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Problem Description:
The Internet of Things is becoming more widespread and available for everyone.
Home appliances that normally were not connected to Internet of Things systems
are being given functionality by adding sensors and technology. The added func-
tionality can be used to communicate with other devices, servers in the cloud or
carry out automated tasks based on own decisions. Manufactures of these devices
are constantly adding functionality and new devices to keep up with the increas-
ing demand from users wanting to create smart homes. Turning on the heat at
home from another location through an application or having the doorlock send
notifications when it is opened or locked are examples of functionality that makes
up the Internet of Things.

Air quality monitors are a type of Internet of Things devices that monitor
the indoor climate in it’s installed environment. The devices can communicate
over different communication protocols to applications on a user’s phone or the
vendors cloud services. In addition, their functionality varies as they are equipped
with different sensors, giving the user different values of how good or bad their
indoor climate is. The monitors can communicate with other devices and be in-
tegrated in a smart home environment, such as fans or heaters. However, hav-
ing devices monitoring our home 24/7 arises security issues. Private information
about user behaviour can be attractive to different parties, from companies want-
ing to know how to target advertises to malicious actors that want to misuse the
information.

This thesis will investigate several different air quality monitors to see how
and what private information can be gathered and inferred from carrying out a
passive network eavesdropping attack. As the market contains a wide variety of
air quality monitor devices, devices from different vendors should be chosen to
carry out the attack and discover what kind of private information in a smart home
environment can be collected.
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Abstract

The emerging use of IoT devices in homes arises security concerns whether or
not these devices expose private information about users and their environment.
Air quality monitors are a type of IoT devices which are always on to monitor
the indoor air quality of the environment. Even though air quality monitors have
been included in several tests within security, there are research gaps in comparing
different devices to each other and conducting test cases specifically designed to
see if there are differences in the level of inference on the air quality monitors. This
master thesis carries out a passive network eavesdropping attack on three different
air quality monitors to investigate if the network traffic pattern changes during
a triggered event and if these patterns can be used to infer user activities. The
devices communicate over Wi-Fi and are manufactured from different vendors.
The research first presents a baseline capture of the devices to learn their traffic
patterns when events are not triggered. Then four different test cases were tested
on the devices to see if it is possible to infer private information by looking at the
corresponding network patterns. The test cases designed in this thesis are cooking,
showering, window open during night and weekends at home or gone. The results
showed that only one of the air quality monitors expose private information in one
of the test cases. For this device it is possible to infer whether a user is home or
gone by looking at bytes sent and received and the differences in packet sizes. This
private information can be misused by an adversary to know when a user is home
or not just by looking at the Wi-Fi traffic sent to and from that device. This research
demonstrates that air quality monitors communicating over the same protocol,
in this case Wi-Fi, have different traffic patterns and expose private information
differently. It also motivates to continue the research on air quality monitors, as
these have not been as popular to test as other IoT devices.
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Sammendrag

Den økende bruken av IoT enheter i hjem skaper sikkerhetsutfordringer om disse
enhetene avslører privat informasjon om brukere og hjemmemiljøet. Luftkval-
itetsmålere er en type IoT enheter som alltid er påskrudd for å måle luftkval-
iteten innendørs. Selv om luftkvalitetsmålere har vært inkludert i flere sikkerhet-
stester, er det mangler i forskningen på å sammenligne ulike enheter med hver-
andre og å utføre tester som er spesifikt designet for å se om det er forskjeller
i hvor mye privat informasjon enhetene avslører. Denne masteroppgaven utfører
et passivt nettverksavlytnings angrep mot tre ulike luftkvalitetsmålere for å un-
dersøke om mønstre på nettverkstrafikken endrer seg når en test utføres og om
dette kan brukes for å hente ut privat informasjon for å fange opp brukerakt-
ivitet. Alle enhetene kommuniserer over Wi-Fi og er laget av ulike produsenter.
Oppgaven presenterer først standard trafikk fra enhetene for å se på mønstre på
nettverkstrafikken når det ikke blir utført spesifikke tester i miljøet. Deretter ble
fire ulike tester utført i miljøet til enhetene for å se om det var mulig å hente ut
informasjon om hva som foregikk i miljøet. De fire testene som ble utført er lage
mat, dusje, ha vindu åpent på natten og helg hjemme eller borte. Resultatene viste
at kun en av luftkvalitetsmålerne avslører privat informasjon fra en av testene ut-
ført. Fra trafikken på denne enheten er det mulig å se om en bruker er hjemme
eller ikke ved å se på bytes sendt og mottatt og forskjeller i pakkestørrelse. Denne
informasjonen kan bli misbrukt av en ondsinnet aktør ved å vite om brukeren er
hjemme kun ved å se på trafikken sendt over Wi-Fi, til og fra enheten. Testene
viser også at ulike luftkvalitetsmålere som kommuniserer med samme protokoll,
i denne sammenheng Wi-Fi, har ulike mønstre på nettverkstrafikken og avslører
privat informasjon ulikt. Dette motiverer også til å fortsette testingen på luftkval-
itetsmålere, siden disse ikke har vært like populære å teste som andre IoT enheter.
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Chapter 1

Introduction

This chapter introduces the master thesis while presenting the background and
motivation, followed by the research objectives and research questions that will
be answered throughout this research. Scope and delimitation gives a clear un-
derstanding of what is included and not in the thesis. The thesis structure outlines
and gives a brief understanding of each of the following chapters in this thesis.
The contributions are presented in a separate subsection.

1.1 Background and Motivation

The Internet of Things (IoT) exists of a growing number of physical and virtual
devices connected to the Internet to perform smart tasks [1]. Every-day devices
can be equipped with smart functionality to improve our lives, but also to im-
prove critical societal functions such as in health care or industrial technology.
The devices can range from a robot vacuum cleaner that users can control through
their phone or cameras installed for elders to stream to a nurse who resides cent-
rally. These smart devices can communicate and connect to each other and other
services using the Internet and makes out an IoT system. The devices analyzes how
users, machines or eco-systems behave and act accordingly. An emerging request
for smart devices has resulted in a rapid growth in IoT devices worldwide [2].
The devices are becoming more user friendly, smarter with added functionality
and aesthetically and more suitable to place or wear in any environment.

We spend a lot of our lives inside, breathing in the air that is available in
the indoor space [3]. The air affects our health and can potentially cause chronic
health problems, for example lung cancer or respiratory infections [4]. Common
air pollution’s, such as smoke or car exhaust, are easy to sense and avoid for people
not trying to get effected by the dangerous particles they emit. It is also more wide-
known that good outdoor air is beneficial for our health, not considering that
the air indoor can also severely affect our health [5]. Being more aware of our
indoor environment and considering the fact that Internet of Things devices are
evolving rapidly, indoor Air Quality Monitor (AQM)s are increasing in popularity
and functionality [6]. The air quality monitors are also developing into becoming

1
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smaller, more affordable and appealing to include in our home environment while
adopting several different sensors to report on the indoor air quality trying to
become a more popular choice for users.

As users are installing these sensors inside their own homes and allow them to
monitor their home environments all day, the air quality monitors will be collect-
ing data about the environment and behaviour that affect the air quality monitor
sensors. Therefore, it is interesting to look further into how easy it is to collect
this data and infer what kind of user behaviour is ongoing in the environment.
As harmless as a passive sensor that is just collecting data about different indoor
climate rates may seem, it is important to understand the risks one takes when
installing these and connecting them to the Internet. Understanding what kind
of private information is possible to infer from these devices and what makes the
differences can be crucial when deciding which air quality monitor on the market
to buy and install in our home.

1.2 Research Objectives and Research Questions

This thesis will conduct a network attack called passive network eavesdropping
attack, and launch it against a group of individual air quality monitors residing in
a home environment. In order to decide which devices to use and how to carry out
an attack, a survey of the devices will be presented. A justification for which test
cases to trigger the sensors and devices is important when analyzing the results.
When the passive network eavesdropping attack has been carried out and data
from the different test cases are collected, the results will be analyzed to see if
and how much private information can be gathered from the different devices.
The results will also look into if there are significant differences between the air
quality monitors. Lastly, the research will investigate how the private information
inferred can be used by malicious actors in a harmful way for users having the air
quality monitors installed in their home.

Based on the problem description, motivation and research objectives, the fol-
lowing Research Questions (RQ) have been raised and will be answered through-
out this master project:

• RQ1: What kind of information can be gathered from air quality monitors
when carrying out a passive network eavesdropping attack?

• RQ2: What are the differences in level of inference on different air quality
monitors from different vendors?

• RQ3: How can the private information gathered be misused by an adversary?
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1.3 Research Scope and Delimitation

This research presents three different air quality monitors, all selected from dif-
ferent vendors. The AQMs communicates over the same protocol, Wi-Fi, but have
different functionalities, applications and sensors. A Wi-Fi sniffer together with
tshark running on Kali Linux will be used to capture and store wireless traffic.
To answer the research questions, a baseline traffic pattern will be compared to
traffic during triggered scheduled user events. The goal is to investigate what
kind of private information it is possible to infer from conducting a passive net-
work eavesdropping attack on the different devices. The analysis and evaluation
will be based on network traffic patterns and give an understanding of how this
information can be misused.

This thesis will not look into decrypting traffic if the air quality monitors en-
crypt the communication. The focus will be on conducting a passive network pri-
vacy inference attack based on network traffic patterns and therefore only look
at non-encrypted data whether it is the whole packet or only the header. The re-
search will not look into different factors of how to do a successful attack, such as
distance, materials of the building or signal strength of the sniffer. The thesis will
not cover all phases of a passive network eavesdropping attack, but a prerequisite
of this is that the attacker has gained a strong enough wireless access to the user’s
network and can read traffic sent from and to the devices in the environment. We
will not look into how to identify the IoT devices as they are already known with
Media Access Control (MAC) addresses in this research. But for readers inform-
ation, there are other researches that have looked into identifying different IoT
devices, such as in [7] and [8].

1.4 Contributions

This thesis contributes with research on different individual air quality monitors
and what kind of private information that can be inferred from them. Even though
there are other researches that have carried out a passive network eavesdropping
attack trying to infer private information from IoT devices, a lot of these researches
investigate on IoT devices that can clearly pose a threat to user’s privacy if inferred,
such as cameras, watches or motion sensors. In a lot of researches found online,
air quality monitors are often a part of an IoT environment and only one type
of air quality monitor is included in the same environment, making it harder to
compare the differences between different brands, manufactures, functionality
and sensors.

Research on specifically air quality monitors is popular when it comes to their
functionality and sensor and how good they can read the indoor environment,
but when looking into security and privacy of the devices, the research decreases
significantly. Therefore, will this research contribute to not only looking into if a
passive network eavesdropping attack can expose private information, but also
if there are differences when multiple indoor air quality monitors are placed to
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observe the same environment and are exposed to the exact same test cases.

1.5 Thesis Structure

This rest of this thesis is structured in the following chapters:

Chapter 2 - Background
The background describes important information applicable for the research and
results. General information about air quality monitors, how they work, how the
sensors work and what factors to consider when selecting which air quality mon-
itor is presented. The concepts of private information inference, passive network
eavesdropping and Wi-Fi are explained as these are relevant for the tests conduc-
ted.

Chapter 3 - Related Work
The chapter presents a selection of previous research done by others on the prob-
lem topic. Security and privacy issues of specifically air quality monitors are highly
weighted in this chapter. The chapter also presents research done on misusing of
private information on other IoT devices, including smart environments with sev-
eral different IoT devices.

Chapter 4 - Method
The method describes how this research has been carried out. A survey for choos-
ing specific air quality monitors are presented with a description of the devices. To
ensure reproducibility, the environment setup is shown with all the components
used. The test cases are presented by giving justification on why they were chosen,
how they are designed and details on how they are carried out. A description on
how the data captured are analyzed is also included in the method.

Chapter 5 - Evaluation and Analysis Results
The chapter presents the results from the research to answers the research ques-
tions. A general procedure applicable for analyzing all tests is presented. Then a
subsection with standard baseline traffic from the devices is presented. The results
from the tests are presented in separate subsections.

Chapter 6 - Discussion
This chapter answers the research questions defined in this thesis. It also discusses
the work and results for the tests carried out. The challenges and mistakes and
how this thesis could have been done differently will be brought to light, but also
strengths and decision that were made to be able to discover the findings in the
evaluation and analysis results.

Chapter 7 - Conclusions and Future Work
This chapter concludes the research by answering the research question in short
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term and summing up this master thesis, while focusing on the contributions
made. Included in this chapter is also future work suggesting how to further look
into the research topic.





Chapter 2

Background

This chapter gives an overview of the necessary background information required
for this research. Air quality monitors are explained in general with its use, cap-
abilities and sensors. Passive network eavesdropping and private information in-
ference are introduced as these will be the vulnerability exploited in this research.
Lastly, an overview of the communication protocol IEEE 802.11, Wi-Fi, is presen-
ted as this is where the passive network eavesdropping attack will be launched.

2.1 Air Quality Monitors

Air quality monitors are used as sensors to collect sensor data from different
sources in the air [9]. The IoT devices can store data in different ways. Cloud
storing is the most preferred storage solution for IoT devices, but also local serv-
ers, internal storage and memory cards can be used to store data from air quality
monitors [10]. Displaying data to users of air quality monitors is important to give
the user either information about the indoor air quality, or recommendations on
how to improve the air quality [10]. The most developed and recent method of
doing so, is through an application on the users phone, but also solutions where
users can login to a website exists. Many air quality monitors also have a screen
on the device that shows certain values from the sensors [10].

As indoor air quality monitors can be equipped with different features, a brief
explanation of some of the sensors on an air quality monitor is necessary to un-
derstand why and how private information can be gathered from these sensors:

• Carbon Dioxide (CO2) is a chemical formula that is mainly made from hu-
man or animal combustion [11]. This implicates that the more humans or
animals that are in the same indoor environment, the higher occurrence of
CO2 will be collected by sensors and transmitted to the air quality monit-
ors. However, plants, sunlight and ventilation can bind CO2 and reduce the
amount of CO2 particles in an indoor environment.
• Noise is an interesting feature of air quality monitors as it is considered a

health problem [12]. Exposure to loud noises at a small amount of time or
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long-term noise can harm peoples health and result in hearing difficulties.
As we use a lot of time in our home, this sensor is applicable here.
• Volatile Organic Compounds (VOC) is a collective term for any combina-

tion of carbon, with the exception of some compounds [13]. These harm-
ful compounds can be found in gases from building materials, cigarettes,
cleaning articles, painting or cooking to mention some. Total Volatile Or-
ganic Compounds (TVOC) is a term for defining the total amount of VOCs.
The amount of VOC in an indoor environment can be reduced by ensuring
fresh air or using kitchen fans [14]. HCHO, also known as formaldehyde,
is classified as a VOC [15]. eCO2 is often used as an AQM measure, with
means estimated concentration of CO2 from TVOC.
• Humidity is calculated from the ratio between water vapor in the air com-

pared to the maximum amount of water vapor possible in the air [14]. Even
though humans can endure high variations in humidity, low humidity can
result in health problems such as irritated eyes, dry skin or dry mocus mem-
branes. High humidity can begin mold processes that can damage indoor
furniture or walls and lead to health problems like asthma or allergy. User
behaviour that can affect the humidity includes taking a shower, drying
clothes or cooking.
• Temperature is a measure unit for how hot or cold an environment is and

is measured using a thermometer. It is the most commonly used unit for
how comfortable humans feel. A too high temperature can result in lack of
energy and sleepiness and too low temperature can result in reduced muscle
function or heighten symptoms of rheumatism [16].

Several factors play a key part when selecting which air quality monitor is most
suitable for the users needs. Considering the different functionality an air quality
monitor can have, it is also important to look into transmission range, power
consumption and maintenance [10]. However, the main goal of an air quality
monitor is to monitor the air and therefore the sensors on the devices should be
a top priority when selecting a device. Air quality monitors can specialize in one
measuring unit in the air or have the functionality to measure several air quality
factors. They will be incorporated in users homes and therefore the appearance
will also be a factor when choosing the right device [17].

There are several companies that manufacture and sell air quality monitors.
Some companies sell air quality monitors whose main goal is to monitor the indoor
air quality, such as Airthings [18], Netatmo [19] and Mill [20]. Other companies
integrates the air quality monitor with other devices that have a main goal of
changing humidity or CO2 levels in the indoor environment based on the sensor
values to better the indoor air conditions. Examples of these are Phillips [21] and
Dyson [22]. These companies have different air quality monitors that users can
choose from based on their needs.

Considering security in air quality monitors, the standard and functionality
varies [23]. Some vendors of air quality monitors use secure communication chan-
nels and authentication to access data, while others do not have authentication
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enabled to collect data from their devices. However, as technology evolves to sup-
port more efficient and greater computing power for the air quality monitors, it
becomes easier to develop and implement stronger security. One the other side,
air quality monitors are beginning to become more popular as they are increasing
in number of sensors and functionality, which is often prioritized over security and
privacy issues [6].

2.2 Private Information Inference

Considering the amount of information an air quality monitor can collect about
an individual or a smart home, privacy leakage is a vulnerability [24]. Privacy is
referred to as every person’s right to have control over their own data, hereby
knowing how their data is used or distributed to other parties [25]. When ma-
licious attackers try to gather sensitive information about an individual user or
group of users, it is so called a privacy attack [26]. The attacker aims to target the
confidentiality of the user, while gathering information such as location, prefer-
ences, personal behaviour or similar private information. A challenge with an IoT
system compared to other computer systems is that many of the IoT devices are
always on, connected in a user’s home and sense user behaviour in a passive and
non-intrusive way. This makes it even more difficult to understand the scope of
all the private information gathered by an IoT system [25].

IoT systems in smart homes are often made up by different brands and com-
munication protocols and does not follow one standard like IoT systems in an
industrial environment can do [27]. There is no central management of secur-
ity patching or having a strong baseline of security that protects the private data
stored on a sensor. A big threat to IoT privacy is identification and profiling, where
an attacker can link a user to their behaviour in the environment [25]. An ad-
versary can then study the data from a user’s environment and identify what that
user is doing. An example can be that by reading an increase in data from an IoT
device communicating to a server for IoT coffee appliances, an attacker can know
that the user is making coffee at a specific time of day. By collecting this data over
a longer period of time, the attacker will know the routines of a user. Even though
a morning coffee can be something a user posts openly on social medias, not hav-
ing control of the data and who can access and process it is a violation of privacy.
This could also be launched against several IoT devices in an environment at once
and knowing user specific routines.

A challenge when it comes to privacy for IoT systems is weighting function-
ality against privacy and security [28]. There are security measures that can be
implemented for the devices to mitigate private information inference, such as
authentication and authorization, data anonymization, and cryptology. However,
not only attackers wanting to know about user’s private information poses a threat
to users’ IoT data, but also interested parties wanting to know user behaviour to
make more suitable solutions and targeted advertisement to make more money.
Hence, users need to be aware of where their data is shared to ensure that private
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information is not shared without them knowing. On the other side, users are re-
questing better functionality for the IoT devices, wanting them to behave more
customized and optimized to their needs which requires more data to be shared.
Although security vs privacy is a known issue in the computer world, IoT devices
are resource restrained and preferably as ascetically integrated in user’s home as
possible. Therefore, it is a challenge applying security measures to ensure privacy
for these devices [28].

2.3 Passive Network Eavesdropping

Eavesdropping network communication can either be passive or active. When an
attacker conducts an active eavesdropping attack on a target, the data in the com-
munication link is both inferred and modified [29]. However, in a passive network
eavesdropping attack, the eavesdropper does not modify any data on the link, but
simply gathers data transmitted without changing the communication. The over-
all goal of eavesdropping is often to access private information that is sent on
the communication channel. This can be anything from credentials to secret mes-
sages, or as in this research, private information about users and their habits [29].
Since the communication is not affected by a passive network eavesdropping at-
tack, the attacker does not need to be as careful in disguising itself as in an active
eavesdropping attack.

