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Preface

This master’s thesis is the culmination of a master’s degree program in Cybernetics and
Robotics at NTNU, Trondheim. It was written during the fall of 2022 and is a follow-up
to a master project completed in the spring of the same year. The thesis covers relevant
background theory and provides a brief introduction to artificial intelligence and ship dy-
namics. The methods employed to solve the docking of a marine vessel are explained in
detail, and the code used for the project was executed on a Mac Book Air using Visual
Studio Code and the PyTorch library.

Working on this thesis has been both challenging and rewarding. It has been a reward-
ing process to see the code work after hours of debugging, and interesting to gain insights
into the automation of ships and reinforcement learning.
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Executive summary

Autonomous docking of ships has been a focus of research for decades, with the first
automatic docking system developed in the 1960s. Advances in technology have led to
increasingly sophisticated systems that can be tested using simulations and field trials to
ensure safety and reliability. AI and Deep Reinforcement learning have emerged as pow-
erful tools for developing autonomous docking systems that can adapt to changing envi-
ronmental conditions.

However, it is crucial for the captain on a ship to understand how the AI system oper-
ates, especially in situations where its decision-making process could impact the safety of
the vessel and crew. Explainable AI provides insights into the decision-making process of
the system, ensuring transparency, understandability and increase the quality in the deci-
sion making process for a captain that considers to overrule the decision of an AI system.
In the context of autonomous docking, Explainable AI is critical in identifying areas for
improvement.

Explainable AI has its roots in machine learning, where algorithms focus on accurate
predictions without providing an explanation for their decisions. The Explainable AI aims
to ensure transparency and accountability, making it an important tool in developing au-
tonomous docking systems. By using Explainable AI, researchers can understand how the
system makes decisions.

The primary objective of this report is to investigate the feasibility of utilizing a prox-
imal policy optimization algorithm to govern the docking maneuvers of a 3 Degree Of
Freedom autonomous vessel. Additionally, the report endeavors to explicate the behavior
of the system through the application of LIME and SHAP values. The proximal policy
optimization algorithm is an effective algorithm for designing autonomous docking sys-
tems, while LIME and SHAP values offer a mechanism for elucidating the behavior of the
system. In this study, two distinct models were examined and assessed for performance,
and their behavior were analyzed through the use of SHAP and LIME values. Further-
more, one of the models was trained using different learning rates. The observation vector
encompassed nine parameters, which were employed by the reward function to yield a
reward, while the action vector comprised five parameters for controlling the two azimuth
thrusters and the one tunnel thruster on the vessel.

By using a proximal policy optimization algorithm and Explainable AI techniques such
as LIME and SHAP values, it is possible to develop highly effective autonomous docking
systems that can be used in a wide range of applications. This study found the Proximal
policy algorithm to be effective for a 3 Degree Of Freedom autonomous ship. In addition,
it provided insight into the feature attribution of each the states for each of the controlling
actions. This is useful for developing autonomous docking systems that are safe, reliable,
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and transparent.

It is important to emphasize the need for further work to fully exploit the potential
of Explainable AI for the docking of a marine vessel. While these techniques can pro-
vide insight into how an autonomous docking system makes decisions, it is still necessary
to investigate how this insight can be transferred to practical use. Further research and
development of Explainable AI will be critical to developing autonomous docking sys-
tems that are even more reliable and safe, and that can be used in increasingly demand-
ing environments. For example, additional work is required to improve the robustness of
the autonomous docking system, which involves implementing ocean currents, wind, and
moving obstacles. Additionally, it may be interesting to further investigate Counterfactu-
als, as this technique can provide a more personal and qualitative explanation of decisions
and help users understand how to modify input variables to achieve the desired output
variable.
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Sammendrag

Autonom dokking av skip har vært et forskningsområde i flere tiår, og det første au-
tomatiske dokkingssystemet ble utviklet på 1960-tallet. Fremskritt innen teknologi har ført
til stadig mer sofistikerte systemer, som kan testes ved hjelp av simuleringer og feltprøver
for å sikre trygghet og pålitelighet. Kunstig intelligens (KI) og dyp forsterkende læring er
kraftige og viktige verktøy for å utvikle autonome dokkingssystemer som kan tilpasse seg
endrede miljøforhold.

Det er imidlertid essensielt at kapteinen forstår hvordan KI-systemet fungerer, spe-
sielt i situasjoner der beslutningsprosessen kan påvirke skipets og mannskapets sikkerhet.
Forklarende KI gir innsikt i beslutningsprosessen til systemet og sikrer gjennomsiktighet
og forståelighet. Dermed forstår kapteinen også bedre når hen skal overstyre KI-systemets
beslutning. I sammenheng med autonom dokking er forklarende KI avgjørende for å iden-
tifisere områder for forbedring.

Forklarende KI har sitt opphav i maskinlæring, der algoritmer fokuserer på predik-
sjoner uten å gi en forklaring på sine beslutninger. Utviklingen av forklarende KI har som
mål å sikre gjennomsiktighet og ansvarlighet, og gjør det til et viktig verktøy i utviklingen
av autonom dokkingssystemer. Ved å bruke forklarende KI kan både forskere og kapteinen
forstå hvordan systemet tar beslutninger.

Hovedmålet med denne oppgaven er å undersøke bruken av en proximal policy optimization-
algoritme for å styre et autonomt skip med 3 frihetsgrader under dokking. I tillegg tar
rapporten sikte på å forklare systemets atferd gjennom anvendelse av LIME og SHAP-
verdier. Proximal policy optimization-algoritmen er en effektiv algoritme for å utforme
autonome dokkingssystemer, mens LIME- og SHAP-verdiene tilbyr en mekanisme for å
forklare systemets atferd. I denne studien ble to forskjellige modeller undersøkt og vur-
dert for ytelse, og deres atferd ble analysert ved hjelp av SHAP- og LIME-verdier. Videre
ble en av modellene trent ved hjelp av ulike læringsrater. Observasjonsvektoren omfat-
tet ni parametere, som ble brukt av belønningsfunksjonen for å gi en belønning, mens
handlingvektoren omfattet fem parametere for å kontrollere de to azimut-thrustere og en
tunnel-thruster på fartøyet.

Ved å bruke en proximal policy optimization-algoritme og forklarende KI-teknikker
som LIME og SHAP-verdier, er det mulig å utvikle svært effektive autonome styringssys-
temer for dokking som kan brukes i en rekke applikasjoner. Resultatene i denne oppgaven
viser at proximal policy optimization-algoritmen er en effektiv algoritme for et dokking
problem. I tillegg gir resultatene innsikt i atttribusjonen til hver av tilstandene for hver
av kontrollhandlingene. Dette er nyttig for å utvikle autonome dokkingssystemer som er
sikre, pålitelige og transparente.
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Det er viktig å fremheve behovet for ytterligere arbeid for å fullt ut utnytte potensialet
til forklarende KI for dokkingproblemet. Selv om disse teknikkene kan gi innsikt i hvor-
dan et autonomt dokkingssystem tar beslutninger, er det fortsatt nødvendig å undersøke
hvordan denne innsikten kan overføres til praktisk bruk. Videre forskning og utvikling av
forklarende KI vil være avgjørende for å utvikle autonome dokkingssystemer som er enda
mer pålitelige og sikre, og som kan brukes i stadig mer krevende miljøer. For eksempel
kreves det ytterligere arbeid for å forbedre robustheten til det autonome dokkingssystemet,
som omfatter implementering av havstrømmer, vind og bevegelige hindringer. Videre kan
det også være interessant å undersøke Counterfactuals nærmere, ettersom teknikken kan
gi en mer personlig og kvalitativ forklaring på beslutninger og hjelpe brukere med å forstå
hvordan man kan endre input-variabler for å oppnå ønsket output-variabel.
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1
Introduction

The introduction chapter of this master’s thesis serves as an overview of the research
project and sets the stage for the subsequent chapters. The chapter begins by providing
a background and motivation for the research, explaining why the topic is relevant and
important. Next, the chapter provides an overview of past work that has been done in the
field, highlighting key research studies and theoretical frameworks that have informed the
research project. This include a review of relevant literature and an analysis of gaps in
the existing research, identifying areas where further investigation is needed. The scope
and objectives of the thesis are then presented, outlining the specific questions that the
research project aims to answer. Finally, the chapter concludes with an overview of the
thesis structure. The chapter consist of the following sections:

• Section 1.1: Background and motivation

• Section 1.2: Overview of past work

• Section 1.3: Scope and objective

• Section 1.4: Overview over thesis

1.1 Background and Motivation

The concept of intelligent robots and inanimate objects is not a recent idea, but has histori-
cal roots in ancient Greek, Chinese, and Egyptian civilizations (Russell and Norvig, 2010).
However, the Dartmouth Summer Research Project on Artificial Intelligence in 1956 is
widely regarded as the starting point for the modern development of AI (McCarthy et al.,
1955). Prior to this, science fiction had already popularized the idea of artificial intelli-
gence robots, such as the Wizard of Oz and the impersonated Maria in Metropolis, which
influenced mathematicians, scientists, and philosophers to explore the possibility of AI in
the real world (Nilsson, 2014)

In the early 1940s, the demand for new technology increased during the second world
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1 Introduction 1.1 Background and Motivation

war. This led a British mathematician, Alan Turing, to explore the mathematical possibil-
ities of artificial intelligence and suggest that computers should be able to make decisions
by utilizing previous knowledge and available information, similar to how humans do (An-
derson, 1987). However, there were several challenges at the time, including the high cost
of computers, which were only available to prestigious universities and big technology
companies, and the inability of early computers to store commands or information, a key
requirement for Turing’s proposed AI (Anyoha, 2017).

The next 50 years AI slowly became available for everyone to research as computers
became cheaper, faster and more accessible. But, it was not until 1997 a chess playing
computer program, IBM’s Deep Blue, was able to defeat Gary Kasparov, the chess master
at that time. At the same time Windows also released their first speech recognition soft-
ware. Today, AI, is available for everyone and used everywhere. However, as AI become
more and more complex, especially when working with Deep Neural Network, and usually
presented as a black box, the transparency became a challenge. In several applications AI
take on cognitive work with social dimensions which were previously performed by hu-
mans, and this raise several ethical challenges. For instance, imagine applying for a loan in
a bank and being denied based on their AI algorithm. Then it would be very frustrating to
get no reason behind the denial. This is the main motivation behind Explainable Artificial
Intelligence (XAI) (Bossom and Yudkowsky, 2009).

