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Abstract

Gas detection plays a critical role in offshore facility safety, but adverse weather
conditions can affect infrared radiation (IR) line gas detectors. These detectors
rely on IR beams to detect gas concentrations, and when weather conditions ob-
struct the path of the light, or condensation forms on the lens, it can lead to detect-
ors that have dirty optics or are beam blocked. The current practice of corrective
maintenance lacks efficiency in resource management.

The purpose of the master thesis is to develop a data model for monitoring
optical gas detectors, specifically in the context of Aker BP. The goal is to im-
prove maintenance planning by integrating data from gas and weather detectors.
By analysing historical data and correlating it with weather conditions, the data
model aims to identify potential issues before they lead to equipment failure and
enable proactive maintenance measures. The data model is implemented in Cog-
nite Data Fusion (CDF), a platform for integrating information technology (IT)
and operational technology (OT) systems.

The thesis specifies the problem space related to weather conditions causing
dirty optics and beam block in optical gas detectors and proposes a solution space
involving the implementation of a data model that visualises patterns between
failures in gas detectors and weather conditions. The data model aims to enable
more efficient maintenance planning, avoidance of failures, and identification of
susceptible detectors.

The design of the data model encompasses the entities gas detectors, plat-
forms, facilities, weather factors, object types, catalog profiles, function blocks,
and notifications, with associated attributes. The source systems used in the thesis
include the Aveva Net and Systems, Applications, and Products in Data Processing
(SAP) for storing and managing asset information and maintenance data and
safety and automation system (SAS) for gas detector events. CDF facilitates the
integration and linkage of data from different sources and data from all of the
mentioned sources are already provided in CDF data sets.

The data model is implemented in CDF, but challenges were encountered in
populating the data model. Further work is suggested, including the integration
of the gas detector diagnostic alarms and events, notifications, and weather data
to the data model and utilising it for predictive maintenance and analysis of the
relationship between gas detectors and weather conditions.
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Sammendrag

Gassdeteksjon spiller en avgjørende rolle for sikkerheten på offshore-anlegg, men
ugunstige værforhold kan påvirke infrarød stråling (IR)-gassdetektorer. Disse de-
tektorene er avhengige av IR-stråler for å detektere gass, og når værforholdene
hindrer lysbanen eller det dannes kondens på linsen, kan det føre til at detektorene
får skitten linse eller blir blokkert. Den nåværende praksisen med korrigerende
vedlikehold mangler er lite ressurseffektiv.

Formålet med masteroppgaven er å utvikle en datamodell for overvåking av
optiske gassdetektorer, spesielt i sammenheng med Aker BP. Målet er å forbedre
vedlikeholdsplanleggingen ved å integrere data fra gass- og vær-detektorer. Ved
å analysere historiske data og korrelere dem med værforhold, har datamodellen
som mål å identifisere potensielle problemer før de fører til utstyrssvikt og mulig-
gjøre proaktive vedlikeholdstiltak. Datamodellen er implementert i Cognite Data
Fusion (CDF), en plattform for integrering av data fra informasjonsteknologi (IT)
og operasjonell teknologi (OT)-systemer.

Oppgaven spesifiserer problemområdet knyttet til værforhold som forårsaker
skitten optikk og blokkering av stråling i optiske gassdetektorer og foreslår en løs-
ningsmodell som innebærer implementering av en datamodell som visualiserer
mønstre mellom feil i gassdetektorer og værforhold. Datamodellen har som mål å
muliggjøre mer effektiv vedlikeholdsplanlegging, unngåelse av feil og identifiser-
ing av sårbare detektorer.

Designet av datamodellen omfatter enheter som gassdetektorer, plattformer,
anlegg, værfaktorer, objekttyper, katalogprofiler, funksjonsblokker og notifikas-
joner, med tilknyttede attributter. Kildesystemene som brukes i oppgaven inkluderer
Aveva Net og SAP for lagring og administrasjon av utstyrsinformasjon og ved-
likeholdsdata, samt sikkerhets- og automatiseringssystem (SAS) for hendelser og
alarmer knyttet til gassdetektorer. CDF muliggjør integrering og sammenkobling
av data fra ulike kilder, og data fra alle nevnte kilder er allerede tilgjengelige i
CDF-datasett.

Datamodellen er implementert i CDF, men det oppstod utfordringer med å
knytte data til datamodellen. Videre arbeid blir foreslått, inkludert integrering av
gassdetektorenes diagnostiske alarmer og hendelser, notifikasjoner og værdata i
datamodellen, samt bruk av den for prediktivt vedlikehold og analyse av forholdet
mellom gassdetektorer og værforhold.
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Chapter 1

Introduction

1.1 Background

Offshore facilities rely on fast and reliable notifications and alarms from gas de-
tectors in case of gas leakages. Unfortunately, gas detectors are susceptible to
report errors and false alarms due to for example certain weather conditions that
cause dirty optics. According to Håbrekke and Onshus, 2017, the Petroleum Safety
Authority (PSA) has expressed doubts regarding the effectiveness of optical gas
detectors in the presence of moisture, water, snow and similar elements based on
several incidents. As a part of a safety instrumented system (SIS), gas detection
constitutes an important safety barrier on offshore facilities and is therefore of
high priority. Gas detector maintenance is mostly reactive, resulting in instrument
technicians being obstructed from their intended work when gas detectors unex-
pectedly malfunction. The work of cleaning detector lenses takes a lot of time that
may be saved if one could predict or understand when detector fault behaviour
can be expected.

One of the incidents mentioned in Håbrekke and Onshus, 2017 involved a
hydrocarbon leakage combined with the release of hot water due to a break in
the water outlet on a separator. The leak resulted in generation of hot steam and
gas on the production platform. As described by Nilsen, 2018 and Håbrekke and
Onshus, 2017, two types of gas detectors were installed at the facility. The trans-
ition was made from catalytic bead gas detectors to modern infrared radiation
(IR) gas detectors. During this particular event, it was observed that the IR gas
detectors reported faults, which caused a delay in detecting the gas concentration
compared to the catalytic detectors. Despite the delay, the IR gas detectors would
have provided faster alarms than the catalytic detectors if certain logic had been
implemented. This logic could for example have ensured the initiation of a shut-
down in the event of a failure of five detectors. The release of hot water is not
a weather condition but the situation demonstrates that optical gas detectors are
significantly affected negatively by external effects. This has to be dealt with in
the design phase.

Data related to gas detector measurements are collected from the safety and

1
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automation system (SAS). If such data could be combined with data about events
and activities leading to dirty optics, like weather data, it could provide more effi-
cient scheduling and selection of gas detectors for the next maintenance through
the work order system in Systems, Applications, and Products in Data Processing
(SAP), which is Aker BP’s computerised maintenance management system (CMMS).
Data about previous maintenance of the gas detectors could also shed more light
on the relation between environmental conditions and diagnostic alarms. Today,
the SAS, SAP and weather systems are among data sources feeding data to the
Cognite Data Fusion (CDF) cloud platform used by Aker BP. Unfortunately, there
is currently no available specification or realisation of a data model that exploits
the mentioned data sources in CDF.

A data model that utilises historic diagnostic alarms, events, notifications, and
weather data for gas detectors can predict the impact of weather conditions on
their performance ensuring proper and possibly improved barrier management for
this important safety barrier. Using this tool to plan lens washing tasks can help
reduce gas detector downtime. Furthermore, planning detector maintenance can
ensure that the necessary workers are available and prevent disruptions to other
maintenance activities. The data model can also provide a better understanding of
problematic areas and identify bad actor where redesign or replacement of detec-
tion principles can be considered. With advance information about activities and
conditions that are likely to cause gas detector failure, preventive maintenance
can be planned and executed more cost-effectively during periods where dirty op-
tics are expected. As this possibility has not been fully explored, creating such a
data model would be beneficial.

Reference Architectural Model Industry 4.0 (RAMI 4.0) provides a standard-
ised approach for the design and implementation of cyber-physical systems in
industrial settings. As part of this framework, data models can be used to define
the structure, format, and semantics of the data that is exchanged and shared
between different entities within the system. Analysing the data model within the
RAMI 4.0 framework can help aligning the data model with the overall goals and
requirements of the industrial application. Therefore, RAMI 4.0 can be used as a
guiding framework for designing and analysing the data model.

1.2 Objective

The objective of this master thesis is to create a data model for monitoring of op-
tical gas detectors and pilot its implementation in CDF using historical data from
Aker BP systems. The data model will exploit various data sources for diagnostic
alarms and events, notifications, and weather data, with the purpose of improved
maintenance planning. Five research activities will be performed to ensure the
thesis objective:

1. Familiarise with and present the use case associated with SIS follow-up of
optical gas detectors, including data collection and analysis for condition-
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monitoring and failure predictions, and prepare a use case specification de-
tailing the problems to be solved and decision-making.

2. Identify data and information that are needed to construct a data model
considering the use case. Prepare a requirement specification that an im-
plementation of the data model must satisfy following steps from RAMI 4.0
and relevant standards within software development.

3. Implement the data model using Flexible Data Modeling (FDM) in CDF,
involving the generation of suitable information models, connection to un-
derlying source systems, and illustrate the information that can be extracted
when data are combined.

4. Discuss the results including to what extent it is able to meet the use case
specification.

5. Identify areas and topics of further research and investigation.

1.3 Approach

The theory on SIS is built on the literature study conducted in the specialisation
thesis during the autumn semester of 2022. Apart from that this master thesis is
an independent project.

The specialisation thesis was a part of the Automated process for follow-up
of safety instrumented systems (Norwegian: Automatisert prosess for oppfølging
av instrumenterte sikkerhetssystemer) (APOS) project. This has involved meet-
ings with researchers from SINTEF, as well as the opportunity to attend reliability
of SIS (Norwegian: pålitelighet i datamaskinbaserte sikkerhetssytsemer) (PDS)-
forum meetings. PDS-forum serves as a venue where control and safety system
vendors and users come together to share their experiences. The main emphasis is
placed on discussing the safety and reliability elements associated with these sys-
tems (SINTEF, 2023). The author has actively taken part in PDS-forum meetings
throughout the writing period for both the specialisation project and the master
thesis. This has been helpful for acquiring a better understanding of SIS and RAMI
4.0.

The collaborative aspect of the master thesis involves Aker BP, including regu-
lar meetings with supervisors. Aker BP granted access to their systems and histor-
ical data, as well as offering a network of specialists who were available to provide
assistance and answer inquiries.

Figure 1.1 presents a method to establish a data model, comprising several
sequential steps. The initial stage involves specifying the use case. Identifying the
questions necessary for achieving the use case goals follows as the subsequent
step. This involves determining the specific knowledge requirements. Moving for-
ward, the third stage involves describing the information that addresses these
questions. Once this characterisation is complete, the final step entails locating
the relevant data sources that contain the required information.

The data model is to follow a three-stage process in line with the architec-
ture layers dimension of the RAMI 4.0; the layers are shown in Figure 1.2 and
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Figure 1.1: Steps for developing a data model.

explained in Section 3.1.2. This will be done by following the stages specified in
Table 1.1. The stages harmonise with the steps specified in Figure 1.1 and connect
the research activities from the objective to the RAMI 4.0 layers.

Figure 1.2: The architecture layers of the RAMI 4.0.

In order to create the data model specifications, the standards IEC 12207,
2017 and IEC 15288, 2015 were considered together with the guidelines for the
application of these standards, found in IEC 24748, 2018 and IEC 29148, 2018.
IEC 15288, 2015 Systems and software engineering – System life cycle processes was
chosen over IEC 12207, 2017 because it considers system life cycle processes.
This is more applicable than software life cycle processes which is covered in IEC
12207, 2017, since the data model must also consider physical systems. The two
International Electrotechnical Commission (IEC) standards are harmonised.

IEC 15288, 2015 contains four main system life cycle processes. This master
thesis only considers the last of these processes, the technical process. The ex-
cluded processes regard agreement, organisational and management processes
that are to a great extent fulfilled by the master thesis format. The technical pro-
cess consists of many processes concerning the whole life cycle of a system, from
conception to disposal. Four of these processes are used together with the RAMI
4.0 for developing the specifications in this master thesis. An additional three tech-
nical processes are used for further development of the data model. The following
list contains the IEC 15288, 2015 processes used in this master thesis.



Chapter 1: Introduction 5

Table 1.1: Three-stage process

Level Research activities and questions
Business and
functional

Define the use case, with focus on what problems
are to be solved and what decisions are to be made.

Information and
communication

Find which information that is needed
and in which systems it can be accessed.

Integration
and asset

Specify the data model, including
information models organising and combining data,
connecting data to source systems (assets).

• Business or mission analysis process
• System requirements definition process
• Architecture definition process
• Design definition process
• System analysis process
• Implementation process
• Integration process

1.4 Limitations

When engaging with real systems, it is common to encounter practical challenges.
In this case, a specific challenge was that the integration of Aker BP data into CDF
occurred simultaneously. As a result, the required data was not initially access-
ible but gradually became available during the writing period. Furthermore, it is
important to note that CDF is an evolving product. The introduction of FDM star-
ted with a public beta-tool in November 2022 and was subsequently made widely
accessible in April 2023. Working on this thesis involved encountering numerous
updates, which presented a challenge in dealing with Cognite Data Fusion (CDF).
However, these updates also enhanced the functionality of CDF and facilitated
progress.

Cyber security is not addressed in this thesis. However, it is important to ac-
knowledge that data security and privacy are crucial considerations when working
with operational data. In this case, it is assumed that Aker BP and Cognite have
implemented appropriate measures to handle these aspects effectively.

1.5 Structure of the Thesis

The second chapter of this master thesis establishes the foundation for the use
case by examining functional safety. Furthermore, it explores gas detectors and
their different detection principles. In the third chapter, the focus shifts towards
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smart systems and maintenance, explaining RAMI 4.0 and maintenance theories
such as predictive maintenance. The fourth chapter introduces Aker BP, providing
essential details about their assets, systems, tag structure, and relevant projects.
Moving on to the fifth chapter, it concentrates on the data and data tools em-
ployed in this thesis, including the data source systems. This chapter emphasises
the functionality of CDF. Chapter six presents the use case and outlines the re-
quirement specifications. The seventh chapter delves into the CDF data sets and
the implemented data model in CDF, while the eighth chapter discusses the im-
plications of the model. Finally, chapter nine concludes the thesis and proposes
future research.



Chapter 2

Gas Detection and Safety

2.1 Functional Safety

2.1.1 SIS

As an important part of the safety barriers on a facility, a SIS carries out designated
safety functions through various safety instrumented function (SIF)s. For example,
one SIF could be the detection of gas, as depicted in Figure 2.2 and a SIS could be
made up of a number of gas detection SIFs. The primary purpose of these safety
functions is to prevent hazardous situations by promptly responding to abnormal
conditions (PSA, 2021). In the event of an accident, SIFs are designed to mitigate
any potential damage. Their operation involves early detection and response to
abnormal conditions before they escalate into hazardous situations.

SIFs typically consist of three essential components: an input component, a
logic solver, and an output component. The input component is responsible for
detecting and sensing abnormal conditions, while the output component gener-
ates the final response. The logic solver contains the activation rules for the func-
tion. By examining the signals from the input component, it triggers the output
component when the input meets the criteria for abnormal conditions. SIFs can
incorporate multiple input and output elements as well.

2.1.2 Standards and Regulations

Functional safety aims to reduce inherent risks to an acceptable level, particularly
in hazardous industrial processes, through the use of automated safety functions.
The systems responsible for implementing these functions are covered in the hori-
zontal standard series, IEC 61508, 2010 Functional safety of electrical/electronic/-
programmable electronic safety-related systems - Part 1: General requirements. This
standard provides a risk-based approach to determine safety system performance
requirements throughout their life cycle, including their components and related
software.

To determine requirements for risk reduction, potential hazards must be ana-

7
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Table 2.1: Failure classes

Failure class Description

Safe detected (SD)
A failure that is revealed by diagnostics;
the system will remain in a safe state.

Safe undetected (SU)
A failure that is not revealed by diagnostics;
the system will remain in a safe state.

Dangerous detected (DD)
A failure that is revealed by diagnostics;
the system will enter an unsafe state.