There are security measures to reduce the chance of being eavesdropped, both
actively and passively. Since eavesdroppers aim to listen to the communication,
encrypting the traffic is an effective way to make it harder to conduct an eaves-
dropping attack. Also, coverting channels to hide the identity of the communic-
ating parties can be used to prevent the eavesdroppers from finding the right
communication channel to eavesdrop [29].

To perform a passive network eavesdropping attack on wireless communica-
tion channels, it is not necessary to join the targeted network, but the attacker
needs to be within the signal range of the network [30]. In order to carry out a
passive network eavesdropping attack, the right hardware and software must be
configured [31]. A wireless network sniffer can collect wireless traffic for the cor-
responding communication protocol within its signal range. This device needs to
be configured to capture packets that are not meant for the device it is connected
to, normally a computer or server, but every packet within its signal strength. This
is often called promiscuous or monitoring mode.

It exists a number of network sniffers for every wireless communication pro-
tocol, such as Wi-Fi, Bluetooth, ZigBee or Z-wave [31]. Some computers even have
a built-in wireless network card that can be used to monitor traffic, not directed to
the computers address. Once the sniffer is configured to capture packets, a monit-
oring tool is necessary to collect, store and analyze the packets. Different software
monitoring tools can be used for this purpose, and it is often recommended to use
specific ones based on the operating system of the system that carries out the at-
tack. A common choice for both Linux and Windows is Wireshark [32], which is



Chapter 2: Background 11

a free monitoring tool. With both the hardware sniffer and software monitoring
tool configured correctly, a network eavesdropping attack can be carried out.

2.4 Communication Protocols

Air quality monitors send their sensor data on the network to store and analyze
it and communicates with a hub or a users phone to display the sensor values.
As they exist with different functionality and specifications, their communication
protocols differs, like other groups of IoT devices [10]. Wi-Fi is the most preferred
protocol with Bluetooth and ZigBee following [33]. As this thesis is limited to
air quality monitor devices using Wi-Fi to communicate, the next subsection will
elaborate on this protocol.

2.4.1 IEEE 802.11 - Wi-Fi

Wi-Fi [34] is one of the most used technologies for communicating and it is
defined, developed and standardized by WiFi Alliance [34]. Wi-Fi is based on the
standard IEEE 802.11 Wireless LAN set by IEEE Standard for Information Tech-
nology [35]. The transmission range for Wi-Fi is up to 100 meters and it uses
5-60GHz in the frequency band [17].

Figure 2.1: A Wi-Fi network [36]

Figure 2.1 illustrates how a Wi-Fi network works. In a Wi-Fi local area network
each communicating node, such as computers, IoT devices or mobile phones, con-
nects to an Access Point (AP), which connects the devices to the Internet [36]. The
AP works as a base station for the devices and provides the basic components that
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makes up the fundamental for Wi-Fi, called Basic Service Set (BSS). The AP con-
nects to the Internet commonly using a switch or router, which can be integrated
in the same physical device. When connecting to a Wi-Fi network, a Service Set
Identifier (SSID), often set as a default name by the Internet Service Provider (ISP)
or a customized name made by the network administrator, is visible for devices
trying to connect to the network. The SSID is used to distinguish multiple APs
to choose the right one to connect to. Each AP will periodically send out broad-
cast messages in a beacon frame containing its MAC address and SSID. When the
device has chosen the right AP to connect to based on the beacon frame, an asso-
ciation begins between the AP and the device to create a wireless link. This link
will be used by the AP to send packets from the Internet directed to the device
and from the device to Internet [36].

A network packet sent from a device communicating in a Wi-Fi network is
called a data frame [36]. The data frame is illustrated in Figure 2.2. The frame
control field contains several different fields for encryption, acknowledgment and
association to mention some [36]. The duration field holds the value of how long
to reserve a channel to transmit the data frame and acknowledgement. Sequence
numbers are used by a receiver to be able to make up the order the packets are
sent if they arrive in the wrong order over the medium. As shown in Figure 2.2,
there are 4 different MAC address fields with values such as source and destina-
tion MAC addresses [35]. The Cyclic Redundancy Check (CRC) field is controlled
by the receiver to check for bit errors. The final field is the payload where the
transmitted data relies in an Internet Protocol (IP) or Address Resolution Protocol
(ARP) packet [36].

Figure 2.2: Wi-Fi data frame [36]

An attacker sniffing network traffic on a Wi-Fi network will observe different
packets. Wi-Fi uses three different categories of frames: management, control and
data frames [37]. Management frames are used to manage Wi-Fi traffic. When
connecting to a network, association and authentication packets are sent, and
when disconnecting, disassociation and de-authentication packets are transmit-
ted. Beacon and probe frames are also sent to find the right network and manage
the connection. The control frames are used to assist both management and data
traffic [38]. The frames do not contain any body, but rather header information
that can be used to ensure management and data frames. The last group of frames
sent on a Wi-Fi network is data frames. The data frames is where the actual data
that the the parties wants to transmit to each other relies.

Security mechanism on Wi-Fi called Wi-Fi Protected Access (WPA)-2 and WPA-
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3 are commonly used and have stronger encryption and integrity where defense
against attacks are implemented. This thesis will not investigate any further on
security mechanisms of Wi-Fi, but more information about security on Wi-Fi can
be found in [39].





Chapter 3

Related Work

This chapter presents relevant research within this thesis’ research scope. The
main emphasis is on research done on security and privacy on air quality monitors,
but it is also relevant to look at security and privacy issues for IoT devices. A larger
scope of research is published on IoT devices in general and they can hold many
of the same functionalities and vulnerabilities.

3.1 Security and Privacy Issues of Air Quality Monitors

A research by Sivaraman et al. [40] tested several security parameters on dif-
ferent IoT devices which included two types of air quality monitors, Awair Air
Monitor and Netatmo Weather Station. The devices confidentiality, integrity, au-
thentication, access control and a reflection attack were tested. In the tests for
confidentiality, both the devices passed. However for the integrity and authentic-
ation tests both air quality monitors failed tests for Domain Name System (DNS)
security and DNS spoofing. Netatmo Weather station passed the applicable tests
for access control, but the Awair Air Monitor had open ports for Transmission Con-
trol Protocol (TCP) and User Datagram Protocol (UDP) and were vulnerable for
Internet Control Message Protocol (ICMP) and UDP distributed denial of service
attacks. The Awair Air Monitor were also vulnerable for ICMP Reflection attacks
[40]. The results of this research emphasizes the need to investigate the same IoT
devices from different vendors as they can expose private information differently
even though they have the same functionality.

A low-cost air quality monitoring system, called a.com, is analyzed in [6] by
Luo et al. The authors used a Hypertext Transfer Protocol Secure (HTTPS) proxy
tool called mitmproxy to analyze the security, data integrity, architecture, and
communication of a.com. Their results shows that this particular system use un-
encrypted communication and MAC addresses to identify the sensors. Two attacks
were carried out, man-in-the middle and populating false data in the communica-
tion link. These vulnerabilities are a big security challenge, as it is possible for an
attacker to falsify any a.com device if spoofing their MAC address [6]. To be able
to do a man-in-the-middle attack, an active sniffer is used and the result shows

15
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security vulnerabilities for an air quality monitoring system for a more compre-
hensive attack than passive network eavesdropping attack.

A literature review by Zagi et al. [41] collects and presents the results of sev-
eral IoT privacy related articles. The comparison shows that IoT devices have sev-
eral privacy issues that needs to be addressed. Even though this research is not
specifically on air quality monitors, it is applicable to general IoT devices and
therefore relevant to this master thesis. The research highlights that security in
IoT networks is a challenge. Since the devices communicate over different proto-
cols, it is stated in the research that one standard secure channel for all devices
is not realistic. Another security issue brought up is errors in configuration. Users
often buy off-the-shelf devices and install themselves, which can lead to weak-
nesses in the system. In addition, resource constraints in IoT devices can effect
the possibility and means to incorporate security features in the devices [41].

A risk when indoor AQMs monitor users environment is that private informa-
tion about users living or working habits can be leaked [17]. A research by Zhao
et al. [17] reviews several aspects of security in communication protocols for in-
door air quality monitors. The change in CO2 in a users environment can reveal
information about when a user is sleeping or working. Such information can be
misused by a malicious attacker. The research investigated 91 papers and only 2
of them looked into the challenges and possible solutions to data privacy-related
issues. The lack of research on security for AQMs shows the need to provide more
specific research on air quality monitors and their security and privacy issues.

A decentralized framework for wireless communication protocols for air qual-
ity monitors is proposed by Mrissa et al. [42]. The framework uses encryption and
onion routing technology to send data. The onions that transmit the packets do
not access the encryption keys that encrypts the body of the onion, as the keys are
only included in the last layer of the onion message. The framework can therefore
protect against malicious attackers eavesdropping private information from the air
quality monitors. The sensors nodes communicates with sink nodes that initiates
the communication, which means that a change in the environment for the user
will not result in data being transmitted immediately. Other techniques such as
padding, data-link-layer encryption, timing intervals and randomized paths are
also used to prevent eavesdropping [42]. However, it is not mentioned to what
degree real-life air quality monitors use this framework.

3.2 Misusing of Private Information Using Data from IoT
Devices

A research conducted in [43] investigates one IoT hub communicating with up to
16 different IoT devices. The results showed that it is possible to infer up to 90%
of user behaviour with a passive eavesdropping attack. Even though the traffic
between the devices and the hub was encrypted, they were able to infer the users
action by comparing the users action with the observed encrypted application data
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sizes received by the gateway.
Ziegeldorf et al. aims to classify different privacy threats and challenges for IoT

devices [44]. They suggest seven different categories: identification, localization
and tracking, profiling, privacy-violating interaction and presentation, life-cycle
transitions, inventory attack and linkage. The threat of identification refers to col-
lecting data about an individual that can be used to identify that person, such as
an image, name or address. Location and tracking is stated as an important fea-
ture of IoT systems and has become more specific and can also track users indoor
activity. Collecting location data can also track the users behaviour and compare
indoor and outdoor routines to forecast a user’s position. Since IoT devices integ-
rate as a part of our everyday life, profiling for directed and personal preferences
can be gathered for misuse. Privacy-violating interaction and presentation is re-
ferred to as a threat more applicable to the future since this type of technology
is not too common. However, identifying that presenting private information in
a real-world environment is a privacy threat is important for the development of
these services. For life-cycle threats, the research highlights that IoT devices do
not have established standards for total memory wipes or physical destruction,
leaving possible private information stored history of private data. Inventory at-
tacks combines information about IoT devices and their characteristics and can
be used by burglars to target potential victims. Lastly, the research states linkage
between interconnected systems that shares data in a way that was not disclosed
to the sources when they where isolated [44].

N. Apthorpe et al. [45] proposes a three step strategy an attacker can carry
out to passively network eavesdrop traffic from IoT devices to infer private in-
formation. The attacker first have to identify the different IoT devices in a smart
home and recreate the smart home in its own environment. Then by doing nor-
mal user cases and looking at the variations from general traffic, it is possible to
infer users private behaviour. However, the less functionality the devices have, the
easier it is to infer the user behaviour as a change in traffic can correspond to the
functionality being used [45].

A research testing several smart home devices by Apthorpe et al. [46] revealed
that it is possible to infer user behaviour based on traffic rates. Traffic analysis
from an IoT camera reveals when a user is actively looking at the camera stream
and a sleep monitor were inferred to show when a user is sleeping. The research is
based on traffic analysis of only traffic rate and headers. All the devices tested were
encrypted [46]. The same results were found by Apthorpe et al. [47] where the
authors examined four different IoT devices: a personal assistant, smart power
outlet, sleep monitor and security camera. They used two different attack per-
spectives where one is outside of the network on a wired channel, and the other
adversary is sniffing Wi-Fi traffic. The Wi-Fi sniffer is referred to a neighbour or
a strong radio receiver within signal range of the network. The results showed
that it was possible to infer user behaviour easily by looking at changes in traffic
patterns for the different devices [47].

Another research by Acar et al. [48] shows that a passive network eavesdrop-
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ping attack on several popular IoT devices can reveal user behaviour in a targeted
environment. The devices ranged from light bulbs and smart plugs to motion and
camera sensors, but no air quality monitors were included in the test. The devices
communicated over different communication protocols, such as Wi-Fi, Bluetooth
and ZigBee. Their method of analysing raw data had 4 stages: device identifica-
tion, device state detection, device state classification and user activity inference.
The results showed that they could infer user activity by an accuracy of 90% [48].

A method for network traffic analysis is suggested in [49] by Papadogiannaki
and Ioannidis. They describe that to be able to infer user behaviour, a two-step pro-
cess is required. First, the analyzer needs to know what normal network activity is
and then compare it collect data when there are changes from the normal traffic
is the network. To be able to distinguish normal events from abnormal events a
machine learning algorithm is proposed. Even though the research is aimed for
benign actors, the same method can be used for malicious actors. It is important
to understand that network sniffers can also be used by network administrators to
prevent and detect attacks and protect its own network, as well as for malicious
actors wanting to access private information about others.



Chapter 4

Method

This chapter describes the material and method used for testing, the environment
setup and the test cases that have been conducted. First, a survey for selecting the
air quality monitors to be tested in this research is introduced. Then, the method
for creating the environment, carrying out the tests, and analyzing the results are
presented in a method tree and explained in detail.

4.1 Air Quality Monitor Selection Survey

To select the air quality monitors to use in this thesis, the problem description
and research questions have been used as a reference. In order to answer the
RQs, the air quality monitors need to be manufactured from different vendors. To
find the specific AQMs to use in this research, several online sources were used
and compared. As this research is conducted by NTNU Gjøvik in Norway, it is
also preferable that the devices are bought and available in Norwegian stores or
webpages. The devices chosen should also be popular and easy accessible for any
user.

It exists many solutions that integrate air quality monitors within other devices,
but as this thesis aims to investigate what private information is possible to infer
from an air quality monitor, the devices should only have air quality monitoring
functionality. Considering these factors, the following criteria are made out to se-
lect the devices:

• The devices are manufactured from different vendors.
• The devices communicates over Wi-Fi.
• The devices are available for any user.
• The devices only monitors indoor air quality.
• The devices are available in Norwegian stores.

Tibber [50] is a Norwegian power company that specializes in combining smart
technology, as with IoT devices, and live app representation of the power con-
sumption and smart devices [50]. Tibber has over 400,000 users in Northern
Europe, which makes them a natural choice for many when integrating a smart

19
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home device to their environment [51]. On their website it is possible to buy sev-
eral IoT smart devices for a home environment. They recommend one AQM which
communicates over Wi-Fi, Netatmo Smart Indoor Air Quality Monitor. Netatmo
[19] is a company that specializes in consumer technology. They have one indoor
air quality monitor which uses four sensors to monitor the indoor air quality of
an environment. The sensors are; humidity, CO2, noise and temperature.

Elkjøp [52] and Komplett [53] are two of Norway’s biggest electrical stores
with a wide range of different smart home devices both in store and online. Its
therefore a natural choice when users are looking for any electronic devices in-
cluding smart devices. When searching for "Air Quality Monitors" on their webpages,
Elkjøp shows 4 different vendors and Komplett 8 different vendors. Both vendors
lists Netatmo Healthy Home coach, which is already chosen. A part from this, both
Elkjøp and Komplett also recommends Mill Sense. Mill [20] is a Norwegian com-
pany that manufactures and sells products for indoor climate and heating, with
the goal of developing devices that fits the indoor interior environment. They of-
fer one air quality monitor called Mill Sense which communicates over Wi-Fi. The
sensors integrated are eCO2, humidity, temperature and TVOC.

When sorting the devices on client reviews on Komplett, the highest ranking
manufacturer of air quality monitors is Nedis SmartLife [53]. Nedis [54] is an
electronic company with the goal of making electronic-related solutions based
on the newest technology. They have different solutions for air quality monitors,
but the one that communicates over Wi-Fi is called Nedis SmartLife Air Quality
Monitor. This device monitors CO2, HCHO, humidity, temperature and VOCs.

This research will consists of air quality monitors from the selected three dif-
ferent vendors. The devices only works as air quality monitors and they have dif-
ferent sensors. The chosen devices from the survey are represented in Table 4.1.

Table 4.1: Air quality monitor devices selected for this research

Vendor Air Quality Monitor Communication
protocol

Sensors

Netatmo Smart Indoor Air Quality Monitor WiFi CO2
Noise
Humidity
Temperature

Mill Sense Smart Climatesensor WiFi eCO2
Humidity
Temperature
TVOC

Nedis SmartLife Air Quality Monitor WiFi CO2
HCHO
Humidity
Temperature
VOC
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4.1.1 Netatmo Smart Indoor Air Quality Monitor

The Netatmo Smart Indoor Air Quality Monitor entails 4 different sensors: humid-
ity, CO2, noise and temperature. It can be integrated with several smart indoor air
quality monitor devices installed in users home, using HomeKit. It communic-
ates over Wi-Fi to its own app called Healthy Home Coach. Figure 4.1 shows Net-
atmo Smart Indoor Air Quality Monitor and its corresponding application, Healthy
Home Coach.

Figure 4.1: Netatmo Smart Indoor Air Quality Monitor and corresponding ap-
plication Healthy Home Coach [55]

The Netatmo Smart Indoor Air Quality Monitor sends notifications to the user’s
application when the device sense high temperature, CO2, humidity or noise and
low temperature or humidity. These are default enabled, but can be turned off by
the user. The values cannot be changed, but are stated by Netatmo in the applica-
tion. The unit displays live readings to the user, together with a graphical view of
values over a longer period of time. When first installed, the device needs at least
7 days to finish calibrating and read the environment values correctly.

4.1.2 Mill Sense Air Quality Monitor

Mill Sense Air Quality Monitor measures the indoor air quality with 4 different
sensors: humidity, TVOC, temperature and eCO2 [20]. The monitor communicates
through Wi-Fi and connects its data to their application called Mill Norway. It is
possible to use Mill Sense together with other Mill units, such as heaters or air
purifiers, to change their values based on the sensor data from Mill Sense [20].
Figure 4.2 shows Mill Sense and its corresponding application, Mill Norway.
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Figure 4.2: Mill Sense and corresponding application Mill Norway [56]

The AQM does not need power to stay connected and can be placed in any pre-
ferred room. The application does not provide notifications to users of threshold
levels, but displays the current levels in the app together with graphs that shows
variations back in time. Instead of sending notifications to a users phone, the
device shows different light responses on the physical unit. These threshold val-
ues can be customized. The sensor data collected from the environment is sent to
the cloud and back to the users app. It is possible to choose at what time interval
the device will send sensor data, from every minute to every hour. When the unit
is turned on for the first time and installed in the environment, the device needs
at least 5 days to calibrate its sensors.

4.1.3 Nedis SmartLife Air Quality Monitor

Nedis SmartLife Air Quality Monitor has 3 different indoor AQM sensors: humid-
ity, temperature and VOC [57]. The monitor communicates over Wi-Fi to the app,
Nedis SmartLife. As Nedis sells several other smart devices, the unit can be integ-
rated in a smart environment together with other devices. Figure 4.3 shows Nedis
SmartLife Air Quality Monitor and its corresponding application, Nedis SmartLife.
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Figure 4.3: Nedis SmartLife and corresponding application Nedis SmartLife [54]

Nedis SmartLife does not have notifications enabled default, but it can easily
be set and customized by the user. Every sensor reading from the device can be set
to notify whether levels are too high or too low. The readings on the app shows
live data as well as a graphical view of previous readings. For setup and calibration
in an environment, Nedis does not specify any calibration time.

