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ABSTRACT Wireless channel estimation is one of the challenging problems in multiple input multiple
output orthogonal frequency division multiplexing (MIMO-OFDM) wireless systems. The MIMO-OFDM
exploits the spatial resources and increases the reliability and capacity of wireless systems. However, the
performance of these systems depends on accurate channel estimation since the receivers require perfect
channel state information (CSI) for coherent signal detection. Thus, wireless channel estimation is a
necessary component of OFDM systems. In this article, we have proposed an algorithm for MIMO-OFDM
systems that combines pilot symbols with reliable data symbols for channel estimation. The reliable data
symbols serve as virtual pilots and enhance the spectral efficiency of the system. The proposed data
aided channel estimation (DACE) algorithm eliminates the requirement of any additional resources such as
excessive number of training sequences to attain the desired performance. Also, it outperforms the traditional
least square (LS) and linear minimummean square error (LMMSE) methods for channel estimation in terms
of mean square error (MSE) and bit error rate (BER) performance of the system.

INDEX TERMS Channel estimation, DACE, MIMO-OFDM.

I. INTRODUCTION
Wireless communication is the most effective zone of tech-
nological growth where rapid developments have been made
in recent times to improve the performance of wireless sys-
tems. Different generations of mobile wireless technologies
were introduced in past few decades as wireless technol-
ogy enabled several services including voice to data and
to multimedia transmission. Now, we are aiming towards
more advancements with vast range of applications in future
wireless systems [1], [2], [3], [4], [5]. In this regard, MIMO-
OFDM systems meet the requirements of greater bandwidth
and capacity, resist noise and multipath effects, and offer high
data transmission rate. In wireless communication, CSI is one
of the fundamental concepts that provides the possibility to
adjust communication according to the current channel con-
dition, which is essential to achieve reliable communication
in MIMO-OFDM systems. However, it is highly complicated
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to obtain accurate CSI due to the time varying nature of the
wireless channel [6], [7], [8].

In recent times, different modulation techniques have been
devised, but OFDM presents its own advantages. OFDM is a
multicarrier modulation (MCM) technique where the whole
transmission bandwidth is divided into N number of orthog-
onal subcarriers and the parallel data streams are multiplexed
to offer high data rates. It converts the frequency selective
channel into the frequency flat channels and avoids inter
symbol interference (ISI) using cyclic prefix. Furthermore,
it is easier to implement OFDM as compared to some other
techniques like filter bank multicarrier (FBMC) that does not
need cyclic prefix but has greater computational complexity
[9], [10], [11], [12], [13], [14].

Channel estimation is one of the demanding challenges in
OFDMwireless systems [15], [16]. Different channel estima-
tion methods have been discussed in the literature including
LS, minimum mean square error (MMSE), LMMSE, sin-
gular value decomposition (SVD)-LMMSE etc. but LS and
LMMSE are the most common estimation methods because
of their simplicity and better performance. Therefore, several
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channel estimation techniques have been developed around
LS and LMMSE estimators. The LS estimator is modest
in comparison with LMMSE because it does not require
a priori knowledge of the channel statistics. Also, it offers
comparable performance at high signal-to-noise ratio (SNR).
Whereas the LMMSE estimator uses second-order channel
statistics to minimize the MSE. It is computationally more
complex because the multiplication and inversion of higher
dimensional matrices are required for each estimate. How-
ever, it is robust and offers better performance against fast
fading wireless channel. Generally, increasing the number
of training sequences (pilots) improve the performance for
both LS and LMMSE estimators, but it reduces the spectral
efficiency of the wireless systems [17], [18], [19], [20], [21],
[22], [23].

One of the important questions that has been addressed
in this research is how to improve the MSE and BER per-
formance of MIMO-OFDM systems without increasing the
number of pilots? In this regard, different channel estimation
techniques have been considered and it is realized that DACE
techniques offer better performance using reliable data sym-
bols. The reliable data symbols are those symbols which are
decoded correctly by the receiver and can be used as virtual
pilots. These virtual pilots are merged with original pilots
to update the solutions for conventional channel estimation
methods. This improves the quality of channel estimation
without compromising the spectral efficiency of the sys-
tem [24]. However, another key challenge is how to develop
an algorithm to select the reliable data symbols out of all pos-
sible data symbols transmitted through the wireless channel?