Dangerous undetected (DU)
A failure that is not revealed by diagnostics;
the system will enter an unsafe state.

lysed for a given system. The IEC 61508, 2010 standard defines safety integrity
level (SIL) as a measure of function reliability, which can be set based on the like-
lihood and severity of potential consequences. There are four SIL levels, and the
average probability of failure on demand (PFD) for a SIF is used to measure its
achieved SIL. The PFD encompasses dangerous undetected (DU) failures. This is
one of four failure classes, shown in Table 2.1. Only the dangerous failures will
impact the risk since SD and safe undetected (SU) failures do not lead to hazard-
ous situations. Dangerous detected (DD) failures are detected and will therefore
be corrected before the SIF is activated. A detector with dirty optics is still oper-
ational, an dirty optics is therefore a SD failure. When a detector becomes beam
blocked, it is no longer functional and beam block can be considered a DD failure.

The industry standard for the process industry sector, IEC 61511, 2017 Func-
tional safety - Safety instrumented systems for the process industry sector - Part 1:
Framework, definitions, system, hardware and application programming require-
ments, is based on IEC 61508, 2010 and covers SIFs, which represent the auto-
mated safety functions from IEC 61508, 2010. IEC 61511, 2017 builds on the
risk-based approach for determining SIL requirements. The standard also defines
a SIS safety life cycle model. Figure 2.1 shows the model, with three phases omit-
ted. The omitted phases are functional safety assessment, safety life cycle structure
and planning, and verification phases. These phases affect all of the other phases
in the life cycle and are essential parts of the SIS safety life cycle.

The SIS safety life cycle is a framework that defines the necessary activities for
implementing SIFs during the SIS lifetime (IEC 61511, 2017). Each phase of the
safety life cycle has a defined set of inputs and outputs, and verification should be
performed at the end of each phase to ensure that the required outputs meet the
specifications. This helps to ensure that the SIS is implemented as intended and
that the required SIL is achieved. The safety life cycle also provides a structured
approach to manage the safety aspects of a SIS, from concept to decommission-
ing, and ensures that the SIS remains safe and reliable throughout its operational
lifetime.

Several factors must be considered when designing, installing, and commis-
sioning a gas detection SIF. The hazard and risk assessment in the initial phase
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Figure 2.1: SIS safety life cycle, adapted from IEC 61511, 2017.

is a critical step in identifying the required safety functions and associated risks.
The allocation of safety functions to protection layers, SIFs, is then decided and
assigned their associated SIL. The safety requirement specification (SRS) is a doc-
ument that outlines the safety requirements for the SIS, including the SIFs and
their safety integrity to ensure that the required functional safety is achieved.

In the design and engineering phase, the SIS is designed so that the SIL re-
quirements for the SIFs are met. This is a crucial step in ensuring that the SIS
can function safely and effectively. The installation, commissioning, and valida-
tion phase then follows, which encompasses integration, testing, and validation
of the SIS. This is done to ensure that the SIS functions as intended and meets the
specified safety requirements.

During the operation and maintenance phase, it is essential to maintain the
functional safety of the SIS. This involves regularly checking and maintaining the
SIFs and ensuring that they meet their associated SIL. This requires monitoring of
failure rates and PFD verification. The modification phase is also important as it
ensures that the SIS safety requirements are still met in the event of a change to
the SIS. Finally, the decommissioning phase involves reviewing the SIS to ensure
that it is safe to decommission and that all necessary measures have been taken
to ensure safety during the decommissioning process.

In Norway, safety functions are regulated by the PSA regulations, which re-
quire facilities to be equipped with necessary safety functions and for safety func-
tion performance requirements to be in place PSA, 2021. The PSA recommends us-
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ing the IEC standards, the standard NORSOK S-001, 2021, and also the guideline
(GL) document Offshore Norway, 2022 ‘Application of IEC 61508 and IEC 61511
in the petroleum activities on the continental shelf (Recommended SIL require-
ments)’ for determining safety function requirements. Offshore Norway, an in-
dustry association, has standardised SIFs for the Norwegian petroleum industry,
which can be used in place of the risk-based approach for determining require-
ments. The Norwegian standard NORSOK S-001, 2021 outlines the principles and
requirements for the technical safety design of offshore installations used in the
production of oil and gas. It covers the development of physical safety measures
for such installations, including gas detection recommended practices for different
installation areas.

The trends in risk level in the petroleum activity (Norwegian: risikonivå i norsk
petroleumsvirksomhet) (RNNP) refers to the assessment and evaluation of the po-
tential risks associated with oil and gas exploration, production, and related oper-
ations in the petroleum industry in Norway. The risk level in Norwegian petroleum
activity is regularly monitored and analysed to identify potential hazards and vul-
nerabilities. The aim is to prevent accidents, incidents, and major environmental
impacts. The risk level is influenced by factors such as the complexity of opera-
tions, the integrity of equipment and infrastructure, human factors, and external
threats such as extreme weather conditions. As stated in PSA, 2023, PSA evalu-
ates the risk level development by employing two methods: a quantitative meas-
urement tool and sociological analyses. The operating companies are required
to actively contribute data regarding activities at the facilities (PSA, 2023). The
companies must therefore manage equipment failures during the SIS operation
and maintenance phase for reporting to RNNP. The result of the RNNP process is
yearly published as a two-part report.

2.1.3 Gas Detection SIF

The primary function of the gas detection system is to provide continuous mon-
itoring for the existence of flammable or toxic gases (NORSOK S-001, 2021). Its
purpose is to promptly notify personnel and enable the initiation of control meas-
ures, either manually or automatically. This is done to minimise the likelihood
of personnel being exposed to harmful gases, as well as to mitigate the risks of
explosions and fires.

A gas detection SIF is a part of the gas detection system designed to detect the
presence of hazardous gases in an industrial facility or process. The SIF activates
an alarm or initiates an automated response to protect personnel, equipment,
and the environment from harm. According to PSA, 2021, all facilities must be
equipped with a fire and gas detection system that ensures reliable and fast detec-
tion of fires, fire outbreaks and gas leaks. NORSOK S-001, 2021 also stipulates that
gas detectors must be installed in all areas where hazardous gas concentrations
may be present. When designing a detection system for an area, several factors
must be taken into consideration, including detector coverage, detector charac-
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Table 2.2: Potential alarm limits for the analogue output of a line gas detector,
from Håbrekke and Onshus, 2017.

mA Alarm
0 No signal
0-1.5 Fault
1.6-3.0 Beam block
3.1-3.9 Dirty optics
4.0 Zero gas
4.0-20 Gas [LELm]
>20 Fault

teristics, number and location of detectors, and external effects such as weather,
wind, and radiation.

Figure 2.2 shows the reliability block diagram (RBD) for a gas detection SIF
with one detector. The SIF is defined in Offshore Norway, 2022. It consists of a
gas detector as the input and a fire and gas (F&G) node. When the detector or
detector beam is exposed to gas, the function starts. The gas detector generates
an analogue 4-20 mA signal representing the amount of gas detected in the air
concentration. Analogue signals below and above 4-20 mA are used for diagnostic
alarms and could for example be configured like in Table 2.2. The logic solver
processes the signal, generates an action signal and the action signal transmitted
from the F&G system ends the function. The logic of the F&G detection system
can be configured in different ways depending on for example the implemented
voting and the location of the detectors that detect gas (Offshore Norway, 2022).
Detector layout and the number of detectors must also be considered. The reason
for detected gas could for example be gas leakage from a pipeline or a fire. This
SIF does not have a final element, but there exists other SIFs that include fire
extinguishing systems and valves for closing gas-leading pipelines. The F&G logic
could be configured to send action signals that initiate other SIFs, like emergency
shutdown (ESD).

Figure 2.2: RBD for gas detection with one detector SIF, adapted from Offshore
Norway, 2022.

The gas detection SIF not only handles action signals but can also perform
diagnostics, generating alarm signals as part of its functionality. These diagnostics
involve continuous monitoring of the gas detectors’ performance and providing
real-time feedback on their status. Through this process, failures such as SD and
DD are detected. The diagnostic capability of the system is crucial in ensuring
that gas detectors operate correctly and reliably detect the presence of hazardous



12 B. S. Øygard: Data models for improved diagnostics for gas detectors

gases. It enables the detection of potential issues and malfunctions, allowing for
timely maintenance and intervention.

To ensure operator awareness and facilitate appropriate action, the gas de-
tection alarms and the overall status of the F&G system should be continuously
available in the central control room (CCR) (NORSOK S-001, 2021). The system
should raise alarms in the CCR, notifying operators of any gas detection events,
failures to execute required actions, or defects or failures within the system’s com-
ponents. Moreover, it is essential that the status and alarm parameters for each
individual gas detector are identifiable and displayed in the CCR. This informa-
tion allows operators to monitor the status of each detector and take appropriate
actions based on the presented data.

The gas detection SIF depicted in Figure 2.2 is required to have a minimum
SIL of 2, as specified by Offshore Norway, 2022. SIL 2 is the second lowest SIL
among the four levels defined in the standard. The likelihood of the SIF failing to
execute its safety function due to a DU fault depends on the system’s probability
of DU failure (λDU) and the frequency of function testing (τ). Offshore Norway,
2022 provides a simplified formula:

PF D ≈
λDU ∗τ2

2
(2.1)

To reduce the risk and meet the SIL requirement, λDU or τ must be decreased.
SIFs should be regularly tested to confirm their ability to perform their intended
safety function. Reducing the time between these function tests will decrease the
PFD. The probability of a system DU failure can be lowered by reconfiguring the
system, such as by implementing component redundancy or using components
that are more dependable.

According to (Offshore Norway, 2022), the SIF safe state is a signal generated
by the F&G logic. It represents a state that ensures inherent safety within a system,
which can include actions like initiating the ESD. In the event of a power or signal
loss from the detector or the F&G system, the gas detection SIF is designed to enter
a safe state. This activation of the safe state actions occurs when there is a loss
of power or signal; the function is de-energised to safe state (Offshore Norway,
2022).

There are specific requirements for the response time of the SIF. The response
time of the F&G system must be fast enough to avoid dangerous situations, which
depends on factors like the type of area and distance to ignition sources. The term
T90, as described by Håbrekke and Onshus, 2017, refers to the response time of a
detector. Specifically, it represents the time taken by the detector to measure 90%
of the actual gas concentration in the air. NORSOK S-001, 2021 provides typical
response time requirements for IR detectors and alarm presentation that should
be followed unless faster responses are specified.

For general area applications, the recommended T90 response time for an IR
detector is less than 5 seconds. If the IR detector is utilised in heating, ventila-
tion, and air conditioning (HVAC) ducting, the T90 response time should be less



Chapter 2: Gas Detection and Safety 13

than 2 seconds. This means that the detector should be able to achieve a 90%
measurement of the actual gas concentration within the specified time frames.

Additionally, the duration between the detector reaching the alarm limit and
the presentation of the alarm on the operator station, along with the initiation of
subsequent actions, should be less than 2 seconds (NORSOK S-001, 2021). These
guidelines and requirements aim to ensure the system’s ability to detect, respond,
and initiate appropriate actions promptly during hazardous situations, promoting
safety and efficient operations.

2.1.4 SIS Follow-Up of Gas Detection SIF

During the operational phase of a SIS, ensuring adequate SIS performance is a
key aspect that requires continuous monitoring and maintenance throughout its
operational lifetime (Håbrekke, Hauge et al., 2023). The preparation phase starts
during the design, installation, and commissioning of the SIS, while the execu-
tion phase covers the operation, maintenance, and modification phases of the SIS
safety life cycle from IEC 61511, 2017. The main functional safety activities re-
lated to SIS during its operational phase, as identified by Håbrekke, Hauge et al.,
2023, can be divided into the following activities:

• Management of functional safety
• SIS operation
• SIS maintenance
• SIS performance monitoring, verification, and analysis
• SIS management of change

Figure 2.3 depicts the connections between the activities.
Functional safety management is a crucial element in the SIS follow-up and

is necessary across all stages of the safety life cycle. It encompasses the establish-
ment and maintenance of policies, procedures, and processes aimed at effectively
managing risks associated with functional safety (Håbrekke, Hauge et al., 2023).
This encompasses planning and monitoring various activities to guarantee the
sustained reliability and safety of gas detectors.

During the operational phase, normal interaction with the SIS involves mon-
itoring its real-time status, conducting start-up and shutdown procedures, casu-
ally observing the SIS equipment, reporting identified failures, degraded states,
and non-conformities, initiating maintenance requests or SIS modifications, im-
plementing mitigating measures when the SIS is degraded or unavailable, and
managing bypass settings, resets, and status tracking (Håbrekke, Hauge et al.,
2023). Operators and personnel continuously monitor the SIS’s real-time status,
through diagnostics and alarms in the CCR, ensuring it operates properly. They
follow specific procedures during start-up and shutdown to ensure controlled ac-
tivation or deactivation. Regular visual checks are conducted to identify any phys-
ical damage or degradation. Any failures or non-conformities are promptly re-
ported for appropriate action, including maintenance requests or modifications.
Bypassing a SIF may be required to override, disable, or inhibit its operation tem-
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Figure 2.3: Main activities of SIS follow-up, adapted from Håbrekke, Hauge et
al., 2023.

porarily, often to prevent process disturbances, such as during testing (Håbrekke,
Hauge et al., 2023). Mitigating measures are implemented if the SIS is degraded
or unavailable, and bypasses are managed, tracked, and reviewed to maintain
safety. These interactions ensure the SIS’s effectiveness and contribute to a safe
operational environment.

The maintenance activities for SIS in the operational phase include scheduled
function testing, inspections, failure recording, repair, overhaul, and replacements
(Håbrekke, Hauge et al., 2023). Additionally, simple consequence analysis and
failure cause analysis, such as root cause analysis or 5-why analysis, are conducted
to identify mitigating measures. Regular function testing and maintenance of the
SIS are essential and should be performed in accordance with the SRS and as
specified in the CMMS (Håbrekke, Hauge et al., 2023). Function testing helps
detect SD and DD failures. Furthermore, function testing is necessary after the
replacement or installation of new components and after a firmware upgrade of
logic solvers. These maintenance activities help maintain the system’s integrity
and compliance with safety standards.

SIS monitoring, verification, and analysis encompass the examination and val-
idation of various performance requirements of the SIS. This includes evaluating
parameters such as PFD, SIL requirements, failure rates, demand rates, and spuri-
ous trip rates (Håbrekke, Hauge et al., 2023). The DU failures discovered during
function testing in the maintenance phase can be used to reevaluate the equip-
ment PFD. This is necessary for SIL verification. It is important that the SIF re-
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mains within the SIL requirement. If the equipment reliability changes, it might
require a change in the function test intervals in the SIS operation or a change in
the SIS. The SIS management of change process focuses on planning, reviewing,
approving, and documenting modifications to the SIS to maintain safety integrity
(Håbrekke, Hauge et al., 2023). The verification process extends to verifying the
output requirements of all activities throughout the facility’s life cycle. Through
continuous monitoring and verification, any potential issues or failures within the
SIS can be promptly identified and addressed, ensuring its ongoing reliability and
effectiveness in mitigating safety risks.

2.2 Gas Detectors

2.2.1 Gas Detection Principles

Design Principles

Gas detectors are commonly categorised into point detectors and line detectors
based on the employed design principle (Håbrekke and Onshus, 2017). The gas
detector SIF depicted in Figure 2.2 can be classified as either of these types. Ac-
cording to NORSOK S-001, 2021, a combination of point detectors and line de-
tectors shall be utilised to ensure effective coverage and enhance the probability
of detection. Gas detectors can also be classified according to the measuring prin-
ciple they utilise (EN ISO 14224, 2016). Additionally, they can be distinguished as
either traditional wired detectors or wireless gas detectors (Håbrekke and Onshus,
2017). Different measuring principles are compared in Table 2.3.

Point gas detectors, also known as single-point or spot gas detectors, are de-
signed to monitor gas concentrations at a specific location (Håbrekke and Onshus,
2017). They are typically installed in areas where a potential gas leak or hazard-
ous gas release is likely to occur. These detectors continuously monitor the air or
the gas sample at the specific point of installation and provide real-time measure-
ments of gas concentrations.

Line gas detectors, also referred to as open path gas detectors, line-of-sight gas
detectors and beam detectors, are designed to monitor gas concentrations over a
defined path or distance (Håbrekke and Onshus, 2017). They are used to detect
gases across larger areas or in outdoor environments where the dispersion of gas
may be more extensive.