As the field of AI received more attention, Robotics and Automation also became a subject
of more interest. However, trust was an even more important factor. Using AI to control
robots could have fatal outcomes in the case of any errors. For instance, imagine a ves-
sel, controlled by AI, going to the berth. However, suddenly the AI turns the vessel to
the right, without the captain knowing why, and, hence, making the vessel collide next to
the berth and destroy the houses located by the wharf next door. Maybe the AI believed
the bird to the left was a human swimming in the water, and, therefore, made the turn
to the right or just some noise in the sensors. Without the explain ability no one would
never know, and the AI would not be trusted. Therefore, a main goal behind XAI is to
develop AI systems that people trust. Interestingly, the forms of explanation that fostered
the most human trust did not correspond to the learning algorithms that produced the best
task performance. Hence, this implies how important it is for robot design to consider both
good task performance and trustworthy explanations as an important step toward enabling
humanbeings and robots to work together. (Edmonds and Zhu, 2020)

As briefly mentioned one use case for XAI is the docking of a marine vessel. There
are several reasons for using AI for controlling vessels. With about 90% of the world’s
trade carried by sea, the vessels are among the largest contributors to carbon dioxide emis-
sions (Salyer, 2022), and this is an application where AI posibly could help to reduce the
emissions from the vessels by having the AI optimize the speed for fuel saving. Another
reason for applying AI to vessels is the safety aspect. An example is the AI controlled
ABB Ability Marine Braking Assistance used to minimize the stop time and distance, as
well as to ensure a safe controlled stopping process (ABB, 2022). In the recent years Ma-
rine Autonomous Surface Ships have emerged as a new application of vehicle automation

2



1 Introduction 1.2 Overview of past work

as a result of a rapid technology development, risk and safety science. Despite of a the
high focus on safety shipping industry still has safety and material damage consequently
a high rate of fatal injuries and severe incidents. More interestingly a study, by Hansen
and Frydenberg in 2002, found that most accidents happened performing daily routine du-
ties, and not during occasions with bad weather or other more extreme external factors.
(Hansen et al., 2002) When investigating in the underlying causes for marine accidents,
human errors where found to be the single greatest contributor and involved in 76%-95%
of all accidents. (Rothblum, 2000) However, despite the frequency of human errors in the
marine industry, there are reasons why human should be involved in the loop, and hence,
the aim is to develop human-AI interaction in autonomous ships. For instance, in a situa-
tion of ”tail risk”; namely, the risk arising when specific tasks like navigation is performed
in an unfamiliar environment or under new conditions, human interaction would be bene-
ficial (Veitch and Andreas Alsos, 2022). However, a human-AI interaction would require
the AI to explain the reason behind it’s decisions. Hence, motivating the use and research
of XAI in marine automation processes.

1.2 Overview of past work

The idea of autonomous docking of a marine vessel is not new and has been studied with
several methods. Some of the proposed techniques are optimal control theory, artificial
neural networks and expert systems (Martinsen et al., 2019).

However, the autonomous docking of a marine vessel has not only been explored in the-
ory, but also in practice. In 2018 the technology group Wärtsilä actually carried out the
world´s first successful testing of autodocking on a ferry. The test started on ”Folgfonn”,
a Norwegian 83-meter long ferry, owned by Norled, and 2000 meters from the berth and
included the gradual decrease in speed, the line-up and a safe voyage to the berth until
it was fully secured (Sorfonn and Holmlund-Sund, 2018). The control system used was
based on Wärtsiläs’s existing dynamic positioning system and used GNSS as a primary
sensor and Wärtsilä Guidance Marine CyScan AS as a secondary position sensor when
approaching the berth (Wärtsilä, 2018). Later, in 2020, Kongsberg succesfully testet out
the world’s first fully automatic crossing with passengers onboard from dock to dock us-
ing an anti-collision system, radar and electro optical sensors (Midtbø, 2020). However,
a fully autonomous ship without any passengers was first carried out in 2022 by The Nip-
pon Project, in 2022 (lines, 2022). This ship used an AI-based collision avoidance with
Q-learning and Neural Networks implemented as in figure 1.1 (Hashimoto et al., 2021).
The Q-learning algorithm was used for risk assessment and resulted in a table shown in
figure 1.2.

One important conclusion from this work was that in order to use this for full-scale
practical application, it would be desirable to strengthen the visualization of AI’s manoeu-
vring instructions. This would help crew members to understand the intentions of the AI
and to develop a man-machine interface for approving those intentions, which highlights
the importance of XAI.
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1 Introduction 1.2 Overview of past work

Figure 1.1: Block diagram of AI-based automatic collision avoidance system

Figure 1.2: Example of collision avoidance manoeuvring evaluation results.

Figure 1.3: Example of collision avoidance manoeuvring evaluation results (Darpa, 2016).
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Figure 1.3 visually explains the concept of XAI and what the objectives of XAI is and
raises three main challenges:

1. How to produce more explainable models?
2. How to design the explanation interface?
3. How to understand the psychological requirements for effective explanations?

Hence, the XAI should aim to develop general techniques and methods that can be applied
in general AI, and to create both visualization, communication in different languages and
strategies to create effective and interpretive explanations, in addition to apply psycholog-
ical theories to assist the developers and users of XAI (Darpa, 2016). In XAI there are
five main local model-agnostic methods; Individual conditional expectation curves, Local
surrogate models (LIME), Scoped rules (anchors), Counterfactuals, Shapley values and
SHAP. Local agnostic models explain individual predictions, in contrast to global models,
which usually describes the average behaviour, and would not be beneficial for a captain
when trying to figure out why the AI is acting the way it is (Molnar, 2020). Explainable
AI is quite new and, therefore, not applied to many areas. In addition, the use of XAI
in real time for the real world would require a fast algorithm where both SHAP and Lo-
cal interpreatable modelagnostic explainer (LIME) are too slow (Løver, 2021). In 2022,
Karulus and Lindner applied upward Counterfactuals on Human-in-the-loop Reinforce-
ment learning to see if the method could help to improve learning to increase the training
rate, especially during the early stages (Karalus and Lindner, 2022). There has also been
tests with model tree based methods for explaining deep reinforcement learning agents
actions, which were applied to the docking of marine vessels (Gjærum et al., 2023). How-
ever, this requires a tree based model and, hence, due to the complexity of explanations, a
limited size of inputs and outputs.

1.3 Scope and objectives
The goal of this thesis is to apply reinforcement learning to the docking of autonomous
marine vessel and, hence, evaluate using SHAP and LIME values. Manouvering a ship is
a complex task and this thesis will focus on the docking of the vessel. The assumption for
this thesis is a convex environment, without any obstacles and a constant current.

The main contribution of this thesis is a methodology to solve the docking of a marine
vessel using proximal policy optimization (PPO), a deep reinforcement learning method,
using explainable artificial intelligence (XAI). The thesis is partly a continuation of the
project thesis, written spring 2022, where PPO was applied to a path following problem
and SHAP values where used.

A list of contributions:

1. A ship environment with spatial constraints
2. An adjusted PPO model from the project thesis
3. An adjusted implementation of the SHAP values from the project thesis

It is noteworthy to acknowledge that the scope of this thesis bears a resemblance to
Jakob Lover’s master thesis Løver (2021). Nonetheless, this thesis strives to delve more
comprehensively into the explainable AI methods and employs distinct variants of the PPO
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model as this has been the most promising method in previous studies Rorvik (2020). This
differs from Lover’s work, as his study tested several models.

1.4 Overview over thesis
The thesis contains of six chapters:

• Chapter 1 introduces the thesis including relevant background and problem descrip-
tion.

• Chapter 2 presents the relevant theory for this problem. This includes both vessel
dynamics, reinforcement learning and XAI.

• Chapter 3 explains the method in detail and how the problem is to be solved.

• Chapter 4 presents the simulation results and discuss them.

• Chapter 5 gives a brief conclusion of this work.

• Chapter 6 discusses the limitations and assumptions for this work and discusses
possible future work.
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2
Theory

This chapter will present relevant theory for this thesis. This following sections will be
presented:

• 2.1 The docking problem

• 2.2 Kinetics and kinematics of a marine vessel

• 2.3 Reinforcement learning

• 2.4 Explainable AI

2.1 The docking problem
The docking is the final and most complex part of a vessels voyage. The operation is
also referred to as berthing where the ship should be controlled safely and precisely to the
stationary berth. This requires gently and precise control by the captain. Most of the time
this is a successful operation. However, the consequences of an unsuccessful operation
can be hazardous, giving rise to loss of life, environmental pollution and property damage
(Murdoch et al., 2014). The docking process consist of three main phases: The approach
face, where the vessel travels from open sea to more confined water, the berthing phase,
where the vessel is parked, and the mooring phase, where the vessel is fastened to the
berth.

2.1.1 Ship Dynamics
Understanding the dynamics of the ship is important for the manoeuvrability of the ship.
This includes the inertia, the wind current, the sea currents, propulsion and hydrodynamic
effects. In order to control the ships heading and speed actuators thrusters and control
systems are utilized. When the ships decrease speed the forces acting on the ship, such as
wind and current forces, have a more significant effect on the manoeuvrability. In addition,
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2 Theory 2.1.2 Thrusters

the characteristics of thrusters change. The captain need to have a good knowledge of the
ships dynamics to successfully berth the vessel.

2.1.2 Thrusters

Thrusters are used in order to give ships more maneouvrability, especially at low speeds,
and provide a level of redundancy. They can be controlled by the use of propellers. There
are two different types of propellers that can be used. The fixed-pitch (FP) propellers
which are the easiest to control and the least expensive, but have limitations in speed and
low-end thrust. The controllable-pitch (CP) propellers have, on the other hand, blades that
can rotate around their axis, are more expensive and works better at varius speed.
There are three main types of thrusters:

• Azimuth thruster - Which can be rotated 360 degrees.

• Lateral thruster or tunnel thruster - A propellor installed in a athwartship tunnel.

• Jet thruster - A pump taking suction from the keel and discharge to either side.

The azimuth thrusters, Figure 2.1 produce two force components in the horizontal
plane and can produce forces in different directions and are therefore frequently used in
DP systems. The thruster makes it easier to manoeuvre the ship in the right angle towards
the quay and can work in high speeds as well. The thrusters generates a generalized force,
τ , in surge, sway and yaw direction, that yield:

τ = [Fcos(α), Fsin(α), 0, 0, 0, lxFsin(α)− lycos(α)]T (2.1)

where the force F is (Fossen, 2021):

FPpropeller : F = ρD4KT (0)|n|n ≈ T|n|n|n|n
DPpropeller : F ≈ Tθ|n|nθ|n|n

(2.2)

where D is the propeller diameter, n the propeller revolution, T the thrust, andKT is given:

KT =
T

ρD4|n|n
(2.3)
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(Fossen, 2021)

Figure 2.1: Azimuth thruster

The tunnel thruster is usually placed in the bow of a ship, such as in Figure 2.2, and is
highly effective at low speeds, but not in transit. Hence, it will mostly be used when the
ship is at very low speed, below 2km/h, to manoeuvre the ship until it has stopped.

