
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Anne Løvfall Våge

Industry 4.0 and Asset
Administration Shell (AAS):
Implementing a Small Scale
Demonstrator

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria Vatshaug Ottermo
June 2022

Anne Løvfall Våge

Industry 4.0 and Asset Administration
Shell (AAS): Implementing a Small Scale
Demonstrator

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria Vatshaug Ottermo
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

PREFACE

This thesis is the final part of my master’s degree studies in Cybernetics and Robotics at the

Norwegian University of Science and Technology (NTNU). This thesis aims to investigate the

Asset Administration Shell in Industry 4.0 and contribute with a detailed use case to examine

implementations of it.

The research presented in this thesis was carried out during the spring semester of 2023, from

January to June. It involved a comprehensive literature review, as well as testing newly

developed software and evaluating them. The findings presented in this thesis include the result

of applying the theoretical concept of the Asset Administration Shell to a practical

implementation in a small-scale system.

Throughout the research process, I was fortunate to receive guidance and support from several

individuals. First and foremost, I would like to express my gratitude to my supervisor, Professor

Mary Ann Lundteigen, for her invaluable guidance, feedback, and encouragement throughout

the research process. I genuinely believe she is one of the best supervisors at the institute. I

would also like to extend my thanks to my co-supervisor Maria Vatshaug Ottermo at SINTEF

for sharing her expertise and insight into the Asset Administration Shell.

Thank you to everyone who has contributed to this research project and has helped me along

the way. Your support and encouragement have been greatly appreciated. I hope this thesis will

serve as a valuable contribution to the academic literature on Asset Administration Shell in

Industry 4.0 and inspire further research and discussion on this topic.

Trondheim, 01-06-23

Anne Løvfall Våge

ii

iii

EXECUTIVE SUMMARY

In the context of the growing importance of digitalisation and Industry 4.0, this master thesis

explores the concept of interoperability and its significance in enabling systems to communicate

and understand each other. With the rise of smart manufacturing, where seamless integration

of various systems is crucial, this study delves into the development and implementation of

Asset Administration Shells (AAS) to achieve interoperability.

This thesis explores AAS's implementation and potential in the Industrial Internet of Things.

By providing an overview of key concepts, models, and functions associated with AAS, this

study sheds light on their role in building and operating digital twins throughout the lifecycle

of systems. Additionally, the research involves designing and building an AAS lab to create a

practical demonstration of AAS implementation. It also includes identifying implementation

challenges and providing recommendations for future implementations.

The main contribution of this thesis lies in providing a comprehensive understanding of AAS

through a detailed exploration of their use on both component and system levels. This study

illustrates how AAS can be implemented and applied in real-world scenarios by presenting a

practical use case. Furthermore, the research highlights the versatility of AAS by showcasing

various approaches and techniques for implementing different AAS concepts. By delving into

the intricacies of AAS implementation, this study provides valuable insights and guidance for

researchers and organisations seeking to leverage AAS to enhance interoperability, asset

management, and data exchange in Industry 4.0 and smart manufacturing.

iv

v

SAMANDRAG

I samanheng med den aukande grada av digitalisering og Industri 4.0, utforskar denne

masteroppgåva omgrepet interoperabilitet og kva det betyr for å gjere det mogleg for system å

kommunisere og forstå kvarandre. Med framveksten av smart produksjon, der sømlaus

integrasjon av ulike system er avgjerande, fordjupar denne studien utviklinga og

implementeringa av Asset Administration Shells (AAS) som eit middel for å oppnå

interoperabilitet.

Denne oppgåva utforskar implementeringa og potensialet til AAS i Industrial Internet of

Things. Ved å gi ein oversikt over nøkkelkonsept, modellar og funksjonar knytt til AAS, belyser

denne studien deira rolle i å byggje og drive digitale tvillingar gjennom systemets livssyklus. I

tillegg innebere forskinga å designe og byggje ein AAS demonstrator for å lage ein praktisk

demonstrasjon av AAS-implementering. Det inkluderer også å identifisere implementerings-

utfordringar og gi tilrådingar for framtidige implementeringar.

Hovudbidraget til denne oppgåva ligg i å gi ein omfattande forståing av AAS gjennom ei

detaljert utforsking av deira bruk på både komponent- og systemnivå. Denne oppgåva illustrerer

korleis AAS kan implementerast og brukast i verkelege scenarier ved å presentere ein praktisk

eksempel. Vidare framhevar oppgåva allsidigheita til AAS ved å vise fram ulike tilnærmingar

og teknikkar for å implementere ulike AAS-konsept. Ved å fordjupe seg i vanskar ved AAS-

implementering, gir denne oppgåva verdifull innsikt og rettleiing for forskarar og

organisasjonar som ønskjer å nyttiggjere seg AAS for å forbetre interoperabilitet,

ressursforvalting og datautveksling i Industry 4.0 og smart produksjon.

vi

vii

TABLE OF CONTENTS

Preface ... i

Executive Summary ... iii

Samandrag .. v

List of Figures .. ix

List of Tables ... xi

Abbreviations... xiii

1 Introduction ... 1

1.1 Background .. 1

1.2 Objective .. 2

1.3 Limitation .. 3

1.4 Research Approach .. 3

1.5 Outline of the Thesis.. 4

2 Asset Administration Shell ... 7

2.1 AAS Framework .. 7

2.2 The Asset ... 9

2.3 I4.0 Component ... 13

2.4 AAS Structure and Metamodel... 16

2.5 Identifiers and Repositories ... 20

2.6 AAS on System Level ... 25

2.7 Information Exchange ... 28

3 AAS Software and Communication .. 31

3.1 AASX Package Explorer and Server ... 31

3.2 Data Exchange and Communication ... 33

3.3 Data Formats.. 35

3.4 Node-RED ... 37

3.5 Status on Application Examples .. 39

4 System Design .. 43

4.1 Overview of System Design .. 43

4.2 Communication ... 44

viii

4.3 Arduino Setup .. 45

5 Implementation ... 47

5.1 AAS Structure.. 47

5.2 AASX Server and Package Explorer ... 54

5.3 Node-RED ... 57

5.4 Adaption for Lab Exercise ... 63

6 Discussion ... 65

6.1 System Design ... 65

6.2 AAS Structure.. 67

6.3 AASX Server and Package Explorer ... 68

6.4 Node-RED ... 68

6.5 Adaption for Lab Exercise ... 70

6.6 Overall Contributions .. 71

7 Conclusion and Further Work ... 73

7.1 Conclusion ... 73

7.2 Further Work ... 74

Bibliography ... 75

Appendix .. 79

A Content of ZIP File .. 79

B AAS Structures .. 80

C Additional Technical Documentation ... 86

ix

LIST OF FIGURES

Figure 1.1 Role of AAS (adapted from [2]) ... 1

Figure 1.2 3-step approach building on the specialisation project ... 4

Figure 2.1 Object world (adapted from Platform Industry 4.0) ... 10

Figure 2.2 RAMI 4.0 (source IEC PAS 63088 [16]) ... 11

Figure 2.3 Layers in RAMI 4.0 .. 12

Figure 2.4 Industry 4.0 component .. 13

Figure 2.5 Industry 4.0 components (adapted from IEC PAS 63088 [14]) 15

Figure 2.6 Asset Administration Shell structure (adapted from IEC 63278 [7]) 16

Figure 2.7 AAS responsible (adapted from IEC 63278 [7]) .. 17

Figure 2.8 Asset Administration Shell ... 17

Figure 2.9 Submodel template and submodel example .. 18

Figure 2.10 Submodel structure (adapted from Platform Industry 4.0) 18

Figure 2.11 Identifiers (adapted from IEC 63278 [7]) ... 20

Figure 2.12 External repositories ... 21

Figure 2.13 AAS architecture placed in RAMI4.0 (adapted from [24]) 25

Figure 2.14 Composite AAS .. 27

Figure 2.15 Model of composite AAS (described in [8]) .. 27

Figure 2.16 Screenshot from AASX Package Explorer of submodel bill of material 28

Figure 2.17 Information exchange (adapted from Platform Industry 4.0) 29

Figure 2.18 Data transfer ... 29

Figure 2.19 Information exchange type API .. 30

Figure 2.20 I4.0 network .. 30

Figure 3.1 Screenshot of AASX Package Explorer ... 32

Figure 3.2 AASX Package Explorer and server ... 33

Figure 3.3 Node-red (source [49]) .. 37

Figure 3.4 Example UI Dashboard (source [50]) ... 38

Figure 3.5 Simplified architecture from [51] ... 39

Figure 3.6 Implementation steps for the AAS deployment from [2] 40

Figure 4.1 AAS demonstrator .. 43

Figure 4.2 System design .. 44

x

Figure 4.3 Detailed system design ... 45

Figure 4.4 Arduino setup .. 46

Figure 5.1 Screenshot of import of submodel from IEC CDD .. 50

Figure 5.2 Screenshot of submodel Imagemap in Package Explorer 52

Figure 5.3 Screenshot of submodel element relationship element in Package Explorer 53

Figure 5.4 Screenshot of submodel bill of material in Package Explorer 53

Figure 5.5 Screenshot of AASX Package Explorer that is connected to an AASX server 54

Figure 5.6 Screenshot of blazor AASX server web interface .. 55

Figure 5.7 Screenshot of user interface for lab exercise .. 57

Figure 5.8 Screenshot of debug tab in UI Dashboard for troubleshooting the lab 58

Figure 5.9 Explanation of Node-RED blocks .. 58

Figure 5.10 Screenshot of Node-RED code blocks – initiation and UI communication 59

Figure 5.11 Screenshot of Node-RED code blocks – update AASX server 1 59

Figure 5.12 Screenshot of Node-RED code blocks – update AASX server 2 60

Figure 5.13 Screenshot of Node-RED code block – communicate with Arduino 60

Figure 5.14 Node-RED and Arduino communication with example data 60

Figure 6.1 Alternative system design 1 .. 65

Figure 6.2 Alternative system design 2 .. 66

xi

LIST OF TABLES

Table 2.1 Life cycle of an asset .. 9

Table 2.2 Architecture axis with example .. 12

Table 2.3 RAMI 4.0 compared to Purdue .. 13

Table 2.4 Communication capability of an asset ... 14

Table 2.5 Presentation of an asset .. 14

Table 2.6 Communication and Presentation (CP) Classification ... 15

Table 2.7 Submodel Elements .. 19

Table 2.8 Temperature sensor class from IEC CDD .. 22

Table 2.9 Temperature property from IEC CDD ... 23

Table 2.10 Body shape property from IEC CDD .. 23

Table 2.11 Degree Celsius unit from IEC CDD ... 24

Table 2.12 Property temperature from IEC CDD .. 24

Table 2.13 Unit in IEC CDD versus ECLASS ... 25

Table 5.1 Structure of Component AAS .. 49

Table 5.2 Property Led behaviour .. 50

Table 5.3 Structure of composite AAS .. 51

Table B.1 AAS composite .. 80

Table B.2 AAS Dc motor ... 81

Table B.3 AAS temperature sensor .. 82

Table B.4 AAS LED1 .. 83

Table B.5 AAS LED2 .. 84

Table B.6 AAS Arduino ... 85

xii

xiii

ABBREVIATIONS

AAS Asset Administration Shell

AML Automation Markup Language

API Application Programming Interface

APOS Automated Process for follow-up Of Safety instrumented systems

CDD Common Data Dictionary

HTTP Hypertext Transfer Protocol

I4.0 Industry 4.0

IDTA Industrial Digital Twin Association

IEC International Electrotechnical Commission

IEC CDD IEC Common Data Dictionary (IEC 61360)

IIoT Industrial Internet of Things

IoT Internet of Things

IRDI International Registration Data Identifier

IRI International Resource Identifier

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

OPC UA Open Platform Communication Unified Architecture

PI4.0 Platform Industry 4.0

RAMI4.0 Reference Architectural Model Industry 4.0

REST Representational State Transfer

SAP System Analyse Programmentwicklung (System Analysis Program

Development).

SM Submodel

SMC Submodel element collection

SME Submodel element

XML eXtensible Markup Language

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie (German Electrical

and Electronic Manufacturers’ Association)

xiv

1

1.1 BACKGROUND

The Asset Administration Shell (AAS) is a key concept in Industry 4.0 (I4.0). The concept of

I4.0 was first introduced in 2011 at the Hannover Fair by a group of German researchers and

experts [1]. The Hannover Fair described I4.0 as a new umbrella term that brings together

robotic producers, automation companies, sensor manufacturers, software creators and users.

The AAS is a digital representation of an asset, such as a machine, which contains information

about the asset's configuration, behaviour, and context. The information can provide benefits

such as improved interoperability, enhanced data access and analysis, improved asset

management, and compatibility with existing technologies. Figure 1.1 provides an overview of

AAS. The AAS is the asset's digital equivalent, making it possible to communicate in the digital

world of information.

FIGURE 1.1 ROLE OF AAS (ADAPTED FROM [2])

An essential concept of I4.0 is interoperability. Interoperability refers to the seamless

communication and connection between different systems, devices, applications, or products

without requiring any effort from the end-user. It involves various functions such as data access,

data transmission, and cross-organisational collaboration, regardless of the origin or developer

1

INTRODUCTION

2

of the system. By enabling interoperability, organisations can achieve higher levels of

efficiency and gain a more comprehensive view of information.

The implementation of the AAS in industrial settings offers significant advantages. It promotes

interoperability, transparency, and flexibility by providing a standardised framework for

describing assets and enabling seamless communication between machines and systems. AAS

supports predictive maintenance, lifecycle management, and integration of cyber-physical

systems. Leveraging AAS brings multiple benefits, including optimised operations, increased

productivity, and accelerated digital transformation in industrial processes.

The limited implementation of the AAS can be attributed to several factors. Legacy systems,

lack of standardisation, data security concerns, organisational readiness, and cost considerations

have hindered its widespread adoption. However, ongoing efforts, such as this thesis, are being

made to address these challenges and promote AAS implementation across industrial sectors.

The AAS was developed as part of the German Federal Government's I4.0 initiative, now

Platform Industry 4.0 (PI4.0), to promote developing and implementing smart factories and

other advanced manufacturing technologies. The development of the AAS was a collaborative

effort involving industry associations, research institutes, and companies from various

industries. The first version of the AAS was published in 2016 by the German PI4.0. Since then,

the AAS has become a leading standard for I4.0 and is being researched by companies and

organisations worldwide.

PI4.0 is a platform led by the German Federal Ministry for Economic Affairs and Climate

Action, the Federal Ministry of Education and Research, and representatives from the industry

[3]. PI4.0 has six working groups consisting of members from companies worldwide that

explore various aspects of I4.0, e.g., legal framework and technology and application scenarios.

In addition, PI4.0 has two influential partners in ZVEI and IDTA. ZVEI is an extensive

industrial association in Germany. It aims to exchange experiences and views about the electro

and digital industry [4]. IDTA is the Industrial Digital Twin Association and believes that the

digital twin is the critical technology in I4.0 [5]. IDTA are also developing their own AAS

technology in the form of open-source software. Their software provides a quick and

uncomplicated way to create an AAS and upload it to a server to test and simulate how it might

be done in a plant.

1.2 OBJECTIVE

The main objective of this research is to create an AAS demonstrator with a microcontroller

(Arduino UNO) and use IDTAs AASX Package Explorer and AASX Server to connect it to the

Industrial Internet of Things (IIoT). In addition, the AAS demonstrator may be used as a lab

exercise for students to understand first-hand how AAS works and how it may be implemented.

Therefore, this research will involve the following activities:

• Provide an overview of key concepts, models, and functions associated with AAS, and

describe the role of AAS in building and operating digital twins over the whole lifecycle

of systems. It will involve a review of relevant literature and existing research on AAS.

3

• Design, plan, and build an AAS demonstrator. It will involve creating design

specifications, system layouts and electrical wiring diagrams.

• Summarise the implementation challenges and provide recommendations for future

implementations. It will involve identifying potential issues or limitations of

implementing AAS and providing recommendations for addressing them.

• Prepare a user manual for setting up and using the AAS demonstrator. It will involve

creating clear and concise instructions for assembling and using the AAS lab, as well as

troubleshooting tips and other helpful resources.

• Prepare a user interface for the AAS demonstrator.

1.3 LIMITATION

I4.0 and the AAS are new concepts that are still being developed. As a result, there does not

exist a right way to do things which might be the most significant limitation of this thesis. Even

though there has been a substantial increase in articles published about the AAS, most review

the theory of AAS on a system level. As a result, few articles present detailed use cases and

their implementations. This has led to additional challenges when designing and implementing

the AAS structures in a system, for example, trial and error when designing the system and

deciding what technologies to use. The lack of official and published standards adds to the

problem. Additionally, the AAS framework is somewhat imprecise and, in some cases, provides

inadequate explanations.

As mentioned, this thesis aims to create an AAS demonstrator that students can use as a lab

exercise. The demonstrator's setup must be easy to use and not include too many different

technologies, as the purpose of leaning about AAS might disappear. Furthermore, the setup

must be user-friendly with a self-explanatory user interface. The requirement limits the work

as some simplifications must be done, resulting in a perhaps, less realistic system design with

fewer elements.

Finally, time has been a constraint. Even though this project stretches over 20 weeks, it is still

quite limiting. Especially when considering how fast AAS is evolving.

1.4 RESEARCH APPROACH

This master's thesis is based on a specialisation project report [6] written the previous semester

as a part of this master’s programme. The specialisation project is a literary review of AAS

which explorer how the AAS may be used for implementing digital twins of industrial devices

and systems. The report from the specialisation project is available upon request. Some of the

material from the specialisation project report is modified and used in this thesis. It will be

clearly stated when it is.

Furthermore, an additional literary review was conducted to gather updated information on the

AAS. The literary search included revisiting the report from the specialisation and the articles

and resources used in that. New literary research was also done to find newer and more relevant

4

articles. The search engine Oria, available through NTNU, was primarily used, and only peer-

reviewed articles were used. The literary search aimed to find articles about new AAS concepts

and articles that provided well-documented use cases. Some of the essential literary resources

were the standards IEC 63278 [7] and Details of the Asset Administration Shell [8], [9].

IDTAs AAS open-source software, AASX Server and AASX Package Explorer were used to

evaluate how the theoretical principles of AAS may be used in operation. They are available on

IDTAs’ GitHub Admin Shell IO [10], where IDTA also publishes other AAS-relevant

resources. IDTA has also made a webpage [11] which provides various tools and examples

explaining the concept of AAS, including examples of AAS for various industry equipment.

These AAS examples can be downloaded from the webpage and imported into the AASX

Package Explorer. It became a part of the methodology for developing the AAS structure.

The approach for this thesis can be summarised in Figure 1.2. The thesis work builds on the

theoretical foundation made from the specialisation project. First, literature and tools were

reviewed to obtain new information about AAS and the available tools. The next step was to

test the AAS software AASX server and AASX Package Explorer and finally use the theory

and software to implement and create an AAS demonstrator.

FIGURE 1.2 3-STEP APPROACH BUILDING ON THE SPECIALISATION PROJECT

In the context of this thesis, the association with SINTEF and their AAS APOS project

(Automated Process for follow-up Of Safety instrumented systems) has provided valuable

opportunities to participate in multiple meetings and seminars dedicated to the subject of AAS.

Meaningful engagements encompass attending the PDS-forum alongside representatives from

various companies within the energy sector and participating in meetings and seminars hosted

by Equinor. Furthermore, the findings and progress of this thesis work have been presented to

Kongsberg Maritime and SINTEF, allowing for constructive discussions and feedback.

Lastly, new figures have been created to support the theoretical concepts. Many of the figures

used in this thesis are adapted from other resources, such as Details of the Asset Administration

Shell and IEC 63278, to simplify existing complex figures or add better context to the simple

ones to ensure clarity.

