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Abstract
A phase-type distribution is the distribution of time to absorption for an
absorbing continuous-time finite state Markov chain. The paper first reviews
the extension of the phase-type setting to modeling of competing risks by intro-
ducing multiple absorbing states. The main study of the paper is the further
extension to introducing instantaneous transitions at certain stages of the orig-
inal models. The motivation is from applications to repair and maintenance,
bringing failed systems into working ones by instantaneous repair actions. Two
slightly different approaches are studied. The first one is based on restarting
the original Markov chain upon absorption, leading to the consideration of a
Markov renewal process. The second approach involves periodically inspected
systems, where maintenance actions are modeled by instantaneous transitions
made at regular inspection times. For both approaches are suggested measures
of reliability and maintenance based on long run properties.
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1 INTRODUCTION

A phase-type distribution can be defined to be the distribution of the time to absorption for an absorbing continuous-time
finite state Markov chain. Simple examples are mixtures and convolutions of exponential distributions, thus generalizing
Erlang distributions. Neuts1 gave a theoretical background for phase-type distributions in the general setting. Later, a
series of papers by O’Cinneide, for example, References 2-4, introduced and clarified a number of theoretical issues. Nice
introductions to applications in survival analysis are Aalen5 and Slud and Suntornchost.6 The latter paper is also an
excellent source for the history and motivation for phase-type distributions and their analysis. See also Lindqvist7 for a
recent review.

The literature contains a number of articles demonstrating the use of phase-type distributions in various applications,
both with respect to modeling and statistical inference. There is currently a particular interest in the use of so-called
Coxian phase-type models, first considered by Cox,8 where individuals or items go through successive stages (phases),
and may transit to an absorbing state (corresponding to the event of interest) from any phase. Such models have lately
been popular in health care studies. For example, Faddy et al.,9 McGrory et al.,10 Tang et al.,11 and Rizk et al.12 modeled
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2 LINDQVIST

hospital length of stay by Coxian phase-type models. Faddy et al.9 claimed the superiority of Coxian phase-type models
over common parametric models like gamma and lognormal.

The present paper is motivated by applications of phase-type models in reliability. A remarkable paper by Cumani13

appeared in 1981, considering Markov models for failure distributions, involving acyclic transition graphs. The author
showed that such models can be uniquely transferred into Coxian models with a special structure. Other early references
involving reliability applications are Neuts and Meier14 and Neuts, Perez-Ocon and Torres-Castro.15

Later, simple Markov chain models for systems or components subjected to degradation and maintenance were given
by Hokstad and Frøvig16 and Langseth et al..17 Typically, critical failures here correspond to transitions to absorbing states.
Pham et al.18 considered Markov chain models for components which might not always fail fully, but may degrade with
multiple stages of degradation. The model is essentially a Coxian type model, but includes the possibility of recovery from
absorption in failure states. Such features will in fact play a main role in the present paper.

As indicated above, phase-type distributions have proven useful for modeling degradation and maintenance of systems
or components. Typically, degradation can then be modeled through stages corresponding to the transient states of the
underlying Markov chain. There is then commonly a need to consider more than one absorbing state, corresponding to
different kinds of failures or shocks, or possibly maintenance actions. Lindqvist7 gave a background for phase-type models
with multiple absorbing states in a competing risks setting (see Section 2.2).

Phase-type models with multiple absorbing states have earlier been considered by, for example, McClean et al.19 and
Rizk et al.12 in the modeling of patient pathways in hospitals. In Aalen,5 the primary interest was in phase-type models
for lifetimes, but the paper also considered the case with two absorbing states. The idea was that for some applications,
not every individual will experience the event of interest. The connection was then made to so called “cure models”. In
a similar way, Slud et al.6 studied phase-type models for survival data, introducing a second absorbing state for direct
transition to the state of death or cure. Other applications in survival analysis involving competing risks and Markov
chains, are given in, for example, Llorca et al.,20 Abner et al.21 and Garcia-Maya et al.22 The latter authors considered
phase-type modeling of competing risks in a semi-Markov process framework. In a recent paper, Wu and Cui23 studied
periodically inspected reliability systems involving competing risks, under environment processes modeled by absorbing
Markov chains.

The purpose of the present paper is to show how phase-type models for competing risks can be extended by introducing
instantaneous transitions, motivated by maintenance actions. Two slightly different approaches are studied. The first one
is based on always restarting the original Markov chain upon absorption. The theoretical motivation is here a simple idea
of Neuts,1 defining a phase-type renewal process by considering instantaneous restarts of the Markov chain. In the case
of multiple absorbing states, it will be seen that restarting of the process in general leads to Markov renewal processes.
In reliability applications, the absorbing states will usually correspond to various types of failures or maintenance events.
The main idea is here that the Markov chain is restarted in a “working state” after failure and a repair action, where the
latter takes negligible time. A few associated reliability measures will be suggested.

The second approach considered in the paper adapts an idea of Lindqvist and Amundrustad,24 who modeled period-
ically inspected systems by introducing maintenance by instantaneous transitions at regular points in time. Of interest
in applications are, for example, whether the system is found in an absorbing state (“failure state”) when inspected, and
in case, the time that has been spent in such a state. Reliability measures based on such matters will be derived under
consideration of stationarity of the underlying processes.