(Fossen, 2021)

Figure 2.2: Tunnel thruster

The propeller produces a transverse force and yield the generalized force:

τ = [0, Fy, 0, 0, 0, lxFy]
T (2.4)

where,
FPpropeller : Fy = ρD4KT (0)|n|n ≈ T|n|n|n|n
DPpropeller : Fy ≈ Tθ|n|nθ|n|n

(2.5)
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where D is the propeller diameter, n the propeller revolution, T the thrust, andKT is given:

KT =
T

ρD4|n|n
(2.6)

2.2 Kinetics and kinematics of a marine vessel
The marine vessel experience a 6 degrees of freedom (DOF) model when maneuvering as
in Figure 2.3.

(Fossen, 2011)

Figure 2.3: Motion in 6 degrees of freedom (DOF)

The 6 motions are listed in the table below 2.1.

Plane Motion Description
Horizontal
plane

Surge Longitudinal motion (motion in x direction)
Sway Sideways motion (motion in y direction)

Vertical plane Heave Motion in vertical direction (motion in z direction)

Rotational
Roll Rotation about the longitudinal axis (x)
Pitch Rotation about the transverse axis (y)
Yaw Rotation about the vertical axis (z)

Table 2.1: The 6 degrees of freedom

Each of the motions are described by forces, moments, linear and angular veloci-
ties and positions and euler angles where the notation is presented below in table 2.2 by
SNAME (1950):

The motions can be given in several reference frames where NED is the north-east-
down coordinate system n = xn, yn, zn which is relative to earths centre and the body-fixed
reference frame b = xb, yb, zb which is the reference frame with origin that is moving with
the craft. The rotation between the two frames, NED and Body, can be denoted RNEDBody
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DOF Forces and Moments Linear and Angular velocities Positions and Euler angles
Surge X u x
Sway Y v y
Heave Z w z
Roll K p ϕ
Pitch M q θ
Yaw N r ψ

Table 2.2: The notation of SNAME (1950) for marine vessels

where NED is the reference frame which the result will be in, and Body is the reference
frame that the vector is converting from.

The dynamics of the shift can be described by kinematics and kinetics where the kine-
matics describes the motion and kinetics describes how the craft acts when forces is ap-
plied to it. The rigid-body dynamics can be expressed in vectorial form according to
Fossen (1994) as :

η = JΘ(η)v (2.7)
MRB v̇ + CRB(v)v = τRB (2.8)

τRB = τhyd + τhs + τwind + τwave + τ control (2.9)

where 2.7 describes the kinematics of the system and 2.8 and 2.9 describes the kinetics.
The matrices are:

• η̇: The position vector
• JΘ: The transformation matrix
• v: The velocity vector
• MRB : The rigid-body inertia matrix
• CRB : The rigid-body Coriolis and centripetal forces
• τRB : A vector of generalized forces

2.2.1 3 Degree Of Freedom (DOF) model dynamics
For most conventional ships one can assume the angle for roll, θ, and the angle for pitch,
ϕ, to be sufficiently small and neglecting the heave and, hence, simplify the ship dynamics
to a 3 DOF model, which yields (Fossen, 2011):

η̇ = R(ψ)v (2.10)
Mv̈ +D(v)v = τ (2.11)

where R(ψ):=Rz,ψ , v = [u, v, r]T and /eta = [N,E,ψ]T and are the rotation matrix,
the velocity and the position vector, including surge, sway and yaw, respectively. The
rotational matrix J(ψ ∈ SO(3) is given by:

J(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.12)
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and describes the rotation from the body reference frame to NED reference frame. The
second equation 2.11 contains the inertia matrix, M, the dampening matrix, D, and the
control input vector τ .

2.2.2 Thrust configurations
The control input vector is decided by the thrust configurations where:

τ = T (α)f (2.13)

where T is the configuration matrix that maps the thrust, f, from each thruster into the
surge, sway and yaw forces for the thruster angle α. With a number i of thruster, the right
side of the equation can be written out:

T (α)f =

 Fx
Fy

Fylx − Fxly

 =

 ficos(αi)
fisin(αi)

fi(lxsin(αi)− lycos(αi))

 (2.14)

where αi is the orientation of the thruster in the body fixed reference frame and fi is the
force that thruster i produces. Hence, in order to produce the desired control input vector,
τ , the thruster configuration can be controlled. In order to optimize this performance some
physical constraints can be added to the thrusters roce saturation and azimuth sectors to
solve the allocation problem from Johansen and Fossen 2013.

αi,min ≤ αi ≤ αi,max (2.15)
fi,min ≤ fi ≤ fi,max (2.16)

2.3 Reinforcement learning
Reinforcement learning (RL) is a type of machine learning that involves an agent interact-
ing with an environment in order to learn a policy for taking actions that maximize some
reward. Reinforcement learning is a relatively new era inside machine learning, and it tries
to learn an agent to make that action that maximize reward. Common machine learning is
usually supervised, meaning that the agent will receive feedback whether the action made
was correct or wrong. However, for reinforcement leaning it is no right or wrong, and in
the absence of a training set the agent has to learn from its experience. There are a few
elements that generally define a RL task space and these are:

• An agent
• A policy function
• A set of actions
• A set of states
• A reward function

In the task the agent tries to gain maximum reward from the reward function by choosing
the action, using the developed value function, that makes the agent get into the ”best”
state. In this section aspects of Reinforcement learning such as Markov decision processes
(MDP), reward functions and proximal policy optimization (PPO) will be described in
more detail.
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2 Theory 2.3.1 Markov decision process

2.3.1 Markov decision process

Figure 2.4: Markov Decision Process

The Markov decision process (MDP), Figure 2.4, is the process of the agent trying to
decide the best action based on the current state repetitively and contains:

• A set of possible states, S.
• A set of models which gives the effect of an action in a given state, also called the

transition function, P(s´- s,a).
• A set of possible actions, A.
• A reward function R(s,a), which is the expected reward gives state, s, and action, a.
• A policy, which is the solution of a MDP.

The Markov decision process can be either deterministic, meaning that the actions chosen
will be performed, or stochastic, meaning that there might only be a 80% chance that it is
the action chosen that actually will be performed. The MDP assumes that the agent can
observe the state and, hence, at all times know its current position, and that this state only
will depend on a fixed number of earlier states. In reinforcement learning the goal is to
find the optimal policy, given a MDP. This optimal MDP is the optimal value function and
is described as:

V ∗(s) = max
π

[

H∑
t=0

γtR(st, at, st+1)|π, s0 = s] (2.17)

and is the sum of discounted rewards starting from state, s, and choosing the optimal
action in every state. H is the horizon of the problem and can be either finite, which it
would be in an environment with a finite number of states, or infinite, which it would be
in an environment with a continuous state space.

2.3.2 Model-based vs Model-free
Reinforcement learning algorithms can be divided into two broad categories: model-based
and model-free.
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Model-based RL algorithms involve learning a model of the environment, which allows
the agent to make predictions about the consequences of its actions. The agent can then
use this model to plan its actions by searching through the space of possible sequences of
actions in order to find the one that is most likely to maximize the reward. One advantage
of model-based RL is that it can be more sample efficient than model-free RL, as the agent
can use its model to simulate the consequences of different actions without actually having
to take those actions in the real environment (Sutton and Barto, 2018).

Model-free RL algorithms, on the other hand, do not involve learning a model of the
environment. Instead, they learn a policy directly from experience by using trial and er-
ror to update the values of actions based on the rewards they receive. Model-free RL
algorithms are typically simpler to implement and can be more flexible than model-based
algorithms, as they do not require the agent to learn a model of the environment. However,
they may require more samples to converge to a good policy compared to model-based
algorithms (Sutton and Barto, 2018).

2.3.3 Reward function

In reinforcement learning, the reward function defines the goal of the learning process. It
specifies the reward or punishment that the agent receives for taking certain actions in the
environment. The agent’s objective is to learn a policy for taking actions that maximize
the expected reward over time.
The general form of the reward function in reinforcement learning can be represented as
follows:

R(s, a) = r + γ ∗R(s′, a′) (2.18)

where R(s, a) is the reward received by the agent for taking action, a, in state, s, r is the
immediate reward received by the agent for taking the action, s’, is the next state that the
agent transitions to after taking the action a’, is the next action taken by the agent in state
s’, and γ is the discount factor. The discount factor determines the importance of future
rewards compared to immediate rewards, with a value of 0 indicating that only immediate
rewards are considered and a value of 1 indicating that all future rewards are considered
equally.

The reward function can be defined in various ways, depending on the specific problem
being solved. It can be a simple scalar value, or it can be a vector of multiple values. It
can also be a function of the current state of the environment and the actions taken by the
agent, or it can depend on the sequence of states and actions leading up to the current one.

The choice of the reward function is crucial for the learning process, as it determines
the optimization problem that the agent is trying to solve. It is important to carefully design
the reward function to reflect the desired behavior of the agent and to avoid providing
rewards for undesirable actions (Sutton and Barto, 2018).
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2.3.4 The Exploration vs Exploitation dilemma
In RL, exploration refers to the process of taking actions that allow the agent to learn more
about the environment and the consequences of its actions. This can involve trying out dif-
ferent actions in order to discover which ones lead to higher rewards, or visiting states that
have not been visited before in order to gather more information about the environment.

Exploitation, on the other hand, refers to the process of taking the actions that are
known to lead to the highest rewards based on the current knowledge of the agent. For
example, if the agent has learned that taking a certain action in a certain state leads to a
high reward, it may choose to exploit this knowledge by taking that action repeatedly in
order to maximize the reward.

The trade-off between exploration and exploitation is a central challenge in RL. On the
one hand, it is important for the agent to explore the environment in order to learn as much
as possible about it. On the other hand, the agent needs to exploit its current knowledge in
order to maximize the reward. Balancing these two objectives is known as the exploration-
exploitation dilemma.

One approach to addressing the exploration-exploitation dilemma is to use an explo-
ration policy that gradually decreases the amount of exploration over time as the agent
becomes more confident in its current policy. This allows the agent to initially explore
more of the environment in order to gather more information, while eventually focusing
more on exploitation as it becomes more confident in its policy (Sutton and Barto, 2018).

2.3.5 Artificial Neural Networks
Artificial neural networks (ANN´s) are a type of machine learning model that are inspired
by the structure and function of the brain. They consist of multiple interconnected units
called ”neurons,” which are inspired by the neurons in the brain. ANN´s are commonly
used in RL to approximate the value function or the policy of the agent.

In RL, the value function represents the expected return (i.e. the sum of the discounted
rewards) that the agent can expect to receive by following a particular policy. The agent
is an entity that interacts with an environment to learn how to perform a task. The value
function can be used to evaluate the quality of different actions and to choose the action
that is most likely leading to the highest return as the agent´s task is to learn an optimal
policy that maximizes its expected cumulative reward. ANN´s can be used to approximate
the value function by training an algorithm that maps states or state-action pairs to their
corresponding values.

The policy of an RL agent defines the actions that the agent should take in each state.
ANN´s can be used to approximate the policy by learning a function that maps states to the
probabilities of taking each action. This can be useful when the space of possible actions
is large or continuous, as it allows the agent to choose actions that are more likely to lead
to high rewards.
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ANN´s can be trained using a variety of algorithms, such as Q-learning and policy gradient
methods. These algorithms typically involve adjusting the weights and biases of the ANN
based on the rewards and transitions experienced by the agent in the environment(Sutton
and Barto, 2018).