1.5 OUTLINE OF THE THESIS

Chapters 2 and 3 are theoretical chapters that provide the necessary theory to understand the

research and implementation of this thesis. Chapter 2 exclusively explains concepts that relate

to AAS and assets in I4.0. While Chapter 3 describes AAS software and communication, such

as the AASX Package Explorer and server. The data exchange and communication protocols

relevant to AAS are also included in this chapter, along with data formats. The last part of

Chapter 3 is a literary review of the existing use cases and other relevant articles.

5

Chapter 4 provides an overview of the system design. The system design includes everything

from the physical set up to which components communicate with each other and how they do

it. In Chapter 5, the implementation is presented. Each part of the system design has its section

explaining the component-specific part.

The system design and implementation discussion are included in Chapter 6, along with

reflections on the adaption for lab exercise and overall contributions. Finally, Chapter 7

concludes the theory of AAS and the demonstrator, and a recommendation for further work is

presented.

The appendices include an overview of the zip file's content attached to this thesis, the structure

of the AAS for all lab components, and additional technical documentation related to the

demonstrator.

6

7

In this chapter, the theoretical aspect of the AAS will be explained. In order to fully understand

the AAS and its potential, it is vital to understand what it represents and how it is represented

and modelled. The AAS and its tools are still under development, so a significant gap exists

between the theoretical concept and practical implementation. Therefore, this chapter will

primarily include theoretical concepts.

This chapter starts by presenting the AAS-relevant framework before entering assets and I4.0

components. Furthermore, the structure of an AAS will be explained in detail and how it is

identified. There is also a section on how AAS may be applied on the system level and how the

information may be exchanged between partners. Chapters 2.2, 2.3 and 2.4 are based on

excerpts from the specialisation project report [6] but modified and adjusted to fit the topic of

this thesis.

2.1 AAS FRAMEWORK

AAS standards are being developed, and PI4.0 has created a three-part document series, Details

of the Asset Administration Shell, in cooperation with IDTA and ZVEI. Each part describes

one of the three types of information exchange, which will be described in detail in Chapter

2.7. As of now, only parts one and two have been published. An overview of the Details of the

Asset Administration Shell [8], [9] is included below.

• Part 1: The exchange of information between partners in the value chain of Industry

4.0

• Part 2: Interoperability at Runtime Exchanging Information via Application

Programming Interfaces

• Part 3: Infrastructure, which hosts and interconnects multiple AAS (unpublished)

Until recently, the only published AAS standard was Details of the Asset Administration Shell,

but in April of 2023, a new series was published by IDTA. The new series, Specification of the

Asset Administration Shell, will contain five parts. An overview of the Specification of the

Asset Administration Shell [12] is included below.

• Part 1: The information meta-model of the Asset Administration Shell

2

ASSET ADMINISTRATION SHELL

8

• Part 2: Interfaces and APIs for accessing the information of Asset Administration

Shells (access, modify, query, and execute information and active functionality)

• Part 3: Data specification templates.

o Part 3a: Concept descriptions of properties conformant to IEC61360

o Part 3b: Physical units as used to define the semantics of quantifiable

properties in IEC 61360 (unpublished)

• Part 4: Security aspects of the Asset Administration Shell, including access control

(unpublished)

• Part 5: A file exchange format AASX

For future work with AAS, the Specification of the Asset Administration Shell and Details of

the Asset Administration Shell should be used to get a fuller picture of AAS. This thesis does

not include the contents of the Specification of the Asset Administration Shell. The Details of

the Asset Administration Shell will, from here on, be referred to as Details of AAS.

In addition to the IDTA and PI4.0 standards, other recognised framework documents are being

developed regarding AAS. For example, IEC (International Electrotechnical Commission) is

developing a new standard series called Asset Administration Shell for industrial applications,

IEC 63278 [7]. IEC has three parts under development, where part 1 is predicted to be published

in August 2023 and parts 2 and 3 in December 2024. The IEC 63278 series will define a

standardised digital representation of an asset, the AAS, which gives uniform access to

information and services. The first part describes the conceptual framework for the AAS, the

structure, and the requirements associated with the AAS and related roles. The second part takes

up these descriptions and formalises them towards a specified information meta model. Finally,

the third part supplements the previous documents with the required definitions concerning

security.

The IEC 63278 [7] lists five key objectives of the AAS, which formulate some aims for the

AAS. They are as follows:

1. It aims to establish cross-company interoperability for assets within the manufacturing

industry, enabling different enterprises to share information and services on assets. In

the manufacturing industry, assets are provided by many different companies, and the

information needs to be interoperable to fulfil the scenarios of today and tomorrow.

2. It is intended for non-intelligent and intelligent products alike. In other words, it can be

applied to all types of assets, regardless of whether they can communicate actively or

are intelligent.

3. It aims to cover the complete life cycle of assets, including design, engineering,

marketing, and operating and maintaining these assets. Digitised information from early

phases needs to be preserved and used in later phases to maintain economic efficiency.

4. It aims to enable integrated value chains. Many different value chain partners provide

assets for manufacturing lines and products. Therefore, value chain partners must

exchange digitised information to maintain economic efficiency. The AAS aims to

9

enable information exchange and facilitate more efficient and effective integrated value

chains.

5. It is intended to provide a basis for autonomous systems and artificial intelligence. The

AAS provides a sound basis of information and identifiers of elements, making it a

suitable base for autonomous systems and artificial intelligence.

2.2 THE ASSET

It may be beneficial to look at the environment the AAS operates in to understand how it can

be applied. This section will introduce and explain relevant asset-related terms and examine

RAMI4.0. This section is based on an excerpt from the specialisation report [6].

2.2.1 Assets and Life Cycle

In the first part of the standard for Smart Manufacturing, IEC TR 63283, [13] the term asset is

described as an entity owned by an organisation with an actual or perceived value to the

organisation. In the context of I4.0 and AAS, IEC 63278 [7] adds to the definition of an asset,

underlining that the asset can be physical, digital or intangible. Physical assets can be equipment

and products, e.g., a screwdriver or a programmable logic controller (PLC). An example of a

digital asset is software, e.g., software running on a PLC, and an intangible asset can be a license

for a PLC software.

All assets have a specific lifetime, and during their time, it serves the purpose for which it was

created. Therefore, an asset will go through a life cycle throughout its lifetime. The life cycle

of an asset can be generalised into seven stages, explained and exemplified in Table 2.1.

TABLE 2.1 LIFE CYCLE OF AN ASSET

Phase Example with PLC State

1 Engineering Planning and design of a PLC includes making scope and

limitations to its functionality Type

2 Production Production and manufacturing of PLC

3 Commissioning Placing the produced PLC in a plant and implementing it

into the system by logic and I/O

Instance

4 Usage PLC is used in operations

5 Operation and

maintenance

Scheduled and non-scheduled maintenance is necessary to

keep PLC in operation

6 Modifications Modification of PLC. Depending on the scope of the

modification, it may require going back to commissioning

or even a new design

7 Decommissioning and

disposal

When PLC is no longer operational or needed, it is taken

out of operation and disposed

An asset will have different states in distinct parts of the lifecycle. Standard IEC PAS 63088

[15] explains a state in the I4.0 context as “a particular state at a particular time at a particular

location”. The standard refers to two states: type and instance. An asset of state type is a set of

10

properties unique to a particular asset. An asset has the state type from the initial idea that occurs

through the engineering phase until the product is ready for series production, as shown in the

fourth column in Table 2.1. An instance is a specific asset with the properties of a type. A type

can be thought of as a generic framework for an instance.

A PLC in operation at a plant is an instance because the PLC is a specific asset with the

properties of the series-produced PLC. Digital assets will also be in the states type and instance.

For example, a software algorithm is a type, and when the algorithm is implemented with

parameters to a specific system, it becomes an instance.

2.2.2 Object World in Industry 4.0

IEC PAS 63088 [14] describes the object world of I4.0 to consist of three worlds: the human

world, the physical world, and the information world, illustrated in Figure 2.1. The human

world differs from the other two as it relates to humans, not assets. The physical world includes

all physical assets, where an asset can be, e.g., physical devices, IT systems and installations.

The information world is divided into the state world, the archive world, and the model world.

The state world describes the current state of an asset. The archive world contains recorded

states and life cycle information. The model world contains information such as models,

documentation, and production plans. In other words, the object world may be divided into

humans and assets, where assets can belong to the information world and the physical world.

FIGURE 2.1 OBJECT WORLD (ADAPTED FROM PLATFORM INDUSTRY 4.0)

An interesting observation about the structure is that an item could simultaneously be in

different worlds. For example, an algorithm belongs to the information world, but to execute,

it must use equipment from the physical world and is, therefore, part of both the information

and physical world.

2.2.3 RAMI 4.0

The RAMI 4.0 (Reference Architectural Model Industry 4.0) is a versatile tool that can be

employed to describe any I4.0 asset [15]. The I4.0 component enables the creation of an

information link between any asset and I4.0 by utilising the AAS. The RAMI 4.0 model is

essential for any organisation seeking to implement a successful I4.0 strategy.

11

In IEC PAS 63088 [14], the RAMI 4.0 is described as a three-dimensional layer model that

displays the main elements of an asset in a structured view, illustrated in Figure 2.2. In other

words, RAMI 4.0 structures the information world. The purpose of the RAMI 4.0 is to break

down complex processes into smaller and manageable sections of an asset and, according to

IEC PAS 63088 [14], “describe assets with sufficient precision”. The model consists of the

following dimensions: architecture (layers), life cycle & value stream and hierarchy levels. The

RAMI 4.0 is based on standards for the automation and process industry from the IEC, and

these will be explained in the following sections.

FIGURE 2.2 RAMI 4.0 (SOURCE IEC PAS 63088 [16])

Life Cycle & Value stream

The life cycle & value stream can be seen in Figure 2.2 on the left-hand side on the horizontal

axis. In IEC PAS 63088 [14], this axis describes an asset at a particular point during its lifetime,

referring to the state’s instance and type.

As indicated in Figure 2.2, this dimension is specified in the standard IEC 62890 [17]. The

standard provides principles for managing the life cycle of industrial-process measurement,

control and automation systems and components. It defines generic reference models and terms,

such as the Life-Cycle-Model, structure model, and compatibility model, and explains their

application in automation systems through the life cycle. The standard ensures a shared

understanding and application among all partners in the value chain, including plant users,

product and system producers, service providers, and component suppliers.

Layers

The layers dimension called the architecture, consists of six layers and is shown on the vertical

axis in Figure 2.2. According to IEC PAS 63088 [14], the layers represent information “relevant

12

to the role of the asset”. The layers describe the digital and (some) physical properties and

system structures. The lowest level is called “Asset” and represents the physical asset, as seen

in Figure 2.3.

FIGURE 2.3 LAYERS IN RAMI 4.0

The layers above “Asset” represent the physical asset's virtual representation. However, not

every asset is represented in the physical world in “Asset”, e.g., a digital asset. Each layer is

explained and exemplified in Table 2.2.

TABLE 2.2 ARCHITECTURE AXIS WITH EXAMPLE

Layer According to IEC PAS 63088 [14] Example with PLC

Business The commercial view, i.e., modelling

rules that the I4.0 system shall follow

PLC provides the ability to control and

monitor field equipment

Functional Functions of an asset (technical

functionality) regarding its role in the

I4.0 system

PLC data is used to determine if other

processes should be started (e.g.,

open/close a valve)

Information The data that is used, generated or

modified by the technical

functionality of the asset

The data produced by the PLC or signals

the PLC receives from equipment in

field

Communication Which data is used, where it is used

and when it is distributed

Standardised I4.0 communication

through AAS

Integration A transition from the physical world

to the information world

Data from the PLC is communicated to

AAS

Asset The asset in the physical world and a

connection to the integration level

PLC

Hierarchy levels

The hierarchy levels are illustrated in Figure 2.2 on the right-hand side of the horizontal axis.

IEC PAS 63088 [14] describes this axis to be “based on the reference architecture model for a

factory along the lines of IEC 62264-1 and IEC 61512-1”. These two standards ensure

consistent consideration of the layers when integrating enterprise IT and control systems.

Hierarchy levels “Product”, “Field Device”, and “Connected World” have been supplemented

to reflect the needs for I4.0 [14]. “Product” and “Field Device” was added to differentiate

between the states type and instance of assets, respectively. In addition, the level “Connected

13

World” was added, connecting the functionalities of an asset in a plant to its connected world

in the IIoT [16].

TABLE 2.3 RAMI 4.0 COMPARED TO PURDUE

Level RAMI 4.0 hierarchy level Purdue model

6 Connected word External network

5 Enterprise Enterprise network

4 Work centres Site business planning network

3 Station Site operation and control

2 Control device Area supervisory control

1 Field device Basic control

0 Product Physical process

The hierarchy levels bear a resemblance to the Purdue model. The Purdue model is an enterprise

reference architecture with a generic network architecture set, like the hierarchy levels in RAMI

4.0 [18]. Table 2.3 compares these two models. The upper levels correlate nicely. Initially, the

Purdue level stopped at level 5, but level 6 was added to accommodate the IIoT and I4.0, as

data may be transferred from the enterprise. The lower levels do not transfer because levels 0

and 1 in RAMI 4.0 differ on asset type and instance. In contrast, in the Purdue model, level 0

corresponds to an asset and level 1 is the control of the asset.

2.3 I4.0 COMPONENT

I4.0 components encompass various digital technologies, tools, and systems that enable

advanced automation, data exchange, and intelligent decision-making in the manufacturing and

industrial sectors. This section will explore how an AAS can transform an asset into an I4.0

component and the requirements to become an I4.0 component. This section is based on an

excerpt from the specialisation project report [6].

FIGURE 2.4 INDUSTRY 4.0 COMPONENT

IEC TR 63283 [14] defines an I4.0 component as “a globally and uniquely identifiable

participant capable of communication and consist of the AAS and the asset (as in Figure 2.4)

with a digital connection within an I4.0 system”. An I4.0 system is simply a system that, among

other things, consists of I4.0 components. A component is globally and uniquely identifiable if

one can unambiguously distinguish it from another [7]. Identifiers will be further discussed in

Chapter 2.5. An I4.0 component uses the AAS to map a physical asset's relevant properties and

information to the information world of RAMI 4.0 [16].

14

An I4.0 system may consist of both I4.0 components and non-I4.0 components. The integration

of non-I4.0 components into the I4.0 network requires a means for participation and

communication with other I4.0 components. An AAS may serve as the intermediary component

to fulfil this requirement. The AAS acts as the bridge, enabling non-I4.0 components to engage

within the I4.0 network and establish seamless communication with other I4.0 components.

Components can be split into four categories for the classification of communication and four

categories for presentation. The classification of communication determines how capable the

asset is of communicating with the rest of the system, from no communication up to I4.0-

compliant communication. The communication capabilities are further explained in Table 2.4.

TABLE 2.4 COMMUNICATION CAPABILITY OF AN ASSET

Communication

capability

Explanation according to IEC PAS

63088 [14]

Example

None Asset without communication

capability

An old-fashioned mercury

thermometer

Passive Asset stores the data and information,

and it is accessible to read using an

interface

A simple thermometer where data

can be accessed through a barcode

Active Asset is capable of actively

participating in network communication

A thermometer which is capable of

network communication

I4.0 compliant Asset is an I4.0 component A thermometer with AAS

The classification of presentation looks at how the asset is presented in I4.0, i.e., its publicity

in the information system [14], explained in Table 2.5.

TABLE 2.5 PRESENTATION OF AN ASSET

Presentation Explanation according to IEC PAS 63088 [14] Example

Unknown Asset is not known in the information world A screw

Anonymously

unknown

Asset can only be recognised in the information world

as an asset of a particular type at a particular place

A screw in a box

with other screws

Individually

known

Asset is unambiguously identifiable with a unique

name known in the information world which can

identify the asset in the physical world as well

A screw with a

nameplate and serial

number on

Administered as

an entity

Asset is administered as an entity, meaning due to its

importance, it is administered in the information world

A screw with AAS

Combining these two classifications gives one the classification for communication and

presentation (CP). The CP combination determines if the component has the correct properties

for an I4.0 component. The CP classification is shown in Table 2.6, where the communication

capabilities are horizontal, and the presentations are vertical. The boxes marked with “X”

indicate the possibility of achieving the presentation and communication as a non-I4.0

component. The “I4.0 C” boxes indicate the presentation and communication results in an I4.0

component.

As seen in Table 2.6 below, an I4.0 component cannot be unknown, anonymously known or

individually known. It must be administered as an entity in the information world. It is done in

a particular way when implemented in the AAS software and will be shown later in the thesis.

15

Additionally, to be identified as an I4.0 component, the asset should have at least passive

communication capabilities. The asset must have a memory for storing information and be

accessible through an arbitrary interface. Having the highest level of communication

capabilities, I4.0-compliant communication, is not essential but functional.

TABLE 2.6 COMMUNICATION AND PRESENTATION (CP) CLASSIFICATION

 Communication capability

None Passive Active

I4.0-

compliant

P
re

se
n

ta
ti

o
n

 o
f

an

as
se

t
in

 t
h
e

in
fo

rm
at

io
n

 s
y

st
em

 Administered

as entity
X I4.0 C I4.0 C I4.0 C

Individually

known
X X X X

Anonymously

known
X X

Unknown X

Another, more visual illustration of I4.0 components is shown in Figure 2.5. The asset to the

left is not administered as an entity, meaning it is not represented in the information system

and, therefore, not an I4.0 component. On the other hand, the four assets to the right are I4.0

components because they are represented in the information system by an AAS and are capable

of I4.0-compliant communication, indicated by the lines between them.

FIGURE 2.5 INDUSTRY 4.0 COMPONENTS (ADAPTED FROM IEC PAS 63088 [14])

If an asset that is not an I4.0 component, e.g., the one to the left in Figure 2.5, got an AAS, it

would become an I4.0 component. The AAS administers the asset as an entity, and if the asset

has at least passive communication capabilities, it fulfils the requirements for an I4.0

component.

16

2.4 AAS STRUCTURE AND METAMODEL

This section provides an overview of the composition of the AAS and its structure. The AAS

structure consists of submodels, submodel elements and concept descriptions. This section is

based on an excerpt from the specialisation project report [6].

2.4.1 AAS Composition

The standard IEC 63278-1, Asset Administration Shell Structure [7], defines the structure of a

standardised digital representation of an asset. The AAS consists of several components. Before

going into the details of the AAS, an overview of how everything is connected will be

introduced. Figure 2.6 illustrates the following relations:

• The AAS is associated with an asset.

• The AAS lists submodels, and submodel templates guide the submodels.

• The AAS provides an AAS interface, and AAS user applications access the AAS

interface.

• The AAS responsible has an interest in the asset and creates and governs the AAS.

FIGURE 2.6 ASSET ADMINISTRATION SHELL STRUCTURE (ADAPTED FROM IEC 63278 [7])

The AAS lists submodels which list information that describes the functions and services the

asset can provide. Each submodel represents a specific aspect of an asset, and just like an AAS,

every submodel should have a unique identifier. A submodel can be given by a standardised

submodel template.

The AAS will provide an AAS interface that an AAS user application can access. The AAS

user application makes it possible to read and edit the information in the AAS associated with

the asset.

A person or organisation interested in the asset is called an AAS responsible. The AAS

responsible defines the scope of the AAS, creating it and governing it. Typically, the asset will

only have one AAS containing basic information about functions and services. However, it is

possible to have more than one AAS related to one asset resulting in more than one AAS

responsible, as shown in Figure 2.7. For example, the manufacturer and the user of the asset

create and govern their own AAS for the same asset. Even though there are two AAS, they may

contain different information about the asset. The manufacturer might be interested in the

identification, and a user is interested in the technical data and documentation.

