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Abstract

In internal combustion engines, fuel injection timing, injection rate
and pressure is optimized to ensure suitable combustion and reduce
emissions. Injectors are complex systems where mechanical,
electromagnetic, and fluid dynamics interact together. Numerical
model development of injectors allows for investigating different
conditions, as well as optimization of the system in a safe manner. In
this study, a 1-dimensional (1D) mathematical model of a direct
gasoline injector (GDI) is presented, supported by computational fluid
dynamics (CFD) in-nozzle flow simulations. The described system is
a commercially available injector where the internal geometry was
captured using silicone molds of the nozzle. The model includes the
representation and interaction of the different components across
several domains using the bond graph methodology. In the injector,
the needle is magnetic and is lifted when an electromagnetic field is
activated. When the magnetic force becomes stronger than the spring
force and the fuel’s pressure pushing the needle downward, the needle
lifts and fuel flows through the nozzle and out of the injector. These
motions are described by the mathematical model, for which the
magnetic signal serves as input. The model output provides the needle
lift and information on the fluid flow, including the pressure,
temperature, and mass flow rate. Gaseous methane and liquid
ammonia injection are investigated in separate models where the
thermofluid part of the model is changed to account for a
compressible gas, which in turn follows the perfect gas law in one
case, and an incompressible liquid in the other case. Comparison with
literature shows that the model captures the dynamics of the needle
lift well, and the mass flow is accurately predicted.

Introduction

Gasoline direct injectors (GDI) are used to directly inject fuel into the
combustion chamber of internal combustion engines. The use of GDIs
increases engine efficiency, allowing fuel savings and the reduction of
emissions, especially unburned hydrocarbons [1] [2]. The
understanding of the dynamic of fuel injectors is important for
optimizing their use in engines and achieving the best operating
conditions. However, prototyping and testing in the laboratory is an
expensive process. Therefore, using computational resources and
models is interesting to develop injectors and simulate their behavior
and performances. The injection pressure and temperature of the fuel
at the injector’s exit are valuable information for further evaluating the
combustion process using computational fluid dynamics (CFD).
These features, coupled with injector position, angle, and geometry,
will impact the nature of the spray inside the engine. Although the
pressure and temperature of the fuel can be known in the reservoir,
their evolution in the supply tube and the injector is not

straightforward to measure experimentally. The added value of
numerical simulations is to predict these fluid properties at the
injector’s exit with better accuracy, especially the pressure and
temperature. 3D CFD modeling of complex geometries such as the
one of an injector is, however, computationally expensive to perform
and only focuses on the injector part and not on the supply lines and
reservoir conditions. On the other hand, 1D models are
computationally inexpensive and can be used to model the injectors
dynamics. This way, parametric studies can be efficiently performed
for optimization purposes and rapid testing under various conditions.
Mathematical models of injectors have been developed in the past.
Reverse engineering of an injector was performed by Krivopolianskii
et al. [3] to avoid destroying the injector to evaluate its geometry by
developing a model and comparing the injection rate with
experimental data. For example, Æsøy and Pedersen [4] use the bond
graph methodology for a servo-valve activated injector. A solenoid
injector model with the bond graph methodology has also been
developed by Bai et al. [5] but does not account for the pressure and
temperature of the fuel at the injector exit. Mathematical models of
GDIs using dynamic response analysis have been developed to
optimize injector drive circuits such as Tsai and Zhan [6] or to
optimize the needle oscillations such as Yao et al. [7]. A
mathematical model coupled with CFD was developed by Zhang et al.
[8] but did not account for the fuel temperature evolution. Payri et al.
[9] used the same technique that we will present in Section 3 to
characterize the internal geometry of a diesel injector, then developed
an AMESim mathematical model of the injector and compared results
with experimental data, finding good agreement of the injection rate
between the two. The work presented here is a step towards filling the
gap by accounting for the fuel’s velocity, temperature and pressure at
the nozzle exit in a 1D model of an injector. This work aims to
contribute to decarbonizing internal combustion engines and gain
further insights into a carbon-free fuel. Indeed, recent work on
ammonia (NH3) has shown its potential as a fuel in internal
combustion engines [10, 11, 12]. The paper starts by detailing the
internal geometry and the operation of the GDI. The model
components are introduced separately, and the model assembly is
presented. The first step is modelling the injector’s electromagnetic
and mechanical parts using the bond graph methodology. In this study,
the injection is first assumed to be gaseous employing the perfect gas
law. Next, a hydraulic model replaces the gas flow model to study the
injection of liquid fuels such as ammonia. Three-dimensions CFD
simulations are performed using Reynolds-averaged Navier–Stokes
simulation in order to evaluate a realistic value of the discharge
coefficient for the one-dimension (1-D) model. In the last part of the
paper, simulations of the model dynamics are performed.
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GDI description

A 6-hole high-pressure solenoid injector, the HDEV5, is considered in
this study. The injector is available in two versions with varying
lengths, however in this work only the long injector is considered. In
order to develop a representative model, the determination of the
internal geometry of the injector is done in two parts: internal
geometry of the injector body and characterization of the nozzle
holes. The procedure developed by Macian et al. [13] is used to
characterize the nozzle with a slight variation of the technique.
Indeed, a mold needs to be taken from the outside to provide the
counterbore’s measurements. Several silicone molds were created for
repeatability and error measurements. These were coated in gold in
order to be put through a scanning electron microscope (SEM).
Pictures were taken to determine the internal geometry, and the nozzle
head’s computer-aided design (CAD) model was developed as shown
in Fig.1.

(a) Internal mold of GDI nozzle
head viewed with electron micro-
scope.