IR line gas detectors consist of two main components: a transmitter and a
receiver. IR point gas detectors encompass the transmitter and receiver in the same
detector. The transmitter emits a beam of light, usually IR, ultraviolet, or laser,
across the desired detection path. The receiver, located opposite the transmitter,
receives the beam and measures the amount of light that reaches it. If there is a
gas present along the detection path, it can absorb or scatter the emitted light,
causing a reduction in the amount of light reaching the receiver. The receiver
continuously monitors the received light intensity and analyses any changes.
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Meauring Unit

Hydrocarbon/air mixtures have specific mixing ratios in which they can ignite.
The lower explosion limit (LEL) represents the minimum concentration of the
mixture that can ignite, while the upper explosion limit (UEL) represents the max-
imum concentration that can ignite (Håbrekke and Onshus, 2017). Any concen-
tration within this range has the potential to ignite, making it crucial to measure
and assess the risk of ignition. Gas detectors are designed to measure the concen-
tration of gases in relation to the LEL value (Håbrekke and Onshus, 2017). The
gas concentration is expressed as a percentage relative to the LEL. By monitoring
the gas concentration and comparing it to the LEL, the detector can determine the
potential risk of an explosive atmosphere. The unit of measurement for the gas
concentration in the beam of a line gas detector is the product of the length of the
gas cloud (measured in meters) that covers the beam and the average gas concen-
tration expressed as a percentage of the LEL within that cloud: lower explosive
limit meter (LELm) (Håbrekke and Onshus, 2017).

Catalytic Detection

A catalytic gas detector is a type of point gas detector designed to detect flammable
gases by measuring the heat generated through catalytic oxidation (Håbrekke and
Onshus, 2017). In this type of detector, a catalyst facilitates the reaction between
the combustible gas and oxygen. This reaction generates heat, which in turn in-
creases the temperature of a platinum resistor within the detector. By monitoring
the temperature change, the detector can determine the presence and concentra-
tion of the flammable gas.

Catalytic gas detectors have certain drawbacks, which has led to their gradual
phase-out on the Norwegian continental shelf. However, it is worth noting that
many catalytic gas detectors are still in operation. These detectors require regular
calibration, usually every four months or even more frequently. Additionally, cata-
lytic gas detectors have a longer T90 response time, typically less than 25 seconds,
compared to other types of detectors such as optical detectors, which typically
have a response time of less than 5 seconds (Håbrekke and Onshus, 2017).

One of the significant safety disadvantages of catalytic detectors is their tend-
ency to fail without warning (Håbrekke and Onshus, 2017). They lack self-diagnostic
capabilities beyond basic loop monitoring, which means they are unable to provide
feedback on their own operational condition. This poses a challenge as they cannot
indicate whether they are malfunctioning, degraded, or completely non-functional.

Due to these limitations, there has been a shift towards alternative gas detec-
tion technologies, including optical detectors, which offer faster response times
and improved self-diagnostic capabilities. As per NORSOK S-001, 2021, it is stated
that hydrocarbon detectors, particularly IR detectors, equipped with self-diagnostics
and suitable for the specific gas to be detected, should be employed. The standard
further states that catalytic detectors should only be considered if other types of
detectors fail to meet the required detection performance.
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Table 2.3: Advantages and disadvantages of different gas detector types, based
on Håbrekke and Onshus, 2017 and Nilsen, 2018.

Gas detector type Advantages Disadvantages

Catalytic detector

Simple and cheap
Responds to gas
even under "extreme
conditions" such as hot
water vapour (steam)

Lack of self-diagnosis
High DU error rate
Frequent need of test
Must be calibrated often
Long response time

IR detector

Good self-diagnosis
Fast response
Reacts to hydrocarbon gases in general
Heated optics

Fails due to moisture/
condensation on lens
High spurious trip
rate: Often fails
due to snow, fog, etc.

Laser detector

Good self-diagnostics
Fast response
High sensitivity (detection
of low gas concentrations)
Low spurious trip rate
(even in rain, snow, fog, etc.)
Gas-specific: Calibrated
for predefined gas(es)
Long test interval

Gas-specific
Expensive

Acoustic detector

Good self-diagnosis
High sensitivity
(detection of small leaks)
Not dependent on
temperature, weather
and wind conditions
Covers a large area

Does not detect moist
gas, gas with water
(best suited for dry gas)
Sensitive to
background noise
Difficult to locate
the leak point
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Optical Detection

An optical gas detector, specifically an IR detector, is a type of gas detector that
can function as a point gas detector or a line gas detector (Håbrekke and Onshus,
2017). It detects hydrocarbon gases by emitting IR rays, at two different wavelengths,
from a transmitter to a receiver.

The two wavelengths used in the detector are the measurement wavelength
and the reference wavelength (Håbrekke and Onshus, 2017). The measurement
wavelength is chosen to coincide with the specific vibrations in the molecules
of the hydrocarbon gas being targeted. As a result, the gas absorbs light at this
particular wavelength.

The IR source in the detector can be either a lamp or a laser (Håbrekke and
Onshus, 2017). It emits the IR rays at the designated wavelengths, and these rays
are directed towards the receiver. The receiver then measures the intensity of the
received IR light at the measurement wavelength and compares it to the reference
wavelength.

By analysing the difference in intensity between the two wavelengths, the
optical gas detector can determine the presence and concentration of the hydro-
carbon gas (Håbrekke and Onshus, 2017). This detection principle is based on the
specific light absorption characteristics of the targeted gas, allowing for accurate
gas detection.

Typically, optical gas detectors undergo testing once a year, but they possess a
relatively high level of self-diagnostic capabilities (Håbrekke and Onshus, 2017).
In these detectors, the light intensity of the IR beam that reaches the receiver is
converted into an electrical current, ranging from 0 to over 20 mA.

The measurement range of the gas concentration is usually set between 4 to
20 mA, while currents below or above this range are dedicated to fault alarming.
The specific intervals and alarm limits at which the detector must respond can
vary depending on the detector type and can be adjusted to some extent by the
operator.

In general, a current signal within the range of 0-4 mA indicates a fault condi-
tion, beam blockage, or dirty optics, signalling a potential issue with the detector’s
functionality. On the other hand, a signal above 4 mA indicates the detection of
gas, with the current level proportional to the gas concentration, typically meas-
ured in terms of the LELm, ranging from 0% to 100%, for line gas detectors.

Optical gas detectors using laser are highly resistant to various weather con-
ditions such as snow and fog, as well as external influences like plastic, making
them robust in challenging environments (Håbrekke and Onshus, 2017). They ex-
hibit fewer false alarms, such as "beam block" or "dirty optics" alarms, compared
to traditional IR line gas detectors.

Laser detectors are commonly utilised to measure specific gases or a limited
range of gases. As a result, the detectors may not be suitable for detecting or meas-
uring hydrocarbon gases outside their calibrated range (Håbrekke and Onshus,
2017). If there is a need to monitor additional or different hydrocarbon gases, al-
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ternative detection methods or detectors calibrated for those specific gases should
be employed.

Gas-specific detection offers several advantages, including the ability to avoid
false alarms and unexpected alarms from other gases (Håbrekke and Onshus,
2017). It allows for precise identification of the gas that has been detected, provid-
ing valuable information for response and mitigation efforts. However, this spe-
cificity can also pose a disadvantage in areas where multiple types of gases are
present.

In environments with various gases, a laser gas detector calibrated for a spe-
cific gas might only trigger an alarm if that particular gas is detected. Other gases
present in the environment will not result in a gas alarm or a fault alarm since the
laser detector is not calibrated to recognise them. This limitation can potentially
leave other gas hazards undetected, creating a safety risk.

Acoustic Detection

An acoustic or ultrasonic gas detector is a type of point gas detector that util-
ises ultrasonic technology to detect gas leaks. It operates by measuring the ultra-
sonic noise emitted by gas leaks from pressurised systems (Håbrekke and Onshus,
2017). This ultrasonic noise is generated at frequencies that are too high to be
detected by the human ear.

One of the notable advantages of acoustic detectors is their ability to detect
gas leaks regardless of wind direction and the dispersion of the gas (Håbrekke and
Onshus, 2017). Unlike some other detection methods, the performance of acoustic
detectors is not significantly affected by factors such as wind patterns. This allows
for reliable detection even in outdoor environments or areas with airflow.

Another advantage is that acoustic detectors are capable of detecting small
gas leaks (Håbrekke and Onshus, 2017). This high sensitivity enables the early
detection of small leaks before they potentially escalate to higher rates or con-
centrations. By providing an "early warning," acoustic detectors help prevent the
escalation of gas leaks and facilitate prompt mitigation measures.

Additionally, acoustic detectors are equipped with self-diagnostic capabilities
(Håbrekke and Onshus, 2017). These self-diagnostics enable the detector to mon-
itor its own condition, ensuring that it is functioning properly and providing reli-
able gas leak detection.

2.2.2 Functionality Under Extreme Conditions

Most IR point gas detectors operate based on a principle that uses a measurement
wavelength of approximately 3.3 µm and a reference wavelength of around 3.0
µm. However, this specific wavelength range is susceptible to the effects of mois-
ture and water. Håbrekke and Onshus, 2017 shows that water absorbs a significant
portion of radiation within this wavelength spectrum.

In situations such as fog or snow, "dirty optics" alarms frequently occur in many
detectors (Håbrekke and Onshus, 2017). This is due to the reduced light intensity
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of both the measurement signal and the reference signal when water absorbs the
wavelengths used for measurement and reference.

Håbrekke and Onshus, 2017 specifies that "dirty optics" alarms are not treated
as faults in the detectors themselves, as the detectors are still operational but
require maintenance. Consequently, these alarms do not trigger automatic shut-
down in the event of a detector fault or automatic changes in voting. Their purpose
is to indicate the need for maintenance or cleaning rather than signalling a critical
malfunction.

To mitigate the impact of moisture, IR detectors typically incorporate heated
lenses (Håbrekke and Onshus, 2017). These lenses help compensate for the pres-
ence of moderate amounts of water, water film, fog, and similar factors. Addition-
ally, many detectors are designed with weather housings around the measuring
chamber. This arrangement serves to direct water outside of the IR beam, reducing
the potential interference caused by water droplets.

Some IR detectors also come equipped with additional protective features such
as "deluge protection" and "dust barriers" (Håbrekke and Onshus, 2017). These
features help prevent water from entering the measuring chamber by deflecting
droplets away from the detector. As a result, the detectors remain operational even
in challenging weather conditions, including situations with high wind and rain.

The overall experience suggests that IR point gas detectors are more resili-
ent to extreme weather conditions compared to line gas detectors (Håbrekke and
Onshus, 2017). While the latter types may be more prone to failure in adverse
weather, IR point gas detectors tend to maintain their functionality and reliability.
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Smart Systems and Maintenance

3.1 Reference Architectural Model Industry 4.0

3.1.1 Industry 4.0

Industry 4.0 refers to the fourth industrial revolution. In the third revolution, in-
dustries were revolutionised by the use of computers and automation. The on-
going, fourth revolution is based on network technology, where the internet of
things enables machine-to-machine communication and digitalised production.
Plattform Industrie 4.0, 2023b points out some of the advantages Industry 4.0
brings. One of these is the possibility of predictive maintenance by combining and
analysing data from product and process monitoring.

RAMI 4.0 is a three-dimensional layer model describing the central features
of Industry 4.0 (Hankel and Rexroth, 2015). The dimensions are shown with the
three axes of Figure 3.1 and will be reviewed in the following subsection. Assets
are central in industries, and also for Industry 4.0. Plattform Industrie 4.0, 2023a
defines an asset as any resource that is owned or controlled by an organisation
and is considered to have an actual or perceived value to the organisation. Ac-
cording to IEC PAS 63088, 2017, RAMI 4.0 gives a structured view of different as-
pects for assets and combinations of assets. It enables comprehensive descriptions
of assets and breaking down complex processes or combinations of assets, into
more manageable sections. The three-dimensional layer model provides a com-
mon foundation for structuring requirements and standards (Hankel and Rexroth,
2015). Establishing standards for communication and semantics that are univer-
sally accepted across companies and industries is important for development of
Industry 4.0 (Plattform Industrie 4.0, 2018). A digitised industrial production re-
quires common information models and secure communication protocols.
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Figure 3.1: The three axes of RAMI 4.0, adapted from IEC PAS 63088, 2017.

3.1.2 RAMI 4.0 Structure

Architecture

The "Layers" axis describes the asset architecture by separating the structural prop-
erties in layers that describe different aspects of the asset (IEC PAS 63088, 2017).
Table 3.1 lists the architecture layers, gives a definition from IEC PAS 63088, 2017
and includes an example of how the layers describe a gas detection SIF. The busi-
ness, functional, information and communication layers are all represented in the
digital world, while the asset layer is represented in the physical world. The integ-
ration level connect the asset layer with the digital layers through the integration
layer.

At the top, the business layer focuses on strategic goals, requirements, and
encompassing business models and processes (Sino-German Industrie 4.0, 2018).
It provides a clear understanding of the organisation’s objectives within the con-
text of Industry 4.0. Next, the functional layer describes the asset functionality.
It encompasses formal descriptions of functions, along with rules and decision-
making logic (Sino-German Industrie 4.0, 2018). This layer defines how the as-
sets operate and interact to fulfil the desired tasks and objectives. The Informa-
tion Layer is responsible for managing the necessary data required for the asset
functions (Plattform Industrie 4.0, 2018). It includes data models and structures
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that facilitate the exchange and processing of information within the system. The
Communication Layer outlines how assets can access each other’s functions and
information (IEC PAS 63088, 2017). It defines the communication protocols, in-
terfaces, and mechanisms necessary for seamless data exchange and coordination
between assets. The integration layer focuses on digitalization and the integration
of components (Plattform Industrie 4.0, 2018). It incorporates technologies such
as field buses, which enable interoperability and data exchange between different
hardware and software components (Sino-German Industrie 4.0, 2018). The as-
set layer describes reality and represents the physical components (Sino-German
Industrie 4.0, 2018).

Asset Life Cycle

The "Life Cycle & Value Stream" axis illustrates the life cycle of assets based on
IEC 62890, 2020 Industrial-process measurement, control and automation - Life-
cycle-management for systems and components. There is a differentiation between
type and instance assets, where the type represents a design and prototype and
an instance represents the actual product (Hankel and Rexroth, 2015). The axis
encompasses the asset value stream from the development of a type asset to the
maintenance and usage of an instance asset. IEC PAS 63088, 2017 states that
the axis describes the asset state at a particular location and point in time from
production to disposal.

Hierarchy

The "Hierarchy Levels" axis consists of the seven levels: product, field device, con-
trol device, station, work centres, enterprise and connected world. Within a fa-
cility, each of these levels represent a function (Hankel and Rexroth, 2015). The
allocation of functional models to hierarchy levels is adapted for the needs of In-
dustry 4.0. It is based on the reference architecture model for a factory and IEC
62264-1, 2013 Enterprise-control system integration - Part 1: Models and termino-
logy.

3.2 Maintenance Planning

EN 13306, 2017 provides a definition of maintenance as a comprehensive blend
of technical, administrative, and managerial activities throughout the lifespan of
an item, aimed at preserving or reinstating its ability to fulfil its intended pur-
pose. Various maintenance strategies are available to accomplish the objectives of
maintenance. Figure 3.2 presents a method of classifying these strategies, with the
degree of technological effectiveness progressively increasing from left to right.
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Table 3.1: Architecture Layers

Layer
Definition from
IEC PAS 63088, 2017

Gas detection SIF example

Business

Describes the commercial
view, including
organisational and
regulatory conditions.

SIF ensures safety and
regulation compliance,
covering SIL follow-up
and reporting to RNNP.

Functional

Describes functions of
an asset with regard
to its role in the
Industry 4.0 system.

Gas detector monitors
gas in air concentration.
F&G logic generates
alarm signals, including
diagnostics, and
transmits action signals
in accordance with the
safety strategy.

Information

Describes the data
that is used, generated
or modified by the
asset functionality.

F&G logic generates alarm
signals based on detector
functionality, and action
signals based on detector
output and determined rules.