17

FIGURE 2.7 AAS RESPONSIBLE (ADAPTED FROM IEC 63278 [7])

2.4.2 Overview of Structure

An AAS is made up of different elements in a hierarchy structure. Figure 2.8 illustrates the

information that might be included in an AAS. AAS and assets have a unique identifier, and

AAS incorporate the asset’s identifier. The AAS contains asset information in the form of

submodels and submodel elements. An AAS may contain zero or more submodels, usually the

latter. Each submodel may contain submodel elements. The AAS tools use abbreviations for

some of these terms. The most used are submodel (SM), submodel element (SME), and

submodel element collection (SMC). These abbreviations will not be used in the text of this

thesis to maintain better readability.

FIGURE 2.8 ASSET ADMINISTRATION SHELL

Submodel

As stated in the previous section, a submodel represents information and descriptions of

services and will therefore represent a specific aspect of an asset [7]. An AAS may contain zero

or more submodels, each with a unique identifier. In addition, a submodel may contain one or

more submodel elements. The left part of Figure 2.9 illustrates how a submodel template may

18

look, and the right part shows how the instanced submodel may look. Both the template and

submodel are based on the same submodel called Identification and contain the same

information about the asset. The only difference is that the submodel template is a template,

while the other one contains basic information about asset identification.

FIGURE 2.9 SUBMODEL TEMPLATE AND SUBMODEL EXAMPLE

A submodel may use a submodel template for which submodel elements it should contain [7].

In other words, a submodel template provides a structure for a submodel. The entries in a

submodel template are decided based on existing international specifications. For example, IEC

61508 might provide potential sources for safety-related submodel templates.

Figure 2.10 exemplifies how an AAS can contain several submodels and what submodel

elements may be included. Figure 2.10 has three submodels: Identification, Technical Data,

and Documentation. Each of the submodels has four submodel elements. These three

submodels are taken from three submodel templates that IDTA have made and are available on

their GitHub [10].

FIGURE 2.10 SUBMODEL STRUCTURE (ADAPTED FROM PLATFORM INDUSTRY 4.0)

Submodel Element

IEC 63278 [7] defines a submodel element as an “element of a submodel”. IEC 63278 describes

six specialisations of submodel elements. However, PI4.0 proposes thirteen. Six of the most

used submodel elements are presented in Table 2.7. For each of the submodel elements in the

table below, a description from the Details of AAS will be provided. In addition to the

description, a small screenshot from an AAS software will visualise the submodel element.

Underneath the screenshot is a short explanation of the example.

19

TABLE 2.7 SUBMODEL ELEMENTS

SME Description according to [8], [9] Purpose

Submodel

element

collection

(SMC)

Represents hierarchical structures, sets and lists of submodel

elements.

Collection called TechinicalProperties and containing 45

submodel elements.

Structure

Property Represent characteristics referring to property types, e.g., in

standardised dictionaries.

Property representing the product weight.

Information

File Represent complex information of specific data format relating to

a single concept repository entry.

File path for PNG file in the AASX file.

Information

Entity Represent assets that are either represented by an AAS themselves

or assets that are co-managed and are not individually represented

by an AAS.

Entity representing a pressure sensor asset

Information

Reference

element

Represents a comprehensible reference to another entity, such as

an asset, AAS, submodel or submodel element.

Refer to another AAS.

Relationship

Relationship

element

Represents a triple of knowledge: subject, predicate, and object.

References describe the subject and object. The element itself and

its referred concept repository entry describe the predicate.

Contain references to two entities.

Relationship

Concept Description

Concept descriptions, or concept repositories, are crucial in establishing a common vocabulary

and defining relationships within that vocabulary. They are a foundation for facilitating

information exchange and mutual utilisation between software applications. Concept

descriptions can be developed based on standards, manufacturer specifications, or open

community specifications.

In the context of the AAS, IEC 63278 [7] explains that concept descriptions should be

referenced and utilised without being replaced or modified. It is important to note that different

organisations can be responsible for the AAS, submodel templates, and concept repositories.

For example, the IEC CDD concept descriptions are owned and managed by the IEC, while the

submodel template, such as the submodel identification, is managed by another organisation,

like the IDTA. Consequently, the life cycles of concept descriptions and submodel templates

are managed independently to ensure their respective effectiveness and evolution. However,

creating concept descriptions from scratch to customise them to a specific asset is possible.

20

2.5 IDENTIFIERS AND REPOSITORIES

Assets, AAS, submodels, submodel templates and concept descriptions need a unique identifier

that is globally distinct [7], and submodel elements, such as property, are often related to

identifiers. Identifiers are used to identify everything. One of the essential properties of I4.0 is

being identifiable [14], e.g., for ensuring communication. Concept repositories define standard

vocabularies and describe relationships within these vocabularies. Using repositories enables

two or more software applications to exchange information and agree on the interpretation of

it.

2.5.1 Identifiers

The three principal supported identifiers in I4.0 include IRDI, IRI and GUID/Custom,

illustrated in Figure 2.11. The identifiers can be split into local and global identifiers. Local

identifiers are suitable if the AAS data is only accessible by the AAS responsible organisation.

Global identifiers, on the other hand, are accessible to anyone [7].

FIGURE 2.11 IDENTIFIERS (ADAPTED FROM IEC 63278 [7])

International Registration Data Identifier (IRDI) is established by ISO/IEC 11179-6, ISO/IEC

6523, and ISO 29002 as an identification scheme for globally distinct identifiers [8]. IRDI is

used for property definitions and concept descriptions in external repositories, such as ECLASS

or IEC Common Data Dictionary (IEC CDD).

Internationalized Resource Identifiers (IRI) are used to identify resources uniquely. IRI is a set

that also includes other identifiers, such as uniform resource identifiers (URIs) and uniform

resource locators (URLs) [7].

Internal custom identifiers, e.g., Globally Unique Identifier (GUID), are local identifiers used

in-house within the AAS. However, due to the lack of use-case examples and literature

mentions, the purpose of GUID and when it should be applied is unclear.

Details of AAS [8], [9] imply that identification is used for two purposes. The first is “to

uniquely distinguish all elements of an AAS and the asset it represents”. The second one is “to

relate elements to external definitions such as submodel templates and submodel element

21

definitions to bind semantics to the data and functional elements of an AAS” [8]. Meaning

identification is important to refer to one specific element and being able to provide

standardised concept descriptions to them.

Additionally, Details of AAS [8], [9] provides rules for the grammar allowed to use when

creating identifiers. The rules are created to enable the unique identification of concepts.

However, these seem not to be recognised by IEC.

2.5.2 External Repositories

Details of AAS [8], [9] mention two concept descriptions in external repositories: ECLASS and

IEC CDD.

• ECLASS is a global reference data standard for classifying and unambiguously

describing products and services [19].

• IEC CDD is an international standard for all technical and industrial domains, both

electrotechnical and non-electrotechnical, based on the information model of IEC 61360

[20].

One of the main features of ECLASS is its unique identification system, which allows for

creating a data basis needed to network devices and systems [19]. In addition, the standard

provides a uniform, cross-sector framework that categorises goods and services traded

worldwide. Additional machine-readable identifiers are used to include properties such as

supplier name, type designation, or brand.

The IEC CDD is maintained by the IEC, a non-profit organisation that develops standards for

the electrical and electronics industries [20]. IEC CDD is designed to be a comprehensive,

standardised data dictionary that can be used to manage product data across the supply chain.

It includes a set of standardised data elements, attributes, and relationships that can be used to

describe products and their properties. It is designed to be highly consistent and precise, which

makes it easier for companies to exchange product data with their partners and customers.

FIGURE 2.12 EXTERNAL REPOSITORIES

Their key differences lie in their respective application domains, industry coverage, and the

types of information they provide. For example, ECLASS primarily serves as a classification

system for products and services in e-commerce and procurement, while IEC CDD is focused

on standardising terminology and data modelling in the electrotechnical engineering domain.

22

ECLASS and IEC CDD provide standardised repositories in a hierarchical system with

references to higher and lower-level elements. At the top level of the hierarchy, a single root

node represents the entire repository structure. Below the root node, different nodes represent

the various aspects of the system, such as the physical, logical, and functional components.

These nodes are arranged in a hierarchical tree structure, where each node can have child nodes

and sibling nodes.

The hierarchical structure employed within external repositories holds significant importance

in AAS, as it enables the creation of submodels and submodel elements. Therefore, a

comprehensive examination of relevant examples is warranted to illustrate this practice. In this

analysis, the implementation of the IEC CDD will be utilised, given that a license is required

to implement ECLASS. Initially, attention will be directed towards Table 2.8., which showcases

a specific class, namely the "temperature sensor," encompassing the information associated

with a temperature sensor. Other attributes of a class include the unique IRDI and the name and

definition. The hierarchical structure is also elucidated by including parameters such as the

super class "sensor." Furthermore, this class incorporates three additional higher-level classes

and a collection of properties inherited from these higher-level and super classes.

TABLE 2.8 TEMPERATURE SENSOR CLASS FROM IEC CDD

Class

IRDI 0112/2///61360_4#AAA110#001

Preferred name Temperature sensor

Short name TMP

Definition sensor operating on temperature; i.e. intensity of heat

Super class 0112/2///61360_4#AAA103 - sensor

Higher level classes 0112/2///61360_4#AAA002 - electric/ electronic component

0112/2///61360_4#AAA001 - component

0112/2///61360_4#AAA000 - electric/electronic components

Properties 0112/2///61360_4#AAE688 - thermal resistance

0112/2///61360_4#AAE753 - inside diameter

0112/2///61360_4#AAE685 - temperature

…

There is also a nice parallel to computer science and programming with a higher-level structure.

A class will inherit the properties of its super and higher-level classes, just like in computer

science, where one class can inherit functions and properties from another.

In addition to classes, there are properties called concept descriptions or property definitions.

Properties have some of the same parameters as classes, such as a unique IRDI, name and

definition. Different from classes, properties have parameters for unit, code for unit and value

list. The parameters unit and code for unit refer to which unit the property is measured in, which

will be presented shortly. A value list is a list with accepted value items referred to by its own

IRDI. A property may not fill all these parameters, as seen in Table 2.9 and Table 2.10.

23

TABLE 2.9 TEMPERATURE PROPERTY FROM IEC CDD

Property

IRDI 0112/2///61360_4#AAE685#001

Preferred name temperature

Short name @T

Definition temperature of a component, or its environment, as a variable

Primary unit °C

Data type INT_MEASURE_TYPE

Value list

Definition class 0112/2///61360_4#AAA001 - component

Code for unit 0112/2///62720#UAA033 - degree Celsius

The property in Table 2.9, temperature, is stated to be measured in unit degrees Celsius, but

there are no value items listed in the value list. Table 2.10, on the other hand, the property body

shape has no unit listed, but the value list is filled with value items, e.g., rectangular. It is

because they have different data types. Temperature has data type INT_MEASURE_TYPE,

while body shape has ENUM_CODE_TYPE. IEC 61360, commonly known as IEC CDD,

defines these data types as follows [21]: “Temperatures data type INT_MEASURE_TYPE may

be used for values containing values that are measures of type INTEGER. The enumeration

types may be used to specify that a value's content shall be taken from a predefined set of values.

Body shapes specific enumeration type, ENUM_CODE_TYPE, may be used for values

referencing a set of strings or numerals as values, each representing assigned meanings.”

TABLE 2.10 BODY SHAPE PROPERTY FROM IEC CDD

Property

IRDI 0112/2///61360_4#AAF344#001

Preferred name Body shape

Short name Body-shape

Definition code of the shape of the body of an electric/electronic or

electromechanical component

Primary unit

Data type ENUM_CODE_TYPE(0112/2///61360_4#ASA215)

Value list 0112/2///61360_4#AUA4CD - rectangular

0112/2///61360_4#AUA4CE - elliptical shaped

0112/2///61360_4#AUA4CF - horizontal cylindrical

…

Definition class 0112/2///61360_4#AAA001 - component

Code for unit

As briefly mentioned, some units are used when describing properties. Like classes and

properties, units also have a unique IRDI, name and definition, and a source for the definition.

The unit also has a parameter called applicable properties, a list of all properties that use a given

unit. For example, in Table 2.11, the unit degree Celsius is shown. Notice that property

24

temperature is listed under applicable properties. Temperatures IRDI informs it is the same

temperature property listed in Table 2.9 since the IRDI is identical.

TABLE 2.11 DEGREE CELSIUS UNIT FROM IEC CDD

Unit

IRDI 0112/2///62720#UAA033#001

Preferred name degree Celsius

Short name °C

Definition unit of the temperature of which the scale is defined by two fixe-points,

the temperatures of freezing and boiling point of water at normal pressure

(air pressure of 1 013,25 hPa)

Definition source ISO 80000-5:2007

Applicable properties 0112/2///61360_4#AAE685 - temperature

0112/2///61360_4#AAE138 - switching temperature

0112/2///61360_4#AAE115 - maximum surface temperature

0112/2///61360_4#AFD116 - operating ambient temperature

…

An example is provided in Table 2.12 to illustrate how specific and unambiguously IEC CDD

is. Both columns describe a property for temperature, but one is measured in the unit “Cel” and

the other “°C”. Their slight difference results in different IRDIs.

TABLE 2.12 TEMPERATURE PROPERTY FROM IEC CDD

Property temperature

IRDI 0112/2///61360_4#AAE685#005 0112/2///61360_4#AAE685#001

Preferred

name

temperature temperature

Definition The temperature (in Cel) of a component,

or its environment, as a variable

The temperature of a component, or its

environment, as a variable

Primary

unit

Cel °C

In addition to having similar properties with different IRDI in IEC CDD, there are also similar

properties with different IRDI in ECLASS. Since ECLASS and IEC CDD are separate and

independent standards, they provide almost identical descriptions of properties but with

different IRDI. The information on the unit degree Celsius from IEC CDD and ECLASS is

shown in Table 2.13. The definitions are identical but still different IRDI, which is unfortunate.

Let us consider a straightforward example highlighting the drawbacks of having multiple IRDI

for the same concept. Suppose a temperature sensor utilises a unit description provided by IEC

CDD. Now, imagine the need to communicate with a machine owned by others that operates

based on ECLASS. In this scenario, when transmitting the measured temperature value along

with the IRDI to indicate its meaning, the receiving machine fails to comprehend the conveyed

information. Consequently, the machine receives an unknown number along with an unfamiliar

IRDI. This exemplifies the impact of different repositories on hindering interoperability.

25

TABLE 2.13 UNIT IN IEC CDD VERSUS ECLASS

Unit degree

Celsius
IEC CDD [21] ECLASS [22]

IRDI 0112/2///62720#UAA033#001 0173-1#05-AAA567#004

Preferred

name

degree Celsius degree Celsius

Definition unit of the temperature of which the

scale is defined by two fixe-points, the

temperatures of freezing and boiling

point of water at normal pressure (air

pressure of 1 013,25 hPa)

unit of the temperature of which the

scale is defined by two fixe-points, the

temperatures of freezing and boiling

point of water at normal pressure (air

pressure of 1 013,25 hPa)

Definition

source

ISO 80000-5:2007 SI brochure, DIN 1301-1

Primary unit °C °C

In addition to IEC CDD and ECLASS, other interoperability standards are relevant to the

industry, such as ISO 15926 [23]. ISO 15926 is standard series for interoperability called

Integration of life-cycle data for process plants, including oil and gas production facilities.

However, the ISO standard will not be explored further as it is not mentioned in the AAS

context.

2.6 AAS ON SYSTEM LEVEL

At its core, an AAS acts as a digital twin of a physical asset, providing a unified and consistent

view of its data and capabilities across the entire asset lifecycle. Usually, there is more than one

asset operating in a plant, meaning the AASs must work together. This section will provide an

overview of the AAS on system level, describing the various components and interactions

involved in its operation.

FIGURE 2.13 AAS ARCHITECTURE PLACED IN RAMI4.0 (ADAPTED FROM [24])

26

The previously mentioned RAMI4.0 can represent the architecture of AAS, as seen in Figure

2.13. The different blocks in the diagram are colour-coded to correspond to specific layers in

the RAMI4.0. The conceptual architecture of AAS involves modelling physical assets in the

digital domain using Details of AAS [8], [9], transforming them into a digital model, and

enabling communication between the physical and digital domains through standardised

protocols.

The bottom layer represents physical assets, and their attributes and data interfaces are

important for users to operate them. To model an asset in the digital domain, the users abstract

the interfaces and attributes of the asset using meta-model instances provided by the AAS

standard. The AAS model specification allows users to describe the asset's attributes and

interfaces. A computing node with an AAS agent reads the AAS model specification and

transforms it into a digital model within the AAS environment. This transformation ensures a

one-to-one mapping between the physical asset's attributes, interfaces, and digital counterparts

as model elements.

Through the AAS agent, the AAS model specification guides the services in the service domain

to access the attributes and interfaces of the physical asset. If necessary, the AAS interface in

the physical and service domains can translate between proprietary protocols and generic,

standardised protocols used in the digital domain.

2.6.1 Composite AAS

A composite AAS is a type of AAS that represents a complex system consisting of multiple

individual assets or components, each with its own respective AAS. It provides a way to

integrate and manage these individual AASs to create a complete digital representation of the

system. In addition, the composite AAS includes information about the interconnections and

dependencies between the individual assets and their respective AASs and the overall behaviour

and performance of the entire system. It allows for better monitoring, control, and optimisation

of the system's overall operation and more accessible communication between different parts

of the system.

Composite AASs are especially useful for large and complex systems, such as manufacturing

plants or transportation networks, where there may be a high degree of interdependence

between different components. By using a composite AAS, it is possible to gain a

comprehensive view of the system and to identify potential issues or areas for improvement.

Another benefit of composite AASs is more accessible communication between different parts

of the system. By providing a common language and interface, a composite AAS makes it easier

for different components to exchange information and work together. This can lead to improved

coordination, collaboration, and better decision-making.

An example will be provided to understand better how AAS composite works. Consider a

manufacturing plant that produces various products using different machines and processes.

Each machine in the plant has its own set of sensors that collect data on the machine's

performance and status. This data can be used to optimise the plant's overall efficiency and

productivity. An AAS can be created for each machine, representing the machine as a "thing",

or an entity, in the system. The AAS can contain information such as the machine's location,

manufacturer, model and sensor data such as temperature, pressure, and vibration. The AAS

27

can also include metadata such as the machine's operating instructions, maintenance schedules,

and historical data.

FIGURE 2.14 COMPOSITE AAS

Each machine's AAS can be connected to a higher-level AAS, a composite AAS representing

the plant. The composite AAS can aggregate data from each machine's AAS to gain insights

into the plant's overall performance. For example, suppose one machine is experiencing a high

failure rate. In that case, the plant-level AAS can use this information to schedule maintenance

or adjust the production process to avoid further disruptions. In this way, the AAS can enable

seamless communication and coordination between different machines and systems within the

plant, leading to increased efficiency and productivity.

2.6.2 Modelling Composite AAS

In Bratbak’s master thesis [25], he writes about modelling composition in the AAS, where he

went through the composite metamodel in detail. Figure 2.15 is partly inspired by his thesis

and partly by the composite AAS description in Details of AAS [8], [9]. The figure provides an

overview of how relations can be modelled in a composite AAS.

FIGURE 2.15 MODEL OF COMPOSITE AAS (DESCRIBED IN [8], [9])

The composite AAS represents a composite asset which represents other assets. The composite

AAS should contain two specific submodels to represent interconnections and dependencies in

a system: Composite AAS relationship and bill of material. Submodel Composite AAS

relationship should contain one submodel element of the type relationship element for each

28

AAS that the composite AAS consists of. The relationship element contains two elements, or

pointers, to two AAS that has a relationship. E.g., if asset 1 and 2 is somehow related in the

plant, the AAS to asset 1 and 2 would be placed in a relationship element in the submodel.