The rest of the paper is organized as follows. In Section 2, we give definitions and some main results on phase-type
modeling needed in the following. The emphasis is here on the multiple absorbing state case, presented in a competing
risks setting. Section 3 considers the case of restarting the underlying Markov chain upon absorption and includes a
subsection on applications to maintenance, as well as a numerical example. Section 4 first reviews the main ideas for
modeling of periodic inspections suggested by Lindqvist and Amundrustad24 and then adapts them to the phase-type
framework of the present paper. Some concluding remarks are given in Section 5.

2 SOME THEORY OF PHASE-TYPE DISTRIBUTIONS

We shall let vectors and matrices be given by bold letters, respectively lowercase and uppercase. Vectors will always be
assumed to be column vectors. We shall use I to mean the identity matrix, where the dimension will be clear from the
connection. This also applies to the use of the vectors or matrices 0 which are vectors or matrices of all 0s, and the vector
1 which is a vector of all 1s. Transposes of vectors will be marked by ′, for example, p′. A vector of length r will for short
be called an r-vector.
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LINDQVIST 3

F I G U R E 1 Two phase-type representations of the exponential distribution with rate 𝛾 .

2.1 Ordinary phase-type distributions

Consider a continuous-time homogeneous Markov chain {X(t); t ≥ 0}, where the chain moves through some or all of m,
say, transient states, or phases, before moving to a single absorbing state, m + 1. The time of absorption, T, is then said to
have a phase-type distribution.

The infinitesimal transition matrix A of this Markov chain is an (m + 1) × (m + 1) matrix given in block form as

A =

[
Q 𝓵
0′ 0

]
. (1)

Here Q is the m ×m matrix corresponding to transitions between the transient states, and𝓵 is the m-vector defining direct
transition intensities from the transient states to the absorbing state. Letting P(t) be the matrix of transition probabilities
Pij(t) = P(X(t) = j|X(0) = i), it can be shown that (1) implies

P(t) =

[
eQt Q−1(eQt − I)𝓵
0′ 1

]
. (2)

Now let p define the initial distribution of the chain, that is, let p be an m-vector with entries pi = P(X(0) = i) for
i = 1, … ,m, summing to 1. A phase type distribution is thus determined by a representation of the form (p,Q) (Here it
should be noted that the transition matrix A in (1) is completely determined by Q since necessarily 𝓵 = −Q1).

By using (2) we obtain the cumulative distribution function of T based on the representation (p,Q),

F(t) = P(T ≤ t) = P(X(t) = m + 1) = p′Q−1(eQt − I)𝓵.

Representations (p,Q) of phase-type distributions are, however, well known to be non-unique. For example, Figure 1
illustrates two representations for an exponential distribution with rate 𝛾 , with m = 2 and 1, respectively, where in the
first case p is arbitrary, while it necessarily gives mass 1 to state 1 in the second case.

This motivates the definition of order of a phase-type distribution, which is defined to be the minimal number m
of transient states of all its representations (O’Cinneide3). Unique representations of phase type distributions are given
through Laplace transforms. The Laplace transform for the representation (p,Q) for T is

f ∗(s) = E
(

e−sT) = p′(sI −Q)−1(−Q)1.

This is a rational function of s, that is, of the form f ∗(s) = N(s)∕D(s) for polynomials N(s) and D(s). The degree of the
denominator polynomial, D(s), after having canceled possible equal factors in the numerator and denominator, is called
the degree of the phase-type distribution. It can be shown3 that the order of a phase-type distribution is at least as large as
its degree, but that it may be strictly larger.

Two remarkable results by O’Cinneide3 state that, (i) a distribution on (0,∞) is a phase-type distribution if and only
if it has a strictly positive continuous density and a rational Laplace transform with a unique pole of maximal real part,
and (ii) if all poles are real, then the distribution can be represented by a Coxian model.
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4 LINDQVIST

F I G U R E 2 Coxian phase-type model for K = 2 competing risks. The figure is reproduced from Lindqvist7 (under Creative Commons
Attribution 4.0 International License).

By the non-uniqueness of representations of phase-type distributions, it is of interest to determine when two repre-
sentations (p(a),Q(a)) and (p(b),Q(b)) lead to the same phase-type distribution in the sense of having the same Laplace
transform. A key result is here a theorem given by Telek and Horvath.25 Following,25 we shall say that a representation
(p,Q) of dimension m is nonredundant if the degree of the corresponding phase-type distribution is m. For intuition,
we may think of nonredundancy as a way of excluding representations of phase-type distributions where there are also
representations with a lower dimension, see Figure 1. As noted in Appendix A2 of Lindqvist,7 a representation (p,Q) is
nonredundant only if the minimal polynomial of Q equals the characteristic polynomial, where the latter condition is
equivalent to Q being simple in the notion of O’Cinneide.2 In the following we shall always consider representations
(p,Q) that are nonredundant.

Theorem 1 (Telek and Horvath25). Let (p(a),Q(a)) and (p(b),Q(b)) be nonredundant representations of
phase-type distributions with the same dimension m. Let the corresponding cumulative distribution functions
be F(a)(t) and F(b)(t), respectively. Then F(a)(t) = F(b)(t) for all t if and only if there exists a nonsingular m ×m
matrix B with B1 = 1, such that p(b)′ = p(a)′B and Q(b) = B−1Q(a)B.

As noted by Telek and Horvath,25 a general nonredundant phase-type distribution of order m can be fitted by 2m − 1
independent parameters. This result is essentially well known and is of special interest since, apparently, a representation
(p,Q) would need m2 +m − 1 independent parameters.