4.2 Method Tree

This research is structured in six different main activities, shown in Figure 4.4:

Figure 4.4: Method tree
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4.2.1 Environment Setup

The first main activity is to set up the environment with both hardware and soft-
ware correctly configured. First, the air quality monitors need to be functioning in
the environment. Then a sniffer will be installed and tested to capture traffic sent
to and from the devices. After this, the capturing and analysis platform is setup
to store, process and analyze the data captured from the sniffer. On this platform,
software designed to capture the necessary data needs to be installed and con-
figured.

Air Quality Monitors
The AQMs need to be installed, connected to their app and calibrated. The devices
were installed and connected to the app as explained in the user manual attached
to the devices. It is desirable that the air quality monitors give notifications when
a certain threshold value is met. However, for Mill Sense it is not possible to set
notifications, but Nedis SmartLife and Netatmo Smart Indoor Air Quality Mon-
itor were set with the same threshold values for notifications. For Mill Sense the
interval for sending sensor data to the application were set to every minute. The
MAC addresses for the air quality monitors can all be found in their corresponding
apps, since identifying and discovering the devices are out of scope for this thesis.

Table 4.2 describes each AQM, their MAC address and which sensor values
triggers the devices to send notifications to the users phone. For the rest of this
thesis, the devices will only be referenced with their manufactures name; Net-
atmo, Mill and Nedis to simplify the presentations.

Table 4.2: MAC-address and notification threshold values for each AQM

Air Quality Monitor MAC Address Notification threshold values
Netatmo 70:EE:50:91:06:DE CO2 > 1150 ppm

Noise > 62db
Humidity < 30%
Humidity > 60%
Temperature < 17 ◦C
Temperature > 26 ◦C

Mill B8:F0:09:B3:B3:78 N/A
Nedis 2C:F4:32:29:36:DC CO2 > 1000 ppm

Humidity < 30%
Humidity < 50%
Temperature < 15 ◦C
Temperature > 25 ◦C
VOC > 99.9 ppm

Sniffer
In order to collect all Wi-Fi traffic within the environment, a network sniffer was
configured. The sniffer needs to be able to connect to the system were the packet
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capturing will take place and be set in monitoring mode. It exists a wide variety
of available Wi-Fi sniffers online, but the selected sniffer in this research is the
TP-Link TL-WN722N.

Figure 4.5: The Wi-Fi sniffer selected in this research: TP-Link TL-WN722N [58]

To set the device in monitoring mode, the is sniffer first plugged into a system
and then the following four commands were applied:

sudo ifconfig wlan0 down
sudo iwconfig wlan0 mode monitor
sudo ifconfig wlan0 up
sudo iwconfig

Note that wlan0 was the assigned wlan for the device when it was plugged into
the environment. The specific wlan addressed to the sniffer can vary from system
to system so it needs to be checked with the device plugged into the system. When
the sniffer is configured in monitoring mode, the device is able to collect all Wi-Fi
traffic within its own signal range. In this way, the sniffer will be able to collect
the traffic sent to and from the AQMs installed in the environment. To verify that
the sniffer is collecting traffic on the network, Wireshark were used with the cor-
responding wlan, wlan0, as capturing interface.

Platform
To collect data and store it from the devices, an operating system running on a
hardware component with the possibility to connect the sniffer were setup. In this
thesis, a Raspberry Pi Model 3 B+ were chosen as it can continuously be powered
on to capture traffic over longer periods of time. The Raspberry Pi was installed
with Kali Linux version 2022.3, installed from [59], which was beneficial as it in-
cludes all the needed software to capture the traffic and is compatible with the
TP-link sniffer. As the analysis will be conducted on another computer, WinSCP
were used to export the files from the Raspberry Pi over the network, downloaded
from [60]. Figure 4.6 shows a logical overview of the setup of the environment.
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Figure 4.6: Environment setup with all devices [56], [55], [57], [58], [59]

Tshark
In order to store and process the traffic that the sniffer collects, a monitoring
software was used. Tshark [61] is an open-source network packet analyzer and
were used to store packets. Tshark can be run from the command line interface
and has the possibility of using capture filters based on a number of parameters,
such as addresses, duration or size. In order to store the packets captured, tshark
was run with the option of writing its results to an output file rather than directly
in the command-line, as it does default. The packets collected in the output file
by tshark are possible to open and analyze in Wireshark.

To store packets from all the three air quality monitors, tshark was run from
three different terminals with corresponding filter to the devices. The options of
the command are explained in Table 4.3.

Table 4.3: Tshark command options used to capture traffic

Filter option Usage
tshark Initialize tshark
-i Interface to be used
-f Capturing filter
-w Output file to store captured packets

Netatmo:
tshark -i wlan0 -f "ether.host == 70:EE:50:91:06:DE" -w
"\\Documents\Netatmo"

Mill:
tshark -i wlan0 -f "ether.host == B8:F0:09:B3:B3:78" -w
"\\Documents\Mill"

Nedis:
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tshark -i wlan0 -f "ether.host == 2C:F4:32:29:36:DC" -w
"\\Documents\Nedis"

4.2.2 Event Design

In order to infer user behaviour from the devices, several test cases were designed.
As the AQMs are installed and monitors the home environment at all times, the
test cases are not limited in time or place in the house as they can be moved.

Looking at the different sensors and how they can be affected is important for
understanding which user behaviour can possibly change the traffic pattern. The
sensors from all the devices combined are; eCO2, CO2, humidity, temperature,
TVOC, VOC, HCHO and noise. Some of the sensors will be affected by the same
actions, so they will be categorized together. The following significantly different
categorized sensors will be used: CO2, humidity, temperature, VOC and noise.
Examples of user behaviour in a home that affects the different sensors are:

• CO2 : People or animals present, cooking, windows open
• Humidity: Windows open, showering
• Temperature: People or animals present, windows open, fireplace lit
• VOC: Cooking, burning candles
• Noise: Many people present, playing music or TV

Several of the proposed user behaviours will affect not only one, but several
sensors. However, it is more beneficial to focus on routines that users do every
day to be able to see a pattern of a household instead of looking at one specific
action that users may not do regularly. It is also important to notice that in order
to infer private information from network traffic, the test cases needs to change
the sensor values by some degree. Therefore, repetitive behaviour that has the
possibility to change the threshold values are chosen initially.

The three different routinely test cases chosen are cooking, showering and
windows open at night. Cooking is the most routinely behaviour in a home where
dinner is normally made every day. The next test case is showering as this is a
routine behaviour and will affect the sensors, particularly humidity and temper-
ature in the bathroom. Showering can be routinely done at very different times,
but evening showers are used in this case. Windows in a home can be open at
several times, however, having a window open every night while sleeping can
be common and should drastically change the indoor temperature and possibly
humidity. Especially since the testing will be carried out during winter time in
Norway. This is also a test that will last longer than the other two tests and can
possibly give another aspect to the research.

Another test case that can be interesting to see if changes the traffic patterns
is whether a user is home or not. Therefore, a weekend test will be carried out.
The sniffer will gather traffic from several weekends when the user is present in
the home environment and compare it to when the user is away for the weekend
and look at the differences.
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The four test cases chosen are three routine test cases and one test case not
based on routines. It is important to understand that the privacy of the differ-
ent test cases are different. Knowing whether a user is cooking or showering are
defined as the two test cases with the least dangerous private information ex-
posed, while window open at night can rather indicate that a user is sleeping and
the home environment is not watched. The private information exposed from the
weekend test is the most dangerous if revealed since it will indicate if a user is
gone and therefore not in control of the home environment.

4.2.3 Baseline Capture

To be able to distinguish the events in the Wi-Fi traffic, it is necessary to capture
and analyze traffic from the devices when they are not affected by any events. This
is necessary to understand what normal traffic from the devices is, like presented
in [49]. During the baseline capture, the devices were installed and calibrated in
the environment. All notifications that will be enabled during the event triggering
were enabled. The devices were reachable through their app and communicate
in their own pattern. The baseline capture was on-going for several days to en-
sure enough data and traffic was collected. During this capture, the devices were
placed in the inner hallway of the apartment. It would have been ideally to have
a baseline from each room of where the test cases will be located, but due to time
constraints, they were placed in a room binding all the other rooms together. See
Figure 4.7 for an overview of the environment.

4.2.4 Event Triggering

In this activity, traffic from the devices were captured while the events were triggered.
The routine events are each triggered 10 times and traffic from at least 1 hour be-
fore and after the event were captured to see the changes in traffic both before and
after the events. Weekend testing were conducted in the course of 14 weekends,
resulting in collected traffic from 7 weekends at home and 7 weekends gone.

Table 4.4 gives an overview of the time of day when each test case was carried
out and in which room the devices were placed for the tests.

Table 4.4: Overview of test cases with timings and location

Test Case Time of day Room
Cooking After work: 4pm to 5pm Kitchen
Window open at night At night: 11pm to 7am Bedroom
Showering Afternoon: 8pm to 9pm Bathroom
Weekend tests Friday: 4pm to Sunday: 11pm Hallway

As there is only one of each device and the tests are in different rooms, the
devices were moved to the corresponding room before each test. The devices were
placed in the environment for at least 1 hour before each test starts to ensure that
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the value changes between the room will be as equalized as possible. The exact
times for when cooking, open window and showering took place were logged so
it is possible to look for changes at that time.

Figure 4.7 shows an overview of the apartment layout, hereby called the en-
vironment, where the test cases and baseline were captured from. The different
rooms are marked and shows where the devices were placed during the different
tests.

Figure 4.7: Overview of the environment for the test cases and baseline captur-
ing. Cooking in the kitchen, showering in the bathroom, window open at night in
the bedroom and baseline and weekend tests in the hallway.

4.2.5 Event Mapping

When the events had been carried out, a mapping was made to see if informa-
tion could be inferred. Each event is presented both graphically and numerically
with different calculations to compare. Each event were extracted from the cor-
responding tshark capture saved in the pcap output file. A separate pcap file for
each event was made, with the timing of the specific event to see differences.

4.2.6 Result Analysis

The last activity is to analyze the results from the tests performed. Each event has
initially been evaluated and analyzed with the same general procedure. Figure
4.8 shows an overview of the steps each event has been through. The results from
each event are presented and explained in each subsection and in some cases, the
general procedure has given insights to further analysis which is covered in the
Evaluation and Analysis Results.
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Figure 4.8: General procedure used to evaluate and analyze the test cases

To be able to run analysis on the data gathered from the different Packet Cap-
turings (pcaps) and present it in an understandable way, two different programs
were used: Wireshark and python scripts in Visual Studios Code (VS Code) with
pyshark, a tshark library. Wireshark was used to extract numbers and calculations
from the pcaps and VS Code was used to generate graphs from event pcaps.

When opening a pcap in Wireshark, several statistics are possible to extract.
By choosing the option of "Capture File Properties", total number of packets and
bytes in the capture file are shown and were extracted. The numbers from each
pcap were noted down and used as event attributes to compare both the events
to each other and to the baseline. Another value used to analyze the events were
packet lengths. The biggest packet from each capturing were noted down to use
for comparing and looking for patterns and changes during an event.

In VS Code, python was used as the programming language as it includes the
library pyshark which can be used towards the tshark capture files. Four scripts
with a number of different if statements were used to generate different graphs
depending on system arguments passed to the script. The scripts were used to
generate two graphs: one with number of bytes or packets per execution of event
and one for the corresponding baseline event. The code is displayed in its whole
in Appendices A, B, C and D, and in pseudo code beneath in Algorithm 1. For
each of the if statements, the same code block is included and are only shown
once in Algorithm 1. The graphs are all generated with bytes or packets per 2
seconds, where the y-axis is defined in the number of packets or bytes and the
x-axis defined as time. The scripts use parts from the scripts explained in [62].

To create a file for each of the events, a time filter was applied to the pcaps
and the remaining packets exported to a separate pcap creating one pcap file per
captured event. These can be opened in Wireshark or make a graph out of to
analyze each specific event. The time filter used the following format:

• Format: frame.time>= "Month Date, Year "Time"" && frame.time<= "Month
Date, Year "Time""//
• Example: frame.time >= "Jan 08, 2023 "19:30:00"" && frame.time <=

"Jan 08, 2023 "20:40:00""

Table 4.5 displays the different system arguments passed to the scripts to cre-
ate the graphs and which values the arguments expect.
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Table 4.5: Overview of system arguments for scripts

Description Values

Argument 1 Name of device
Netatmo
Mill
Nedis

Argument 2 Which packets to include
Inbound packets and bytes
Outbound packets and bytes
Inbound and outbound packets and bytes

Argument 3 Type of event

Cooking
Shower
Window
Weekend
Baseline

Argument 4 Maximum value for y-axis, in bytes or packets <Numeric value>
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Algorithm 1 Script for generating graphs

1: for Each date of event do ▷ Graph_function start
2: Extract the packets from the right pcap
3: for Each packet in pcap do
4: Extract packet length in byte and time or add packet count to time
5: Display graph
6: end for
7: end for ▷ Graph_function end
8:

9: if Argument 2 is Outbound then ▷ Set display filter to outbound traffic
10: if Argument 1 is Netatmo then
11: Set display filter to "wlan.sa == Netatmo MAC address"
12: else if Argument 1 is Mill then
13: Set display filter to "wlan.sa == Mill MAC address"
14: else if Argument 1 is Nedis then
15: Set display filter to "wlan.sa == Nedis MAC address"
16: end if
17:

18: else if Argument 2 is Inbound then ▷ Set display filter to inbound traffic
19: if Argument 1 is Netatmo then
20: Set display filter to "wlan.da == Netatmo MAC address"
21: else if Argument 1 is Mill then
22: Set display filter to "wlan.da == Mill MAC address"
23: else if Argument 1 is Nedis then
24: Set display filter to "wlan.da == Nedis MAC address"
25: end if
26: end if
27:

28: if Argument 3 is Shower then ▷ Event if-cases start
29: Set the dates from when the events occurred
30: Graph_function
31: else if Argument 3 is Cooking then
32: Set the dates from when the events occurred
33: Graph_function
34: else if Argument 3 is Window then
35: Set the dates from when the events occurred
36: Graph_function
37: else if Argument 3 is Weekend then
38: Set the dates from when the events occurred
39: Graph_function
40: else if Argument 3 is Baseline then
41: Set the dates from when the events occurred
42: Graph_function
43: end if ▷ Event if-cases end
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To be able to look even further into differences in the traffic flow during an
event and standard traffic, the baseline capturing were also extracted with the
same time of day and duration as the corresponding events. To have the same
start and finish time for the events and the baseline, timings for all executions
of the events were used. The earliest starting time and the latest finish time for
that event were used on every event, but also the baseline which was captured
on different dates than the events. This results in both event and corresponding
baseline pcaps possible to compare as they all have the same time interval.

When these steps were finished for each execution of the events, graphs and
calculations for the events were available to analyze. Average and standard de-
viation values were calculated for both the events and corresponding baseline
pcaps. To be able to conclude that there is a difference in traffic flow from when
an event is ongoing to standard traffic, different measurements were used. The
measurements are both calculations and graphical views and then compared to
each other, using the same principles as proposed in [46]. For calculations, the
average value in packets and bytes for the baseline needed to be outside of the
standard deviation for the event to conclude that there is possible to differentiate
the events from other standard traffic.

The calculations for the routine tests also needed to be seen in context with
the the traffic flows, as the calculations are not only made on traffic at the specific
event time, but also includes traffic from a time period before and after the event.
Since we do not expect the sensor values to change immediately when an event
is triggered or finished, the traffic before is used as a reference to compare daily
baseline traffic with the standby reference. The traffic after an event can still be
affected by the sensor values since stabilizing the indoor air may take time. To
be able to compare event and baseline calculations, the time before an event and
the baseline needs to follow the same pattern. If the average value of the baseline
were outside of the standard deviation of the event, and the traffic flow before an
event were equal to the baseline traffic, then it was possible to conclude that the
device exposed private information about the test case.

The graphical measurement to analyze if there was a difference in traffic flow
during the events, was if it was possible to see a constant difference in the traffic
before and during an event. The baseline graphs were also used here to compare
even more standard traffic, than the time period before the event and look further
into if it was possible to see spikes or traffic flow changes during the events. The
last numerical value analyzed is the biggest packet sent or received and can be
used to see if there are bigger packets in the capture files while an event is ongoing,
and if there are, look into if they are associated with the specific event time. This
was included because we expect bigger packets to be sent or received by the device
during an event to update sensor values or send notifications, which was also
possible to find in [43].

However, for the weekend test, baseline traffic were not used to compare. In
this test, the weekends at home and the weekends gone are compared to each
other to look at differences in the same way as explained for the routine beha-
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vioural tests. If the calculations showed that the average values for packets and
bytes during a weekend gone was outside of the standard deviation for a weekend
at home, we can conclude that it is possible to infer this private information on the
device. For this test, the graphical view of the traffic flow were used to strengthen
the result if they gave the same result as the calculations.
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Evaluation and Analysis Results

The evaluation and analysis result chapter presents all gathered and analyzed data
from the four different tests carried out in this thesis. First, the baseline for each
device is shown both separately and to compare to each other. For each event;
cooking, showering, window open and weekend, several graphs and calculations
are presented side by side to analyze. This is divided into categories with the
three different devices. Then the actual events are compared to the baseline for
each device to look further into differentiate the events from standard traffic.
The results are commented and evaluated in the same sections that presents the
results.

5.1 Baseline

The capturing of baseline traffic was conducted over the course of 10 days in the
hallway of the environment. During the baseline, the devices were not directly
affected by the specific events, such as cooking, showering or window open in
the same room as the devices resides. The baseline traffic will be used to look
at standard traffic from the devices and to compare this to the events in both
graphs and calculations in Sections 5.2-5.4. The Wi-Fi traffic from the capture
files were encrypted and therefore it is not possible to extract any values from the
payload of the packets. This applies to all the devices. Since decryption of traffic is
out of scope for this thesis, the results will only analyze patterns and no payload
information. The filter used for all the baseline files is:

• frame.time>= "Mar 06, 2023 "00:00:00"" && frame.time<= "Mar 15, 2023
"24:00:00""

5.1.1 Netatmo Baseline

Figures 5.2 and 5.1 show the graphs for Netatmo from the baseline capturing
from 6th of March 2023 to 15th of March 2023. For the baseline graphs, it is
possible to see that packets are sent continually at a rate of around 250 bytes per

35
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2 seconds and 2 packets per 2 seconds. In addition to the continuously stream of
packets, the traffic flow also has spikes that looks random in both time and size.
As these graphs shows the total packets and bytes sent and received, it can also
be beneficial to look at what the graphs would look like if filtered on packets and
bytes sent and packets and bytes received separately.

Figure 5.1: Netatmo baseline capture with total number of bytes as the y-axis

Figure 5.2: Netatmo baseline capture with total number of packets as the y-axis
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(a) Netatmo inbound bytes (b) Netatmo outbound bytes

(c) Netatmo inbound packets (d) Netatmo outbound packets

Figure 5.3: Netatmo baseline inbound and outbound bytes

For the inbound and outbound bytes and packets for Netatmo it is clear to
see from Figure 5.3 that the device sends a lot more than it receives. Calculations
made on the baseline traffic are presented in Table 5.1.