FIGURE 2.16 SCREENSHOT FROM AASX PACKAGE EXPLORER OF SUBMODEL BILL OF MATERIAL

The other submodel, bill of material, should contain one submodel element of entity for each

asset in the composite asset. Each entity lists the identification of its asset and has a pointer to

it. In addition to the entity element, this submodel should also include a relationship element.

The relationship element should be between an asset and the composite asset, not the AASs like

in the submodel Composite AAS relationship. An example of how the submodel bill of material

may display the entities and their relationship is illustrated in Figure 2.16. The grey boxes are

the entities, and the text between them represents their relationship element and its identifier.

2.7 INFORMATION EXCHANGE

The previous section looked at how an AAS can refer to and relate to other AAS. This section

will look at types of information exchange regarding AAS. PI4.0 specifies in Details of AAS

[8], [9] three types of information exchanged. BaSyx [26] shares PI4.0s thoughts on how

information may be exchanged. This chapter will present PI4.0 and BaSyx's three types of

information exchange: file exchange, application programming interface (API), and I4.0

network illustrated in Figure 2.17. These three information exchange types are also called Type

1, 2 and 3.

2.7.1 Type 1 - File Exchange

Information exchange by file exchange is described in part 1 of Details of AAS [8]. That

document aims to make selected specifications of the structure of the AAS so that information

about assets and I4.0 Components can be exchanged meaningfully between partners in a value-

creation network.

29

FIGURE 2.17 INFORMATION EXCHANGE (ADAPTED FROM PLATFORM INDUSTRY 4.0)

File exchange between partners in the value chain may be done through four steps [8]. The first

step is to define the AAS in an appropriate format, e.g., XML (eXtensible Markup Language).

XML is a data format for representing structured information [27]. To define the AAS means

to design and create the AAS with submodels and submodel elements. Next, the additional files

(e.g., PDF, PNG) must be selected. The additional files may be datasheets, diagrams, photos,

or other documents related to the asset. The next step is to combine the AAS and selected files

in a standardised exchange format, e.g., AASX format. The last step is determining a secure

way to exchange the AASX file, and the .aasx file containing the AAS is delivered together

with the asset, as shown in Figure 2.18.

FIGURE 2.18 DATA TRANSFER

BaSyx [26] explains the information exchange similarly. The AAS is serialised in XML or

JSON (JavaScript Object Notation) and should contain static information regarding the asset.

The data model is defined by the AAS information meta model specified in IEC 63278-2 [7].

2.7.2 Type 2 - API

API information exchange is described in Details of AAS part 2 [9]. The document underlines

that an API can be specified in different technologies, but it offers a technology-neutral

specification of the interfaces. HTTP/REST, MQTT and OPC UA are mentioned as capable

technologies for API. These will be further explained in Chapter 3.

30

FIGURE 2.19 INFORMATION EXCHANGE TYPE API

The API provides standardised software functions to access the AAS outside the local network

and exchange real-time and static data. API has the function of the AAS user application in

Chapter 2.4. In addition, it can act as an access point for information stored in an AAS on a

server. BaSyx [26] suggests that information exchange by API only exists as runtime instances,

as they are hosted on servers and may contain dynamic and static information.

2.7.3 Type 3 - I4.0 Network

I4.0 network exchange data through I4.0 communication will be published in part 3 of Details

of the Asset Administration Shell. Unfortunately, there is no mention of when part 3 will be

published, but according to [28], it is in progress, and it will be called “Infrastructure, which

hosts and interconnects multiple AAS”. In other words, part 3 will specify I4.0 networks, the

third type of information exchange.

FIGURE 2.20 I4.0 NETWORK

BaSyx [26] explains the type of information exchange as an extension and smarter version of

API where AAS can communicate and negotiate with each other on its own.

31

This chapter explores the essential components of AAS software and communication. It begins

by introducing the AASX Package Explorer and AASX server, which enable the creation,

modification, and deployment of AAS instances. The next part delves into data exchange and

communication protocols, such as HTTP, OPC UA and MQTT, that facilitate seamless

interoperability. Additionally, the data formats for representing AAS data will be presented.

Lastly, reviewing the literature and use cases demonstrates the practical applications of AAS in

various industries.

3.1 AASX PACKAGE EXPLORER AND SERVER

ASSX Package Explorer is software available through IDTAs GitHub Admin Shell IO [10].

AASX Package Explorer is a C# based viewer and editor for AAS, meaning it is intended to

create AAS from scratch by adding submodels, submodel elements and concept descriptions.

It is also possible to open .aasx files and look at existing AASs in the AASX Package Explorer.

In addition to IDTA’s AASX Package Explorer, there are other open-source AAS solutions

available, and according to IDTA [10], they are:

• BaSyx [29] offers multiple modules to cover a broad range of I4.0 topics, including

AAS, resulting in a complex architecture.

• Fraunhofer Advanced Asset Administration Shell Tools (FA³ST) Service [30]

implements the Details of AAS and provides an easy-to-use re-active AAS (Type 2

API) hosting custom AAS models.

• PyI40AAS [31] is a Python module for manipulating and validating AAS.

• SAP AAS Service [32] is a Docker-based system that implements the RAMI 4.0

reference architecture, including AAS.

• NOVAAS [33] is an implementation of AAS that uses JavaScript and a low-code

development platform called Node-Red.

These projects aim to implement a wide range of programmatic features. In contrast, the AASX

Package Explorer is a tool with a graphical user interface designed to showcase the potential of

AASs. Its purpose is to target both technically inclined and less technically inclined users. From

3

AAS SOFTWARE AND COMMUNICATION

32

here IDTAs AASX Package Explorer will be referred to as Package Explorer. A screenshot of

it is shown below in Figure 3.1.

FIGURE 3.1 SCREENSHOT OF AASX PACKAGE EXPLORER

IDTA has also created an ASSX server on their GitHub [34]. The server hosts AASX. The

server is based on code from Package Explorer, and three different variants are available. They

are explained as follows in [34]:

• blazor. This variant uses the blazor framework to provide a graphical user interface in

the browser for exploring the AASX packages. The other APIs are the same as in

the core variant.

• core. This is a server based on .NET Core 3.1.

• windows. This variant uses .NET Framework 4.7.2, the only way to start a server on

your Windows machine without administrator privileges.

Furthermore, starting with the windows variant of the AASX server is recommended before

trying blazor. Unfortunately, the documentation provided on their GitHub is limited. It is

possible to run the server with either MQTT, REST or OPC UA, but how to do any of it is not

provided. It is possible to communicate with the server from the command window on any

computer connected to the same network as the server. Information retrieval is done by the

utilisation of an API by sending a request. An adequate description of the REST API is

provided, but that is the only thing with decent documentation.

AASX server and Package Explorer are made to co-exist and work together. It is, therefore,

possible to connect Package Explorer to the server and view the AAS content uploaded onto

the server. It is also possible to edit the AASs uploaded on the server in Package Explorer, as

shown in Figure 3.2. Sometimes, the AASX server and Package Explorer are hosted on the

same computer, but accessing the AASX server remotely is possible.

33

FIGURE 3.2 AASX PACKAGE EXPLORER AND SERVER

GitHub Admin Shell IO [10] has also published nineteen repositories related to AAS and its

implementation in Package Explorer. Furthermore, one repository exists for submodel

templates, and it is frequently updated with templates under development and newly published

that are possible to upload to Package Explorer when creating AAS. In addition, IDTA manages

a server also called Admin Shell IO [11] that provides AAS examples, an AASX-server

demonstrator and instructive screencasts. The AAS examples come as .aasx files that can be

downloaded and opened locally in Package Explorer. The AASX server demonstrator is of the

variant blazor and is available online [35], where several AASs are uploaded and possible to

open and explore. The screencasts are short, informative videos that provide a basic

introduction to I4.0 and AAS and how to use Package Explorer.

3.2 DATA EXCHANGE AND COMMUNICATION

Data exchange and communication are essential for enabling devices and systems to interact

with each other and share information. This section will explore several commonly used

communication protocols and data exchange formats, including HTTP, MQTT, OPC UA,

REST and serial communication.

• Communication protocols: MQTT, HTTP, OPC UA

• Architectural style: REST

• Data Exchange technology: serial communication

3.2.1 MQTT

MQTT (Message Queuing Telemetry Transport) [36] is a lightweight messaging protocol for

small sensors and mobile devices optimised for high-latency or unreliable networks. It is

designed for connections with remote locations where a "small code footprint" is required or

the network bandwidth is limited. The publish-subscribe messaging pattern requires a central

server, called a broker, to send messages to clients and/or receive messages from clients. MQTT

is often used for machine-to-machine communication and Internet of Things (IoT) applications.

34

3.2.2 HTTP

HTTP (Hypertext Transfer Protocol) is an application-layer protocol widely used for

communication on the World Wide Web [37]. It is the foundation for data communication

between web browsers and servers. HTTP allows retrieving and transmitting resources, such as

HTML documents, images, videos, and other types of files, over the internet. It follows a client-

server model, where the client (typically a web browser) sends requests to the server, and the

server responds with the requested data. HTTP operates on top of the TCP/IP protocol, utilising

a set of rules and methods for data exchange, including GET, POST, PUT, and DELETE. The

most common type of request is a GET request, which requests data from a specified resource,

while the most common type of response is the HTTP 200 OK, which indicates that the request

was successful. It is a stateless protocol, meaning each request is independent and does not

retain information about previous requests.

3.2.3 OPC UA

OPC UA (Open Platform Communications Unified Architecture) [38] is a machine-to-machine

communication protocol widely used in industrial automation and the IoT. It provides a

standardised and secure framework for exchanging data and information between devices,

systems, and applications in industrial environments. OPC Foundation [39] describe OPC UA

as an interoperability standard (IEC 62541) for reliable and secure data exchange in industrial

automation and other industries. OPC UA offers a robust and scalable solution for

interoperability, enabling seamless communication across different platforms, operating

systems, and programming languages. In addition, it allows for the exchange of various data

types, including real-time data, historical data, alarms, and events.

One of the features of OPC UA is its platform independence, allowing it to work across different

hardware and software systems. In addition, it provides a flexible information modelling

framework that allows users to define their own data structures, object types, and services. This

extensibility makes OPC UA highly adaptable to different industry requirements and use cases.

The architecture of OPC UA is based on a client-server model, where a client requests and

accesses data or services from an OPC UA server. The server hosts the data and provides

services to clients, facilitating data exchange and interoperability between different devices and

systems.

3.2.4 REST

REST (Representational State Transfer) [40] is an architectural style for designing web services

that are lightweight, scalable, and easy to maintain. The original paper on REST was in

Fielding’s PhD dissertation in 2000 [41]. REST is based on a set of constraints that emphasise

simplicity, uniform interfaces, and stateless interactions between clients and servers.

In a RESTful system, resources are identified by URIs (Uniform Resource Identifiers), and

clients interact with these resources using a small set of well-defined HTTP methods (GET,

POST, PUT, DELETE) to perform operations on the resources. Responses are typically in a

machine-readable format such as JSON or XML.

35

REST has become increasingly popular due to its simplicity and flexibility, and it is commonly

used for building APIs for web-based applications.

3.2.5 Serial Communication

Serial communication [42], or RS232 communication, allows microcontrollers to exchange

data with other devices. It can be achieved by connecting the microcontroller to a PC or another

microcontroller using the serial communication protocol. Some microcontrollers have built-in

hardware known as a Universal Synchronous-Asynchronous Receiver-Transmitter (USART)

that implements the serial communication interface to facilitate this. The user program can

typically choose the baud rate and data format. If serial I/O hardware is not provided,

developing software to implement serial data communication using any I/O pin of a

microcontroller is possible.

3.3 DATA FORMATS

Data formats are essential to modern computing, enabling information storage, retrieval, and

exchange between systems and applications. This section will explore several commonly used

data formats, including JSON, XML and AML. JSON, XML and AML are data interchange

formats for transmitting structured data over the internet. JSON is a lightweight format used for

data exchange between web services and applications, while XML is a more flexible format

used for a wide range of data exchange applications. AML is based on XMLs flexible format.

PI4.0 also mentions another format called RDF (Resource Description Framework) as a

serialisation format in the Details of AAS [8]. RDF is described as a data format that enables

full use of the advantages of semantic technologies. However, IEC does not mention RDF, nor

does it seem to be a preferred format. Therefore, it will not be used further in this thesis. Instead,

XML, AML and JSON will be explained in the following sections, with examples based on the

same information.

3.3.1 XML

XML (eXtensible Markup Language) [43] is a markup language that is used to store and

exchange structured data. It is a popular format for representing data in web applications, APIs,

and other contexts where data needs to be exchanged between different systems.

XML is often used in web applications to exchange data between the client and server [44]. For

example, when a user submits a form on a website, the data can be sent to the server as an XML

document, where it can be processed and stored. Similarly, when a server sends data back to

the client, it can be sent as an XML document that can be easily parsed and displayed in the

user interface.

The basic structure of an XML document is a collection of elements, where each element has a

start tag, an end tag, and content between the tags. Elements can contain other elements,

attributes, and text. Example from [45]:

36

<employees>

 <employee>

 <name>Shyam</name>

 <email>shyamjaiswal@gmail.com</email>

 </employee>

 <employee>

 <name>Bob</name>

 <email>bob32@gmail.com</email>

 </employee>

 <employee>

 <name>Jai</name>

 <email>jai87@gmail.com</email>

 </employee>

</employees>

3.3.2 AML

AML stands for Automation Markup Language, an open and neutral data exchange format used

in industrial automation. AML is described in IEC 62714 and allows information models'

modelling, storage and exchange [46]. It is designed to facilitate the exchange of engineering

data and information between different software tools, systems, and devices throughout the

lifecycle of a manufacturing system. AML provides a standardised representation of automation

engineering information, including the structure, behaviour, and configuration of industrial

assets such as machines, equipment, devices, and processes. It enables the interoperability and

integration of various engineering tools and systems involved in manufacturing systems' design,

configuration, simulation, and operation.

The main goal of AML is to improve efficiency, consistency, and accuracy in the exchange of

engineering data across different stages of the system lifecycle, from initial design and

engineering to maintenance and operation. Using AML, manufacturers can streamline the

integration process, reduce manual data entry, and ensure data consistency between different

software applications. AML is based on the XML standard, which allows for the flexible

representation of structured data. An example of how AML may look is shown below.

<InstanceHierarchy>

 <InternalElement Name="employees">

 <InternalElement Name="employee">

 <Attribute Name="name">Shyam</Attribute>

 <Attribute Name="email">shyamjaiswal@gmail.com</Attribute>

 </InternalElement>

 <InternalElement Name="employee">

 <Attribute Name="name">Bob</Attribute>

 <Attribute Name="email">bob32@gmail.com</Attribute>

 </InternalElement>

 <InternalElement Name="employee">

 <Attribute Name="name">Jai</Attribute>

 <Attribute Name="email">jai87@gmail.com</Attribute>

 </InternalElement>

 </InternalElement>

 </InstanceHierarchy>

37

3.3.3 JSON

JSON (JavaScript Object Notation) [47] is a lightweight data-interchange format that transmits

data between systems. It is often used in web applications, APIs, and other contexts where data

needs to be transferred between different platforms or programming languages.

JSON is designed to be easy to read and write for humans and easy to parse and generate for

machines [48]. It is based on a subset of the JavaScript programming language and is therefore

supported by most modern programming languages. JSON is often used in web applications to

exchange data between the client and server. For example, when a user submits a form on a

website, the data can be sent to the server as a JSON object, where it can be processed and

stored. Similarly, when a server sends data back to the client, it can be sent as a JSON object

easily parsed and displayed in the user interface.

The basic structure of a JSON object is a collection of name-value pairs, where each name is a

string, and each value can be a string, number, object, array, boolean, or null. Objects in JSON

are enclosed in curly braces, and arrays are enclosed in square brackets. Example from [45]:

 {

 "employees": [

 {

 "name": "Shyam",

 "email": "shyamjaiswal@gmail.com"

 },

 {

 "name": "Bob",

 "email": "bob32@gmail.com"

 },

 {

 "name": "Jai",

 "email": "jai87@gmail.com"

 }

]

}

3.4 NODE-RED

Node-RED [49] is an open-source visual programming tool built on Node.js for building IoT

applications and integrating different systems and devices. The platform provides a visual

programming interface through a web-based editor that allows users to create and deploy event-

driven flows, also called "flows", that integrate different data sources, services, and devices.

The flows are stored using JSON data format, making importing and exporting code easy.

FIGURE 3.3 NODE-RED (SOURCE [49])

38

The visual programming model of Node-RED enables users to create complex flows without

writing code. It is achieved by dragging and dropping nodes representing individual pieces of

functionality and connecting them to create a workflow. Additionally, Node-RED comes with

a rich library of pre-built nodes that allow developers to quickly integrate with different

services, devices, and data sources, including MQTT, HTTP, WebSocket, and many others.

Node-RED is scalable and extensible as it is built on top of Node.js, which provides a scalable

and extensible platform for building network applications. It makes it easy to integrate with

other Node.js modules and libraries and to extend Node-RED with custom nodes and plugins.

Furthermore, Node-RED is cross-platform and can be run on various platforms, including

Linux, Windows, and macOS. It can also be deployed to various devices, including Raspberry

Pi, Arduino, and other IoT devices.

With its growing community of users and developers, Node-RED is widely used for building

IoT applications, home automation systems, and other projects that involve integrating different

systems and devices. The platform provides an easy-to-use interface that allows users to build

complex workflows, making it an ideal tool for those with limited programming experience.

UI Dashboard

One of the available plug-ins in Node-RED is the UI (User Interface) Dashboard plugin [49].

The UI Dashboard enables users to create real-time dashboards for IoT projects and other

applications. The library provides a set of pre-built widgets, such as gauges, graphs, and charts,

which can be used to visualise data from different sources, including sensors, APIs, and

databases.

One of the features of the UI Dashboard is its ability to update the dashboard in real-time as

new data is received. It makes it easy to monitor and analyse data in real-time and to respond

quickly to changes and trends.

FIGURE 3.4 EXAMPLE UI DASHBOARD (SOURCE [50])

39

In addition to its pre-built widgets, the UI Dashboard provides a set of APIs and tools that allow

developers to create custom widgets and extend the library's functionality – creating custom

visualisations quickly and integrating the dashboard with other services and applications.

3.5 STATUS ON APPLICATION EXAMPLES

This section will overview relevant and similar work to this thesis. Although most published

use cases provide system-level descriptions of AAS without detailed structure information, they

will still provide an understanding of the current state of the art in AAS design and

implementation.

A report by Yallıç et al. [52] presents a case study and different technical solutions using digital

twin technologies to generate AAS. The study demonstrates the implementation of AAS by

integrating a non-destructive testing ecosystem with X-Ray machinery and a sensor. Three tools

were used to create AAS and International Data Space (IDS): Admin Shell IO, Eclipse BaSyx,

and IDS connectors. In addition, Apache StreamPipes and Node-RED were used to connect and

analyse IoT data streams.

Admin Shell IO is the same tool used in the implementation of this thesis. Yallıç’s case study

differs from this thesis as they used an MQTT server and Python script to get the sensor data to

the AASX server and Apache StreamPipes as their endpoint. According to the report Apache

StreamPipes as overlapping functionality with Node-RED. The architecture is shown in Figure

3.5. The report did not disclose details about how the AASs were designed regarding submodels

and submodel elements. The authors conclude that “with the current maturity level of the tools,

it is easy to implement AAS and IDS for digital twin interoperability and to enable secure data

exchanges between different organisations”. When comparing Admin Shell IO and Eclipse

BaSyx, they found it easier to use Admin Shell IO because of its user interface for AAS.