(b) External mold of GDI nozzle
head viewed with electron micro-
scope.

(c) CAD model of nozzle head reproduced from electron miscro-
scope pictures and measurements.

(d) CAD model of nozzle head reproduced from electron miscro-
scope pictures and measurements, sectioned view.

Figure 1: Silicone molds with electron microscope and CAD model of GDI
nozzle head.

The GDI is made of a series of chambers of various diameters, as
illustrated in Fig. 2. The needle, depicted with 3, 4, and 5 in Fig. 2 is
magnetic and is lifted when an electromagnetic field is activated. The
magnetic force becomes more substantial than the spring (2) and the

fuel’s pressure force pushing the needle downward. The coil inducing
the electromagnetic field is inside the armature (1). The needle lifts,
and the fuel flows around the needle into the sac and out the holes (6).
The arrows in Fig. 2a show the flow path inside the injector. The top
of the injector is linked to the supply line that draws the fuel from the
pressurized tank (the supply line and tank are not pictured here).

(a) CAD model of full injector body with fluid path.
The arrows point to the following elements: 1- Ar-
mature, 2- Spring, 3 to 5- Needle, 6- Injector’s
holes

(b) CAD model of a zoom of the nozzle head and
needle end.

Figure 2: CAD model of the GDI internal geometry.

Injector model

The bond graph methodology is an energy based mathematical
modelling approach for multi-physics systems [14]. The key concept
of bond graphs is the use of power bonds representing the energy flow,
i.e. the power between the components or physical phenomena. A
power bond connects the components and has two variables: effort
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and flow. A total of nine elements are needed to model the energy
flow in physical systems:

• Sources of effort (Se) and flow (Sf),

• Storage elements: the capacitor (C) and the inertia (I),

• Dissipative element: the resistance (R),

• Energy converters elements: the gyrator (GY) and the
transformer (TF),

• Junctions: conserves flow (1-junction) or energy (0-junction).

The simulation software 20-sim [15] is used to model and simulate
the dynamics of the injector. The model is divided into three parts:

• The electromagnetic subsystem for the solenoid,

• The mechanical subsystem for the needle’s dynamic,

• The thermo-fluid system for the fuel path.

The fuel injection system requires the assembly of the three
submodels to form a complete model. The flowchart Fig. 3 illustrates
the interaction between the different parts of the system. The fuel flow
in the injector is a complex assembly of chambers and sections with
diameter changes, as shown in Fig. 2a. The electromagnetic
subsystem acts on the needle dynamic over which other forces apply,
including the pressure from the fuel. As the needle lifts, a signal
changes the area of passage of the valve. The fuel, therefore, flows
around the needle into the holes. A large number of chambers in the
GDI can be simplified to limit the number of C- and R-elements in the
system in order to describe the flow model without impacting the
flow’s properties. We will first present an overview of the model fully
assembled then detail the different parts of each submodels.

Figure 3: Flowchart of the model of the injector operation.

Model assembly

Figure 4 presents the complete model for the gaseous case with the
assembly of the three submodels (electromagnetic, mechanical and
thermo-fluid) and their links.The discharge coefficient for the junction
inside the injector is 0.8 to account for the junction’s geometry and
the pressure losses. Pipe models are needed where the geometry of
the injector is long enough for a pressure wave to travel compared to
the time necessary for the fuel to be injected. The pipes allow for
inspecting the pressure wave’s effect on the injected fuel. 20-sim
derives the state equations from the bond graph, and the simulation

can be performed. At the nozzle head, the geometry of the holes
requires a different discharge coefficient. Three dimensional (3D)
computational fluid dynamics (CFD) analysis can give a more precise
description of the flow behavior at the end of the nozzle, and identify
the effect of the geometry on possible cavitation events happening in
the nozzle head. The methodology to obtain the coefficient at the
nozzle is described in the last part of this Section.

Figure 4: Bond graph representation of the full system. The red box represents
the tank and the supply line, the light blue box represents the injector with the
three submodels (dark blue for electro-magnetic, yellow for mechanical, and
green for thermo-fluid submodel), and the purple box represents the combustion
chamber.

Electromagnetic subsystem

The electromagnetic subsystem controls the needle lift. When the
current flows through the coil inside the armature, it is energized, and
a closed magnetic path is formed, lifting the movable magnetic
needle. The input to this subsystem is the manufacturer-provided
voltage for the pulse. In this study, a single pulse is considered. A
peak voltage source of 65 V is provided with duration of 480 µs,
followed by a holding voltage of 12 V with a duration of 704 µs. The
injector coil has a resistance of 1.5 Ω. In bond graph modeling, the
electromagnetic solenoid behaves like an inductor on the electrical
side. On the mechanical side, the device acts like a spring [16]. A
multiport-IC element is therefore needed to complete the model of the
subsystem, see Fig. 5. On the electric side, the effort variable is the
electric potential. The flow variable is the current. On the mechanical
side, the effort variable is the force, and the flow variable is the
velocity. λ is the flux linkage and x the displacement. Two
constitutive laws are needed to build the multiport; one for the current
(i), Eq. 1, and one for the force (Fmag), Eq. 2, both as functions of
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the flux linkage and of the displacement:

i =
λ

L(x)
, (1)

Fmag = −λ2

2

∂L(x)/∂x

L(x)2
=

i2

2

∂L(x)

∂x
, (2)

where L(x) is the position-dependent inductance of the coil. L(x) is
obtained as in [8]:

L =
N2 · µ1 · π

4
· d2 · h

d·w
2

+∆x · h
(3)

with N being the number of coil turns, µ1 the permeability in the air
in [H/m], d the diameter of the metallic needle attachment, w the
non-magnetic strip between the coil and the attachment, h the height
of the attachment, and ∆x the variable air gap. The evolution of the
magnetic force and the supply voltage are shown in Fig. 6. The
electromagnetic force first increases when the 65 V pulse is applied.
Then the force decreases, and we see two elbows; the first is caused
by the interruption of the voltage supplied, and the second is due to
the needle closing since the inductance is position-dependent.