This problem has captured a lot of attention from research
community, but only few techniques/algorithms have been
proposed to deal with it. One of the most widely used
method to select reliable symbols is maximum likelihood
(ML). Although it is optimal at high SNR in additive white
Gaussian noise (AWGN) scenario, it is not preferable when
received symbols are equidistant from a certain constella-
tion point. Also, ML performance deteriorates because it
ignores the channel estimation error [25]. In this work, the
reliable data symbols are selected using a novel algorithm
for OFDM systems. The proposed method calculates the
reliability of each observation independently, and judiciously
selects the most reliable symbols when they are equidistant
from a certain constellation point. It considers both noise and
channel estimation error for the detection. Furthermore, the
proposed algorithm offers promising performance for both
single input single output (SISO) andMIMO-OFDM systems
and achieves high accuracy over the existing methods for
channel estimation.

Several channel estimation techniques have been proposed
and investigated, but each of them has its own limitations.
The ultimate goal is to accurately estimate the wireless chan-
nel, in order to compensate for its detrimental effects on
transmitted signals, and for perfect signal demodulation. The
existing channel estimation techniques are discussed below
and shown in Fig. 1.

A. BLIND CHANNEL ESTIMATION (BCE)
The statistical characteristics of the received signal are
exploited in BCE techniques which require a large amount
of data. These techniques are investigated to overcome the
wastage of bandwidth in pilot assisted channel estimation
(PACE) techniques. The BCE techniques are separated in sta-
tistical and deterministic methods. Using deterministic meth-
ods, both the received signals and the channel coefficients are
considered as the deterministic quantities. The comparison of
deterministic and statistical methods indicate that the deter-
ministic methods converge faster than the statistical methods.
However, the deterministic methods have greater computa-
tional complexity that increases further as the constellation
order increases. On the other hand, the performance of sta-
tistical methods deteriorate when dealing with exception-
ally short sampling sequence. As, no training sequences are
required for BCE techniques, thus seem more attractive with
effective bandwidth utilization [26], [27]. However, these
techniques have greater computational complexity and low
convergence rate that cause performance degradation. Also,
BCE techniques require time invariant channels for better
performance, so these methods are restricted to slow fading
channels and not favorable for fast fading channels.

B. NON-BLIND CHANNEL ESTIMATION (NBCE)
In NBCE techniques, information of the previous chan-
nel estimates or some portion of the transmitted signal is
available to the receiver to be used for channel estimation.
These techniques can be divided into the following two
types.

1) PILOT ASSISTED CHANNEL ESTIMATION (PACE)
In PACE, also known as training based channel estimation
technique, data known to the receiver is multiplexed with
the transmitted data symbols at the pre-determined location
before transmission. Using optimized space between pilot
and data symbols, the PACE techniques offer better per-
formance in terms of the spectral efficiency of the system.
However, regardless of several improvements that have been
made, the major drawback associated with PACE techniques
is the wastage of the bandwidth due to the requirement of
large number of pilots for channel estimation. Another set-
back is that the channel estimates depend only on pilot tones,
therefore interpolation techniques are used to estimate the
data tones which could not be a perfect estimator all the
time [28], [29], [30], [31], [32].

2) DECISION DIRECTED CHANNEL ESTIMATION (DDCE)
The DDCE technique exploits the information of non-pilot
symbols to improve the performance of wireless systems.
It offers higher reliability than PACE techniques. However,
error propagation can occur in successive decisions of DDCE
because it utilizes previous channel estimates to decode cur-
rent OFDM symbols. The newly estimated symbol infor-
mation is then used to estimate the channel corresponding
to the current OFDM symbols. Generally, the estimator of
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FIGURE 1. Channel estimation techniques.

the channel utilizes soft symbol information or hard symbol
information in the iterative form of DDCE techniques. This
information is filtered iteratively and estimated by the detec-
tor. It is then sent back to the channel estimator to improve the
performance of channel estimates with the increasing number
of iterations. In this way, the detector takes advantage from
the better channel estimates and produces updated symbol
information. Hence,the detector works in an iterative man-
ner with the channel estimator. The channel estimator uses
hard decision output of the detector in hard iterative channel
estimation methods. In contrast, if soft symbol information
is employed, the log-likelihood ratios (LLR) are used by the
channel estimator. These ratios are estimated by the detector
for the channel estimation. Such techniques are known as
soft iterative channel estimation methods [33], [34], [35],
[36], [37].

