = Ni, i = 1, 2, 3, (10)

and we would like to show that the three vectors

(− log
(
1 − Mi

)
, log

(
Mi

)
, 1
)

, i = 1, 2, 3, (11)

are linearly independent, which would allow solving uniquely for a, b and d2. This is equivalent to
saying that, if there exist real numbers ζ1, ζ2 and ζ3 such that

− ζ1 log(1 − Mi) + ζ2 log(Mi) = −ζ3 for i ∈ {1, 2, 3}, (12)

then ζ1 = ζ2 = ζ3 = 0. Let therefore (12) be satisfied and assume first that at least one of the coefficients
ζ1 and ζ2 is different from zero. We consider the mapping

M �→ F(M) := −ζ1 log(1 − M) + ζ2 log(M).

Then

F′(M) = ζ1

1 − M
+ ζ2

M
= M(ζ1 − ζ2) + ζ2

M(1 − M)
.

Since ζ1 and ζ2 are not simultaneously equal to zero, there exists at most one value 0 < M < 1 such
that F′(M) = 0. That is, the (continuous) function F: (0, 1) → R has at most one critical point. This
in turn implies that the equation F(M) = −ζ3 has at most two different solutions, which contradicts
the assumption that we have three distinct values Mi, i ∈ {1, 2, 3}, satisfying (12). As a consequence, it
follows that both ζ1 and ζ2 are necessarily both equal to zero, which immediately implies that ζ3 = 0
as well. Thus the three vectors in (11) are linearly independent and therefore a, b, and d2 are uniquely
determined. Moreover, a ∈ [0, ∞), b ∈ [1, ∞) and d2 ∈ (0, ∞) if the corresponding expressions giving
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 9

them explicitly by solving the linear system of equations (10) using, e.g. the Cramer’s rule, possess
these lower bound properties.

This proves theorem 2, when combined with proposition 5 and lemmas 3 and 4.

2.4 Example

In this subsection, we give an example to show that the assumtions (i)–(iv) of theorem 2 can be satisfied.
We also point out the unique recovery of the vector of unknowns X as an outcome of equations (4), (7),
(8) (applied at t = t3 and t = t4) and (10).

We take Ω = (0, 1), a = 0, b = 1, d1 = d2 = 1, K1 = K3 = K4 = 1, K2 = 0,

Mexact(x, t) = 4x(1 − x)te1−t, Sexact(x, t) = 1 − Mexact(x, t),

which satisfy the system (1) with M0 = 0, S0 = 1 and the source functions

F(x, t) = 2e1−t

{
−4t + 2x(1 − x)(t − 1) +

(
1 − 4x(1 − x)te1−t

)
x(1 − x)t

1 − 2x(1 − x)te1−t

}
,

G(x, t) = 2e1−t

{
2x(1 − x)(1 − t) + 8t2e1−t(6x − 6x2 − 1) −

(
1 − 4x(1 − x)te1−t

)
x(1 − x)t

1 − 2x(1 − x)te1−t

}
.

One can easily check that the assumption (i) of theorem 2 is satisfied for x0 = 1/2 and t0 = 1, and that
equation (4) of lemma 3 yields d1 = 1, as required. Also, the assumption (ii) of theorem 2 is satisfied
for x1 = x2 = 1/2, t1 = 1/2 and t2 = 1, and equation (7) of lemma 4 yields K1 = K4 = 1, as required.
Assumption (iii) of theorem 2 is satisfied for t3 = 1/2 and t4 = 1, and equation (8) applied at t = t3
and t = t4 yields K2 = 0 and K3 = 1, as required. Finally, assumption (iv) of theorem 2 is satisfied for
x5 = x6 = x7 = 1/2, t5 = 1/3, t6 = 1/2 and t7 = 2/3, and equations (10) yield a = 0, b = 1 and
d2 = 1, as required.

3. Numerical solution of the direct problem

Henceforth, for the numerical investigation, we specialize on the 1D case. Similar computations can be
performed in higher dimensions.