2.3.6 Proximal policy optimization (PPO)
Proximal policy optimization (PPO) is a RL algorithm that aims to improve the stability
and efficiency of policy gradient methods (Schulman et al., 2017). It is based on the idea
of ”trust region” optimization, which involves constraining the change in the policy to be
within a certain range in order to prevent it from making too large of a update (Schulman,
2020).

In PPO, the policy is updated by maximizing a ”surrogate objective” function that is
closely related to the expected reward of the policy (Schulman et al., 2017). The ”surrogate
objective” function is defined as the ratio of the new policy to the old policy, multiplied by
the advantage function, the difference between the expected reward of the new policy and
the expected reward of the old policy (Schulman, 2020). By maximizing this objective
function, the PPO algorithm can update the policy in a way that increases the expected
reward while still being close to the old policy.

The general form of the PPO optimization objective can be represented as follows
(Schulman et al., 2017):

L = E[min(r(θ) ∗A, clip(r(θ), 1− ϵ, 1 + ϵ) ∗A)] (2.19)

where L is the optimization objective, r(θ) is the ratio of the current policy function to the
previous policy function, A is the advantage function, ϵ is the clipping threshold, and θ are
the parameters of the policy function.

The advantage function, A, is a measure of how much better or worse a particular
action is compared to the average action taken by the policy. The advantage function is
typically calculated using the difference between the expected return for a particular action
and the expected return for the average action. The ratio of the current policy function to
the previous policy function, r(θ), is used to measure the change in the policy function
from one iteration to the next. The clipping term, clip(r(θ), 1 - ϵ, 1 + ϵ), limits the change
in the policy function by clipping the value of r(θ) to the range [1 - ϵ, 1 + ϵ]. This helps to
stabilize the learning process and prevent the policy function from changing too rapidly.
The optimization objective, L, is then defined as the expected value of the minimum of
the unclipped and clipped versions of the policy function ratio multiplied by the advantage
function. This objective encourages the policy function to make large updates when the
advantage of taking a particular action is high, but limits the size of the update when the
advantage is low or the change in the policy function is large.

PPO algorithms typically use a neural network to represent the policy, and they use a
combination of gradient ascent and gradient descent to update the weights of the network
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(Schulman et al., 2017). They also use a number of techniques to stabilize the learning
process, such as using generalized advantage estimation to estimate the advantage func-
tion and using mini-batches of data to update the policy (Schulman, 2020).

PPO is often used in autonomous systems, including autonomous ships. It is a type of
on-policy algorithm, which means that it uses data generated from the current policy to
update the policy. One of the main advantages of PPO is that it is relatively simple to
implement and can achieve good performance with relatively few hyperparameters.

Additionally, PPO is known for being stable and robust, which is important in the context
of autonomous ships where safety is a critical concern (Cooper, 2019). It is also relatively
sample efficient, meaning that it can learn effectively using relatively small amounts of
data, which is important in the context of autonomous ships where data collection may
be difficult or expensive. Finally, PPO is able to handle continuous action spaces and can
learn policies that are able to take advantage of complex, nuanced environments, which is
important in the context of autonomous ships that operate in complex and dynamic envi-
ronments.

2.4 Explainable AI

Explainable artificial intelligence (XAI) refers to the development of artificial intelligence
systems that are able to provide explanations for their actions or decisions. This is an
important area of research, as many AI systems are designed to operate autonomously
and may make decisions that have significant consequences. In order to build trust and
accountability in these systems, it is important to be able to understand how they arrived
at their decisions.

2.4.1 Shapley values

Shapley values are a mathematical tool that can be used to explain the contribution of in-
dividual features or variables to the prediction made by a machine learning model. They
were developed by Lloyd Shapley in the 1950s, and used in the field of cooperative game
theory.

Shapley values can be used to provide an ”attribution” for each feature, which is a mea-
sure of the contribution that the feature made to the overall prediction made by the model.
The Shapley value for a particular feature is calculated by considering all possible com-
binations of features and their contributions to the prediction, and then averaging these
contributions across all possible combinations. The result is a measure of the marginal
contribution of the feature to the overall prediction, taking into account the interactions
between features.

The general form of the Shapley value for a state or action, s, in a Markov Decision
Process (MDP) can be represented as follows (Shapley, 1997):
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ϕ(s) = Σ[(|S| − 1)!/(|S − s|)!(|s|)!] ∗ V (S) (2.20)

where S is the set of states in the MDP, —S— is the size of the set S, —S-s— is the
size of the set S without the state s, —s— is the size of the set containing only the state
s, and V(S) is the value of the MDP with the set of states S. The Shapley value, ϕ, for a
state or action is calculated by summing over all possible coalitions of states in the MDP.
For each coalition, the Shapley value is calculated as the product of a combinatorial factor
and the value of the MDP with the given coalition of states. The combinatorial factor is a
function of the size of the coalition and the size of the set containing the state of interest.

The Shapley value can be used to evaluate the importance of a state or action in the
learning process by calculating the Shapley value for each state or action and comparing
the values. States or actions with high Shapley values are likely to be more important for
the agent to visit or take in order to maximize the reward.

For instance, considering a docking scenario where the aim is to predict the time it
will take for a vessel to dock at a particular port based on various factors such as wind
speed, wave height, and water depth. The dataset consists of 500 docking operations,
and an objective is to understand which factors are most important for making accurate
predictions. In this example the Shapley value can be used to attribute the prediction
of a machine learning model to its input features. For example, the Shapley value can
determine the contribution of each factor to the predicted docking time of a vessel. To
calculate the Shapley value for a factor, all possible subsets of factors are considered and
the difference in the model’s prediction with and without the factor is calculated. The
Shapley value for a factor is the average of these differences, weighted by the number of
subsets that include the factor.

2.4.2 SHAP values

SHAP (SHapley Additive exPlanation) values are a method for interpreting the output of
machine learning models by decomposing the model’s predictions into the contributions
of each feature or variable. SHAP values can be used in reinforcement learning to under-
stand the importance of different states or actions in the learning process, and to identify
states or actions that may be important for the agent to visit or take in order to maximize
the reward (Lundberg and Lee, 2017).

The general form of the SHAP value for a state or action, s, can be represented as
follows:

ϕ(s) = Σ[f(S)− f(S − s)] (2.21)

where f is the model’s prediction function, S is the set of states in the Markov Decision
Process (MDP), and —S-s— is the size of the set S without the state s.
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The SHAP value for a state or action is calculated by summing over all possible coali-
tions of states in the MDP. For each coalition, the SHAP value is calculated as the differ-
ence between the model’s prediction with the full set of states and the model’s prediction
with the given coalition of states.

The SHAP value can be used to evaluate the importance of a state or action in the
learning process by calculating the SHAP value for each state or action and comparing the
values. States or actions with high SHAP values are likely to be more important for the
agent to visit or take in order to maximize the reward. SHAP values can be calculated us-
ing a variety of methods, including the SHAP Kernel method and the SHAP TreeExplainer
method (Ribeiro et al., 2016).

Using the example presented in the Shapley section, the SHAP values also provide
a way to explain the output of any machine learning model. SHAP values assign each
factor an importance value for a particular prediction, providing a unified framework for
interpreting model predictions. For example, the SHAP values can be used to understand
the importance of each factor in predicting the docking time of a particular vessel.

2.4.3 LIME

LIME (Local Interpretable Model-agnostic Explanations) is a method for interpreting the
output of machine learning models by generating explanations that are locally faithful to
the model’s predictions. LIME can be used in reinforcement learning to understand the
importance of different states or actions in the learning process, and to identify states or
actions that may be important for the agent to visit or take in order to maximize the reward
(Ribeiro et al., 2016).

The general form of the LIME value, ϕ for a state or action, s, can be represented as
follows:

ϕ(s) = Σ[f(S)− f(S − s)] (2.22)

where f is the model’s prediction function, S is the set of states in the Markov Decision
Process (MDP), and —S-s— is the size of the set S without the state s.

The LIME value for a state or action is calculated by summing over all possible coali-
tions of states in the MDP. For each coalition, the LIME value is calculated as the differ-
ence between the model’s prediction with the full set of states and the model’s prediction
with the given coalition of states.

The LIME value can be used to evaluate the importance of a state or action in the
learning process by calculating the LIME value for each state or action and comparing
the values. States or actions with high LIME values are likely to be more important for
the agent to visit or take in order to maximize the reward. LIME values can be calculated
using a variety of methods, including sampling and optimization techniques.
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For example, for the aim to predict the time it will take for a vessel to dock the LIME
values provide local explanations by fitting a simple model to the local neighborhood
around a particular prediction and approximating the original model’s behavior using this
simple model. In this situation the LIME values can be used to explain the predicted
docking time of a particular vessel based on its wind speed, wave height, and water depth.

2.4.4 Counterfactuals
Counterfactuals are statements or statements that describe a hypothetical situation or event
that is contrary to the facts or circumstances that actually occurred. In reinforcement learn-
ing, counterfactuals can be used to understand the impact of different states or actions on
the learning process, and to identify states or actions that may be important for the agent
to visit or take in order to maximize the reward (Pearl, 2009).

The general form of a counterfactual statement in reinforcement learning can be rep-
resented as follows: ”If the agent had taken action a in state s, rather than the actual action
a’, the reward would have been r rather than r’.” where a is the hypothetical action taken
by the agent, s is the state in which the action is taken, a’ is the actual action taken by
the agent, r is the hypothetical reward received by the agent, and r’ is the actual reward
received by the agent.

Counterfactuals can be used to evaluate the importance of different states or actions
in the learning process by comparing the hypothetical reward received by the agent with
the actual reward received. States or actions that lead to a higher hypothetical reward are
likely to be more important for the agent to visit or take in order to maximize the reward.
Counterfactuals can be calculated using a variety of methods, including counterfactual
regret minimization and inverse reinforcement learning.
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3
Method

The docking of a ship is considered a complex task, where there are several restrictions that
has to be kept simultaneously. The main contribution for this thesis is the implementation
of a 3 Degree Of Freedom vessel ship berthing and the use of deep reinforcement learning.
After model had been trained XAI was implemented using SHAP and LIME in order
to gain insight of the models choices. Counterfactuals was not implemented due to the
limitations in size of the state vector and action vector.
In the sections in this chapter the implementation and design of the problem is discussed
and includes:

• 3.1 Reference frames and notation

• 3.2 Reinforcement learning applied to docking problem

• 3.3 Proximal policy optimization

• 3.4 Explainable AI

3.1 Reference frames and notation

For the docking of a marine vessel there were two different reference frames used:

• The North-East-Down (NED) frame: The global frame where the spatial constraint,
the goal constraint and the vessel constraints was defined.