Table 5.1: Calculations for Netatmo baseline capture

Numbers

Total

Packets 110,735
Bytes 14,959,396
Average bytes/second 17
Average packet size 135 bytes

Inbound

Packets 1,042
Bytes 83,446
Average bytes/second 0
Average packet size 80 bytes
Biggest packet 377 bytes

Outbound

Packets 109,693
Bytes 14,875,950
Average bytes/second 17
Average packet size 136 bytes
Biggest packet 1,150 bytes

Comparing the inbound and outbound graphs in Figure 5.3 with the total
graphs, in Figure 5.1 and Figure 5.2, shows that the outbound graphs stands for
the majority of the packets and are very similar to the total graphs. The same is
numerically shown in Table 5.1, where over 99% of the total packets are outbound
traffic. Therefore, it will be better to only display the events with graphs for total
traffic to evaluate and analyze for the rest of the thesis.
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5.1.2 Mill Baseline

Figures 5.5 and 5.4 show the graphs for Mill from the baseline capturing from 6th
of March 2023 to 15th of March 2023. The baseline traffic for Mill shows that the
traffic varies a lot. As this device does not send live updates, but every minute,
more spikes are included as it does not always send packets. It is also possible to
see the spikes more clearly if the time range is smaller, this will be visible further
when looking at the event and baseline comparison graphs for each event.

Graphs for inbound and outbound traffic have also been made for Mill to see
the differences for the packets sent. Figure 5.6 displays the different graphs for
each of the traffic directions. Numerical calculations for the baseline traffic are
presented in Table 5.2.

Figure 5.4: Mill baseline capture with total number of bytes as the y-axis

Figure 5.5: Mill baseline capture with total number of packets as the y-axis
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(a) Mill inbound bytes (b) Mill outbound bytes

(c) Mill inbound packets (d) Mill outbound packets

Figure 5.6: Mill baseline inbound and outbound bytes

Table 5.2: Calculations for Mill baseline capture

Numbers

Total

Packets 1,236,753
Bytes 129,253,290
Average bytes/second 149
Average packet size 105 bytes

Inbound

Packets 942,112
Bytes 95,458,773
Average bytes/second 110
Average packet size 101 bytes
Biggest packet 1593 bytes

Outbound

Packets 294,640
Bytes 33,794,517
Average bytes/second 39
Average packet size 115 bytes
Biggest packet 456 bytes

As Figure 5.6 shows, the device receives a lot more packets and bytes than it
sends. As the inbound graphs do not differ much from the total graphs, it will be
best to proceed with the analysis in a total traffic aspect where both inbound and
outbound traffic are included. This is also reflected in Table 5.2, which shows that
76% of packets and 74% of bytes are inbound traffic.

5.1.3 Nedis Baseline

Figures 5.8 and 5.7 show the graphs for Nedis from the baseline capturing from
6th of March 2023 to 15th of March 2023. The traffic sent and received by Nedis
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is characterized by varying a lot with high spikes especially for packets. The larger
spikes, which are more visible in Figure 5.8, showing the packets, occurs almost
everyday. Since traffic is encrypted, it is not possible to see what these spikes are,
but for further analysis it is important to understand that normal traffic for the
device, can be large spikes occurring around the same time each night around
3am.

Figure 5.7: Nedis baseline capture with total number of bytes as the y-axis

Figure 5.8: Nedis baseline capture with total number of packets as the y-axis
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(a) Nedis inbound bytes (b) Nedis outbound bytes

(c) Nedis inbound packets (d) Nedis outbound packets

Figure 5.9: Nedis baseline inbound and outbound bytes

Table 5.3: Calculations for Nedis baseline capture

Numbers

Total

Packets 2,428,701
Bytes 295,022,494
Average bytes/second 341
Average packet size 121 bytes

Inbound

Packets 451,495
Bytes 88,595,049
Average bytes/second 102
Average packet size 196 bytes
Biggest packet 522 bytes

Outbound

Packets 1,977,206
Bytes 206,427,445
Average bytes/second 238
Average packet size 104 bytes
Biggest packet 485 bytes

Figure 5.9 shows differences in inbound and outbound traffic for Nedis. Figure
5.9 shows that the spikes are packets which the device receives. Even though the
graphs for inbound and outbound traffic from Nedis can look similar, the calcula-
tions presented in Table 5.3 shows that 81% of the packets and 70% of the bytes
in the baseline are traffic sent from the device. Therefore, looking at the graphs
in total will give the most to analyze. Another aspect of looking at the graphs in
total, compared to inbound and outbound separately is that since the traffic is
encrypted, it is not possible to know what makes the possible changes.
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5.1.4 Baseline Summary and Comparison Between the Devices

This subsection summarizes and compares the baseline traffic for all the three
devices. Table 5.4 shows the differences in packets and bytes sent and received
to each devices during the baseline capture. As the table shows, the three devices
send different amounts of packets and bytes. Nedis sends the most while Netatmo
sends the least amount in standby. For inbound and outbound traffic, Netatmo
and Nedis sends more packets than it receives, while Mill receives more packets
than it sends. The same is shown in Figure 5.10 for the total number of bytes and
packets, in Figure 5.11 for inbound traffic and in Figure 5.12 for outbound traffic.

Table 5.4: Baseline capture summary for all the devices

Netatmo Mill Nedis

Total
Packets 110,735 1,236,753 2,428,701
Bytes 14,959,396 129,253,290 295,022,494

Inbound
Packets 1,042 942,112 451,495
Bytes 83,446 95,458,773 88,595,049

Outbound
Packets 109,693 294,640 1,977,206
Bytes 14,875,950 33,794,517 206,427,445

(a) Netatmo packets (b) Netatmo bytes

(c) Mill packets (d) Mill bytes

(e) Nedis packets (f) Nedis bytes

Figure 5.10: Traffic comparison between the baseline graphs with total number
of packets and bytes for all devices
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(a) Netatmo inbound bytes (b) Netatmo outbound bytes

(c) Mill inbound bytes (d) Mill outbound bytes

(e) Nedis inbound bytes (f) Nedis outbound bytes

Figure 5.11: Inbound and outbound baseline bytes comparison for all devices

(a) Netatmo inbound packets (b) Netatmo outbound packets

(c) Mill inbound packets (d) Mill outbound packets

(e) Nedis inbound Packets (f) Nedis outbound packets

Figure 5.12: Inbound and outbound baseline packets comparison for all devices
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5.2 Test Case 1: Cooking

This chapter presents the results and analysis conducted on Test Case 1: Cooking.
The first subsection will present general information applicable to all the devices,
and the following subsections will present the result and analysis for each of the
devices separately.

5.2.1 General

The cooking events are 10 in total and presented in Table 5.5. Every device have
the same time and dates for this event.

Table 5.5: Date and time for Test Case 1: Cooking

08.01 09.01 11.01 16.01 18.01 19.01 25.01 30.01 31.01 01.02
Started cooking 15:58 15:59 16:05 16:02 16:04 16:01 16:02 16:01 16:01 16:02
Finished cooking 16:22 16:21 16:37 16:25 16:25 16:18 16:13 16:19 16:21 16:22

To be able to look even further into if it is a similar traffic pattern to each event
that can be used to identify it, the same start and finish time have been used for
every graph. To have the same amount of time on each event, the earliest start
time and the latest finish time are used as filtering values for each of the pcaps for
the cooking event. 30 minutes before and after these times were used as the start
and finish time for the capture files, while the actual event time given by Table
5.5 is marked red on the graphs. This gives the following values to use for further
analysis:

• Earliest cooking start: 15:58
• Latest cooking finished: 16:37
• Packet capture files start: 15:28
• Packet capture files end: 17:07

These timings give the following filter added to create the pcaps for each event:

• frame.time >= "Month Date, Year 15:28:00" && frame.time <= "Month
Date, Year 17:07:00"
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5.2.2 Netatmo

Table 5.6 presents calculations from all the cooking events and Table 5.7 presents
the calculations from all the corresponding baseline pcaps. Table 5.8 compares the
average and standard deviation values from the events to the baseline. Figure 5.13
presents a graphical overview of the packets and bytes from Table 5.6 including
average values.

Table 5.6: Calculations on cooking events for Netatmo

Dates Packets Bytes Biggest packet
08.jan 901 123,630 407 bytes
09.jan 703 97,019 407 bytes
11.jan 847 114,473 407 bytes
16.jan 1,082 146,001 407 bytes
18.jan 948 129,907 407 bytes
19.jan 828 111,629 407 bytes
25.jan 430 58,926 407 bytes
30.jan 815 110,838 407 bytes
31.jan 864 115,302 136 bytes
01.feb 805 109,050 407 bytes

Table 5.7: Calculations on comparing baseline files for the cooking event for Net-
atmo

Baseline Packets Bytes Biggest packet
06.mar 584 77,780 134 bytes
07.mar 972 132,406 407 bytes
08.mar 697 94,730 407 bytes
09.mar 868 117,020 407 bytes
10.mar 825 111,863 407 bytes
11.mar 745 101,534 407 bytes
12.mar 626 84,987 407 bytes
13.mar 764 101,772 136 bytes
14.mar 750 102,396 407 bytes
15.mar 812 108,703 407 bytes
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Table 5.8: Traffic comparison between the cooking event and baseline for Net-
atmo

Type Packets Bytes Biggest packet

Average
Cooking 822 111,678 380 bytes
Baseline 764 103,319 353 bytes

Standard deviation
Cooking 170 22,802 86 bytes
Baseline 114 15,650 115 bytes

Figure 5.13: Graphical presentation of event and baseline cooking calculations
with packets and bytes, including average value extracted from Table 5.8 for Net-
atmo

The graphs in Figures 5.14, 5.15, 5.16 and 5.17 display both bytes and packets
for the cooking events in comparison with the baseline captures. The event graphs
are placed on the left side of the figure and are framed in red, while the baseline
graphs are placed on the right side of the figure and are framed in blue. The area
marked red on the event graphs is when the event was ongoing, and not included
in the baseline graphs as no event was ongoing and is only used for comparison.
The x- and y-axis for all the graphs in the same figure have the same minimum
and maximum values.
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Figure 5.14: Graphs of traffic flows from the cooking events measured in packets
with event graphs framed in red and baseline graphs framed in blue for Netatmo.
Event times are marked in red on the event graphs.
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Figure 5.15: Continuing from Figure 5.14

Figure 5.16: Remaining graphs from Figure 5.17
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Figure 5.17: Graphs of traffic flows from the cooking events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Netatmo.
Event times are marked in red on the event graphs.
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Table 5.6 shows that the calculations varies a lot for each event. Number of
packets varies from 403 to 1,082 and bytes from 58,926 to 146,001. The same
is found for the baseline calculations, which also varies with 584 packets as the
smallest to 972 as the highest amount of packets and for bytes from 77,780 to
132,406 bytes. The biggest packet from both the events and the baseline is mainly
407 bytes, with a few exceptions for both. The average values for the biggest
packet are similar to each other for the events and baseline. Therefore it is not
possible to distinguish an event based on the biggest packet.

Considering the values in Table 5.8, the average value of the baseline is within
the standard deviation of the cooking events for both packets and bytes. This
results in that the calculations cannot be used to identify the cooking event for
Netatmo.

The same result is further confirmed in the graphs in Figures 5.14 and 5.15
for packets and 5.16 and 5.17 for bytes. For both cooking event graphs, in red,
and baseline graphs, in blue, spikes that differentiate from the continuous traffic
are visible for both packets and bytes. However, these are not connected to the
red area when the event is ongoing and is also present in the baseline graphs,
where no event is triggered. The event graphs does not show a traffic flow change
in the red marked area. This results in that it is not possible to distinguish that
cooking is ongoing in the environment by looking at the graphs of traffic flow. The
results from cooking event on Netatmo is that there is no changes or differences
in calculations or traffic flows which can be used to identify the event.
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5.2.3 Mill

The results from the cooking events for Mill are presented with both numerical val-
ues in tables and graphs and in figures where traffic patterns are analyzed. Table
5.9 presents the calculations from the event traffic with packets, bytes and biggest
packet sent and received during the packet capturing. The same calculations have
been made on the baseline traffic, in Table 5.10. Table 5.11 compares the average
and standard deviation values for the event and baseline traffic. The calculations
from these three tables are graphically presented in Figure 5.18 where packets
and bytes from the event and baseline traffic are included with the average value
for each of them.

Table 5.9: Calculations on cooking events for Mill

Dates Packets Bytes Biggest packet
08.jan 8,875 1,097,786 456 bytes
09.jan 7,948 1,057,936 456 bytes
11.jan 10,222 1,310,644 456 bytes
16.jan 10,014 1,358,615 1,353 bytes
18.jan 9,185 1,137,586 456 bytes
19.jan 8,306 1,062,743 1,593 bytes
25.jan 8,246 1,033,976 1,583 bytes
30.jan 11,826 1,357,595 1,343 bytes
31.jan 10,464 1,205,006 456 bytes
01.feb 10,124 1,219,206 456 bytes

Table 5.10: Calculations on comparing baseline files for the cooking event for the
device Mill

Baseline Packets Bytes Biggest packet
06.mar 8,808 835,070 426 bytes
07.mar 9,310 940,428 1,353 bytes
08.mar 8,930 904,598 1,343 bytes
09.mar 10,675 1,046,076 456 bytes
10.mar 6,989 774,986 1,573 bytes
11.mar 9,983 1,107,006 1,273 bytes
12.mar 10,740 1,033,467 456 bytes
13.mar 8,134 826,038 426 bytes
14.mar 9,090 969,576 1,573 bytes
15.mar 6,539 740,761 429 bytes
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Table 5.11: Traffic comparison between the cooking event and baseline for Mill

Type Packets Bytes Biggest packet

Average
Cooking 9,521 1,184,109 861 bytes
Baseline 8,920 917,801 931 bytes

Standard deviation
Cooking 1,221 125,182 529 bytes
Baseline 1,404 122,928 527 bytes

Figure 5.18: Graphical presentation of event and baseline cooking calculations
with packets and bytes, including average value extracted from Table 5.11 for
Mill

The traffic pattern for the events and baseline are presented in Figure 5.19
and 5.20 for packets and in Figure 5.21 and 5.22 for bytes. In these figures, all
graphs have the same minimum and maximum values on the y- and x-axis to be
comparable. The graphs created from the different events are placed on the left
side of the figure and framed in red, while the baseline is placed on the right side
of the figure and framed in blue. The event times for when the event was ongoing
are marked in red on the event graphs.
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Figure 5.19: Graphs of traffic flows from the cooking events measured in packets
with event graphs framed in red and baseline graphs framed in blue for Mill.
Event times are marked in red on the event graphs.
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Figure 5.20: Continuing from Figure 5.19

Figure 5.21: Remaining graphs from Figure 5.22
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Figure 5.22: Graphs of traffic flows from the cooking events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Mill.
Event times are marked in red on the event graphs.
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Comparing Table 5.9 and 5.10 shows that the number of packets sent to and
from the device is around the same value and not a significant difference between
the events and baseline. The average values for packets in Table 5.11 also shows
that the values are similar to each other. For bytes, the calculations shows that
when an event is ongoing, the overall values are higher than for standard baseline
traffic. The comparison in Table 5.11 shows that the average value for events
are 266,308 bytes higher. The same is presented in Figure 5.18 where there is
a bigger difference in bytes than packets for events and baseline traffic. For the
biggest packet sent, the packet sizes varies from around 450 bytes to 1,550 bytes
for events and baseline traffic over the same time, shown in Table 5.9 and 5.10.
This results in no difference in the bigger packets sent and received during an
event.

Table 5.11 shows that the average value of the baseline packets are within
the range of the standard deviation of the cooking events. However, for bytes, the
average value is lower than the standard deviation. This is also visible in Figure
5.18 where the difference in bytes is much clearer than for packets. When looking
at Figure 5.21 and 5.22, it is a difference between the traffic before the event
and the baseline traffic. The graphs marked in blue shows that when the baseline
capturing was ongoing, the number of bytes sent are much lower than for the
days when the events were triggered. Since this is also applicable for before the
event and not just during and after an event, we can conclude that the difference
in calculations for bytes are not linked directly to the event triggered, but must be
affected by other changes in the environment.

The graphs in Figures 5.19 and 5.20 for packets and Figures 5.21 and 5.22 for
bytes does not show a significant change in traffic pattern from when an event is
ongoing, in the graphs framed in red, and the standard traffic pattern from the
baseline, in the graphs framed in blue. The variations the calculations gave in bytes
from the events and baseline is not very visible in the graphs as they both vary a
lot. However, knowing that more bytes are sent during the events, it is possible to
see that more of the event graphs have higher spikes than the baseline, but this
is not applicable for all events. Even though there are some differences visible,
these are not applicable for all executions of cooking for Mill. Therefore, it is not
possible to show that there is a specific change in traffic patterns for cooking and
not possible to identify when cooking is ongoing in the environment.
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5.2.4 Nedis

In Test Case 1: Cooking for Nedis, tables with numerical calculations are presented
together with graphs of the traffic flow. In Table 5.12 the total amount of packets
and bytes, including the biggest packet during the event are presented for each of
the 10 cooking events. Table 5.13 presents the same values, but in regards of the
baseline pcaps. Table 5.14 compares the average values and standard deviation
from the events and baseline for packets, bytes and biggest packet. Figure 5.23
presents the calculations from Tables 5.12, 5.13 and 5.14 with packets and bytes
together with the average value for both the event and baseline traffic to easier
compare it.

Table 5.12: Calculations on cooking events for Nedis

Dates Packets Bytes Biggest packet
08.jan 24,494 3,318,519 485 bytes
09.jan 26,787 3,870,361 424 bytes
11.jan 24,381 3,550,947 424 bytes
16.jan 26,035 3,895,071 485 bytes
18.jan 25,398 3,233,845 424 bytes
19.jan 20,857 3,242,594 424 bytes
25.jan 24,233 3,095,693 424 bytes
30.jan 24,867 3,257,812 424 bytes
31.jan 23,882 3,179,117 424 bytes
01.feb 25,397 3,477,014 424 bytes

Table 5.13: Calculations on comparing baseline files for the cooking event for
Nedis

Baseline Packets Bytes Biggest packet
06.mar 13,014 1,413,457 421 bytes
07.mar 18,634 2,001,978 421 bytes
08.mar 18,643 2,019,872 421 bytes
09.mar 21,885 2,606,363 424 bytes
10.mar 17,956 2,326,898 424 bytes
11.mar 18,380 2,126,816 485 bytes
12.mar 10,728 1,312,915 421 bytes
13.mar 15,815 1,968,872 424 bytes
14.mar 15,926 1,878,449 341 bytes
15.mar 19,260 2,524,793 458 bytes
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Table 5.14: Traffic comparison between the cooking event and baseline for Nedis

Type Packets Bytes Biggest packet

Average
Cooking 24,633 3,412,097 436 bytes
Baseline 17,024 2,018,041 424 bytes

Standard deviation
Cooking 1,595 281,705 26 bytes
Baseline 3,248 420,982 36 bytes

Figure 5.23: Graphical presentation of event and baseline cooking calculations
with packets and bytes, including average value extracted from Table 5.14 for
Nedis

The graphical presentation of the traffic patterns during events are presented
in Figure 5.24 and 5.25 for packets and in Figure 5.26 and 5.27 for bytes. In these
figures, the corresponding graphs from the baseline traffic is also included to look
for traffic changes during the events. In these figures, the graphs for events are
placed on the left side of the figure and framed in red, while the baseline graphs
are placed on the right side and framed in blue. The event graphs are marked with
red when the event was ongoing. The minimum and maximum values on the x-
and y-axis are equal for all graphs within the same figure.
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Figure 5.24: Graphs of traffic flows from the cooking events measured in packets
with event graphs framed in red and baseline graphs framed in blue for Nedis.
Event times are marked in red on the event graphs.
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Figure 5.25: Continuing from Figure 5.24

Figure 5.26: Remaining graphs from Figure 5.27
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Figure 5.27: Graphs of traffic flows from the cooking events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Nedis.
Event times are marked in red on the event graphs.
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Comparing Table 5.12 and 5.13 shows that overall during the events, more
packets and bytes are sent than during standard baseline traffic. While for the
biggest packet during the cooking-time, the values are around 400 bytes and do
not differ from cooking in Table 5.12 to baseline in 5.13. The same is shown in
Table 5.14 where the average for both packets and bytes are higher during events.
This is also visible in Figure 5.23 where all the blue marked bars are lower than
the red marked graphs for events with one exception in packets.