2.2 Phase-type models for competing risks

Consider now the extension to having K > 1 absorbing states in the Markov chain {X(t)}. In this setup, the Markov chain
moves among m transient states before it is absorbed in one of the absorbing states, named m + 1,m + 2, … ,m + K,
say. Let T be the time of absorption in any one of the absorbing states, and let C (the “cause”) represent the state where
absorption occurs, defining C = j if X(T) = m + j; j = 1, 2, … ,K (see Lindqvist7). Then the pair (T,C) is an observation
from a classical competing risks model with possible causes 1, … ,K. The case K = 2 is illustrated in Figure 2.

By extending the matrix (1) to include K absorbing states, we obtain the infinitesimal transition matrix of the modified
Markov chain to be the (m + K) × (m + K) matrix given in block form as

A =

[
Q L
0 0

]
. (3)

Here Q as before represents transitions between the transient states, while the m-vector 𝓵 is replaced by the m × K matrix
L of transition intensities from the transient states to the absorbing states.

Similarly to (2), we obtain the matrix of transition probabilities Pij(t) given by

P(t) =

[
eQt Q−1(eQt − I)L
0 I

]
. (4)
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LINDQVIST 5

Letting the m-vector p be the initial distribution of the Markov chain, the triple (p,Q,L) now determines a competing
risks model. Such a representation will be called nonredundant if (p,Q) is nonredundant as an ordinary phase-type
representation. In this case, the representation (p,Q,L) has (K + 1)m − 1 independent parameters.7

From (4) we obtain expressions for the subdistribution functions (also called cumulative incidence functions in the
competing risks literature),

Fj(t) = P(T ≤ t,C = j) = P(X(t) = m + j) = p′Q−1(eQt − I)𝓵j

for j = 1, … ,K, where p is the m-vector defining the initial distribution of the Markov chain and𝓵j is the jth column of L.
The following result in Lindqvist7 extends Theorem 1 to the competing risks case.

Theorem 2 (Lindqvist7). Let (p(a),Q(a)
,L(a)) and (p(b),Q(b)

,L(b)) be two nonredundant phase-type representa-
tions for competing risks, having subdistribution functions F(a)j (t) and F(b)j (t), respectively. Then F(a)j (t) = F(b)j (t)
for all t and j if and only if there exists a nonsingular m ×m matrix B with B1 = 1 such that p(b)′ = p(a)′B,
Q(b) = B−1Q(a)B and L(b) = B−1L(a).

2.3 Coxian competing risks models

The class of Coxian phase-type models, as briefly described in the Introduction, can in a straightforward manner be
extended to the multiple absorbing state case with representations of the form (p,Q,L), with

Q =

⎛⎜⎜⎜⎜⎜⎝

− 𝜆1 𝛼12 0 · · · 0
0 −𝜆2 𝛼23 · · · 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · −𝜆m

⎞⎟⎟⎟⎟⎟⎠
, L =

⎛⎜⎜⎜⎜⎜⎝

𝛼1,m+1 𝛼1,m+2 · · · 𝛼1,m+K

𝛼2,m+1 𝛼2,m+2 · · · 𝛼2,m+K

⋮ ⋮ ⋮

𝛼m,m+1 𝛼m,m+2 · · · 𝛼m,m+K

⎞⎟⎟⎟⎟⎟⎠
. (5)

Here 𝜆i =
∑m+K

j=i+1𝛼i,j for i = 1, 2, … ,m. For Coxian models one usually assumes, moreover, p = (1, 0, … , 0)′. Figure 2
illustrates the case when K = 2.

An apparently more general class of models than the Coxian models above are models given by phase-type repre-
sentations with upper triangular Q, so that state transitions among the transient states are always to a higher numbered
state. Cumani13 showed that any phase-type distribution involving an upper triangular Q can be uniquely represented
by a Coxian model with p = (1, 0, … , 0)′ and Q given as in (5) with 𝜆1 ≥ 𝜆2 ≥ … ,≥ 𝜆m. As noted by Lindqvist,7 this
result extends to the multiple absorbing states case. Thus, informally, when modeling deteriorating systems by phase-type
models, one can always restrict attention to Coxian models.

Lindqvist7 stated the following result which is a simple consequence of Theorem 2.

Theorem 3 (Lindqvist7). Consider two nonredundant Coxian phase-type distributions for competing risks,
given by (p(a),Q(a)

,L(a)) and (p(b),Q(b)
,L(b)), where p(a) = p(b) = (1, 0, … , 0). Assume further that the diagonals

of Q(a) and Q(b) are ordered in the same way. Then if F(a)j (t) = F(b)j (t) for all t > 0 and j = 1, 2, … ,K, we have
Q(b) = Q(a) and L(b) = L(a).

Thus, the uniqueness of Coxian models requires the same ordering of the diagonal elements of Q. A counterexample
was given in Lindqvist.7

3 INSTANTANEOUS RESTART AT ABSORPTION

3.1 Neuts’ phase-type renewal process

Consider the ordinary phase-type representation (p,Q) considered in Section 2.1. Neuts,1 p. 48, considered restarting the
Markov chain {X(t)} after absorption by introducing state m + 1 as an instantaneous state from which an immediate
transition to the set of states {1, 2, … ,m} occurs according to the distribution p. As noted by Neuts,1 by considering the
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6 LINDQVIST

version of the process that is right-continuous, this leads to a Markov chain on {1, 2, … ,m}with infinitesimal transition
matrix

A∗ = Q + 𝓵p′. (6)

Moreover, the successive visits to the instantaneous state form a renewal process with the underlying phase-type
distribution as its interevent distribution.