C. DATA AIDED CHANNEL ESTIMATION (DACE)
The DACE technique improves the quality of channel esti-
mation using both pilot and decoded data symbols. This is
in sheer contrast to the PACE techniques which rely only
on pilot symbols. That is why, DACE dominates the PACE
techniques, reduces the pilot overhead, and enhances the
spectral efficiency of the wireless systems [38], [39], [40],
[41], [42], [43]. Different channel estimation techniques have
been analyzed with the perspective of the selection of reli-
able data symbols to improve the MSE and BER perfor-
mance of MIMO-OFDM systems and it turns out that DACE
techniques can give better performance in this regard. The
MIMO-OFDM increases the range, offers superior perfor-
mance using multipath propagation, and improves the data
rate combining multiple data streams. Thus, it provides both

the diversity gain as well as the multiplexing gain. The
diversity gain increases the reliability of the system as muti-
ple received signals from different channels are combined
to estimate the transmitted signal. Whereas the multiplex-
ing gain increases the capacity as different signals are sent
through different paths for this purpose [44], [45], [46], [47],
[48], [49].

D. PERFORMANCE MEASURE FOR DACE
The performance measure for DACE depends upon vari-
ous factors including pilot patterns, estimation methods, and
detection methods.

1) PILOT PATTERNS
The estimation of pilot spacing requires extreme care because
greater number of pilots improves the quality of channel
estimation but reduces the spectral efficiency of the system
and vice versa. An optimum pilot pattern for one channel
could not be optimum for some other channel because of
different fading processes. Another significant feature is the
power allocation to the pilot tones in comparisonwith the data
symbols. In numerous cases, equal power is assigned to both
pilot and data symbols. However, the accuracy of channel
estimation can be enhanced by assigning more power to the
pilot tones, but it reduces the SNR.

Pilots can be used in different patterns including block
type and comb type pilot patterns as shown in Fig. 2. The
block type pilot configuration has pilot tones for all sub-
carriers in first OFDM block and it is preferable for slow
fading channels. Whereas comb type pilot configuration has
uniform distribution of pilot tones in all OFDM blocks and it
is suitable for fast fading channels [30], [50].

47838 VOLUME 11, 2023



I. Khan et al.: Data Aided Channel Estimation for MIMO-OFDM Wireless Systems

FIGURE 2. Pilot patterns.

2) ESTIMATION METHODS
There are many channel estimation methods like LS, MMSE,
LMMSE, SVD-LMMSE, etc. but LS and LMMSE are the
most widely used methods for channel estimation. Every
method has its own advantages and disadvantages. For
instance, LS is simple and direct method, and its performance
reaches MMSE at high SNR. It does not require channel and
noise statistics but ignoring the noise influence completely,
it has greater estimation error particularly at low SNR. Also,
LS offers no advantages if the channel length or the channel
impulse response (CIR) is unknown. Whereas if channel has
L number of taps, an improved performance can be obtained
because of the noise reduction.

In contrast to the LS, the MMSE considers the noise
influence and gives better performance at low SNR. How-
ever, its computational complexity is high due to the
extra information incorporated in the estimation technique.
Similarly, LMMSE is extensively utilized for the chan-
nel estimation of OFDM based systems as it is an opti-
mum method to reduce the MSE while AWGN is present.
It requires prior knowledge of pilot symbols or chan-
nel statistics for the channel estimation. Therefore, it has
greater computational complexity that can be reduced by
the appropriate insertion of pilot tones across the OFDM
subcarriers [51], [52], [53]. Similarly, SVD also reduces the
computational complexity of LMMSE. However, SVD esti-
mation involves complex nonlinear optimization methods,
and its estimation is prone to the error of estimated channel
matrix [54], [55].

3) DETECTION METHODS
The detection of reliable data symbols is an integral part
of DACE techniques, so the detection method plays a vital
role in this regard. The most common detection method is
ML that determines reliable symbols based on minimum
distance from a certain constellation point. However, it is
not preferable in equidistant scenario for multiple symbols.
Also, intelligent ML decoder needs to update its decisions

iteratively in frequency domain based on the resulting wave-
forms in time domain [56]. So, one faulty decision in fre-
quency domain can generate error propagation on subsequent
decisions.