Communication
Describes which data is
used, where it is used
and when it is distributed.

F&G logic transmits
alarm and action signals.

Integration
Represents the transition
from the physical world
to the information world.

F&G logic transforms
4-20mA signal from
the gas detector
to digital signals.

Asset
Represents the asset
that actually exists
in the physical world.

Gas detector and
F&G logic with
input and output.
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Figure 3.2: Maintenance strategies, adapted from Sahli et al., 2021 and EN
13306, 2017.

3.2.1 Corrective Maintenance

Corrective maintenance refers to maintenance activities that are performed after
the recognition of a fault or failure in order to restore an item or system to its
required functional state (EN 13306, 2017). It is also known as reactive mainten-
ance, breakdown maintenance or run-to-failure. This strategy aims to address the
specific issue that caused the malfunction and bring the item back to normal work-
ing conditions. One instance involves performing maintenance on a gas detector
subsequent to receiving an alarm indicating beam block failure. This strategy is
typically associated with high downtime, unexpected failures, reactive response
to issues and high maintenance costs.

Deferred corrective maintenance is a type of corrective maintenance that is not
executed immediately after a fault is detected. Instead, it is intentionally delayed
according to predetermined rules or guidelines (EN 13306, 2017). The purpose
of deferring the maintenance is typically to optimise resources, prioritise other
tasks, or minimise disruptions to operations. The decision to delay the corrective
maintenance is based on an assessment of the consequences, risks, and available
resources. Deferring the corrective maintenance can save maintenance costs, but it
entails higher downtime. This is often not an option for safety critical equipment.

Deferred corrective maintenance can also be opportunistic maintenance. This
refers to maintenance activities that are performed opportunistically. Unlike sched-
uled maintenance, opportunistic maintenance does not follow a predetermined
schedule or occur concurrently with other maintenance actions or specific events
(EN 13306, 2017). Instead, it is typically carried out when an opportunity arises,
such as when equipment or systems are already accessible or when other main-
tenance tasks are being performed.
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Immediate corrective maintenance refers to corrective maintenance that is car-
ried out without any delay immediately after a fault or failure is detected. The
objective of immediate corrective maintenance is to prevent or minimise any un-
acceptable consequences that may arise due to the fault (EN 13306, 2017). It aims
to address the issue promptly to avoid further damage, safety risks, or disruptions
to operations.

3.2.2 Preventive Maintenance

Preventive maintenance refers to the maintenance activities performed to evalu-
ate and address potential degradation or deterioration of an item, with the aim
of reducing the likelihood of failure (EN 13306, 2017). It involves taking pro-
active measures to keep equipment and systems in good working condition and
prevent unexpected breakdowns or malfunctions. Preventive maintenance can be
broadly categorised into the two main types periodic maintenance and predictive
maintenance (Sahli et al., 2021).

Periodic Maintenance

Routine preventive maintenance refers to the regular, recurring maintenance tasks
that are performed on a routine basis. These tasks are typically simple and can be
easily scheduled and performed by maintenance personnel. The routine mainten-
ance can also be opportunistic maintenance (EN 13306, 2017). Routine mainten-
ance activities often include tasks such as cleaning, lubrication, inspection, and
minor adjustments. The purpose of routine maintenance is to keep the equip-
ment in good operating condition, prevent the accumulation of dirt or debris, and
identify any potential issues early on.

Scheduled preventive maintenance, also known as planned preventive main-
tenance, refers to maintenance activities that are performed based on a specified
time schedule or a specified number of units of use (EN 13306, 2017). It involves
following a predetermined maintenance plan or schedule to ensure that mainten-
ance tasks are executed at regular intervals. Unlike routine maintenance, sched-
uled maintenance tasks are more comprehensive and may require more time, re-
sources, and expertise. In scheduled maintenance, the intervals for maintenance
activities are determined in advance and outlined in a maintenance plan. The tasks
are typically based on factors such as equipment manufacturer recommendations,
industry best practices, regulatory requirements, and historical data. This is the
case for the periodic proof tests for SIS. The purpose of scheduled maintenance is
to proactively address potential issues, prevent failures, and ensure the continued
performance and reliability of the equipment.

Predictive Maintenance

Predictive maintenance is a process by which it can be predicted when equip-
ment or machinery is likely to fail, allowing for taking preventive action before a
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breakdown occurs. Predictive maintenance can help organisations save money by
reducing unplanned downtime, improving safety, and extending the life of equip-
ment. In order to predict when equipment is likely to fail, large amount of data
about the equipment in question must be collected and analysed.

Condition monitoring is an activity that involves measuring the characteristics
and parameters of an item’s physical state at predetermined intervals (EN 13306,
2017). It can be performed either manually or automatically. The main objective
of condition monitoring is to assess any changes in the measured parameters over
time, this is how it is distinguished from inspection (EN 13306, 2017). It focuses
on monitoring the condition and performance of the item to detect any deviations
or anomalies that may indicate potential issues or deterioration. By tracking the
changes in these parameters, maintenance personnel can gain insights into the
equipment’s health and make informed decisions regarding maintenance actions.

Condition monitoring can be performed continuously, meaning that data is
collected and analysed in real-time, providing immediate feedback on the equip-
ment’s condition (EN 13306, 2017). It can also be conducted over specific time
intervals, where measurements are taken at predetermined time points to track
changes in the item’s condition. Additionally, monitoring can be triggered after a
certain number of operations, such as a set number of cycles or hours of operation
(EN 13306, 2017).

Typically, condition monitoring is carried out while the item is in its operating
state, as this allows for the assessment of parameters under actual working condi-
tions (EN 13306, 2017). This approach provides a more accurate representation
of the equipment’s condition and enables proactive maintenance actions based
on real-time data. These actions are condition-based maintenance (CMB), which
utilises condition monitoring.

CMB is a type of preventive maintenance that involves assessing the physical
condition of an item, analysing the data collected, and determining the neces-
sary maintenance actions based on the assessment (EN 13306, 2017). CMB takes
into account the actual physical condition of the equipment to determine when
maintenance actions are needed. The condition assessment can be conducted ac-
cording to a predetermined schedule, on request when specific issues arise, or
continuously through real-time monitoring (EN 13306, 2017).

The data collected from the condition assessment and monitoring activities
are analysed to identify trends, anomalies, or critical thresholds that may require
maintenance intervention. Based on the analysis results, predictive models that
can be used to predict when equipment is likely to fail and maintenance ac-
tions can be planned and executed, such as repairs, component replacements,
lubrication, or adjustments. These models can take into account a wide range of
factors, including historical data about similar equipment, environmental factors,
and real-time sensor data.
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3.2.3 Improvement Maintenance

Modification or improvement maintenance involves making changes or upgrades
to an item to incorporate technological advances or to meet new or changed re-
quirements (EN 13306, 2017). This type of maintenance is focused on enhancing
the functionality, performance, or capabilities of the equipment or system in re-
sponse to evolving needs or advancements in technology. It entails assessing the
current state of the item, identifying areas that can be upgraded or modified, and
implementing changes to align with the latest technological advancements.



Chapter 4

Aker BP and Smart Maintenance

4.1 Aker BP Assets

Aker BP is the operator of six fields on the Norwegian continental shelf (Aker BP,
2023c). The fields include the three facilities Edvard Grieg, Ivar Aasen and Ula,
the facilities connected to the Valhall area, as well as the two floating produc-
tion storage and offloading (FPSO) units: Alvheim and Skarv. The company also
operates some of the connected producing fields, for example Tambar, which is
connected to the Ula field.

The six fields are considered assets according to the definition from Plattform
Industrie 4.0, 2023a, since they have a value to Aker BP. Aker BP, 2023a gives two
definitions of asset. Firstly, Aker BP, 2023a defines asset as “Aker BP’s ownership
share in a licence or group of licences operated or non-operated where Aker BP
is fully accountable and liable”. This agrees with how the term asset is used in
Aker BP. In Aker BP, the six fields are referred to as assets, while other resources
and equipment are not. Secondly, Aker BP, 2023a defines asset as “functional
equipment or logical groups of equipment”, as well as a “digital representation
of physical objects or groups of objects”. This definition is consistent with the
definition from Plattform Industrie 4.0, 2023a, and the thesis will therefore apply
this definition while using facility for Aker BP’s operated fields.

Aker BP was established in 2016 through the merger of Det norske oljesel-
skap ASA and BP Norge AS. Over time, additional companies have joined Aker
BP, resulting in a diverse range of systems and vendors being involved across their
various facilities. This has led to multiple approaches and practices in different
aspects of their operations. One such area is the labelling of similar equipment,
where different rules and syntax are employed across different facilities. To illus-
trate this diversity, Aker BP utilises control systems from four distinct vendors,
namely ABB, Honeywell, Kongsberg, and Siemens, within their facilities. Each
vendor has their own specifications and guidelines for labelling and identifying
equipment within their respective control systems.

According to EN ISO 10418, 2019, which is a standard for the management
of process safety systems for offshore production installations, the use of a system
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for identifying and symbolising process components and process safety devices
is required. Tags are used as a means to describe and uniquely identify indi-
vidual equipment. They provide a unique code that defines the Functional Loc-
ation (FLOC) and function of a physical component within a facility (Aker BP,
2023a). The term "functional location" refers to the specific location of the tag
within the system, such as a particular unit or area, rather than the precise phys-
ical position within the facility (Aker BP, 2023a). FLOC is also used as a name
for the tag or code that describes the functional location. Tag or FLOC is typically
used to track and manage equipment throughout its life cycle, including design
documents, maintenance, and repair activities. They help ensure that equipment
is properly identified, and information about its function and location is easily
accessible. This identification system aids in organising and maintaining the in-
tegrity of the facility’s equipment inventory. In addition to equipment, facilities
and platforms have tags which consist of a three letter code.

For Ula, the format of the tag used to indicate a line gas detector receiver
involves the terms gas detector line (GDL) and receiver (R). The tag follows the
pattern of fire detection area-GDL-four digit number-R. For instance, an example
tag would be A2-GDL-4230-R, where A2 represents a predetermined fire area. In
order to locate all line gas detectors on Ula, one can simply search for tags that
include GDL and filter them out. However, it’s important to note that this approach
won’t be effective for other facilities as they utilise different syntax structures.

To establish uniformity in equipment categorisation across facilities, Aker BP
has implemented the utilisation of catalog profiles and object types. These con-
cepts are derived from the equipment class and equipment type, respectively, as
defined in EN ISO 14224, 2016. Each piece of equipment within a functional loc-
ation is associated with a catalog profile, which outlines specific characteristics
relevant to the failure data pertaining to that equipment type (Aker BP, 2023a).
The object type serves as a subset of the catalog profile, taking into consideration
additional factors such as the equipment’s function (Aker BP, 2023a). For instance,
the fire and gas detector catalog profile encompasses 14 distinct object types, as
outlined in Table 4.1, indicating different variations of fire and gas detectors. This
categorisation enables the efficient identification of all gas line detectors, such as
the gas line detector IR and gas line detector laser, across all Aker BP facilities.

Aker BP’s pursuit of data-driven decisions aligns with their broader objectives.
Data-driven decision-making involves the systematic utilisation of data analysis
and interpretation to inform and guide the decision-making process. It entails
leveraging data to enhance the accuracy and effectiveness of decision-making.
In the modern era, the exponential growth in available data and advancements
in data collection and analysis technologies have heightened the significance of
data-driven decision-making for organisations.

Aker BP collaborates with suppliers to foster the development of new tech-
nologies and innovative approaches, all based on shared data (Aker BP, 2023d).
They place emphasis on establishing safe and secure methods that enable them
to tackle numerous tasks from shore. By implementing a systematic categorisa-
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Table 4.1: Object type of fire and gas detectors.

Object Type Object Type Description
FG Fire/Gas detectors
FG-CP LOGIC SOLVERS AND CO
FG-FD FLAME DETECTOR
FG-FDV FLAME DETECTOR VIDEO
FG-GD GAS DETECTOR MISC
FG-GDACO GAS DET. ACOUSTIC
FG-GDCAT GAS DET. CATALYTIC
FG-GDLOSIR GAS LINE DETECTOR IR
FG-GDLOSLA GAS LINE DET. LASER
FG-GDPIR GAS POINT DET. IR
FG-HD HEAT DETECTOR
FG-OMD OIL MIST DETECTOR
FG-PGD PORTABLE GAS DETECTOR
FG-SD SMOKE DETECTORS

tion of equipment across their facilities, Aker BP lays a foundation for data-driven
decision-making. This standardised approach allows for comprehensive data col-
lection, analysis, and comparison, which ultimately enhances their ability to make
informed decisions based on reliable data.

4.2 Predictive Maintenance at Edvard Grieg

At Edvard Grieg, statistical analysis and weather forecast is used for maintenance
planning of F&G detectors (Pettersen et al., 2020). Pettersen et al., 2020 explains
the steps used for implementing predictive maintenance:

1. Real-time monitoring: What is happening right now?
2. Statistical analytics: What has happened?
3. Predictive analytics: What is going to happen in the future?

Monitoring the detectors is a crucial step for gathering the data for the analyt-
ics, and also for using in the predictive analytics. The Honeywell Asset Sentinel
software was used for the monitoring. For the statistical analysis, two and a half
years of fault data was analysed for all F&G detectors. Honeywell Asset Sentinel
was also used for the statistical analysis. The analysis resulted in identifying the
physical locations where detectors were having more faults, identifying bad actors
and a comparison of the fault intensity between vendors (Pettersen et al., 2020).

Predictive analytics in Honeywell Asset Sentinel was used by correlating real-
time monitoring and historic events to past weather conditions (Pettersen et al.,
2020). Machine learning was then used to predict future conditions for the detect-
ors based on weather forecast data. After a 33 month supervised learning period
and 12 months validation, the overall prediction accuracy achieved was > 75%,
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including errors in the weather forecast (Pettersen et al., 2020). The model runs
in real-time and the accuracy can improve by retraining the model with new data.
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Data Tools and Systems

5.1 Cognite Data Fusion

5.1.1 Purpose

CDF is an industrial DataOps platfrom provided by Cognite (Cognite, 2022). The
CDF tools and services can be used for gaining business value from big data by
building solutions and applications. Integration of data from the information tech-
nology (IT) and operational technology (OT) systems in a cloud platform like CDF
is an important step towards Industry 4.0 and the benefits it brings. Data becomes
more accessible when using CDF, this can be utilised for better decision-making.

IT and OT systems are the main types of source systems. IT systems are used
for data and computing, an example being the resource-management system SAP
presented in Section 5.3. The safety and automation system (SAS), see Section 5.4,
is an example of an OT source system, which are systems used for monitoring pro-
cesses and events. Monitoring is often a continuous process, requiring the data to
be extracted to CDF in real-time.

Once the data from both the IT and OT systems are accessible in CDF, applica-
tions and solutions can easily be built on top of it (Cognite, 2023). Cognite InField
is an example of an application running on top of CDF (Cognite, 2022). Figure 5.1
illustrates how data from SAS, SAP and Miros are integrated in CDF, making it
accessible for users on different devices. These are only a few of the data sources
streamed to CDF, but they are the ones of the most interest for this thesis. CDF
can be an operational digital twin for assets, combining real-time data with static
data about an asset.

The CDF platform facilitates for contextualisation of company data. Resources
are organised, leading to a better understanding of the data, by combining ma-
chine learning and a rules engine in CDF with the company’s domain knowledge
(Cognite, 2022).
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Figure 5.1: Cognite Data Fusion as a complete operational digital twin of assets,
adapted from Cognite, 2023.

5.1.2 Functionality

The CDF platform architecture is shown in Figure 5.2. The modular design shows
how IT and OT data are extracted and how CDF through three modules facilitate
for data applications and analysis. The extractors used with CDF are not restricted,
so that data from both IT and OT data sources can be integrated into CDF. As an
example, OPC UA is used as the extractor for the OT data from SAS. Staging area
is the first CDF module, where data is stored in its original format after being
extracted from the data sources Cognite, 2022 The data is reshaped to fit the CDF
data model by running transformations in the transform module. In the CDF data
model, the data is enhanced. Data from different source systems can be mapped to
each other by using the CDF contextualisation tools. The CDF architecture shows
how CDF provides the cloud infrastructure from Figure 6.1.

