
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r m

ar
in

 te
kn

ik
k

M
as
te
ro
pp

ga
ve

Shubham Garg

Design and Validation of a Course
Controller for a Wave Powered
Vehicle Using NMPC

Masteroppgave i Marine and Maritime Intelligent Robotics
Veileder: Asgeir Johan Sørensen
Medveileder: Tor Arne Johanssen
Januar 2022

Shubham Garg

Design and Validation of a Course
Controller for a Wave Powered Vehicle
Using NMPC

Masteroppgave i Marine and Maritime Intelligent Robotics
Veileder: Asgeir Johan Sørensen
Medveileder: Tor Arne Johanssen
Januar 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for ingeniørvitenskap
Institutt for marin teknikk

Design and Validation of a Course Controller for a
Wave Powered Vehicle Using NMPC

Shubham Garg

June 8, 2023

Abstract

The emergence of a new class of green-energy-powered vehicles has introduced
the capability to conduct large-scale spatiotemporal surveys without the need for
energy-intensive motored propulsion. These vehicles can have endurance lasting
months, thanks to their reliance on environmental forces for propulsion. However,
this reliance on external forces makes them susceptible to loss of controllability,
particularly in adverse weather conditions. As a consequence, there is a need for
increased robustness in the onboard autonomy system to ensure the safe and ef-
fective operation of these vehicles at sea.

We propose using an Nonlinear Model Predictive Control based course control
system to ensure a stable course over the entire operating region of the vehicle.
We derived three system models with varying levels of fidelity along with two
objective functions chi_d and dotv to compute the optimal control input for the
vehicle. The developed controllers were tested in simulation using both Model-In-
the-Loop and Hardware-In-the-Loop methods.

The findings of the study demonstrated proficiency in maintaining course ac-
curacy. The controller achieved a zero steady-state error under ideal conditions
and was robust to noise and disturbances. In extreme situations, as the Speed
Over Ground approached zero, the controller determined the optimal trajectory
allowing for a stable course and minimum oscillations. The real-time performance
was validated by integrating the controller with the onboard autonomy stack on
an embedded platform using the IPOPT solver. The solver computation time var-
ied, but consistently remained within the specified threshold, demonstrating the
feasibility of online operations.

iii

Sammendrag

Fremveksten av en ny klasse kjøretøyer med grønn energi har introdusert mu-
ligheten til å gjennomføre storskala undersøkelser av rom og tid uten behov for
energikrevende motordrevet fremdrift. Disse kjøretøyene kan ha utholdenhet som
varer i måneder, takket være deres avhengighet av miljøkrefter for fremdrift. Im-
idlertid gjør denne avhengigheten av eksterne krefter dem utsatt for tap av kon-
trollerbarhet, spesielt under ugunstige værforhold. Som en konsekvens er det be-
hov for økt robusthet i autonomisystemet ombord for å sikre sikker og effektiv
drift av disse kjøretøyene til sjøs.

Vi foreslår bruk av et Nonlinear Model Predictive Control-basert kurskontroll-
system for å sikre stabil kurs over hele kjøretøyets driftsområde. Vi utledet tre
systemmodeller med varierende grad av troskap sammen med to objektive funks-
joner chi_d og dotv for å beregne den optimale kontrollinngangen for kjøretøyet.
De utviklede kontrollerene ble testet i simulering ved bruk av både Model-In-the-
Loop- og Hardware-In-the-Loop-metoden.

Funnene fra studien demonstrerte ferdigheter i å opprettholde kursnøyak-
tighet. Kontrolleren oppnådde null steady state-feil under ideelle forhold og var
robust mot både støy og forstyrrelser. Under ugunstige forhold, når Speed Over
Ground nærmet seg null, bestemte kontrolleren den optimale banen som tillot sta-
bil kurs og minimumssvingninger. Sanntidsytelsen ble validert ved å implementere
kontrolleren på en innebygd plattform ved å bruke IPOPT-løseren. Løserberegn-
ingstiden varierte, men holdt seg konsekvent innenfor den spesifiserte terskelen,
noe som demonstrerer muligheten for online operasjoner.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
Acronyms . xiii
1 Introduction . 1

1.1 Motivation . 2
1.2 Literature Review . 2
1.3 Scope . 3
1.4 Key Aims and Objectives . 3
1.5 Outline of Report . 4

2 Background . 5
2.1 Introducing the Vehicle: AutoNaut . 5
2.2 PID Based Course Control System . 7
2.3 Gain Scheduling Based Course Control System 7
2.4 Speed Prediction using Data Regression 8

3 Theory . 9
3.1 System Modelling . 9

3.1.1 Review of Principles of Dynamics 9
3.1.2 Generalized Nonlinear Dynamic Model in 3DOFs 13
3.1.3 Generalized nonlinear dynamic model in 2DOF 16
3.1.4 Generalized linear dynamic model in 3DOF 17

3.2 State Space Modeling . 18
3.2.1 Linearized Dynamics in 3DOFs 19
3.2.2 Nonlinear Dynamics in 3DOFs 19
3.2.3 Nonlinear Dynamics in 2DOFs 20