Some other detection methods have also been proposed in
the literature including symbol selection algorithm (SSA) in
which SNR based reliability coefficient (RC) is associated
with each received symbol. The symbols with highest RC
values are considered reliable, and the rest are discarded [57].
However, SSA is also not an optimal choice for the accurate
detection of reliable symbols. Thus, it is key to introduce
such an algorithm that detects the reliable symbols with high
precision and improves the quality of channel estimation for
MIMO-OFDM systems.

E. MACHINE LEARNING BASED METHODS
FOR CHANNEL ESTIMATION
Apart from the above-mentioned basic techniques for channel
estimation, the machine learning based channel estimation
methods have also been developed in recent years. Differ-
ent from the existing OFDM receivers that first estimate
the CSI explicitly and then the transmitted symbols are
detected/recovered, using deep learning approach for channel
estimation, the CSI is estimated implicitly and the transmit-
ted symbols are recovered directly. The use of deep neural
networks (DNN) for channel estimation improves the perfor-
mance because the various characteristics of wireless channel
are learnt and analyzed by DNN. The DNN are basically
deeper versions of artificial neural networks (ANN) with
greater number of hidden layers. In this regard, the deep
learning approach for channel estimation is more effective
when the wireless channel has greater interference and dis-
tortion [58], [59]. However, it offers various challenges in
terms of availability of datasets and training because less
datasets have been used in wireless communication. Also,
privacy and data security, fluctuations in wireless propaga-
tion environment and interference are the various constraints
to obtain these datasets. The training of these datasets is
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TABLE 1. Channel estimation for MIMO wireless systems.

another crucial problem in deep learning approach because
the time complexity becomes too high when all layers are
trained simultaneously, and the deviation can transfer from
one layer to the other if one layer at a time is trained. Fur-
thermore, the machine learning techniques considered only
simplified system models whereas radio environments with
high complexity have not been investigated with comprehen-
sive considerations. So, it is paramount to investigate all the
aforesaid challenges associated with deep learning approach
for wireless channel estimation.

F. RESEARCH PROBLEMS
Looking for different channel estimation techniques, the
recent trends indicate that the performance improvement for
channel estimation in MIMO-OFDM systems costs us in
many ways. Some of the important research gaps which
have been addressed in this work are shown in Table. 1.
The indicated shortcomings are considered as benchmark to
improve the performance of channel estimation. Knowing
that the data aided techniques can give better performance
and higher spectral efficiency, we propose a novel algorithm
for the channel estimation of MIMO-OFDM systems. The
proposed algorithm outperforms the existing techniques and
implies high quality channel prediction.

II. MIMO-OFDM SYSTEM MODEL
The MIMO-OFDM system model is presented in this sec-
tion. It offers robust and efficient data communication as
demodulation of subcarriers can be performed individually.
The inverse fast Fourier transform/fast Fourier transform
(IFFT/FFT) implementation of MIMO-OFDM system with
DACE is shown in Fig. 3.
The baseband signal for OFDM system is given as:

x(t) =

N−1∑
k=0

X (k)ej2πk1ft (1)

where N represents the number of subcarriers, X (k) is com-
plexmodulation symbol transmitted on the k th subcarrier, and
1f is the subcarrier spacing.

The time domain samples at the output of the IFFT are
given by:

x(n) = WHX (k) (2)

where W is FFT unitary matrix of order N × N and its
elements are given as:

W = e−j2πkn/N , 0 ≤ k, n ≤ N − 1 (3)

The cyclic prefix of length g is added to avoid ISI such
as:

x ′(n) = CT × x(n) (4)

where CT is (N + G) × N order matrix and given as:

CT =

[
OG×(N−G) IG

IN

]
(5)

The frequency selective channel is modelled using
L-tap finite impulse response (FIR) filter with taps
[h0, h1, . . . , hL−1].
The time domain received signal is given by:

y(n) =

L−1∑
i=0

hix ′(n− i) + z(n), n = 0, 1, . . . ,N − 1 (6)

where z(n) ∼ N (0, σ 2
z ) is AWGN.

The convolution is converted into matrix multiplication
using following Toeplitz like channel matrix H̃ .

H̃ =



h0 0 0 0 · · · · · · · · · 0

h1 h0 0 0 · · ·
...

... 0
... h1 h0 0 0

...
...

...
...

. . .
. . .

. . .
. . . 0 0

...

hL−1
...

. . .
. . .

. . .
. . .