Table 5.14 shows that the average value for the baseline is lower than the
standard deviation for the cooking events for both packets and bytes. However,
the traffic flows in Figure 5.24, 5.25, 5.26 and 5.27 shows that the traffic pattern
before the event is not comparable to the baseline traffic as it shows a higher
number of packets and bytes. This means that the difference in calculations are
not necessary linked to specific event triggering, but rather other changes in the
environment from the days the events and the baseline were captured.

Figure 5.24, 5.25, 5.26 and 5.27 shows that there are no significant traffic
changes during the time of the event triggering that is visible for all executions of
the event. It is therefore not possible to identify cooking through looking at either
the calculations or the traffic flows for Nedis.
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5.3 Test Case 2: Showering

This chapter presents the results and analysis for Test Case 2: Showering. The first
subsection describes the general evaluation which is applicable for all the devices
and the next three subsections presents the analysis and results for each of the
devices separately.

5.3.1 General

The showering event has been conducted 10 times and Table 5.15 presents the 10
different dates and exact times for when the event was ongoing.

Table 5.15: Date and time for Test Case 2: Showering

08.01 09.01 11.01 16.01 18.01 19.01 25.01 30.01 31.01 01.02
Started showering 19:59 20:14 20:01 20:12 20:02 20:00 20:03 20:00 20:01 20:00
Finished showering 20:14 20:34 20:17 20:31 20:19 20:16 20:19 20:18 20:17 20:16

To be able to compare the events to each other and the standard baseline
traffic, all the pcaps created for this event will have the same start and finish time.
Graphically, each event are marked at what time the actual event was ongoing to
separate from before and after the event. When deciding which start and end time
for these events, the earliest start and latest finish are used. These times are then
added 30 minutes before and after to cover at least 30 minutes before and after
each event. This gives the following values to use for further analysis:

• Earliest showering start: 19:59
• Latest showering finished: 20:34
• Packet capture files start: 19:29
• Packet capture files end: 21:04

These times results in the following filters added to create the pcaps for each
event:

• frame.time >= "Month Date, Year 19:29:00" && frame.time <= "Month
Date, Year 21:04:00"
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5.3.2 Netatmo

For Netatmo, the 10 events for showering are presented both graphically in fig-
ures and numerically in tables. Table 5.16 shows packets, bytes and the biggest
packet in each of the packet captures for the events. Table 5.17 presents the same
calculations, but for the corresponding baseline pcaps. In Table 5.18, the average
and standard deviation values from Table 5.16 and 5.17 are compared to each
other. In context of these three tables, two graphical presentations of total bytes
and packets including the average values for events and baseline are presented to
compare events to the baseline traffic in Figure 5.28.

Table 5.16: Calculations on showering events for Netatmo

Dates Packets Bytes Biggest packet
08.jan 870 118,119 407 bytes
09.jan 816 112,821 407 bytes
11.jan 1,075 145,838 407 bytes
16.jan 667 90,370 407 bytes
18.jan 802 109,285 407 bytes
19.jan 636 85,860 407 bytes
25.jan 897 120,580 134 bytes
30.jan 862 116,726 134 bytes
31.jan 704 94,140 136 bytes
01.feb 694 94,053 407 bytes

Table 5.17: Calculations on comparing baseline files for the showering event for
Netatmo

Baseline Packets Bytes Biggest packet
06.mar 614 81,600 136 bytes
07.mar 710 94,869 407 bytes
08.mar 780 94,892 160 bytes
09.mar 884 118,116 134 bytes
10.mar 594 79,258 136 bytes
11.mar 615 82,664 407 bytes
12.mar 857 116,703 407 bytes
13.mar 514 68,470 136 bytes
14.mar 808 108,120 407 bytes
15.mar 731 97,682 134 bytes
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Table 5.18: Traffic comparison between the showering event and baseline for
Netatmo

Type Packets Bytes Biggest packet

Average
Showering 802 108,779 325 bytes
Baseline 711 94,237 246 bytes

Standard deviation
Showering 133 18,181 132 bytes
Baseline 123 16,541 138 bytes

Figure 5.28: Graphical presentation of event and baseline shower calculations
with packets and bytes, including average value extracted from Table 5.18 for
Netatmo

Figure 5.29 and 5.30 gives the graphical presentation of the traffic flow during
the showering times with the total number of packets sent and received on the
y-axis. Figure 5.31 and 5.32 shows the same, but measured in bytes on the y-axis.
The figures presenting the traffic flow all have the same minimum and maximum
values on the y- and x-axis and event graphs are placed on the left side of the
figure with a red frame, while baseline graphs are placed on the right side of the
figure with a blue frame. The timings for when the event was ongoing are marked
with a red area on the event graphs to look for changes in traffic pattern at that
specific time.
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Figure 5.29: Graphs of traffic flows from the showering events measured in pack-
ets with event graphs framed in red and baseline graphs framed in blue for Net-
atmo. Event times are marked in red on the event graphs.
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Figure 5.30: Continuing from Figure 5.29

Figure 5.31: Remaining graphs from Figure 5.32
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Figure 5.32: Graphs of traffic flows from the showering events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Netatmo.
Event times are marked in red on the event graphs.
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The number of packets and bytes are relatively similar for both events and
baseline traffic which is shown in Figure 5.28. For events, packets varies from 636
to 1,075 and for the baseline it varies from 514 to 884. For bytes the events varies
from 85,860 to 145,838 and for the baseline it varies from 68,470 to 118,116.
This results in an average value a bit lower for the baseline traffic, but not enough
to see a significant change in amount of packets or bytes during the event. Even
though the average baseline traffic is less, several of the baseline days exceeds
both packets and bytes for some of the event traffic captures. For biggest packet
sent and received, both event and baseline traffic varies between around 150 bytes
to 407 bytes.

Table 5.18 shows that the average value for the baseline is within the range of
standard deviation for both packets and bytes. It is therefore not possible to use
these values to identify showering on Netatmo.

The graphs of the traffic flow show no distinct difference for packets in Fig-
ure 5.29 and 5.30. For bytes in Figure 5.31 and 5.32 several of the event graphs,
marked in red, have higher spikes than the baseline graphs marked in blue. How-
ever, two things challenges the difference: the first is that a few of the baseline
graphs also have spikes and a few of the event graphs are missing the spikes. The
other one is that the spikes also occurs before the event has started and may not
be associated to an event triggering. Therefore, it is not possible to see specific
traffic changes when showering is ongoing for Netatmo.
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5.3.3 Mill

The results from the showering events for Mill are presented in this subsection.
Table 5.19 presents the total amount of packets and bytes sent and received and
the biggest packet from each packet capture for the events. The same numbers
are presented in Table 5.20 for the corresponding baseline captures. Table 5.21
compares the average and standard deviation values for events and baseline. The
total number of packets and bytes are also presented graphically in Figure 5.33,
including the average values. Events and baseline are included in the same figure
to easier compare the values.

Table 5.19: Calculations on showering events for Mill

Dates Packets Bytes Biggest packet
08.jan 8,400 1,112,718 1353 bytes
09.jan 7,775 970,700 456 bytes
11.jan 9,819 1,166,768 456 bytes
16.jan 8,800 1,107,872 1,421 bytes
18.jan 9,339 1,162,327 834 bytes
19.jan 8,938 1,110,851 1,353 bytes
25.jan 9,690 1,136,156 1,593 bytes
30.jan 7,838 909,992 456 bytes
31.jan 7,930 995,619 456 bytes
01.feb 7,787 905,808 456 bytes

Table 5.20: Calculations on comparing baseline files for the showering event for
Mill

Baseline Packets Bytes Biggest packet
06.mar 6,308 623,993 456 bytes
07.mar 5,968 675,359 426 bytes
08.mar 8,920 899,908 426 bytes
09.mar 9,241 922,721 456 bytes
10.mar 6,789 670,474 456 bytes
11.mar 6,750 686,700 1,337 bytes
12.mar 10,151 1,006,385 456 bytes
13.mar 7,032 794,714 456 bytes
14.mar 7,290 839,659 456 bytes
15.mar 7,927 809,616 426 bytes
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Table 5.21: Traffic comparison between the showering event and baseline for
Mill

Type Packets Bytes Biggest packet

Average
Showering 8,632 1,057,862 883 bytes
Baseline 7,638 792,953 535 bytes

Standard deviation
Showering 801 102,055 489 bytes
Baseline 1,381 126,913 282 bytes

Figure 5.33: Graphical presentation of event and baseline shower calculations
with packets and bytes, including average value extracted from Table 5.21 for
Mill

Figure 5.34 and 5.35 show the traffic flow during the events, placed on the
left side of the figure and framed in red, and the baseline placed on the right side
of the figure and framed in blue, measured in number of packets. Figure 5.36 and
5.37 display the same, but measured in number of bytes. The timings for when
the event was ongoing are marked red on the event graphs. All graphs within the
same figure have the same minimum and maximum values for the x- and y-axis.
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Figure 5.34: Graphs of traffic flows from the showering events measured in pack-
ets with event graphs framed in red and baseline graphs framed in blue for Mill.
Event times are marked in red on the event graphs.
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Figure 5.35: Continuing from Figure 5.34

Figure 5.36: Remaining graphs from Figure 5.37
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Figure 5.37: Graphs of traffic flows from the showering events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Mill. Event
times are marked in red on the event graphs.
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Table 5.19 shows that the number of packets varies from 7,775 to 9,819 pack-
ets during the events compared to the baseline which varies from 5,968 to 10,151
packets shown in Table 5.20. The baseline traffic has more variation than the event
traffic. This also results in a higher standard deviation for the baseline shown in
Table 5.21. For bytes, the same is shown, but the average value for the baseline
is a lot smaller than for the events. As Table 5.20 shows, the bytes varies from
623,993 to 1,006,385 bytes, and in Table 5.19 the bytes varies from 909,992 to
1,166,768, which means that the average value for events are higher than for the
baseline. Although the average value is higher, some of the baseline event days
also measure similar amounts of bytes sent and received even though an event is
not ongoing. This is also confirmed in Figure 5.33 where bytes for baseline are
much lower than for events, but there are also events that are lower than baseline
days.

The biggest packet is mainly 456 bytes both during the showering event and
the corresponding baseline with some variations of bigger packets sent for both
cases. This results in no significant difference during an event.

Table 5.11 shows that for both packets and bytes, the average value of the
baseline is smaller than the standard deviation from the events. However, Figure
5.34, 5.35, 5.36 and 5.37 shows that that traffic patterns before the events are
not comparable to the traffic patterns of the corresponding baseline graphs and
therefore it is not the specific event triggering that is causing the differences in
the average values for the bytes. This results in that the differences in calculations
cannot be used to distinguish showering from standard traffic.

In the figures with packets, in Figure 5.34 and 5.35, and bytes, in Figure 5.36
and 5.37 no distinct differences are visible in the graphical representation of the
traffic flows. There are spikes with more traffic sent before the events and during
the event that are similar and does not identify the event executions. Neither from
the calculations, nor the graphs for showering event for Mill it is possible to see a
clear difference in traffic patterns from when the user is showering or not.
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5.3.4 Nedis

This subsection presents the results and analysis for Nedis during the shower-
ing event. The total amount of packets, bytes and the biggest packet during the
packet captures are presented in Table 5.22 for the events and in Table 5.23 for
the corresponding baseline captures. Table 5.24 compares the average and stand-
ard deviation values calculated for the events and baseline. Figure 5.38 shows a
graphical presentation of the total number of bytes and packets during the events
and baseline in the same figure with average values included.

Table 5.22: Calculations on showering events for Nedis

Dates Packets Bytes Biggest packet
08.jan 28,069 3,720,194 485 bytes
09.jan 23,156 3,395,004 424 bytes
11.jan 23,368 3,025,569 424 bytes
16.jan 21,026 2,598,912 485 bytes
18.jan 18,385 2,091,914 458 bytes
19.jan 25,416 3,258,851 421 bytes
25.jan 25,092 2,459,011 458 bytes
30.jan 22,415 3,302,325 485 bytes
31.jan 18,393 2,364,979 424 bytes
01.feb 20,306 2,461,409 485 bytes

Table 5.23: Calculations on comparing baseline files for the showering event for
Nedis

Baseline Packets Bytes Biggest packet
06.mar 12,495 1,534,872 522 bytes
07.mar 18,342 2,483,719 522 bytes
08.mar 18,318 2,116,146 424 bytes
09.mar 14,639 1,865,223 522 bytes
10.mar 9,893 1,434,033 522 bytes
11.mar 6,092 779,215 426 bytes
12.mar 10,736 1,273,551 426 bytes
13.mar 13,478 1,649,747 424 bytes
14.mar 14,239 1,668,084 522 bytes
15.mar 22,383 2,710,729 522 bytes
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Table 5.24: Traffic comparison between the showering event and baseline for
Nedis

Type Packets Bytes Biggest packet

Average
Showering 22,563 2,867,817 455 bytes
Baseline 14,062 1,752,432 483 bytes

Standard deviation
Showering 3,130 540,631 29 bytes
Baseline 4,723 571,269 50 bytes

Figure 5.38: Graphical presentation of event and baseline shower calculations
with packets and bytes, including average value extracted from Table 5.24 for
Nedis

In Figure 5.39 and 5.40, a graphical presentation of the traffic flow measured
in number of packets is displayed. The same view is presented in Figure 5.41
and 5.42 with number of bytes as the y-axis. These figures have the event graphs
placed on the left side of the figure framed in red, while the baseline graphs are
placed on the right side of the figure framed in blue to compare to each other. The
time of the events is marked red on all of the event graphs. The x- and y-axis have
the same minimum and maximum values for all graphs within the same figure.
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Figure 5.39: Graphs of traffic flows from the showering events measured in pack-
ets with event graphs framed in red and baseline graphs framed in blue for Nedis.
Event times are marked in red on the event graphs.
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Figure 5.40: Continuing from Figure 5.39

Figure 5.41: Remaining graphs from Figure 5.42
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Figure 5.42: Graphs of traffic flows from the showering events measured in bytes
with event graphs framed in red and baseline graphs framed in blue for Nedis.
Event times are marked in red on the event graphs.
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Comparing the values for both packets and bytes in Table 5.22 and 5.23 show
that during the events, most of the values are a lot higher than for the baseline
calculations. For event, the packets varies from 18,385 to 28,069 and bytes from
2,091,914 to 3,720,194 bytes. However, there are values from the baseline that
matches the range of the event values, such as for 7th, 8th and 15th of March
where the values for packets are over 18,000 and 2,000,000 for bytes. For the
biggest packet sent, the baseline has a higher overall value compared to the event
values, where baseline are mostly around 500 bytes and events are lower than 500
bytes for every day. The average values also show that the event values are higher
than the baseline values for both packets and bytes. The difference in both average
values and overall for events and baseline are significantly shown in Figure 5.38
where both packets and bytes are much lower for baseline than events.

Both in Table 5.24 and in Figure 5.38 a clear difference between showering
and the baseline is visible. The average value for the baseline is much smaller than
the standard deviation for the events for both packets and bytes. To look into if this
difference is related to the event triggered, Figure 5.39, 5.40, 5.41 and 5.42 will be
evaluated. In these figures it is very visible that the differences in calculations are
not connected to the event triggered, but rather holds a higher number of packets
and bytes before the event compared to the standard baseline traffic. Therefore,
these calculations are not comparable and will not identify when showering is
ongoing in the environment for Nedis.

Looking at the graphs in Figure 5.39 and 5.40 the difference in number of
packets are visible. However, it does not look like the number of packets changes
when the shower event starts, but are just higher during several of those days. In
these figures, one can also see that some of the baseline days looks similar as the
event calculations in the tables. For bytes in Figure 5.41 and 5.42, the results give
the same result as for packets. The same result is found here for Nedis as for the
event tests on cooking. The calculations under the event looks different than for
standard traffic in the baseline, but the graphs over the traffic flows show that the
differences are not related to when the event is triggered, but rather higher before
and after the event. Therefore, it is not possible to see traffic pattern changes when
showering is ongoing for Nedis.
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5.4 Test Case 3: Window Open

This chapter presents the results and analysis on Test Case 3: Window Open. A
general section applicable for all devices is presented before the results. The res-
ults from the test is presented separately in subsections for each device.

5.4.1 General

Test Case 3: Window Open has been conducted 10 times over the course of 10
different days. The days and timings for the events are presented in Table 5.25.

Table 5.25: Date and time for Test Case 3: Window Open

08.01 09.01 11.01 16.01 18.01 19.01 25.01 30.01 31.01 01.02
Started window open 23:00 23:00 22:50 23:10 23:15 23:02 22:59 23:00 22:59 22:59
Finished window open 07:00 07:00 07:00 06:56 07:09 06:59 06:55 06:56 07:00 06:59

To be able to compare the events to standby traffic, the baseline capture has
been used with the same timings as for the actual events. To easier compare the
events with each other and against the baseline, all packet captures have been
filtered with the same start and finish time. Due to time limitations, the baseline
only includes 9 full nights and therefore only 9 corresponding baseline packet
captures have been made and used for comparison in this section. To ensure that
all events have at least 30 minutes before and after the event was ongoing, the
earliest time for starting and the latest time for finishing the event has been used
to calculate the start and finish times for the files. Then 30 minutes are added to
these times to ensure that each event has at least 30 minutes before and after to
see traffic changes. The timings are calculated from Table 5.25 and presented in
the list beneath:

• Earliest window open start: 22:50
• Latest window open finished: 07:09
• Packet capture files start: 22:20
• Packet capture files end: 07:39

These times results in the following filters added to create the pcaps for each
event:

• frame.time >= "Month Date, Year 22:20:00" && frame.time <= "Month
Date, Year 07:39:00"
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5.4.2 Netatmo

For the window open event for Netatmo, calculations are presented in Table 5.26
with number of packets and bytes and the biggest packet during the capture. The
same calculations on the comparing baseline files to be used in this test are presen-
ted in Table 5.27. The average values and standard deviation are compared for
the event and baseline in Table 5.28. The calculations are also shown graphic-
ally in Figure 5.43 with number of packets and bytes from Tables 5.26 and 5.27
combined with their average value.