3.3 Control Objective . 21
3.4 Nonlinear Model Predictive Control . 22

3.4.1 Definition . 22
3.4.2 Dynamic Model and Discretization 24
3.4.3 Objective Function . 27
3.4.4 Constraints . 28
3.4.5 Problem Formulation . 30

vii

viii Shubham Garg: An NTNU Thesis Document Class

3.4.6 Sub-optimal NMPC . 32
3.4.7 Tuning . 33

4 Method . 35
4.1 Software Framework: CasADi . 35

4.1.1 Introduction . 35
4.1.2 Symbolic Framework in CasADi 35
4.1.3 Interior Point Optimizer Solver 37

4.2 Model-In-the-Loop Simulation . 37
4.2.1 Introduction . 37
4.2.2 Simulation Design . 38

5 Implementation . 41
5.1 Software Package: acados . 41

5.1.1 Why acados . 41
5.1.2 Algorithm Implementations in acados 42
5.1.3 Workflow with a High-Level Language Interface 42

5.2 Software Toolchain: LSTS/DUNE . 45
5.2.1 Introduction . 45
5.2.2 Overview of the System Architecture 48

5.3 Hardware-In-the-Loop Simulation . 49
5.3.1 Integration with onboard System 49
5.3.2 Hardware Setup . 51

6 Results . 53
6.1 Test Plan . 53
6.2 Results from MIL Simulation . 55

6.2.1 Ideal Conditions . 55
6.2.2 Nominal Conditions with Noisy Observer 57
6.2.3 Adverse Conditions with Relaxed Constraints 60

6.3 Results from HIL Simulation . 63
6.3.1 Nominal Conditions with Noisy Observer 63

7 Discussions . 65
7.1 MIL Simulation . 65

7.1.1 Ideal Conditions . 66
7.1.2 Nominal Conditions with Noisy Sensors 67
7.1.3 Adverse Conditions with Soft Constraints 68

7.2 HIL Simulation . 71
7.2.1 Nominal Conditions with Noisy Sensors 71

7.3 Future Work . 73
8 Conclusion . 75
Bibliography . 77
A AutoNaut USV model parameters . 85
B Code . 87
C Additional Plots . 89

C.1 Results from MIL Simulation . 89

Figures

2.1 AutoNaut 5m Version. Credits: AutoNaut Documentation Wiki, NTNU 5

3.1 The three body-fixed DOFs and their interpretation in NED frame . 11

4.1 Example NLP problem . 36
4.2 Flowchart of the MIL simulation . 38

5.1 acados Workflow using a high-level scripting language. 42
5.2 Course Angle using Acados Solver . 43
5.3 Input Rudder Angle using Acados Solver 43
5.4 Example architecture implementation and possible switching between

active/inactive controllers. Image taken from [56] 46
5.5 Neptus Operator Console. Image taken from [58] 47
5.6 Overview of System Design . 49
5.7 Flowchart of the class NmpcDynamics and NmpcCourse 50
5.8 Setup for HIL Simulation . 51

6.1 Summary of results in ideal conditions 55
6.2 Vehicle path in ideal conditions . 56
6.3 Course angle in ideal conditions . 56
6.4 Input rudder angle in ideal conditions 56
6.5 Solver computation time in ideal conditions 57
6.6 Summary of results in nominal conditions 57
6.7 Path in nominal conditions . 58
6.8 Course angle in nominal conditions . 58
6.9 Input rudder angle in nominal conditions 58
6.10 Solver computation time in nominal conditions 59
6.11 Speed Over Ground in nominal conditions 59
6.12 Sideslip angle in nominal conditions 59
6.13 Summary of results in adverse conditions 60
6.14 Path in adverse conditions . 61
6.15 Course angle in adverse conditions . 61
6.16 Input rudder angle in adverse conditions 61
6.17 Solver computation time in adverse conditions 62
6.18 Speed Over Ground in adverse conditions 62

ix

x Shubham Garg: An NTNU Thesis Document Class

6.19 Crab angle in adverse conditions . 62
6.20 nonlinear4 with chi_d . 63
6.21 nonlinear4 with dotv . 64
6.22 linear4 with dotv . 64

C.1 Heading angle in ideal conditions . 89
C.2 SOG in ideal conditions . 90
C.3 Surge speed in ideal conditions . 90
C.4 Sway speed in ideal conditions . 90
C.5 Sideslip angle in ideal conditions . 91
C.6 Heading angle in nominal conditions 91
C.7 Surge speed in nominal conditions . 92
C.8 Sway speed in nominal conditions . 92
C.9 Heading angle in adverse conditions 93
C.10 Surge speed in adverse conditions . 93
C.11 Sway speed in adverse conditions . 93

Tables

2.1 Specifications for AutoNaut USV operated by NTNU 6

3.1 The notation of SNAME for marine craft. Credits: Handbook of Mar-
ine Craft Hydrodynamics and Motion Control 10

6.1 Default simulation parameters . 54
6.2 Modified parameters for ideal conditions 55
6.3 Modified parameters for nominal conditions 57
6.4 Modified parameters for adverse conditions 60

A.1 Vehicle Parameters . 85
A.2 Hydrodynamic Parameters . 85
A.3 Rudder Parameters . 86
A.4 Wind Model Parameters . 86

xi

Acronyms

ADCP Acoustic Doppler Current Profiler. 6, 48

C2 Command and Control. 45, 47

CG Center of Gravity. 14

DOF Degree of Freedom. vii, 9, 11–13, 17, 20, 39, 49, 67

DOFs Degree of Freedoms. vii, ix, 11, 13, 17–20

DUNE DUNE Unified Navigation Environment. 45–47

GNC Guidance-Navigation-Control. 2

GNSS Global Navigation Satellite System. 7, 8, 12, 48

HIL Hardware-In-the-Loop. iii, v, viii, 3, 49, 53, 63, 71, 72, 75

IMC Inter-Module Communication. 45–49

IPOPT Interior Point Optimizer. iii, v, viii, 37, 45, 72, 75

LSTS Laboratório de Sistemas e Tecnologia Subaquática. 45, 46

LTI Linear time-invariant. 17

MIL Model-In-the-Loop. iii, v, viii, ix, 3, 4, 35, 37–39, 53, 55, 65, 71, 75, 89

MPC Model Predictive Control. 2, 22–25, 28, 29, 44

NED North-East-Down. ix, 9–12

NLP NonLinear Programming. 30, 31, 35, 36, 43

NMPC Nonlinear Model Predictive Control. iii, v, 2–4, 8, 9, 22, 31, 32, 38, 39,
41, 43, 50, 70, 72, 73, 75