Consider now instead the multiple absorbing state case of Section 2.2, represented by the triple (p,Q,L) and having
the infinitesimal matrix A given by (3). Suppose first that, after absorption in any absorbing state, the Markov chain is
restarted in the set {1, 2, … ,m} according to the probability vector p. Similarly to the above, this would result in a Markov
chain {X(t)} on {1, 2, … ,m} with infinitesimal transition matrix

A∗ = Q + LS, (7)

where S is a K ×m matrix with each row equal to p′. Note that S = 1p′ so that from (7) we get A∗ = Q + L1p′ and we
are back to (6) with 𝓵 = L1. Thus again, times between absorption form a renewal process. A more general and more
applicable situation is, however, considered below.

3.2 A general restarted absorbing Markov chain

Let the situation be as in the previous subsection. In applications it would be more reasonable to let the restarting distri-
bution depend on the absorbing state, thus letting the rows of S be possibly different probability vectors on {1, 2, … ,m}.
Still, (7) would be the infinitesimal transition matrix of the resulting (right-continuous) Markov chain.

It is seen, however, that the successive visits to the set of absorbing states in general no longer form a renewal pro-
cess. Let T1,T2, … denote the times of absorption and let X(T1),X(T2), … be the successive states of absorption. In the
following we shall sometimes find it convenient to work also with the corresponding causes C1,C2, … (see Section 2.2),
such that

Cn = j ⇔ X(Tn) = m + j for j = 1, 2, … ,K.

Now define (C0,T0) by C0 = c0 if the Markov chain {X(t)} has the initial distribution given by the c0th row of S and
T0 = 0. Then it is seen that (C0,T0), (C1,T1), … form a Markov renewal process (see Definition 1 in the Appendix). This is
because, given the full information until the nth event, the distribution of (Cn+1,Tn+1) depends only on the last absorbing
state, Cn. It also follows that {Cn} is a Markov chain on {1, 2, … ,K}.

Now fix one of the absorbing states, for example m + c, that is, cause C = c. It is clear that for C0 = c, the succeeding
visits to this state, at times U1,U2, … , say, form a renewal process. The times U1,U2, … are likewise regeneration points
of the process {X(t); t ≥ 0}, which is hence a regenerative process (Definition 2 in the Appendix).

Following Cocozza-Thivent,26,27 {X(t)} is also a semi-regenerative process with respect to the Markov renewal process
{(Cn,Tn)} (Definition 3 in the Appendix). This follows since conditioning on (C0,T0), (C1,T1), … , (Cn,Tn) with Cn = c,
{X(Tn + t) ; t ≥ 0} has the same distribution as {X(t) ; t ≥ 0} given C0 = c.

3.3 Long run properties of reward processes connected to absorption

Cocozza-Thivent27 showed how to apply the above facts to reward processes. In our case, suppose for example that the
cost of absorption in state m + j is aj per visit. A relevant question is then what is the long run expected cost per time unit
for the process. Since U1,U2, … is a renewal process, the solution is well known to be the ratio of the total expected cost
per renewal cycle divided by the expected length of a renewal cycle.27,28 This is, however, not necessarily straightforward
to calculate. Instead we shall use the result by Cocozza-Thivent,27 given as Theorem 4 in the Appendix.

Consider first the fixed cause c and let

Φ(c)(t) =
∑

n∶Tn≤t
I(Cn = c).
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LINDQVIST 7

In words, this can be interpreted as the number of absorptions into state m + c in the time interval (0, t]. The process
{Φ(c)(t)} now satisfies the condition of Theorem 4 in the Appendix, and hence the long run expected relative number of
visits to m + c is

lim
t→∞

E(Φ(c)(t))
t

= E𝝅(Φ(c)(T1))
E𝝅(T1)

, (8)

where 𝝅 is the stationary distribution of the Markov chain {Cn;n ≥ 0} (Here E𝝅 means expected value with C0 being
distributed as 𝝅).

In order to derive 𝝅, consider the limit as t tends to infinity in (4). The upper right block of (4) then in the limit gives the
probabilities of absorption in each absorbing state, for each starting state. Since necessarily eQt → 0 as t →∞, it follows
that the transition matrix of {Cn} is given by the K × K matrix

−SQ−1L. (9)

Assuming this transition matrix is irreducible, we can find uniquely the stationary distribution 𝝅 by solving

− 𝝅′SQ−1L = 𝝅′,
𝝅
′1 = 1.

