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Abstract. Four different implementations of Stokes' formula  are  employed  for the  estimation of 

geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference 

gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. 

(1962) models, which use a high- degree reference gravity field and modification of Stokes' kernel; 

and  a  least-squares  (LS)  spectral  weighting proposed  by  Sjöberg  (1991).  Classical topographic 

correction formulae are improved to consider long- wavelength contributions. The effect of a 

Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar 

approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-

derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over 

Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation 

in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted 

to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after 

fitting also show the best consistency for the LS method, with the standard deviation of differences 

reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard 

deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS 

stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the 

new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 

17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, 

through a simple error propagation of standard errors of mean anomalies, are also computed.  They 

range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other 

estimation of the accuracy of the final geoid, and is computed to be ±28.6.  

 

Keywords:  Geoid height − Stokes' formula −  Modification – Topographic correction − 

Downward continuation 

    

 

1 Introduction   

 

The boundary-value problem in physical geodesy can be solved by Stokes' well-known formula for 

the anomalous gravity potential, with the geoidal height calculated using Bruns' formula. The geoid 

represents a vertical datum for orthometric heights used in many countries. An accurate geoid is also 

of interest in many other geophysical applications. 

With the advent of the global positioning system (GPS), the geoid has become more 

important. Gravimetrically determined geoid heights can be applied to orthometric height 

determination by GPS. This proce- dure replaces costly conventional levelling operations with 

quicker and cheaper GPS surveys, as long as the geoid height has been computed to a high accuracy. 
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This paper is concerned with the determination of the geoid height over an area limited by 

latitudes 54° and 70°N, and longitudes 10° and 25°E, including the whole of Sweden. In order to 

estimate the geoid heights to a high accuracy (centimeter-level), Stokes' theory is re- fined to avoid 

some approximations used in the existing techniques (see e.g. Vanicek et al. l996a). 

The contents of this paper are as follows. First, geoid height determination by gravity and 

GPS-levelling data is discussed. Stokes' theory (Stokes 1849) enables us to compute the geoid height, 

N, from the gravity anomaly data, ∆𝑔. However, the major drawback of Stokes' formula is that it 

requires coverage of gravity over the whole Earth. To diminish this problem, the integration area is 

limited to a spherical cap with radius 𝜓0 around the computation point, and the truncation error com- 

mitted is reduced by a modification of Stokes' kernel function. In the modified Stokes formula, the 

long-to-medium-wavelength components of the geoid are typically determined from a global Earth 

Geopotential Model, EGM96 (Lemoine et al. 1996) in this study, whereas the short-wavelength 

contributions are obtained from terrestrial gravity and topographic information. 

Thereafter, the most important part of this study is presented: the topographic corrections. 

Stokes' formula requires that (1) the effects of masses exterior to the geoid are primarily removed 

(or at least reduced onto the geoid) and (2) the gravity be referred to the geoid. The topographic and 

atmospheric masses violate the first requirement. Our main contribution is the improvement of the 

classical formulae for the topographic corrections, which suffer from the planar approximation and 

omission of some long-wavelength contributions. To satisfy the second requirement, the corrected 

gravity anomaly at the topography must be analytically continued downward to the geoid. The effect 

of the atmosphere (direct and indirect) is presented as a correction that is applied to the geoid directly. 

An error estimate of the final geoid model, by propagating the estimated errors of the terrestrial mean 

gravity anomalies, is also presented. 

 

2 Geoid determination 

 

2.1 Stokes' theory for the original and higher-degree reference field and kernel modifications 

 

The gravimetric geoid height determination usually employs the original Stokes formula. When 

working with the Stokes kernel, we are supposed to evaluate a surface convolution integral over the 

whole Earth. This is, of course, an impractical requirement. Therefore, the area of integration is 

usually limited to a spherical cap around the computation point. This truncation causes an error in 

the computed geoid height, called the truncation error. This error can be reduced by introducing a 

modification to the Stokes kernel. The lack of a global coverage of gravity data can be compensated 

by a combination of terrestrial gravity with a global EGM; in essence the long-wavelength geoid 

height contributions would be determined from a geopotential model and the short-wavelength 

information from terrestrial gravity and topographic data. 

The following different combinations of the geopotential model with the Stokes integral are 

experimented with (see also Fan 1989): (1) using a high-degree reference field, but no kernel 

modification (see e.g. Vincent and Marsh 1974), (2) combination of Stokes' kernel modification with 

a high-degree reference field (see e.g. Molodenskii et al. 1962; Wong and Gore 1969), and (3) 

minimizing the global mean square error (MSE) of the truncation error, the potential coefficients, 

and terrestrial gravity anomalies in a least-squares (LS) sense (see e.g. Sjöberg 1986, 1991). 

Assuming a surface spherical cap of integration, 𝜎0, with geocentric angle, 𝜓0, around the 

computation point, a general geoid height estimator that combines Stokes' kernel modification and 

the high-degree reference gravity field can be written as (Vanicek and Sjöberg 1991) 
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�̃� =
𝑐

2𝜋
∬ 𝑆𝑁(𝜓)

𝜎0
(Δ𝑔 − Δ𝑔𝑀)𝑑𝜎 + 𝑐 ∑ 𝑠𝑛

∗Δ𝑔𝑛
𝑀
𝑛=2      (1) 

 

where 

𝑆𝑁(𝜓) = the modified spherical Stokes function = 𝑆(𝜓) − ∑
2𝑘+1

2
𝑠𝑘𝑃𝑘(cos 𝜓)𝑁

𝑘=2  

𝑠0, 𝑠1 … … , 𝑠𝑘 = modification parameters 
𝑠2

∗, … … , 𝑠𝑛
∗  = parameters which are obtained for each geoid height estimator 

S(ψ) = )(cos
1

12

2

k

k

P
k

k



=
−

+  

𝑃𝑘(cos 𝜓) = kth Legendre polynomial 

𝜓 = spherical distance between computation and running points 

∆𝑔 = the gravity anomaly at the geoid level derived from the observed magnitude of gravity at the 

Earth's surface 

∆𝑔𝑛 = nth Laplace harmonic of Δg determined from potential coefficients 

∆𝑔𝑀 = gravity anomaly computed from a global EGM 

𝑐 =
𝑅

2𝛾
  

R = mean geoid radius 
𝛾 = an approximation of the global mean value of normal gravity in Bruns' formula 

M = degree of the global EGM 

N = degree of kernel modification. 

  

Also 

𝑆𝑁+1(𝜓) = ∑
2𝑘+1

𝑘−1
𝑃𝑘(cos 𝜓) = 𝑆(𝜓)∞

𝑘=𝑁+1 − ∑
2𝑘+1

𝑘−1
𝑃𝑘(cos 𝜓)𝑁

𝑘=2    (2) 

 

Different choices of the modification parameters 𝑠𝑘 and 𝑠𝑛
∗  lead to different solutions as follows. 

Following Molodenskii et al. (1962), who made a modification to the spherical Stokes kernel, 

Vanicek and Kleusberg (1987) made a modification to the spheroidal Stokes kernel [see Eq. (2)]. 