Figure 5.2: The Cognite Data Fusion platform’s modular design, adapted from
Cognite, 2022.

There are six different resource types for storing data in the CDF data model,
and three resource types for organising data. CDF stores data in the resource types
"asset", "time series", "events", "files", "3D models" and "sequences"; they are de-
scribed in Table 5.1. Relationships between the stored data are defined using the
resource types "relationships", "labels" and "data sets", described in Table 5.2.

The CDF home page contains different tools under the following categories,
as seen in Figure 5.3. There is also a separate application called Asset Data Insight
for viewing the CDF data. The application is still in beta.

1. Integrate
2. Contextualise
3. Explore and build
4. Manage and configure
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Table 5.1: Resource types to store data, from Cognite, 2022.

Resource Type Resource Type Description

Asset
Digital representations of objects or
groups of objects from the physical world

Time series A series of data points in time order

Events Information that happens over a period of time

Files
Documents that contain information
related to one or more assets

3D models
Files that provide visual and
geometrical data and context to assets

Sequences Series of rows indexed by row number

Table 5.2: Resource types to organise data, from Cognite, 2022.

Resource Type Resource Type Description

Relationships
For representing connections
between resource objects in CDF

Labels
For creating predefined sets of managed
terms for annotating and grouping

Data sets
For containing data objects and metadata
with information about the data it contains
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Figure 5.3: The Cognite Data Fusion home page.

5.1.3 Flexible Data Modeling

"Data modeling" is found under explore and build on the CDF home page. This
modelling tool, called FDM, allows for creating data models for organising data
objects with the GraphQL data modelling language (Cognite, 2022). A data model
will represent data entities and their relationships by defining resource types for
the entities. Fields in the data types will represent entity attributes. Relationships
are defined by giving a data type a field where the attribute is a data type that is
also defined in the data model.

Data can be uploaded to the staging area by using the "manage staged data"
tool under integrate, as seen in the leftmost column of Figure 5.3. A data model
can then be populated with this data by using "transform data", also under in-
tegrate. The query explorer can then be used for querying the data from a data
model.

5.2 Aveva Net

Asset hierarchies and life cycle information (LCI) data are stored in the life cycle
information (LCI) Aveva Net application. LCI refers to the comprehensive range of
data and details that a company needs to effectively manage and oversee various
stages of a facility’s life, including engineering, ongoing operations, maintenance,
repair, modification, and eventual decommissioning. LCI encompasses the neces-
sary information and resources essential for the successful planning, execution,
and decision-making throughout the entire life cycle of the facility. This is typic-
ally static information like technical data, tag data and technical documents for
equipment.
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5.3 SAP

SAP plant maintenance (PM) is a computerised maintenance management system
(CMMS) software product. The function of SAP is to facilitate for maintenance op-
erations. One way of doing this is through the notification and work order system.

In SAP, a data object called a notification is created during the identify and
validate work process (Aker BP, 2023a). Notifications can take various types and
can be associated with different work orders depending on the situation. When
it comes to corrective maintenance, Malfunction report (M2) notifications play a
crucial role as they are utilised when there is a functional degradation of equip-
ment (Aker BP, 2023a). These notifications encompass failure data in line with EN
ISO 14224, 2016, including failure mode, failure impact, failure description, and
more. Additionally, they provide an initial priority based on a matrix that assesses
the consequences of failure against the classification of the functional location
referenced in the notification (Aker BP, 2023a).

Once a notification is validated, a work order is linked to the notification. This
work order contains detailed information about the resources required, such as
labour and materials, to restore the equipment’s functionality (Aker BP, 2023a).
Following the completion of the work specified in the work order, the repair report
is also connected to the notification through the "Report work" process.

Functional units in SAP are labelled with Functional Location (FLOC). As ex-
plained in (SAP, 2022), FLOC represents an element of a technical structure within
a system. FLOCs are distinct codes that define both the functional location and the
function of a physical component within a facility. The term "functional location"
specifically denotes the position of the tag within the system and not the precise
physical location. According to Aker BP, 2023a, Aker BP defines functional loc-
ation as equivalent to a tag. However, it is important to note that in SAP, the
three-letter facility tag is incorporated as a prefix in all equipment tags associated
with that particular facility. This means that in SAP, the equipment tags include
both the facility tag and the functional location.

5.4 SAS

SAS refers to an integrated system that combines safety functions and automation
control in an industrial installation. SAS performs multiple tasks, including mon-
itoring, logic control, and safeguarding, to ensure the safe and efficient operation
of the installation.

IEC PAS 63131, 2017 defines a set of operational control function blocks.
Function blocks are a programming concept used in control systems and auto-
mation. They are modular units of code that encapsulate specific functionalities
or behaviours. The function blocks help companies comply with the software re-
quirements from IEC 61508, 2010. In addition, the control functions increase the
standardisation of digital information and contributes to achieving Industry 4.0.
Aker BP has different control system suppliers; the operational control functions
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standardise the control system application.
The Monitoring of analogue process variables - fire and gas (MA_FG) function

block defines inputs and outputs for fire and gas detectors and ensures display
and monitoring of the detector variables (IEC PAS 63131, 2017). It is also defined
which inputs and outputs shall be accessible from a operator station. The operator
station outputs include alarms and faults. An event will trigger an output in the
function block, for example "dirty optics" or "beam blocked".

Open Platform Communications Unified Architecture (OPC UA) is a commu-
nication protocol and framework for industrial automation. It is designed to en-
able secure and reliable communication between various devices and systems in
the industrial environment. OPC UA provides a standardised way for different
components of a control system to exchange data and interact with each other. It
supports interoperability across different platforms and vendors, making it widely
adopted in the industry.



Chapter 6

Specifications

The system life cycle processes in IEC 15288, 2015 are defined in detail. Each
process provides a step guide with clear goals and specific outcomes. This differs
from the RAMI 4.0 layers that are part of the framework for structuring and un-
derstanding complex systems. The RAMI 4.0 layers can be used for mapping the
crucial aspects of a data model, but this requires an understanding of the layers
since they do not contain detailed processes. It is therefore valuable to associ-
ate life cycle processes to the RAMI 4.0 layers. The technical processes from IEC
15288, 2015 corresponds to the RAMI 4.0 layers like in Table 6.1.

The first of the technical processes in IEC 15288, 2015 is the "business or
mission analysis process". The process process aim is determining potential sys-
tem classes by analysing the business perspective of a problem. Hence, this pro-
cess corresponds well with the commercial perspective in the "business" RAMI 4.0
layer.

The "system requirements definition process" has the purpose of defining the
system functionality as well as creating measurable system requirements. The pro-
cess overlaps with the "functional" RAMI 4.0 layer. However, RAMI 4.0 layers do
not consider the measurable system requirements.

The "architecture definition process" aims at generating alternatives for the
system architecture. This includes describing the necessary data which character-
ises the "information" layer from RAMI 4.0. This process also identifies the inter-
faces of system elements, which could be a part of both the "communication" and

Table 6.1: RAMI 4.0 layers and corresponding technical processes.

RAMI 4.0 layers Technical processes from IEC 15288, 2015
Business Business or mission analysis
Functional System requirements definition
Information Architecture definition
Communication Architecture definition and design definition
Integration Architecture definition and design definition
Asset Design definition

39
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"integration" layers.
Interfaces are also considered in the "Design definition process". This process

defines design characteristics for all system elements. The purpose of the pro-
cess is describing the system and its elements in sufficient detail. This process
corresponds to the "communication" and "integration" layers, like the architecture
process. It also provides detailed information about the assets, hence, it resembles
the RAMI 4.0 "asset" layer.

6.1 Use Case Specification

6.1.1 Business Analysis

Prepare for business or mission analysis

The thesis objective of creating a data model for monitoring optical gas detectors is
closely aligned with Aker BP’s overall strategy of digitalization. Aker BP recognises
the importance of using digital technologies to achieve their goals of reducing
emissions, enhancing safety, improving efficiency, and lowering costs (Aker BP,
2023d). By creating a data model for monitoring optical gas detectors, the thesis
aims to contribute to Aker BP’s efforts to improve maintenance planning, which
is a key aspect of their overall strategy.

Effective maintenance planning can help to reduce emissions by minimising
the need for unplanned maintenance activities. It can also improve safety by en-
suring that the optical gas detectors are working correctly and accurately detecting
hazardous gases. Improved maintenance planning can also improve efficiency by
reducing downtime and increasing equipment reliability. Finally, it can lower costs
by reducing the need for expensive emergency repairs.

Define the problem or opportunity space

Weather conditions can cause dirty optics and beam block of optical gas detectors.
Due to this, detector lenses are only cleaned as a reactive maintenance measure,
which can be time-consuming. Maintenance work on offshore facilities is complic-
ated as technicians need to be transported to the platform, and there are limited
accommodations available. Therefore, planning for maintenance work needs to
account for the required technicians and optimise the utilisation of the available
human resources on the platform. This task becomes more complicated when re-
active maintenance is necessary, and significant time and costs can be saved by
avoiding such instances.

In the case of unmanned or low-manned platforms, the significance of avoid-
ing detector failures is even greater as there may not be any technicians available
on-site. The risk of process shutdown due to detector failures increases with the
time taken to rectify the issues. In the event of a storm, multiple detectors may
get blocked and fail, leading to a shutdown when there are too few gas detect-
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ors available in the area. The cost of a process shutdown is substantial, and the
resulting start-up procedure can have adverse effects on the environment.

Gas detection systems are a crucial aspect of safety, and preventing failures
in these systems is of utmost importance. However, detector faults triggered by
weather conditions have not been analysed systematically in Aker BP. This lack
of analysis means that detectors that are more susceptible to faults caused by
weather may go unnoticed. To avoid failures caused by weather conditions, it is
necessary to implement predictive maintenance measures.

Characterise the solution space

By implementing a data model that visualises the patterns between failures in
optical gas detectors and weather conditions, several benefits can be achieved.
Firstly, it can help avoid failures in critical safety systems by identifying potential
issues before they cause equipment failure. Secondly, it can help identify bad act-
ors, or specific detectors that are more susceptible to weather-based faults, allow-
ing for more targeted maintenance efforts. Finally, by enabling more efficient use
of offshore manpower resources, the data-driven approach can lead to improved
efficiency and reduced costs.

By collecting and analysing data from gas and weather detectors, predict-
ive models can be developed that enable proactive maintenance planning and
scheduling, reducing downtime and increasing gas detector reliability. Data-driven
decision-making also helps Aker BP make informed decisions about when and
how to perform gas detector maintenance, ensuring optimal resource allocation.
Through the application of digital technologies and data analytics, Aker BP can op-
timise its maintenance processes, resulting in improved safety, reliability, and op-
erational efficiency. The data model will therefore be designed for integration with
Aker BP’s existing maintenance planning systems, enabling maintenance teams to
make data-driven decisions about when and how to perform maintenance on the
detectors.

6.2 Requirement Specification

6.2.1 System Requirements

Prepare for system requirements definition

Data-driven decision-making is critical to the success of predictive maintenance.
To predict when equipment is likely to fail, organisations need to collect and ana-
lyse a large amount of data about the equipment in question. The solution there-
fore starts with the collection of the relevant data and ends with a model that
predicts equipment failure.

A data model could visualise the patterns between failures on optical gas de-
tectors and weather conditions. This can be used to anticipate expected failures
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and schedule maintenance activities accordingly, thus allowing for efficient clean-
ing of the detector lenses. To predict equipment behaviour and enable data-driven
decisions, the data model must combine data from different sources. The key para-
meters are the historical data for weather and diagnostic alarms and fault events
from the detectors. In addition, work orders and notifications are relevant for un-
derstanding past detector faults and determining their root cause.

Cyber-physical systems like this can be described using a three-level architec-
ture. Figure 6.1 shows this architecture, where the first level is physical objects,
representing the physical components like gas detectors and weather sensors.
The second level of the architecture is the cloud infrastructure layer. This layer
provides the computational resources and storage necessary to process and store
the data generated by the physical objects. It includes servers, databases, and
other cloud-based services that enable the processing and analysis of data. For
this system, CDF will be used as the cloud infrastructure. The third and final level
of the architecture is the services layer. This layer provides the user-facing applic-
ations and interfaces that allow users to interact with the cyber-physical system.
This architecture allows for the separation of concerns between the physical com-
ponents, the computational infrastructure, and the user-facing applications, which
can make it easier to develop, maintain, and update these systems.

Figure 6.1: Cyber physical systems

The scope of this thesis only covers the cloud infrastructure part of the cyber-
physical system needed to meet the problem solution from the business analysis.
The integration of information from the physical objects to CDF is an ongoing
project in Aker BP. The thesis presents the relevant data sets in CDF and a data
model implemented in CDF. The function starts with the collected data already
in CDF and ends with the data connected to the model for analysis. The analysis
can be considered as a part of an application or service and is not performed in
the thesis. It is important that the data model is well defined, so that additional
value can be gained by connecting to apps and algorithms.

Define system requirements

The objective of the data model is to capture the correlation between weather
conditions and the reliability of optical gas detectors. It establishes a structured
framework for organising, analysing, and interpreting data pertaining to weather
parameters and their impact on the availability of optical gas detection systems.
To accomplish this, the data model integrates information from various sources.

The data utilised in the data model will be sourced from pre-existing data sets
within CDF, guaranteeing the utilisation of reliable and validated data sources.
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The FDM tool is used because it not only facilitates convenient access to the data
within CDF but also empowers users to perform queries on the data model. Addi-
tionally, it enables the definition and analysis of relationships between different
data elements. This is attained with the first two system requirements.

1. The data model shall be implemented with FDM.
2. The data model shall integrate data through CDF.

To retrieve fault events, the data model accesses the data generated by the gas
detector MA_FG function block. Meteorological data, encompassing temperature,
humidity, wind speed, and visibility, is collected from a meteorological service.
Descriptive information regarding the cause of a detector fault is obtained from
notifications generated by SAP. Furthermore, the data model encompasses details
about the placement of gas detectors within the equipment hierarchy, including
the object type and catalog profile. This allows for the extraction of entire groups
of a particular equipment type, such as optical line gas detectors with the object
type FG-GDLOSIR. The system requirements three to seven ensure the incorpor-
ation of essential information into the data model.

3. The data model shall structure gas detectors in the Aker BP equipment hier-
archy.

4. The data model shall structure weather conditions.
5. The data model shall structure gas detector events, looking at dirty optics,

beam block, and fault.
6. The data model shall structure gas detector notifications.
7. The data model shall include the object type and catalog profile for equip-

ment.

The gas detector events and notifications encompass relevant information de-
tailing the gas detector they are associated with. To establish a contextual relation-
ship, the data model incorporates timestamps and geographical data for weather
data and detector events. This enables the observation of these factors in rela-
tion to each other. Notifications will also include timestamps to provide temporal
information. These specifications are attained by system requirements eight to el-
even, maintaining the integration of timestamps and geographical data within the
data model.

8. The data model shall include gas detector tag for gas detector events, and
notifications.

9. The data model shall include geographical data for the gas detectors.
10. The data model shall include geographical data for the weather data.
11. The data model shall include the timestamps for weather data, gas detector

events, and notifications.

The gas detector events, notifications, and corresponding object types are in-
terconnected with the relevant gas detector within the equipment hierarchy. To
establish the relationship between weather factors and gas detector faults, it is
necessary to compare data from a specific location and time period. Consequently,
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both the gas detectors and weather data are associated with a facility. Moreover,
the timestamps of the detector fault events are synchronised with the correspond-
ing timestamps in the meteorological data. This synchronisation procedure guar-
antees the precise alignment of fault events and meteorological data. As a result,
the fault events and their corresponding meteorological data are merged based on
their synchronised timestamps. This merging process facilitates the examination
of patterns, correlations, and insights regarding the connection between fault oc-
currences and meteorological conditions. System requirements twelve to fifteen
are in place to ensure the fulfilment of these criteria.

12. The data model shall connect the gas detectors with their associated object
type, gas detector events, and notifications.

13. The data model shall connect gas detectors and weather data to their asso-
ciated facilities.

14. The data model shall merge gas detector fault events with corresponding
weather parameters based on timestamps and geographical associations.