FIGURE 3.5 SIMPLIFIED ARCHITECTURE FROM [51]

Another individual in the field of I4.0, Ye, has published numerous reports on cyber-physical

production systems, including AAS. When pursuing his PhD degree, he published a report

about “Enabled Digital Solution for Robot-Based Manufacturing Systems” [2], where he,

among other things, provided an overview of the architecture for implementation for the AAS

deployment. The architecture overview is shown in Figure 3.6 and provides an easy-to-

40

understand structure of how AAS may interact with other systems. In addition, the report

presents a method for implementing AASs using OPC UA, specifically how to integrate the

AAS model into the OPC UA information model. Finally, the proposed solution was put into

operation in a practical Plug-and-Produce-based testbed, and the author claims that it proves

that it can help make legacy systems I4.0-capable with minimal development efforts and

updating expenses.

FIGURE 3.6 IMPLEMENTATION STEPS FOR THE AAS DEPLOYMENT FROM [2]

In 2022 Ye et al. published a new report [52]. The article discusses the importance of data

interoperability in I4.0 and how the AAS can facilitate communication between cyber

applications and physical devices. However, existing research has neglected the semantic

aspects of information exchange. To address this, the article proposes a data conversion solution

between AASX and Excel, commonly used for managing business-related data. The AASX

model provides appropriate semantic descriptions of information and can reference data

standards such as IEC 61360 (IEC CDD), ensuring data interoperability between enterprise and

control applications. The article validated the data conversion solution using a motor control

scenario and proved the effectiveness of the AASX-based data conversion method. One

limitation is that the current solution requires human operators for data conversion, but future

work will aim to develop an automatic converting solution.

The following bullet points in this section will provide a short description, or summary, of other

articles relevant to AAS. The first line for each bullet point is the title of the article.

• AAS design methodology using embedded OPC UA server [53]

The paper presents an original methodology for designing and implementing embedded

AAS, emphasising minimising computing power and effort. The presented

methodology allows for creating an interoperable embedded device in the network with

I4.0 components and meets I4.0 requirements for data exchange, thanks to the OPC UA

architecture and the AAS concept.

41

• File and API-based interoperability of digital twins by model transformation: An IIoT

case study using AAS [54]

 The paper discusses a solution for achieving interoperability between digital twins

through a model transformation using a customisable mapping model, which allows

bidirectional information exchange in file-based and API-based ways. The solution is

applied to a real-world industrial case using ABB Ability digital twins and the AAS

format.

• Automated design and integration of AAS in components of I4.0 [55]

The paper discusses the structure, components, submodels, and communication

protocols of the AAS in the context of I4.0 and presents an automated AAS creation

method. The study demonstrates a smart production management method using AASs

for individual components in a virtual assembly line, allowing communication between

AASs to negotiate production priorities and requirements based on I4.0 principles.

Despite its demanding implementation, testing and measurement cycles show that OPC

UA is more suitable than MQTT for communication between AASs.

• Harmonization of heterogeneous AAS [24]

The paper compares the mapping of MQTT and OPC UA interfaces for AAS. It

concludes that both offer standardised interfaces and data formats, interoperability, and

abstraction but differ in focus and application scenarios. It emphasises the benefits of a

typical AAS specification for incorporating digital models in automation. Finally, it

outlines the need to develop future mapping rules for other submodel element types.

• Model for predictive maintenance based on AAS [56]

The paper proposes a predictive maintenance (PdM) model based on AAS in the context

of I4.0 and smart manufacturing. The approach leverages on AASs to create a

standardised abstraction layer above assets using different technologies, making them

seamlessly interoperable. The model generalises the steps and functionalities needed to

define a PdM solution and is vital for production systems that adapt their configuration

based on enterprise needs. Furthermore, the AAS contains all the relevant information

about an asset, and future work can demonstrate how new information generated by

procedures of different areas, like PdM, can be used to improve production flexibility.

42

43

In this chapter, an overview of the system design for the AAS demonstrator will be presented.

The system architecture will be thoroughly described at a high level, elucidating its components

and interconnections. This chapter aims to equip the reader to understand the system design and

its components.

4.1 OVERVIEW OF SYSTEM DESIGN

The system design of the AAS demonstrator can be split into three main parts: the AASX server,

the Node-RED server, and the microcontroller Arduino. The AASX and Node-RED servers run

on a computer physically connected to the Arduino via USB, as shown in Figure 4.1. A more

detailed overview of the system design in shown in Figure 4.2, which will be explained further.

FIGURE 4.1 AAS DEMONSTRATOR

The AASX server is where the AASs are stored and updated when appropriate. The

demonstrator uses the version blazor. The blazor display AASX server is an extension of the

AASX server, which provides a real-time visual display of the AAS contents of the AASX

server in the web browser. The AASX Package Explorer is the software used to create the

AASs. This software can also receive real-time values, but it is not done by default.

The Node-RED server mainly provides information flow between the Arduino UNO and the

AASX server. It includes converting data to the appropriate format, among other tasks. In

addition, the Node-RED extension, UI Dashboard, has been implemented as an easy-to-use and

visually appealing user interface, enabling displaying and setting of values used in the Node-

RED code.

4

SYSTEM DESIGN

44

FIGURE 4.2 SYSTEM DESIGN

The final part of the system design is the Arduino UNO. The Arduino UNO is a microcontroller

programmed by the software Arduino IDE. The Arduino UNO is connected to a breadboard

containing various components, making it the only hardware component in the system. Chapter

4.3 will delve deeper into the Arduino UNO setup, providing additional details on its

functionality and relevance to the system design.

4.2 COMMUNICATION

With several servers, software, and other components, they must communicate correctly and in

a way that they can understand each other. Figure 4.3 provides an overview of the

communication protocols and relations between the elements. As the figure shows, the

communication protocols and relations are categorised into three colours. An overall

explanation of them is as follows:

• Blue: online/offline descriptions with addresses

• Orange: description of the relationship between elements

• Green: communication protocols and other connections between elements

The AASX server's default address is http://localhost:51310, if not specified. When the blazor

version of the AASX server is started, the display extension is automatically made for the web

browser. The default address for the blazor display is http://localhost:5001. As mentioned in

the previous section, the Package Explorer is used to create the AAS and can display live data

from the AASX server. However, Package Explorer is not used to displaying live data in this

demonstrator, mainly due to difficulties getting this functionality to work.

The Node-RED server is also assigned a default address, http://localhost:1880.

Appending /UI to the address provides the corresponding URL for accessing the UI Dashboard,

which is an extension of Node-RED. Node-RED communicates with the AASX server using

HTTP communication protocol through the AASX server's REST API. This form of

http://localhost:1880/

45

communication is Type 2 – API information exchange, explained in Chapter 2.7. Node-RED

can both send and receive information from the AASX server.

FIGURE 4.3 DETAILED SYSTEM DESIGN

The Arduino UNO sends and receives data to Node-RED through its serial port via USB. It

means the Arduino is physically connected via USB to a computer with the Node-RED server

running on it. Arduino IDE is the software used to programme the microcontroller, done in

advance and offline. Furthermore, the components on the breadboard are connected to the

Arduino by jumper wires.

4.3 ARDUINO SETUP

The Arduino setup for this demonstrator is relatively simple, as the main objective is not to

showcase its capabilities but rather to provide a simple AAS use-case. Arduino [57] is a

microcontroller board based on the ATmega328P chip. It is one of the most popular boards in

the Arduino family and is commonly used for various electronics, robotics, and programming

projects. The board has 14 digital input/output pins and six analogue input pins and supports

serial communication via USB or a TTL serial port.

The Arduino board can be programmed using the Arduino Software (IDE), free, open-source

software downloaded from the official Arduino website. The software provides an easy-to-use

interface for writing and uploading code to the board, making it accessible to beginners and

experts.

The components are from the Arduino Start Kit [58] and consist of a breadboard with the main

components: one temperature sensor, one small DC motor and two LEDs. Additionally, two

different diodes, two resistors and a 9v battery are used to operate the main components. The

complete overview of components is shown in Figure 4.4, and an electric wiring diagram and

a detailed list of components are available in Appendix C.

46

FIGURE 4.4 ARDUINO SETUP

47

This chapter will provide details about the implementation of the demonstrator. The AAS

structure of a component and a composite asset will be explained in detail. Next, there will be

a section about the AASX server and Package Explorer, their role, and some limitations

discovered during this thesis's work. The following section, Node-RED, presents the

demonstrator's user interface and a detailed explanation of the logic. The Node-RED section

also includes more detailed information about implementing the AASX server in Node-RED

and how Node-RED and Arduino communicate. The last section in this chapter presents how

this setup may be used as a lab exercise and the learning outcome it may produce. Overall, this

chapter should provide a detailed description of the implementation and design decision.

5.1 AAS STRUCTURE

The Package Explorer software was used to create the AAS. When creating an AAS from the

bottom, there are many ways to do it, and since AAS is such a new concept, there is no

“preferred” or standardised way of doing it. Even though many articles have been published on

AAS and I4.0, there are almost no available AAS packages (.aasx file) to explore. The only

place found to provide examples in the form of a .aasx file was IDTAs Admin Shell IO webpage

[11]. IDTA, in collaboration with their partners, have made examples of AAS on various

electrical and automation components. Exploring these premade AAS is a great way to start the

journey of making AASs. By looking at the different AAS and comparing them, one will

discover different ways of implementing information and see first-hand that some practices are

better than others.

In Package Explorer, the first thing to do is create an AAS and an asset. When that is done, the

substantial effort initiates with creating the content of the AAS, starting with the submodels.

There are several ways to create a submodel. Here are some of them:

• Create a submodel from scratch.

• Use the plug-in submodels in Package Explorer.

• Import a submodel from a .aasx file.

• Import a submodel from IEC CDD.

5

IMPLEMENTATION

48

The simplest way is to create a new submodel from scratch, but it requires more work as each

submodel element and concept description must be manually added. In addition, making a

unique submodel custom to a specific instance of an asset does not promote interoperability.

There are some built-in premade submodels that IDTA has created and published as a

suggestion for standardisation. Currently, the submodels available as plug-ins are Document,

Identification, Nameplate, Technical Data, and Imagemap. They are also available on Admin

Shell IO GitHub [10] in the repository “submodel-templates”, along with several other

submodel templates. These can be downloaded as a .aasx file and imported to Package Explorer.

The built-in submodels in Package Explorer are unique because most of them include a

particular submodel element with a unique visual property enabling, for example, visualising

an image or making a visual digital data sheet based on other submodel element properties.

These are marked as “IDTA display” in the tables representing the AAS structure in this

chapter.

Another way of creating submodels is through IEC CDD or ECLASS. Due to ECLASS

requiring a licence, this method has not been tested. IEC CDD, on the other hand, is open and

available. In IEC CDD, it is possible to search for classes, properties and units. When creating

a submodel from IEC CDD, the appropriate class for the asset must be identified and

downloaded. Package Explorer allows importing submodels from a dictionary, meaning from

IEC CDD or ECLASS. The imported IEC CDD class will create a hierarchy submodel with

various submodel elements related to the asset, and all relevant concept descriptions for the

properties and units will be imported. Making this way of creating submodels great, as it uses

a recognised international standard, and Package Explorer does all the work of importing and

implementing.

5.1.1 Component Level

To fully understand how the AAS structure of a component is made and implemented, a detailed

overview of how a LED indicator may be structured will be explained here. In addition to the

LED indicator, five other AAS has been made for the lab exercise and are included as an

attachment (.aasx file) and in table format in Appendix B.

A detailed overview of how one of the LED indicators was implemented is shown in Table 5.1.

The AAS id is of the type custom and was randomly generated by Package Explorer. If a

company had a URL or some form of global or local identification for the component, this is

where it would be stated, using an IRI or IRDI identification. The same goes for the asset id.

The AAS has three submodels Operational Data, LED Indicator and Technical Data. These

three submodels were chosen as they provide some basic information related to the asset and

are created in three different ways.

Operational Data is made from scratch with some inspiration from another AAS example. This

submodel was included as many of the examples provided by IDTA had a submodel named

Operational Data which contains the dynamic data of the property. In this case, the dynamic

data is the state of the LED. The submodel contains only one submodel element of the type

property called LED Behaviour. LED Behaviour is described by a property in IEC CDD, shown

in Table 5.2. Since this property is of data type ENUM_CODE_TYPE, it is not measured in a

unit but in one of the value terms listed in the value list. The value list is unfortunately not

49

imported into Package Explorer, meaning giving a value to the property LED Behaviour must

be done manually and may not be seen as promoting interoperability.

TABLE 5.1 STRUCTURE OF COMPONENT AAS

AAS LED1

Id AAS [Custom] AssetAdministrationShell---1D3E339F

Id Asset [Custom] Asset---442C9579

SM Property CDD Property

0112/2///…

IDTA

Property

0173-

1#02-…

Value CDD Unit

0112/2///…

OperationalData

(self-made)

LEDBehaviour 61987#ABA549

#002

 0

LEDIndicator

(IEC CDD)

ColourOfLEDIndi

cator

61987#ABA545

#001

 RED

LocationOfLEDIn

dicator

61987#ABA546

#001

 24-26

SM SMC

Technical

Data

(IDTA)

TechnicalPro

perties

MaxPowerDisipati

on

61360_4#AAE2

57#004

 0.08 62720#UAA3

06#001

MaxForwardCurre

nt

61360_4#AAE2

74#001

 0.03 62720#UAA1

01#001

MinOperatingTem

perature

61987#ABA927

#002

 -25 62720#UAA0

33#001

MaxOperatingTe

mperature

61987#ABA927

#002

 85 62720#UAA0

33#001

GeneralInfor

mation

ManufacturerNam

e

 AAO677

#002

Shenzhe

n

Industria

l

Develop

ment Co.

MaunfacturerPart

Number

 AAO676

#003

UR502D

C

ManufacturerOrde

rCode

 AAO676

#003

EIO-

68423-

Y46

LED Behaviour was originally imported from IEC CDD in the submodel LED Indicator.

However, it was chosen to be moved to Operational Data as it is a dynamic value that will

change when the state of the LED changes.

Submodel LED Indicator was imported from the IEC CDD class called LED Indicator. The

submodel contains two submodel elements of the type property: Colour of LED indicator and

Location of LED indicator. Both properties are of data type STRING_TYPE, meaning there are

no standardised, valid values. It only states that the value should be in a string or text.

50

TABLE 5.2 PROPERTY LED BEHAVIOUR

Property

IRDI 0112/2///61987#ABA549#002

Preferred name LED behaviour

Definition behaviour of a LED indicating a specific condition

Primary unit

Data type ENUM_CODE_TYPE

Value list 0112/2///61987#ABL213 - on

0112/2///61987#ABL214 - off

0112/2///61987#ABM084 - flashing

0112/2///61987#ABI407 - others

Definition class 0112/2///61987#ABA000 - Equipment for industrial-process automation

Code for unit

The submodel did initially contain more submodel elements than shown in Table 5.1. However,

some submodel elements were not deemed relevant for this use case and therefore removed.

The original hierarchy imported from IEC CDD is shown in Figure 5.1, where property LED

behaviour can be seen in the submodel element collection “Indicated condition”.

FIGURE 5.1 SCREENSHOT OF IMPORT OF SUBMODEL FROM IEC CDD

The third and last submodel in this AAS is called Technical Data and is made from one of the

IDTA submodel template plug-ins. This submodel appears different from the two others in

Table 5.1 because it contains two submodel element collections containing submodel elements.

When a submodel is added from the plug-ins, the submodel elements are also imported but not

component specific. They do not provide any relevant submodel elements for the component

but rather generic properties that may be used in most use cases. For example, some concept

descriptions are imported, but IDTA makes them and has identifiers related to an Admin Shell

IO URL.

The generic information works ok for submodel element collection General Information, where

the properties are related to all components' basic information, such as manufacturer name. On

the other hand, the other submodel element collection, Technical Properties, does not come

with any premade properties. Therefore, all technical properties, e.g., information in a data

sheet, must be administered manually and preferably using a standardised concept description

like in Table 5.1.

51

5.1.2 Composite Level

The structure for a composite AAS is more complex than for a single component since it should

also show the relations between the components it consists of. On component level, there are

more details about the functionality and capabilities of the asset. While on composite level, the

relations between the assets are more critical. The composite AAS structure is shown in Table

5.3 below. Contrary to the component AAS, the composite AAS contain few standardised

properties. Instead, the composite AAS has two submodels that explain in detail how the assets

are related and how the AASs are related.

TABLE 5.3 STRUCTURE OF COMPOSITE AAS

AAS Composite

Id AAS [Custom] AssetAdministrationShell---2259B01E

Id Asset [Custom] Asset---11EEB0BC

SM SME

Property

IDTA

Property

0173-1#02-…

Value

Nameplate

(IDTA)

ManufacturerName AAO677#002 Anne Industries AS

ManufacturerTypName AAW338#001

Mini AAS lab for educational

purposes

YearOfConstruction AAP906#001 2023

CountryOfOrigin AAO841#001 Norway

Overview

(IDTA)

ImageMap IDTA display

File ImageFile /aasx/files/arduino_setup.png

 SME

Relationship Element

 1st reference AAS 2nd reference

AAS

CompositeAASrelationship

(self-made)

Comp_ardu ID composite ID Arduino

Ardu_mot ID Arduino ID DCmotor

Ardu_temp ID Arduino ID

Temperature

Sensor

Ardu_led1 ID Arduino ID LED1

Ardu_led2 ID Arduino ID LED2

SM SMC SME Entity ID asset

billOfMaterial

(self-made)

 Bill of Material IDTA display

Entity composite ID composite

Entity Arduino ID Arduino

Entity DCmotor ID DCmotor

Entity

TemperatureSensor

 ID TemperatureSensor

Entity LED1 ID LED1

Entity LED2 ID LED2

 SME Relationship

Element

 1st reference

entity

2nd reference

entity

52

Relations Comp_ardu Entity composite Entity

Arduino

Ardu_mot Entity Arduino Entity

DCmotor

Ardu_temp Entity Arduino Entity

Temperature

Sensor

Ardu_led1 Entity Arduino Entity LED1

Ardu_led2 Entity Arduino Entity LED2

The submodels in the composite AAS for this implementation are Nameplate, Overview,

Composite AAS relationship and bill of material. Submodels Nameplate and Overview are

created from the plug-ins in Package Explorer. Nameplate contains properties that relate to

standard information that most components and systems will have, such as manufacturer name

and year of construction. The content of the submodel Nameplate does have an overlap with

the IDTA plug-in submodel Technical Properties that was used in the component AAS. If this

AAS had also had the submodel Technical Properties, there would have been several submodel

element duplicates. Unfortunately, neither IDTA, PI4.0, nor IEC 63278 says anything about

how to handle situations like this.

The other IDTA submodel Overview is a plug-in called Imagemap, which allows adding an

image to the AAS using a submodel element of the type file. According to other AAS examples,

defining areas on the image and referencing them to an AAS corresponding to that component

is possible. However, this AAS has not done it due to limited time. Imagemap generates a new

submodel element where the image can be seen, like in Figure 5.2.

FIGURE 5.2 SCREENSHOT OF SUBMODEL IMAGEMAP IN PACKAGE EXPLORER

The other two submodels in Table 5.3, Composite AAS relationship and bill of material,

represent relations between the assets and their AAS. Currently, it is not possible to import them

through a plug-in or IEC CDD, and they have to be made from scratch from the descriptions in

Details of AAS [8], [9]. However, it is reasonable to assume that these submodels will be

available as a plug-in in the future, as they are seen as relevant to represent larger systems. The

53

submodels Composite AAS relationship and bill of material were illustrated and described in

Chapter 2.6.2. In summary, the Composite AAS relationship relates the component AAS to

each other, while the Bill of Material relates the assets.