Then, the modification parameters, 𝑠𝑘, were determined from the system of linear equations 

 

∑
2𝑛+1

2
𝑒𝑘𝑛(𝜓0)𝑠𝑛(𝜓0) = 𝑄𝐾

𝑁(𝜓0)𝑁
𝑛=2           (3) 

 

Here Paul’s function (Paul 1973) 

 

𝑒𝑘𝑛(𝜓0) = ∫ 𝑃𝑛(cos 𝜓)
𝜋

𝜓=𝜓0
𝑃𝑘(cos 𝜓) sin 𝜓 𝑑𝜓     (4) 

 

and the Vanicek and Kleusberg (or spheroidal Molodenskii) truncation coefficients are evaluated 

from 

 

𝑄𝐾
𝑁(𝜓0) = 𝑄𝑘(𝜓0) − ∑

(2𝑗+1)

(𝑗−1)
𝑒𝑘𝑗(𝜓0)𝑁

𝑗=2          (5) 

 

where 
 

𝑄𝑘(𝜓0) = ∫ 𝑆(𝜓)
𝜋

𝜓=𝜓0
𝑃𝑘(cos 𝜓) sin 𝜓 𝑑𝜓                    (6)   

 



 4 

are the Molodenskii truncation coefficients. Furthermore, 𝑠𝑛
∗ = 𝑠𝑘 in Eq. (1). Also, the Molodenskii-

modified spheroidal Stokes function 
 

𝑆𝑁
𝑠 (𝜓) = 𝑆𝑁+1(𝜓) − ∑

2𝑘+1

2
𝑠𝑘𝑃𝑘(cos 𝜓)𝑀

𝑘=2          (7) 

 

is used instead of 𝑆𝑁(𝜓) in Eq. (1). This procedure is here called the Molodenskii et al. method. 

The modified Wong and Gore (1969) method employs a high-degree residual field and 

modified Stokes’ kernel with 𝑠𝑘 = 𝑠𝑛
∗ = 2 (𝑛 − 1)⁄  in Eq. (1). The term ""modified'' means that the 

high-degree reference gravity field and kernel modification are combined in this model. 

The Vincent and Marsh (1974) choices of the arbitrary parameters are 𝑠𝑘 = 0 and 𝑠𝑛
∗ =

2 (𝑛 − 1)⁄ in Eq. (1). This method corresponds to a high-degree reference gravity field and no kernel 

modification. These three estimators use a higher-degree reference field in Stokes' integral [see Eq. 

(1)] by the subtraction of the long-wavelength contribution of gravity anomalies (computed from a 

global EGM) from the terrestrial gravity anomalies. This subtraction is time consuming and has to 

be done for each computation point (especially for large values of M). Molodenskii et al. (1962) used 

the original Pizzetti reference field, and Jekeli (1981) and Sjöberg (1984) also emphasize this point. 

Therefore, the LS estimator below uses a model reference gravity field of degree and order 2. 

Sjöberg (1986, 1991) proposes LS modification of Stokes' formula, which reduces the 

truncation error, erroneous terrestrial gravity data and potential harmonic errors in an LS sense. One 

such estimate of geoid height is given by 
 

�̃�1 =
𝑐

2𝜋
∬ 𝑆𝑁

′ (𝜓)
𝜎0

Δ𝑔𝑑𝜎 + 𝑐 ∑ (𝑄𝑁𝑛 + 𝑠𝑛
′ )Δ𝑔𝑛

𝑀
𝑛=2      (8) 

 

where 
 

𝑆𝑁
′ (𝜓) = 𝑆(𝜓) − ∑

2𝑛+1

2
 𝑠𝑛

′ 𝑃𝑘(cos 𝜓)𝑁
𝑛=2          (9) 

 

𝑄𝑁𝑛 in Eq. (8) can be written as 
 

𝑄𝑁𝑛 = 𝑄𝑛 − ∑
2𝑘+1

2
𝑠𝑘

′ 𝑒𝑛𝑘
𝑁
𝑘=2                                   (10) 

 

The expected MSE of the LS estimator is minimized, resulting in the parameters 𝑠𝑛
′  given by the 

following system of linear symmetric equations: 
           

∑ 𝑎𝑘𝑟𝑠𝑟
′𝑁

𝑟=2 = ℎ𝑘       𝑘 = 2,3, … , 𝑁       (11) 

 

where 

 

𝑎𝑘𝑟 = (𝜎𝑘
2 + 𝑑𝑐𝑘)𝛿𝑘𝑟 −

2𝑟+1

2
𝜎𝑘

2𝑒𝑘𝑟 −
2𝑘+1

2
𝜎𝑟

2𝑒𝑟𝑘 +
2𝑘+1

2

2𝑟+1

2
∑ 𝑒𝑛𝑘𝑒𝑛𝑟(𝜎𝑛

2 + 𝑐𝑛)∞
𝑛=2  (12) 

 

and 

 

ℎ𝑘 =
2𝜎𝑘

2

𝑘−1
− 𝑄𝑘𝜎𝑘

2 +
2𝑘+1

2
∑ (𝑄𝑛𝑒𝑛𝑘(𝜎𝑛

2 + 𝑐𝑛) −
2

𝑛−1
𝑒𝑛𝑘𝜎𝑛

2)∞
𝑛=2                                (13) 

 

where 
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𝑐𝑛 =
1

4𝜋
∬ Δ𝑔𝑛

2
𝜎

𝑑𝜎                     (14) 

 

and 𝜎𝑛
2 is the nth gravity anomaly error degree variance, dcn is the expected MSE of Δgn and δkr is 

Kronecker's delta. The gravity anomaly degree variance cn can be computed from a global EGM as 

 

𝑐𝑛 =
(𝐺𝑀)2

𝑎4
(𝑛 − 1)2 ∑ (𝐶𝑛𝑚

2 + 𝑆𝑛𝑚
2 )𝑛

𝑚=0         (15) 

 

where GM is the product of the universal gravitational constant G and the mass of the Earth, M, a is 

the equatorial radius of the reference ellipsoid, and Cnm and Snm are the potential coefficients of 

degree n and order m. The gravity anomaly error degree variance, due to erroneous potential 

coefficients, is computed from 

 

𝑑𝑐𝑛 =
(𝐺𝑀)2

𝑎4
(𝑛 − 1)2 ∑ (𝛿𝐶𝑛𝑚

2 + 𝛿𝑆𝑛𝑚

2 )𝑛
𝑚=0         (16) 

 

where δCnm and δSnm are the standard deviations of potential coefficients taken from a global EGM. 

The error degree variances for the terrestrial gravity anomalies (𝜎𝑛
2) can be estimated from the 

knowledge of an error degree covariance function. One covariance function is, for example, given 

by Sjöberg (1986) 

 

𝐶(𝜓) = 𝑐1 [
1−Ω

√1−2Ω cos 𝜓+Ω2
− (1 − Ω) − (1 − Ω)Ω cos 𝜓]                (17) 

 

where 𝜎𝑛
2 can be expressed by 

 

𝜎𝑛
2 = 𝑐1(1 − Ω)Ω𝑛       (18) 

 

The parameters 𝑐1 and Ω can be determined from a knowledge of the error variance C(0) and the 

correlation length ξ; the value of the argument for which C(ψ) has decreased to half of its value at 

ψ=0 (Moritz, 1980). The value of C(0)=10 mGal2 and a correlation length of 0.1º are used in this 

study. 

 
 

2.2 GPS-levelling geoid height 

 

The geoid height N can be directly estimated on land through space techniques with combination of 

the ellipsoidal height h, computed from GPS, and orthometric height H, computed from precise 

levelling, by the following well-known formula 

 
𝑁 = ℎ − 𝐻                                                                                    (19) 

 

 

It has to be noted that if the normal height system is used instead of the orthometric heights H, then 

the height computed by Eq. (19) is the quasi-geoid rather than the geoid. This is the case in this study 

over Sweden, where the RH70 normal height system is used at the GPS stations. To correct for this 

separation between the orthometric height H and normal height H N, the formula (Sjöberg 1995) 
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𝐻𝑃 − 𝐻𝑃
𝑁 = −

𝐻𝑃Δ𝑔𝐵

𝛾
+

𝐻𝑃
2

2𝛾
(

𝜕∆𝑔𝐹

𝜕𝐻
)

𝑃
        (20) 

 

is used where Δ𝑔𝐵 and ∆𝑔𝐹 are the Bouguer and free-air anomalies, respectively, and (Heiskanen and 

Moritz 1967) 

 

 

(
𝜕∆𝑔𝐹

𝜕𝐻
)

𝑃
=

𝑅2

2𝜋
∫ ∫

∆𝑔𝐹−∆𝑔𝑃
𝐹

ℓ0
3𝜎

𝑑𝜎 −
2

𝑅
∆𝑔𝑃

𝐹          (21) 

 

where ℓ0 is the spatial distance between the computation point, P, and the running point, and 𝜎 is 

the unit sphere. 