Table 5.26: Calculations on window open events for Netatmo

Dates Packets Bytes Biggest packet
08.jan 4,716 641,245 407 bytes
09.jan 4,026 544,344 407 bytes
11.jan 5,149 697,920 407 bytes
16.jan 4,493 608,029 407 bytes
18.jan 4,165 565,885 407 bytes
19.jan 3,877 527,113 407 bytes
25.jan 4,460 605,296 407 bytes
30.jan 3,745 509,093 407 bytes
31.jan 3,494 468,922 407 bytes
01.feb 3,858 522,632 407 bytes

Table 5.27: Calculations on comparing baseline files for the window open event
for Netatmo

Baseline Packets Bytes Biggest packet
06.mar 3,447 460,531 387 bytes
07.mar 4,356 591,234 407 bytes
08.mar 4,373 587,975 407 bytes
09.mar 4,513 609,590 407 bytes
10.mar 4,637 631,232 407 bytes
11.mar 4,010 545,391 407 bytes
12.mar 3,815 520,289 407 bytes
13.mar 3,571 478,194 407 bytes
14.mar 3,716 503,515 407 bytes
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Table 5.28: Traffic comparison between the window open event and baseline for
Netatmo

Type Packets Bytes Biggest packet

Average
Window open 4,198 569,048 407 bytes
Baseline 4,049 547,550 405 bytes

Standard deviation
Window open 503 68,966 0 bytes
Baseline 436 60,687 7 bytes

Figure 5.43: Graphical presentation of event and baseline window open calcula-
tions with packets and bytes, including average value extracted from Table 5.28
for Netatmo

Graphs over traffic patterns are presented in four different figures, for packets
in Figure 5.44 and 5.45 and for bytes in Figure 5.46 and 5.47. The graphs within
the same figure have the same minimum and maximum values on the x- and y-
axis. For all the figures, the event graphs are placed on the left side framed in
red and have a red area marked on the graph which shows when the event was
ongoing. The corresponding baseline graphs are placed on the right side of the
figure and framed in blue to compare.
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Figure 5.44: Graphs of traffic flows from the window open events measured in
packets with event graphs framed in red and baseline graphs framed in blue for
Netatmo. Event times are marked in red on the event graphs.
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Figure 5.45: Continuing from Figure 5.44

Figure 5.46: Remaining graphs from Figure 5.47
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Figure 5.47: Graphs of traffic flows from the window open events measured in
bytes with event graphs framed in red and baseline graphs framed in blue for
Netatmo. Event times are marked in red on the event graphs.
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Comparing Table 5.26 for events and Table 5.27 for baseline files, shows that
the different columns are similar. The total number of packets stays around 4,000
packets for both events and baseline. For bytes, the values ranges from around
500,000 to around 700,000. This is also easily visible in Figure 5.43 where total
number of packets and bytes are very similar. The biggest packet for events and
the baseline is 407 bytes, with only one exception of 387 bytes for one of the
baseline days. This value can therefore not be used to identify a window open in
the event.

Table 5.28 and Figure 5.43 shows that the values for window open and baseline
are very similar. The average value for baseline packets and bytes are inside of
the standard deviation for the window open. This means that it is not possible to
identify if a user has a window open using these calculations.

Looking at the graphs in Figure 5.44 and 5.45, there are no significant differ-
ences in the graphs for the events compared to the baseline on the right side. For
both events and baseline graphs, the same traffic pattern is found. For bytes in
Figure 5.46 and 5.47, the events varies with some nights having many and high
spikes, and other nights with smaller and fewer spikes. The same pattern is found
for the baseline graphs marked in blue. This shows that it is not possible to dis-
tinguish whether the window is open or not by looking at the traffic patterns in a
numerical or graphical way from the device Netatmo.
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5.4.3 Mill

Table 5.29 presents the number of packets and bytes and the biggest packet dur-
ing the capturing of the window open event for Mill. The same calculations are
included for the comparing baseline files in Table 5.30. To compare average and
standard deviation values from the event, Table 5.31 is shown. The calculations
are also presented graphically in Figure 5.48 where number of packets and bytes
for both the event dates and comparing baseline dates are included together with
their average value extracted from Table 5.31.

Table 5.29: Calculations on window open events for Mill

Dates Packets Bytes Biggest packet
08.jan 49,204 6,159,905 1,353 bytes
09.jan 49,515 6,055,179 1,545 bytes
11.jan 45,680 4,998,933 1,515 bytes
16.jan 45,559 4,881,294 1,353 bytes
18.jan 56,021 7,122,722 1,593 bytes
19.jan 40,090 4,736,715 1,573 bytes
25.jan 52,728 6,166,428 1,421 bytes
30.jan 44,015 5,089,165 1,589 bytes
31.jan 40,616 4,501,888 1,353 bytes
01.feb 37,963 4,030,897 456 bytes

Table 5.30: Calculations on comparing baseline files for the window open event
for Mill

Baseline Packets Bytes Biggest packet
06.mar 42,541 4,463,880 456 bytes
07.mar 44,018 4,634,112 800 bytes
08.mar 51,730 5,307,249 1,583 bytes
09.mar 56,022 5,568,551 1,343 bytes
10.mar 57,262 6,237,897 1,593 bytes
11.mar 49,145 4,959,292 1,593 bytes
12.mar 44,181 4,523,140 1,583 bytes
13.mar 49,628 5,238,854 456 bytes
14.mar 42,318 4,449,260 1,589 bytes
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Table 5.31: Traffic comparison between the window open event and baseline for
Mill

Type Packets Bytes Biggest packet

Average
Window open 46,139 5,374,313 1,353 bytes
Baseline 48,538 5,042,471 1,222 bytes

Standard deviation
Window open 5,782 954,686 338 bytes
Baseline 5,678 606,684 505 bytes

Figure 5.48: Graphical presentation of event and baseline window open calcula-
tions with packets and bytes, including average value extracted from Table 5.31
for Mill

The packet capturings from the window open event for Mill is presented with
traffic flows in four different figures. Figure 5.49 and 5.50 shows the traffic pat-
terns for packets and Figure 5.51 and 5.52 for bytes. The event graphs are marked
in red and placed on the left side of the figures, with a red marked area on the
graphs to show when the event was ongoing. The comparing baseline graphs are
placed on the right side of the figures and framed in blue. All graphs in the same
figure have the same minimum and maximum value for the x- and y-axis.



Chapter 5: Evaluation and Analysis Results 91

Figure 5.49: Graphs of traffic flows from the window open events measured in
packets with event graphs framed in red and baseline graphs framed in blue for
Mill. Event times are marked in red on the event graphs.
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Figure 5.50: Continuing from Figure 5.49

Figure 5.51: Remaining graphs from Figure 5.52
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Figure 5.52: Graphs of traffic flows from the window open events measured in
bytes with event graphs framed in red and baseline graphs framed in blue for
Mill. Event times are marked in red on the event graphs.
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Comparing Table 5.29 and 5.30 shows that the number of packets sent during
the events and baseline do not show a significant difference. The packets both
varies from around 40,000 to 60,000 when an event is ongoing, in Table 5.29,
to when an event is not triggered in Table 5.30. The same is shown in bytes as
it varies from 4,000,000 to 7,000,000 for both baseline and window open. The
biggest packet sent is also similar in the event and baseline capturings where most
values are over 1,000 bytes, but both cases have packets that are also under that,
such as 456 bytes for events and 456 and 800 bytes for the baseline.

In Table 5.29, the average value for packets and bytes for the baseline is not
outside of the standard deviation for the window open event. The fact that the
calculations are very similar is also shown in Figure 5.48. The result shows that
these calculations cannot be used to identify if a user has a window open in the
environment through the AQM Mill.

The traffic flows with packets in Figure 5.49 and 5.50 do not show a significant
difference between the events on the left side, compared to the baseline packets on
the right side of the figure. Both cases display graphs with variations that reaches
approximately the same level of packets. It is not possible to see changes in the
traffic from the red marked area under the events compared to the timings when
events are not ongoing. The same result is found for bytes in Figure 5.51 and 5.52.
As the results of the graphs from both the baseline and the event looks familiar,
there are no traffic patterns changes which can identify that a window is open in
the environment.
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5.4.4 Nedis

For the window open event for Nedis, Table 5.32 presents calculations for the
events, while Table 5.33 presents calculations for the comparing baseline files.
Both tables includes the number of packets and bytes sent and the biggest packet
captured during the event. In Table 5.34 the average and standard deviation value
for the event and comparing baseline are presented. The values are also presen-
ted graphically in Figure 5.53 for number of packets and bytes including average
values.

Table 5.32: Calculations on window open events for Nedis

Dates Packets Bytes Biggest packet
08.jan 131,961 18,088,388 424 bytes
09.jan 121,273 15,204,877 424 bytes
11.jan 94,682 9,432,611 421 bytes
16.jan 83,344 8,875,795 424 bytes
18.jan 94,106 10,706,230 458 bytes
19.jan 97,324 12,565,538 485 bytes
25.jan 88,413 9,470,205 421 bytes
30.jan 59,874 6,939,737 424 bytes
31.jan 96,309 13,204,218 424 bytes
01.feb 101,872 12,988,077 485 bytes

Table 5.33: Calculations on comparing baseline files for the window open event
for Nedis

Baseline Packets Bytes Biggest packet
06.mar 77,759 8,062,010 426 bytes
07.mar 105,395 12,437,964 426 bytes
08.mar 109,084 13,759,303 424 bytes
09.mar 111,832 15,941,453 458 bytes
10.mar 115,626 15,852,737 485 bytes
11.mar 58,325 7,096,260 426 bytes
12.mar 89,493 11,740,679 485 bytes
13.mar 89,958 11,137,820 424 bytes
14.mar 91,427 11,865,346 485 bytes
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Table 5.34: Traffic comparison between the window open event and baseline for
Nedis

Type Packets Bytes Biggest packet

Average
Window open 96,916 11,767,368 439 bytes
Baseline 94,322 11,988,175 449 bytes

Standard deviation
Window open 19,686 3,334,883 27 bytes
Baseline 18,445 3,042,357 29 bytes

Figure 5.53: Graphical presentation of event and baseline window open calcula-
tions with packets and bytes, including average value extracted from Table 5.34
for Nedis

The event is also shown graphically in four different figures. Figure 5.54 and
5.55 shows traffic flows with packets and Figure 5.56 and 5.57 for bytes. All graphs
within the same figure have equal minimum and maximum values for the x- and
y-axis. The event graphs are placed on the left side of the figure and marked in
red, while the comparing baseline graphs are placed on the right side of the figure
and marked in blue. The event graphs also have a red area marked on the graphs
for when the event was ongoing.
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Figure 5.54: Graphs of traffic flows from the window open events measured in
packets with event graphs framed in red and baseline graphs framed in blue for
Nedis. Event times are marked in red on the event graphs.
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Figure 5.55: Continuing from Figure 5.54

Figure 5.56: Remaining graphs from Figure 5.57
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Figure 5.57: Graphs of traffic flows from the window open events measured in
packets with event graphs framed in red and baseline graphs framed in blue for
Nedis. Event times are marked in red on the event graphs.
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Comparing Table 5.32 for events and 5.33 for baseline calculations shows that
both cases varies a lot in number of packets and bytes during the traffic capture.
For both events and baseline, the number of packets varies from around 50,000
to over 100,000 packets, which is a big difference. The same applies to bytes
where both varies from around 7,000,000 to over 15,000,000 bytes. There are
no significant differences in the biggest packet during the capture, where all days
within both cases are between 400 and 500 bytes.

Even though the number of packets and bytes varies much for each event and
baseline day, they vary almost equally as the average value shown in Table 5.34
are almost the same. The average value for both packets and bytes for the baseline
is not outside of the standard deviation for the window open events and cannot be
used to distinguish if the window is open or not in the environment. The graphs
in Figure 5.53 also demonstrates how much the packets vary, but still the average
values are very close to each other.

For the packet traffic flows presented in Figure 5.54 and 5.55 the event graphs
do have some more spikes overall compared to the baseline graphs. However, 4
out of 9 of the baseline days also have spikes that are similar to the event days
where there are only one spike included. The bytes traffic flows presented in Fig-
ure 5.56 and 5.57 shows well the variations that were visible in the calculations
presented. Both on the left side with events and on the right side of the figure
with the baseline traffic there are variations easily visible. Therefore, there are no
significant differences in events and baseline traffic as the variations are shown in
both cases. This results in that it is not possible to identify if a window is open in
the environment compared to standard traffic which is not triggered by the same
event.
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5.5 Test Case 4: Weekends

This chapter presents the results and analysis for Test Case 4: Weekends. First, a
section with general results which applies to all the devices are presented. After-
wards, the results for each of the devices are presented separately in their own
subsection.

5.5.1 General

Test Case 4: Weekends is tested over the course of 14 different weekends. 7 week-
ends when the environment was occupied, meaning that the user was at home,
and 7 when the environment were not occupied, meaning that user was not home
during this time. The different dates are described in Table 5.35.

Table 5.35: Dates for Test Case 4: Weekends

Dates

Weekends at home

13.01.2023-15.01.2023
27.01.2023-29.01.2023
03.02.2023-05.02.2023
17.02.2023-19.02.2023
10.03.2023-12.03.2023
28.03.2023-30.03.2023
31.03.2023-01.04.2023

Weekends gone

23.12.2022-25.12.2022
30.12.2022-01.01.2023
20.01.2023-22.01.2023
10.02.2023-12.02.2023
24.02.2023-26.02.2023
03.03.2023-05.03.2023
17.03.2023-19.03.2023

The times for weekends at home and gone were from 16:00 at Friday to
22:00 at Sunday. In a weekend were the home was occupied, it was variably oc-
cupied. Some weekends a lot of time were spent in the home and other weekends
it was just occupied during evenings or daytime, but every occupied weekend
were spent sleeping at night in the home. One weekend, 28.03.2023-30.03.2023,
were tested from Tuesday to Thursday, but are treated as Tuesday=Friday and
Thursday=Sunday.

This results in the following filter used on the pcaps to created the files:

• frame.time >= "Month Date, Year 16:00:00" && frame.time <= "Month
Date, Year 22:00:00"
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5.5.2 Netatmo

For the weekend test for Netatmo, calculations are listed in Table 5.36, for week-
ends at home, and Table 5.37, for weekends gone. The different values are total
number of packets and bytes during the packet capturing and the biggest packet
sent in bytes, biggest src, and the biggest packet size in bytes received, biggest dst.
Table 5.38 compares the average and Standard Deviation (SD) for all weekends.

Table 5.36: Calculations for weekends at home for Netatmo

Date Packets Bytes Biggest src Biggest dst
13.01-15.01 31,640 4,285,664 407 bytes 418 bytes
27.01-29.01 25,465 3,436,632 407 bytes 154 bytes
03.02-05.02 24,887 3,379,806 444 bytes 396 bytes
17.02-19.02 23,654 3,202,102 1,130 bytes 154 bytes
10.03-12.03 24,881 3,372,230 407 bytes 136 bytes
28.03-30.03 27,555 3,743,121 407 bytes 154 bytes
31.03-02.04 28,445 3,852,003 407 bytes 418 bytes

Table 5.37: Calculations for weekends gone for Netatmo

Date Packets Bytes Biggest src Biggest dst
23.12-25.12 22,367 2,987,324 134 bytes 136 bytes
30.12-01.01 22,553 3,012,868 134 bytes 136 bytes
20.01-22.01 24,631 3,288,842 134 bytes 154 bytes
10.02-12.02 20,320 2,715,486 134 bytes 136 bytes
24.02-26.02 21,332 2,849,186 134 bytes 136 bytes
03.03-05.03 19,023 2,538,937 134 bytes 136 bytes
17.03-19.03 23,905 3,191,924 134 bytes 136 bytes

Table 5.38: Traffic comparison of weekend values from Table 5.36 and 5.37

Packets Bytes Biggest src Biggest dst

Average
Home 26,647 3,610,223 516 bytes 261 bytes
Gone 22,019 2,940,652 134 bytes 139 bytes

SD
Home 2,756 373,892 271 bytes 140 bytes
Gone 1,963 262,109 0 bytes 7 bytes

Graphs of packets are presented in Figure 5.58 and bytes in Figure 5.59. In
these figures, the weekends at home have a green frame and placed on the left
side, while the weekends gone have an orange frame and placed on the right side
of the figure. All graphs in the same figure have the same maximum value on the
y-axis and have the same timings on the x-axis to be easily comparable.
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Figure 5.58: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of packets sent and received for
Netatmo during the weekends
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Figure 5.59: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of bytes sent and received for Net-
atmo during the weekends
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The calculations for weekends show a significant difference from when the
home is occupied to when its not. Comparing the total packets between Table
5.36 and 5.37 does not show a big difference with 26,647 packets at home to
22,019 packets when gone in average. However, in bytes the difference is more
significant. The difference of the average value for weekends at home compared
to gone is nearly 500,000 bytes, as shown in Table 5.38. It is also shown in the
table that the average value for packets and bytes for the weekends gone, are
smaller than the standard deviation than for the weekends at home. Therefore,
we can conclude that there are differences in the number of packets and bytes
sent when a user is home or not and can be used to infer private information.

Another difference is in the biggest packet sent in the biggest src column. For
the weekends gone, in Table 5.37, the biggest packet sent is only 134 bytes, while
for the weekends at home, in Table 5.36, the biggest packet sent is always much
larger than 134 bytes with a variation from 407 bytes to 1,130 bytes. Since the
biggest packet overall for gone weekend are 154 bytes, this will be used as a
reference to look at differences to packets sent while at home.

The graphs in Figure 5.58 with packets shows small differences in home and
gone activity. The home graphs have more spikes, but there are also some graphs
for gone that have small spikes and look similar to the home graphs. However,
for the graphs measured in bytes in Figure 5.59 it is a clear difference to when
the home is occupied or not. All the graphs for weekends at home, marked in
green, shows a very different traffic pattern than the graphs for the weekends
gone, marked in orange. This corresponds to the findings from the calculations in
Table 5.36 and 5.37.

Since it is possible to see a difference in biggest packet during weekends at
home and gone, it is also interesting to see if these bigger packets only occur a
few times during the weekend or if it is sending larger packets during the whole
weekend. Therefore, a new filter have been applied to the pcaps to see how many
packets during a weekend at home is actually bigger than the traffic sent on a
weekend gone. A filter filtering on only packets larger then 154 bytes have been
applied to the pcaps, and have the following format:

• frame.len > 154

Table 5.39 shows the results from the filtering. The percentage of packets that
are over 154 bytes in Table 5.39 is very small. A graphical view is therefore presen-
ted in Figure 5.60 to see if the amount is enough to see differences from the week-
ends gone which does not have any packets over 154 bytes. The graphs in Figure
5.60 shows that it is possible to see if a home is occupied by looking at the packet
sizes that are sent.
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Table 5.39: Amount of packets bigger than 154 bytes sent on weekends at home
for Netatmo

Dates Packets Percentage
13.01-15.01 251 0.8%
27.01-29.01 194 0.8%
03.02-05.02 271 1.1%
17.02-19.02 171 0.7%
10.03-12.03 224 0.9%
28.03-30.03 446 1.6%
31.03-02.04 275 1%
Average 262 0.99%
SD 90 0.30%

Figure 5.60: Traffic patterns for weekends at home with filtered with packets
over 154 bytes for Netatmo

The last evaluation on Netatmo weekend events is to compare the graphs for
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bytes in Figure 5.59 against values from the application of the device. This is
presented in Figure 5.61 and 5.62. The graphs are extracted from the app, Healthy
Home Coach, and the sensor values are in CO2. The y-axis, which are measured
in ppm are not equal for each of the graphs from the app, as this is not possible
to change manually in the app. The x-axis is given in time.

The Figures in 5.61 and 5.62 shows the same pattern as for the bytes from
the traffic captures on the left side of the figure. When the home is not occupied,
the CO2 value does not change much which the corresponding traffic flow in the
byte-graphs shows, and when the home is occupied, the CO2 levels varies a lot
and the corresponding traffic flow also varies a lot. It is therefore shown that it
is possible to infer whether a user is home or not by looking at the traffic pattern
both graphically and with calculations.
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Figure 5.61: Traffic flows in bytes for weekends at home, framed in green, and
gone, framed in orange, compared to CO2 values from the corresponding dates
in the application, Healthy Home Coach
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Figure 5.62: Remaining graphs from Figure 5.61
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5.5.3 Mill

For weekend testing with the device, Mill, Table 5.40 and 5.41 presents the calcu-
lations for the weekends at home and gone. The values presented are total number
of packets and bytes sent and received and the biggest packet sent, biggest src,
and received, biggest dst. Average and standard deviation values from the tables
are combined and compared in Table 5.42.