NTNU Norges Teknisk-Naturvitenskapelige Universitet. 1, 6, 41

xiii

xiv Shubham Garg: An NTNU Thesis Document Class

OCP Optimal Control Problem. 27, 29–31, 33, 35, 38, 41–45

ODE Ordinary Differential Equation. 25, 26, 36

ODEs Ordinary Differential Equations. 24, 35

OOP Object Oriented Programming. 49

PID Proportional-Integral-Derivative. 3

QP Quadratic Programming. 36, 42, 44

RK4 Runge-Kutta 4. 25, 26

RMSE Root Mean Square Error. 65, 67, 70, 72

RTI Real Time Iteration. 42

SOG Speed Over Ground. iii, v, ix, x, 8, 12, 44, 59, 60, 62, 68, 69, 72, 75, 90

SQP Sequential Quadratic Programming. 42, 72, 75

USV Unmanned Surface Vehicle. 5, 7

Chapter 1

Introduction

Water, the namesake of our blue planet, is believed to provide the crucial element
that makes life possible on Earth. It regulates the Earth’s climate and weather
patterns and is a major source of food and oxygen for the planet. Historically, it
has also played a significant role in accelerating humanity’s economic and social
growth [1]. It is no surprise then that unchecked exploitation of ocean resources
over time has led to erratic weather events and long-term harm to ocean bio-
chemistry. To safeguard this valuable resource, persistent and sustainable ocean
monitoring is essential.

This has been realized by scientists leading to science-driven ocean monitor-
ing of the upper water column becoming a mature field, as demonstrated in [2],
[3] and [4]. However, most current state-of-the-art technologies make use of one
or a combination of the three methods, which are (1) Ship-based sampling, (2)
Satellite-based remote sensing and (3) Unmanned robotic platforms. Ship-based
methods are not sustainable and do not scale well across space and time. Satellites
on the other hand lack the fine resolution required for detailed studies. Finally,
most robotic platforms currently in use are highly constrained due to their com-
plexity, lack of autonomy or onboard energy limitations [5].

Investigative studies and surveys over large space-time scales require sus-
tained operations while leaving a minimal footprint over the ecosystem being
studied. In these situations, a new class of underwater or surface gliders are seem
to be bridging the gap[6]. These are low-cost unmanned crafts powered by green
energy. This makes it possible to carry out long missions without the need for
physical human intervention. The vessel in use for this report is a surface glider
called AutoNaut, developed in England by AutoNaut Ltd [7]. The autonomy sys-
tem used in our 5m version of the commercially available AutoNaut was designed
and developed at the Norges Teknisk-Naturvitenskapelige Universitet (NTNU), as
described in [8].

1

2 Shubham Garg: An NTNU Thesis Document Class

1.1 Motivation

Long-term sustained and unattended autonomous operations require a robust ap-
proach toward the onboard autonomy system. We want to minimize deviations
from the desired behavior and show resilience to varying environmental disturb-
ances, design limitations, and systemic failures. This enforces additional constraints
on the Guidance-Navigation-Control (GNC) system of the vessel that must account
for different sea states, winds, and currents over the entire duration of the mis-
sion. This is further complicated by the limited control offered by vehicles that
depend on the environmental forces for propulsion, such as the one being con-
sidered here.

A capable autonomy system would allow for uninterrupted and self-sufficient
studies, surveys, and monitoring with minimal impact on the ecosystem, even in
adverse weather conditions. This would greatly enhance the efficiency and reliab-
ility of the data collected while reducing the need for expensive human interven-
tion. As conventional control strategies can not guarantee maneuverability and a
stable course over the ground in all weather conditions [9], our research aims to
explore Nonlinear Model Predictive Control (NMPC) techniques that consider the
consequences of lack of motored propulsion and adverse weather conditions to
ensure safe operations on the high seas.

1.2 Literature Review

Model Predictive Control (MPC) is a mature subject with well established prin-
ciples and literature to refer to. A good starting point for learning about MPC
technology can be [10]. It introduces both linear and nonlinear MPC while touch-
ing upon fields of system stability, the feasibility of the solution, estimation, and
algorithmic implementation of a linear MPC controller. The reader may also be
interested in [11] as it describes in depth how a linear MPC controller for state
regulation or target tracking may be implemented in MATLAB™using only basic
built-in functions. For further literature on linear MPC, the reader may refer to
the review papers [12] and [13].

For Nonlinear Model Predictive Control (NMPC), we refer to [14] and [15].
They form a comprehensive resource to discuss online NMPC-based control sys-
tems and include discussion on problem formulation, implementation through nu-
merical methods, problem feasibility, and stability analysis for nonlinear systems.
Finally, our implementation of the NMPC controller using the CasADi toolbox was
inspired by [16].