Having solved for 𝝅, we next consider calculation of the right hand side of (8). It is clear by stationarity that

E𝝅(Φ(c)(T1)) = 𝜋c (10)

with 𝝅 = (𝜋1, … , 𝜋K).
To derive an expression for the denominator of (8), we will first calculate, for the phase-type model of Section 2.2,

the expected times 𝜇i to absorption (in any absorbing state), given start in state i ∈ {1, 2, … ,m}. Considering (4), and
recalling the general formula E(T) = ∫ ∞0 P(T > t)dt for a general lifetime T, we get

𝝁 = (𝜇1, 𝜇2, … , 𝜇m)′ =
∫

∞

0
eQt1dt = −Q−11. (11)

It follows that the expected time to absorption starting with an instantaneous transition from absorbing state m + j is
−Sj𝝁 = −SjQ−11, where Sj is the jth row of S. Hence the denominator of (8) is

E𝝅(T1) = −𝝅′SQ−11. (12)

We can thus complete the calculation of the right hand side of (8) to get

lim
t→∞

E(Φ(c)(t))
t

= 𝜋c

−𝝅′SQ−11
. (13)

Considering instead the renewal process {Un}, it follows from the theory of renewal reward processes that the right
hand side of (13) equals 1∕rc, where rc is the expected time between absorptions in state m + c. Thus (10)–(12) imply that
the expected recurrence time of absorption in m + c is

rc =
E𝝅(T1)
𝜋c

= −𝝅′SQ−11
𝜋c

.

Going back to the more general case where the cost of absorption in state m + j is aj per visit, it is readily verified from
the above that the long run expected cost per time unit is

𝝅
′a

−𝝅′SQ−11
, (14)

where a = (a1, … , aK).
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8 LINDQVIST

3.3.1 Invariance of underlying phase-type failure model

It is the purpose of the present subsection to show that even if the representations of competing risks as considered in
Section 2.2 are not unique (Theorem 2), the main results (13)-(14) of the previous subsection are invariant with respect to
equivalent representations of the underlying phase-type distribution. Indeed, it can be argued from Theorem 2 that the
process (Cn,Tn) will have a distribution independent of the underlying phase-type models.

To be more precise, recall the construction which involves a competing risks representation (p,Q,L) extended by a
matrix S with rows defining the starting distributions from the respective absorbing states at the restarts. Suppose now
that we have two representations of this type, (p(a),Q(a)

,L(a), S(a)) and (p(b),Q(b)
,L(b), S(b)). Theorem 2 gives necessary and

sufficient conditions that the two underlying competing risks representations are equivalent. Suppose these conditions
hold. By the relation p(b)′ = p(a)′B between initial distributions we find it natural to assume in addition,

S(b) = S(a)B.

Consider now the transition matrix (9) of {Cn}. From Theorem 2 and the above follows

−S(b)Q(b)−1L(b) = −S(a)BB−1Q(a)−1BB−1L(a) = −S(a)Q(a)−1L(a).

We can hence in particular conclude that the stationary distribution 𝝅 of the process {Cn} is invariant under equiva-
lent representations of the competing risks model. Likewise, the right hand side of (12) as well as (14) are invariant,
since

−𝝅(b)S(b)Q(b)−11 = −𝝅(a)S(a)BB−1Q(a)−1B1 = −𝝅(a)S(a)Q(a)−11

using that B1 = 1 and that the stationary distribution 𝝅 is invariant.

3.4 Long run availability for Coxian models

In Section 3.3 we considered reward processes connected to absorption, that is, concerning the “failure” states of the
considered process. Considering now the transient (“working states”), we shall be concerned with measuring the
availability of the system.

Consider a Coxian model where we think of each state (stage) having a specific interpretation, ordered according to
performance with 1 being the best. Then one might be interested in the long run expected relative amount of time the
process spends in state r or lower for some 1 ≤ r < m.

Thus, for some r < m, define

Φr(t) = time spent in states {1, 2, … , r} in [0, t]

and consider

lim
t→∞

E(Φr(t))
t

.

By Theorem 4 in the Appendix this can be calculated by considering the process up to the first semi-regenerative time,
T1, under the initial distribution 𝝅.

Observe first that, under stationarity defined by 𝝅, the probability of restarting the process in state i ∈ {1, 2, … ,m} is
𝝅
′Si, where Si is the ith column of S. Let now S[r] be the K × r matrix with columns S1

, S2
, … , Sr. Then 𝝅′S[r] is the vector

of the restarting probabilities for the r first states.
Next, given that restart is in state i ∈ {1, 2, … , r}, we need to calculate the expected time spent in {1, 2, … , r}. Since

we now consider a Coxian model, where no transit to lower numbered states is allowed, we may use the result (11) to the
modification Q[r] of the Q in (5), given by letting m = r, or in other words, by cutting the rows and columns numbered
from r + 1 to m in the Q of (5).
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LINDQVIST 9

F I G U R E 3 Simple phase-type model for degraded failure (state 2), critical shock failure (state 3) and PM (state 4).

Combining the above, and noting the result (11), we conclude that

E𝝅(Φr(T1)) = −𝝅′S[r]Q[r]−11.

Hence, by invoking (12) and Theorem 4, we get the limiting availability result

lim
t→∞

E(Φr(t))
t

= 𝝅
′S[r]Q[r]−11
𝝅
′SQ−11

. (15)

Looking at (15), it is seen that the numerator in fact is the version of (12) obtained by the appropriate “pruning” of the
matrices Q and S (which might have been concluded directly). It is seen, moreover, that the result in (15) trivially would
equal 1 if we put r = m.

3.5 Application to degradation and maintenance. A numerical example

In an application to maintenance optimization based on data from a reliability database, Langseth et al.17 consid-
ered a Coxian model with m = 2 and K = 4. The absorbing states corresponded to, respectively, critical failure due to
shock; critical failure due to deterioration; stop due to fortuitous detection of failure; preventive maintenance (PM).
The authors17 used the model to compare the effect of different degrees of PM using estimated parameters from
empirical data.