• The bodyframe: The local frame from the vessel´s point of view where the veloci-
ties were adjusted by the thrusters.

The frames are visualized in figure 3.1 where North and East represents the NED frame
and u and v are parameters from the bodyframe.
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3 Method 3.1.1 The vessel

Figure 3.1: The ship with bodyframe in NED frame.

The notation for the problem was the position vector η = [x, y, ψ]T and the velocity
vector v = [u, v, r], with the Cartesian coordinates (x,y), the yaw angle, ψ, the linear veloc-
ities, u and v, and the yaw rate, r. In order to convert between the two different reference
frames a rotation matrix, J, was used. This matrix is given:

J(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.1)

3.1.1 The vessel
For this thesis the vessel model is based on the SV Northern Clipper ship from Fossen.
The model is a 3 degree of freedom model with the dynamic equations:

η̇ = Jψv

Mv̇ +D(v)v = τ
(3.2)

where J, M, D and τ are the rotational matrix, the inertia matrix, the dampening matrix
and the control input vector, respectively.
¨

The thruster configurations were specified by the thrust configuration matrix T(α) and
maps each thrust f into surge, sway and yaw. For this vessel to azimuth thruster were used

22



3 Method 3.1.1 The vessel

and one tunnel thruster. These were placed as seen in figure 3.2 where 1 and 2 are the
azimuth thrusters and 3 is the tunnel thruster in the front:

Figure 3.2: The thruster placement where 1 and 2 are the azimuth thrusters and 3 is the tunnel
thruster.

The thrusters positions and angle were also set to:

Thruster x-position y-position Angle
Azimuth thruster 1 lx1

= -35m ly1 = 7m α1

Azimuth thruster 2 lx2
= -35m ly2 = -7m α2

Tunnel thruster 3 lx3 = 35m ly2 = 0m α3 = π
2

Table 3.1: Thruster position and angle

A constraint of 1/30 of the vessels mass was added for the maximum thrust for the az-
imuth thrusters, and 1/60 of the vessels mass for the tunnel thruster. The azimuth thruster
also had a limitations with a 20 degree forbidden zone, shown in figure 3.2 in order to
avoid that the thrusters just worked opposite of each other. In addition, their maximum
turnaround time was set to 30 seconds per revolution and a maximum angle of 170 de-
grees.

In order to control the vessels movement the force from each thruster was mapped to
surge, sway and yaw by the configuration matrix T(α) given the thruster angles, αi. Then
this was added to the dynamics 3.2 as:

τ = T(αi)f (3.3)

where each column in T(α) maps to each thruster i and each row maps to the force in
surge, sway and yaw direction. With the parameters from 3.1 the control configuration
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matrix becomes:

Ti(α)fi =

 Fx

Fy

Fylx − Fxly

 =

 ficos(αi)
fisin(αi)

fi(lxsin(αi − lycos(αi))


=

 cos(α1) cos(α2) 0
sin(α1) cos(α2) 0

lx1sin(α1 − ly1cos(α1) lx2sin(α2 − ly2cos(α2) lx3

 (3.4)

where α and f corresponds to the orientation and force of each thruster respectively.

3.1.2 The docking environment

Docking is a complex problem and can be simulated using several different methods, such
as path-following problem method, collision avoidance or other methods. For this thesis
the docking is simulated using spatial constraints. Firstly, the spatial constraint was created
as a convex pentagon with the coordinates [(260,585), (650,800), (1000,540), (800,40),
(400,40)], as seen in figure 3.3 marked in blue, with no obstacles in order to simulate the
docking where there are land around. Secondly, the goal constraints, marked as green
points and lines in figure 3.3, were implemented as a pentagon close to one of the spatial
lines in order for the ship to simulate a berth close to the land. The coordinates for the goal
was set to [(317,499), (290,535), (287,489), (310, 402), (344,412)] which was a larger
area than the ship itself in order to make the task easier to solve for the agent. The initial
position area where the center was initialized using a random generator, where x could be
between 650 and 750 and y could be between 100 and 200, are marked on figure 3.3 in
red.
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Figure 3.3: The spatial constraints, the goal and the initial area for the environment.

In addition, the speed in surge, forward, direction were initialized to 2.5 and the veloc-
ity in sway and the yaw rate were set to 0. An overview of the initialization parameters are
given in table. 3.2.

Parameter Value range Units
Ship centre x value (650,750) meters
Ship centre y value (100,200) meters

Yaw angle ψ (-10, 10) degrees
Surge velocity u 2.5 meters per second
Sway velocity v 0 meters per second

Yaw rate r 0 degrees per second

Table 3.2: Initialization parameters for the docking environment

3.1.3 Simulation of vessel movement
For the simulation of the vessel the environment was ran with a maximal timesteps per
episode of 1200. The environment´s task is to calculate the rewards and states based on
the actions given by the PPO and the previous states. The following subsection will go
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into detail about how this was implemented.

Dynamics of the vessel

The dynamics of the vessel is the dynamics of 3 degree of freedom marine vessel and can
be presented as:

η = R(ψ)v (3.5)
Mv̇ +D(v)v = τ (3.6)

where η is the position vector, R the rotation matrix, ψ the angle of the vessel, v the
velocity vector, M the mass matrix, D the dampening matrix and τ is the control input
matrix.

For this problem the PPO initializes the environment, receives the action vector from
the neural network and then run the step function in the environment. The action vector
is scaled in the step function, which is further explained in section 3.3.1, with 1/30*the
vessels mass for the forces by the azimuth thruster, and 1/60*the vessels mass for the force
by the tunnel thruster. The angles where scaled between -30 to 30 degrees. The update
function of the environment is based on eulers formula and the update rule is implemented
as follows: where timespan = 10 and the timestep is 0,1 second which results in 100

Algorithm 1 Update position η and velocity v

dt← 0, 1 t in range timespan
dt

J ← rotation matrix
τ ← control input matrix
η ← η + J × v
v̇ ← solve(M × v̇ = τ −D × v)
v ← v̇ × dt+ v

iterations as a tradeoff between accuracy, stability and efficiency. After the position and
the velocity are updated, the observation parameters are calculated. For this problem the
following observations were selected:

• x̃: The distance between the goal center and the vessel´s center in x direction.

• ỹ: The distance between the goal center and the vessel´s center in y direction.

• ψ̃: The distance between the goal angle and the vessel´s angle.

• u: The velocity of the ship in u direction (forward in bodyframe coordinates).

• v: The velocity of the ship in v direction (sideways in bodyframe coordinates).

• l: A binary variable describing whether the vessel is in contact with the land where
True implies that is in contact with the spatial constraints and False that it is inside
the spatial constraints.

• fg: Number of corners inside berth area.

• dobs: Distance to closest spatial constraint.
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3 Method 3.2 Reinforcement learning applied to docking problem

3.2 Reinforcement learning applied to docking problem

The Deep Reinforcement learning algorithm, proximal policy optimization (PPO) was
applied in this thesis. This method has had success earlier with robotic systems and have
been applied several times to control marine vessels (Rorvik, 2020). PPO can be used
on environments with both discrete and continuous action vectors and observation vectors
and is a model free and online algorithm. In addition, it is on on-policy which means that
it learns based on experience from the current policy. The implementation details will be
described in the sections below.

3.3 Proximal policy optimization

The PPO algorithm used in this thesis was based on the project thesis, written spring 2022,
and the guide made by Eric Yang Yu (Yu, 2020). The PPO consists of six main files:

• main.py: Where the code is executed which reads from the config file and pass it
on the PPO.

• config.py: The configurations for the PPO, where learning rate, gamma, number of
games and number of hidden layers are set.

• PPO.py: The PPO model, which initializes the environment and do the learning
process.

• network.py: A simple network which consists of a Feed-Forward Neural Network.

• EvaluatePolicy.py: An independent module which test the trained policy on the
environment.

The PPO algorithm is designed to be a simple, efficient and stable algorithm and was
implemented using PyTorch and Python to train the agent. The algorithm uses a policy
(x) to generate control actions a and a value function V(x) to estimate the cumulative dis-
counted reward of being in state x. The value function is estimated using TD(1)-estimation,
and the advantage is estimated using GAE-lambda (Schulman et al., 2017).

The PPO algorithm is based on the original PPO-clip actor-critic implementation of
Schulman et al. (Up, 2018). The algorithm uses a clipped surrogate objective to ensure
reasonable policy updates, but it is still possible to end up with a new policy that is too
far from the previous policy. To prevent this, ”early stopping” was employed by stopping
to perform gradient steps if the mean KL-divergence of the new policy compared to the
previous policy grew beyond a certain threshold. The threshold used was 0.015, based on
the recommendations from Spinning Up (Up, 2018).

The policy and value-functions were approximated using two fully-connected neural
networks, with each hidden layer consisting of 64 and 128 hidden units receptively and
ReLU (Rectified linear unit) as the activation function. The ReLU function was used in
order to overcome the vanishing gradient problem and allows for faster and better learning
as it maps negative inputs to zero and positive inputs to the same positive value (Brownlee,
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2019). The states were normalized using an upper and lower limit for each value. The
policy is stochastic, meaning

π = µ(x) + σ, (3.7)

where µ is the deterministic mean policy and σ is the standard deviation of the stochastic
policy. The deterministic policy component is approximated using a neural network, with
the input state vector, x, and output action vector, a. The standard deviation is calculated
during the training process (Schulman et al., 2017).

The policy in equation 3.7 can give actions higher than 1, so it is necessary to satu-
rate this value before being applied to a physical system, as performed by OpenAI in their
Baseline implementation of PPO (OpenAI, 2023b). The saturated value is thereafter scaled
before being applied to the marine vessel. The value network, the critic, has state vector x
as input, and the output is a scalar. The network does not have any output-activation due
to the nature of approximating a scalar value (Schulman et al., 2017).

During training, the optimizer used is ADAM, as recommended by Schulman (Up,
2018) and it is a stochastic gradient descent method based on adaptive estimation of first-
order and second-order moments (Kingma and Ba, 2014). The parameters used relevant
to the performance of the training are mini-batch size, replay buffer size, discount rate,
γ, actor learning rate, critic learning rate, number of epoch updates with mini-batch (K),
GAE parameter, λ, and clipping range. These parameters were based on recommendations
from Spinning Up and adjusted by means of trial and error. The clip ratio was set to 0,2
to ensure that the policy update was limited to at most 20 percent from the previous policy
to improve stability and help prevent the policy from changing too quickly. Choosing a
higher value for the clip ratio would have resulted in a larger policy updates, and it could
also have resulted in more oscillations, which could lead to instability. On the other hand,
a lower clip rate could have resulted in a slower convergence, but a more stable learn-
ing. This means that for a this task, which does not have sparse reward, i.e. rewards are
given after every move, a higher clip ratio would be preferable in order to allow for a less
cautious update of the policy. The PPO algorithm assumes an episodic problem and the
maximum length of an episode was set to 1200 seconds in the docking scenario for all the
learning scenarios (Schulman et al., 2017).