Chapter 1: Introduction 3

1.3 Scope

In [9] and [17], the authors introduced and validated a robust PID-based course
control strategy capable of sustained operations in calm waters with increasing
instabilities as the ground speed of the vehicle approached zero. In our research,
we aim to use optimal- and predictive control-based strategies to improve the
course-keeping performance at very low or near-zero ground speeds.

The scope of this report is to design and implement a viable NMPC-based
course controller for a wave-powered vehicle for operation in adverse weather
conditions. Additionally, as the vehicle is anticipated to undertake operations last-
ing several weeks, the proposed solution’s feasibility and robustness will be valid-
ated. The controller performance will be analyzed using Model-In-the-Loop (MIL)
simulation in the numeric computing environment MATLABTM and real-life feas-
ibility is studied using Hardware-In-the-Loop (HIL) simulation on an embedded
platform.

We restrict the scope to NMPC-based controllers and do not explore alternate
nonlinear and adaptive control strategies. Further, we do not discuss lower-level
actuator control systems and higher-level systems that provide guidance refer-
ences. We note that both linear and nonlinear state observer and parameter estim-
ators may offer significant benefits by accounting for model inaccuracies however,
they’ve been excluded due to time limitations. Finally, we assume that the reader
has sufficient knowledge of the basics of modeling marine crafts and systems and
Proportional-Integral-Derivative (PID) control.

Finally, we note that this thesis project is a continuation of the work done
as part of the master course "TMR4510 - Marine Control Systems, Specialization
Project".

1.4 Key Aims and Objectives

In this project, we aim to design a NMPC-based control system to minimize devi-
ations in the cardinal direction in which AutoNaut is moving, also known as the
course angle. To this end, the key objectives of the report are listed as follows:

1. Develop a model that captures the system dynamics and accounts for the
nonlinear effects of passive actuators like the rudder, and the wave propul-
sion system, as well as external disturbances like winds and currents.

2. Develop a NMPC-based algorithm that can minimize the error in course
angle, taking into account the real-time environmental conditions.

3. Evaluate the performance of NMPC-based controller(s) in comparison to
conventional control solutions and under different environmental condi-
tions.

4. Evaluate the feasibility of implementing the controller on an embedded plat-
form and its ability to perform online optimization.

4 Shubham Garg: An NTNU Thesis Document Class

1.5 Outline of Report

The report is organized into seven chapters. Chapter 1 and 2 establish the con-
text of the study while providing a balanced review of the pertinent existing work
done on this subject. Chapter 3 lays out the necessary theoretical background on
the system dynamics and the design of the control system. Chapter 4 explains the
implementation of the proposed NMPC controller(s) in MATLAB™and prepares
the MIL simulation. Chapter 5 discusses the hardware implementation of the con-
troller and integration with the existing framework onboard the vehicle. Results
and discussions are laid out in Chapter 6 and 7. Finally, a conclusion and topics
of additional interest are given in Chapter 8.

Chapter 2

Background

The chapter provides an overview of the existing studies and previous research
done on designing a course controller for AutoNaut. By examining the existing
state-of-the-art, we aim to identify specific shortcomings and gain insights into
the proposed research direction.

2.1 Introducing the Vehicle: AutoNaut

AutoNaut is an Unmanned Surface Vehicle (USV) developed by AutoNaut Ltd [7]
and is the focus of this study. Its unique hull design enables it to efficiently move
through the water while capturing wave energy, providing significant advantages
over traditional fuel-powered vehicles. Its renewable energy source allows for ex-
tended operations on the open ocean without the need for refueling, making it
more environmentally friendly and sustainable. Furthermore, the ability of wave-
powered vehicles like AutoNaut to access remote or challenging areas of the ocean
can offer unparalleled opportunities for research and monitoring.

Figure 2.1: AutoNaut 5m Version. Credits: AutoNaut Documentation Wiki, NTNU

5

6 Shubham Garg: An NTNU Thesis Document Class

AutoNaut’s patented Wave Foil technology consists of four keel-mounted foils
and utilizes the energy from the pitch and roll motions of the hull in waves to
generate a forward thrust [8]. These spring-loaded foils are attached to the struts
beneath the keel and utilize the lifting and dropping motion of the vehicle motion
to generate forward propulsion. This technique was first developed by Linden and
Einar Jacobsen as described in [18] and [19].

The majority of the oceans experience continuous weather patterns ensuring
that waves (and hence propulsion) are almost always present. Even in relatively
flat water, AutoNaut will move with a speed of half a knot due to the presence
of wave undulation. However, waters near shore and complete flat conditions are
problematic as the propulsion system is not able to generate significant thrust. Un-
der such circumstances, AutoNaut may make use of the onboard electric thruster
to generate forward thrust.

This project considers the use of the AutoNaut USV owned and operated by
NTNU, which is a modified version of the commercial off the shelf vehicle. Spe-
cifically, the onboard autonomy system and the relevant hardware required for
the same were developed in-house as described in [8]. The vehicle is depicted in
fig. 2.1 and its specifications are listed in tbl. 2.1.