The other correction, which affects the geoid height determination using Eq. (19), is the 

postglacial rebound of the crust and mantle in the Fennoscandian area. The GPS-levelling stations 

used in this study are at the benchmarks of the Swedish Permanent GPS Network (SWEPOS). The 

zero-point epoch of these GPS stations is adjusted to the EUREF-89, which refers to epoch 1989.0, 

but the Swedish height system RH70 refers to epoch 1970.0. Therefore, the orthometric heights 

should be reduced to 1989.0. The absolute rate of the land uplift, referred to the ellipsoid, is 

determined by (Sjöberg and Fan 1986) 

 

ℎ̇ = �̇�𝑎 + �̇�𝑒 + �̇� = �̇�𝑒 + 1.07�̇�𝑎        (22) 

 

where �̇�𝑒 is rate of eustatic rise of sea level (1 mm/yr), �̇�𝑎 is the apparent rate of land uplift relative 

to mean sea level, and �̇� is the rate of change of the geoid height in Fennoscandia. �̇� was estimated 

to be about 10% of the land uplift rate (Sjöberg 1983). As this rate seems to be somewhat too high 

in the central uplift region, a factor of 0.07 between the geoid and land uplift rates is used in this 

study (Nahavandchi and Sjöberg 1998a). The values of �̇�𝑎 are estimated over Sweden by Mäkinen 

et al. (1986) (see also Sjöberg et al. 1988). 

In addition, a fitting process between the gravimetric and GPS-levelling geoid was 

conducted. The geoid height change ∆𝑁 corresponding to a general seven-parameter datum 

transformation will be independent of the rotations, and in geographical coordinates is of the form 

(Heiskanen and Moritz 1967) 
 

 

∆𝑁 = 𝑁Grav−𝑁GPS = ∆𝑋 cos 𝜙 cos 𝜆 + ∆𝑌 cos 𝜙 sin 𝜆 + ∆𝑍 sin 𝜙 + 𝑘𝑅           (23)

      
where 𝜙 and 𝜆 are geographical coordinates, ∆𝑋, ∆𝑌, ∆𝑍 are the three translations and k is the scale 

factor. Equation (23) represents a very useful regression formula, which may be used for 

transforming a regional gravimetric geoid to a set of GPS-levelling geoid heights. However, it should 

be noted that some long-wavelength geoid height, vertical datum and GPS errors will be absorbed 

by the parameters. 

 

 

3 Corrections to gravimetric geoid determination 

The application of Stokes' formula for the computation of the geoid height requires that the disturbing 

potential is harmonic outside the geoid. This is satisfied by removing the effects of external masses 
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or reducing them inside the geoid (direct effect). The effects of masses are then restored after 

applying Stokes' integral (indirect effect). The formulae derived for topographic corrections here are 

based on a constant topographic density. These formulae can also be generalized to a laterally 

variable density simply by putting it within the surface integrals on the direct and indirect 

topographic effects. Geoid height determination by Stokes' formula also requires that the gravity 

anomalies, ∆𝑔, must refer to the geoid. In order to satisfy this second condition, the gravity anomalies 

available on the topography of the Earth are reduced to the geoid. This reduction is called downward 

continuation. 

The corrections mentioned above, combined with the idea of Stokes-Helmert integration, are 

realized by the formula (Heiskanen and Moritz 1967, p. 324) 

 

𝑁 =
𝑅

4𝜋𝛾
∬ 𝑆(𝜓)Δ𝑔𝐻∗

𝑑𝜎 + 𝛿𝑁𝐼𝜎
     (24) 

where Δ𝑔𝐻∗
is the gravity anomaly including the topographic correction and reduced to the geoid 

and 𝛿𝑁𝐼 is the indirect effect on the geoid. In this study, we have decided to use the Helmert second 

condensation method to replace the external masses by a condensed layer placed on the geoid. For 

more details, see e.g. Wichiencharoen (1982), Vanicek and Martinec (1994) and Nahavandchi and 

Sjöberg (1998b). The notation Δ𝑔𝐻 at the ground level can be expressed via 
 

Δ𝑔𝐻 = ∆𝑔 + 𝛿∆𝑔dir                                                                  (25) 

where ∆𝑔 is the surface free-air anomaly and 𝛿∆𝑔dir is the direct topographic effect determined at 

the topography. The notation Δ𝑔𝐻∗
 is the analytically downward-continued Δ𝑔𝐻from the topography 

to the geoid. This process can be achieved with a Taylor expansion. It should be mentioned that Eq. 

(24) can also be rewritten as (Sjöberg 2000) 

 

𝑁 =
𝑅

4𝜋𝛾
∬ 𝑆(𝜓)(∆𝑔 + 𝛿∆𝑔dir

∗ +  𝛿∆𝑔dc)𝑑𝜎 + 𝛿𝑁𝐼𝜎
   (26) 

where 𝛿∆𝑔dir
∗  is the direct topographical effect on gravity anomaly which is referred to a point on the 

geoid and 𝛿∆𝑔dc is the correction due to the downward continuation of the free-air anomaly ∆𝑔. 

However, Eq. (24) is preferred to Eq. (26) from the numerical point of view (Nahavandchi and 

Sjöberg, in press). 

The effects of the atmosphere on the geoid height determination, the truncation error, as well 

as ellipsoidal correction are also studied in this section. 

 

 

3.1 Topographic corrections 

 

3.1.1 Direct topographic correction in Stokes' formula 

The correction due to removing the gravitational effects of the masses above the geoid is here simply 

called the direct effect. The Helmert second condensation method is used, which preserves the mass 

but changes the potential of the topography. 

The classical integral formula for direct effect determination at point P, on the topography, 

can be approximated from (see Vanicek et al. 1986; Vanicek and Kleusberg 1987) 
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𝛿∆𝑔dir
classic(𝐻𝑃) =

𝜇𝑅2

2
∬

𝐻2−𝐻𝑃
2

ℓ0
3 𝑑𝜎

𝜎
        (27) 

where 𝜇 = 𝐺𝜌0, and 𝜌0 is the density of topography, assumed to be constant, H and 𝐻𝑃 are the 

orthometric heights of the running and computation points, respec tively, and ℓ0 =

𝑅√2(1 − cos 𝜓) = 2𝑅 sin
𝜓

2
. 

In a strict sense, Eq. (27) can only be used for the far zone integration area, where ℓ0 ≫ 𝐻, 

and the effect of the near zone and a Bouguer shell (which cannot be derived from a planar model) 

are completely missing (Martinec and Vanicek 1994a). It should also be mentioned that the power 

series of height H used in the integration is limited to the second order. 