Figure 5: Bond graph representation of the multiport-IC to model the electro-
magnetic solenoid, to link the electrical current and the magnetic force acting
on the needle.

Figure 6: Supply electric potential signal (green dashed-dotted line) and result-
ing electromagnetic force (blue dashed line) for the electromagnetic subsystem.

The complete electromagnetic submodel flow chart is pictured in Fig.
7.

Figure 7: Bond graph representation of the complete electromagnetic submodel,
including the input voltage, the coil resistance and the multiport-IC element.

Mechanical system

The mechanical system dictates the needle’s dynamics. Forces acting
on the needle are the following: force from the spring (see (2) Fig. 2),
friction, gravity, magnetic force, and pressure from the fuel, as
pictured in Fig. 8. The force acting on the needle from the fuel
pressure (Ffuel) is calculated with a transformer element, with the
equation:

Ffuel = Pfuel ·A (4)

The area A accounting for the needle surface affected by the fuel
pressure Pfuel is calculated using the developed CAD model.
Bumpers at the top and bottom of the needle trajectory block the
needle movement when it is at the position x > xmax or x < 0. The
1-junction describes the needle’s velocity, and is a form of Newton’s
second law since it is linked to an I-element for the mass, as pictured
in the graphical model Fig. 9. From the graphical model, the equation
for the needle dynamic can be extracted:

Iẍ−Rẋ+
1

C
x = Fmag(t) + Pfuel up Afuel up (x)+

Pfuel downAfuel down (x) + Fbumper(x) (5)

Figure 8: Illustration of mechanical system with acting forces on the needle:
magnetic force, gravity, fuel pressure, friction, spring force. Bumpers at each
end of the trajectory are also included in the illustration.

Figure 9: Bond graph representation of the complete mechanical submodel.

The needle is lifted when the electromagnetic force becomes stronger
than the downward force. The needle can only lift 0.07 mm due to the
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injector’s geometry. As it lifts, the fuel flows around the needle head
and through the nozzle holes into the combustion chamber in the
engine. The needle acts as a variable area valve for the flow.

Thermo-fluid system

Using the bond graph method, developing the fuel flow model
requires a different approach than the standard methodology. Karnopp
et al. [17] introduced pseudo-bond graphs to model thermodynamic
systems. A double bond is used, where the effort pressure P is paired
with the mass flow rate ṁ and the effort temperature T is paired with
the energy flow rate Ė to link two bond-graphs elements as seen in
Fig. 10. The state variables become the total mass m and the total
energy E.

Figure 10: Bond graph representation of thermo-fluid pseudo bonds between
two bond graph elements. A double bond is used, the top bond represents the
pressure and mass flow rate effort/flow pair and the bottom bond represents the
temperature and energy flow pair.

Building blocks are needed to represent the thermo-fluid components:
accumulators, restrictions, and pipes. The structure of these blocks
will be described hereafter. Two models are developed, one for
gaseous fuel injection and the other for liquid fuel injection.

Gaseous fuel

In this paragraph, we consider a fuel in the incompressible gas phase.

Accumulators (C-element) Control volumes with input (subscript
in) and output (subscript out) flows are represented in bond graph
models with a C-element that is called an accumulator. An
accumulator for the gas phase follows mass and energy conservation
laws, and these are its state equations :

d

dt
m = ṁin − ṁout, (6)

d

dt
E = hinṁin − houtṁout − P

dV

dt
, (7)

with h the enthalpy and V the accumulator’s volume. We consider
constant volume in the accumulators, so dV

dt
= 0. Relations are

needed to link the state variables and the effort. Here we follow the
perfect gas law :

P =
mRT

V
, (8)

with R the gas constant defined Eq. 10,

T =
E

mCv
. (9)

The heat capacities at constant pressure and constant volume, Cp and
Cv are properties of the gas. We assume, in this model, that they are

constants in the ranges of pressure and temperature investigated and
are computed using the NIST thermodynamic database [18].

R = Cp − Cv, (10)

γ =
Cp

Cv
. (11)

An accumulator model can be developed using pseudo-bond graphs
and a 0-junction to translate the effort conservation at the interface, as
pictured Fig. 11.

Figure 11: Bond graph representation of the accumulator (C-element) model.
Effort variables of the power bonds pressure and temperature are conserved.

Heat transfer to account for conduction can be added, as introduced
by Karnopp et al.[17]. Variable volumes can also be modeled, or one
can use multi-component accumulators with multiphase [19]. The
simplest model for an incompressible gas is however sufficient for this
study’s purpose.

Restrictions (R-element) Flow restrictions are helpful building
blocks for thermodynamic systems. These represent nozzles or valves
where there is no storage of fluid but which impact the effort variable
due to the geometry of the passage. An R-element can model the
restrictions, such as an isentropic nozzle. We first need to derive the
mass flow and energy flow. The mass flow for an isentropic flow
depends on the ratio of the upstream (subscript u) and the downstream
(subscript d) pressure in the nozzle:

Pr =
Pd

Pu
. (12)

When Pr > Pc, where Pc is a critical pressure defined Eq. 15, then:

ṁ = A
Pu√
Tu

√
2γ

R(γ − 1)

√
P

2/γ
r − P

(γ+1)/γ
r . (13)

Otherwise, when Pr < Pc, then

ṁ = A
Pu√
Tu

γ

(
2

γ + 1

) γ+1
2(γ−1)

(14)

with :

Pc =

(
2

γ + 1

)γ/(γ−1)

. (15)
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The energy flow Ė is determined by

Ė = CpTuṁ. (16)

The sign of ṁ and the upstream and downstream sides of the nozzle
are dictated by the pressure drop ∆P across the nozzle.