Consider the following non-linear parabolic system of equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = d1

∂2S
∂x2 − K1

SM
K4+S + F(x, t), (x, t) ∈ (0, 1) × (0, T),

∂M
∂t = d2

∂
∂x (λ(M) ∂M

∂x ) − K2M + K3
SM

K4+M + G(x, t), (x, t) ∈ (0, 1) × (0, T),

S(0, t) = μ1(t), S(1, t) = μ2(t), t ∈ (0, T)

M(0, t) = μ3(t), M(1, t) = μ4(t), t ∈ (0, T),

S(x, 0) = S0(x), M(x, 0) = M0(x), x ∈ [0, 1],

(13)

where T > 0 is a final finite time of interest, S(x, t), M(x, t) are two unknown functions, F(x, t) and
G(x, t) are known source terms, (μi(t))i=1,4 are Dirichlet boundary data, S0(x) and M0(x) represent the
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10 TOMMI BRANDER ET AL.

Table 1 The l∞-errors ‖S − Sexact‖∞ and ‖M − Mexact‖∞ for various mesh sizes when solving the
direct problem (13).

Δx Δt ‖S − Sexact‖∞ ‖M − Mexact‖∞

0.1 0.1 1.74 × 10−4 2.30 × 10−3

0.05 0.05 4.56 × 10−5 8.02 × 10−4

0.01 0.01 1.87 × 10−6 4.52 × 10−5

initial status of the system, λ(M) = Mb

(1−M)a , and a ≥ 0, b ≥ 1, d1 > 0, d2 > 0, K1 ≥ 0, K2 ≥ 0, K3 ≥ 0
and K4 > 0 are constants.

The numerical solution for solving the direct problem (13) is described in Appendix B.

3.1 Example 1

We take T = 1, K1 = K2 = K3 = K4 = d1 = d2 = 1, μ1(t) = μ2(t) = 1, μ3(t) = μ4(t) = 0, and

F(x, t) = x − x2 + 2(t + 1) + [1 + (x − x2)(t + 1)](x − x2)e−t

2 + (t + 1)(x − x2)
,

G(x, t) = − (1 − 2x)2(x − x2)2e−4t

[1 − (x − x2)e−t]2 − 2(x − x2)(1 − 5x + 5x2)e−3t

1 − (x − x2)e−t

− [1 + (x − x2)(t + 1)](x − x2)e−t

2 + (x − x2)(t + 1)
, (14)

S0(x) = 1 + x − x2, M0(x) = x − x2, (15)

and

a = 1, b = 2. (16)

Then, with this input data, the analytical solution of the direct problem (13) is given by

Sexact(x, t) = 1 + (x − x2)(t + 1), Mexact(x, t) = (x − x2)e−t. (17)

The numerical results obtained by solving the direct problem (13) using the numerical finite-
difference method (FDM) described in Appendix B are presented in Table 1 and excellent agreement
with the analytical solution (17) can be observed. Furthermore, the l∞-errors decrease as the mesh
size is refined and the second-order convergence estimate max

{‖S − Sexact‖∞, ‖M − Mexact‖∞
} ≤

A
(
(Δx)2 + (Δt)2

)
with A = 0.3 is consistent with that indicated in Lees (1966) for scalar quasilinear

parabolic equations.
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 11

4. Inverse problem

In the previous section 2, sufficient additional measurements of the densities of biofilm and substrate
have been given that provide uniqueness in recovering the biological constants associated with (1).
However, although these extra measurements enable retrieving a unique solution it would be difficult
to investigate their optimality in terms of their necessity. In addition, the conditions that are imposed in
Theorem 2 are difficult to satisfy numerically, especially when the measured data is contaminated with
noise. Therefore, in this section we explore and investigate the numerical reconstruction of the sought
biological constants from other types of physical measurements such as the time history of the boundary
heat flux and the biomass/bioenergy of the biofilm density. Numerical evidence that is presented and
discussed below indicates that it is possible to retrieve uniquely the eight-parameter vector X from such
data.

4.1 Determining a and b

Let us consider first the case when the constants (d1, d2, K1, K2, K3, K4) ∈ (0, ∞)3×[0, ∞)×(0, ∞)2 are
known and we wish to determine the pair of powers (a, b) ∈ [0, ∞)× [1, ∞) expressing the nonlinearity
of the diffusivity λ(M) = Mb/(1 − M)a.