Table 5.40: Calculations for weekends at home for Mill

Date Packets Bytes Biggest src Biggest dst
13.01-15.01 285,543 33,269,620 456 bytes 1,593 bytes
27.01-29.01 240,434 29,179,764 456 bytes 1,593 bytes
03.02-05.02 223,095 28,543,539 456 bytes 1,593 bytes
17.02-19.02 237,964 25,637,948 456 bytes 1,583 bytes
10.03-12.03 295,395 31,161,679 456 bytes 1,593 bytes
28.03-30.03 342,001 39,951,155 456 bytes 421 bytes
31.03-02.04 275,456 30,155,191 456 bytes 421 bytes

Table 5.41: Calculations for weekends gone for Mill

Date Packets Bytes Biggest src Biggest dst
23.12-25.12 259,516 34,066,162 456 bytes 421 bytes
30.12-01.01 255,487 32,809,172 456 bytes 421 bytes
20.01-22.01 256,455 29,417,721 456 bytes 421 bytes
10.02-12.02 270,718 30,482,741 456 bytes 421 bytes
24.02-26.02 218,536 25,525,312 456 bytes 421 bytes
03.03-05.03 236,655 23,064,715 456 bytes 421 bytes
17.03-19.03 278,146 28,612,487 456 bytes 421 bytes

Table 5.42: Traffic comparison of weekend values from Table 5.40 and 5.41

Packets Bytes Biggest src Biggest dst

Average
Home 271,413 31,128,414 456 bytes 1,257 bytes
Gone 253,645 29,139,759 456 bytes 421 bytes

SD
Home 41,205 4,546,021 0 bytes 571 bytes
Gone 20,224 3,870,041 0 bytes 0 bytes

Graphs of traffic flows are presented in Figure 5.63 for packets and in Figure
5.64 for bytes. The graphs marked in green on the figures are weekends at home
and are placed on the left side of the figures, while the graphs marked in orange
on the figures are weekends gone and placed on the right side of the figures. The
graphs in the same figure all have the same maximum values for the y-axis to be
easily comparable.



Chapter 5: Evaluation and Analysis Results 111

Figure 5.63: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of packets sent and received for Mill
during the weekends
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Figure 5.64: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of bytes sent and received for Mill
during the weekends
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Looking at the values in Table 5.40 and 5.41, the total packets and bytes re-
mains the same whether or not it’s a weekend at home or gone. In regards of the
largest packets, all the weekends gone have the same size; 456 bytes for packets
sent from the device and 421 bytes for packets sent to the device. For the first 5
weekends at home it looks like there’s a pattern change that the device receives
much bigger packets than during a weekend gone with a size of 1,583 and 1,593
bytes, but as the last two weekends at home shows their biggest packet is actually
the same as for a weekend gone.

The values in Table 5.42 shows that the average value for packets and bytes for
the weekends gone is not smaller than the standard deviation for the weekends
at home. Therefore, these calculations cannot be used to infer whether a user is
home or gone.

The graphs in Figure 5.63 and 5.64 shows that the traffic pattern for weekend
at home or gone look the same. There are variations in the both weekend at home
or gone, but not a constant pattern which distinguishes weekends at home from
gone. This means that is it not possible to distinguish whether a user is home or
not by looking at the traffic patterns for Mill.
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5.5.4 Nedis

Table 5.43 and 5.44 shows the calculations for weekends at home and gone for
Nedis. The values included are total amount of packets, total number of bytes,
the biggest packet sent, biggest src, and the biggest packet received, biggest dst.
Table 5.45 compares the average and SD values for all the weekends at home and
weekends gone.

Table 5.43: Calculations for weekends at home for Nedis

Date Packets Bytes Biggest src Biggest dst
13.01-15.01 565,380 66,062,682 485 bytes 522 bytes
27.01-29.01 546,269 58,677,501 424 bytes 522 bytes
03.02-05.02 501,936 62,219,835 485 bytes 522 bytes
17.02-19.02 501,747 64,037,197 485 bytes 522 bytes
10.03-12.03 482,205 60,333,999 485 bytes 522 bytes
28.03-30.03 578,033 65,159,251 424 bytes 426 bytes
31.03-02.04 621,200 81,810,849 485 bytes 458 bytes

Table 5.44: Calculations for weekends gone for Nedis

Date Packets Bytes Biggest src Biggest dst
13.01-15.01 678,979 98,642,277 485 bytes 522 bytes
27.01-29.01 655,417 91,850,956 485 bytes 650 bytes
03.02-05.02 518,316 66,069,105 485 bytes 522 bytes
17.02-19.02 426,157 53,137,691 424 bytes 522 bytes
10.03-12.03 357,715 42,390,770 424 bytes 522 bytes
28.03-30.03 507,506 65,163,914 485 bytes 522 bytes
31.03-02.04 634,018 87,175,396 554 bytes 522 bytes

Table 5.45: Traffic comparison of weekend values from Table 5.44 and 5.43

Packets Bytes Biggest src Biggest dst

Average
Home 542,396 65,471,616 470 bytes 522 bytes
Gone 539,730 72,061,444 477 bytes 540 bytes

SD
Home 49,893 7,665,988 30 bytes 40 bytes
Gone 121,922 21,010,071 44 bytes 48 bytes

Figure 5.65 presents the graphs for weekend traffic measured in packets and
Figure 5.66 presents the graphs for weekend traffic measured in bytes. Both fig-
ures have the weekends at home placed on the left side of the figure framed in
green and the weekends gone placed on the right side of the figure framed in or-
ange. All graphs in the same figure have the same values for the x- and y-axis to
be comparable.
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Figure 5.65: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of packets sent and received for
Nedis during the weekends
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Figure 5.66: Traffic patterns for weekends at home, marked in green, and gone,
marked in orange, measured in total amount of bytes sent and received for Nedis
during the weekends
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The results in Table 5.43 and 5.44 shows that the amount of packets does
not change whether its a weekend at home or gone. Both tables show that there
are sent and received around 500,000 to 600,000 packets regardless if the user
is home or not. The amount of bytes varies a lot in both tables from 58,677,501
bytes to 81,810,849 bytes for the weekends at home and from 42,390,770 bytes
to 98,642,277 bytes for the weekends gone. Looking at the biggest packet re-
ceived and sent, shows very similar values for both weekends at home and gone.
Table 5.45 also gives the same results. Neither average values for packets, bytes or
biggest packets received or sent differs significantly between a weekend at home
or gone. The standard deviation for weekends gone are some higher than for
weekends at home which means that the values differ more from each other, but
since the average is similar and the values differ both higher and lower than the
average, it is still not possible to see any significant differences here.

The values in Table 5.45 shows that the average value for weekends gone are
within the range of the standard deviation for weekends at home for both packets
and bytes. This results that it is not possible to infer whether a user is home or
gone during a weekend using these calculations from the AQM Nedis.

The graphs in Figure 5.65 and 5.66 also shows that there are no significant
differences in the traffic pattern when a user is home or gone for the weekend.
The spikes at around 3 am, which were also explained in the baseline capture,
occurs at both home and gone. The results therefore shows that it is not possible
to discovery if a user is home or not by looking at the traffic patterns from Nedis.





Chapter 6

Discussion

This chapter discusses the research questions by using the results found in the
four test cases of this research. The questions will be answered sequentially. The
chapter also discusses the work done in this thesis, both what was done good
which lead to new knowledge and contributions, but also what could have been
done differently. Challenges and mistakes which lead to decisions being made are
explained here. Limitations to this research will also be included as this could have
affected how strong the results are and can explain why certain decisions were
made.

6.1 Answer to Research Question 1

RQ1: What kind of information can be gathered from air quality monitors
when carrying out a passive network eavesdropping attack?

In this research, four different test cases have been used to test if it is possible
see traffic pattern changes from when an event is triggered in the environment the
device relies. By looking at calculations and graphical views over the traffic flows
during the test, we were able to find results to answer the research questions in this
thesis. The baseline capturings showed that all the devices communicates with a
layer of security, as the packets sent on Wi-Fi are encrypted and not readable while
carrying out a passive network eavesdropping attack. Therefore it is not possible
to gather private information sent in the payloads to and from the devices.

For the routine behavioural events defined as cooking, showering and window
open, only showering and window open gave notifications of threshold values
exceeded for all executions. None of the devices showed a significant difference
from when an event was triggered at a specific time compared to the traffic sent
before and after the event or compared to the baseline capturings. This means
that it was not possible to expose the private information of the user behaviour:
cooking, showering or window open during night for any of the three devices:
Netatmo Smart Indoor AQM, Mill Sense or Nedis SmartLife.
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While comparing the baseline traffic to the event traffic, the devices Nedis
SmartLife and Mill Sense showed that there are visible differences from the baseline
capturings to right before and after the events which should expectedly have been
the same. This can be a result that the traffic can be affected by smaller indoor
changes such as a season or location in the environment which can change the
indoor air quality. For example, during summer windows can be more open than
during winter where ovens can be more used.

However, for the weekend test, one of the devices shows a clear difference
from when a user is home or gone during the time period of a weekend. When
Netatmo Smart Indoor Air Quality Monitor was used, it shows that it is possible
to distinguish whether a user is home or gone by looking at the total number
of bytes sent and received to that device during the weekend and looking at the
size of the packets sent by the device which is never higher than 134 bytes when
the user is gone for the weekend. This kind of information will expose private
information about a user where it is possible to see whether the user is home
or not for a longer period of time. These two factors proves that it is possible to
infer private information from the device. For Mill Sense and Nedis SmartLife, no
similar findings were discovered during the tests. These devices did not expose
any private information during the weekend test.

In the weekend testing, it looked like there were differences for both Mill and
Netatmo for the first 5 weekends at home, but only Netatmo had the same sig-
nificantly different pattern for weekends at home and gone. For Mill, the pattern
changed for the two last weekends at home where the packet size were the same
as for the weekends gone. This shows the importance of including enough execu-
tions for each of the test cases. However, for over 70% of the weekends at home,
a clear difference is visible when a user is at home compared to gone. Due to time
constraints, no more weekends were tested, but more tests could reveal if these
two weekends were an exception or if it is not possible to distinguish a weekend at
home or gone for this device. For Nedis, no significant differences were possible to
see during the weekend testing and therefore private information about whether
a user is at home or gone during the weekend was not possible to discover during
these tests.

6.2 Answer to Research Question 2

RQ2: What are the differences in level of inference on different air quality
monitors from different vendors?

The baseline capturings shows that the devices communicates differently. For
Netatmo and Nedis, most of the packets are outbound bytes meaning that these
devices send a lot more traffic than they receive. For Mill, inbound traffic was
higher than outbound traffic. Also comparing the traffic from the three devices,
as shown in Figure 5.10, shows that the traffic is different from the three devices.
Netatmo has a more continuous line of the packets, while Mill sends traffic peri-
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odically and have more spikes and Nedis shows many spikes that are a lot higher
than for the rest of the baseline period. These differences can be used to distin-
guish the traffic between the three air quality monitor from different vendors.

The differences in level of inference from the three different air quality mon-
itors are only distinguishable when it comes to Test Case 4: Weekends. For the
routine behavioural test cases, neither of the devices expose private information
regarding when the event is ongoing or what kind of event is triggered. However,
the results from the weekend test shows that Nedis and Mill is a more secure
choice than Netatmo when it comes to selecting air quality monitor to install in
our home. Also when it comes to identifying changes in traffic, Nedis and Mill
shows that the baseline traffic can change on other factors than a triggered event
and it will therefore be harder for an attacker to understand normal traffic. It is
good for users to know that one should consider more factors than just the ap-
pearance or functionality of the air quality monitor when selecting what device
to install in their home. Knowing that the network traffic and level of inference of
an air quality monitor is not the same regardless of the manufacture, is important
when selecting the right one.

6.3 Answer to Research Question 3

RQ3: How can the private information gathered be misused by an adversary?

Since the weekend test for Netatmo exposed private information, this specific
test case can be used to evaluate how this information can be misused by an
adversary. If an adversary has conducted a passive network eavesdropping attack
against a user who has installed the Netatmo Smart Indoor Air Quality Monitor,
it is possible to know if a user is gone for a longer period of time. Even though
weekends were used in this test, the results will also be applicable for longer
periods of time such as a week or several weeks. An adversary could use this
private information to carry out malicious actions against the users home such
as a burglary. Another aspect is that an attacker could learn about our habits for
being home or not, such as every Easter or Christmas, the user is gone or every
weekend during winter the user is not home. An attacker could also gather this
information to sell to other interested parties, spreading the private information
more without the user having control of it.

However, it is interesting to consider to what extent private information from
the other test cases can be misused if they were identified. Both cooking and
showering are events when the user is awake and doing an active action in the
home environment. If an adversary were to find out the routines of a user for these
two cases, it may not be able to misuse it to the extent as the results from the week-
end test can. Knowing that an unwanted party knows that every day at 7am you
are taking a shower, may not feel that scary and invading, but if this is combined
with attacks against other devices to find out your whole daily routine, it will be
a bigger invasion of privacy. Window open at night can indicate a users sleeping
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patterns and therefore identifies a time period where the user is not awake in its
home environment. This can feel like a more invasion of privacy as the user does
not have as much control over the situation as when cooking or showering. On
the other side, being able to know if a user is gone for a whole weekend is easier
to misuse than just sleeping as the user is present at home.

6.4 Valuable Contributions and Challenges Faced

When starting this research, a decision to include several different air quality mon-
itors from different manufactures were made. Looking at the results and evalu-
ation, this was positive for the contribution as it shows that there are differences
in level of private information inference from the different devices. This shows
that analyzing the network traffic from one air quality monitor is not represent-
ative for all air quality monitors and is something to consider if setting up a test
environment where only one air quality monitor is included.

When defining the scope and test cases, it was unclear how the devices com-
municated including packet sizes, amount of packets, how frequent and if traffic
was encrypted or not. When starting the capturing and analyzing of data from the
different devices, it became clear that the devices do not send the same amount
of traffic. Netatmo Smart Indoor Air Quality Monitor sends the least amount of
packets, while Mill Sense and Nedis SmartLife sends significantly more packets.
For Nedis SmartLife, analyzing the amount of traffic was a challenge, both time-
wise as creating graphs took a long time, but also looking more into the traffic.
The processing power of a standard computer were just enough to process the
data and figures shown in the evaluation and analysis result chapter.

A challenge faced during the research happened for the test cases for cooking.
The events were designed to change the indoor environment so much that the air
quality monitors would sense values outside of the defined threshold values. How-
ever, when doing the cooking test, only a few of the executions actually triggered
the notifications to be send. While for showering and window open, every execu-
tion lead to a significant change in threshold values and sent several notifications
to the connected phone.

Another challenge encountered during the test, was the differences in the
baseline capturings compared to the event traffic for Nedis SmartLife and Mill
Sense, before the event was triggered, as we would have expected these two traffic
patterns to be similar. However, the decision were made to include the baseline
capturings and compare them to the event traffic because it also shows methodo-
logically the setup that was originally designed, and it is still possible to compare
traffic from when the event was ongoing to traffic before and after the event.
It is unclear why there are differences in standard traffic from the devices, but
differences in season as the test cases have been conducted during January and
the baseline during March can be one reason. Another reason can be that the
baseline was not captured at the exact same spot as were the test cases were car-
ried out. This was because of time constraints. It was not enough time to have a
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long baseline in each room and conduct the test cases during the research period
even though this would have been preferred. Since the air quality monitors are
IoT sensor that are always on and sense the environment all the time, differences
in day to day or month to month can be significant. The indoor environment can
be affected by many different factors and it is impossible to have the exact same
values for the indoor air during longer period of times.

The differences in standard traffic shows that in order to have the same traffic
pattern to test with, the best way would be to have the air quality monitors in a
closed environment. Then the environment could only be changed by the specific
event which are tested. However, this takes away the realistic parts of the test. The
chance of identifying the specific events may be bigger, but if it is not applicable
in a live environment, there is no use to launch such an attack against a target.
Another aspect of this is that if changes in the environment is significant within
the same environment then it will also be hard for an attacker to find certain
signatures in their own environment to be applicable on a target environment
and device.





Chapter 7

Conclusions and Future Work

This thesis has investigated three different air quality monitors to see what kind
of private information can be inferred while carrying out a passive network eaves-
dropping attack. Three research questions have been raised and answered through
the tests in this thesis. The three devices selected were Netatmo Smart Indoor Air
Quality Monitor, Mill Sense and Nedis SmartLife. To test which kind of private
information can be inferred from the devices, the devices were installed in a live
environment and four different test cases were carried out. Three test cases which
targets routine behaviour: cooking, showering and window open during night,
and one test case over a longer period of time: home or gone during a weekend.

The initial baseline capturings for each device showed that the devices com-
municates quite differently in number of packets and bytes sent and received and
packet sizes. Scripts for generating graphs of the traffic flows in a presentable
way were created and used to present the results. This visual representation of
the traffic flow was used together with calculations to give the results. The three
routine test were compared with corresponding times for baseline capturings. For
Mill Sense and Nedis SmartLife, the baseline traffic differs from the same standard
traffic that is captured before an event is triggered. This shows how the network
patterns of these devices can be affected by factors such as season or location. For
Netatmo Smart Indoor Air Quality Monitor, the baseline traffic is comparable to
the event traffic.

The routine tests were carried out over different days to have enough captur-
ings to look for a specific traffic pattern. During these tests, only showering and
window open during night triggered the sensor thresholds as expected and sent
notifications to the application. For cooking, not every execution did this. When
looking at the traffic patterns for these test cases and devices, there are no signi-
ficant change in traffic pattern from before an event is triggered to when the event
is ongoing. This applies to the three test cases cooking, showering and window
open for the three devices Netatmo Smart Indoor Air Quality Monitor, Mill Sense
and Nedis SmartLife.

The weekend tests were carried out over different weekends at home and
gone. For the weekend test, Mill Sense and Nedis SmartLife did not expose dif-
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ferences in traffic patterns from when a user was home or gone. However, for
Netatmo Smart Indoor Air Quality Monitor the results showed a clear difference.
When a user is home, the device sends significantly more bytes and bigger pack-
ets compared to when the user is gone. This information can be misused by an
adversary to know if a user is home during a weekend or a holiday and perform
malicious actions such as burglary.

Through carrying out four test cases on three different air quality monitors, the
research questions have been answered. Only one of the devices exposed private
information in one of the tests and shows that using this method, the majority of
private information tested are not revealed. However, Netatmo reveals private in-
formation whether a users is home or not for longer periods of time by looking at
the traffic patterns on Wi-Fi traffic. This research shows that different air quality
monitors communicate with different network patterns on Wi-Fi. It is therefore
important to understand that the choice of air quality monitor can impact how
much private information it is possible to infer. This is applicable both in research
cases and when choosing an air quality monitor to install in a home environment.
The scripts created to generate graphs of traffic flows and methods used can be
used to further test other air quality monitors also communicating on other com-
munication protocols.