15. The data model shall connect notifications to gas detector events based on
timestamps.

6.2.2 Architecture Definition

Prepare for architecture definition

The data model comprises the main entities gas detectors and weather data. The
gas detector represents the gas detection device that utilises optical methods for
sensing and measuring gas concentrations. This entity encapsulates properties
such as its unique identifier, location, detector type, maintenance notifications and
fault events from the MA_FG function block. The weather data represents various
weather condition attributes at a specific location that might affect the lens or
the line of sight of a gas detector. These attributes include temperature, humidity,
wind speed, and visibility, with associated timestamps and units of measurement.
These parameters serve as inputs for analysing their influence on gas detector
alarms and events.

Develop models and views of the architecture

In the data model, relationships are established between the entities. A gas de-
tector is associated with weather data through specific weather sensors based on
their geographical proximity. Weather parameters are recorded and associated
with a particular weather station and timestamp. The weather sensors are located
on the same facility as the gas detector, and therefore measure the weather factors
that affect the detector.

The gas detector events and alarms come from the MA_FG function block in
the SAS. These are affected by weather factors in that the SAS measures dirty
optics and beam block on the line gas detector receiver. If the weather causes
poor visibility or dirty lenses, alarms and events will be generated by the MA_FG
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function block. The data model captures this association between weather condi-
tions and the performance of the optical gas detector. This relationship indicates
that weather conditions impact gas detection by influencing the availability of the
detector.

Notifications and work orders come form SAP. Each notification is linked to a
specific gas detector unit. Gas detector failure can lead to generation of notifica-
tions and work orders.

Gas detector data like events from the SAS and maintenance data form SAP
are stored in CDF and connected to the relevant gas detector tags. The gas detector
tag is also linked to the associated platform and facility. Weather data is likewise
linked to facilities in CDF. It is not, however, linked directly to the gas detector or
detector events, which is an aim of the data model.

The entities in the system architecture possess distinct characteristics and are
organised with colour-coded representations based on their respective properties.
The colour magenta represents physical assets, for example a gas detector. Inform-
ation that is digital is coloured in orange. An example is a gas detector notification,
which is a description of a failure, stored in a CMMS. Green represents phenomen-
ons that are physical but not solid, like humidity or dirty optics. The phenomenons
in the data model can all be measured. The colour-coding is demonstrated below:

• Physical asset
• Logical/digital value
• Phenomenon

This colour-coding is also applicable for the following schematics. Entities of all
these characteristics are represented digitally in CDF, in accordance with RAMI
4.0. The physical assets are represented with their FLOC, functions and properties.
The phenomenons are represented as time series with the measured values and
corresponding timestamps as well as associated properties and assets.

Figure 6.2 is a model of the described relationships. A facility is divided into
platforms, which contain gas detectors. A facility also holds weather sensors,
which measure the weather factors. Fog, humidity, temperature and wind are in-
cluded as weather factors. A gas detector is a part of the SAS, represented by the
MA_FG function block. Dirty optics and beam block events are generated by the
MA_FG function block, and the fault signal can be set accordingly. Notifications
are sometimes created in SAP when a fault is observed. Weather factors, dirty op-
tics and beam block are elliptical to point out that this is the focal point of the
architecture.

6.2.3 Design Definition

Prepare for design definition

The data model is implemented with FDM within CDF, which is the industrial
data platform used by Aker BP to provide accessibility to all their data (Aker BP,
2023d). This platform enables the creation of models, development of applica-



46 B. S. Øygard: Data models for improved diagnostics for gas detectors

Figure 6.2: Architecture of weather effects on gas detectors

tions, and analysis based on the available data. Within CDF, information regard-
ing each system element that constitutes the overall system is stored, eliminating
the need for additional technologies to construct the data model.

Establish design characteristics and design enablers related to each system
element

The data model design consists of the entities and their associated attributes listed
in Table 6.2. They are also illustrated in Figure 6.3. A lot of information is stored
in CDF and many attributes could be added. Those that are included are meant as
the minimum for describing the necessary data and relationships according to the
system requirements and business analysis. The gas detector ID, or tag, is a unique
identifier for the detector. The platform states the detector location, and the object
type is necessary for distinguishing between different detector types and filtering
out IR line gas detectors, which are most prone to fail due to the weather. The
facility is the link for connecting the correct weather data to the detectors, while
the function block entity contains the alarms and events that it is desirable to see
in accordance with the weather factors. The notifications connected to the gas
detector can help determine the cause of detector failures.

The use of object types for IR line gas detectors serves the purpose of distin-
guishing these detectors from other types of detectors. This differentiation allows
for the specific loading of IR line gas detector objects from the Aveva Net hier-
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Table 6.2: Data model entities and their associated attributes.

Entity Attributes
Gas detector ID, description, platform, object type
Platform ID, facility
Facility ID
Weather factors type, description, unit, facility, measurements
Catalog profile ID, description
Object type ID, description, catalog profile
function block gas detector, dirty optics, beam blocked, fault
Notification gas detector, description, failure mode, start time, long text

Figure 6.3: Design of weather effects on gas detectors data model.

archy into the data model in CDF. By doing so, it becomes possible to include all
the detectors without the need to manually process each tag individually, espe-
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cially considering that tag syntax may vary across different facilities.
By extracting the corresponding platform and facility information from the

gas detector objects in the Aveva Net hierarchy, it becomes feasible to connect
weather factor measurements to the respective facilities. This enables the loading
of specified weather factors associated with a facility into the data model.

In the context of SAP, object types are also utilised. Leveraging this, it becomes
possible to assemble all notifications that pertain to IR line gas detectors. These
notifications can then be linked to their respective gas detectors through the use
of tags. To accomplish this, the facility code must be employed since it is included
as part of the detector’s FLOC in SAP.

Regarding function blocks from the SAS, they are not categorised with cata-
log profiles and object types. Nevertheless, they are connected to the tags derived
from the Aveva Net asset hierarchy. Therefore, when loading the IR line gas de-
tectors from Aveva Net using the object types, the function blocks can be loaded
by utilising the compiled list of tags.
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Implementation in CDF

7.1 CDF Projects

Aker BP uses three main projects for organising their data in CDF. This facilitates
for a structured data flow. Each project serves a distinct function in ensuring data
quality throughout the data flow process. The first project is "akerbp-dev". This
project serves as a development environment for creating and refining data sets.
Data engineers and analysts can work within this project to build and enhance
data sets. It allows for experimentation, prototyping, and iterative development
of data before it is considered for further stages. When uploading data sets to
CDF, different application programming interface (API)s are used depending on
the data source. APIs provide a set of protocols, rules, and tools that define how
to interact with different source systems and access their data.

The next project is the "akerbp-test" project, which is dedicated to quality test-
ing. Once data sets are developed in "akerbp-dev", they are moved to this project
for quality assurance processes. Quality testing could involve various validation
checks, data integrity assessments, and verification of data accuracy to ensure it
meets predefined standards.

The final project, the "akerbp" project, is designed for production use, con-
taining updated and live data. Once data sets successfully pass quality testing in
the "akerbp"-test project, they are then moved to the "akerbp" project for deploy-
ment in a production environment. This project is intended to host the finalised,
high-quality data sets that are utilised for day-to-day operations, analytics, and
decision-making within Aker BP.

Organising data into distinct projects within CDF enables Aker BP to establish
a well-defined data flow process from development to quality testing to produc-
tion. This structured approach is crucial, particularly during the initial phase of
implementing CDF when integrating data from various sources for the first time.

In the upcoming section, the relevant data sets for the data model will be
explored, focusing on the Ula facility and specifically the gas detector with tag
number A2-GDL-4230-R. This gas detector is situated in a weather-exposed area
on the ULP. The integration progress of the Ula and Valhall facilities into CDF has
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come the furthest.

7.2 Data Sets in CDF

7.2.1 Asset Hierarchy

The asset hierarchies from Aveva Net serve as the primary source for all assets and
tags at Aker BP (Aker BP, 2020). The Aveva Net asset data is accessible through
the PostProcessor (PP) API, and it seamlessly integrates into the CDF data model
as asset objects. Within CDF the hierarchical structure that forms the core of the
data model refers to all objects as assets or asset objects. The top-level asset in
this hierarchy is known as the "root asset". However, it’s important to understand
that in the context of Aker BP, the term "assets" typically specifically refers to root
assets. Conversely, the term "tags" is used to describe equipment or objects that
exist below the root node in the hierarchy. In CDF, the asset hierarchy data is
managed under the data set named "Aveva Net, asset hierarchy". Figure 7.1 shows
the CDF view of the root asset ULA, and its direct children assets. The parent asset
represents the facility Ula and the children assets represent the platforms ULP,
Ula living quarters platform (ULQ) and Ula drilling platform (ULD). Figure 7.2
illustrates the same hierarchy in a general manner. Facilities are structured as the
root assets, with platforms and equipment as assets belonging to a facility.

Figure 7.1: Asset hierarchy in CDF.

Figure 7.2: "Aveva Net, asset hierarchy".

The LCI Aveva Net app encompasses static information about the elements in
the asset and tag hierarchies. This information is transferred to the asset objects
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Table 7.1: Excerpt from gas detector asset object in the data set "Aveva Net, asset
hierarchy".

Key Value
objectId A2-GDL-4230-R
External ID ULA-A2-GDL-4230-R
PARENT TAG FJ-05292-E
SERVICE DESCRIPTION P02 CELLAR DECK NORTH/EAST
HAZARDOUS AREA RATING ZONE 1
LOCATION (FACILITY AREA CODE) P02
SAP OBJECT TYPE FG-GDLOSIR
SAP CATALOG PROFILE FG0000001
Data set Aveva Net, asset hierarchy

in CDF. In CDF, the objectId corresponds to the tag name, which is unique per root
asset (Aker BP, 2020). It is possible for tags under different root assets to have
the same tag name or objectId, although this occurrence is rare.

To ensure uniqueness across all assets, the External ID for the CDF asset objects
is set as "ASSET_{objectId}" (Aker BP, 2020). For example, the tag A2-GDL-4230-R
is located under the root asset ULA, its External ID is “ULP-A2-GDL-4230-R”. The
External ID serves as a unique identifier within CDF.

Using the objectId, the PARENT TAG attribute provides a reference to the parent
tag for a specific tag within the hierarchy (Aker BP, 2020). The asset metadata in
CDF does not explicitly list the children assets. Instead, the information about
children assets is derived from the parent tags of the corresponding child nodes
in the hierarchy.

According to Aker BP, 2020, various attributes and descriptions exist for differ-
ent purposes within the asset and tag hierarchies. The SERVICE DESCRIPTION at-
tribute is specifically pushed as the description attribute in the asset object within
CDF. Additionally, all fields associated with the elements in the hierarchy, includ-
ing the attributes and descriptions, are attached as metadata to the asset object
within CDF.

Table 7.1 provides some of the properties from the CDF asset object that rep-
resents the A2-GDL-4230-R gas detector. Although the gas detector is located un-
der ULP, ULP is not the direct parent tag since it is positioned several nodes higher
in the hierarchy. The object type of the asset is significant as it facilitates the iden-
tification of all equipment belonging to the same type, such as all IR line gas
detectors.

The SERVICE DESCRIPTION provides information about the location of the
detector and its exposure to weather conditions. While the location is also men-
tioned in the LOCATION attribute, it may not provide sufficient details to determ-
ine the level of weather exposure. Therefore, referring to the service description
is important in understanding the extent to which the detector is exposed to the
weather.



52 B. S. Øygard: Data models for improved diagnostics for gas detectors

According to (Emerson Automation Solutions, 2019), the HAZARDOUS AREA
RATING indicates the probability of the gas being present in quantities sufficient
to create explosive or ignitable mixtures. "Zone 1" signifies that there is a high
likelihood of ignitable concentrations of flammable gases or vapours occurring
under normal operating conditions. This information helps in assessing the po-
tential risks and taking appropriate safety measures in the designated area.

7.2.2 Maintenance System Data

Aker BP’s Azure API management (APIM) has been used to extract SAP data and
create a data set that contains this information (Aker BP, 2023b). This is done as
a part of the ongoing E2E Maintenance project. The liberated data from SAP is
stored in the data set called "APIM - SAP". The "APIM - SAP" data set will replace
other data sets with SAP data that exist in CDF. This data set should therefore be
used over other data sets that also contain SAP data.

FLOCs from SAP include the platform code, like ULP-A2-GDL-4230-R. A FLOC
object is of the CDF resource type "asset" and associated notifications and work
orders are connected as shown in Figure 7.4. Notification and work order objects
are of the resource type "event". The FLOC objects stored in "APIM - SAP" are con-
textualised to the corresponding assets in the Aveva Asset Hierarchy, as illustrated
by Figure 7.3 (Aker BP, 2023b). The FLOC is used as the Name of an asset object
from "APIM - SAP". The FLOC is also used for the metadata attribute flocFunction-
alLocation and in the External ID, which is sap_apim_floc_flocFunctionalLocation.
Other metadata attributes include flocCatalogProfile and flocObjectType.

Figure 7.3: "APIM - SAP".

Figure 7.4 shows that work orders and notifications are connected. A work
process is identified and validated through a notification (Aker BP, 2023b). All
the data related to the equipment failure is stored in the notification. While the
work order specifies the required resources in terms of work and materials ne-
cessary to restore the equipment’s function, and is linked to the corresponding
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notification. When classifying if a gas detector failure was affected by weather
factors the failure data stored in notifications is of higher value than the resource
information from the work orders.

Figure 7.4: SAP data relationship diagram, adapted from Aker BP, 2023b.

Notification objects are identified using a number code stored in the attrib-
ute notNotification in the metadata of the notification object. The External ID
for the notification objects is "sap_apim_notification_{notNotification}", where
the unique attribute notNotification is inserted for each object. Notification ob-
jects also contain other fields like notNotificationType, notNotificationDesc, main-
FunctionalLocation and notEquipment. The failure data is stored in the attribute
notLongText. The information captured encompasses the date, operator name, and
responses to a set of inquiries. These inquiries involve identifying the observed
fault, assessing the associated risk, and determining potential reasons for the oc-
currence.

Table 7.2 shows some of the values from a CDF event describing a notification
associated to the A2-GDL-4230-R gas detector. The linked asset is the asset object
"ULP-A2-GDL-4230-R" from the data set "APIM - SAP", which is linked to the "A2-
GDL-4230-R" asset object from "Aveva Net, asset hierarchy". Note that only a part
of the notLongText value is included in this table.

In addition to the notLongText, the notFailureMode and notFailureModeCode
provide descriptions of failures and can be utilized to determine if they are caused
by weather factors. According to IEC 61511, 2017, a failure mode refers to the
specific manner in which a failure occurs. For instance, in the case of dirty optics
or beam block, the notFailureModeCode will indicate low output (LOO). This code
is also applicable to other failures identified through detector diagnostics. The
notFailureEffect also serves as a classification for the type of notification.

The notifications that specifically concern the detector’s field of vision are im-
portant and cannot be filtered without analysing the free text in the Description
field. However, numerous irrelevant notifications can be effectively filtered out
by implementing the criteria of notFailureModeCode = "LOO" and notFailureEffect
= "2-Degraded failure". These conditions help narrow down the notifications to
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Table 7.2: Excerpt from dirty optics notification event in the data set "APIM -
SAP".

Key Value
Type notification
Description detector has dirty optics fault
External ID sap_apim_notification_400111938
Linked asset(s) ULP-A2-GDL-4230-R
Sub type M2
Data set APIM - SAP
notFailureEffect 2-Degraded failure
notFailureMode LOO-Low output
notFailureModeCode LOO
notNotificationTypeDesc M2-Corrective Notif
notNotificationPriority 2
notNotificationPriorityDesc 2-H-High

notLongText
1. Which error is observed?
Detector has Dirty Optics error

notMainAsset Ula

those that are associated with the specified failure mode code and degraded fail-
ure classification, thereby reducing the number of irrelevant notifications.

7.2.3 Control System Data

Aker BP is currently investigating ways to transmit data to the mainland. They
have established an OPC UA server that contains data from Valhall and Ula (Aker
BP, 2021b). This data includes object hierarchies representing plant equipment
and equipment instrumentation. The equipment objects are implemented as "as-
set" types in CDF and the sensor data as "time series" and "data points". Alarms and
events are implemented as the type "event". According to Aker BP, 2021b, Aker BP
has chosen OPC UA as their preferred communication protocol for various data
integrations, highlighting the significance of stable and reliable data pipelines to
CDF. Currently, there is no existing solution for handling complete OPC UA data
streams. The primary method of accessing time series data presently is through
PI (Aker BP, 2021b). However, in the long term, the OPC UA data stream will be
used as a live stream from the SAS on all facilities.