Consider the input data as in Example 1, section 3.1, but now a and b are unknown and have to be
retrieved. In doing so, we measure the flux of S at x = 0 given by

−d1∂xS(0, t) =: q0(t) = −t − 1, t ∈ [0, 1], (18)

and minimize the functional H : [0, ∞) × [1, ∞) → R+ given by

H(a, b) := ‖qc
0(t; a, b) − q0(t)‖2

L2(0,1)
, (19)

where qc
0 is the computed flux −d1∂xS(0, t) for given values of a and b, and q0(t) = −t−1 given in (18)

represents the exact data corresponding to the exact values (16) of a and b. Because the functional (19)
depends on two variables only, the simplest way to minimize it is to plot it for many uniformly distributed
values of (a, b) within some sufficiently wide searching interval (assumed available information from
the physics of the problem), say [0, 4] × [1, 4].

The results for H(a, b), H(a, 2) and H(1, b) are displayed in Figures 1 and 2. Moreover, the minimal
values and minimizers of these functionals are given in Table 2. From these figures and table it can
be seen that if the FDM mesh size is sufficiently fine (for our example Δx = Δt = 0.01) then, the
global minimum of the functional H(a, b) (and more clearly of H(a, 2) and H(1, b)) is attained at the
true values (16). From now on, we fix the mesh size Δx = Δt = 0.01 in our remaining computations.

Of course, the above plotting technique becomes computationally inefficient and impractical if more
than two parameters are to be estimated. In such a situation, gradient iterative minimization methods are
desirable. We employ such an iterative method (lsqnonlin) from the Matlab toolbox routines, with the
simple bounds on the variables

0 ≤ a ≤ 4, 1 ≤ b ≤ 4,
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12 TOMMI BRANDER ET AL.

Fig. 1 The cost functional H(a, b) for a ∈ [0, 4], b ∈ [1, 4], for Δx = Δt = 0.01.

Fig. 2 The cost functionals H(a, 2) and H(1, b) for various mesh sizes.

starting from various initial guesses:

(a) a0 = 0, b0 = 1; (b) a0 = 2, b0 = 1; (c) a0 = 3, b0 = 1.
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 13

Table 2 The minimum values and minimizers for various mesh sizes.

Δx = Δt 0.1 0.05 0.01

min H(a, 2) 1.4E-6 1.6E-7 1.2E-9
amin 1.75 1.5 1
min H(1, b) 1.4E-6 1.6E-7 1.2E-9
bmin 2 2 2

Table 3 The minimal values and minimizers of H(a, b) obtained using the lsqnonlin routine for
various initial guesses.

Guess (a) Guess (b) Guess (c)

min H(a, b) 1.43E-11 2.00E-11 1.19E-11
(amin, bmin) (0.9536, 1.9961) (1.0552, 2.0046) (1.0425, 2.0035)
No. of iterations 15 8 10

The obtained results are summarized in Table 3. These shows that a fast convergence towards the
exact values (16) is achieved for either initial guesses (a)–(c). This independence on the initial guess
indicates robustness of the iterative minimization.

The analysis performed in this section introduced two different methods of reconstructing the power
nonlinearities a and b, both of them producing similar successful recoveries of the desired unknowns.
In the next section, we investigate whether it is possible to recover more than the two constants a and b
from the flux measurement (18).

4.2 Determining d2, (Ki)i=1,4, a, and b

Since d1 appears explicitly in (19), we assume that d1 = 1 is known, and try to recover d2 and the four
constants (Ki)i=1,4 = 1, in addition to the power nonlinearities a = 1 and b = 2. As in section 4.1, we

minimize the extended objective functional H : (0, ∞)2 × [0, ∞) × (0, ∞)2 × [0, ∞) × [1, ∞) → R+
given by

H(d2, (Ki)i=1,4, a, b) =
∥∥∥qc

0

(
t; d2, (Ki)i=1,4, a, b

)
− q0(t)

∥∥∥2

L2(0,1)
(20)

subject to the simple bounds on the variables

0 ≤ a ≤ 1010, 1 ≤ b ≤ 1010, 10−10 ≤ d2 ≤ 1010,

10−10 ≤ K1 ≤ 1010, 0 ≤ K2 ≤ 1010, 10−10 ≤ K3 ≤ 1010, 10−10 ≤ K4 ≤ 1010. (21)

This is accomplished using the iterative lsqnonlin from the initial guess

a0 = 2, b0 = 1, K0
i = d0

2 = 0.5 for i = 1, 4. (22)
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14 TOMMI BRANDER ET AL.