Future Work
This research is limited to investigating air quality monitors which communicates
over Wi-Fi, therefore future researches could look into differences between com-
munication protocols and include air quality monitors that communicates over
protocols such as Bluetooth, ZigBee or Z-wave. Since Netatmo Smart Indoor Air
Quality Monitor reveals private information during the weekend-testing, building
further on these findings could be to look into timings for when the traffic pat-
tern changes. This research only showed traffic pattern changes when the user
was gone for a weekend or longer, but testing number of hours it takes before
the changes occur, could increase detail in exposed information. Another aspect
is testing the devices in an environment with other IoT devices to see if there are
differences in test cases or if it reveals more or less private information than other
IoT devices. This thesis does not look into security measurements, but as one of
the tests discovers private information on the target environment, future work
should look into how implement security measurements to this case.
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A Script to Generate Graphs for Baseline Comparison with
Packets as Reference [62]

#GraphsByPackets_BaselineEvents.py
from scapy.all import *
import plotly
from datetime import datetime
import pandas as pd
import pyshark
from pyshark.packet import consts
from pyshark.packet.common import Pickleable
import plotly.graph_objects as go
import sys
import numpy as np

#sys.argv[1] = Name of device
#sys.argv[2] = Choose between inbound, outbound or total packets
#sys.argv[3] = Type of event
#sys.argv[4] = Maximum value for y-axis

display=""

def graph_function():
times=[]
z=0
for date in dates:

if sys.argv[2] == "Total":
file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\

Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file)
else:

file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\
Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file, display_filter=display)

#Lists to hold packet info
pktTimes=[]
pkts=[]
#Read each packet and append to the lists.
for pkt in packets:

n=1
pktTime=(pkt.sniff_time)
pktTimes.append(pktTime)
pkts.append(n)

#This converts list to series
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packets = pd.Series(pkts).astype(int)

#Convert the timestamp list to a pd date_time
times = pd.to_datetime(pd.Series(pktTimes).astype(str), errors=’coerce’)

#Create the dataframe
df = pd.DataFrame({"Packets": packets, "Times": times})

#set the date from a range to an timestamp
df = df.set_index(’Times’)

#Create a new dataframe of 2 second sums to pass to plotly
df2=df.resample(’2S’).sum()

#Create the graph
GraphTitle=sys.argv[1]+"\n"+sys.argv[3]+"\n"+date
fig = go.Figure({"data":[plotly.graph_objs.Scatter(x=df2.index, y=df2[’

Packets’])],"layout":plotly.graph_objs.Layout(title=GraphTitle,
xaxis=dict(title="Time"),
yaxis=dict(title=sys.argv[2]+" Packets"))})

#Set the y-axis range
fig.update_yaxes(range=[0,sys.argv[4]])

#Set the x-axis range
fig.update_layout(xaxis_range=[packetstart[z],packetend[z]])

#Set the font
fig.update_layout(title=GraphTitle, xaxis_title="Time", yaxis_title="Total

Packets",font=dict(family="Times New Roman", size=26))

#Display the graphs
fig.show()

z=z+1

if sys.argv[2] == "Outbound":
if sys.argv[1] == "Netatmo":

display = "wlan.sa == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.sa == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":

display = "wlan.sa == 2C:F4:32:29:36:DC"

elif sys.argv[2] == "Inbound":
if sys.argv[1] == "Netatmo":

display = "wlan.da == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.da == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":
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display = "wlan.da == 2C:F4:32:29:36:DC"

if sys.argv[3] == "Shower":
#Set the shower dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 19:29","2023-01-09 19:29","2023-01-11 19:29","

2023-01-16 19:29","2023-01-18 19:29","2023-01-19 19:29","2023-01-25
19:29","2023-01-30 19:29","2023-01-31 19:29","2023-02-01 19:29"]

packetend=["2023-01-08 21:04","2023-01-09 21:04","2023-01-11 21:04","
2023-01-16 21:04","2023-01-18 21:04","2023-01-19 21:04","2023-01-25
21:04","2023-01-30 21:04","2023-01-31 21:04","2023-02-01 21:04"]

graph_function()

elif sys.argv[3] == "Cooking":
#Set the cooking dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 15:28","2023-01-09 15:28","2023-01-11 15:28","

2023-01-16 15:28","2023-01-18 15:28","2023-01-19 15:28","2023-01-26
15:28","2023-01-30 15:28","2023-01-31 15:28","2023-02-01 15:28"]

packetend=["2023-01-08 17:07","2023-01-09 17:07","2023-01-11 17:07","
2023-01-16 17:07","2023-01-18 17:07","2023-01-19 17:07","2023-01-26
17:07","2023-01-30 17:07","2023-01-31 17:07","2023-02-01 17:07"]

graph_function()

elif sys.argv[3] == "Window":
#Set the window dates
dates = ["08.01-09.01","09.01-10.01","11.01-12.01","16.01-17.01","

18.01-19.01","19.01-20.01","25.01-26.01","30.01-31.01","31.01-01.02","
01.02-02-02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 22:20","2023-01-09 22:20","2023-01-11 22:20","

2023-01-16 22:20","2023-01-18 22:20","2023-01-19 22:20","2023-01-25
22:20","2023-01-30 22:20","2023-01-31 22:20","2023-02-01 22:20"]

packetend=["2023-01-09 07:39","2023-01-10 07:39","2023-01-12 07:39","
2023-01-17 07:39","2023-01-19 07:39","2023-01-20 07:39","2023-01-26
07:39","2023-01-31 07:39","2023-02-01 07:39","2023-02-02 07:39"]

graph_function()
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B Script to Generate Graphs for Baseline Comparison with
Packets as Reference [62]

#GraphsByPackets_BaselineEvents.py
from scapy.all import *
import plotly
from datetime import datetime
import pandas as pd
import pyshark
from pyshark.packet import consts
from pyshark.packet.common import Pickleable
import plotly.graph_objects as go
import sys
import numpy as np

#sys.argv[1] = Name of device
#sys.argv[2] = Choose between inbound, outbound or total packets
#sys.argv[3] = Type of event
#sys.argv[4] = Maximum value for y-axis

display=""

def graph_function():
times=[]
z=0
for date in dates:

if sys.argv[2] == "Total":
file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\

Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file)
else:

file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\
Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file, display_filter=display)

#Lists to hold packet info
pktTimes=[]
pkts=[]
#Read each packet and append to the lists.
for pkt in packets:

n=1
pktTime=(pkt.sniff_time)
pktTimes.append(pktTime)
pkts.append(n)

#This converts list to series
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packets = pd.Series(pkts).astype(int)

#Convert the timestamp list to a pd date_time
times = pd.to_datetime(pd.Series(pktTimes).astype(str), errors=’coerce’)

#Create the dataframe
df = pd.DataFrame({"Packets": packets, "Times": times})

#set the date from a range to an timestamp
df = df.set_index(’Times’)

#Create a new dataframe of 2 second sums to pass to plotly
df2=df.resample(’2S’).sum()

#Create the graph
GraphTitle=sys.argv[1]+"\n"+sys.argv[3]+"\n"+date
fig = go.Figure({"data":[plotly.graph_objs.Scatter(x=df2.index, y=df2[’

Packets’])],"layout":plotly.graph_objs.Layout(title=GraphTitle,
xaxis=dict(title="Time"),
yaxis=dict(title=sys.argv[2]+" Packets"))})

#Set the y-axis range
fig.update_yaxes(range=[0,sys.argv[4]])

#Set the x-axis range
fig.update_layout(xaxis_range=[packetstart[z],packetend[z]])

#Set the font
fig.update_layout(title=GraphTitle, xaxis_title="Time", yaxis_title="Total

Packets",font=dict(family="Times New Roman", size=26))

#Display the graphs
fig.show()

z=z+1

if sys.argv[2] == "Outbound":
if sys.argv[1] == "Netatmo":

display = "wlan.sa == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.sa == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":

display = "wlan.sa == 2C:F4:32:29:36:DC"

elif sys.argv[2] == "Inbound":
if sys.argv[1] == "Netatmo":

display = "wlan.da == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.da == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":
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display = "wlan.da == 2C:F4:32:29:36:DC"

if sys.argv[3] == "Shower":
#Set the shower dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 19:29","2023-01-09 19:29","2023-01-11 19:29","

2023-01-16 19:29","2023-01-18 19:29","2023-01-19 19:29","2023-01-25
19:29","2023-01-30 19:29","2023-01-31 19:29","2023-02-01 19:29"]

packetend=["2023-01-08 21:04","2023-01-09 21:04","2023-01-11 21:04","
2023-01-16 21:04","2023-01-18 21:04","2023-01-19 21:04","2023-01-25
21:04","2023-01-30 21:04","2023-01-31 21:04","2023-02-01 21:04"]

graph_function()

elif sys.argv[3] == "Cooking":
#Set the cooking dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 15:28","2023-01-09 15:28","2023-01-11 15:28","

2023-01-16 15:28","2023-01-18 15:28","2023-01-19 15:28","2023-01-26
15:28","2023-01-30 15:28","2023-01-31 15:28","2023-02-01 15:28"]

packetend=["2023-01-08 17:07","2023-01-09 17:07","2023-01-11 17:07","
2023-01-16 17:07","2023-01-18 17:07","2023-01-19 17:07","2023-01-26
17:07","2023-01-30 17:07","2023-01-31 17:07","2023-02-01 17:07"]

graph_function()

elif sys.argv[3] == "Window":
#Set the window dates
dates = ["08.01-09.01","09.01-10.01","11.01-12.01","16.01-17.01","

18.01-19.01","19.01-20.01","25.01-26.01","30.01-31.01","31.01-01.02","
01.02-02-02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 22:20","2023-01-09 22:20","2023-01-11 22:20","

2023-01-16 22:20","2023-01-18 22:20","2023-01-19 22:20","2023-01-25
22:20","2023-01-30 22:20","2023-01-31 22:20","2023-02-01 22:20"]

packetend=["2023-01-09 07:39","2023-01-10 07:39","2023-01-12 07:39","
2023-01-17 07:39","2023-01-19 07:39","2023-01-20 07:39","2023-01-26
07:39","2023-01-31 07:39","2023-02-01 07:39","2023-02-02 07:39"]

graph_function()
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C Script to Generate Graphs for Baseline Comparison with
Packets as Reference [62]

#GraphsByPackets_BaselineEvents.py
from scapy.all import *
import plotly
from datetime import datetime
import pandas as pd
import pyshark
from pyshark.packet import consts
from pyshark.packet.common import Pickleable
import plotly.graph_objects as go
import sys
import numpy as np

#sys.argv[1] = Name of device
#sys.argv[2] = Choose between inbound, outbound or total packets
#sys.argv[3] = Type of event
#sys.argv[4] = Maximum value for y-axis

display=""

def graph_function():
times=[]
z=0
for date in dates:

if sys.argv[2] == "Total":
file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\

Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file)
else:

file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\
Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file, display_filter=display)

#Lists to hold packet info
pktTimes=[]
pkts=[]
#Read each packet and append to the lists.
for pkt in packets:

n=1
pktTime=(pkt.sniff_time)
pktTimes.append(pktTime)
pkts.append(n)

#This converts list to series
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packets = pd.Series(pkts).astype(int)

#Convert the timestamp list to a pd date_time
times = pd.to_datetime(pd.Series(pktTimes).astype(str), errors=’coerce’)

#Create the dataframe
df = pd.DataFrame({"Packets": packets, "Times": times})

#set the date from a range to an timestamp
df = df.set_index(’Times’)

#Create a new dataframe of 2 second sums to pass to plotly
df2=df.resample(’2S’).sum()

#Create the graph
GraphTitle=sys.argv[1]+"\n"+sys.argv[3]+"\n"+date
fig = go.Figure({"data":[plotly.graph_objs.Scatter(x=df2.index, y=df2[’

Packets’])],"layout":plotly.graph_objs.Layout(title=GraphTitle,
xaxis=dict(title="Time"),
yaxis=dict(title=sys.argv[2]+" Packets"))})

#Set the y-axis range
fig.update_yaxes(range=[0,sys.argv[4]])

#Set the x-axis range
fig.update_layout(xaxis_range=[packetstart[z],packetend[z]])

#Set the font
fig.update_layout(title=GraphTitle, xaxis_title="Time", yaxis_title="Total

Packets",font=dict(family="Times New Roman", size=26))

#Display the graphs
fig.show()

z=z+1

if sys.argv[2] == "Outbound":
if sys.argv[1] == "Netatmo":

display = "wlan.sa == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.sa == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":

display = "wlan.sa == 2C:F4:32:29:36:DC"

elif sys.argv[2] == "Inbound":
if sys.argv[1] == "Netatmo":

display = "wlan.da == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.da == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":
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display = "wlan.da == 2C:F4:32:29:36:DC"

if sys.argv[3] == "Shower":
#Set the shower dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 19:29","2023-01-09 19:29","2023-01-11 19:29","

2023-01-16 19:29","2023-01-18 19:29","2023-01-19 19:29","2023-01-25
19:29","2023-01-30 19:29","2023-01-31 19:29","2023-02-01 19:29"]

packetend=["2023-01-08 21:04","2023-01-09 21:04","2023-01-11 21:04","
2023-01-16 21:04","2023-01-18 21:04","2023-01-19 21:04","2023-01-25
21:04","2023-01-30 21:04","2023-01-31 21:04","2023-02-01 21:04"]

graph_function()

elif sys.argv[3] == "Cooking":
#Set the cooking dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 15:28","2023-01-09 15:28","2023-01-11 15:28","

2023-01-16 15:28","2023-01-18 15:28","2023-01-19 15:28","2023-01-26
15:28","2023-01-30 15:28","2023-01-31 15:28","2023-02-01 15:28"]

packetend=["2023-01-08 17:07","2023-01-09 17:07","2023-01-11 17:07","
2023-01-16 17:07","2023-01-18 17:07","2023-01-19 17:07","2023-01-26
17:07","2023-01-30 17:07","2023-01-31 17:07","2023-02-01 17:07"]

graph_function()

elif sys.argv[3] == "Window":
#Set the window dates
dates = ["08.01-09.01","09.01-10.01","11.01-12.01","16.01-17.01","

18.01-19.01","19.01-20.01","25.01-26.01","30.01-31.01","31.01-01.02","
01.02-02-02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 22:20","2023-01-09 22:20","2023-01-11 22:20","

2023-01-16 22:20","2023-01-18 22:20","2023-01-19 22:20","2023-01-25
22:20","2023-01-30 22:20","2023-01-31 22:20","2023-02-01 22:20"]

packetend=["2023-01-09 07:39","2023-01-10 07:39","2023-01-12 07:39","
2023-01-17 07:39","2023-01-19 07:39","2023-01-20 07:39","2023-01-26
07:39","2023-01-31 07:39","2023-02-01 07:39","2023-02-02 07:39"]

graph_function()
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D Script to Generate Graphs for Baseline Comparison with
Packets as Reference [62]

#GraphsByPackets_BaselineEvents.py
from scapy.all import *
import plotly
from datetime import datetime
import pandas as pd
import pyshark
from pyshark.packet import consts
from pyshark.packet.common import Pickleable
import plotly.graph_objects as go
import sys
import numpy as np

#sys.argv[1] = Name of device
#sys.argv[2] = Choose between inbound, outbound or total packets
#sys.argv[3] = Type of event
#sys.argv[4] = Maximum value for y-axis

display=""

def graph_function():
times=[]
z=0
for date in dates:

if sys.argv[2] == "Total":
file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\

Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file)
else:

file = r"C:\Users\Helene\Documents\IMT4905 - Erfaringsbasert master\
Wireshark\Baseline\\"+sys.argv[1]+"\\"+sys.argv[3]+"\\"+sys.argv
[1]+"_Baseline_"+sys.argv[3]+"_"+date+".pcapng"

packets = pyshark.FileCapture(file, display_filter=display)

#Lists to hold packet info
pktTimes=[]
pkts=[]
#Read each packet and append to the lists.
for pkt in packets:

n=1
pktTime=(pkt.sniff_time)
pktTimes.append(pktTime)
pkts.append(n)

#This converts list to series
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packets = pd.Series(pkts).astype(int)

#Convert the timestamp list to a pd date_time
times = pd.to_datetime(pd.Series(pktTimes).astype(str), errors=’coerce’)

#Create the dataframe
df = pd.DataFrame({"Packets": packets, "Times": times})

#set the date from a range to an timestamp
df = df.set_index(’Times’)

#Create a new dataframe of 2 second sums to pass to plotly
df2=df.resample(’2S’).sum()

#Create the graph
GraphTitle=sys.argv[1]+"\n"+sys.argv[3]+"\n"+date
fig = go.Figure({"data":[plotly.graph_objs.Scatter(x=df2.index, y=df2[’

Packets’])],"layout":plotly.graph_objs.Layout(title=GraphTitle,
xaxis=dict(title="Time"),
yaxis=dict(title=sys.argv[2]+" Packets"))})

#Set the y-axis range
fig.update_yaxes(range=[0,sys.argv[4]])

#Set the x-axis range
fig.update_layout(xaxis_range=[packetstart[z],packetend[z]])

#Set the font
fig.update_layout(title=GraphTitle, xaxis_title="Time", yaxis_title="Total

Packets",font=dict(family="Times New Roman", size=26))

#Display the graphs
fig.show()

z=z+1

if sys.argv[2] == "Outbound":
if sys.argv[1] == "Netatmo":

display = "wlan.sa == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.sa == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":

display = "wlan.sa == 2C:F4:32:29:36:DC"

elif sys.argv[2] == "Inbound":
if sys.argv[1] == "Netatmo":

display = "wlan.da == 70:EE:50:91:06:DE"
elif sys.argv[1] == "Mill":

display = "wlan.da == B8:F0:09:B3:B3:78"
elif sys.argv[1] == "Nedis":
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display = "wlan.da == 2C:F4:32:29:36:DC"

if sys.argv[3] == "Shower":
#Set the shower dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 19:29","2023-01-09 19:29","2023-01-11 19:29","

2023-01-16 19:29","2023-01-18 19:29","2023-01-19 19:29","2023-01-25
19:29","2023-01-30 19:29","2023-01-31 19:29","2023-02-01 19:29"]

packetend=["2023-01-08 21:04","2023-01-09 21:04","2023-01-11 21:04","
2023-01-16 21:04","2023-01-18 21:04","2023-01-19 21:04","2023-01-25
21:04","2023-01-30 21:04","2023-01-31 21:04","2023-02-01 21:04"]

graph_function()

elif sys.argv[3] == "Cooking":
#Set the cooking dates
dates = ["08.01","09.01","11.01","16.01","18.01","19.01","25.01","30.01","

31.01","01.02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 15:28","2023-01-09 15:28","2023-01-11 15:28","

2023-01-16 15:28","2023-01-18 15:28","2023-01-19 15:28","2023-01-26
15:28","2023-01-30 15:28","2023-01-31 15:28","2023-02-01 15:28"]

packetend=["2023-01-08 17:07","2023-01-09 17:07","2023-01-11 17:07","
2023-01-16 17:07","2023-01-18 17:07","2023-01-19 17:07","2023-01-26
17:07","2023-01-30 17:07","2023-01-31 17:07","2023-02-01 17:07"]

graph_function()

elif sys.argv[3] == "Window":
#Set the window dates
dates = ["08.01-09.01","09.01-10.01","11.01-12.01","16.01-17.01","

18.01-19.01","19.01-20.01","25.01-26.01","30.01-31.01","31.01-01.02","
01.02-02-02"]

#Set the x-axis range even tough packets are not sent
packetstart=["2023-01-08 22:20","2023-01-09 22:20","2023-01-11 22:20","

2023-01-16 22:20","2023-01-18 22:20","2023-01-19 22:20","2023-01-25
22:20","2023-01-30 22:20","2023-01-31 22:20","2023-02-01 22:20"]

packetend=["2023-01-09 07:39","2023-01-10 07:39","2023-01-12 07:39","
2023-01-17 07:39","2023-01-19 07:39","2023-01-20 07:39","2023-01-26
07:39","2023-01-31 07:39","2023-02-01 07:39","2023-02-02 07:39"]

graph_function()
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