...
...

0 hL−1
...

. . .
. . .

. . . 0 0
...

. . .
. . .

. . .
. . . h1 h0 0

0 · · · · · · hL−1 · · · h2 h1 h0


(7)

So,

y(n) = H̃x ′(n) + z(n) = H̃CTWHX (k) + z(n) (8)

At the receiver, the removal of the cyclic prefix takes place
that can be expressed as multiplication of the received signal
with matrix CR given as:

CR =
[
ON×G IN

]
(9)
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FIGURE 3. MIMO-OFDM system model.

The multiplication converts the Toeplitz like channel
matrix into the circulant matrix.

Circulant matrix for 4-taps is given as:

CRH̃CT =


h0 0 h3 h2 h1
h1 h0 0 h3 h2
h2 h1 h0 0 h3
h3 h2 h1 h0 0
0 h3 h2 h1 h0

 (10)

Now, the equation for received signal can be written as:

Y (k) = WCRH̃CTWHX (k) + Z (k) (11)

where Z (k) = WCRz(n) and H = WCRH̃CTWH

⇒ H =


H (0) 0 · · · · · · 0
0 H (1) 0 · · · 0
...

. . .
. . . · · ·

...

0 · · · 0 H (N − 2) 0
0 · · · · · · 0 H (N − 1)

 (12)

Thus, the frequency domain received signal for OFDM
system is given as:

Y = HX + Z (13)

whereH represents the channel frequency response (CFR), X
contains the transmitted symbols and Z is AWGN with zero
mean and covariance matrix RZ = σ 2

Z IN [60].
The matrix vector form of the received signal model is

given as:

Y = Ah+ Z (14)

where A =
√
Ndiag(X )F and F represents the partial FFT

matrix comprising of first L columns of full FFT matrix.
Also, the CFR matrix is given as:

H =
√
NFh (15)

Using Nt number of transmit antennas and Nr number of
receive antennas for MIMO-OFDM systems, the intention is
to estimate h given the received symbol Y with minimum
number of pilots.

III. PROPOSED METHOD
Herein, an algorithm is devised to judicially pick the reliable
data symbols to overcome the inadequacies for DACE tech-
niques.

Starting from equation (13) over the k th subcarrier as:

Y (k) = H (k)X (k) + Z (k) (16)

Finding Ĥ (k) using LS/LMMSE estimation methods, the
estimate of X (k) is given by:

X̂ (k) =
Y (k)

Ĥ (k)
= X (k) + D(k) (17)

where D(k) indicates the distortion and it is defined as:

D(k) = X̂ (k) − ⟨X̂ (k)⟩ (18)

Now, the reliability values are determined by the following
expression.

R(k) = log
pD(k)(X̂ (k) − ⟨X̂ (k)⟩)∑M−1

i=0,Xi(k)̸=⟨X̂ (k)⟩
pD(k)

(
X̂ (k) − Xi(k)

) (19)

It is a likelihood ratio dependent upon relative posterior
probability of D(k) equating X̂ (k)−⟨X̂ (k)⟩ to the probability
of some other vector X̂ (k)−Xi(k). Intuitively, X̂ (k) is decoded
relative to both the nearest constellation point as well as
the nearest neighbours. The pD(k) is the probability density
function (PDF) of the distortionD(k). As it is highly complex
to determine the exact PDF of the distortion, so we consider it
circularly symmetric Gaussian with mean zero and variance
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σ 2
D(k). Consequently, the following PDF expression is used to

evaluate reliability values in (19).

pD(k)(X ) =
1

πσ 2
D(k)

exp

(
−

1

σ 2
D(k)

|X |
2

)
(20)

pD(k)(X̂ (k)−⟨X̂ (k)⟩) =
1

πσ 2
D(k)

exp

(
−

1

σ 2
D(k)

|X̂ (k)−⟨X̂ (k)⟩|2
)

(21)

where the variance of distortion is computed using (16) in
(17) as follows:

X̂ (k) =
H (k)X (k) + Z (k)

Ĥ (k)
(22)

X̂ (k) ≈ X (k) +
Z (k)

Ĥ (k)
(23)

Comparing (17) with (23), we get D(k) = Z (k)/Ĥ (k).
Now, the variance of distortion is given as:

σ 2
D(k) = E

{
|D(k)|2

}
= E

{∣∣∣∣ Z (k)Ĥ (k)