Sjöberg (1994, 1995) developed the direct effect in spherical harmonics to power 𝐻2, and 

Nahavandchi and Sjöberg (1998b) extended this approach to power 𝐻3. The latter result can be 

summarized as 

 

𝛿Δ𝑔dir
NS∗

(𝐻𝑃) ≐ −
𝜋𝜇

2𝑅
[5𝐻𝑃

2 + 3𝐻𝑃
2̅̅ ̅̅ + 2 ∑ 𝑛(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃)

𝑀′

𝑛,𝑚

] 

+
𝜋𝜇

2𝑅2 [
28

3
𝐻𝑃

3 +
9

2
𝐻𝑃

2̅̅ ̅̅ 𝐻𝑃 −
1

2
𝐻𝑃

3̅̅ ̅̅ + 𝐻𝑃 ∑ 𝑛(2𝑛 + 9)(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑀′

𝑛,𝑚 −
1

3
∑ 𝑛(2𝑛 + 7)(𝐻3)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑀′

𝑛,𝑚 ]                                                  

(28) 

 

where 𝑌𝑛𝑚 are fully normalized spherical harmonics obeying the following rule: 

 
1

4𝜋
∫ ∫ 𝑌𝑛𝑚𝑌𝑛′𝑚′

𝜎
𝑑𝜎 = {

1            if 𝑛 = 𝑛′   and 𝑚 = 𝑚′
0                                  Otherwise

          (29) 

 

and 

 

(𝐻𝜐)𝑛𝑚 =
1

4𝜋
∬ 𝐻𝑃

𝜐𝑌𝑛𝑚𝜎
𝑑𝜎,           𝑣 = 1,2,3, ….             (30) 

 

𝐻𝑃
𝜐 = ∑ (𝐻𝜐)𝑛𝑚𝑛,𝑚 𝑌𝑛𝑚(𝑃)                (31) 

 

𝐻𝑃
𝜐̅̅ ̅̅ = ∑

1

2𝑛+1
(𝐻𝜐)𝑛𝑚𝑛,𝑚 𝑌𝑛𝑚(𝑃)       (32) 

 

In Eq. (28), 𝑀′ is the maximum degree of height coefficients in a spherical harmonic representation. 

In order to compare Eq. (27) with Eq. (28) we only use the second power of elevation H in Eq. (28), 

i.e. 

 

𝛿Δ𝑔dir
NS∗

(𝐻𝑃) ≐ −
2𝜋𝜇

𝑅
∑

(𝑛+2)(𝑛+1)

2𝑛+1
(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑀′

𝑛,𝑚     (33) 

 

Equation (33) is related to a point at the geoid. Rewriting this formula for a point P at the topography, 

we obtain 

 

𝛿Δ𝑔dir
NS(𝐻𝑃) ≐ −

2𝜋𝜇

𝑅
∑ (

𝑅

𝑟
)

𝑛+1 (𝑛+2)(𝑛+1)

2𝑛+1
(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑀′

𝑛,𝑚     (34) 
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This harmonic presentation of the direct topographic effect [Eqs. (33) and (34)] is simple for the 

computations. It is also free from the problems encountered in integral formulae, such as the 

singularity at the computation point. However, the harmonic expansion series of 𝐻2 (and 𝐻3) will 

include the long wavelengths. The incorporation of all significant contributions from both short and 

long wavelengths requires an expansion in spherical harmonics of 𝐻2 (and 𝐻3) to very high degrees, 

which is practically difficult and ruins the simplicity of this method. Nahavandchi and Sjöberg 

(1998b) show that the dominant part of the power series in Eq. (28) is the second power of elevation 

H. For example, the contribution from the harmonic expansion series 𝐻3 on the geoid was within 9 

cm in the Himalayas for the EGM96 model. 

Equation (34) can also be written as a surface integral (Nahavandchi 2000a; Sjöberg 2000) 
 

𝛿∆𝑔dir
new(𝐻𝑃) = −

4𝜋𝜇

𝑅
𝐻𝑃

2 −
3𝜇

8
∬

𝐻2−𝐻𝑃
2

ℓ0
𝑑𝜎

𝜎
+

𝜇𝑅2

2
∬

𝐻𝑃
2−𝐻2

ℓ3 (1 −
3𝐻𝑃

2

ℓ2 ) 𝑑𝜎
𝜎

                     (35) 

where ℓ = √𝑟𝑃
2 + 𝑟2 − 2𝑟𝑃𝑟 cos 𝜓), and 𝑟𝑃 = 𝑅 + 𝐻𝑃. The above formula can also be written as 

 

∆𝑔dir
new(𝐻𝑃) = −

5𝜋𝜇

2𝑅
𝐻𝑃

2 −
3𝜋𝜇

2𝑅
𝐻𝑃

2̅̅ ̅̅ +
𝜇𝑅2

2
∬

𝐻𝑃
2−𝐻2

ℓ3 (1 −
3𝐻𝑃

2

ℓ2 ) 𝑑𝜎
𝜎

                                (36) 

 

 

3.1.2 Direct topographic correction for potential coefficients 

In determining the geoidal undulations from a global EGM, we must expect a bias of the external 

harmonic series when applied at the geoid within the topographic masses. This bias can be estimated 

by removing the effects of topographical masses, which implies a direct effect on the geopotential 

model. Helmert's second condensation method is used for reducing the masses (Vanicek et al. 1995). 

The direct effect on geopotential to the third power of elevation is estimated directly on the geoid to 

be (Nahavandchi and Sjöberg 1998b) 

 

𝛿𝑁dir
M (𝐻𝑃) ≐ −

2𝜋𝜇

𝛾
∑ ∑

𝑛+2

2𝑛+1
(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃) −

2𝜋𝜇

𝑅𝛾
∑ ∑

(𝑛+2)(𝑛+1)

3(2𝑛+1)
(𝐻3)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑛

𝑚=−𝑛
𝑀′

𝑛=0
𝑛
𝑚=−𝑛

𝑀′

𝑛=0    (37)                                                                                         

  

 with the same notations as previously defined. Sjöberg (1994, 1996) directly derived the total (direct 

and indirect) effect on the geoid to power 𝐻2. 

 

 

3.2 Primary indirect topographic effect 

 

The effect of restoration of the reduced masses on the geoid is the indirect effect. The classical 

formula for determining the indirect topographic effect on the geoid for Helmert's second 

condensation method is (Wichiencharoen 1982) 

 

𝛿𝑁I
classic(𝑃) = −

𝜋𝜇𝐻2

𝛾
−

𝜇𝑅2

6𝛾
∬

𝐻3−𝐻𝑃
3

ℓ0
3 𝑑𝜎

𝜎
                                              (38) 

with the same notations as before. 
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Sjöberg (1994, 1995) developed the indirect topographic effect in spherical harmonics to power 𝐻2, 

and Nahavandchi  and  Sjöberg  (1998b)  extended  this approach to power 𝐻3. The spherical 

harmonic presentation of indirect topographic effect is derived as (Nahavandchi and Sjöberg 1998b) 

 

𝛿𝑁I
NS(𝑃) = −

2𝜋𝜇

𝛾
∑

𝑛−1

2𝑛+1
𝐻𝑛

2(𝑃) +
2𝜋𝜇

3𝑅𝛾
∑

𝑛(𝑛−1)

(2𝑛+1)
𝐻𝑛

3(𝑃)∞
𝑛=0

∞
𝑛=0     (39) 

 

where 

  

𝐻𝑛
𝑣(𝑃) =

2𝑛+1

4𝜋
∬ 𝐻𝑣

𝜎
𝑃𝑛(cos 𝜓) 𝑑𝜎,           𝑣 = 2,3       (40) 

 

The classical formula [Eq. (38)] is not practical for computation, as it requires an integration over 

the whole Earth to include long-wavelength contributions. It also suffers from planar approximation 