Table 2.1: Specifications for AutoNaut USV operated by NTNU

Parameter Value
Hull Type Monohull
Length 5 m
Beam 0.8 m
Draft 0.7 m
Displacement 230 Kg
Average Speed Upto 2 Knots
Endurance 3+ Months; dependent on hull fouling
Transportation Two-person portable, air freight
Propulsion Wave foil technology, Electric Propulsion
Battery Capacity 4× 70Ah 12V Lead Gel batteries
Solar Charging 300 Watt peak photovoltaic solar panels
Payload Volume 500 Litres
Payload Weight 130 Kg

Sensors

Marine GPS,
Airmar weather station,
Active radar transponder,
Acoustic Doppler Current Profiler

Chapter 2: Background 7

2.2 PID Based Course Control System

One of the earlier works done on this subject is described in [9]where the authors
study the model nonlinearities in the presence of adverse weather conditions to
design a robust course control system for the AutoNaut. The paper lists the main
challenges associated with this new class of vehicles and examines conditions
where environmental disturbances exceed the steering and propulsion forces, res-
ulting in reduced control and maneuverability. Their investigation leads to the
derivation of a simple quasi-linear mathematical model which provides the basis
for the design of a PID-based course controller. The controller is also validated
through analysis and field trials.

The developed autopilot is a proportional-integral (PI) controller that has the
capability to compensate for constant or gradually changing wind and current dis-
turbances. Its robust tuning was optimized for conditions where the ground speed
is at least 0.2 m/s. The experimental results were validated in Trondheim fjords
and in the North Atlantic Ocean. However, in situations where the ground speed
dropped below 0.2 m/s and approached zero, the vehicle experienced instability
and loss of control.

The experiments revealed that as environmental forces exceeded the propul-
sion forces, the vehicle experienced significant oscillations in both the course and
the rudder. A provisional solution to switch to heading control was proposed at
the expense of significant steady-state course error.

2.3 Gain Scheduling Based Course Control System

The previous study introduced the parameter γ, which captured the main nonlin-
earities present in the system and highlighted some of the challenges associated
with using this parameter in practice. These limitations include uncertainty in
the value of the parameter γ which depends on ocean currents that may not be
known, and the effect of unreliable course angle measurements from the GNSS
when the USV’s speed approaches zero. Despite the above limitations, γ proved
to be a useful tool for designing a gain scheduling control strategy as shown in
[17].

Gain Scheduling is a control strategy for nonlinear systems that uses a family
of linear controllers, each designed to operate around a specific operating point
[20]. The linear controllers are tuned using well-established linear control the-
ory to provide satisfactory performance around their respective operating points.
These operating points are characterized by a scheduling variable, which, in the
case of this study is γ. The main contribution of this paper is the design and imple-
mentation of a gain scheduling-based course control system for a USV operating
at low speeds.

The proposed controller(s) offered significant improvements over the existing
controller as it reduced oscillations in both the course and rudder at low speeds.
However, the controller was not able to eliminate them entirely and did not ad-

8 Shubham Garg: An NTNU Thesis Document Class

dress the singularity present when Speed Over Ground (SOG) becomes zero and
the course angle becomes undefined. The model analysis also showed poor course
tracking ability at low relative velocities due to the smaller bandwidth of the con-
troller, compared to the expected frequency of the course reference. Therefore, the
need for a more robust control strategy for very low relative velocities remains.

2.4 Speed Prediction using Data Regression

AutoNaut leverages renewable energy from the environment to undertake exten-
ded missions but its reliance on the environment renders it vulnerable to potential
loss of controllability in adverse weather conditions. These unfavorable effects can
be mitigated by careful mission planning to maximize the vehicle’s SOG over the
mission duration while ensuring compliance with mission objectives that may in-
clude time-sensitive transient events. However, accurately predicting the speed of
the vehicle in varying weather conditions poses significant challenges.

The authors employed regression techniques first introduced in [21], [22],
and [23] to develop a speed prediction model for AutoNaut. The model made use
of environment properties of wind and currents obtained using onboard sensors
and wave profile obtained using estimates from GNSS data as features in the pre-
diction model. The feature vector θ along with the regression model g considered
is expressed in Eq. 2.1

θ =
�

Hs ωp cosγp Vw cos(βw −ψ)Vc cosβc 1
�

g : R7→ R

y = g(θ) = wTθ (2.1)

where w is the vector containing set of weights and y ∈ R is the speed of the
vehicle.

The experimental results show good accuracy when the vehicle is operating
in the speed range of 0.2m/s - 0.8m/s with performance degrading at both ends
of the spectrum due to limited availability of data. Further, features not captured
by the model such as the directional spread of the waves and local variation re-
duce model accuracy. Regardless, the proposed model still proves to be a reliable
method of predicting the speed of the vehicle in the open ocean under normal
operating conditions.

Since precise dynamics of the propulsion system are inherently complex, being
able to approximate the vehicle speed allows us to develop credible models for the
surge dynamics of AutoNaut. This has relevance in developing plant models for
use in the NMPC controller.

Chapter 3

Theory

This chapter presents the theoretical framework for our proposed solution. It starts
with a review of the fundamental concepts of dynamic modeling, which form
the basis for deriving both linear and nonlinear models for the AutoNaut. Sub-
sequently, we introduce our proposed objective functions aimed at minimizing
course error, along with the application of NMPC theory that enables their imple-
mentation.

3.1 System Modelling

3.1.1 Review of Principles of Dynamics

In this section, we review the fundamental concepts of dynamics, which can be
divided into two distinct fields: kinematics, which focuses on the motion and geo-
metry of objects, and kinetics, which examines the forces and torques affecting
objects in motion.

Vehicle Kinematics

In order to provide a solid foundation for our subsequent discussion, we introduce
key fundamental concepts that are directly relevant to our work.