∣∣∣∣2
}

= (Ĥ (k))−H (Ĥ (k))−1σ 2
Z (24)

Hence, the distortion depends on both AWGN and channel
estimates. Now, the important question is how to pick the
reliable data carriers from a set of all possible 2N data car-
riers? The reliability value for each data carrier is obtained
using equation (19), which results in a non-negative number.
Therefore, a threshold value is chosen and all data carriers
having reliability values greater than the threshold value are
considered as reliable data carriers. The threshold value is
estimated empirically and a set of reliable data tones �m is
selected out of all available data tones. In this regard, the
proposed reliability function associates a reliability estimate
with each tone and determines the m tones having highest
reliability to generate �m. By incorporating the reliable data
carriers with pilots, the wireless channel is re-estimated using
LS and LMMSE methods.

Consider P as pilot and R as reliable indices, equation (14)
is updated as:

Yrp = Arph+ Zrp (25)

where

Arp = diag(Xrp)Frp (26)

and

Xrp = X (P ∩ R) =

[
X (P)
X (R)

]
(27)

Frp = F(P ∩ R) =

[
F(P)
F(R)

]
(28)

Yrp = Y (P ∩ R) =

[
Y (P)
Y (R)

]
(29)

FIGURE 4. The reliability variations of observation.

Finally, LS and LMMSE channel estimates for equa-
tion (25) are given by:

ĥ(LS)rp =

(
AHrpArp

)−1
AHrpYrp (30)

ĥ(LMMSE)rp =

[
R−1
h + AHrpR

−1
Z Arp

]−1
AHrpR

−1
Z Yrp (31)

Summary of the proposed algorithm
1) Get initial channel estimates ĥ by using pilots/training

symbols (e.g., using LS, LMMSE or any othermethod).
2) Obtain Ĥ by frequency transformation of ĥ and then

equalize the data using (17) to obtain X̂ .
3) Compute the variance σ 2

D(k) and the reliability R(k) for
each subcarrier, k = 1, 2, . . . ,N , using (24) and (19)
respectively.

4) Select the index R of the most reliable data carriers
by thresholding i.e., the index vector R is computed as
follows:
for k = 1, 2, . . . ,N , k ∈ R iff R(k) > threshold .

5) Re-estimate the channel using both pilots and reliable
data carriers (e.g., using LS, LMMSE or any other
method).

The graphical illustration of the reliability variations of
observation for the proposed algorithm is shown in Fig. 4.
Consider X̂1(k) and X̂2(k) such that:

|X̂1(k) − ⟨X̂ (k)⟩|

|X̂1(k) − Xa|
>

|X̂2(k) − ⟨X̂ (k)⟩|

|X̂2(k) − Xa|
(32)

It is obvious from Fig. 4 that Xa and Xc are the nearest
neighbours and Xb is the next nearest neighbour for ⟨X̂ (k)⟩.
The received symbols X̂1(k), X̂2(k) and X̂3(k) are equidistant
form ⟨X̂ (k)⟩ and exist at the circumference of the circle of
radius r . In this scenario, ML is not an optimum method for
detection because the received symbols are equidistant from
⟨X̂ (k)⟩. Now, considerXa as the nearest neighbour to compare
the reliability of X̂1(k) and X̂2(k). It can be observed that
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FIGURE 5. MSE vs. SNR for BPSK, Nt = 1, Nr = 1.

FIGURE 6. MSE vs. SNR for 4-QAM, Nt = 1, Nr = 1.

X̂2(k) is farther from Xa than X̂1(k), so X̂2(k) is more reliable
than X̂1(k). Alternatively, the reliability to assume X̂2(k)-
⟨X̂ (k)⟩ is higher than X̂1(k)-⟨X̂ (k)⟩. Similarly, if we consider
Xc as the nearest neighbour for the comparison of X̂2(k) and
X̂3(k), the distance between X̂2(k) and Xc is greater than the
distance between X̂3(k) and Xc. So, the reliability to assume
X̂2(k)-⟨X̂ (k)⟩ is also higher than X̂3(k)-⟨X̂ (k)⟩. Thus, X̂2(k) is
more reliable than X̂1(k) and X̂3(k).

IV. RESULTS AND DISCUSSION
In this section, the simulated results are achieved using
N=256 number of OFDM subcarriers and Np = 16 number

FIGURE 7. BER vs. SNR for BPSK, Nt = 2, Nr = 4.