Fig. 3 Convergence of the objective function (20).

The convergence of the objective function (20) with the number of iterations is illustrated in Figure 3.
The reconstructed values after 117 iterations of the lsqnonlin routine are:

a = 0.9999, b = 2.0000, d2 = 1.0001,

K1 = 1.0003, K2 = 0.9612, K3 = 0.9320, K4 = 1.0000.

These numerical values are in good agreement with their true values, except for K2 and K3, where
the errors around 5–10% are larger.

4.3 Determining all the eight unknowns d1, d2, (Ki)i=1,4, a and b

In this section, we present the results of numerically retrieving all the eight unknowns X =(
d1, d2, (Ki)i=1,4, a, b

)
∈ X. For d1 we take the simple bounds 10−10 ≤ d1 ≤ 1010, whilst for the

remaining unknowns we take the bounds given in (21). We use the initial guess (22) together with two
initial guesses for d1, namely d0

1 = 0.5 or d0
1 = 1.3. The results obtained by minimizing the functional

H : X → R+ given by

H(X) = ∥∥qc
0

(
t; X
)− q0(t)

∥∥2
L2(0,1)

(23)

are illustrated in Figure 4 and Table 4.
The initial guess (22) with d0

1 = 0.5 produces a locally convergent solution that got stuck in a local
minimum of the functional (23). The initial guess with d0

1 = 1.3 yields a much lower objective function
value with estimates closer to their true values, though with errors of similar kind in the biofilm growth
and decay rates. In particular, the parameters K2 and K3 seem to be the most difficult to retrieve. This is
somewhat expected, since the constants K2 and K3 do not appear in the first equation in (1) for S and in
the inverse problem we minimize the flux q0(t) of the substrate S. Furthermore, we have also calculated
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 15

Fig. 4 Convergence of the objective function (23) for the initial guess (22) and d0
1 ∈ {0.5, 1.3}.

Table 4 The minimizers of (23) obtained using the lsqnonlin routine for the initial guess (22) and
d0

1 ∈ {0.5, 1.3}.
Parameter d0

1 = 0.5 d0
1 = 1.3 Exact

a 2.1230 0.9973 1
b 1.8140 2.0007 2
K1 0.7143 1.0032 1
K2 1.2392 0.6079 1
K3 0.3109 0.3127 1
K4 1.0001 1.0000 1
d1 1.0000 1.0000 1
d2 0.5750 1.0018 1

the sensitivity coefficients (not illustrated) given by the partial derivatives of the measurement q0 with
respect to the unknowns K2 and K3, obtaining that these are correlated and small, of order O(10−4).
This indicates that the parameters K2 and K3 are quite insensitive to the flux measurement (18), hence
justifying their poorer retrievals illustrated in Table 4.

Overall, the numerical investigation performed in this section so far indicates some reasonable
retrievals of the coefficients, but it also highlights some difficulties encountered by the employed
gradient iterative minimization. In addition, there might be non-uniqueness issues related to the use
of only the flux q0(t) as the measurement data, which will amplify the errors even further if noise was to
be considered in (18). Therefore, we consider extra measurement data given by the biomass/bioenergy
of the biofilm density,

EM(t) =
∫

Ω

M(x, t)dx = e−t/6, t ∈ [0, 1], (24)
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16 TOMMI BRANDER ET AL.

Fig. 5 Convergence of the objective function (25) for the initial guess (22), and d0
1 ∈ {0.5, 1.3}.

calculated here for the analytical solution in section 3.1. Measurement of total mass (or energy) is
customary in the modelling of diffusion processes Cannon (1963); Cannon & Hoek (1986) and also
very feasible in our modelling of biofilm context; see section 1.1.