Motion Variables: The motion of a marine craft moving in six Degree of Free-
dom (DOF)s can be described by six independent coordinates that determine its
position and orientation. In our case, the position is defined in North-East-Down
(NED) coordinates while orientation is described by Euler Angles which include
roll, pitch, and yaw. These Euler angles represent the orientation of the craft’s
body-fixed reference frame (BODY) in relation to the NED frame. In the case of
marine craft, the six motion components in the BODY frame are referred to as
surge, sway, heave, roll, pitch, and yaw. However, since AutoNaut operates on the
water’s surface, our focus is primarily on 3DOFs, namely surge, sway, and yaw as
depicted in tbl. 3.1.

9

10 Shubham Garg: An NTNU Thesis Document Class

Table 3.1: The notation of SNAME for marine craft. Credits: Handbook of Marine
Craft Hydrodynamics and Motion Control

BODY NED

DOF
Forces and
Moments

Linear and
Angular Velocities

Position and
Euler Angles

1
Motion in the
xb-axis (surge)

X u xn

2
Motion in the
yb-axis (sway)

Y v yn

3
Rotation about the
zb-axis (yaw)

N r ψ

Reference Frames The motion of the marine craft is analyzed in the context
of geographical reference frames. The reference frames relevant to our discussion
are described below

1. NED: The North-East-Down coordinate system is denoted with {n}= {xn, yn, zn}
where

xn-axis points towards the true North.
yn-axis points towards East.
zn-axis points downwards normal to the Earth’s surface.

2. BODY: The body-fixed coordinate system is denoted with {b}= {xb, yb, zb}
with its origin ob fixed to a point on the craft. The axis of the frame coincides
with the principle axis of inertia and is defined as

xb-axis is directed from aft to fore.
yb-axis is directed to starboard.
zb-axis is directed from top to bottom.

Reference Points A reference point is a defined location on the craft along
which the equations of motion are expressed. The primary reference point is CO,
which serves as the coordinate origin for both the body-fixed frame and the GNC
systems.

The motion variables along with their respective reference frame and refer-
ence points are depicted in fig. 3.1.

Generalized Coordinates describe the configuration of the craft relative to
some reference configuration. Generalized coordinates can be used to express
both pose (position and orientation) and twist (linear and angular velocities) in
both NED and body-fixed frames. For AutoNaut, the generalized coordinates are

Chapter 3: Theory 11

North

East

Figure 3.1: The three body-fixed DOFs and their interpretation in NED frame
.

expressed as

generalized position in {n}

η=
�

xn yn ψ
�

generalized velocity in {n}

η̇=
�

ẋn ẏn r
�

generalized velocity in {b}

ν=
�

u v r
�

(3.1)

Ocean currents are the continuous and directional movement of ocean waters
produced by effects of gravity, wind friction, water density, etc. In our model, we
consider the effects of constant and irrotational currents expressed as

generalized ocean current velocity in {b}

νc =
�

uc vc 0
�

ν̇c =
�

rvc −ruc 0
�

(3.2)

Relative velocity vector represents the velocity of the vehicle in three DOF
relative to the water. This is expressed as

generalized relative velocity in {b}

νr = ν− νc
(3.3)

Transformations between BODY and NED frames can be expressed using
the help of rotation matrices, denoted by Ra2

a1
where the rotation is taking place

from {a1} to {a2}. In case of 3DOFs transformation, the rotation from {b} to {n}
can be expressed as

Rn
b = R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3.4)

12 Shubham Garg: An NTNU Thesis Document Class

A frequently used application relevant to our work is the transformation of body-
fixed frame velocity to NED frame velocity vector as

η̇= R(ψ)ν (3.5)

We note that since rotation matrices are skew-symmetric, the inverse transforma-
tion can be obtained by simple transposition.

Definitions of Heading, Course and Crab Angles Understanding the inter-
play between the angular variables of course, heading, and sideslip is significant
in maneuvering the AutoNaut within the horizontal plane. Their definitions, as
noted in [24] are given below

Heading Angle The angle ψ from the xn-axis (true North) to the xb-
axis of the craft, positive rotation about the zn-axis by the right-hand
screw convention. The heading angle is usually measured by using a
magnetic, gyro, or a GNSS compass.

Crab Angle The angle βc from the xb-axis to the velocity vector of
the craft, positive rotation about the zb-axis by the right-hand screw
convention. Mathematically, it is expressed as

β = arcsin(
v
U
) = arctan(

v
u
) (3.6)

where U =
p

v2 + u2 is the Speed Over Ground (SOG) of the vehicle.

Course Angle The angle χ from the xn axis (true North) to the ve-
locity vector of the craft, positive rotation about the zn axis by the
right-hand screw convention. Mathematically, it is expressed as

χ =ψ+ β
(3.7)

Vehicle Kinetics

Using maneuvering theory as described in [24], the motion of a marine craft in
six DOFs with the assumption of frequency-independent hydrodynamic forces can
be expressed in matrix-vector format as

η̇= JΘ(η)(νr + νc)

Mν̇r +C(νr)νr +D(νr)νr + g(η) + g0 = τ+τwind +τwave
(3.8)

where

• JΘ is the BODY-NED transformation matrix.
• M=MRB +MA is the system inertia matrix
• C(νr) = CRB(νr) +CA(νr) is the Coriolis-centripetal matrix
• D(νr) is the damping matrix

Chapter 3: Theory 13

• g(η) is the forces and moment vector due to hydrostatics
• g0 is the vector for pretrimming (ballast control).
• τ is the vector of control inputs.
• τwind is the vector of generalized wind forces.
• τwave is the vector of generalized wave-induced forces.