Per now, OPC UA alarms and events from Valhall and Ula are being fed into
CDF using a proprietary ABB Ability interface (Aker BP, 2021b). The SAS data is
stored in the data sets "OPC UA data ULA" and "OPC UA data VAL". This data from
the ABB Ability interface is the only OPC UA data available in the "akerbp" CDF
project. However, "OPC UA HUB" data sets have been established for five of the
six Aker BP facilities in the "akerbp-dev" and "akerbp-test" projects.

In the context of CDF, OPC UA objects representing equipment are brought
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in as assets. These assets are then associated with their corresponding assets in
the Aveva Net hierarchy. This is illustrated by Figure 7.5. Connecting OPC UA
assets to Aveva Net assets via exact matching is not reliably possible, as stated by
Aker BP, 2021b. Therefore, the linking of these assets is achieved through various
methods, primarily by comparing the names of the OPC UA assets with the names
of the Aveva Net assets. Prior to extracting OPC UA data to CDF, time series and
events are connected to the OPC UA objects. Contextualising the OPC UA data to
the Aveva Net hierarchy is particularly important because SAS does not opearte
with object types and catalog profiles, and are therefore not possible to filter across
the facilities without this link.

Figure 7.5: "OPC UA data".

Only the receiver component of line gas detectors has an OPC UA object. These
receiver assets consist of 13 time series that represent selected measurements
from the function block. Additionally, these assets include an unlimited number
of events. Fault, dirty optics, and beam block are among the included time series.
Table 7.3 provides the names of these time series, and the ABB names are men-
tioned because ABB supplies the control systems for Ula. In CDF, the specific time
series are named as "Linked asset:time series name". For example, A2-GDL-4230-
R:HSI.BeamBlocked. The addition of human system interface (HSI) indicates that
the value corresponds to the function block inputs and outputs between an oper-
ator station. The naming conventions may differ among vendors, but they are all
mapped to the same terms in CDF.

The fault, dirty optics, and beam blocked values for line gas detectors are all
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Table 7.3: Function block time series naming.

Function block
name from ABB

Time series
name in CDF

Description from ABB

YF YF OUT Fault.
BFDO HSI.DirtyOptics OUT Dirty optics status.
BFBB HSI.BeamBlocked OUT Beam blocked status.

Table 7.4: Excerpt from the beam block time series in the data set "OPC UA data
ULA".

Key Value
Name A2-GDL-4230-R:HSI.BeamBlocked
Type timeseries
Linked asset(s) A2-GDL-4230-R
Data set OPC UA data ULA
dataType Boolean

represented as Boolean values. When the "YF" variable is set to a high value, it
indicates a detector fault. Similarly, a logical high value for "HSI.DirtyOptics" or
"HSI.BeamBlocked" indicates that the detector has dirty optics or is beam blocked,
respectively. Beam block is considered a detector fault and triggers the "YF" vari-
able. On the other hand, dirty optics do not trigger the "YF" variable as the detect-
ors remain operational, as stated by Håbrekke and Onshus, 2017.

The values from the "HSI.BeamBlocked" time series for the A2-GDL-4230-R
detector is shown in Figure 7.6. Even though the dataType is "Boolean", it does not
look like the time series in Figure 7.6 consists of Boolean values. This is because of
the viewer in CDF Asset Data Insight. The chosen time frame on the x-axis in the
figure is throughout 2022. In order to present the information in a comprehensible
manner, Asset Data Insight displays an average of the Boolean value on the figure
y-axis. If the time frame is made small enough, it is possible to distinguish every
case of the detector being beam blocked. Notice that the y-axis interval is from 0
to 0.1. Hence, the detector was not continuously beam blocked, even in January
when there was a peak.

The meta data associated with the time series includes the attributes listed in
Table 7.4. The time series is a variable since it has changing values. The variable’s
meta data consists of properties, which are values close to constant. Both variables
and their meta data end up as meta data of the associated asset, in this case A2-
GDL-4230-R.

Figure 7.7 shows the time series "YF", "HSI.DirtyOptics", and "HSI.BeamBlocked"
for the detector A2-GDL-4230-R. The time frame on the x-axis is 27th to 29th of
May, 2022. The y-axis is separated in three, with "YF" in red at the top of the
figure, "HSI.DirtyOptics" in blue at the middle and "HSI.BeamBlocked" in yellow
at the bottom. Figure 7.7 represents the time series with Boolean values, so they
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Figure 7.6: Beam block signal shown with Asset Data Insight.

are either 0 or 1. On the 28th of May, the detector gets dirty optics at around 6
a.m. This persists until 9 a.m., when the gas detector is briefly beam blocked and
the detector also reports a failure. Just before 5 p.m. the detector again gets dirty
optics. This lasts until 9 a.m. the next day, when again, the gas detector is beam
blocked and the output fault is activated. Following this the beam block and fault
pins toggle several times until 6 p.m. on the 29th of May. Some of the lines are
thicker, like the beam block at 9 a.m. on the 29th of May, because the variable is
toggled but the time frame is too big for distinguishing each of the distinct cases of
beam block. The "YF" and "HSI.BeamBlocked" time series follow each other. This
is because beam block is considered a detector fault, and triggers "YF". However,
the beam block is toggled more than the fault at 3 p.m. on the 29th of May. This
is due to suppression of the fault event. By this point, it is clear that there is a
problem with the gas detector, and it is not expedient to receive numerous fault
alarms. Note that other faults will also trigger "YF" and be affected by suppression
of the alarm.

Beam blockage can be temporary and generate many alarms. With a passing
fog for example, many detectors may be beam blocked simultaneously. If they
also toggle between being beam blocked and not, a large number of alarms are
generated. Because of this, Ula has configured the beam block alarms so that the
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Figure 7.7: Dirty optics, beam block and fault in CDF charts.

priority increases when a detector has been beam blocked over some time. Hence,
the control room is not notified about all of the beam blocked detectors.

7.2.4 Weather Data

The Norwegian Meteorological Institute (MET) conducts extensive monitoring of
weather conditions on land and at sea. A significant amount of the collected data
can be accessed through MET’s self-service download services (MET, 2021a). MET
also monitors sea areas and provides forecasts for variables such as water levels,
currents, and waves (MET, 2021b). The MET weather data is available for use
directly, but some of the data is also incorporated in a CDF data set. CDF con-
tains three data sets with weather data: "StormGeo Weather Forecast," "MET Luna
Weather Data," and "Miros Weather Data." However, "StormGeo Weather Forecast"
has been replaced by "MET Luna Weather Data." Therefore, the relevant data sets
for the data model are "MET Luna Weather Data" and "Miros Weather Data." These
data sets contain measurements of various weather conditions that could affect
the line of sight of a gas detector. The measurements are stored as CDF "time
series."

The weather data in "MET Luna Weather Data" is extracted using the Luna
API, which is used to deliver weather data to MET’s commercial customers (MET,
2023). MET primarily collects information through observations, including satel-



Chapter 7: Implementation in CDF 59

lite observations, and weather forecasting using numerical models and analysis
(MET, 2021b). The MET data in the CDF data set are forecast data that are up-
dated every six hours. However, if the data becomes unavailable, the historical
data for that period is lost, and new forecasts are not available until the system is
back online (Aker BP, 2022).

"MET Luna Weather Data" consists of 150 time series, with 25 for each facil-
ity. Out of these, ten describe factors related to the sea surface, and six describe
wind factors. The remaining time series cover temperature, pressure, dew point
temperature, fog, visibility, thunder, confidence, overall, and weather symbol text.

Miros is another service that provides real-time measurements of local sea
state and weather conditions (Miros, 2023). It integrates sensors on-site to collect
data. "Miros Weather Data" comprises over 3000 time series and is extracted us-
ing Azure (Aker BP, 2021a). This data integration was done as part of a separate
project in Aker BP, which utilises the data. Aker BP is currently working on integ-
rating weather data from all facilities, but the current documentation is limited,
making it challenging to obtain a comprehensive overview of the available data.
Nonetheless, it is evident that there is a substantial database.

Both the "MET Luna Weather Data" and "Miros Weather Data" data sets con-
tain measurements of various weather conditions. The time series include meas-
urement values, timestamps, and useful metadata such as units. "Miros Weather
Data" consists of historical weather data, while "MET Luna Weather Data" provides
weather forecasts. Therefore, the weather data from "Miros Weather Data" can be
used for analysing detector events, while "MET Luna Weather Data" can be used
for predictions based on the analysis.

7.3 Implementation in CDF

The data model was implemented using FDM. The model was created by defin-
ing data types based on the design specification. The data types were written in
GraphQL code, such as the gas detector type shown in Code listing 7.1. The com-
plete data model code can be found in Appendix A, and a preview is provided in
Figure 7.8.

Code listing 7.1: Data type for gas detectors in GraphQL code.

type GasDetector {
tag: String!
description: String
platform: Platform
objectType: ObjectType

}

Code listing 7.1 defines "type GasDetector", which results in a block in the
data model preview. The defined data types correspond to the entities outlined in
the data model design from Figure 6.3. For example, the gas detector type in the
data model resembles the gas detector entity from the design. This is illustrated
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Figure 7.8: Data model in CDF.

in Table 7.5. Both the name of the entity and data type and their associated attrib-
utes represents the same. The difference is syntax, where space cannot be used in
GraphQL variable names. In addition, the ID has been specified as the tag in the
data model. Another difference is that the data type specifies the value types. The
tag is a "String!" value. This means that the value is string, and the exclamation
mark indicates that the field must be included for an instance of the gas detector
type. Hence, gas detectors without tags cannot be considered by the data model.

The type of data is specified to the right of the attribute types in both the code
and the data model preview. The defined data types can also be used as types of
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Table 7.5: Gas detector data type and design entity.

Entity Data type
Name Gas detector GasDetector

Attributes

ID
description
platfrom
object type

tag
description
platform
objectType

Source Data model design Data model implementation

data in the model. This is for example seen in the gas detector type where the
platform is of the "Platform" type and the objectType is of the type "ObjectType".
Figure 7.8 shows this by connecting platform and objectType to the defined data
types "Platform" and "ObjectType".

The design encompasses eight entities, while twelve data types are defined
by the data model. This is because separate data types were created for various
weather factors. This allows for easy modification of which weather factors are
considered and also enables the inclusion of attributes for each weather factor.
Similar modifications could be applied to the function block time series, although
there is typically more certainty regarding the relevant time series compared to
weather factors. Furthermore, there is less need to describe attributes for the
Boolean time series.

7.4 Integration

The extraction of data from data sources and the transformation to the CDF data
model is not within the scope of this thesis. To integrate the necessary data into
the solution data model, the data needs to be mapped from the CDF data model.
Figure 7.9 outlines the results for the relevant detector data.

CDF transformations are used to populate the data model. A transformation is
created for each data type that requires population, and separate transformations
are made to define relationships between two data types. CDF Transform Data
provides two editor options: the mapping editor and the structured query lan-
guage (SQL) editor. The mapping editor is a no-code editor with some limitations
for complex queries. It offers a visually intuitive structure where data elements
are directly matched to data type properties. The mapping editor is typically used
for copying data from source to target resource types, while SQL queries are em-
ployed for more intricate transformations (Cognite, 2022).

The intention for this thesis was to use the mapping editor, as the relevant data
had been transformed and contextualised as part of the data preparation. Further-
more, the data model was designed to align with the available data, allowing for
straightforward copying of the data into the model. However, this posed a chal-
lenge for three reasons. As a result of these challenges, populating the data model
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Figure 7.9: Gas detector data hierarchy.

was not accomplished as part of this thesis.
Firstly, the data sets could not be selected as a source for data transformation.

When mapping data in a transformation, one must choose from three categories
of sources: raw data in the CDF staging area, CDF resource types, or user-defined
data models.

Secondly, filtering the data from the selected source was challenging. For ex-
ample, if "assets" under CDF resource types were chosen as the source to populate
the facility type, all objects of the asset type in the CDF project would be inges-
ted. Even if specifying the data set was an option, the mapping editor would still
include all assets in, for instance, the "Aveva Net, asset hierarchy," without the
ability to specifically filter out line gas detector receiver objects.

The third challenge pertains to the mapping editor’s handling of object meta
data as an object. It is not possible to gather specific metadata attributes, and
the list of easily accessible parameters is quite limited. Therefore, obtaining, for
instance, the function block time series is not straightforward.
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Discussion

The discussion chapter is divided in two sections. The first section looks at the
data model and to what degree it meets the specifications from Chapter 6. The
section first looks at the entities and attributes in the data model against the sys-
tem requirements. Next, the section looks at the use case and how it could be
achieved. The section also discusses the impact the specified data model could
have on safety related to gas detection SIS. In the second section, the use of CDF
is discussed, including possible future use cases.

8.1 Data Model Results

8.1.1 Requirement Specification

Section 7.3 and Section 7.4 makes it clear that the data model is implemented
with FDM but data is not integrated through CDF. The first system requirement
is therefore acquired, but the second is not. Integrating data through CDF is a
necessary step for utilising the data model.

1. The data model shall be implemented with FDM.
2. The data model shall integrate data through CDF.

The remaining system requirements detail the data model entities, attributes
and relationships. Information about the entities and their attributes from the
data model design in Chapter 6 are all found in CDF. The data that is available in
CDF is presented in Chapter 7. Since the data model has not been populated, the
further discussion examines if the system requirements are acquired by the data
model. It is assumed that the requirements could also be acquired by a populated
data model given system requirement two.

The use case and the information needed for constructing the data model are
outlined in Chapter 6. The data model design is made with regard to the system
requirements and the data model presented in Section 7.3 organises the informa-
tion from the design. Hence, the first system requirements from the requirement
specification are realised. These system requirements consider the entities from
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the design, which relate to the data types in the data model.

3. The data model shall structure gas detectors in the Aker BP equipment hier-
archy.

4. The data model shall structure weather conditions.
5. The data model shall structure gas detector events, looking at dirty optics,

beam block, and fault.
6. The data model shall structure gas detector notifications.
7. The data model shall include the object type and catalog profile for equip-

ment.

The entire equipment hierarchy is not included, but the gas detectors are or-
ganised as belonging to a platform, which again is a part of a facility. The chosen
structure for weather conditions is that a weather factor entity consists of various
weather factors that all belong to a facility. The weather factors fog, humidity, tem-
perature and wind have been included and are listed in the "WeatherFactors" type.
Each of these weather factors are defined in separate data types, where name, de-
scription and unit is included in addition to the time series with measurements or
weather predictions.

It is easy to add, remove or change which weather factors are included in the
model. This could have been made even more simple if the "WeatherFactors" type
included the measurements directly. The measurements could be listed directly in
the "WeatherFactors" type, but this would make it difficult to include descriptions
and units for the different weather factors. Instead, it could be solved like in Code
listing 8.1. The alternative weather factor type includes only one weather factor,
but the different types of weather factors can all be used as this weather factor.
The name, description and unit fields would separate the different weather factors
that are now disjoint in separate data types. Because the weather factors would
not be explicitly defined in the data model, there is no limitation of the different
weather factors and which factors are included can be changed independent of
the data model. The advantage of the implemented data type for weather factors
with the weather factors defined separately is that it could make it easier analysing
how the different weather factors impact the gas detector events. However, this
should also be possible with the weather factor type in Code listing 8.1. It requires
an extra filter for looking at specific types of weather factors when using the query
explorer, and for the weather types to be correctly defined in the "name" attribute,
or in a separate field for the type of weather factor.

Code listing 8.1: Alternative data type for the weather factors.

type WeatherFactor {
name: String!
description: String
unit: String
facility: Facility
variables: TimeSeries

}

The time series dirty optics, beam block and fault are included in a MA_FG
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function block type and seen in relation to the associated gas detector. However,
the fault time series may not be necessary since it is almost equivalent to the beam
block. The data sets containing OPC UA data from the control system contain
alarms and events stored in the CDF resource type "event" in addition to the "time
series". These have not been included in the data model because events beyond
dirty optics, beam block and fault were deemed unnecessary for the use case. The
events in the OPC UA data also contains information about the activation and
deactivation of the relevant factors, however, it seemed simpler to analyse the
time series than each distinct event.