The measurements (18) and (24) are imposed in the least-squares sense by minimizing the objective
functional J : X → R+ given by

J
(
X
)

:= ∥∥qc
0

(
t; X
)− q0(t)

∥∥2
L2(0,1)

+ ∥∥Ec
M(t; X) − EM(t)

∥∥2
L2(0,1)

, (25)

where Ec
M(t; X) is the computed mass/energy using the trapezoidal rule and the homogeneous Dirichlet

boundary conditions on M, as

Ec
M(t; X) = Δx

I−1∑
i=2

M
(
xi, t; X

)
.

The convergence of the objective function (25) and the numerically retrieved values for the eight
unknowns in vector X are given in Figure 5 and Table 5. Figure 5 illustrates how the non-convex least-
squares functional (25) can get stuck or not in a local minimum for certain initial guesses (see the results
for d0

1 = 0.5 compared to d0
1 = 1.3). Compared to Table 4, the numerical results presented in Table 5

show much better reconstructions of the eight unknowns, including the estimates for K2 and K3 (though
K3 suffered with d0

1 = 0.5), when the extra measurement (24) is taken into account.
For the initial guess (22) and d0

1 = 1.3, the reconstruction identifies exactly the true solution for the
unknowns. In order to improve the robustness with respect to the other initial guess given by (22) and
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INVERSE PROBLEMS FOR A MODEL OF BIOFILM GROWTH 17

Table 5 The minimizers of (25) obtained using the lsqnonlin routine for the initial guess (22) and
d0

1 ∈ {0.5, 1.3}.
Parameter d0

1 = 0.5 d0
1 = 1.3 Exact

a 1.0041 1.0000 1
b 2.0007 2.0000 2
K1 1.0032 1.0000 1
K2 0.5623 1.0005 1
K3 0.2268 1.0010 1
K4 1.0000 1.0000 1
d1 1.0000 1.0000 1
d2 1.0005 1.0000 1

d0
1 = 0.5, observe that upon integrating over space Ω = (0, 1) the second equation in (13) and using the

homogeneous Dirichlet boundary condition M|∂Ω×R+ = 0 of (1), we obtain

− K2EM(t) + K3

∫
Ω

S(x, t)M(x, t)

K4 + S(x, t)
dx = E′

M(t) −
∫

Ω

G(x, t)dx, t ∈ R+, (26)

which highlights a relationship between the unknowns K2, K3 and K4. In particular, letting t ↘ 0 in
(26), we have

− K2EM(0) + K3

∫
Ω

S0(x)M0(x)

K4 + S0(x)
dx = E′

M(0) −
∫

Ω

G(x, 0)dx. (27)

On substituting the expressions for G(x, 0), S0(x) and M0(x) from (14) and (15) into (27), and
evaluating the integrals involved using symbolic computations in MAPLE we obtain

K2 = 0.454822555 + K3

[
1 − 6K4 + 24K4(K4 + 1)√

5 + 4K4

arctanh

(
1√

5 + 4K4

)]
. (28)

This expression can be substituted into the problem in order to reduce the number of unknowns by 1,
i.e. from 8 to 7 unknowns. Then, starting from the initial guess given by the second column of Table 5,
namely,

a0 = 1.0041, b0 = 2.0007, K0
1 = 1.0032, K0

3 = 0.2268, K0
4 = d0

1 = 1, d0
2 = 1.0005,

we obtain in 10 iterations the true values (with 4 digits) of the 7 unknowns, plus K2 via (28).
Although no random noisy errors have been introduced in the flux q0(t) and the biomass EM(t), the

analytical input data (18) and (24) already contain some numerical noise due to the fact that we are
discretising the problem with a fixed mesh size and only in the limit Δx = Δt ↘ 0 this numerical noise
disappears. Therefore, as a by-product, our numerical inversion has also been tested for stability with
respect to this type of numerical noise in the input data. For general random noise in the input data (18)
and (24), the least-squares functional (25) may need to be penalized using regularization.
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18 TOMMI BRANDER ET AL.