In applications, the choice of the matrix S of restarting distributions would be an additional and important feature
of the present approach. The entries of S must of course be depending on the application, and of the actual choice of
the underlying Markov chain {X(t)} and the interpretation of its states. The absorbing states may for example each be
associated with a certain type of system failure, for which there may be a given set of repair strategies that define the
corresponding row of S. As an example, Bedford and Lindqvist29 considered the choice between perfect repair, minimal
repair and partial repair of a system after system failure. Doyen and Gaudoin30 considered various imperfect maintenance
strategies in a competing risks setting.

Motivated by the above cited paper by Langseth et al.,17 we consider below a simple example as illustrated in Figure 3.
The figure shows a competing risks phase-type model with m = 2 and K = 2. The absorbing states 3 and 4 correspond
to, respectively, critical failure and preventive maintenance (PM). State 1 is the state of perfect performance, while state
2 is a working state with degraded performance. Transition rates between the states are given in italics in the figure. As
can be seen, PM is performed only from state 2. The purpose of the example is to illustrate some of the general defini-
tions and results obtained in the previous subsections, and in particular demonstrate how the rate of PM, z, affects the
performance.

The matrices Q and L given below correspond to the figure, while S has been chosen in the way that from state 4
(PM) there is an instant transition to state 1, while from the failure state 3 there is done a possibly partial repair, leading
to a restart with probability 1/4 in state 1 and 3/4 in state 2 (somewhat arbitrarily chosen in order to give mass to both
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10 LINDQVIST

states 1 and 2). Thus,

Q =

(
− 2 1
0 −(5 + z)

)
, L =

(
1 0
5 z

)
, S =

(
1∕4 3∕4

1 0

)
.

A straightforward calculation gives that the transition matrix of the Markov chain {Cn} is (see (9)),

−SQ−1L = 1
40 + 8z

(
40 + z 7z

40 + 4z 4z

)

giving a stationary distribution 𝝅 = (𝜋3, 𝜋4)′ on the absorbing states 3 and 4 as follows,

𝜋3 =
40 + 4z

40 + 11z
↘, 𝜋4 =

7z
40 + 11z

↗ .

Here the arrows ↗ and ↘ mean that the result is respectively increasing and decreasing in z. (Note that in this example
we prefer to use indices 3 and 4 for the absorbing states, instead of the cause numbers 1 and 2).

Next we calculate the (stationary) expected time between semi-regenerative time points,

E𝝅(T1) = −𝝅′SQ−11 = 12 + 4z
40 + 11z

↗ .

Further, the expected time between critical failures (i.e., visits to state 3) is

r3 =
E𝝅(T1)
𝜋3

= 3 + z
10 + z

↗

and the expected time between PM is

r4 =
E𝝅(T1)
𝜋4

= 12 + 4z
7z

↘ .

Suppose now that cost of absorption in state 3 (critical failure) equals w > 0 while cost of absorption in 4 (PM) equals 1.
Thus, in (14) we put a = (w, 1)′ and get the long run expected cost per time unit to be

(40 + 4z)w + 7z
12 + 4z

, (16)

which is decreasing in z if w > 3∕4.
Let us finally consider availability of perfect performance in state 1, which is given by (15) with r = 1. Now

S[1] =

(
1∕4

1

)
, Q[1] =

(
− 1

)

so

−𝝅′S[1]Q[1]−11 = 5 + 4z
40 + 11z

and the availability of state 1 is hence by (15),

5 + 4z
12 + 4z

↗ .

Looking at the arrows after the expressions above, it is generally seen that increased rate of PM, z, is beneficial for the
considered measures. For example, (16) shows the positive effect of PM when cost of critical failure is larger than cost
of PM.
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LINDQVIST 11

F I G U R E 4 The Markov chains {Yn} and {Zn}.

4 PERIODIC INSPECTION AND MAINTENANCE

In the present section we study a slightly different extension of the competing risks phase-type models (p,Q,L) of
Section 2.2. As in the previous section we introduce instantaneous transitions, but now at regular time intervals and hence
not necessarily at absorption times. The motivation is from the conference paper Lindqvist and Amundrustad.24

4.1 The general periodic inspection model

Following Lindqvist and Amundrustad24 we consider periodically tested systems or components, with inspections at time
𝜏, 2𝜏, 3𝜏, … for a given and fixed 𝜏 > 0, where maintenance is done only at these times, and with negligible repair times.
Below we consider the competing risks model (p,Q,L) of Section 2.2. Let now {X(t)} be the underlying Markov chain and
let it start in the usual manner from the starting state governed by the m-vector p. At time 𝜏 the system is inspected. The
probability distribution of the state at this time is (p′, 0) P(𝜏) with P(⋅) given by (4). This state may be either a “working”
state in {1, 2, … ,m} or a “failure state” in {m + 1, … ,m + K}. Upon inspection, let the state of {X(t)} be instantaneously
transformed to a new state by what we shall call a maintenance matrix R of dimension (m + K) × (m + K). Here R can
in principle be any nonnegative matrix with row sums 1 (but see the special case of the next subsection). The initial
distribution of the restarted process from time 𝜏 to 2𝜏 is then (p′, 0′)P(𝜏)R, while the state at time 2𝜏, immediately before
the second inspection, has distribution

(p′, 0′)P(𝜏)RP(𝜏).