(Martinec and Vanicek 1994b, Sjöberg and Nahavandchi 1999). On the other hand, the spherical 

harmonic presentation of indirect effect [Eq. (39)] needs a very high maximum degree of expansion, 

to consider all short- and long- wavelength information. Therefore, a compromise between these two 

methods is derived as (Sjöberg and Nahavandchi 1999) 

 

Δ𝛿𝑁I(𝑃) = 𝛿𝑁I
classic − 𝛿𝑁I

New = −
3𝜋𝜇

𝛾
𝐻𝑃

2 −
3𝑅𝜇

4𝛾
∬

𝐻2−𝐻𝑃
2

ℓ0
𝑑𝜎 −

𝜇

8𝛾
∬

𝐻3−𝐻𝑃
3

ℓ0
𝑑𝜎

𝜎𝜎
                            (41) 

or 

𝛿𝑁I
New(𝑃) = 𝛿𝑁I

classic(𝑃) −  Δ𝛿𝑁I(𝑃)          (42) 

 

where Δ𝛿𝑁I in spectral form is approximated as 

 

    Δ𝛿𝑁I(𝑃) = −
3𝜋𝜇

𝛾
𝐻𝑃

2̅̅ ̅̅ +
𝜋𝜇

2𝑅𝛾
(𝐻𝑃

3 − 𝐻𝑃
3̅̅ ̅̅ )       (43) 

 

3.3 Secondary indirect topographic effect 

 

The secondary indirect topographic effect is a free-air correction of gravity from geoid to co-geoid, 

i.e. 2γ𝛿𝑁Dir 𝑅⁄ ≐ 2γ𝛿𝜻
I

𝑅⁄ , where 𝛿𝜻I is the indirect topographic effect on the height anomaly and 

𝛿𝑁Dir is the direct topographic effect on the geoid. This yields the following correction, directly on 

the geoid, to the third power of elevation H (Nahavandchi and Sjöberg 1998b): 

 

𝛿𝑁I2 ≐
4𝜋𝜇

𝛾
∑

𝑛 + 2

(2𝑛 + 1)(𝑛 − 1)
(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃) −

𝑀′

𝑛,𝑚

𝜋𝜇

𝑅𝛾
𝐻𝑃 ∑

4𝑛2 + 2𝑛 + 3

(2𝑛 + 1)(𝑛 − 1)
(𝐻2)𝑛𝑚𝑌𝑛𝑚(𝑃)

𝑀′

𝑛,𝑚

 

+
2𝜋𝜇

3𝑅𝛾
∑

2𝑛2−8𝑛−3

(2𝑛+1)(𝑛−1)
(𝐻3)𝑛𝑚𝑌𝑛𝑚(𝑃)𝑀′

𝑛,𝑚       (44) 

                                                                                
According to the authors' experience, the secondary indirect topographic effect is at least two orders of 

magnitude smaller than the direct topographic effect and, therefore, is expressed with a spherical harmonic 

presentation [Eq. (44)]. 
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3.4 Atmospheric effect 
 

The effect of the mass of the atmosphere must also be removed prior to the application of Stokes' 

formula. This corresponds to the direct atmospheric effect. After the application of Stokes' formula, 

the effect of restoring the atmosphere should be applied. Sjöberg (1993) emphasized that there could 

be additional significant direct and indirect atmospheric effects stemming from a more detailed 

treatment of the Earth's topography than is made in the classical International Association of 

Geodesy (IAG) approach (Moritz 1980, p. 422). A new approach was derived by Sjöberg (1998). 

Furthermore, Sjöberg and Nahavandchi (2000) derived the total of the direct and indirect effects, 

called the total atmospheric effect, to the modified Stokes formula, implying the combination with 

potential coefficients. This total atmospheric effect is derived as  

(Sjöberg and Nahavandchi 2000) 

 

𝛿𝑁total
𝑎 = 𝑐1 ∑ (𝑠𝑛 + 𝑄𝑀𝑛)

𝑛+2

2𝑛+1
𝐻𝑛(𝑃) − 𝑐1 ∑ (

2

𝑛−1
− 𝑄𝑀𝑛 − 𝑠𝑛) 𝐻𝑛(𝑃)𝑀

𝑛=2
1
𝑛=0     

−𝑐1 ∑ (
2

𝑛−1
−

𝑛+2

2𝑛+1
𝑄𝑀𝑛) 𝐻𝑛(𝑃)∞

𝑛=𝑀+1       (45) 

 

where 𝑐1 = (2𝜋𝑅𝜌0𝐺) 𝛾⁄  and 𝜌0 is the density of the atmosphere at the radius of sea level. This formula 

can be added directly to the geoid height as a correction due to the effect of the atmosphere. 

 

 

3.5 Downward continuation of the Helmert gravity anomaly 

 

In order to obtain the boundary values in Stokes' formula, the gravity anomalies ∆𝑔𝐻 at the 

topography have to be reduced onto the geoid. This reduction is the downward continuation. The 

main problems with down- ward continuation are the masses between the topography and the geoid 

and the irregularity of the density distribution, which causes the disturbing potential to be non-

harmonic outside the geoid. Vanicek et al. (1996b) examined downward continuation of the Helmert 

gravity anomaly and found out that the determination of this effect is a well-posed problem for 5′ × 5′ 

geographic cells. 

Prior to the downward continuation, the gravity anomalies are corrected for the direct 

topographic correction (resulting in the Helmert gravity anomaly at the topography). The application 

of the direct effect makes the gravity anomalies smoother and thus better suited to downward 

continuation. 

After Bjerhammar (1962), a fictious field of gravity anomalies ∆𝑔𝐻∗
 is assumed on the geoid, which 

generate the gravity anomalies ∆𝑔𝐻 on the topography. These two anomalies can be related by the 

Poisson formula (including the spherical harmonics of degrees zero and one) (Kellogg 1929, 

MacMillan 1930) 

 

∆𝑔𝐻 =
𝑅

4𝜋
∬ ∆𝑔𝐻∗

𝐾(𝑟, 𝜓, 𝑅)
𝜎

𝑑𝜎     (46) 

 

where 𝐾(𝑟, 𝜓, 𝑅) is the spherical Poisson kernel described by 

 

𝐾(𝑟, 𝜓, 𝑅)  = ∑ (2𝑛 + 1) (
𝑅

𝑟
)

𝑛+1
𝑃𝑛(cos 𝜓) =∞

𝑛=0 𝑅
𝑟2−𝑅2

ℓ3         (47) 
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In Eq. (47), a spherical approximation is used. The Helmert gravity anomalies ∆𝑔𝐻 at the topography 

are known, and the Helmert gravity anomalies ∆𝑔𝐻∗
at the geoid are desired. In this sense, Eq. (46) 

can be solved in different ways; for example, by a linear approximation. We have used an iterative 

process by transforming the Poisson integral to a system of 48 510 linear algebraic equations to solve 

Eq. (46) (see Heiskanen and Moritz 1967; Bjerhammar 1969; Vanicek et al. 1996b). 