FIGURE 5.3 SCREENSHOT OF SUBMODEL ELEMENT RELATIONSHIP ELEMENT IN PACKAGE EXPLORER

Composite AAS relationship contains five submodel element relationship elements, each

containing a reference to the ID of two distinct components AAS. For example, one relationship

element has a reference to the ID of the Arduino and one reference to the temperature sensor

since they are related to each other in the system. During the implementation and testing of the

composite AAS, it was discovered that when an AASX server containing the composite AAS

and all the component AAS is running and is connected to Package Explorer, a pointer to

component AAS is created in the relationship elements. For example, a screenshot from

Package Explorer is shown in Figure 5.3, where the submodel element relationship element

“ardu_temp” is selected. Then, by pressing the “Jump” button, at the bottom right corner, the

AAS for the Arduino or temperature sensor will be opened in Package Explorer.

FIGURE 5.4 SCREENSHOT OF SUBMODEL BILL OF MATERIAL IN PACKAGE EXPLORER

Bill of material is not made entirely from scratch, as one of the AAS examples provided by

IDTA did contain an unofficial version of this submodel. Therefore, the first submodel element

in the submodel is an IDTA plug-in called BOM (short for bill of material). The BOM submodel

element is a visual graph of the relationship between the entities in this submodel, seen in Figure

54

5.4. Bill of material is somewhat more complex than Composite AAS relationship because each

asset must be administered as an entity first. This is one of the requirements for the asset to

become an I4.0 component, as mentioned in Chapter 2.3. It is done by creating a submodel

element entity containing the corresponding asset's ID, as seen in Table 5.3. The submodel also

has a submodel element collection called “relations”, comprising five submodel elements of the

type relationship elements. Each relationship element contains two references to two entities,

representing the relationship between two assets in the composite AAS.

5.2 AASX SERVER AND PACKAGE EXPLORER

The Package Explorer was used to create the AAS used in the demonstrator, and the server was

used to host the AAS. Package Explorer provides many options for exchanging AAS data by

connecting to the server or exporting the data in different formats. The most common way to

connect Package Explorer to an AASX server seems to be by going to File → AASX File

Repository → Connect HTTP/REST Repository, and then providing the endpoint for the server.

When Package Explorer has connected to the AASX server, a new section will appear in the

bottom left corner of Package Explorer. The new section will be a list of all the AAS available

on the server, as seen in Figure 5.5, and each available AAS can be opened by clicking on them.

This is the way that is shown in the screencasts that IDTA provided on their Admin Shell IO

webpage [11].

FIGURE 5.5 SCREENSHOT OF AASX PACKAGE EXPLORER THAT IS CONNECTED TO AN AASX SERVER

As mentioned in Chapter 4, the demonstrator implementation uses the blazor version of the

AASX server and communication protocol HTTP/REST. The choice to use blazor and not

windows was taken based on the visual web interface blazor provides. The web interface makes

accessing and hierarchical viewing the AAS, submodels and submodel elements easier, as seen

in Figure 5.6. The windows version of the AASX server does not provide any user interface

like blazor does, meaning that to access any AAS information on the server, one must use the

55

command prompt on the laptop and perform an HTTP request using the REST API. The

following section will illustrate how an HTTP request is made from Node-RED.

Instead of using HTTP/REST on the server, it is possible to use MQTT or OPC UA, but there

is no documentation for using the AASX server. Package Explorer has some built-in functions

using other communication protocols, such as publishing using MQTT and OPC UA, but

neither are they well documented. Therefore, it was natural to use the communication protocol

that was best documented, HTTP/REST.

FIGURE 5.6 SCREENSHOT OF BLAZOR AASX SERVER WEB INTERFACE

It is possible to export AAS data from Package Explorer to a local file on the computer. Package

Explorer has several different ways of doing this, where one can choose what parts of the AAS

should be exported and in what format it should be done. It does not appear to be a “preferred”

choice of how to export data, but the author found to use JSON is one of the better options.

Some of the options available are to:

• Export AML

• Export submodel to JSON (author favourite)

• PUT submodel to URL

• Export AAS as i4aas-nodeset

• Export OPC UA Nodeset2.xml

• Copy selected element JSON to clipboard

It can look like IDTA is trying to make Package Explorer compatible with most of the other

AAS and I4.0 technologies that are being developed, as it is possible to export data in so many

ways.

When exporting data, there is usually a choice of what data should be exported. The choice is

between exporting the entire AAS, a submodel or only a submodel element. Through testing, it

appears that using any of the options for export may result in losing some of the data. For

example, if using the option “Copy selected element JSON to clipboard” for a submodel, the

JSON file contains very little information, meaning there is no information about the AAS,

assets or submodel elements, and the information about submodels is limited. However, using

“Export submodel to JSON” provides significantly more information. To illustrate the

difference between the information given by export, two different export options will be used

on the same submodel. First, the simplest option is to “Copy the submodel in JSON to the

clipboard”. The JSON file is shown below.

56

{

 "keys": [

 {

 "type": "Submodel",

 "local": true,

 "value": "https://example.com/ids/sm/1345_3122_3032_9073",

 "index": 0,

 "idType": "IRI"

 }

]

}

The second option is to “Export the submodel to JSON”. A small part of the exported JSON

file is shown below. The information provided contains more details about the submodel,

submodel elements and concept descriptions. Theoretically, the JSON code above and below

should represent the same information. The latter option is better, as it provides a longer and

more complex JSON object.

{

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "local": true,

 "value": "0112/2///61987#ABC313#001",

 "index": 0,

 "idType": "IRDI"

 }

]

 },

 "qualifiers": [],

 "hasDataSpecification": [],

 "identification": {

 "idType": "IRI",

 "id": "https://example.com/ids/sm/1345_3122_3032_9073"

 },

 "idShort": "LEDIndicator",

 "modelType": {

 "name": "Submodel"

 },

 "kind": "Instance",

 "submodelElements": [

 {

 "value": "RED",

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "local": true,

 "value": "0112/2///61987#ABA545#001",

 "index": 0,

 "idType": "IRDI"

 }

]

[...]

While creating and implementing the AAS for the demonstrator, certain limitations were

identified with the AASX server and Package Explorer. One limitation involved the inability

to directly upload a newly created AAS from the Package Explorer to the server. To work

around this issue, it was necessary to save the AAS locally and manually add a copy of the AAS

57

to a designated folder under the AASX server. Subsequently, the server needed to be restarted

for the changes to take effect. Another limitation encountered within the Package Explorer

software was its incomplete development. Several buttons and functionalities were lacking or

not yet fully implemented. This limitation implies that certain desired features or actions may

not be available or accessible within the Package Explorer tool. These limitations highlight the

need for further refinement and development of the AASX server and Package Explorer to

enhance their usability and functionality.

5.3 NODE-RED

The demonstrator uses Node-RED to handle communication and data formatting between the

Arduino and I4.0 software. Node-RED has built-in functionality, which makes it easy to convert

to and edit JSON objects and files. It also has built-in functions for communication using HTTP

and serial port. This section will present elements related to Node-RED, such as the user

interface dashboard, the logic, and how it communicates with the AASX server and the

Arduino.

5.3.1 UI Dashboard

The user of the lab exercise will mainly interact with a simple interface made in the UI

Dashboard, shown in Figure 5.7. The dashboard contains two switches, one for each LED, and

a slider that controls the dc motor's speed, or RPM (rounds per minute). The switches and slider

provide all the control that the lab exercise requires.

FIGURE 5.7 SCREENSHOT OF USER INTERFACE FOR LAB EXERCISE

In addition to this dashboard, there is another tab named “Debug”, shown in Figure 5.8, which,

as the name indicates, can be used to debug and troubleshoot if the AAS demonstrator does not

seem to act as it should. The debug tab contains three groupings of elements: one that displays

values from the AASX server, one that displays the values saved locally on Node-RED, and

one that says if the Arduino confirms the values set in the main dashboard.

The groups AASX server values and Local Node-RED values have the same elements: two text

lines and two gauges. The two text lines represent LEDs 1 and 2 and say if they are turned on

or off. The two gauges represent the temperature and motor speed. Each has a minimum and

maximum value on the display, but they can theoretically get values outside the given range.

The minimum and maximum can easily be edited in Node-RED. The last group of Arduino

values consists of two text lines representing LED 1 and 2.

58

FIGURE 5.8 SCREENSHOT OF DEBUG TAB IN UI DASHBOARD FOR TROUBLESHOOTING THE LAB

5.3.2 Logic

The logic in Node-RED can be described as sequential and relatively simple. This section will

go through the code, which is divided into three parts:

• The initiation of the demonstrator and when there are changes from the lab user

interface.

• Updating the AASX server when appropriate.

• Communication with Arduino every 10 seconds.

Figure 5.9 provides a simple overview of the functionality of the colour-coded blocks used in

the code in this section. The first three blocks are used to start a flow and to simplify the code

by making it possible to make a virtual link between two blocks. The subsequent three blocks

process the data, including making custom functions to save JSON objects locally, extracting

specific information from JSON objects, and monitoring value change for variables. The two

blocks under communication do send HTTP and serial requests. The final four blocks are input

and output blocks for the user interface.

FIGURE 5.9 EXPLANATION OF NODE-RED BLOCKS

59

When the Node-RED server is first started, the blocks in Figure 5.10 run. The first thing that

happens is sending an HTTP GET request to the AASX server, requesting the JSON object of

each main component (led1, led2, temperature sensor and dc motor). The next block, named

“change”, saves each JSON object locally and extracts the value of the component, e.g., the

RPM of the motor. Furthermore, the LAB tab in the dashboard is updated such that the buttons

and slider are in the correct position according to the values from the AASX server.

The components in the demonstrator can be categorised into two categories: components that

the user can control and components that are not possible to control. The LEDs and dc motor

are components that are possible to control using the UI. On the other hand, a user cannot

control temperature sensors, and it will only change value when the environment's temperature

changes. Therefore, as seen in the UI Dashboard and the blocks below, the temperature sensor

is treated somewhat differently than the LEDs and the motor.

FIGURE 5.10 SCREENSHOT OF NODE-RED CODE BLOCKS – INITIATION AND UI COMMUNICATION

Every time the buttons or the slider changes value from the UI, a new sequence is started. The

sequence starts with the light blue UI blocks being changed by the user. The orange function

block updates the component's locally saved value and sends it to the UI for display.

Additionally, a signal is sent to the other two parts of the Node-RED code, using the grey link

in/out blocks to update the AASX server value and the state of the Arduino components. The

part that updates the AASX server is shown in Figure 5.11 and Figure 5.12.

FIGURE 5.11 SCREENSHOT OF NODE-RED CODE BLOCKS – UPDATE AASX SERVER 1

The sequence in Figure 5.11 will first check to ensure the value is changed to prevent

unnecessary updating. After confirming that a new value is received, it is inserted into the JSON

object of its component, which was saved earlier. The JSON object is then sent as the payload

to the AASX server in a PUT HTTP request. Finally, a GET HTTP request is performed, and

the result is shown in the dashboard's debug window to ensure that the newest value, which is

the one saved in the AASX server, is displayed in the UI Dashboard.

60

FIGURE 5.12 SCREENSHOT OF NODE-RED CODE BLOCKS – UPDATE AASX SERVER 2

The code in Figure 5.11 only concerns the LEDs and the motor, not the temperature sensor. The

logic for the temperature sensor is shown at the bottom in Figure 5.12. The AAS for the

temperature sensor is only updated with the new temperature value right after Node-RED has

received new data from Arduino. Then the same sequence as for the other components is

initiated, where the value is inserted into the JSON object, which is sent as a payload in an

HTTP PUT request to the AASX server. The upper blocks in Figure 5.12 retrieves and displays

the values sent from the Arduino, confirming the status of the LEDs.

FIGURE 5.13 SCREENSHOT OF NODE-RED CODE BLOCK – COMMUNICATE WITH ARDUINO

The final part of the Node-RED code is the part that communicates with the Arduino, as seen

in Figure 5.13. It runs every 10 seconds or if it receives a signal indicating the switches or slider

has changed the value from one of the grey link-out-blocks in Figure 5.10. The function called

value2string retrieves the locally saved values for the LEDs and the dc motor, creates a string

of them, and sends it to the Arduino. The Arduino then responds with the updated value of the

LEDs, the speed of the motor and the temperature, as shown in Figure 5.14. The blue text in

the figure is an example string that might be sent between them. Finally, the string from the

Arduino is decoded in Node-RED, and the values are saved locally in string2value.

FIGURE 5.14 NODE-RED AND ARDUINO COMMUNICATION WITH EXAMPLE DATA

5.3.3 AASX Server

The utilisation of HTTP requests is integral to the lab exercise setup. IDTA's REST API enables

retrieving and modifying information related to the AAS stored in the AASX server. However,

the current version of the API has limitations. While it allows access to and modification of

values associated with specific components of the AAS, such as properties, it does not provide

61

the same capability for entire submodels or the entire AAS. This implies certain restrictions in

interacting with the AAS via IDTA's AASX server's REST API.

For AAS and submodels, it is only possible to request information, not upload or edit, but

according to the Details of AAS [8], [9], it should be possible. This might mean that the AASX

server will be updated in the future, and it will be possible to upload, edit and request

information about AAS, submodels and submodel elements. To get the information about, e.g.,

a submodel element, a GET HTTP request must be sent in a specific format:

http://localhost:{address}/aas/{AAS_name}/submodels/{submodel_name}/element

s/{SME_name}

Below is an example of how an HTTP GET request of the submodel element Temperature may

be requested and what the JSON object response could resemble the following.

GET

http://localhost:51310/aas/TemperatureSensor/submodels/operationaldata/elements/tem

perature

{

 "elem": {

 "value": "25",

 "valueId": null,

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "local": true,

 "value": "0112/2///61987#ABA927#002",

 "index": 0,

 "idType": "IRDI"

 }

]

 },

 "constraints": [],

 "hasDataSpecification": [],

 "idShort": "Temperature",

 "category": null,

 "modelType": {

 "name": "Property"

 },

 "valueType": {

 "dataObjectType": {

 "name": ""

 }

 },

 "kind": "Instance",

 "descriptions": [

 {

 "language": "",

 "text": ""

 }

]

 }

[...]

It is also possible to only request the value of the submodel element. It is done by adding /value

at the end of the end point. By only requesting the value, the length of the JSON object is

reduced. Updating a submodel element is more complex as it requires the correct REST API

call and the payload in JSON object. The correct format to perform a PUT request is shown

62

below. Notice that it has + payload at the end. The payload is the information in JSON object

that should be PUT onto the server.

http://localhost:{address}/aas/{AAS_name}/submodels/{submodel_name}/element

s/ + payload

Below is an example of how the PUT request is made and what the payload may resemble. The

entire JSON object shown below is required to update the submodel element correctly.

PUT http://localhost:51310/aas/LED1/submodels/operationaldata/elements/ +

{

 "value": 23.73,

 "valueId": null,

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "local": true,

 "value": "0112/2///61987#ABA927#002",

 "index": 0,

 "idType": "IRDI"

 }

]

 },

 "constraints": [],

 "hasDataSpecification": [],

 "idShort": "Temperature",

 "category": null,

 "modelType": {

 "name": "Property"

 },

 "valueType": {

 "dataObjectType": {

 "name": ""

 }

 },

 "kind": "Instance",

 "descriptions": [

 {

 "language": "",

 "text": ""

 }

]

}

5.3.4 Arduino IDE

The Arduino microcontroller has a separate script running, which enables communication with

Node-RED by serial port via USB and handles the reading and writing to the components. The

code written for the Arduino is simple and passive, as it waits for Node-RED to initiate

communication with it. First, the script waits to receive the data string from Node-RED by a

simple if-statement checking if any data is transferred via serial communication. When it

receives data from Node-RED, the Arduino then updates the state of the components with the

new data and updates the components with the new data. Finally, the Arduino reads the values

of the components, creates a string with the newly updated data and sends it back to Node-RED

via serial communication. The part of the script that communicates with Node-RED is included

below.

63

 // Checks if Node-RED is sending any data to Arduino

 if (Serial.available() > 0) {

 // reads information form Node-RED

 incomingString = Serial.readString();

 // update all parameters and turn on/off led and sets rpm

 SeparatesnSets(incomingString);

 // make a string containing all new information [led1,led2,temp,speed]

 info = digitalRead(led1pin) + String(",") + digitalRead(led2pin) +

 String(",") + temp + String(",") + speed;

 // replies to Node-RED with updates information

 Serial.println(info);

 }

5.4 ADAPTION FOR LAB EXERCISE

One of the objectives of this thesis was to create an AAS demonstrator that students may use to

understand AAS better and why it is proposed as a tool in I4.0. Therefore, this section will

present a framework for how a lab exercise may be constructed around the demonstrator from

this thesis.

Goals for the lab exercise:

• Learn what AAS is and what role it may play in I4.0.

• Learn how to make an AAS using IDTAs software Package Explorer.

• Understand what interoperability means and how it may be implemented (e.g., using

external repositories such as IEC CDD).

• Get hands-on experience with creating and testing AAS in a small-scale system.

The lab exercise can be split into three parts to achieve these goals. One theoretical part will

provide questions for the students relating to AAS. One part where the students get to test and

play around with the AAS server and Package Explorer. The final part will consist of

completing a half-done AAS for one of the components of the lab and testing it.

The first theoretical part of the proposed lab exercise should provide a solid foundation for I4.0

and AAS. The questions should include the following topics: the relationship between assets

and AAS, the structure of an AAS on component and system level, how information is

exchanged, identifiers and concept descriptions, the organisations that work on developing

AAS, and the available tools. Some sample questions are provided below. The theory related

to this part of the lab exercise can be found in Chapters 2 and 3.

• What is AAS, and how does it relate to an asset?

• How the AAS is structured?

• What role do concept descriptions have, and how can external repositories be used to

make AAS interoperable?

• How can AAS exchange information, and what communication protocols are commonly

used?

64

• What companies and associations are at the front of the development of AAS?

• What tools/software exists?

The second part should be to get familiar with the AAS software, the AASX server and Package

Explorer. This part should consist of several smaller tasks. Each task should provide a learning

value, for example, understanding concepts or how elements relate. A list of possible tasks is

provided below. The solutions to these tasks can be found in Chapters 4 and 5.

• Make an AAS from scratch.

• Start the AASX server and upload an AAS on it.

• Connect the AASX server and Package Explorer.

• Use the command prompt to request AAS information (GET HTTP request) and use

blazor to request and compare the same information.

• Import/export of AAS/SM/SME.

• Use IEC CDD to create a submodel.

The third and possibly the final part should use all that was learned in the previous part together

and edit the AAS from the lab exercise. A possible implementation can be to import a submodel

from IEC CDD into an existing AAS and have the students fill out the relevant submodel

elements to the component. It needs to be decided beforehand what submodel to import and

what submodel elements to display to ensure that the code in Node-RED is compatible. A

possibility is to import a submodel Temperature Sensor from IEC CDD to AAS Temperature

Sensor and determine what submodel elements from IEC CDD should be included in that

submodel. Removing a submodel and having the students recreate it is also possible. The

submodel Operational Data in any of the AAS provided would be a good choice as only one

submodel element exists. However, the submodel name and submodel element name must be

created identically to the existing one. A possible extension of the lab exercise is to have the

students review the first theoretical part again and see if they better understand any of the

questions after completing the practical part.

65

This chapter contains discussions relating to the work done and the decisions made. The chapter

is structured similarly to the thesis. First, the system design will be discussed, and then each

part of the implementation will be discussed. There is also a section reflecting how the setup

may be used as a lab exercise and a section summarising the overall contributions.

6.1 SYSTEM DESIGN

A large portion of the work was deciding how to design the system. It required significant

research and was limited by some practical aspects. The first draft of the system design was

more complex and consisted of a server (in addition to the AASX server and Node-RED server)

and a python script. These additional elements handled the communication between the

Arduino and the AASX server. The design was inspired by the use cases presented in Chapter

3.5, specially Yallıçs case study for non-destructive testing [51].