Figure 12: Bond graph representation of the restriction (R-element) model.
Flow variables of the power bonds mass flow rate and energy flow are con-
served.

Figure 12 shows the R-element component. Inputs for the component
are Pa, Pb, Ta, and Tb, and outputs are ṁ and Ė. The procedure is as
follow :

if Pa > Pb, then Pu = Pa, Tu = Ta, Pd = Pb,

if Pa < Pb, then Pu = Pb, Tu = Tb, Pd = Pa. (17)

Pu and Pd are assigned using Eq. 17, then Pr is computed using Eq.
12. Then the mass flow is computed using Eq. 13 or Eq. 14 depending
on the value of Pr . If Pa > Pb then the mass flow is as computed,
otherwise, the mass flow becomes −ṁ. Finally, Eq. 16 is used to
compute the energy flow Ė. A variation on the model exists with a
variable area to account for a valve position or multi-component fluid
as in [19]. The valve position variation requires a signal to modify ṁ.
This model uses a variable area valve where the needle head is. When
the needle lifts, the area where the fuel will flow increases. When the
needle is resting to close the injector, the signal is zero to indicate that
no flow is going to the combustion chamber.

Pipes Lastly, a pipe model accounts for unsteady flows and for the
pressure waves across long pipe sections. Navier Stokes equations for
a one-dimensional flow are used in this building block for the mass,
energy, and momentum conservation equations. The pipe model is
described by Strand et al. in [20]. To obtain the state equation, we
divide the pipe into N control volumes (Fig. 13). We assume constant
density, temperature, and velocity within each control volume i.

Figure 13: Illustration of control volume i.

We integrate the Navier-Stokes equations over one control volume
and find the equations for the mass, momentum and total energy
conservation:

dmi

dt
= ṁi−1/2 − ṁi+1/2. (18)

d(mu)i
dt

=ṁi−1/2ui−1/2 + Pi−1/2A− ṁi+1/2ui+1/2

− Pi+1/2A− λ

2D
mi |ui|ui.

(19)

dEi

dt
=ṁi−1/2

(
hi−1/2 +

1

2
u2
i−1/2

)
− ṁi+1/2

(
hi+1/2 +

1

2
u2
i+1/2

)
+ Q̇i.

(20)

Here, u is the velocity, A is the cross-section area of the pipe, λ is a
friction coefficient, D is the pipe’s diameter, and Q̇ is a heat source.
The effort variables, pressure, temperature and velocity over the
control volume i can then be computed:

Pi =
(γ − 1)

∆xiA

(
Ei −

1

2

(mu)2i
mi

)
.

Ti =
1

cv

(
Ei

mi
− 1

2

(mu)2i
m2

i

)
.

ui =
(mu)i
m

.

(21)

The flow at the boundary and at the adjacent control volumes still
needs to be computed. This is done by accounting for the fluid’s flow
stronger dependency on the upstream condition by using a
Mach-modulated approach:

gi+1/2 =
1

2
(gi + gi+1) +

1

2
f (Mu) sign (uu) (gi − gi+1) . (22)

where uu and Mu are the velocity and Mach number in the control
volume upstream of the boundary.

f (Mu) = Mr
u ∈ [0, 1]. (23)

r is a real positive constant that has been tuned for a wide range of
application based on robustness, accuracy and computational speed
optimization. Values for r are [2, 2, 0.01, 0.0001] for the velocity,
pressure, density and temperature [20]. In terms of bond graph
interpretation, three bonds are needed: pressure with mass flow,
temperature with energy flow, and force due to pressure and convected
momentum with the average fluid velocity as illustrated in Fig. 14.

Figure 14: Bond graph representation of pipe control volume i.

A three port IC-field is needed as the conservation of mass and total
energy act as a C-element, but the momentum is related to the inertia
of the fluids and is related to an I-element. The equations for the
IC-field are:

Pi = ΦICP (mi, (mu)i, Ei) ,

Ti = ΦICT (mi, (mu)i, Ei) ,

ui = (mu)i/mi.

(24)
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The constitutive equations for the R-element between the control
volumes i and i+ 1 are:

ṁi = ρiuiA,

Ėi = ṁi

(
hi +

1

2
u2
i

)
,

Fi = PiA+ ṁiui.

(25)

Density ρi, and velocity ui are computed with Eq. 22

The R-element in Fig. 14 corresponds to the frictional force, and the
Sf-element corresponds to the heat flow added to the control volume.
This source is not present in an adiabatic case, which is what we will
consider in our model. The pipe needs to be connected to other
submodels to account for pressure and temperature at the boundaries.
The last bond for velocity ends at the R-element located at the pipe
model’s extremity, as illustrated in Fig. 15.

Figure 15: Bond graph representation of complete pipe model with boundary
conditions.

Liquid fuel

In this paragraph we consider a liquid fuel. Equations of state are
needed to obtain properties such as ρ, enthalpy, etc. One approach is
to use equations of state for fluids such as Peng-Robinson or to use
thermodynamic tables where the properties have been calculated using
these equations of state. We use REFPROP [21], the NIST reference
database for thermodynamics and transport properties of fluids.