By continuing the process in the same manner at times 3𝜏, 4𝜏, … , the following two Markov chains will be of particular
interest:

• The Markov chain {Yn}with state space {1, 2, … ,m + K} and transition matrix RP(𝜏), which defines the state at each
inspection, that is, immediately before the instantaneous maintenance action.

• The Markov chain {Zn} with state space {1, 2, … ,m + K} and transition matrix P(𝜏)R, which defines the state
immediately after the maintenance, that is, at the start of a new cycle of length 𝜏.

Figure 4 illustrates the Markov chains {Yn} and {Zn}.
In the following we shall assume that the Markov chain {Yn} is irreducible and aperiodic, which implies the existence

of a stationary distribution 𝜸 = (𝛾j) with

𝛾j = lim
n→∞

P(Yn = j) > 0 for j = 1, 2, … ,m + K.

By the definition of {Zn} it is clear that also the limits

𝜌j = lim
n→∞

P(Zn = j) for j = 1, 2, … ,m + K

exist, where 𝝆 = (𝜌j) and 𝜸 satisfy the two relations

𝝆
′ = 𝜸′ R,
𝜸
′ = 𝝆′ P(𝜏). (17)
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12 LINDQVIST

4.2 Special case: No maintenance performed for a working system

A case of special interest is where the maintenance matrix R is given by

R =

[
I 0
V 0

]
. (18)

Here I is the m ×m identity matrix, while V is a K ×m matrix with entries vji being the probability of instantaneous
maintenance performed in absorbing state m + j which brings the state of the system back to the working state i ∈
{1, 2, … ,m}. The identity matrix I means that if the state at an inspection is in one of the “working” states {1, 2, … ,m},
then the process is restarted in that particular state. Thus, in effect, no maintenance is performed at inspections for a
working system.

Consider first the transition matrix of {Zn}, that is, P(𝜏)R, which now can be written

P(𝜏)R =

[
eQ𝜏 +Q−1 (eQ𝜏 − I) LV 0

V 0

]
.

Since the columns corresponding to the states m + 1, … ,m + K are all 0, it is clear that the limiting probability vector
𝝆 defined in Section 4.1 is of the form 𝝆

′ = (g′, 0′), where g = (g1, g2, … , gm)′ is an m-vector which is the stationary
distribution corresponding to the transition matrix

eQ𝜏 +Q−1 (eQ𝜏 − I) LV.

The gi are hence obtained by solving the equations

g′ = g′
(

eQ𝜏 +Q−1 (eQ𝜏 − I) LV
)

(19)

g′1 = 1. (20)

Consider next the stationary distribution 𝜸 of {Yn}. Now write this as

𝜸
′ = (𝜼′, 𝝂′),

where 𝜼 is the m-vector corresponding to the states {1, 2, … ,m}. Then by (17), (𝜼′, 𝝂′) = (g′, 0′)P(𝜏), so by (4) we get

𝜼
′ = g′eQ𝜏

,

𝝂
′ = g′Q−1(eQ𝜏 − I) L (21)

which are hence obtained from g.

4.2.1 Efficiency of maintenance.

The elements of 𝝂 in (21) can be interpreted as the long run expected relative number of inspections where the process is
found to be in the corresponding “failure” state. They will typically depend on the maintenance interval 𝜏, and are hence
useful as measures of the efficiency of maintenance.

4.2.2 Expected downtime between inspections.

Of interest in applications is also the expected amount of time in an inspection interval of length 𝜏 that the system spends
in a given absorbing state. Following Lindqvist and Amundrustad,24 the expected amount of time in the interval (n𝜏, (n +

 15264025, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2771 by N
tnu N

orw
egian U

niversity O
f Science &

 T
echnology, W

iley O
nline L

ibrary on [11/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LINDQVIST 13

1)𝜏] spent in state m + j, is

∫

(n+1)𝜏

n𝜏
P(X(t) = m + j) dt =

∫

𝜏

0

m∑
i=1

P(Zn = i) Pi,m+j(t) dt

which converges as n → ∞ to

∫

𝜏

0

m∑
i=1

gi Pi,m+j(t) dt. (22)

Here, Pi,m+j(t) can be found from (4). It follows that (22) is the jth entry of the K-vector

g′
∫

𝜏

0
Q−1(eQt − I)Ldt = g′[Q−2(eQ𝜏 − I) − 𝜏I] L, (23)

which hence measures the expected length of the system’s downtime in an inspection interval, for each of the absorbing
states m + 1, … ,m + K.

4.2.3 Uniqueness of maintenance measures

The situation considered above can be characterized by the quadruple (p,Q,L,V), with V given by (18).
Suppose now that we start out by two equivalent competing risks representations (p(a),Q(a)

,L(a)) and (p(b),Q(b)
,L(b))

with relations between the p(⋅),Q(⋅) and L(⋅) through a matrix B as in Theorem 2. Consider then the corresponding
representations (p(a),Q(a)

,L(a),V(a)) and (p(b),Q(b)
,L(b),V(b)), and assume

V(b) = V(a)B, (24)

which is motivated by the relation between p(a) and p(b) in Theorem 2.
In the same manner as what we did in Section 3.3.1 we now show that the key results (21) and (23) are not affected

by the choice of representation (p,Q,L) of the initial competing risks model.
Let g(a) and g(b) be the (uniquely given) versions of g as defined by (19)-(20) corresponding to the two representations.