FIGURE 6.1 ALTERNATIVE SYSTEM DESIGN 1

6

DISCUSSION

66

The first draft of the system design is shown in Figure 6.1. It consisted of the Arduino and its

components, and the Arduino was going to be connected to Wi-Fi using a simple Wi-Fi

protocol. The script running on the Arduino would communicate with an MQTT server, which

again was communicating with a python script running on a computer. The python script would

be responsible for updating the AASX server with the data sent from the Arduino. Node-RED

would also be used in this design but only as a visual display of the contents on the AASX

server.

It was decided early that Node-RED should be a part of the solution for displaying the values

from the AASX server. It was decided because of the built-in functionality for HTTP requests,

and the dashboard plug-in provided a customisable user interface. When getting accustomed to

Node-RED and learning how to use it, it became clear that Node-RED could be used for other

parts of the setup as well. The choice was to discard the python script and replace it with Node-

RED. It was done to simplify the system design and reduce the number of elements in the

system. After discarding the python script, the system design draft was updated to Figure 6.2.

FIGURE 6.2 ALTERNATIVE SYSTEM DESIGN 2

To include the MQTT server seemed like a logical choice because there exist libraries in

Arduino IDE that enable communication with MQTT and built-in functionality in Node-RED,

which does the same. In addition, all three of Yallıçs case studies used an MQTT server between

the sensors and the AASX server. It is also possible to have the AASX server start as an MQTT

publisher instead of as a REST server. However, upon researching how to use the Wi-Fi

protocol for the Arduino and by advice from a cyber-security consultant at NTNU, it became

clear that connecting the Arduino to the Internet would be more challenging than initially

thought. When consulting with my supervisor about this problem, it was agreed that the Arduino

should be connected to the computer via USB to avoid unnecessary work that was not directly

related to AAS. It resulted in the decision to remove the MQTT server since the Arduino would

now be physically connected to the computer and could communicate directly with Node-RED.

Because the Arduino and Node-RED were to communicate directly through USB, there was

only one logical choice for how to communicate: serial communication. Node-RED has built-

in functions to handle serial communication making it easy to implement. Removing the MQTT

server resulted in a simpler system design and became the final one.

67

6.2 AAS STRUCTURE

Creating the structure for the AAS was challenging because there existed no formal approach,

and the resources on how to do it were limited and generic. Therefore, it was a process to create

the AAS, which consisted of experimenting with all the different ways of implementing

submodels and submodel elements. It also included testing many import and export functions

in the Package Explorer.

As mentioned in Chapter 5.1, the final AAS structure includes submodels made differently.

Although it might seem easier to create an AAS from scratch, it does not support the main

argument for using AAS – interoperability. Using IDTAs plug-in to make submodels provides

more interoperability but still depends on IDTAs' definitions of concepts and properties. The

author believes using the CDD by IEC provides the most interoperability because it is an

internationally recognised standard already used in the industry.

Another issue encountered when developing the AAS was where to place specific properties.

In some cases, it is not evident which submodel a submodel element should be in. For example,

the technical information from the data sheet (e.g., the asset size) might be placed in the IDTAs

submodel Technical Data. However, it might also fit in a submodel custom to the asset imported

from IEC CDD. This problem might be solved by a common framework of implementing AAS

and not using different methods developed by different associations. The issue was also

discussed in depth in a seminar hosted by Equinor, where the topic was AAS, AML and OPC

UA. The discussion was primarily related to safety instrumented functions and how some

submodel element properties relating to a submodel regarding functional safety could, and

perhaps should, also be included in other submodels. Although the attendants were experts that

work with digitalisation, they did not conclude but agreed that it is a matter of high importance.

At the same seminar, it was discussed if and where dynamic submodel element properties

should be. Some participants thought that an AAS should not include any dynamic properties.

In contrast, others thought that dynamic properties might have a place in AAS on component

level but should not be included in the composite AAS.

The composite AAS has also been thoroughly discussed in meetings and seminars the author

attended with companies working on AAS. In addition to raising the question if dynamic

properties should be in the composite AAS, there have also been questions regarding how much

information should be stored there. An option to store all the information in the AAS is to add

pointers to where the information is stored, and the information would be saved in another

system.

Many unanswered questions are related to the AAS structure, and it may take some time to

answer. It may take years for the industry to agree on the framework for how to create an AAS.

It may also end up with companies creating AAS in different ways. For example, companies

may use resources from different associations if more frameworks and AAS specifications are

published. However, this may not be a problem for interoperability if all frameworks and

specifications agree on the basics of how to create and implement an AAS.

68

6.3 AASX SERVER AND PACKAGE EXPLORER

Using the AASX server and Package Explorer required work as there is no complete guide. The

screencasts on the Admin Shell IO website are helpful, but they do not cover every aspect of

creating an AAS. Additionally, there is little documentation on the AASX server and how to

run it.

Once the fundamentals are grasped, utilising the Package Explorer becomes straightforward,

but it has some things that reveal that it is still under development. An example is when adding

a submodel from the plug-ins, the AAS must be selected. If a submodel is selected, not the

AAS, an error will appear that no valid AAS is selected.

The AASX server provides three options for the server types: OPC, MQTT and REST (default).

As mentioned before, there is mainly documentation for the REST server and most of the

options in the Package Explorer regarding communication with servers are related to REST. It

might indicate that IDTA prefers REST to MQTT and OPC.

As mentioned in Chapter 5.2, the demonstrator uses the blazor version of the AASX server.

Initially, the windows version was used to test how the server worked. When creating the

demonstrator, the blazor version was downloaded to decide which version should be used in

the implementation. The windows version was found to be ok to use in the beginning to

understand how it worked. However, when testing the blazor version, it became clear that the

blazor version makes it easier to understand and visualise the AAS structure.

An important question relating to the AASX server is how it can be implemented in a real

system and where the AAS should be saved. This thesis does not explore this, but it is highly

relevant to implementing AAS and I4.0. An obvious solution may be to keep all AAS on one

server. The problem with this is that if all components of a large plant have an AAS with real-

time data, an enormous amount of data would be synchronised with the server continuously.

Another solution could be to have the AAS saved locally and update the real-time data to the

local version, and once every 24 hours, the local data would be synchronised with the server.

This problem also raises the question of whether real-time data in the AAS should exist.

Unfortunately, there is no official answer to this question. Some influencers in the industry have

suggested that the AAS could contain a minimum of information and instead contain pointers

to where the information is saved. It may be up to the industry to provide use cases on several

possibilities and evaluate the optimal solution.

6.4 NODE-RED

Node-RED communicates with Arduino and the AASX server, providing a user interface. The

required functionality is obtained by saving some values temporarily locally on Node-RED.

In the initial planning phase of the demonstrator design, three data formats were considered:

XML, AML, and JSON. All three data formats are mentioned in Details of AAS, but only XML

and AML are mentioned in IEC 63278. XML is a versatile and extensible format suitable for

complex data structures and data exchange across different systems. AML, a specific

implementation of XML, is tailored for automation and industrial applications. JSON, on the

69

other hand, is a lightweight and widely supported format commonly used for web APIs and

data interchange in web applications and mobile development. All three choices would be

possible to implement in this demonstrator. However, XML and AML would require an extra

software editor or a different section of code blocks in Node-RED to handle the conversion to

and from JSON for HTTP communications. Because of the need for additional resources with

XML and AML, along with its integrated HTTP functionality in Node-RED, is the reason for

choosing JSON as the data format.

Although Node-RED is a good solution for this setup, it does not necessarily mean it should be

used in the industry. Node-RED is mainly used by private individuals experimenting and

building smaller home-automation systems. It is a good tool for beginners as it has many built-

in functions and does not require any code writing. Node-REDs' ability to format and create

JSON objects is a huge benefit in the AAS context. Large corporations, on the other hand, may

prefer to use software and data formats that are already integrated with their systems. With

larger-scale systems, hosting the AASX server on the asset might be possible, eliminating the

need for Node-RED as a link between asset data and the AASX server.

6.4.1 User Interface

The user interface in Node-RED provides a simple solution to control and test the AAS

demonstrator. The debug tab may be helpful when setting up the demonstrator for the first time

or if any problems should happen. The debug tab has displays that extract values from the

AASX server, Arduino, and the locally saved values, making troubleshooting easier.

6.4.2 Logic

The logic and structure of the code in Node-RED are made to be simple and foolproof. It was

designed to ensure that the students would not need to learn how to code in Node-RED if applied

to a lab exercise, and there should be a minimum of errors in Node-RED resulting in needing

assistance from a student assistant. However, although the code is simple, it does not mean that

it is flexible or dynamic. For example, the data sent between Node-RED and Arduino is hard-

coded. Therefore, if the setup is to be extended, it will be necessary to edit the Node-RED code.

If connecting the Arduino to a new computer, it is necessary to go into the code in Node-RED

and edit the communication port that the Arduino is plugged into. By default, it is set to COM

port 7, which may vary depending on which computer it is plugged into.

6.4.3 AASX Server

The communication between Node-RED and the AASX server is done using the HTTP

communication protocol, which in Node-RED is done with an HTTP-request block. Out of the

four methods for HTTP requests, GET and PUT was used in the implementation. Using the

HTTP protocol seems like a realistic implementation that may be adapted to the industry.

Although, some companies may prefer MQTT or OPC UA.

There are some limitations and problems with the communication. The first one is that the

response from a GET request, or the payload on a PUT request, is a large JSON object. It may

not be a problem, but it could be problematic. For example, retrieving only the identifier itself

70

is not feasible when seeking the identifier of a submodel element. Instead, the complete JSON

object of the submodel element must be requested, which might result in a lengthy response. It

is worth noting that the value of a submodel element can be obtained separately by appending

\value to the API call. Similarly, the entire JSON object associated with the property must be

provided when updating a submodel element. It entails utilising the extensive JSON object

received from a GET request as the payload for a PUT HTTP request.

Secondly, in establishing communication between Node-RED and the AASX server, emphasis

was initially placed on utilising the HTTP request's POST method. POST updates the existing

object, while PUT adds a new element. According to part 2 of Details of AAS [9], it should be

possible to use all HTTP methods listed in Chapter 3.2.2 on AAS, submodels and submodel

elements in the AASX server. However, the documentation from Admin Shell IOs GitHub [10]

informs that it is only possible to use GET on AAS and submodels and GET, PUT and DELETE

on submodel elements. Because of this, it was not possible to use POST, and PUT was used as

a replacement. It might cause problems as the PUT request does not update the existing

submodel element, it overwrites it. Furthermore, problems might occur if the payload being

sent along with the PUT request does not have an identical identifier and name to the submodel

element being updated. Since all four methods are mentioned in the Details of AAS, it may be

reasonable to assume that the remaining methods will be implemented in the AASX server in a

later update.

6.4.4 Arduino

The software and hardware related to the Arduino are made simple, like the Node-RED code.

The reasoning is the same if the setup is used as a lab exercise. The student should not have to

deal with Arduino and the details of its implementation of it. The setup is made on the concept

plug-and-play. There are no problems detected with how the Arduino works. Although, in the

context of hardware utilisation, it is noteworthy to mention that the selected components exhibit

a low-cost profile, thereby increasing the likelihood of potential failures

The software and code running on the Arduino ensure that the Arduino waits for Node-RED to

provide information before executing actions. There were several ways of implementing

communication with Arduino and Node-RED. One draft of the code was more active from the

Arduino end. It did not wait for Node-RED but instead was in charge of initiating

communication with Node-RED. This draft was discarded because it made more sense that

Node-RED, which acts like a hub, controls when to communicate.

The Arduino works fine in this demonstrator, but it may not be a realistic implementation for

the industry. In this work, the Arduino and its components are used to substitute sensors, valves,

motors, and other equipment. Additionally, the Arduino communicates with Node-RED via

USB. Therefore, a more realistic solution is to get them to communicate via the Internet.

6.5 ADAPTION FOR LAB EXERCISE

The design of the lab exercise was guided by pedagogical principles aimed at providing students

with a comprehensive understanding of AAS and its role in I4.0. In addition, the suggested

71

adaption as a lab exercise was structured to promote active learning, critical thinking, and

practical application of the concepts covered in the theoretical part.

The lab exercise was divided into three distinct parts to achieve these objectives. The first part

focused on building a solid theoretical foundation for I4.0 and AAS. The students are presented

with thought-provoking questions. This theoretical grounding ensured that students grasped the

fundamental concepts before proceeding to hands-on activities. The second part of the lab

exercise emphasised practical engagement with AAS development tools, specifically IDTAs

software Package Explorer and the AASX server. By engaging with these tools, students gained

practical experience. Each task is designed to reinforce specific concepts and foster a deeper

understanding of the AAS development process. In the final part of the lab exercise, students

are challenged to apply their acquired knowledge and skills by completing a half-done AAS for

a component in the demonstrator. By actively completing and testing an AAS, students will

gain practical insights into the challenges and considerations involved in AAS development.

Assessing and evaluating student performance in the lab exercise may be crucial in measuring

their understanding of AAS and I4.0 concepts. Methods such as written assessments and

practical assignments can be used to assess theoretical knowledge and practical skills. Having

student assistants observe during the lab exercise may provide insights into students' problem-

solving abilities and engagement. Clear assessment criteria should be established to ensure fair

evaluation, considering challenges such as subjectivity and time constraints. The assessment

criteria should not be too difficult to pass and should weigh learning outcomes heavier than

obtaining a fully functional AAS demonstrator.

Reflection on student learning is essential to evaluate the effectiveness of the lab exercise in

achieving the intended learning outcomes. Feedback from students provides valuable insights

into their experience with the exercise. Observations and discussions with students can reveal

their level of engagement and interest in the topic. Additionally, feedback can highlight the

perceived difficulty of the exercise and areas where students felt accomplished or encountered

challenges. By considering student perspectives, educators can identify aspects that worked

well and areas that may require improvement for future iterations of the lab exercise. Suppose

this lab exercise is included in the curriculum of any subject, creating a simple feedback form

for the students and having the student assistants engage with them throughout the lab exercise

to understand their experiences is highly recommended.

6.6 OVERALL CONTRIBUTIONS

This section will look back at the objectives from Chapter 1.2 and explicitly explain how the

objective is met with this thesis. The five objectives are summarised in the bullet points below.

• Provide an overview of key concepts of AAS.

• Design and build an AAS demonstrator.

• Summarise the challenges.

• Prepare a user manual and documentation.

• Make a user interface for the AAS demonstrator.

72

The first objective was to provide an overview of the key concepts, models and functions

associated with AAS. It included describing the role of building and operating digital twins

through the lifecycle of a system. All of this is done in one of the theory chapters, Chapter 2,

which explains AAS in detail on both system and component level.

The second objective was to design, plan and build the AAS demonstrator. This objective

needed the most work and was the most comprehensive task. The system design is presented in

Chapter 4, and Chapter 5 explains how the design was implemented.

The third objective was to summarise the implementation and the challenges encountered. This

chapter, Chapter 6, goes through the system design and implementation in detail and evaluates

and discusses how it went. One of the biggest challenges was the lack of framework and

resources because the AAS field is still relatively new. How to construct the AAS structure is

a great example of that challenge. There are multiple ways of doing it but no industry standard

yet.

The last two objectives are related to the documentation and representation of the AAS

demonstrator. First, a user manual is made and is available as an attachment. It consists of two

parts, one part that explains how to set up the demonstrator for the first time and one part that

explains how to start the demonstrator. Getting the demonstrator up and running on a new

computer will demand some preparation time because some software needs to be installed, in

addition to uploading the AAS to the server and the JSON file to Node-RED. However,

everything is explained in detail and should be straightforward. The last objective was to

prepare a user interface for the AAS demonstrator, which is done partly with the UI Dashboard

in Node-RED and partly with the user interface for the blazor AASX server.

73

7.1 CONCLUSION

This thesis has comprehensively examined AAS and its significance in digitalisation and I4.0.

Presented below are the key findings derived from the literature on AAS.

• The basic structure of the AAS seems to be standardised.

• External repositories are standardised but not unambiguously unique, and using several

external repositories does not promote interoperability.

• The structure of AAS on system level, composite AAS, does not appear to be as

standardised. There are ways of representing relationships between assets in the AAS,

but it does not appear to be a commonly recognised way.

• Details of AAS provide three types of information exchange. Type 3, I4.0 networks, is

not yet possible to implement, nor are the specifications available, but the concept may

be essential for smart manufacturing.

• Several technologies have been presented, but it is unclear from the literature and

specifications which technologies should be used. All of them may have a role to play.

The system design and implementation of the AAS demonstrator involved iterative decision-

making. The objective was to incorporate IDTA's AASX server, Package Explorer, and an

Arduino microcontroller, allowing flexibility in selecting the software to link these components.

Node-RED was chosen as a hub due to its communication versatility, JSON handling, and

customisable interface. However, it may not be ideal for larger-scale industrial systems

favouring pre-integrated software.

Creating the AAS structure presented challenges due to the absence of a formal approach and

limited resources. Various methods were experimented with, including IDTA's plug-in and the

internationally recognised IEC CDD, which the author found to offer optimal interoperability.

While the AASX server and Package Explorer were utilised in the demonstrator, their usage

required additional effort due to limited guidance. The blazor version of the AASX server was

preferred for its visually appealing interface and enhanced comprehension of the AAS structure.

7

CONCLUSION AND FURTHER WORK

74

The application of the demonstrator in student exercises aimed to provide hands-on experience

and understanding of AAS and its role in I4.0. However, it is essential to note that this

operational demonstrator may not directly translate to real industry solutions.

The AAS is still under development, and some of the theoretical concepts are not yet possible

to implement. It is mainly due to the lack of implementation standards and agreement. Three

associations in the industry are working on a standardised framework for AAS: PI4.0 (partially

published), IDTA (partially published) and IEC 63278 (unpublished). To advance and move

forward with AAS, the industry needs to agree on the basic framework and which technologies

should be used. This might pose problems as many corporations have their own opinions and

agendas.

The AAS represents a transformative asset management and integration approach in the I4.0

era. By leveraging the power of digitalisation, standardised frameworks, and interoperability,

AAS may pave the way for enhanced operational efficiency, optimised resource utilisation, and

improved decision-making in smart manufacturing environments. Continued exploration,

experimentation, and real-world implementation of AAS will shape the future of industrial

processes and drive the digital transformation journey forward.

7.2 FURTHER WORK

Based on the discussions in Chapter 6 and input from my supervisors, some topics that are

highly relevant for further work are summarised in the following list.

• Explore how AAS, AML and OPC UA may work together.

Use all three technologies and examine how they can be used together and complement

each other. OPC UA is a commonly used communication protocol in the industry, and

AML is an emerging data modelling language within I4.0 applications, making them

highly relevant for the AAS.

• Further develop the AAS demonstrator.

Try to make the demonstrator reflect a more realistic plant by, for example, eliminating

Node-RED and getting the Arduino to communicate directly with the AASX server.

Another extension could be to host the AASX server on the asset, a solution proposed

in [53].

• Explore other AAS software.

Chapter 3.1 mentions that at least five other AAS software are available. It could be

interesting to explore the most promising AAS software and compare them to each

other. Some articles, such as [54], review some of the AAS open-source solutions.

However, most of them do it on a theoretical basis and do not address any details on

how they differ in implementation. More software are developed constantly, and new

and better solutions might have been published recently.

75

BIBLIOGRAPHY

[1] Deutsche Messe, ‘Industry Trend: Industrie 4.0’, https://www.hannovermesse.de.

https://www.hannovermesse.de/en/news/industry-trends/industrie-4-0 (accessed May 19,

2023).

[2] X. Ye, S. H. Hong, W. S. Song, Y. C. Kim, and X. Zhang, ‘An Industry 4.0 Asset

Administration Shell-Enabled Digital Solution for Robot-Based Manufacturing Systems’,

IEEE Access, vol. 9, pp. 154448–154459, 2021, doi: 10.1109/ACCESS.2021.3128580.