The Poisson kernel which dominates the behavior of Poisson's integral tapers off rapidly with 

increasing of distance from the computation point. Therefore, it need only be integrated over a small 

spherical cap 𝜓0 instead of e whole Earth. Rewriting the integral in Eq. (46) gives 

 

∆𝑔𝐻 =
𝑅

4𝜋
∬ ∆𝑔𝐻∗

𝐾(𝑟, 𝜓, 𝑅)
𝜎0

𝑑𝜎 +
𝑅

4𝜋
∬ ∆𝑔𝐻∗

𝐾(𝑟, 𝜓, 𝑅)
𝜎−𝜎0

𝑑𝜎 (48) 

 

where 𝜎0 denotes the spherical cap of radius 𝜓0. If the second term on the right-hand side of Eq. (48) 

is neglected, this yields a truncation error. This truncation error is reduced using Molodenskii's 

truncation modification technique (Molodenskii et al. 1962). A spherical cap with radius equal to 1° 

assures us that the contribution from the rest of the world is small (Vanicek et al. 1996b; Nahavandchi 

1998a). In order to minimize the effect of the distant gravity data (outside the spherical cap), the 

modification of Poisson's kernel is introduced in the same way as the modified Stokes' kernel was 

used in the Stokes integration (Vanicek et al. 1996b). The low-degree harmonics ∆𝑔𝐿
𝐻 are subtracted 

from the gravity anomaly ∆𝑔𝐻 at the topography. These can be computed from the EGM96 global 

model as (Vanicek et al. 1996b; Nahavandchi 1998a) 

 

∆𝑔𝐿
𝐻  = 𝛾 ∑ (𝑛 − 1) (

𝑅

𝑟
)

𝑛+2
∑ 𝐴𝑛𝑚

∗𝑛
𝑚=−𝑛

𝐿
𝑛=2 𝑌𝑛𝑚(𝑃)        (49) 

where 𝐴𝑛𝑚
∗  are the potential coefficients taken from a global EGM and corrected for the direct 

topographic correction [see Eq. (37)]. 

Then Eq. (48) can be rewritten as 

 

∆𝑔𝐻 =
𝑅

4𝜋
∬ ∆𝑔𝐻∗

𝐾𝑀(𝑟, 𝜓, 𝑅, 𝜓0)
𝜎0

𝑑𝜎 + 𝑑𝑔     (50) 

 

where 𝑑𝑔 = 𝛿𝑔𝑇 + ∆𝑔
𝐿
𝐻 is the sum of the truncation error and the low-degree harmonics of the 

gravity anomaly. The value of L = 20 is selected in this study, referring to a relatively low-degree 

reference field. The truncation error can be computed from a global gravity model using (Vanicek et 

al. 1996b; Nahavandchi 1998a) 

 

𝛿𝑔𝑇 = −
𝑅𝛾

2𝑟
∑ ∑ (𝑛 − 1)�̅�𝑛(𝑟, 𝑅, 𝜓

0
)𝐴𝑛𝑚

∗ 𝑌𝑛𝑚(𝑃)𝑛
𝑚=−𝑛

𝐿
𝑛=2       (51)                                                                                         

 

where 

 

                                         �̅�𝑛(𝑟, 𝑅, 𝜓0) = ∫ 𝐾𝑀(𝑟, 𝑅, 𝜓, 𝜓0)
𝜋

𝜓=𝜓0
𝑃𝑛(cos 𝜓) sin 𝜓 𝑑𝜓                     (52)              

 

and the modified Poisson kernel in a spectral form is 

 

𝐾𝑀(𝑟, 𝑅, 𝜓, 𝜓0) = ∑
2𝑛+1

2
�̅�𝑛(𝑟, 𝑅, 𝜓0)𝑃𝑛(cos 𝜓)∞

𝑛=0           (53) 
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3.6 Truncation error in Stokes' formula 

 

Because of the limited gravity coverage over the whole Earth's surface and the huge computation 

time, the integration area in Stokes' integral is split into a reasonably small cap 𝜎0 (with radius 𝜓0) 

around the computation point and the rest of the world. The short-wavelength part of the geoid can 

then be written as 
 

𝑁Δ𝑔 =
𝑅

4𝜋𝛾
∬ 𝑆𝑀(𝜓)

𝜎
Δ𝑔𝑑𝜎 =

𝑅

4𝜋𝛾
∬ 𝑆𝑀(𝜓)

𝜎0
Δ𝑔𝑑𝜎 +

𝑅

4𝜋𝛾
∬ 𝑆𝑀(𝜓)

𝜎−𝜎0
Δ𝑔𝑑𝜎          (54) 

 

As the contribution from the rest of the world is sufficiently small (considering the use of modified 

Stokes' formula), the second term on the right-hand side (the truncation error) of Eq. (54) can be 

evaluated from a global gravity model as 
 

𝛿𝑁 =
𝑅

2𝜋
∑ (𝑛 − 1)𝑀

𝑛=2 𝑄𝑛
𝑀Δ𝑔𝑛           (55) 

 

Notice that this correction is already included in the LS estimation [Eq. (8)]. 
 

 

3.7 Ellipsoidal correction for terrestrial gravity data 

 

As the quantities of the anomalous gravity field are relatively small, we usually neglect the terms of 

order e2 and above in computations of the formulae used in physical geodesy. e2 is the square of the 

first numerical eccentricity of the reference ellipsoid. Therefore, these expressions hold only for a 

spherical approximation. The ellipsoidal correction to the terrestrial gravity anomalies, 𝜖𝑠, is 

evaluated by the formulae given in Moritz (1980) as 

 

𝜖𝑠 = 𝑒2Δ𝑔1            (56) 

 

where 
 

Δ𝑔1 =
1

𝑅
∑ ∑ (𝐺𝑛𝑚 cos 𝑚𝜆 + 𝐻𝑛𝑚 sin 𝑚𝜆)𝑃𝑛𝑚(sin 𝜙)𝑛

𝑚=0
𝑀
𝑛=2       (57) 

 

and 𝐺𝑛𝑚 and 𝐻𝑛𝑚 are defined in Moritz (1980). As the ellipsoidal correction is relatively small, it 

can be estimated by using the truncated spherical harmonic coefficients from a global geopotential 

model. 
 

 

4 Numerical investigations 

 

4.1 Data sources 

 

The area of study is limited by latitudes 54⁰ N and 70⁰ N and longitudes 10⁰ E and 25⁰ E, which 

include the whole of Sweden. The intention is to determine the geoid heights in this area. As a 

preliminary to this computation, all corrections mentioned in Sect. 3 were evaluated. The numerical 

results are illustrated in graphical form. 
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The height coefficients (𝐻)𝑛𝑚, (𝐻2)𝑛𝑚 and (𝐻3)𝑛𝑚 were determined using Eqs. (30) and (31). 

For this, a 30′ × 30′ Digital Terrain Model (DTM) was generated using the Geophysical Explanation 

Technology (GETECH) 5′ × 5′ DTM (GETECH 1995a) and averaged using area weighting. Since 

the interest is in continental elevation coefficients, the heights below sea level were all set to zero. 

The spherical harmonic coefficients of the topography were computed to degree and order 360. The 

parametric definitions are: 𝜇 = 𝐺𝜌0, where 𝐺 = 6.673 × 10−11𝑚3𝑘𝑔−1𝑠−2 and 𝜌0 = 2670 

𝑘𝑔 𝑚⁄ 3
, R=6371 km, and 𝛾 = 981 Gal. In all the integral formulas, the 2.5′ × 2.5′ DTM (GETECH 

1995b) is used. The EGM96 global geopotential model to degree and order 360 is used in the 

computations. 

The gravity data over Scandinavia were provided by the National Survey and Cadastre of 

Denmark (KMS). Bjerhammar's deterministic method (Bjerhammar 1973) was used to compute 

mean free-air gravity anomalies over Scandinavia. As the free-air gravity anomalies are highly 

correlated with topography, they are not appropriate for prediction and gridding over land. On the 

other hand, the Bouguer anomaly field is smoother and less correlated with topography. Therefore, 

Bouguer anomalies were used over land and free-air anomalies were used over sea for prediction 

(see Nahavandchi 2000b). DTM height information was used for correcting the height bias (see 

Nahavandchi 2000b). The mean free-air anomalies, obtained from the above stated prediction, over 

Scandinavia for 6′ × 10′ geographic cells range from −125.19 to 193.18 mGal with a mean value of  

−0.29 mGal and a standard deviation (SD) of ±25.04 mGal (see Nahavandchi 2000b). 