Accumulators (C-element) We consider a constant volume in the
accumulators, so dV

dt
= 0. Constitutive equations are needed to link

the state variables and the effort:

P = ϕP (ρ, e), (26)

T = ϕT (ρ, e). (27)

The functions ϕP and ϕT are used when the model refers to a
thermodynamic table and the values of pressure and temperature are
obtained based on the values of density ρ and the specific internal
energy e. The values of ρ and e are obtained in the following way:
first, the initial values of ρ and e (respectively, ρ0 and e0) are
determined using the initial conditions of temperature and pressure in
the accumulator :

ρ0 = ϕρ(P0, T0), (28)

e0 = ϕe(P0, T0), (29)

m0 = ρ0V, (30)

with V the volume of the accumulator. The initial energy E0 is given
by

E0 = u0m0, (31)

It follows then that
m =

∫
ṁ+m0, (32)

E =

∫
Ė + E0, (33)

and it holds that
ρ =

m

V
, (34)

e =
E

m
. (35)

A model of the accumulator can be built using pseudo bond graphs
and a 0-junction to translate the effort conservation at the interface as
shown in Fig. 11.

Restrictions (R-element) An R-element can, as described above,
model flow restrictions. As for gas phase we first need to derive the
mass flow and energy flow. The mass flow for a nozzle depends on the
pressure difference upstream (Pu) and downstream (Pd) the nozzle
[22] :

Pr = Pu − Pd. (36)

When Pr > 0, then :

ṁ = ACd

√
2

ρ
(Pu − Pd) (37)

and the total energy flow is :

Ė = ṁh (38)

with h being the specific enthalpy. h and ρ are obtained using the
thermodynamic tables

h = ϕh(Tu, x), (39)

ρ = ϕρ(Tu, x) (40)

where x is the fraction of vapour. In our study, it will be zero as we
consider only liquid state. Figure 12 shows the R-element component.

Pipes Finally, a pipe model helps model unsteady flows along long
pipes. A distributed parameter element approach is used, similar to
the method described by Æsøy and Pedersen [4] and Lebrun[23] for
the hydraulic flow model. The pipe does not account for the
temperature, only pressure is accounted for to represent the pressure
wave propagation. The method followed here is the modal approach,
consisting of solving partial differential equations. Thoma et al. [24]
showed that only three modes were needed in the modal approach to
obtain accurate results. The partial differential equations to solve are
the following:

1

ρ

∂P

∂x
+

1

A

∂Q

∂t
+

FQ

A
= 0.

c2

A

∂Q

∂x
+

1

ρ

∂P

∂t
= 0.

(41)

with A being the cross sectional area of the pipe, Q the flow rate, c the
wave speed, and F the loss coefficient found using the
Hagen-Poiseuille flow theory. Second derivation is applied for t and x
to eliminate pressure or flow:

∂2Q

∂t2
+ F

∂Q

∂t
− c2

∂2Q

∂x2
= 0,

∂2P

∂t2
− F

∂P

∂t
− c2

∂2P

∂x2
= 0.

(42)
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The orthogonality of the modal functions allows getting a set of
decoupled ordinary differential equations for each normal mode. We
thus obtain the following:

ρ

A

∂2Q

∂t2
+

ρF

A

∂Q

∂t
− ρ

A
c2

∂2Q

∂x2
= Ṗ0δ(0) + ṖLδ(L)

A

ρc2
∂2P

∂t2
+

AF

ρc2
∂P

∂t
− A

ρ

∂2P

∂x2
= Q̇0δ(0) + Q̇Lδ(L)

(43)

with P0, PL, Q0 and QL, being the pressure and mass flow at each
end of the pipe, and δ the Dirac function. For the ith normal mode,
the first equation of Eq. 43 is solved. The inertia, capacitance and
resistance for the ith mode are in Table 1. The bond graph
representation of the modal pipe model is shown in Fig. 16.

Table 1: Capacitance, resistance and inertia for the normal mode i.

C R I
i = 0 C0 = ∞ I0 = ρL

A
R0 = 8νρL

A2

i = 1,2,..., N C0 = 2AL
βeq(πi)2

Ii =
I0
2

Ri =
R0
2

With L the pipe’s length and ν the fluid’s kinetic viscosity. The fluid

bulk modulus β is given by βeq =
(

1
β
+ 1

twEv

)−1

where tw is the
pipe wall thickness and Ev is Young’s modulus of elasticity of the
wall material.

Figure 16: Bond graph representation of the modal pipe model.

Since the pipe model only accounts for pressure evolution, it is linked
to the accumulator models as illustrated in Fig. 17, with a bond only
on the pressures.

Figure 17: Bond graph representation of the pipe model linked to the accumu-
lator model by the pressures.

Discharge coefficient using 3-D CFD

The objective of the paper is to use a one dimensional model to do
rapid testing of an injector. However, for more precise information,
three dimensional fluid dynamics simulation can support the model
development. A discharge coefficient can be determined from CFD of
the in-nozzle flow [25]. In this study, CONVERGE 3.0 [26] is used to
simulate the flow in the HDEV5 injector, using the same CAD model
as described Fig. 1 and Fig. 2. The Eulerian framework is used for
solving the momentum, mass, energy and species conservation
equations. A Reynolds averaged Navier Stokes formulation is used
for closure for the turbulence model: the standard k-ϵ model. A
volume of fluid (VOF) method is used to simulate multiphase flow
and also a cavitation model is employed [27], [28]. The model
captures the phase change from liquid to vapor inside the injector. A
Cartesian mesh is automatically generated during the simulation
process, with refined mesh near the nozzle. This 3D transient
simulation provides information about the amount of vapor forming in
the injector when in this case liquid ammonia is injected. This is
especially useful in the liquid fuel one dimensional model.