5. Conclusions

We have given an elementary injectivity proof that assumes information on the biofilm and substrate
density, but otherwise has non-restrictive assumptions. The method could work in other inverse problems
with rich data, either within the domain or at a boundary point.

We have also illustrated numerically (in one spatial dimension with similar conclusions expected to
hold also in higher dimensions) that recovering only a few parameters is feasible from measurements
of only the flux of the substrate, while as the number of unknown parameters increases, recovery
becomes more difficult. In particular, recovering the coefficients of biofilm growth, K2 and K3, seems
challenging, but this can be overcome by further measuring the total biomass. Of course, for inverting
random noisy data or if the number of unknown parameter increases or if the parameters are variable
with space and/or time, regularization may need to be employed Chen & Jiang (2021). In the near future,
it is hoped that the mathematical model investigated in this paper using inverse problem techniques can
be validated by inverting real raw data.
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A. Classical regularity of the forward problem

In this appendix, we briefly outline the classical regularity for the solution (S, M) of the homogeneous
problem associated to (1) obtained by taking F = G = 0, namely,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tS = d1ΔxS − K1
SM

K4+S , (x, t) ∈ Ω × R+,

∂tM = d2∇x ·
(

Mb

(1−M)a ∇xM
)

− K2M + K3
SM

K4+S , (x, t) ∈ Ω × R+,

S|∂Ω×R+ = 1, M|∂Ω×R+ = 0,

S|t=0 = S0, M|t=0 = M0,

(A.1)

outside the set ∂
{
(x, t) ∈ Ω × R+; M(x, t) = 0

}
. Since the degeneracy in our equation is of porous

medium type, we do not expect the solution to be smooth everywhere Vázquez (2007). We have not
considered the general problem (1) with source terms, since this would require re-establishing the
foundational results in Efendiev (2013), which we have to leave outside the scope of the present article.

We use the exponent α ∈ (0, 1) as a generic Hölder exponent. The Hölder regularity in time of
solution is only α/2 if the spatial Hölder regularity is of order α, but we have ignored this to simplify
notation. First, we establish the Hölder regularity of solution, after which we consider all the terms aside
from the highest order terms to be stationary functions, and thereafter use the principle that the linear
heat equation with Hölder terms has C2+α-regularity, and half of that in time.

Some results only hold in sets where 0 < ε < M < 1−ε. The upper bound is not a significant issue,
since under the Dirichlet boundary conditions in equation (1) the following result holds (Efendiev, 2013,
theorem 5.1): If

∥∥M0

∥∥
L∞(Ω)

< 1, then ‖M(x, t)‖L∞(Ω×R+) < 1. The lower bound however remains an
issue.

The lemmas below hold for as long the solution (S, M) exists and remains bounded. This is not
restricted to only the Dirichlet boundary conditions in (1), where the existence and boundedness is
guaranteed for all time (Efendiev, 2013, section 5.1), but these results hold more generally. Since the
model might be used with some other boundary conditions, too, we have decided to include this turn of
phrase, rather than assume the precise Dirichlet data.

There exists a unique solution to the direct problem (A.1) (Efendiev, 2013, section 5.1). Since we
know a priori from (Efendiev, 2013, chapter 5, theorem 5.3) that S and M are bounded, classical theory
implies (Ladyženskaja et al., 1968, chapter V, section 1, theorem 1.1), (DiBenedetto, 1993, chapter 2,
section 1, remark 1.1.; see also chapter 3, section 1, theorems 1.1 and 1.2) that S ∈ Cα(Ω × R+) and,
for any ε > 0, M ∈ Cα

loc

({
(x, t) ∈ Ω × R+; 1 − ε > M(x, t) > ε > 0

})
, where the regularity of S is

only local unless we make reasonable assumptions on boundary and initial values and the geometry of
the domain Ω . Efendiev (Efendiev, 2013, chapter 5) also proves that S ∈ H1(Ω) and M ∈ Hs(Ω) for
0 < s < 1/(b + 1).