 
 

4.2 Corrections to the geoid height determination 

 

Table 1 shows the statistics of all corrections mentioned in Sect. 3. Comparison of these results and 

further elaboration on the subject are given below. 
 

 
Table 1. The statistics of all corrections mentioned in Sect. 3 

 

 

 

 

 

 

 

 

 

 

The direct topographic effect on gravity in Stokes' formula, computed from Eq. (36), is 

plotted in Fig. 1. This effect contains both short- and long-wavelength contributions. The application 

of the direct topographic effect to the mean free-air anomalies has reduced the original values of 

(−125.19 to 193.18 mGal) to (−105.26 to 171.53 mGal), i.e. a reduction of 42 mGal of the span. 

The standard deviation is also reduced from ±30.05 to ±25.04 mGal. 

The direct topographic effect on geopotential [Eq. (37)], to degree 360, has been computed 

directly on the geoid and is illustrated in Fig. 2. This effect is small compared to the effect in Stokes' 

integral and always negative in this study.  

Figure 3 shows the secondary indirect topographic effect. It is computed from Eq. (44) to 

degree 360. This effect has been computed directly on the geoid using a spherical harmonics 
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presentation of the heights. It is two orders of magnitude smaller than the direct topographic effect 

(Fig. 2) in Stokes' formula. This effect is relatively small and contributes very little to the final geoid,  

but has a systematic effect that must be considered when an accurate geoid is desired. 

The ellipsoidal correction is computed from Eqs. (56) and (57) using EGM96. It is even smaller than 

the secondary indirect effect. Its contribution to the geoid height has a maximum value of 0.07 cm. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The application of the direct topographic effect is inevitable for the theoretical justification 

of the harmonic downward continuation used in this study. The contribution of downward-

continuation correction to be gravity anomaly has a very-short-wavelength character and mostly 

large values. Equation (50) was used for the computation of this effect. It should be noted that due 

to the very-high-frequency nature of this effect, its plot will not be useful, therefore is not shown 

here. Downward continuation correction on the geoid always gives positive values in this study. 

The primary indirect topographic effect, computed from Eqs. (42) and (43), is illustrated in 

Fig. 4. The contributions are from both short- and long-wavelength parts of the geoid. 

The total atmospheric effect on the geoid, including the direct and indirect atmospheric 

effects, as computed from Eq. (45), is depicted in Fig. 5. However, the zero- and first-degree 
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harmonic contributions to the total atmospheric geoid effect are not included in the solution (The 

zero-degree effect is about −5.57 m, whilst the first-degree effect reaches 2−3 cm; see Sjöberg and 

Nahavandchi 2000.) The total atmospheric effect has been evaluated on the geoid and can be directly 

added to the final geoid. 

The correction due to the truncation error, for an integration cap of 6⁰, is computed from Eq. 

(55) using EGM96. It has a quite significant contribution and must be added to the final geoid. This 

correction has already been considered in the LS model, therefore it is not applied in this model. 

 

 
 

 
 

 

4.3 Geoid determination with the modified kernel 
 

Nahavandchi (1998b) shows the power of the LS estimator over the other modified Stokes' kernels. 

The mean and standard deviation of the differences between the geoid derived from the LS estimator 

and the GPS- derived geoid heights at 23 SWEPOS GPS stations are found to be 10.1 and ±5.5 cm, 

respectively. They are computed to be 13.1 and ±7.1 cm for the Molodenskii et al. model, 18.2 and 

±11.2 cm for the modified Wong and Gore estimator, and 23.1 and ±16.1 cm for the Vincent and 
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Marsh model, respectively (see Nahavandchi 1998b). Therefore, the LS estimator is used for the 

final gravimetric geoid height determination. 

Nahavandchi (1998b) also used EGM96 to compare different geoid estimators by changing 

the maximum degree of expansion (M) of the reference field. This analysis resulted in the best 

solutions with large values of M. In order to obtain further insight into this analysis, the observed 

geoid height values at 23 SWEPOS GPS stations are compared with the gravimetric geoid heights 

determined from different values of M (M = 20, 180, 360). The LS model is used to estimate the 

gravimetric geoid. All corrections are applied in this investigation. Table 2 shows the statistics of the 

differences between gravimetric and GPS-levelling geoid heights. The results of Table 2 justify our 

belief that a reference field of an order as high as possible, in this study, gives the best results at the 

GPS stations. Standard deviation and mean value for M = 360 are computed to be ±5.5 and 10.1 cm, 

respectively, while they are found to be ±11.9 and 18.1 cm for M =20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some studies propose using a reference field constructed by applying only satellite-derived 

harmonics (Vanicek and Kleusberg 1987, Vanicek et al. 1996a). They argue that a reference field 

with a higher degree and order than 20 by 20 is constructed using the same terrestrial gravity data 

that is used in geoid height determination referred to this reference surface. Another disadvantage of 

a combined field is its spatial inhomogeneity. However, other researchers use a combined reference 

field of an order as high as possible (see e.g. Despotakis 1987; Zhao 1989; Forsberg 1990; Fan 1993; 

Forsberg et al. 1996, etc.) The use of a satellite- only model versus a combined model (to degree and 

order e.g. 20 by 20) is not investigated here. Figure 6 shows the plot of the geoid heights determined 

using the LS model with the values of M = N = 360. It has been computed on a 6′ × 10′ grid. The 

integration cap is selected equal to 6⁰.  The Geodetic Reference System (GRS80) normal field and 

its reference ellipsoid were used in this study. Therefore, the final gravimetric geoid heights are 

referred to the GRS80 ellipsoid. In this plot all corrections have been carried out, resulting in the 

final geoid which ranges from 17.22 to 43.62 m with a mean value of 29.01 m. 
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4.4 Statistical error propagation 

 

An internal error propagation might be useful in providing the statistical error properties of the 

gravimetric geoid heights, by propagating the estimated errors of the mean terrestrial gravity 

anomaly data, 𝜎Δ𝑔
2 . Assuming that the variances of the mean gravity anomaly data are known and   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncorrelated, using the law of error propagation on Eq. (54), the effect of the terrestrial data error on 

geoid height, 𝜎𝑁Δ𝑔

2 , can be evaluated from 

 

𝜎𝑁Δ𝑔

2 = (
𝑅Δ𝜙Δ𝜆

4𝜋𝛾
)

2

∑ (𝑆𝑀(𝜓) cos 𝜙)𝑖
2𝜎Δ𝑔

2 (𝜙, 𝜆)𝑖𝑖     (58) 

 

Index i accounts for the number of cells in which the contributions from gravity anomalies are 

considered. The statistics of these internal geoid undulation error estimates are given in Table 3. 

These standard deviations are highly correlated, especially over short distances, and range from 7.0 

to 13.1 cm with an RMS value of ±9.2 cm. This represents the accuracy estimate of the gravimetric 

geoid height obtained from the internal error propagation. It should be noted that the errors in all the 

employed corrections are considered much smaller than the error in mean free-air gravity anomalies 

and are neglected in this computation. Also, the errors due to the low-frequency reference field are 

not applied here. This method of estimating the geoidal height errors may not be accurate but 

represents valuable information on the expected relative accuracies. It also indicates locations where 

the gravity anomalies have poor quality and quantity. 
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The accuracy of the geoid height estimations can also be investigated using its global MSE. 