[3] Plattform Industrie 4.0, ‘Structure and Organization’, Plattform Industrie 4.0, 2022.

https://www.plattform-i40.de/IP/Navigation/EN/ThePlatform/Structure-

Organization/structure-organization.html (accessed Sep. 19, 2022).

[4] ZVEI, ‘General’, ZVEI. https://www.zvei.org/en/association/about-us/tasks-and-

objectives/general (accessed Oct. 18, 2022).

[5] IDTA, ‘Working together to promote the Digital Twin’, IDTA English, 2022.

https://industrialdigitaltwin.org/en/ (accessed Oct. 18, 2022).

[6] A. L. Våge, ‘Using Asset Administration Shell for Implementing Digital Twins of

Industrial Devices and Systems’, NTNU, Trondheim, Norway, Specialization Project,

Dec. 2022.

[7] IEC 63278, ‘Asset Administration Shell for Industrial Applications, Part 1-3’.

International Electrotechnical Commission, 2023.

[8] Plattform Industrie 4.0, ZVEI, and IDTA, ‘Details of the Asset Administration Shell - Part

1’. Federal Ministry for Economic Affairs and Climate Action (BMWK), May 2022.

[Online]. Available: https://www.plattform-

i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_S

hell_Part1_V3.html

[9] Plattform Industrie 4.0, ZVEI, and IDTA, ‘Details of the Asset Administration Shell - Part

2’. Federal Ministry for Economic Affairs and Climate Action (BMWK), Nov. 2021.

[Online]. Available: https://www.plattform-

i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_S

hell_Part2_V1.html

[10] IDTA, ‘admin-shell-io’. Accessed: Dec. 07, 2022. [Online]. Available:

https://github.com/admin-shell-io

[11] IDTA, ‘Home of AAS’, Home of Asset Administration Shell (AAS). https://admin-

shell-io.com/ (accessed Dec. 05, 2022).

[12] IDTA, ‘Specification of the Asset Administration Shell’. Federal Ministry for

Economic Affairs and Climate Action (BMWK), Apr. 2023. [Online]. Available:

https://industrialdigitaltwin.org/en/content-hub/downloads

[13] IEC TR 63283, ‘Industrial-process measurement, control and automation - Smart

manufacturing, Part 1’. International Electrotechnical Commission, 2022.

[14] IEC PAS 63088, ‘Smart manufacturing - Reference architecture model industry 4.0

(RAMI4.0)’. International Electrotechnical Commission, 2017.

76

[15] Plattform Industrie 4.0 and ZVEI, ‘Relationships between I4.0 Components –

Composite Components and Smart Production’. Federal Ministry for Economic Affairs

and Energy (BMWi), Apr. 20, 2018. Accessed: Apr. 18, 2023. [Online]. Available:

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-

relationship.html

[16] G. Koschnick, B. Sattler, and S. Wiesner, ‘Drive 4.0 - Vision Becomes Reality’, ZVEI,

Jul. 2018, Accessed: Sep. 19, 2022. [Online]. Available: https://www.zvei.org/en/press-

media/publications/drive-40-vision-becomes-reality

[17] IEC 62890, ‘Industrial-process measurement, control and automation’. International

Electrotechnical Commission, 2020.

[18] T. J. Williams, ‘The Purdue enterprise reference architecture’, Comput. Ind., vol. 24,

no. 2–3, pp. 141–158, Sep. 1994, doi: 10.1016/0166-3615(94)90017-5.

[19] ECLASS, ‘An introduction to the standard’, ECLASS. https://eclass.eu/en/eclass-

standard/introduction (accessed Apr. 17, 2023).

[20] IEC, ‘Homepage’. https://www.iec.ch/homepage (accessed Apr. 17, 2023).

[21] IEC 61360, ‘Standard data element types with associated classification scheme -

Common Data Dictionary (CDD)’. International Electrotechnical Commission, 2005.

[22] ECLASS, ‘Search the ECLASS content’, ECLASS. https://eclass.eu/en/eclass-

standard/search-content (accessed Apr. 17, 2023).

[23] ISO 15926, ‘Integration of life-cycle data for process plants including oil and gas

production facilities’. Accessed: May 24, 2023. [Online]. Available:

https://15926.org/home/

[24] N.-S. Koutrakis et al., ‘Harmonization of Heterogeneous Asset Administration Shells’,

Procedia CIRP, vol. 107, pp. 95–100, 2022, doi: 10.1016/j.procir.2022.04.016.

[25] E. H. S. Bratbak, ‘Asset Administration Shell for Life Cycle Management of Safety

Systems’, Master thesis, NTNU, 2022. Accessed: Apr. 18, 2023. [Online]. Available:

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2997101

[26] Eclipse Foundation, ‘BaSyx / Documentation / AssetAdministrationShell’.

https://wiki.eclipse.org/BaSyx_/_Documentation_/_AssetAdministrationShell (accessed

Apr. 19, 2023).

[27] The World Wide Web Consortium, ‘XML Essentials’, W3C.

https://www.w3.org/standards/xml/core (accessed Dec. 07, 2022).

[28] Plattform Industrie 4.0, ‘Details of the Administration Shell - from idea to

implementation’. Jul. 2019. Accessed: Sep. 19, 2022. [Online]. Available:

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/vws-in-detail-

presentation.html

[29] Eclipse Foundation, ‘Eclipse BaSyxTM’, projects.eclipse.org, Sep. 20, 2017.

https://projects.eclipse.org/projects/dt.basyx (accessed Apr. 20, 2023).

[30] Fraunhofer IOSB, ‘FA3ST Service’. Fraunhofer IOSB, Apr. 20, 2023. Accessed: Apr.

20, 2023. [Online]. Available: https://github.com/FraunhoferIOSB/FAAAST-Service

77

[31] S. Heppner, ‘PyI40AAS’. Jul. 20, 2022. Accessed: Apr. 20, 2023. [Online]. Available:

https://git.rwth-aachen.de/acplt/pyi40aas

[32] SAP Archive, ‘i40-aas’. SAP Archive, Jan. 27, 2023. Accessed: Apr. 20, 2023.

[Online]. Available: https://github.com/SAP-archive/i40-aas

[33] NOVA School of Science and Technology, ‘NOVA Asset Administration Shell’. Apr.

12, 2023. Accessed: Apr. 20, 2023. [Online]. Available:

https://gitlab.com/novaas/catalog/nova-school-of-science-and-technology/novaas

[34] admin-shell-io, ‘AASX Server’. IDTA, Apr. 19, 2023. Accessed: Apr. 20, 2023.

[Online]. Available: https://github.com/admin-shell-io/aasx-server

[35] IDTA, ‘AasxServerBlazor’. https://admin-shell-io.com/5001/ (accessed Apr. 20,

2023).

[36] MQTT, ‘MQTT - The Standard for IoT Messaging’, 2022. https://mqtt.org/ (accessed

Apr. 20, 2023).

[37] Britannica, ‘HTTP’. Accessed: Apr. 20, 2023. [Online]. Available:

https://www.britannica.com/technology/HTTP

[38] IEC TR 62541, ‘OPC Unified Architecture’. International Electrotechnical

Commission, 2020.

[39] OPC Foundation, ‘Unified Architecture’, OPC Foundation, 2022.

https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed Dec. 09, 2022).

[40] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly Media, Inc., 2008.

[41] R. Fielding, ‘Architectural Styles and the Design of Network-based Software

Architectures’, University of California, 2000. Accessed: Apr. 20, 2023. [Online].

Available:

https://www.researchgate.net/publication/216797523_Architectural_Styles_and_the_Desi

gn_of_Network-based_Software_Architectures

[42] D. Ibrahim, ‘Microcontroller Systems’, in SD Card Projects Using the PIC

Microcontroller, Elsevier, 2010, pp. 1–40. doi: 10.1016/B978-1-85617-719-1.00005-1.

[43] Britannica, ‘XML’. Accessed: Apr. 21, 2023. [Online]. Available:

https://www.britannica.com/technology/XML

[44] E. R. Harold and W. S. Means, XML in a nutshell. O’Reilly: Beijing, Farnham, 2004.

Accessed: Apr. 21, 2023. [Online]. Available: https://digilib.k.utb.cz/handle/10563/52219

[45] javatpoint, ‘JSON Example’, www.javatpoint.com. https://www.javatpoint.com/json-

example (accessed Apr. 21, 2023).

[46] ‘AutomationML’. https://www.automationml.org/ (accessed Oct. 01, 2022).

[47] ISO/IEC 21778, ‘The JSON data interchange syntax’. International Electrotechnical

Commission, Switzerland, Dec. 2017.

[48] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, ‘Foundations of JSON

Schema’, in Proceedings of the 25th International Conference on World Wide Web,

Montréal Québec Canada: International World Wide Web Conferences Steering

Committee, Apr. 2016, pp. 263–273. doi: 10.1145/2872427.2883029.

[49] ‘Node-RED’. https://nodered.org/ (accessed Apr. 11, 2023).

78

[50] A. Zare and M. T. Iqbal, ‘Low-Cost ESP32, Raspberry Pi, Node-Red, and MQTT

Protocol Based SCADA System’, in 2020 IEEE International IOT, Electronics and

Mechatronics Conference (IEMTRONICS), Sep. 2020, pp. 1–5. doi:

10.1109/IEMTRONICS51293.2020.9216412.

[51] F. Yallıç, Ö. Albayrak, and P. Ünal, ‘Asset Administration Shell Generation and

Usage for Digital Twins: A Case Study for Non-destructive Testing’:, in Proceedings of

the 3rd International Conference on Innovative Intelligent Industrial Production and

Logistics, Valletta, Malta: SCITEPRESS - Science and Technology Publications, 2022,

pp. 299–306. doi: 10.5220/0011561400003329.

[52] X. Ye, W. S. Song, S. H. Hong, Y. C. Kim, and N. H. Yoo, ‘Toward Data

Interoperability of Enterprise and Control Applications via the Industry 4.0 Asset

Administration Shell’, IEEE Access, vol. 10, pp. 35795–35803, 2022, doi:

10.1109/ACCESS.2022.3163738.

[53] R. Pribiš, L. Beňo, and P. Drahoš, ‘Asset Administration Shell Design Methodology

Using Embedded OPC Unified Architecture Server’, Electronics, vol. 10, no. 20, p. 2520,

Oct. 2021, doi: 10.3390/electronics10202520.

[54] M. Platenius-Mohr, S. Malakuti, S. Grüner, J. Schmitt, and T. Goldschmidt, ‘File- and

API-based interoperability of digital twins by model transformation: An IIoT case study

using asset administration shell’, Future Gener. Comput. Syst., vol. 113, pp. 94–105, Dec.

2020, doi: 10.1016/j.future.2020.07.004.

[55] J. Arm et al., ‘Automated Design and Integration of Asset Administration Shells in

Components of Industry 4.0’, Sensors, vol. 21, no. 6, p. 2004, Mar. 2021, doi:

10.3390/s21062004.

[56] S. Cavalieri and M. G. Salafia, ‘A Model for Predictive Maintenance Based on Asset

Administration Shell’, Sensors, vol. 20, no. 21, p. 6028, Oct. 2020, doi:

10.3390/s20216028.

[57] Arduino, ‘Arduino Uno Rev3’, Arduino Official Store.

https://store.arduino.cc/products/arduino-uno-rev3 (accessed Apr. 11, 2023).

[58] Arduino, ‘Arduino Starter Kit Multi-language’, Arduino Official Store.

https://store.arduino.cc/products/arduino-starter-kit-multi-language (accessed Apr. 11,

2023).

79

A CONTENT OF ZIP FILE

Lab Code/Files

• Arduino IDE script

o Arduino_IDE_LAB.ino

• AAS files

o ArduinoUNO.aasx

o Composite.aasx

o DCmotor.aasx

o LED1.aasx

o LED2.aasx

o TemperatureSensor.aasx

• Node-RED JSON file

o NODE_RED_LAB.json

Other documentation

• Installation guide for AAS lab

APPENDIX

80

B AAS STRUCTURES

TABLE B.1 AAS COMPOSITE

AAS Composite

Id AAS [Custom] AssetAdministrationShell---2259B01E

Id Asset [Custom] Asset---11EEB0BC

SM SME

Property

IDTA

Property

0173-1#02-…

Value

Nameplate

(IDTA)

ManufacturerName AAO677#002 Anne Industries AS

ManufacturerTypName AAW338#001

Mini AAS lab for educational purposes

YearOfConstruction AAP906#001 2023

CountryOfOrigin AAO841#001 Norway

Overview

(IDTA)

ImageMap IDTA display

File ImageFile /aasx/files/arduino_setup.png

 SME

Relationship Element

 1st reference AAS 2nd reference AAS

CompositeAASrelationship

(self-made)

Comp_ardu ID composite ID Arduino

Ardu_mot ID Arduino ID DCmotor

Ardu_temp ID Arduino ID Temperature

Sensor

Ardu_led1 ID Arduino ID LED1

Ardu_led2 ID Arduino ID LED2

SM SMC SME

Entity

 Value

billOfMaterial

(self-made)

 Bill of Material IDTA display

Entity composite ID composite

Entity Arduino ID Arduino

Entity DCmotor ID DCmotor

Entity

TemperatureSensor

 ID

TemperatureSensor

Entity LED1 ID LED1

Entity LED2 ID LED2

 SME Relationship

Element

 1st reference entity 2nd reference entity

Relations Comp_ardu Entity composite Entity Arduino

Ardu_mot Entity Arduino Entity DCmotor

Ardu_temp Entity Arduino Entity Temperature

Sensor

Ardu_led1 Entity Arduino Entity LED1

Ardu_led2 Entity Arduino Entity LED2

81

TABLE B.2 AAS DC MOTOR

AAS DCmotor

Id AAS [Custom] AssetAdministrationShell---606A4653

Id Asset [Custom] Asset---36AF14EB

SM Property CDD Property

0112/2///…

IDTA

Property

0173-

1#02-…

Value CDD Unit

0112/2///…

OperationalData RPM 61360_4#AAE19

5#001

 0 62720#UAB231

RotationalDcMotor InputVoltageDc 61360_4#AAE18

6#001

 6.0 62720#UAA296

Speed 61360_4#AAE19

5#001

 7500 62720#UAB231

InputCurrent 61360_4#AAE19

7#001

 0.09 62720#UAA101

Angle 61360_4#AAF41

1#001

 20 62720#UAA024

OutsideDiameter 61360_4#AAE02

2#001

 6.02 62720#UAA726

DirectionOffRotati

on

61360_4#AAE18

8#001

 Counterclock

wise

61360_4#AAE18

8#001

BodyDiameter 61360_4#AAF32

0#001

 30.5 61987#ABF038#

001

SM SMC

Technical

Data

TechnicalProp

erties

InputVoltageDc 61360_4#AAE18

6#001

 6.0 62720#UAA296

Speed 61360_4#AAE19

5#001

 7500 62720#UAB231

GeneralInform

ation

ManufacturerNam

e

 AAO677#

002

TT Motor

(HK)

Industrial co.

MaunfacturerPart

Number

 AAO676#

003

TFK-280SA-

22125

ManufacturerOrde

rCode

 AAO676#

003

SDIOR-

68423130-

ES945

82

TABLE B.3 AAS TEMPERATURE SENSOR

AAS TemperatureSensor

Id AAS [Custom] AssetAdministrationShell---3193045E

Id Asset [Custom] Asset---15426FE6

SM Property CDD Property

0112/2///…

IDTA

Property

0173-

1#02-…

Valu

e

CDD Unit

0112/2///…

OperationalData Temperature 61987#ABA927

#002

 25 62720#UAA03

3#001

TemperatureSensor QuantityOfIdenticalTemperat

ureSensors

61987#ABF420#

001

 1

TypeOfTemperatureSensors 61987#ABF159#

002

 other

s

ActiveLengthOfSensor 61987#ABF422#

001

 17.53 62720#UAA86

2

SM SMC

Technical

Data

TechnicalProp

erties

OperationVoltageMin 61360_4#AAD0

32#002

 2.7 62720#UAA29

6#001

OperationVoltageMax 61360_4#AAD0

32#002

 5.5 62720#UAA29

6#001

Accuracy 1 62720#UAA03

3#001

GeneralInfor

mation

ManufacturerName AAO677

#002

Anal

og

Devi

ces

MaunfacturerPartNumber AAO676

#003

6453

1-35

ManufacturerOrderCode AAO676

#003

VIE-

5935-

L85

83

TABLE B.4 AAS LED1

AAS LED1

Id AAS [Custom] AssetAdministrationShell---1D3E339F

Id Asset [Custom] Asset---442C9579

SM Property CDD Property

0112/2///…

IDTA

Property

0173-

1#02-…

Value CDD Unit

0112/2///…

OperationalData LEDBehaviour 61987#ABA549#

002

 0

LEDIndicator ColourOfLEDIndica

tor

61987#ABA545#

001

 RED

LocationOfLEDIndi

cator

61987#ABA546#

001

 24-26

SM SMC

Technical

Data

TechnicalProp

erties

MaxPowerDisipatio

n

61360_4#AAE25

7#004

 0.08 62720#UAA306

#001

MaxForwardCurrent 61360_4#AAE27

4#001

 0.03 62720#UAA101

#001

MinOperatingTempe

rature

61987#ABA927#

002

 -25 62720#UAA033

#001

MaxOperatingTemp

erature

61987#ABA927#

002

 85 62720#UAA033

#001

GeneralInform

ation

ManufacturerName AAO677#

002

Shenzhen

Industrial

Developm

ent Co.

MaunfacturerPartNu

mber

 AAO676#

003

UR502D

C

ManufacturerOrderC

ode

 AAO676#

003

EIO-

68423-

Y46

84

TABLE B.5 AAS LED2

AAS LED2

Id AAS [Custom] AssetAdministrationShell---1D3E349F

Id Asset [IRI] https://example.com/ids/asset/9102_2132_3032_2695

SM Property CDD Property

0112/2///…

IDTA

Property

0173-

1#02-…

Value CDD Unit

0112/2///…

OperationalData LEDBehaviour 61987#ABA549#

002

 0

LEDIndicator ColourOfLEDIndica

tor

61987#ABA545#

001

 YELLO

W

LocationOfLEDIndi

cator

61987#ABA546#

001

 20-22

SM

Technical

Data

TechnicalProp

erties

MaxPowerDisipatio

n

61360_4#AAE25

7#004

 0.105 62720#UAA306

#001

MaxForwardCurrent 61360_4#AAE27

4#001

 0.03 62720#UAA101

#001

MinOperatingTempe

rature

61987#ABA927#

002

 -40 62720#UAA033

#001

MaxOperatingTemp

erature

61987#ABA927#

002

 85 62720#UAA033

#001

GeneralInform

ation

ManufacturerName AAO677#

002

Shenzhen

Industrial

Developm

ent Co.

MaunfacturerPartNu

mber

 AAO676#

003

L-

7113YT

ManufacturerOrderC

ode

 AAO676#

003

VUS-

64659-

E16

85

TABLE B.6 AAS ARDUINO

AAS Arduino

Id AAS [Custom] AssetAdministrationShell---0680A6EB

Id Asset [Custom] Asset---62BB6D82

SM SMC Property IDTA Property

0173-1#02-…

Value

TechnicalData GeneralInformation ManufacturerName AAO677#002 Arduino S.r.l

MaunfacturerPartNumber AAO676#003 THS-685413

ManufacturerOrderCode AAO676#003 SDG-52413-S5468

86

C ADDITIONAL TECHNICAL DOCUMENTATION

Arduino

Detailed list of hardware components:

• 1 Arduino UNO

• 1 USB cable

• 1 Breadboard

• Jumper wires

• 1 9v battery snap

• 1 9v battery

• 1 Temperature sensor (TMP36)

• 1 LED (red)

• 1 LED (yellow)

• 1 Small DC motor 6/9v

87

• 1 Diode (1N4007)

• 1 Mosfet transistor (IRF520)

• 2 Resistors (220)