In (Ladyženskaja et al., 1968, chapter V, section 3, theorem 3.1) it is proven that ∇xS ∈ Cα
loc in

cylinders and

∫
cylinder

∣∣∂tS
∣∣2 dxdt < ∞,

∫
cylinder

∣∣∣∂xi
∂xj

S
∣∣∣2 dxdt < ∞.

Similar results hold for M in cylinders where it is bounded away from 0 and 1. The results are
global for S if ∂Ω is regular enough and the boundary conditions likewise. There are extra regularity
assumptions that are made for the sake of simplicity, which can be removed by the methods in
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(Ladyzhenskaya & Ural’tseva, 1968, section IV). Hence, we have ∂tS, ∂xi
∂xj

S ∈ L2
loc and likewise for M

in cylinders where M is bounded away from zero and one.

Lemma 6. We have, as long as the solution (S, M) of (A.1) exists and remains bounded:

‖S‖L∞ ≤ 1, ∇xS ∈ Cα
loc

(
Ω × R+

)
, ∂tS ∈ L2

loc

(
Ω × R+

)
, D2

xS ∈ L2
loc

(
Ω × R+

)
.

Lemma 7. As long as the solution (S, M) of (A.1) exists and remains bounded, we have that
‖M‖L∞(Ω×R+) ≤ 1, and for all space-time cylinders Q � Ω × R+ for which there exists ε > 0
with

0 < ε < M(x, t) < 1 − ε, (x, t) ∈ Q,

we have that

∇xM ∈ Cα (Q) , ∂tM ∈ L2 (Q) , D2
xM ∈ L2 (Q) .

Next, we reconsider the pair of equations in (A.1) as the linear parabolic equations

{
∂tS = d1ΔxS + f (x, t), (x, t) ∈ Ω × R+
∂tM = d2ΔxM + g(x, t), (x, t) ∈ Ω × R+,

where we have omitted the initial and boundary conditions and have written

f (x, t) = −K1
S(x, t)M(x, t)

K4 + S(x, t)
,

g(x, t) = d2
bMb−1 (1 − M)a + a (1 − M)a−1 Mb

(1 − M)2a

∣∣∇xM
∣∣2 − K2M + K3

SM

K4 + S
.

As long as we restrict ourselves to a smooth set where 0 < ε < M < 1 − ε, both f and g are Hölder
continuous – multiplication, division and addition maintain local Hölder-continuity, and since M and
1−M are restricted away from zero, the possibly negative powers involving a or b also maintain Hölder-
continuity, though the exponent α may change. In particular, the power functions x �→ xp (for any p ∈ R)
are smooth with all derivatives bounded when x is restricted to a compact subset of positive real numbers.

Now, Ladyženskaja et al. (1968, chapter V, section 6, theorem 6.2) give that first time derivative
and second spatial derivatives of both S and M, in regions where M is bounded away from zero, are
Hölder-continuous. Also, since S solves a heat equation when M = 0, it is regular in open sets where M
vanishes.

Lemma 8. (Regularity lemma). At any (x, t) /∈ ∂
{
(x, t) ∈ Ω × R+; M(x, t) = 0

}
where 0 < M(x, t) <

1, all derivatives ∂tM(x, t), ∂tS(x, t), ΔxM(x, t) and ΔxS(x, t) exist pointwise as classical derivatives.

B. Numerical solution of the forward problem

The linearly implicit three-level finite-difference scheme of Lees (1966) is applied to obtain the numer-
ical solution to the non-linear parabolic direct (forward) problem (13). For numerical discretization, a
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rectangular grid is constructed by subdividing the solution domain into I × N subintervals of the step
lengths Δx and Δt in space x and time t directions, where I and N are two positive integers greater than
2. Taking Δx = 1

I−1 and Δt = T
N−1 , then

xi = (i − 1)Δx, i = 1, I, tn = (n − 1)Δt, n = 1, N.