In the case of the LS model, we have (Sjöberg 1991) 

 

𝛿𝑁̅̅ ̅̅ 2 = (
𝑅

2𝛾
) ∑ [(

2

𝑛 − 1
− 𝑠𝑛

∗ − 𝑄𝑁𝑛)

2

𝜎𝑛
2 + 𝑄𝑁𝑛

2 𝑐𝑛 + 𝑠′
𝑛
2

𝑑𝑐𝑛
] +

𝑁

𝑛=2

 

+(
𝑅

2𝛾
)

2
∑ [(

2

𝑛−1
− 𝑄𝑁𝑛)

2

𝜎𝑛
2 + 𝑄𝑁𝑛

2 𝑐𝑛]
𝑛max
𝑛=𝑁+1      (59) 

 

For nmax = 1000, maximum degree of modification N = 360, and truncation radius of  𝜓0 = 6°, the 

global RMS error is computed to be ±28.6 cm. This result includes the errors from truncation, 

erroneous terrestrial gravity data, and potential coefficients. 

However, it should be noted that the most reliable way to estimate the accuracy of the 

gravimetric geoid height is to compare its result with externally derived geoid height data from GPS 

levelling. This is investigated in Nahavandchi (1998b). 
 

 

 

 

 

 

 

 

 

4.5 Comparisons 

 

The geoidal undulations were also computed using the other three estimators: Molodenskii et al., 

modified Wong and Gore, and Vincent and Marsh models. The statistics of differences between 

these three estimators and the LS model are shown in Table 4. The best agreement is between the 

LS estimator and the Molodenskii et al. model. The mean of differences is computed to be 2.41 cm 

with a standard deviation of ±1.40 cm. It should also be mentioned that all corrections are already 

applied to these geoid estimators. 

In order to investigate how each of the direct and indirect topographic effects as well as the 

atmospheric correction improve the agreement of the gravimetric geoid height with the GPS-

levelling stations, a specific analysis with each of these corrections was carried out. Table 5 shows 

the statistics of the differences between the gravimetric and GPS-levelling geoid heights at 23 GPS 

stations, including and excluding all corrections. The results in Table 5 show an improvement of 

18.6 cm in mean value of differences, and ±5.0 cm in standard deviation. 

Thereafter, we investigated (comparing with GPS results) the gravimetric geoid height for 

each of the direct, indirect and atmospheric effects (Table 6). Results indicate that the direct 

topographic correction of gravity anomalies significantly reduces the differences between the 

gravimetric and GPS-levelling geoid heights. An improvement of about 17.5 cm is computed for the 

mean value of differences. The indirect topographic correction and atmospheric effect also improve 

the gravimetric geoid heights on GPS stations. Improvements of 6.0 and 0.8 cm were found for the 

mean value of differences, respectively. 
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The Sjöberg LS, Molodenskii et al., Wong and Gore, Vincent and Marsh, and NKG96 

(Forsberg et al. 1996; the best available geoid model in the region) gravimetric geoid models were 

evaluated on 23 SWEPOS GPS stations. The corrections due to the difference between the 

orthometric and normal heights [Eqs. (20) and (21)], and the effect of postglacial rebound [Eq. (22)], 

were also applied. Table 7 shows the statistics of differences be- tween GPS-levelling and 

gravimetric geoid heights at 23 GPS stations. The results of Table 7 show the advantages of the LS 

model over the other methods (see Nahavandchi 1998b). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gravimetric geoid is then fitted to the 23 GPS-levelling geoid heights using a four-

parameter transformation model [Eq. (23)]. Table 8 shows the statistics of differences between 

gravimetric- and GPS-levelling-derived geoid heights, after fitting. 

The results of Tables 7 and 8 illustrate an improvement of about ±4.4, ±4.8, ±7.0, ±11.0, and 

±2 cm in standard deviations of remaining residuals for LS, Molodenskii et al., Wong and Gore, 

Vincent and Marsh, and NKG96 models, respectively. The LS model still has the best agreement 

with the GPS-levelling- derived geoid, compared with the other estimators and the best geoid model 

in the region (NKG96). 
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Table 7. Statistics of differences between GPS-levelling- derived and gravimetric geoid  

height models at 23 GPS stations. Units in cm 

 

 

 

 

 

 

 
Table 8. Statistics of differences between GPS-levelling- derived and gravimetric geoid  

height models after fitting to 23 GPS stations within the 60 integration area. Units in cm 

 

 

 

 

 

 

 

 

5 Discussions and conclusions 

 

Four different estimators have been selected to determine the geoid heights over Sweden. The 

Vincent and Marsh estimator employs a high-degree reference gravity field with low-degree 

satellite-derived gravity anomalies subtracted from the terrestrial gravity anomalies. No kernel 

modification is used in this model. The modified Wong and Gore and Molodenskii et al. estimators 

use the Stokes kernel modification and a high-degree reference field. The LS model combines the 

terrestrial and satellite-derived gravity anomalies in an optimum way. 

Related to the question of the geoid height determination is the question of direct and indirect 

topographic corrections. These topographic corrections are improved in this study. Classical integral 

formulas for the topographic corrections suffer from planar approximations, and some long-

wavelength contributions are also missing. Spherical harmonic presentation of topographic 

correction is simple but needs to be expanded to a very high degree in practice to consider short-

wavelength information. Therefore, we present combined correction as a compromise, which 

considers both short- and long- wavelength contributions. The direct topographic effect on 

geopotential is considered separately, using a spherical harmonics presentation. Topographic 

corrections are very significant and have to be applied in both the geopotential model and Stokes' 

formula. 

The atmospheric geoid effect is derived as a total correction, adding direct and indirect 

atmospheric effects. It has been presented by spherical harmonics as a correction to the modified 

Stokes formula. Its effect is significant for accurate geoid height determination and always has to be 

considered. 

Helmert anomalies at the topography were reduced on the geoid with the downward 

continuation correction procedure. On computing this effect, the Poisson kernel is modified. The 

correction due to the truncation error (due to limiting the integration area) is computed using EGM96 

and added to the final solution. The low-frequency contributions, computed from EGM96, are 

subtracted from the gravity data in the Poisson kernel and downward continued, separately. It is then 

added to the downward-continued short-wavelength part computed with the iterative process. The 

results show that this effect is very important, augmented by the height difference between the 
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topography and the geoid. The effect of downward continuation on the geoid is positive everywhere 

in this study. 

The results of the four gravimetric geoid height estimators are compared with GPS-levelling 

geoid height at SWEPOS GPS stations. The results of the LS estimator agree better with the GPS-

levelling geoid than the other methods. It has the smallest differences in mean value (10.1 cm) and 

standard deviation (±5.5 cm). The global RMS error of this estimator is computed to be ±28.6 cm. 

After fitting the gravimetric geoids to the GPS-levelling stations with a four-parameter 

transformation model, the results also show that the LS method has the best consistency, where the 

standard deviation of differences is reduced to ±1.1 cm. 

As a comparison, we have used the best geoid model in the region (NKG96) and also fitted 

it to the same GPS stations. The results yield ±6.1 cm standard error of agreement with GPS stations. 

Comparing with the other estimators, it is concluded that all new corrections applied in this study, 

compared with the classical one (which is used in the NKG96 model), improve the accuracy of the 

geoid heights in Sweden. 

It should be noted that if a precise geoid, say at the centimeter level, is desired, the 

topographical density correction discussed in Martinec (1993) must be considered in the final 

computations, especially in mountainous areas. A denser DTM, especially in the mountainous area 

on the border of Norway and Sweden, is needed to evaluate topographic corrections more precisely. 

According to our experience, the use of the 2.5′ × 2.5′ DTM in this study may cause error of several 

centimeters in the direct topographic effects, in mountainous areas and thus in the resulting geoid 

heights. 
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