The model described above is useful for designing a variety of model-based
control systems. However, unless additional assumptions and simplifications are
made, the model is highly nonlinear and too complex due to coupling between
different motion states.

3.1.2 Generalized Nonlinear Dynamic Model in 3DOFs

Motion for a surface craft, such as the AutoNaut, primarily occurs in the horizontal
plane that can be described using the 3DOFs - surge, sway and yaw. The maneuv-
ering model described in Eq. 3.8 involves additional DOFs that are heave, pitch,
and roll, which introduce more complexities in terms of modeling, simulation,
and control. By focussing on the reduced order model, we capture the essential
dynamics of the craft and disregard the relatively neglible values of pitch and roll.
This simplification also help reduce computational complexity.

Assuming the generalized coordinates as given in Eq. 3.1, Eq. 3.2 and Eq. 3.3,
the generalized nonlinear model for a 3DOFs as described in sec. 6.5 in [24] can
now be expressed as follows:

η̇= R(ψ)(νr + νc)

Mν̇r +C(νr)νr +D(νr)νr = τprop +τdist +τud
(3.9)

where

• τprop and τdist are forces due to propulsion and disturbance respectively.
• τud are the disturbances due to higher-order wave components and other

unmoddeled dynamics.

By exploiting the operation conditions and design of the AutoNaut, we can
further simplify the model matrices as described below.

The system inertia matrix, M and the Coriolis-centripetal matrix, C(νr) are
composed of two terms each which represent the contribution of rigid-body and
added-mass kinetics. For rigid body kinetics, we can assume the AutoNaut to have
a homogeneous mass distribution and symmetry along the xz-plane. Further, the
body-frame origin coordinate aligns with the centerline of the craft yielding yg =
0. Using Eq. 6.7 in [24] gives us,

MRB =

m 0 0
0 m mxg
0 mxg Iz

 CRB(νr) =

0 −mr −mxg r
mr 0 0

mxg r 0 0

 (3.10)

14 Shubham Garg: An NTNU Thesis Document Class

where m is the mass of the vehicle, Iz is the moment of inertia along the z-axis
and (xg , yg) is the Center of Gravity (CG) in BODY frame.

The added-mass effects can be estimated by decoupling the surge mode from
the steering dynamics. Further, we neglect the effects of heave, pitch and roll due
to the assumption of small motion which using Eq. 6.56 and Eq. 6.57 from [24]
gives us,

MA = −

X u̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 CA(νr) =

0 0 Yv̇ vr + Yṙ r
0 0 −X u̇ur

−Yv̇ vr − Yṙ r X u̇ur 0

 (3.11)

The vehicle experiences damping forces due to multiple sources such as po-
tential damping, skin friction, wave drift damping, etc. These are summarised into
two components – linear component represented by D and nonlinear component
given by Dn(νr). This relationship is given by

D(νr) = D+Dn(νr) (3.12)

Using our previous assumptions, nonlinear damping components can be neglected
and the linear damping matrix for the AutoNaut can be expressed using Eq. 6.67
in [24] as

D= −

Xu 0 0
0 Yv Yr
0 Nv Nr

 (3.13)

Force and Moment Analysis

The forces and moments acting on the vessel can be classified into three distinct
groups: propulsion forces denoted by τprop, disturbance forces denoted by τdist,
and unmodelled dynamics denoted by τud.

The propulsion forces acting on the vehicle are a result of the wave-foil tech-
nology, onboard actuators, and the rudder installed on the stern strut. This rela-
tionship can be expressed as follows:

τprop = τfoil +τthrs +τrudr (3.14)

where

• τfoil is the forward propulsion generated by wave-induced vessel motion.
• τthrs is the active propulsion generated by the onboard thruster meant for

use in calm waters or in emergency scenarios.
• τrudr is the passive steering force generated by the rudder.

In Chapter 2.4, we discussed the influence of environmental factors, including
winds, waves, and currents, on the speed of the vehicle. Modeling the precise re-
lationship between these environmental factors and vehicle dynamics is however
a challenging task due to its complexity. In this study, we use the speed prediction

Chapter 3: Theory 15

model proposed in [25] to emulate surge dynamics. By restricting the impact of
wave foils in the surge dimension, we can express the force generated by wave-foil
technology using Eq. 2.1 as

τfoil = −

g(x)
0
0

Xu (3.15)

where Xu is the linear damping component in surge.
AutoNaut has an onboard thruster for use in very calm water and emergency

scenarios. A core objective of this work is to optimize mission planning while
reducing energy expenditure due to unnecessary rudder motion. Since thrusters
are heavy energy sinks, in most cases we either want to either limit or completely
prevent thruster use. Hence, the force exerted by the thruster is assumed to be
zero.

τthrs = 0 (3.16)

The steering forces generated by the rudder can be described using Eq. 9.103
in [24]. Assuming a small rudder angle δ, we have

τrudr =

X NL
δ

sin(δ)
Y NL
δ

cos(δ)
NNL
δ

cos(δ)

θδ = ρU2
RARCN sin(αR)

X nl
δ = −

1
2
(1− tR)θδ

Y nl
δ = −

1
2
(1+ aH)θδ

Nnl
δ = −

1
2
(xR + aH xH)θδ

(3.17)

where tR is the thrust reduction factor, AR is the area of the rudder, b is rudder
height, UR is the rudder inflow speed, aH is the rudder force increase factor, xH is
the longitudinal coordinate of the additional lateral force, xR is the longitudinal
coordinate of the rudder position and CN is the rudder coefficient, and αR is the
effective rudder angle.