For the implementation of the PPO it was important to ensure that it was possible to
use on different environments for future work. The environment was, therefore, initialized
as a call on a separate file. Thereafter the main steps of a PPO algorithm was implemented:

• A batch of transitions was collected, including observation, action, reward, next
observation and finished, from the environment.

• The advantage estimates were computed by the value network (critic).
• The Policy network was updated to minimize the PPO loss.
• The value network was updated in order to minimize the mean square (MSE) loss.

The timesteps for each batch was set to 20000, the maximum timesteps per episode to
1200 and the saving frequency to 10 as proposed by Eric Yang Yu in his PPO guide (Yu,
2020) and as Ella Lovise Røvik did in her master thesis (Rorvik, 2020). The MSE (mean
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squared error) loss function was used to measure the difference between the predicted ac-
tion and the actual action taken by the agent.

The action vector will be described more in detail in the next section, but in brief, the
output layer consisted of five nodes, where each was a continuous number that controlled
each of the possible parameters to act on. The relevant parameters used for the testing
scenarios are:

• Batch size: 20 000

• Learning rate: 0.01

• Discount rate γ: 0.95

• Number of updates per iteration: 80

• Clip ratio: 0.2

3.3.1 The action vector

The action vector for this problem consisted of five parameters:

• f1: The force which should be applied to the azimuth thruster 1.

• f2: The force which should be applied to the azimuth thruster 2.

• f3: The force which should be applied to the tunnel thruster.

• α1: The angle that should be applied to the azimuth thruster 1.

• α2: The angle that should be applied to the azimuth thruster 2.

which controlled the three thrusters on the vessel. As docking of a vessel is a complex task
which requires manoeuvrability in backward, forward and sideways directions the action
space had to be a dimension of five parameters even though the aim was to keep it as
simple as possible. The action was chosen by the five output nodes from the actor network
and evaluated by the critic network.

3.3.2 Reward function

The reward function is an important part of a RL problem and gives feedback on the per-
formance of the agent. This feedback is used in order for the agent to learn how to reach
its goal and, hence, needs to reflect the objective of the problem. The reward function
for the PPO algorithm is designed to be differentiable and, therefore, optimizable, using
gradient-based optimization algorithm such as Adam. This differs from other reinforce-
ment learning algorithms where the reward function is typically a hand-designed, scalar
function that assigns a reward to each state-action pair (Sutton and Barto, 2018). The re-
ward function has a significant impact on the performance of the agent, hence, for this
problem two different reward functions were implemented and tested.
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Reward function 1

The first reward was based on trial and error with an aim not to let any of the parts dominate
over the other parts in order to secure an action loss for the actor to learn. The function
provided aims to guide the marine vessel towards the desired goal, which is to approach the
berth. It considers various aspects of the vessel’s behavior, including its position, velocity,
rotation, proximity to obstacles, and whether it has made contact with the land.

The reward function is written as:

reward =


−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg − 10 if dobs < 10

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg − 1000 if l = True

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg + 1000 if fg = 5 and ψ̃ ≤ 15

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg otherwise
(3.8)

where x̃, ỹ, u, v, r, l, fg and dobs are the input variables of the function which are ex-
plained in the paragraph named Dynamics of the vessel above. The first component of the
reward function encourages the vessel to get closer to the goal by penalizing the distance
between the vessel’s position and the berth. This is achieved by subtracting the squared
values of the differences in x and y positions between the vessel and the berth. The second
component of the reward function encourages the vessel to reduce its velocity. This is
achieved by penalizing the square of the vessel’s velocity in the u and v directions. The
third component of the reward function encourages the vessel to reduce its rotational ve-
locity by penalizing the rotational velocity in the body frame. The fourth component of
the reward function rewards the vessel for being inside the goal area. This is achieved by
adding a positive reward that is proportional to the number of corners of the vessel that
is inside the goal area. The fifth component of the reward function penalizes or rewards
the vessel for rare occasions. If the vessel is closer than 10 meters from obstacles, a fixed
value of 10 is subtracted from the reward. However, if l is True, meaning that the marine
vessel is in contact with the land, a value of 1000 is subtracted from the reward func-
tion. On the other hand, if all corners are inside the goal area and the angle difference is
less than 15 degrees the agent is in a ”win” state and is rewarded with a fixed value of 1000.

The finished parameter are used to indicate when the vessel has achieved the goal
or is out of the observation space. If all four corners are inside and the vessel is also
oriented within 15 degrees of the desired orientation, a positive reward is added, and the
episode is terminated as the marine vessel achieved its goal. However, if the marine vessel
is in contact with the land, l = true, then the finished variable is set to true, indicating
that the episode is terminated. The function provides both positive and negative rewards,
depending on the vessel’s behavior, to guide it towards the desired goal.
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Reward function 2

After evaluating the first reward function a slightly more adjusted reward function was
proposed. The reward function was given:

reward =


−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg − ψ̃2 if fg ≥ 1

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg − 1000 if l = True

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg + 1000 if fg = 5 and ψ̃ < 8

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fgotherwise
(3.9)

where the velocity, u was penalized less in order to motivate the agent to move forward
and v, where penalized as in reward function to avoid sideways movement. The yaw rate,
r, was also penalized with a lower scalar as an observation from the first reward function
was that the vessel tended to travel sideways to get to the goal rather than turning around
and driving forwards. The ψ̃ was also adjusted to be below 8 degrees for the episode to
terminate to achieve a higher goal. This was set to 15 in the first reward function only to
see that the vessel was able to learn to get to the goal area.

3.4 Explainable AI

3.4.1 SHAP - SHapley Additive exPlanations
For this problem SHAP values are implemented in order to see the feature importance as
a way to evaluate and understand learned policy. Therefore, the SHAP method is only
used in the testing phase of the code. In the implementation of the code an evaluate policy
function is responsible for evaluating the policy on an environment and logging various
information about the episode. The rollout function simulates each episode and returns
relevant information such as episode length and return and the logs of state and action.
Then the code employs SHAP for model interpretability. It calculates the importance of
each feature for a given prediction using the a SHAP function. The function takes the
agent (policy), state logs, feature names, and action logs as inputs. It then creates a deep
explainer object using the SHAP library that can compute the SHAP values for the given
state logs and the policy. The function also produces a summary plot of the SHAP values,
which visualizes the contribution of each feature towards the policy’s action prediction.

3.4.2 LIME
LIME is a popular XAI technique that generates explanations for predictions made by a
machine learning model by fitting a simple, interpretable model locally around the pre-
diction. The LIME (Local Interpretable Model-Agnostic Explanations) are implemented
in a similar way as SHAP where a function in the rollout function calls for the LIME vi-
sualization using the machine learning model, state data, feature names and action data.
The input data is first preprocessed and reshaped to ensure compatibility with the LIME
library. The LIME library is then used to fit a local interpretable model around the predic-
tion made by the input machine learning model. The LIME explanation is then visualized
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using a bar plot, which shows the feature importance of each input feature in determining
the prediction.
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4
Results and Discussion

In this chapter the main results of the Proximal policy optimization agent on the docking
environment are presented and discussed. The chapter consists of the following sections:

• Section 4.1: Reward function 1. Presents and discusses the results, including the
SHAP and LIME values of the reward function 1 on the docking environment.

• Section 4.2: Reward function 2. Presents and discusses the results, including the
SHAP and LIME values of the reward function 2 on the docking environment. This
also includes three different learning rates.

• Discussion: A brief dicussion is presented at the end to discuss the main results
from the different scenarios.

4.1 Reward function 1
The agent performing the docking with reward function 1 had the objective to control
the boat to the desired goal area with a somewhat correct angle. The marine vessel is
controlled by the agent through the three thruster forces [f1, f2, f3] and the two angles
[α1, α2]. The reward function, as written in chapter 3, is written as:

reward =


−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg − 10 if dobs < 10

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg − 1000 if l = True

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg + 1000 if fg = 5 and ψ̃ ≤ 15

−(x2˜ + y2˜ )− 1.0(u2 + v2)− 1.0r + 10fg otherwise
(4.1)

where x̃, ỹ, u, v, r, l, fg and dobs are the input variables of the function.

4.1.1 The training process
This study investigates the performance of a Proximal Policy Optimization (PPO) agent
trained on a docking environment. The docking environment is designed to simulate an
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Figure 4.1: The average return during 500 iterations of training using reward function 1.

autonomous docking scenario where the agent must navigate to a target location while
avoiding obstacles. The reward function used in the training process is a combination of
distance from the target location, velocity, collision avoidance, and docking success/fail-
ure. The reward function is formulated to encourage the agent to reach the target location
quickly while avoiding the land and achieving docking success. Figure 4.1 shows the av-
erage reward over iterations for 500 iterations, where the graph converges at around 25
iterations, which is the same as around 500,000 episodes. The results indicate that the
PPO agent is effective in learning the optimal policy for the docking task. The trained
agent demonstrated a high success rate in achieving docking while avoiding the land. This
study highlights the effectiveness of PPO in autonomous navigation tasks and provides a
valuable contribution to the field of autonomous robotics.

4.1.2 SHAP values

The study conducted an analysis of the contribution from each state to each action using
SHAP values. A summary plot was employed, where the magnitude of each bar corre-
sponds to the degree of contribution to the output state, which in the case of the Proximal
Policy Optimization (PPO) agent is the action. Additionally, each bar is subdivided into
sub-bars, represented by each class, which is proportional to the contribution from the state
to each class (action).

The SHAP values were implemented in the test phase of the training scenario, specif-
ically for the first 50 and 100 iterations. It is noteworthy that the agent had undergone
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Figure 4.2: SHAP values after 50 iterations for reward function 1.

720 iterations or 14400000 episodes at the time of SHAP implementation. The outcomes
of the SHAP values obtained from iteration 50 and 100 are presented in Figure 4.2 and
Figure 4.3. Upon analyzing the selected episode after 50 iterations, it is evident that the
observation parameter representing the distance to the nearest obstacle has the highest con-
tribution towards action selection. This observation implies that the vessel is in proximity
to land and, as a result, attempts to avoid collision. The ψ̃ parameter follows as the second
most significant contributor to action selection, followed by ỹ and x̃. Conversely, the ”has
crashed” parameter and angular velocity are deemed the least significant features in action
selection. The first action f1, which dominates this figure, is predominantly governed by
ψ̃ as the primary factor in decision making, followed by distance to obstacle and x̃.

Conversely, when examining the selected episode after 100 iterations, the figure por-
trays a distinct scenario, where f3 evidently dominates the figure. This observation sug-
gests that f3 is the action primarily influenced by the observations. For this episode, the
number of vessel corners in the goal area is identified as the most crucial feature in action
selection, particularly when selecting f3.