Denote Sn
i := S(xi, tn), Mn

i := M(xi, tn), Fn
i := F(xi, tn) and Gn

i := G(xi, tn) for i = 1, I and n = 1, N.
Then, for i = 2, I − 1, we have

S1
i = S0(xi), M1

i = M0(xi),

S2
i = S1

i + d1Δt

(Δx)2 (S1
i+1 − 2S1

i + S1
i−1) − K1Δt

S1
i M1

i

K4 + S1
i

+ ΔtF1
i ,

M2
i = M1

i − K2ΔtM1
i + K3Δt

S1
i M1

i

K4 + S1
i

+ ΔtG1
i

+ d2Δt

(Δx)2

[
λ

(
M1

i+1 + M1
i

2

)
(M1

i+1 − M1
i ) − λ

(
M1

i + M1
i−1

2

)
(M1

i − M1
i−1)

]
,

and for n = 2, N − 1,

Sn+1
i − Sn−1

i

2Δt
= d1

(Δx)2 (Ŝn
i+1 − 2Ŝn

i + Ŝn
i−1) − K1

Sn
i Mn

i

K4 + Sn
i

+ Fn
i ,

Mn+1
i − Mn−1

i

2Δt
= −K2Mn

i + K3
Sn

i Mn
i

K4 + Sn
i

+ Gn
i

+ d2

(Δx)2

[
λ

(
Mn

i+1 + Mn
i

2

)
(M̂n

i+1 − M̂n
i ) − λ

(
Mn

i + Mn
i−1

2

)
(M̂n

i − M̂n
i−1)

]
,

where

Ŝn
i := Sn+1

i + Sn
i + Sn−1

i

3
, M̂n

i := Mn+1
i + Mn

i + Mn−1
i

3
.

Denoting

α := 2Δtd1

3(Δx)2 , λn
i := 2Δtd2

3(Δx)2 λ

(
Mn

i + Mn
i−1

2

)
,

we obtain

− αSn+1
i−1 + (1 + 2α)Sn+1

i − αSn+1
i+1 = f n

i+1, (B.1)

− λn
i Mn+1

i−1 + (1 + λn
i + λn

i+1)M
n+1
i − λn

i+1Mn+1
i+1 = gn

i+1, (B.2)
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where

f n
i+1 = α(Sn

i+1 + Sn−1
i+1 − 2Sn

i − 2Sn−1
i + Sn

i−1 + Sn−1
i−1 ) + Sn−1

i

− 2ΔtK1
Sn

i Mn
i

K4 + Sn
i

+ 2ΔtFn
i ,

gn
i+1 = λn

i+1(M
n
i+1 + Mn−1

i+1 − Mn
i − Mn−1

i ) − λn
i (M

n
i + Mn−1

i − Mn
i−1 − Mn−1

i−1 )

+ Mn−1
i − 2ΔtK2Mn

i + 2ΔtK3
Sn

i Mn
i

K4 + Mn
i

+ 2ΔtGn
i .

We can rewrite the equations (B.1) and (B.2) in the following matrix forms:

ASn+1 = fn, BnMn+1 = gn, n = 2, N − 1. (B.3)

Here, A and Bn are (I − 2) × (I − 2) symmetric matrices given by

A =

⎡
⎢⎢⎢⎢⎢⎣

1 + 2α −α 0 · · · 0 0 0
−α 1 + 2α −α · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −α 1 + 2α −α

0 0 0 · · · 0 −α 1 + 2α

⎤
⎥⎥⎥⎥⎥⎦ ,

Bn =

⎡
⎢⎢⎢⎢⎢⎣

1 + λn
2 + λn

3 −λn
3 0 · · · 0 0 0

−λn
3 1 + λn

3 + λn
4 −λn

4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λn
I−2 1 + λn

I−2 + λn
I−1 −λn

I−1
0 0 0 · · · 0 −λn

I−1 1 + λn
I−1 + λn

I

⎤
⎥⎥⎥⎥⎥⎦ .

In the first equation of (B.3),

Sn = [
Sn

2, · · · , Sn
I−1

]T and fn =
[
f n
3 + αμn+1

1 , f n
4 , · · · , f n

I−1, f n
I + αμn+1

2

]T
,

and in the second one,

Mn = [
Mn

2, · · · , Mn
I−1

]T and gn =
[
gn

3 + λn
2μ

n+1
3 , gn

4, · · · , gn
I−1, gn

I + λn
I μ

n+1
4

]T
.
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