(a) (b)

Figure 18: Geometry of the simulated injector: full injector and zoom on the
nozzle head.

At the inlet, liquid ammonia at a temperature of 300 K and a pressure
of 200 bar enters the domain. At the outlet, varying pressures at a
temperature of 300 K are imposed. The rest of the domain is
composed of walls following the law-of-the-wall boundary condition
for velocity, and the heat transfer model is set to O’Rourke and
Amsden [29]. The needle inside the injector is a moving wall with a
translating motion up and down. The needle movement mimics open
and closed conditions during which the fuel is either injected or not
injected into the combustion chamber. Longer injection timings were
chosen (0.3 ms) to ensure that steady state was reached during the
injection. The discharge coefficient Cd is defined as the ratio between
the theoretical ideal liquid mass flow rate through the outlet and the
actual liquid mass flow rate. The theoretical liquid mass flow rate is
determined using the following formula based on Bernoulli’s
equation:

ṁideal = A
√

2ρ∆P (44)

with A being the nozzle outlet area, ρ the inlet density, and ∆P the
difference between the upstream and downstream pressure. The
discharge coefficient is defined as:

Cd =
ṁreal

ṁideal
(45)

with ṁreal as the computed mass flow rate of liquid ammonia
through the outlet. To obtain the liquid mass flow rate, the fraction of
liquid at the outlet can be computed using the averaged density at the
outlet, as well as the density of gaseous ammonia (10 kg/m3) and
liquid ammonia (600 kg/m3):

ρavg = Xgρg +Xlρl (46)
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with
Xl +Xg = 1. (47)

For varying pressures at the outlet, Fig. 19 shows the discharge
coefficient obtained. It varies from 0.05 when injecting in
atmospheric conditions, to 0.2 when injecting in engine-relevant
conditions. Going forward, the value of 0.2 is selected to simulate the
discharge coefficient at the nozzle in the 1-D simulations.

Figure 19: Time evolution of discharge coefficients during injection for different
outlet pressures.

Simulation

The fuel tank holds 200 bar, compressing the fuel with nitrogen. The
temperature in the tank is ambient. The injection is modeled by the
fuel’s pressure and temperature at the injection time, which are
considered constant during the simulation. This is unrealistic as the
injected fuel will mix with air, and the combustion will start.
However, this assumption is necessary to focus on the dynamic of the
injector itself and not on the engine’s response. We will assume the
combustion chamber temperature to be at 500 K and the pressure at
40 bar at time of injection. Range Kutta of second order is used to
solve the equations. The covered simulation time is 3 ms, with the
injection of the fuel lasting 1.25 ms. The time step is 1e-5 ms and is
chosen to capture the system’s dynamics while keeping the simulation
within a reasonable time. The model is compared to a simulation by
Zhang et al. [8]. The GDI in that publication differs slightly with the
one considered in the present work as the needle lifted upwards at a
maximum of 0.1 mm, while the injector described in this study can
only raise 0.07 mm. This deviation is yet not considered significant.
A comparison of the dimensionless needle lift is shown in Fig. 20 to
account for this difference in maximum lift. The lift in the graph is
normalized by the maximum needle lift of the respective injectors.

The needle lifts as a response to the electromagnetic force being more
prominent than the downward forces such as the spring force, pressure
from the fuel, etc., as shown in Fig. 21. The bumper model stops the
needle when it is above its maximum displacement value or below its
minimum displacement, as shown in Fig. 22. Slight oscillations occur
at these positions, but equilibrium is reached quickly. The difference
with the values reported in literature is minor and can be linked to the
slightly different profile of electric potential supplied.

One objective of the model is to include pressure and temperature
evolution through the injector to get the nozzle exit values without
CFD. As described above two models were developed: one for gas
and the other for liquid fuel. Results for both models are presented
hereafter.

Gas fuel

For this simulation, the fuel used is methane, so our assumption of
incompressible perfect gas holds at the conditions considered. The
evolution of temperature and pressure are illustrated in Fig. 23 and

Figure 20: Time evolution of the normalized needle lift from the model devel-
oped in this paper and from [8]. The maximum lift value of each study is used
for the normalization.

Figure 21: Time evolution of the forces acting on the needle. The force by the
bumper is not pictured here.

Figure 22: Time evolution of the needle lift (blue dashed line) and of the force
acting on the needle induced by the bumper model (red dashed-dotted line).

Fig. 24 as well as the mass flow rate through the injector Fig. 25. The
mass flow rate is compared with that of Zhang et al. [8] where CFD
was used to obtain the fuel flow.

The injector geometry causes a pressure drop from the tank to the
injector’s exit of around 10 bar, as seen in Fig. 23. The fuel in the sac
is around 188 bar, oscillating due to the pressure wave in the injector.
The reached injection pressure still enables a high-pressure injection.
The pressure in an intermediate chamber is pictured in Fig. 23 where
the oscillations due to the pressure wave continue to travel inside the
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Figure 23: Time evolution of the pressure in the tank and out of the injector for
the gaseous model.

Figure 24: Time evolution of the temperature in the tank and out of the injector
for the gaseous model.