For figure 4.4 and 4.5, an average was taken over the first 50 and 100 episodes of
the trained model, respectively. The first figure after 50 iterations depicts a more evenly
distributed plot than the plots for each episode mentioned above. This observation is not
surprising, as the average was obtained by aggregating the contributions. In this plot, it
is apparent that for the azimuth forces, namely x̃, ỹ, the number of corners in the goal
area, the distance to the nearest obstacle, and the linear velocity (u) are all significant
contributors in action selection. This could be attributed to the reward function where all
these parameters hold importance. For the angles, x̃, ỹ, the number of corners in the goal
area, and the distance to the nearest obstacle are the prominent observations in decision
making.
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Figure 4.3: SHAP values after 100 iterations for reward function 1.

Figure 4.4: Average SHAP values after 50 iterations for reward function 1
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Figure 4.5: Average SHAP values after 100 iterations for reward function 1

After 100 iterations, the plot is even more uniformly distributed, but x̃ and ỹ become
even more dominant. In both the 50 and 100 iterations, the ”has crashed” parameter and
angular velocity parameters are at the bottom of the list, which is unsurprising, as a trained
model will tend to avoid crashing into the land, and the agent has likely learned that ex-
cessive turning is not the optimal strategy to approach the goal.

In Figures 4.6, 4.7, 4.8, 4.9 and 4.10 the relative feature contribution is plotted for each
of the 5 actions during one episode. This episode has a length of 12 seconds and can be
summarized as:

• The vessel starts 280 meters to the east of the goal area and 254 meter south for the
goal and accelerates to get closer to the goal.

• The vessel reaches the goal area after 12 seconds.

As the size of the SHAP value depends on the value of the control input, the SHAP values
at a certain time can not be compared to other instances of time. However, the relation
between the SHAP values would be easier to compare. The results show that the features
do not equally contribute to the control actions. For example, x̃ has a relatively higher
contribution to the actions controlling the azimuth thruster 2 due to the initial position of
the vessel. It was observed that x̃ and ỹ have a positive contribution in the first part of the
episode for f1 and f2. However, at timestep 6, the contribution becomes negative, indicat-
ing that the velocities u and v become more important as the agent gets closer to the goal,
and x̃ and ỹ become less important. The contribution of the first angle, α1, is relatively
low in the beginning, but increases during the episode, suggesting that the left thruster is
not very active initially as the vessel turns towards the goal area. However, as the vessel
gets closer to the goal, α1 becomes more important to adjust the control action.
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Figure 4.6: SHAP plot - Feature contribution to control action f1 over one episode for reward
function 1

Figure 4.7: SHAP plot - Feature contribution to control action f2 over one episode for reward
function 1
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Figure 4.8: SHAP plot - Feature contribution to control action f3 over one episode for reward
function 1

Figure 4.9: SHAP plot - Feature contribution to control action α1 over one episode for reward
function 1
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Figure 4.10: SHAP plot - Feature contribution to control action α2 over one episode for reward
function 1

In summary, it can be observed that the agent operates in an intuitive way and that
the agent understood the intention of controlling the vessel towards the goal and keep it
away from the land. The study finds that the features’ contributions to control actions
change over time, with velocities becoming more important as the agent gets closer to the
goal, and certain angles becoming more important to adjust the control action. The study
highlights the importance of understanding the contribution of each state to each action to
improve the performance of the agent.
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4.1.3 LIME values

Figure 4.11: Lime values for one episode with reward function 1 after training

In this study, LIME values were utilized to examine the contribution of individual features
to the decision-making process in an autonomous vessel docking task. The obtained LIME
values were visualized in Figure 4.23, which displays the contribution of each of the nine
features to the agent’s decision-making process during a 13-timestep episode where the
vessel was initialized 290 meters east and 254 meters south from the goal area. However,
a drawback of LIME values is that they do not consider the overall sample space when
constructing the model, which may lead to noisier feature attribution in general Løver
et al. (2021). Although this effect is not very evident in this short episode, it can still be
observed.

The plot in Figure 4.23 illustrates that x̃ and ỹ have a large positive contribution in
the beginning of the episode, which gradually decreases. On the other hand, x̃ has a
negative influence in the beginning when the vessel needs to adjust, indicating that the
model output decreases as x̃ increases. Additionally, it can be observed that the LIME
value for ψ̃ fluctuates at the end of the episode when the vessel attempts to adjust its angle
ψ to terminate the episode. This behaviour is similar to what was reported for the SHAP
values in the previous analysis.

4.2 Reward function 2
The agent that performs the docking with reward function 2 exhibits a similarity to the
agent using reward function 1. Both agents utilize the same observation states, namely:
x̃, ỹ, ψ̃, u, v, r, l, fg and dobs. However, in this case, the velocities are subject to less
penalization as a modification made after realizing that the yaw rate was penalized exces-
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Figure 4.12: The average return during 500 iterations of training using reward function 2.

sively in the training of the agent with reward function 1. Additionally, a more stringent
termination requirement has been imposed on the angle η.

The reward function implemented in the agent with reward function 2 is expressed as
follows:

reward =


−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg − ψ̃2 if fg ≥ 1

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg − 1000 if l = True

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fg + 1000 if fg = 5 and ψ̃ < 8

−(x̃2 + ỹ2)− 0.5× |u| − 1 ∗ ×|v| − 0.8× |r|+ 10× fgotherwise
(4.2)

The reward function is described in more detail above in chapter 3.

4.2.1 The training process
The agent trained using reward function 4.2 underwent 500 training iterations, and a visu-
alization of the mean reward obtained for each iteration is presented in figure 4.12. The
plot presented in Figure 4.12 showcases the performance of a Proximal Policy Optimiza-
tion (PPO) algorithm trained for a docking task in a marine vessel. The average reward
per iteration (with each iteration comprising of 20,000 episodes) is used to evaluate the
algorithm’s effectiveness. The plot illustrates the average reward values obtained over 500
iterations. The trend shows convergence towards a negative reward of -1.0e6 after approx-
imately 25 iterations. This suggests that the algorithm may have reached a performance

42



4 Results and Discussion 4.2.2 SHAP values

Figure 4.13: The average return during 500 iterations of training using reward function 2 and learn-
ing rate of 0,005.

limit or encountered a challenging part of the problem that it was unable to overcome.
However, further analysis revealed that the agent had only reached a local optimum, with
the vessel crashing instead of reaching the goal area. This is in contrast to the desired
behavior achieved by the agent trained with reward function 1. The change in requirement
for the angle ϕ from 15 degrees to 8 degrees may have led to this outcome. In an attempt
to address this issue, lower learning rates were tested, as shown in Figure 4.13 and 4.14.
Nonetheless, the agent still failed to learn the desired behavior.

4.2.2 SHAP values

Figure 4.15 and Figure 4.16 present a SHAP bar plot for iteration 50 and iteration 100.
Figure 4.15 presents the feature contributions from each state to the action for iteration 50.
The plot indicates a relatively evenly distributed feature attribution in comparison to the
other SHAP summary plots for a single iteration. For the first action, f1, the number of
corners in the goal area was the most significant contributor, followed by ỹ. For the second
action, f2, x̃ had a comparatively high impact, followed by η̃ and the distance to the closest
obstacle. The third action, f3, was relatively equally influenced by all the parameters ex-
cept angular velocity and velocity v. For angle 1, η̃ and the distance to the closest obstacle
had the most influence, and for the last action, angle 2, x̃ had a significantly higher impact
than the other states.
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Figure 4.14: The average return during 500 iterations of training using reward function 2 and learn-
ing rate of 0,001.

Notably, x̃ had a higher contribution compared to the other parameters and mostly
influenced f2 and angle 2. This finding is not surprising as the ship was initially positioned
to the right of the goal area, and the azimuth thruster on the right side, controlled by angle
2 and f2, had to be used to turn the ship to the left and towards the goal area.

For iteration 100, in Figure 4.16 it can be observed the action f1 is mostly affected by
the number of corners in the goal area, fg and the velocity v. For the second action, f2, the
state x̃ has the highest contribution, followed by the number of corners in the goal area, ỹ,
the velocity u, the distance to the closest obstacle dobs, and the heading angle ψ̃. The third
force, f3, has relatively low contributions from the states, with velocities u and v being the
most influential. For the angle parameters, angle 1 is mainly influenced by x̃ and v, while
angle 2 is mostly affected by x̃ and the number of corners in the goal area.

There are some notable insights that can be drawn from this plot. Firstly, it is in-
teresting to observe that x̃ has a much larger contribution than ỹ relatively. This could be
attributed to the possibility that the vessel started a few meters more to the right than usual,
resulting in x̃ having a greater impact on the reward function than ỹ. Secondly, it is evident
that angle 2 and f2 significantly dominate the feature bars. This observation supports the
first claim that the vessel might have started a few meters more to the right than usual,
resulting in thruster 2, which is placed on the right side, being activated more to steer the
vessel more to the left.

Figure 4.17 present the average SHAP values over 100 iterations, and is a follow-up
to the plot presented in Appendix A, which showcases the average SHAP values after 50
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Figure 4.15: SHAP values after 50 iterations for reward function 2.

iterations. However, as the plot after 50 iterations is almost identical to the plot after 100
iterations, it has not been included in the current discussion. In contrast to the relationship
between feature contributions seen in Figure 4.5 for reward function 1, Figure 4.17 reveals
a different trend, with the state ψ̃ ranking as the second most influential feature followed
by the distance to the closest obstacle. This trend is sensible as this reward function places
a greater emphasis on achieving a specific angle ψ at the end of the episode.

In Figures 4.18, 4.19, 4.20, 4.21 and 4.22, the contribution of each feature to the reward
function is plotted for each of the 5 actions during a single episode. The length of this
episode is 18 seconds and can be summarized as follows:

• The vessel starts 287 meters to the east of the goal area and 258 meter south for the
goal and accelerates to approach the goal. After 5 seconds, the vessel starts to slow
down as it approaches the goal area.

• The vessel crashes and hit land after 18 seconds which terminates the episode. At
this point, the vessel has two corners inside the goal area but has a heading angle,
ψ̃, of 90 degrees.

In summary, Figures 4.18, 4.19, 4.20, 4.21 and 4.22 exhibit more noise compared to
the previous reward function. However, the tendency of x̃ contributing more in the first
half of the episode is still observed, and ψ̃ seems to influence more towards the end of
the episode. The velocity, v, is particularly noisy, and the observations during the episode
reveal that the velocity fluctuates a lot. One possible explanation for the failure of the agent
to reach the desired behavior could be the fluctuation of velocity during the episode, which
may have made it difficult for the agent to learn and maintain a stable trajectory towards
the goal area. Another factor could be the relatively high requirement for the angle ψ at
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Figure 4.16: SHAP values after 100 iterations for reward function 2.

Figure 4.17: Average SHAP values after 100 iterations for reward function 2
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Figure 4.18: SHAP plot - Feature contribution to control action f1 over one episode for reward
function 2

Figure 4.19: SHAP plot - Feature contribution to control action f2 over one episode for reward
function 2
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Figure 4.20: SHAP plot - Feature contribution to control action f3 over one episode for reward
function 2

Figure 4.21: SHAP plot - Feature contribution to control action α1 over one episode for reward
function 2
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Figure 4.22: SHAP plot - Feature contribution to control action α2 over one episode for reward
function 2

the end of the episode, as indicated by the higher contribution of ψ̃ in the latter part of the
episode.