A key result is here is that

g(a)′ = g(b)′B−1
. (25)

To prove this, reconsider the equations (19)-(20) for g(b),

g(b)′ = g(b)′
(

eQ(b)
𝜏 +Q(b)−1 (eQ(b)

𝜏 − I) L(b)V(b)
)

(26)

g(b)′1 = 1

Multiplying equation (26) from the right by B−1 and using the relations from Theorem 2 as well as (24), it is seen that
equation (26) is transformed to

g(b)′B−1 = g(b)′B−1
(

eQ(a)
𝜏 +Q(a)−1 (eQ(a)

𝜏 − I) L(a)V(a)
)

(27)

It is also clear that g(b)′B−11 = 1 since B1 = 1 implies B−11 = 1. Now (25) follows from (27) by uniqueness of the solution
for g of (19)-(20).

By using (25) and the relations from Theorem 2 it is straightforward to show that the key results (21) and (23) are
invariant with respect to the original competing risks representations.
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14 LINDQVIST

4.3 Modifying the maintenance matrix R

Lindqvist and Amundrustad24 considered certain variations of the above approach, consisting in modifications of the
maintenance matrix R in (18). One such modification would be to replace the identity matrix I in the upper left corner
in order to allow repairs or other interventions in the system when it is in working condition at inspections. Suppose
for example that state 1 means a perfectly working system. Then if a perfect repair of the system is performed at each
inspection both for a failed and a working system, the matrix I as well as V in (18) would be replaced by matrices with
first column consisting of all 1s and 0s otherwise. Such an assumption on perfect maintenance is essentially made in the
earlier cited paper by Wu and Cui.23

Lindqvist and Amundrustad also considered the possibility of imperfect repair from the absorbing states. This means
that the matrix 0 in the lower right corner of (18) is replaced by a matrix with some entries being positive.24 We will not
pursue this here but refer to examples in the conference paper.24

5 CONCLUDING REMARKS

We have considered phase-type models for competing risks with extensions obtained by introducing instantaneous transi-
tions, (i) in the form of restarting the Markov chain after absorption, or (ii) including periodic instantaneous interventions.
The motivation has been from modeling of deteriorating and maintained systems, but other applications may of course
be thought of.

Since phase-type models for lifetime distributions or more generally for competing risks distributions are non-unique,7
an interesting conclusion in the present paper is that certain natural measures pertaining to the occurrence or cost of
failures, or dormant failures of inspected systems, are invariant with respect to representations of the underlying failure
distributions.

The main purpose of the paper has been to suggest and sketch a theoretical framework which involves an extension of
classical phase-type modeling. There is hence room for much further research in order to consider specific applications
and new adaptations of the approach.
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APPENDIX

The definitions and the theorem below are taken from Cocozza26,27 and Asmussen.31 See also the application in Grall.32

Definition 1. A stochastic process {(Yn,Tn);n ≥ 0} with state space  × [0,∞), with T0 = 0 is called a
Markov renewal process if for any ⊂  and t > 0,

P(Yn+1 ∈ A,Tn+1 − Tn ≤ t | Y0, … ,Yn = y,T0, … ,Tn) (A1)
= P(Yn+1 ∈ A,Tn+1 − Tn ≤ t | Yn = y).

Moreover, the process is said to be a homogeneous Markov renewal process if equation (A1) is independent of n.

Definition 2. A stochastic process {X(t); t ≥ 0} is said to be a regenerative process if there exists a renewal
process {Un;n ≥ 0} with U0 = 0 and supn Un = ∞ such that the process {X(Un + t); t ≥ 0} is independent of
U0,U1, … ,Un and has the same distribution as the process {X(t); t ≥ 0}. The process {Un;n ≥ 0} is called
the embedded renewal process associated with {X(t); t ≥ 0}.
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16 LINDQVIST

Definition 3. A stochastic process {X(t); t ≥ 0} is said to be a semi-regenerative process if there exists a
Markov renewal process {(Yn,Tn);n ≥ 0} with T0 = 0 and supn Tn = ∞, such that the process {X(Tn + t); t ≥
0} conditioning on T0, … ,Tn,Y0, … ,Yn = y)has the same distribution as the process {X(t); t ≥ 0} given Y0 =
y. The process {(Yn,Tn);n ≥ 0} is called the embedded Markov renewal process associated with {X(t); t ≥ 0}.

Theorem 4 (Cocozza-Thivent26,27). Let {X(t); t ≥ 0} be a stochastic process with state space  which is both
semi-regenerative with semi-regeneration times {Tn,n ≥ 0} and regenerative with regeneration times {Un,n ≥
0}. Let {Yn;n ≥ 0} = {X(Tn);n ≥ 0} be the embedded Markov process with stationary distribution 𝝅. Further-
more define Φ = {Φ(t); t ≥ 0}, with Φ(0) = 0, as a positive and increasing stochastic process with the properties
that

• Φ(t) = Ψt(X(u); 0 ≤ u ≤ t)
• Φ(t) − Φ(s) = Ψt−s(X(u); s ≤ u ≤ t), 0 ≤ s ≤ t

for some nonnegative function Ψt. If for any t > 0,

E(Φ(t)) < ∞, E(Φ(U1)) < ∞,

then

lim
t→∞

E(Φ(t))
t

= E𝝅(Φ(T1))
E𝝅(T1)

.
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