Figure 25: Time evolution of the mass flow out of the injector for the gaseous
model. Comparison with [8] where a liquid fuel is used.

injector. This traveling wave impacts the needle and the sac’s pressure
even after the injector has closed, oscillating around 40 bar, although
this is not visible in Fig. 23. The temperature shown in Fig. 24
oscillates around 300 K due to the pressure oscillation affecting the
fluid’s temperature following the perfect gas law. When the needle
starts lifting, the temperature drops below the tank temperature. The
fluctuations after the needle closes are due to the pressure wave
oscillations still impacting the system. The mass flow injected is at
around 0.001 kg/s for about 0.00125 s, reaching a total fuel mass of

1.25 mg in one injection. The predicted value differs significantly to
the anticipated mass flow of fuel in Zhang et al. [8] at 200 bar,
reporting a fuel mass of around 16 mg injected into the combustion
chamber during one injection. The main difference between the
compared systems is liquid fuel in the work by Zhang et al. and
gaseous in our results. Hence in the next section, we verify that
changing our model to liquid fuel allows to have comparable results
as Zhang et al..

Liquid fuel

For this case, the fuel considered is liquid ammonia. It is liquid at 200
bar and ambient temperature, which are the tank’s initial conditions
for this simulation. As for the gas study, the evolution of the pressure,
temperature and mass flow are computed (Fig. 26, Fig. 27 and 28
respectively)

Figure 26: Time evolution of the pressure in the tank and out of the injector for
the liquid model.

Figure 27: Time evolution of the temperature in the tank and out of the injector
for the liquid model.

The computation time for the liquid model takes longer than that of
the gas, as the model employs a procedure to use the thermodynamic
tables from REFPROP. The pressure in the sac is initiated with that of
the combustion chamber’s pressure. Then, when the needle is lifted, a
surge of fuel pushes the pressure to 190 bar. The pressure then
stabilizes as the injection progresses at 180 bar. As the needle moves
down, a second surge brings back the pressure to 190 bar before it
reduces as the injector closes. The injection pressure is slightly lower
than that reached with the gas system. Once the needle touches the
nozzle’s seat, a slight jump causes a minor pressure rise as in the gas
case. The temperature in the sac converges to 290 K before the start of
injection, which is likely linked to ammonia’s cooling properties.
When the injection starts, the temperature remains below 300 K. This
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Figure 28: Time evolution of the mass flow out of the injector for the liquid
model for an initial pressure in the tank of 200 bar. Comparison with [8] at the
same pressure.

means that the fuel injected into the chamber will be at a lower
temperature than the temperature at which the fuel is stored, this is
something that will be important to account for when studying
ammonia injection. The mass flow rate obtained is very close to the
one from Zhang et al. [8] as seen in Fig. 28 despite the difference in
the fuel’s nature. However, due to the novelty of ammonia as a fuel,
the literature still lacks of experimental investigations and validation
data for injector flow of ammonia. The different fuel densities may
also cause deviations in the predicted results and literature. The
injector’s geometry was kept the same as for the gaseous simulation,
meaning that the difference in mass flow rate obtained in the gas case
was indeed due to not accounting for the liquid nature of the fuel. In
the liquid case, despite a model for pressure wave being included, no
oscillations are captured with the model. The absence of a wave might
be due to the flow’s higher velocity, which can be seen in the high
mass flow rate. No pressure oscillations were captured in Zhang et al.
[8] either. A comparison with the 3-D CFD that was performed to
investigate the discharge coefficient for ammonia is presented Fig. 29
and results show that the same order of magnitude for the liquid mass
flow rate is reached. To compare the simulations, the time is
normalized by the injection duration for each case. Indeed, the 1-D
model does not account for multiphase flow, and this impacts the
results and is believed to be the reason for the difference with the 3-D
simulations as revealed in Fig. 29. This is also why no comparison
with pressure and temperature is shown here. Nevertheless, to get an
estimate of the mass flow rate and the response of the injection to the
magnetic inputs, the 1-D model still has advantages, especially in
terms of computational time. The 1-D models run in a few minutes
whereas the 3-D CFD takes several hours on the same system.

It is worth noting that the injector model developed in this study
accounts for the electromagnetic force and the needle displacement
accurately compared to what is reported in literature. The needle lift
and interaction with the fuel injection are good as there is no leakage,
and the fuel flows when the needle is lifted. Both the gas and liquid
models give realistic results. However, in order to capture even more
physics, a third model would need to be developed to account for the
fuel’s gas and liquid phases in order to account for e.g. cavitation and
other multiphase characteristics.

Conclusion

In this paper, a model of a solenoid injector was developed using the
bond graph methodology. The model is divided into three sub-models
for the electromagnetic, mechanical, and fluid systems respectively.
The model accurately predicted the needle lift. The electromagnetic
and mechanical model for the control of the needle was coupled to a
fluid model using pseudo bond graphs to predict the fluid behavior in

Figure 29: Time evolution of the mass flow rate out of the injector for the liquid
model. Comparison with the time evolution of mass flow rate in the 3-D CFD
simulations.

the injector. The evolution of the system’s pressure, temperature, and
mass flow rates were investigated using pseudo bond graphs and
thermodynamic tables. Several levels of complexity were accounted
for in the model, from the simple perfect gas law for gaseous fuels to
linking the model to thermodynamic tables to account for liquid fuels.
This model can be used to simulate various initial conditions and
geometries. The initial conditions of pressure and temperature can be
varied, as well as the power strategy to study varying input pulses for
the solenoid and durations. A sensitivity study of the effect of the
nozzle’s hole diameter or the number of holes can be helpful given the
immense diversity of solenoid injectors that exists, and the presented
model has proven to be a sensible tool for rapid testing in the initial
phases of injector development. Other fuels can be considered using
the NIST database, and a model for a realistic combustion chamber
could be linked to the injector model to study the interaction between
injection and chamber.