4.2.3 LIME values

Figure 4.23 illustrates the LIME values for reward function 2, which appear to be more
erratic compared to the previous scenario. Despite this, a pattern emerges where x̃ and ỹ
contribute positively in the first half of the episode, while they contribute negatively in the
second half. This observation is consistent with the previous finding where x̃ was found to
have a greater influence in the earlier part of the episode. It is worth noting that the noisy
nature of the LIME values may be attributed to the high level of variability observed in
the velocity feature during the episode, which can cause fluctuations in the LIME values.
Given these findings, it is possible that the fluctuating velocity may be contributing to the
difficulty of achieving the desired behavior by the agent. Further investigation may be
necessary to confirm this possibility.

4.3 Discussion

To summarize the results and discussions presented above, several key findings can be
highlighted:

• The feature x̃ generally contributes more in the beginning of the episode and has
a particularly strong influence on the actions controlling azimuth thruster 2. This is
likely due to the vessel starting to the east of the goal area and azimuth thruster 2
being required to turn the vessel to the west.
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Figure 4.23: Lime values for one episode with reward function 2 after training

• In the case of reward function 1, the velocities u and v should have been penal-
ized more, as the vessel tended to prioritize reaching the goal quickly rather than
maintaining a lower speed. This may be attributed to the observation scaling in the
environment implementation, where the velocities’ maximum and minimum values
were set high. Adjusting these values to be lower would have led to greater punish-
ment for high velocities.

• For reward function 2, the agent was unable to reach the goal. It is presumed that
because the velocities were not penalized as severely, they became too high, causing
the vessel to approach the goal area too quickly. With a stricter angle constraint,
the vessel continued towards the land and was unable to adjust the angle in time to
avoid crashing.

• An important observation from the results is that the agent was able to successfully
achieve the desired behavior in scenario 1, where reward function 1 was employed,
whereas it failed to do so in scenario 2, where the proposed improved reward func-
tion 2 was used. This underscores the significance of fine-tuning reward functions
to ensure effective performance of an agent in a given environment.
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5
Conclusion

This research study aimed to investigate the use of the Proximal Policy Optimization (PPO)
algorithm for the docking of an autonomous marine vessel, with the objective of reaching
the goal area at the right angle. Furthermore, the study aimed to evaluate the contribu-
tion of feature variables to the agent’s decision-making process using SHAP and LIME
explainable AI techniques.

The results of the study indicate that the PPO can be successful in solving the docking.
The performance converged after approximately 25 iterations for the two implemented
reward functions. The agent was able to learn the optimal policy to achieve the desired
goal of reaching the goal area at the right angle for the first scenario. The successful results
of the PPO algorithm suggest that it is an effective method for solving similar problems
and that it can be used in various autonomous systems.

Moreover, the study also evaluated the contribution of feature variables to the agent’s
decision-making process using SHAP and LIME values. The SHAP and LIME values
provided valuable insights into the agent’s decision-making process, which can help in
improving the agent’s performance in future iterations. The results showed that the dis-
tance to the goal area in general were the most significant features contributing to the
agent’s decision-making process.

The successful results of the first implementation of the PPO algorithm in the dock-
ing, coupled with the analysis using SHAP and LIME values, suggest that explainable AI
techniques can provide valuable insights into the decision-making process of autonomous
systems. By providing interpretable and transparent models of the decision-making pro-
cess, the SHAP and LIME techniques enable researchers and developers to gain insight
into the model, the choices made and enables the ability to improve the model. However,
it is important to note that the reward function should be further tuned to reach the desired
behaviour with a stricter requirement for the angle and more penalty for the velocities.

The findings of this study have important implications for the field of autonomous sys-
tems, particularly in the area of docking. The use of the PPO algorithm can be extended to
other similar problems, and the SHAP and LIME techniques can be utilized to evaluate the
contribution of feature variables to the decision-making process of the agent. The insights
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gained from the SHAP and LIME analyses can be used to improve the performance of the
agent and optimize the system further.

In conclusion, this study has demonstrated a promising use of the PPO algorithm for a
docking of an autonomous marine vessel, with the objective of reaching the goal area at the
right angle. The study also showed the possibilities and given insight by using SHAP and
LIME techniques to evaluate the contribution of feature variables to the decision-making
process of the agent. The use of SHAP and LIME to explain the reasoning of the PPO
agent in this study was an initial attempt, and further research is needed to simplify its
use and ensure its consistency. Additionally, to enhance the robustness of the autonomous
docking system, more work is required which involves implementation of ocean currents,
wind, and moving obstacles.
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6
Limitations, assumptions and
further work

In this chapter the limitations and assumptions of this thesis is presented and discussed. In
addition, a brief section of possible further work is presented. The chapter consists of the
following sections:

• Section 6.1: Presents and discusses the limitations and assumptions of this master
thesis.

• Section 6.2: Presents possible further work.

6.1 Limitations and assumptions
This study has a few limitations that must be considered when interpreting the results.
Firstly, the model was implemented on a MacBook Air with the M1 chip. This was a
limitation as a MacBook Air has a limited capacity compared to a high-performance com-
puting environment, such as a cluster of GPU’s. This impacted the duration of the training
and the speed of convergence.As a result these simulations may not be possible to general-
ize for more complex or larger scale problems. Secondly, Pytorch introduced a limitation
in terms of scalability and computational efficiency as it has some limitations in design
and parallel processing. Thirdly, a limitation was the time limit for this thesis. Reinforce-
ment learning with many states and a set of five actions with implemented SHAP values is
quite slow. As there were a few technical difficulties during the work with this thesis, the
actual training was started later than planned and the results, which lead to fewer iterations
in the training. Ideally, the training phase should had been started earlier in order tests
more reward function to achieve better convergence. Finally, as the PPO was only imple-
mented on a single case study of a docking scenario, further evaluation and testing would
be required in order to establish robustness and generalizability of this approach. These
limitations are important to acknowledge and consider for future work. Particularly, future
studies with the same scope should aim to address these limitations using more powerful
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computing resources and look for alternative frameworks in order to achieve better results.
In addition, further evaluation and testing would be needed to establish the robustness of
this approach for other domains and use cases.

6.2 Further work
A goal for this thesis was to implement counterfactuals. However, during the fall of 2022
Vilde Gjærum wrote her Ph.D on counterfactuals and was not satisfied with the results
of counterfactuals in reinforcement learning as it was very ineffective and became very
complex on systems with more than one state. In addition, there are very little to no sources
on how to actually implement counterfactuals in reinforcement learning problems. Due to
the limitations of time and the complexity this was, therefore, not implemented. But it
would be interesting to see how counterfactuals could improve and to see it implemented
on reinforcement learning in the future. An example implementation of this could be to
define a custom function, similar to the one implementing LIME and SHAP, that takes the
model and input data as inputs and then generates counterfactual explanations based on
the desired methodology. Pseuso code is provided below.

Algorithm 2 Explain with Counterfactual
Input: Model model, state log state log, feature names feature names, action log
action log, environment env, method method
Output: Counterfactual explanations

1: Convert statelog from numpy array to a tensor: statelogtensor ←
T.fromnumpy(statelog).f loat()

2: if method = ’simple’ then
3: Generate counterfactual explanations using the sim-

ple method: counterfactualexplanations ←
simplecounterfactualexplanation(model, statelogtensor, actionlog)

4: else if method = ’advanced’ then
5: Generate counterfactual explanations using the ad-

vanced method: counterfactualexplanations ←
advancedcounterfactualexplanation(model, statelogtensor, actionlog)

6: end if
7: Plot the counterfactual explanations: plotcounterfactualexplanations(counterfactualexplanations, featurenames)

In this pseudo code the ’simple counterfactual explanation’ and ’advanced counterfac-
tual explanation’ functions would be custom functions that would be needed to define in
order to implement the desired counterfactual explanation method. The ’plot counterfac-
tual explanations’ function would be used for visualization.
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Appendix

A Appendix A - SHAP values

Figure 6.1: Average SHAP values after 50 iterations for reward function 2
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B Appendix B - Observations for the episode used for SHAP values
per timestep for reward function 2

Timestep x_tilde y_tilde yaw_tilde u v r l f_g d_obs
0 287.01489414 258.19863162 31.63179631 14.23799277 14.15491572 1.36729551 0.0 0.0 160.33628421
1 270.82173598 234.97683017 33.66657943 28.22907724 24.29338996 2.565156 0.0 0.0 178.80557658
2 251.26326969 199.31475911 36.54126628 40.62236605 29.40977376 3.12059424 0.0 0.0 215.84118968
3 230.0695636 162.67140647 39.97437534 43.00697279 28.80259554 3.68138957 0.0 0.0 254.64850736
4 204.97244325 132.8885568 43.78287827 33.46278418 32.65215289 3.90944256 0.0 0.0 292.34486585
5 179.21643897 99.29465009 47.97560047 43.14742993 28.59682425 4.41777167 0.0 0.0 329.69623068
6 150.37168377 75.26785482 52.49312552 30.19031139 32.90304715 4.59672235 0.0 0.0 373.3923981
7 119.68741963 49.79010278 57.26148949 36.83936857 30.68869111 4.90469401 0.0 0.0 412.08596853
8 89.11564186 31.24001672 62.38773373 28.28537912 30.07606323 5.30223597 0.0 0.0 455.9989638
9 63.69048711 20.99905799 67.96135904 15.2334502 24.05103967 5.78924037 0.0 0.0 259.09269124
10 49.77293038 14.59060879 73.487889 11.21459323 6.52152142 5.31777858 0.0 0.0 306.53086449
11 34.77552997 16.5020005 78.36929624 5.39822801 18.12534657 4.53460954 0. 2. 203.33990455
12 24.96641867 18.35544308 82.13088154 5.33706804 7.13817932 3.1473123 0. 3. 401.84864575
13 18.58582292 17.16653968 84.92875663 5.49675617 0.59429822 2.52021602 0. 3. 428.38242936
14 17.25077963 10.3545412 86.50995739 5.43485397 -8.17485115 0.83504182 0. 3. 467.65756439
15 16.8223139 2.48872595 86.8183153 5.37327904 -3.74501866 -0.110184101 0. 3. 474.210673
16 11.39158054 0.61545796 87.80956889 5.39649463 6.70268799 1.86647592 0. 3. 476.23974171
17 7.00611352 2.53515944 89.71289152 5.33552286 -5.01409653 1.93263937 0. 2. 502.60531152
18 0.7376412 0.69579866 91.72182259 5.11465607 15.05931699 2.06949344 1. 2. 460.57866604

Figure 6.2: Observations for the episode used for SHAP values per timestep for reward function 2
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