FIGURE 8. BER vs. SNR for BPSK, Nt = 2, Nr = 8.

of equally spaced pilots in comb type pilot configuration. The
MSE and BER are considered as the yardstick for the perfor-
mance of MIMO-OFDM systems. The results are obtained
for both LS and LMMSE channel estimation methods. The
Rayleigh fading channel is modelled using L = 16 taps
FIR filter, where each tap has a complex Gaussian distri-
bution with zero mean and unit variance. The performance
of proposed DACE algorithm is evaluated for both BPSK
and 4-QAMmodulation schemes. The MSE and BER curves
are plotted over a diverse range of SNR values from 0 dB
to 30 dB. The MSE curves for SISO-OFDM system using
BPSK and 4-QAM constellations are shown in Figs. 5 and 6,
respectively. These curves suggest that the proposed LS and
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FIGURE 9. BER vs. SNR for 4-QAM, Nt = 2, Nr = 4.

FIGURE 10. BER vs. SNR for 4-QAM, Nt = 2, Nr = 8.

LMMSEmethods using virtual pilots outperform the conven-
tional LS and LMMSE methods for channel estimation. The
LS curves reach LMMSE curves at high SNR and give com-
parable performance. The performance improvement seems
better at high SNR as data equalization/channel estimation
has less distortion at high SNR and vice versa.

The BER curves for different MIMO configurations
including 2×4, 2×8, and 4×8 are shown in Figs. 7 to 12.
These curves indicate that unlike many other meth-
ods/algorithms applied for channel estimation, the BER per-
formance for the proposed algorithm improves for different
MIMO configurations, from low SNR values to high SNR

FIGURE 11. BER vs. SNR for BPSK, Nt = 4, Nr = 8.

FIGURE 12. BER vs. SNR for 4-QAM, Nt = 4, Nr = 8.

values i.e., from 0 dB to 30 dB. It is clear from Figs. 7 and 8
that BPSK attains better BER performance for a greater
number of receive antennas due to the diversity gain. Sim-
ilarly, Figs. 9 and 10 show that the 4-QAM constellation
also offers superior performance as the number of receive
antennas increases. However, Figs. 11 and 12 imply that the
BER performance deteriorates with an increasing number
of transmit antennas for BPSK and 4-QAM constellations,
respectively. The reason is that it is challenging to pick reli-
able symbols as the size of the data increases. Furthermore,
the MSE and BER performance for BPSK appears slightly
better than that of 4-QAM because it is difficult to detect
reliable symbols as the constellation order increases.
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FIGURE 13. Success rate vs. number of pilots.

Finally, it is investigated how much pilot overhead reduc-
tion/spectral efficiency improvement has been achieved using
the proposed DACE algorithm? To ascertain this, the perfor-
mance curves are obtained for both LS and LMMSE channel
estimation methods at a fixed SNR. The targeted MSE value
is chosen as 0.02. The success rate is defined as the ratio
of number of symbols for which the MSE is less than the
targetedMSE to the total number of transmitted symbols. The
SNR value is fixed at 20 dB for 4-QAM modulation scheme.
The success rate is plotted against number of pilots vary-
ing from L to N as shown in Fig. 13. It is observed that
the traditional LS and LMMSE channel estimaton methods
require 128 number of pilots to achieve a 100% success
rate. However, using the proposed DACE algorithm, the LS
and LMMSE methods reach a 100% success rate with only
52 number of pilots. Thus, the proposed method reduces
approximately 60% pilot overhead as compared to the con-
ventional methods for channel estimation, whichmeans a sig-
nificant improvement in terms of the spectral efficiency of the
system.

V. CONCLUSION
In this work, we have proposed a data aided channel esti-
mation method for both SISO and MIMO-OFDM systems.
A novel algorithm for the selection of reliable data sym-
bols/virtual pilots is developed for optimal channel estima-
tion. The reliable data symbols enable us to attain accurate
channel estimates with minimum number of pilots. Alterna-
tively, the reduction of pilot overhead allows us to enhance
the spectral efficiency of the system. The simulation results
endorse our theoretical analysis and performance compar-
ison against existing methods for channel estimation. The
proposed algorithm is simple, precise, and efficient. Also, it

selects the reliable data symbols intelligently and improves
the MSE and BER performance of the system.
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