Acknowledgement

The authors would like to acknowledge NTNU’s Nanolab for the use
of SEM equipment and assistance in realizing the silicone mold
pictures. Convergent Science provided CONVERGE licenses and
technical support for this work. This work is supported by the
Norwegian Research Council and partners in the Low Emission
Center.

References

1. G. Karl, R. Kemmler, M. Bargende, and J. Abthoff, “Analysis of
a direct injected gasoline engine,” SAE Transactions, vol. 106,
pp. 835–847, 1997.

2. K. Shimotani, K. Oikawa, O. Horada, and Y. Kagawa,
“Characteristics of gasoline in-cylinder direct injection engine,”
JSAE Review, vol. 17, no. 3, pp. 267–272, 1996.

3. V. Krivopolianskii, N. Lefebvre, S. Ushakov, and E. Pedersen,
“Fuel rate curve-based reverse engineering approach for
common rail diesel injectors,” in Automotive Technical Papers,
SAE International, sep 2019.

4. V. Aesoy and E. Pedersen, “Modeling and Simulation for Design
and Testing of Direct Injection Gaseous Fuel Systems for
Medium-Speed Engines,” SAE International Journal of Fuels
and Lubricants, vol. 4, no. 2, pp. 188–203, 2011.

11



5. Y. Bai, Q. Lan, L. Fan, X. Ma, and H. Liu, “Investigation on the
fuel injection stability of high pressure common rail system for
diesel engines,” International Journal of Engine Research,
vol. 22, no. 2, pp. 616–631, 2021.

6. W.-C. Tsai and T.-S. Zhan, “An experimental characterization
for injection quantity of a high-pressure injector in gdi engines,”
Journal of Low Power Electronics and Applications, vol. 8,
no. 4, 2018.

7. X. Yao, Z. Zhang, X. Kong, and C. Yin, “Dynamic response
analysis and structure optimization of gdi injector based on
mathematical model,” International Journal of Reliability,
Quality and Safety Engineering, vol. 25, no. 02, p. 1850008,
2018.

8. X. Zhang, A. Palazzolo, C. B. Kweon, E. Thomas, R. Tucker,
and A. Kascak, “Direct fuel injector power drive system
optimization,” SAE International Journal of Engines, vol. 7,
no. 3, pp. 1137–1154, 2014.

9. R. Payri, H. Climent, F. J. Salvador, and A. G. Favennec, “Diesel
injection system modelling. methodology and application for a
first-generation common rail system,” Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, vol. 218, no. 1, pp. 81–91, 2004.

10. C. Lhuillier, P. BREQUIGNY, C. Rousselle, and F. Contino,
“Combustion characteristics of ammonia in a modern
spark-ignition engine,” in Conference on Sustainable Mobility,
SAE International, oct 2019.

11. C. Lhuillier, P. Brequigny, F. Contino, and
C. Mounaı̈m-Rousselle, “Experimental study on
ammonia/hydrogen/air combustion in spark ignition engine
conditions,” Fuel, vol. 269, p. 117448, 2020.

12. S. Oh, C. Park, S. Kim, Y. Kim, Y. Choi, and C. Kim, “Natural
gas–ammonia dual-fuel combustion in spark-ignited engine with
various air–fuel ratios and split ratios of ammonia under part
load condition,” Fuel, vol. 290, p. 120095, 2021.

13. V. Macian, V. Bermudez, R. Payri, and J. Gimeno, “New
technique for determination of internal geometry of a diesel
nozzle with the use of silicone methodology,” Experimental
Techniques, vol. 27, no. 2, pp. 39–43, 2003.

14. D. Karnopp, D. Margolis, and R. Rosenberg, System Dynamics:
Modeling, Simulation, and Control of Mechatronic Systems.
EngineeringPro collection, Wiley, 2012.

15. C. Kleijn, M. Groothuis, and H. Differ, “20-sim 4.4 reference
manual,” 2013.

16. N. Hogan, “Example : Electromagnetic solenoid,” tech. rep.,
2002.

17. D. Karnopp, “State Variables and Pseudo Bond Graphs for
Compressible Thermofluid Systems,” Journal of Dynamic
Systems, Measurement, and Control, vol. 101, pp. 201–204, 09
1979.

18. V. Siderius, D. Krekelberg, W. Hatch, and H. Shen, “Nist
standard reference simulation website,” 2022.

19. E. Pedersen, “Modelling Multicomponent Two-Phase
Thermodynamic Systems Using Pseudo-Bond Graphs,” in Proc.
of the 5th International Conference on Bond Graph Modeling,,
Society for Computer Simulation International, 2001.

20. K. Strand and H. Engja, “Bond graph interpretation of
one-dimensional fluid flow,” Journal of the Franklin Institute,
vol. 328, no. 5, pp. 781–793, 1991.

21. E. W. Lemmon, I. H. Bell, M. L. Huber, and M. O. McLinden,
“NIST Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties-REFPROP, Version
10.0, National Institute of Standards and Technology,” 2018.

22. X. Li, Y. Cheng, S. Ji, X. Yang, and L. Wang, “Sensitivity
analysis of fuel injection characteristics of gdi injector to injector
nozzle diameter,” Energies, vol. 12, no. 3, 2019.

23. M. Lebrun, “Normal modes in hydraulic lines,” in 1984
American Control Conference, pp. 458–467, 1984.

24. J. U. Thoma and D. B. Richter, “Simulation of Fluid Pipes in
Hydrostatic Circuits Using Modal and Segmented Methods,”
Transactions of the Society for Computer Simulation
International, vol. 3, pp. 337–349, 1986.

25. J. Gaucherand, C. Netzer, M. T. Lewandowski, and T. Løvås,
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