Notifications are also seen in relation to the associated gas detector. The start
time is included for connecting the notifications to events from the function block.
Failure mode is included for filtering the notifications that may concern function
block events. All notifications with failure mode "LOO" will be connected to the
MA_FG function block, because it is the control system that provides the loo. Even
with the failure mode one will not find all the relevant notifications. An area tag
will typically be used for notifications concerning cleaning of detector lenses due
to fog. Because of this, the notification is not directly linked to the specific gas de-
tector tags. These notifications are difficult to find and utilise in the data model.
The failure data from notifications are stored in a free text field. Using the failure
data in a data model therefore requires natural language processing. This func-
tionality is not available in the CDF data modelling tool, but could be applied in
an application.

Object type and catalog profile is included for the gas detectors in the data
model. The ID is the code giving the name of the object type and catalog profile.
The description field explains which equipment groups that belong in the named
category.

The data types weather factors, function block and notification could also have
ID attributes. This does not contribute to the analysis of the gas detector fault and
weather relationship, but makes it easier to distinguish the instances of the data
types. This can be an advantage for ensuring data quality.

The next system requirements are also fulfilled by the data model. These re-
quirements consider the entity attributes. The last system requirements consider
the relationships of the data model. Two of these requirements are also attained.

8. The data model shall include gas detector tag for gas detector events, and
notifications.

9. The data model shall include geographical data for the gas detectors.
10. The data model shall include geographical data for the weather data.
11. The data model shall include the timestamps for weather data, gas detector

events, and notifications.
12. The data model shall connect the gas detectors with their associated object

type, gas detector events, and notifications.
13. The data model shall connect gas detectors and weather data to their asso-

ciated facilities.
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The gas detectors are connected to their associated object type. The object type
can be used for finding all notifications and work orders related to an equipment
group. The gas detectors are connected to their associated events and notifica-
tions in that the function block and notifications contain the detector tag. The
weather data and gas detector events are both time series, which means that the
variables are related to timestamps. For notifications, the start time is included as
a timestamp.

The gas detectors and weather data are connected to their associated facilities.
The facilities also give the necessary geographical data and make it possible to find
the weather conditions in the area of a gas detector. In addition to the geographical
data it could be useful to include an attribute defining the type of area the gas
detector is situated.

Some areas on a facility are more exposed to gas; gas leaks are also more
dangerous in some areas than others. The hazardous area rating from the asset
hierarchy gives an indication of how exposed an area for gas in dangerous quant-
ities. There is also a great variation of how exposed the areas are to the weather
conditions. An example is air intakes, which are typically located on the outside of
a platform. Air intakes are therefore exposed to the weather and also a dangerous
place for a gas leak. The area types have an impact on the requirements for gas
detection SIS from NORSOK S-001, 2021. It could be relevant to include these
parameters in the data model. For example, it is the most interesting to analyse
the weather dependability of detectors that are weather exposed. However, there
is no parameter in CDF for labelling how weather exposed an area is. The facility
area code and service description from the asset hierarchy can give information
about how weather exposed the area is but it requires knowledge about the plat-
form to deduce this information. It is therefore difficult to utilise in a data model.

The final system requirements concerning relationships are not fulfilled by the
data model. These connections between entities are based on timestamps, which
are not explicitly defined in the data model.

14. The data model shall merge gas detector fault events with corresponding
weather parameters based on timestamps and geographical associations.

15. The data model shall connect notifications to gas detector events based on
timestamps.

The gas detectors are connected to the associated notifications, events and fa-
cilities. The weather factors are also connected to facilities. Connecting specific
events, notifications and weather conditions together requires the timestamps that
are stored in the time series.

8.1.2 Use Case Specification

The three main goals of the use case are avoiding failures in gas detection SIFs
by using the data model for predictive maintenance, identifying bad actor gas de-
tectors, and improving management of resources. These goals were not fulfilled
in this master thesis. To accomplish the goals, the relationships between the de-
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tector fault events and weather conditions must be identified and analysed. The
data model establishes the relationship so that it can be analysed when the data
model is populated.

Populating the data model was prevented by the maturity of CDF and the Aker
BP process of integrating their data to CDF. However, it should be possible now
despite expected updates to CDF and event though the data is not yet accessible
for all the facilities. The data model is made to be facility independent, so that it
can be tasted for Ula and Valhall, and then expanded to the other facilities when
they are ready. The Aker BP object types facilitates for systematic loading of IR line
gas detectors and associated data within various systems. With sufficient time and
resources this should be possible to utilise in FDM.

The data in a populated data model can be accessed with the FDM query ex-
plorer. This can be used for categorising the gas detectors. The gas detectors with
frequent fault events can be filtered and based on the location different measures
can be considered. This can be small activities, like shielding the detector better, or
larger measures, like installing a different type of detector. It is important to base
these decision on analysis, to ensure that the gas detection SIS works optimally.

Achieving better resource management and predictive maintenance requires
a predictive model and real time monitoring. The gas detectors are already mon-
itored, so this must be linked to the model. For making a predictive model, a
machine learning algorithm is dependent on a large data basis of historical data.
Aker BP has such historical data, but for a machine learning algorithm to be able
to utilise this data for learning, it might need data that is already analysed. This
means that the past incidents are categorised. If using machine learning for classi-
fying which incidents were likely caused by the weather, without having a correct
solution, one cannot know if the machine learning categorisation is correct. How-
ever, a model does not have to be a hundred percent accurate in order to be useful
and profitable.

A possible approach is looking at how the weather was when the gas detectors
previously got dirty optics or were beam blocked. The model can then be made
to assume that the detectors will behave equivalently when similar weather con-
ditions are predicted by the weather forecast. With this start point, a machine
learning algorithm can gradually improve.

It is particularly important to consider safety if machine learning is to be used
for analysis of the gas detection SIS and weather factors. Artificial intelligence is
often based on complex models that are difficult to understand. The motivation for
using it is that it works well for analysing complicated systems. Manual analysis
alone is not feasible for the use case due to the volume and complexity of the data
involved. It is thus difficult to understand and verify the decisions made by the
machine learning algorithm.

The utilisation of a data model in predictive maintenance is expected to re-
duce the need for corrective maintenance. However, it would not have an impact
on the function tests of the SIS, unless it ultimately enhances the reliability of
the gas detector, which in turn affects the PFD. However, it is unlikely that the
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data model, which primarily focuses on detecting dirty optics and beam blockage,
would significantly improve the PFD, as these issues are not the types of failures
considered in PFD analysis.

The data model would serve as an additional tool alongside existing main-
tenance practices and SIS follow-up activities. As a result, the data model would
contribute to enhanced safety without compromising maintenance quality. Even if
the data model does not perform optimally, it would result in reduced predictive
maintenance while corrective maintenance would continue as usual.

8.2 CDF Suitability and Opportunities

CDF serves as an optimal starting point for constructing data models that form
the foundation for analysis. CDF is specifically designed to gather and integrate
all the required data, providing a comprehensive and structured repository for
conducting the analysis effectively. Having quantities of data accessible in CDF is
a base for data-driven decision. Ensuring better decision-making is one of Aker
BP’s ambitions.

In addition to the quantity of data, the quality is equally important for the suc-
cess of data models and data-driven decisions. CDF makes this easier to maintain
with the data flow process ensuring quality tested data in the main CDF project.
Contextualising of data in CDF makes it more useful.

Consistent use is one of the difficult aspects of data quality. Even though cat-
egories are defined to organise data, it is difficult to find categories that everyone
understands in the same way. For example, fault codes might be defined differently
between facilities and engineering companies might not understand the Aker BP
object types. Inconsistent data leads to a weakened data basis when filtering data
for analysis.

The gas detector data model could be further developed to check any number
of aspect against the weather conditions. It could for example include the detector
model, it’s hardware or materials. The challenge with this is acquiring the details
for all the detectors in a consistent way.

In addition to further developing the gas detector data model, CDF is suitable
for developing new data models. The requirement of PFD verification in the SIS
monitoring, verification and analysis life cycle phase, would be applicable as a
data model in CDF. The model would collect the result of SIS function tests, for
updating and monitoring of the equipment DU failure rates. CDF could also help
organising information for simpler reporting to RNNP.



Chapter 9

Conclusions and Further Work

9.1 Conclusions

In conclusion, this master thesis has presented a comprehensive data model for
monitoring optical gas detectors, specifically focusing on the use case of SIS follow-
up. The operational phase of an SIS requires continuous monitoring and mainten-
ance to ensure optimal performance and system reliability.

Chapter 2 provided an overview of different types of gas detectors, categor-
ising them as point detectors or line detectors based on their design principles. It
emphasised the advantages of optical gas detectors, particularly IR detectors, for
detecting hydrocarbon gases. IR detectors offer faster response times, improved
reliability, and self-diagnostic capabilities compared to some other types of de-
tectors. However, they can be susceptible to failures due to factors like condens-
ation on the lens and adverse weather conditions. The chapter highlighted the
importance of combining different types of detectors to enhance gas detection
probability.

Chapter 3 introduced the RAMI 4.0 model, which describes the key features of
Industry 4.0. The RAMI 4.0 layers, including the business layer, functional layer,
information layer, communication layer, integration layer, and asset layer, were
applied to describe the gas detection SIF. Furthermore, maintenance strategies
were discussed, with a focus on predictive maintenance using condition monitor-
ing and historical data analysis to anticipate failures.

Chapter 4 presented how Aker BP utilises tags to uniquely identify and track
individual equipment within their facilities. Catalog profiles and object types were
implemented to establish consistency in equipment categorisation across their fa-
cilities, considering factors such as failure data and equipment function. Aker BP
utilises data analysis and predictive maintenance techniques, including real-time
monitoring and predictive analytics, based on weather forecast data to identify
faults and predict future conditions for F&G detectors at their facility Edvard
Grieg.

Chapter 5 discussed the data tools and systems employed, including the CDF
platform that integrates data from IT and OT systems, enabling better decision-

69



70 B. S. Øygard: Data models for improved diagnostics for gas detectors

making and solution development. Aveva Net and SAP are used for storing and
managing asset information and maintenance data, while SAS provides integrated
safety and automation control. The OPC UA communication protocol is utilised
for SAS.

Chapter 6 presented the problem and solution spaces of the use case spe-
cification. The problem space involved weather conditions causing dirty optics
and beam block in optical gas detectors, which required time-consuming reactive
maintenance measures. The solution space focused on optimising maintenance
planning, utilising available resources efficiently, and avoiding failures caused by
adverse weather conditions. The data model proposed in the requirement specific-
ation aimed to visualise patterns between failures in gas detectors and weather
conditions, enabling the anticipation of expected failures and facilitating mainten-
ance scheduling. The system requirements specified the integration of data from
various sources, including historical weather data, diagnostic alarms, fault events,
and notifications, incorporating timestamps and geographical data. The chapter
also developed a system architecture and design for the proposed data model.
The data model design included the entities gas detectors, platforms, facilities,
weather factors, object types, catalog profiles, function blocks, and notifications,
with associated attributes.

Chapter 7 discussed the storage of gas detector data, maintenance informa-
tion, and weather data in CDF. The data model was implemented using FDM,
defining data types based on the design specification. The integration of data into
the data model involved mapping the data from different CDF data sets to the
corresponding data types in the model. Populating data models is done using the
CDF transformations. However, there were challenges with the transformations
mapping editor. The CDF data sets could not be selected as a source for trans-
formation and the data from the selected source were difficult to filter. This lead
to the data model not being populated.

Chapter 8 served as a discussion section, emphasising the necessity of integrat-
ing data through CDF to effectively utilise the data model. Although the use case
goals of avoiding failures in gas detection SIFs, identifying bad actor gas detect-
ors, and improving resource management were not fully achieved in this thesis,
suggestions were made for further works to populate the data model and lever-
age machine learning algorithms for predictive maintenance and analysis of the
relationship between gas detectors and weather conditions. The quality of data in
CDF was highlighted as a critical factor for successful data models and data-driven
decision-making.

Overall, the data model presented in this thesis serves as am additional tool to
complement existing maintenance practices and SIS follow-up activities, contrib-
uting to enhanced safety and maintenance quality. Further attention is recommen-
ded for refining entity relationships and addressing timestamp-related aspects,
when the data model is populated, to fully realise the potential benefits of the
data model in improving gas detector reliability.



Chapter 9: Conclusions and Further Work 71

9.2 Further Work

Further Development of the Data Model

The continuation of this thesis work involves integrating data from relevant sources
within the CDF data sets into the existing data model. Statistical analytics tech-
niques can then be applied to the collected data, enabling insights into the rela-
tionship between weather conditions and gas detection faults. By linking the data
model to real-time monitoring of gas detectors and weather predictions, predict-
ive analytics can be implemented. This enables data-driven decision-making and
predictive maintenance based on the analysis results. The insights gained from
statistical analytics and predictive models inform operational strategies, improve
safety measures, and optimise resource allocation. Furthermore, implementing
predictive maintenance practices based on the data analysis helps prevent equip-
ment failures and reduce downtime. Overall, this thesis work contributes to the
development of a comprehensive data-driven framework for gas detection fault
analysis, predictive maintenance, and informed decision-making within Aker BP.

Expansion of the Data Model

The gas detector data model can be expanded to incorporate further factor for
analysis. By including information such as the detector model, hardware spe-
cifications, and materials, along with relevant weather data, Aker BP can gain
insights into the performance and reliability of various gas detectors under differ-
ent weather conditions. However, careful attention should be given to acquiring
consistent and reliable data to ensure accurate analysis.

Development of New Data Models in CDF

In addition to the gas detector data model, Aker BP should explore the develop-
ment of new data models within CDF. For example, a data model focused on the
verification of PFD in the SIS monitoring and analysis life cycle phase could be
created. This model would collect and track the results of SIS function tests, al-
lowing for equipment failure rate monitoring and updating. This would contribute
to improved safety and compliance in Aker BP’s operations.

CDF data models can also be leveraged to organise information and streamline
reporting to regulatory bodies, such as the RNNP. By structuring and integrating
relevant data in CDF, Aker BP can simplify the reporting process, ensuring timely
and accurate submissions while complying with regulatory requirements.
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Special Aker BP Terms

asset Functional equipment or logical groups of equipment. In CDF
it means a digital representation of physical objects or groups
of objects.
Source: Aker BP, 2023a.
Entity which is owned by or under the custodial duties of an
organisation, having either a perceived or actual value to the
organisation.
Source: Plattform Industrie 4.0, 2023a.

catalog profile The equipment in each functional location is connected to a
catalog profile, which defines traits of that equipment in re-
gards to which failure data is relevant for that type of equip-
ment.
Source: Aker BP, 2023a.

functional location A unique code that defines the functional location and func-
tion of a physical component within a facility. The "functional
location" only refers to where the tag is located within the
system, not the precise physical position.
Source: Aker BP, 2023a.

object type The object type is a sub-category of catalog profile, which
may also consider the function.
Source: Aker BP, 2023a.

tag See functional location.
Source: Aker BP, 2023a.
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Appendix A

Data Model

Code listing A.1: Data model in GraphQL Data Modeling Language.

type Facility {
tag: String

}
type Platform {
tag: String
facility: Facility

}
type GasDetector {
tag: String
description: String
platform: Platform
objectType: ObjectType

}

type CatalogProfile {
id: String!
description: String

}
type ObjectType {
id: String!
description: String
catalogProfile: CatalogProfile

}

type FunctionBlock {
detector: GasDetector
dirtyOptics: TimeSeries
beamBlocked: TimeSeries
fault: TimeSeries

}

type Notification {
detector: GasDetector
description: String
failureMode: String
startTime: Timestamp
longText: String

}

type WeatherFactors {
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facility: Facility
fog: Fog
humidity: Humidity
temp: Temperature
wind: Wind

}
type Fog {
name: String
description: String
unit: String
variables: TimeSeries

}
type Humidity {
name: String
description: String
unit: String
variables: TimeSeries

}
type Temperature {
name: String
description: String
unit: String
variables: TimeSeries

}
type Wind {
name: String
description: String
unit: String
variables: TimeSeries

}