The effective rudder angle αR can be calculated as

αR = δ− βR (3.18)

In practical scenarios, the drift angle at the rudder position βR and the rudder
inflow speed UR are different from the sideslip angle β and relative speed of the
vehicle Ur . However, for the sake of modeling convenience, we assume that they
are equivalent, giving us

βR ≈ β UR ≈ Ur (3.19)

16 Shubham Garg: An NTNU Thesis Document Class

The disturbance forces acting on the vehicle are induced due to wind, waves,
and currents. Currents are accounted in Eq. 3.9 explicitly and winds are intro-
duced as a constant or slowly-varying wind force τwind which using Eq. 10.23 in
[24] give us

τdist = τwind =

Xw
Yw
Nw

Xw = −
1
2

cx(γrw)AFw
cos(γw)ρaV 2

rw

Yw =
1
2

cy(γrw)ALw
sin(γw)ρaV 2

rw

Nw =
1
2

cn(γrw)ALw
Loa sin(2γw)ρaV 2

rw

(3.20)

where Vrw is the relative wind speed, γrw is the angle of attack, AFw
and ALw

are
the forward and lateral projected areas, Loa is the length overall and cx , cy , cn are
approximate wind coefficients assuming symmetry with respect to the xz- and
yz-planes.

All unmodeled effects such as that of rotational currents, motion coupling,
frequency-dependent wave-action, first-order wave-induced forces, and residual
energy imparted by the wave-foils are summed in the term τud. This component
is treated as noise and is assumed to be small. A robust controller that explicitly
deals with uncertainty can compensate for the effects of τud.

3.1.3 Generalized nonlinear dynamic model in 2DOF

The model described by Eq. 3.9 considers the equations of motion acting in the
horizontal plane. This motion can be further divided into two groups called the
surge- and sway-yaw subsystems. The surge subsystem for AutoNaut can be writ-
ten as

(m− X u̇)u̇r − Xuur +N(νr) = τpropx
+τdistx

+τudx
(3.21)

where the subscript x represents the x-component of the respective force vec-
tor described in Eq. 3.14 and N(νr) represents the contribution of nonlinear and
cross-coupled terms.

If we assume straight-line motion and neglect the contribution of wind forces,
we observe that the surge speed depends explicitly on the environmental factors
rendering the surge dynamics uncontrollable. Since these factors are either are
slowly-changing or bounded, we can in effect presume the speed to be an uncon-
trollable quasi-constant.

By employing the speed prediction model [25], we are able to parameterize
the surge motion and anticipate the vehicle’s steady state speed. This approach
enables us to project forward in time by leveraging observed trends and making
predictions about the future.

Chapter 3: Theory 17

Ignoring surge and considering only the sway-yaw subsystem, we modify our
generalized state vector η to η∗ =

�

y ψ
�T

and rewrite the equations of motion
as

η̇∗ =R(ψ)(ν∗r + ν
∗
c)

M2ν̇
∗
r +C2(νr)ν

∗
r +D2ν

∗
r +D2n(νr)ν

∗
r = τprop +τdist +τud

(3.22)

where

• ν∗r =
�

vr r
�

is the 2DOFs relative state velocity vector.
• ν∗c =
�

vc 0
�

is the 2DOFs current velocity vector
• the 2 subscript refers to sway and yaw components of the hydrodynamic

matrices.

We note that generalized force vectors τprop and τdist are only considered in y-
and ψ-axis.

3.1.4 Generalized linear dynamic model in 3DOF

In the field of control theory, linear systems are often preferred due to their simpler
properties compared to nonlinear systems. Linear time-invariant (LTI) systems, in
particular, have been extensively studied, offering a wealth of knowledge on their
behavior and making them valuable as a fundamental component for analysis
[26]. Although linear systems may not perfectly capture the complexities of real-
world systems, their simplicity and computational efficiency often make them a
practical choice for implementation.

For the AutoNaut, the simplified 3DOFs linear model is derived by neglecting
nonlinear and cross-coupled terms involving nonlinear damping and Coriolis ef-
fects. Additionally, the influence of wind forces is neglected, and the rudder force
is linearized under the assumption of small rudder angles. These approximations
hold valid at low speeds and are expressed as

C(νr) = Dn(νr) = 0

τwind = 0

sin(δ)≈ δ
(3.23)

The linearized rudder force can now be expressed using Eq. 9.103 in [24] as

τL
rudr = −

X L
δ
δ2

Y L
δ
δ

N L
δ
δ

X l
δ =

1
2
(1+ tR)ρU2

r ARCN

Y l
δ =

1
4
(1+ aH)ρU2

r ARCN

N l
δ =

1
4
(xR + aH xH)ρU2

r ARCN

(3.24)

18 Shubham Garg: An NTNU Thesis Document Class

where the subscript L denotes the linearized force. The linearized dynamics of
AutoNaut can now be expressed as

η= R(ψ)(νr + νc)

Mν̇r +Dνr = τfoil +τ
L
rudr +τud

(3.25)

where the superscript L denotes the linearised force component.

3.2 State Space Modeling

A state-space representation is a mathematical model that describes the behavior
of a system in terms of its internal state variables and the inputs that affect them.
This representation is useful for analyzing and designing control systems because
it allows for a compact and computationally efficient representation of the system.

Consider a system with the state variable x, input variable u, and output vari-
able y. Its state-space representation in a linear framework takes the general form

ẋ= Ax+Bu

y= Cx+Du
(3.26)

where A and B are the state matrix and input matrix respectively. C and D are the
output and feed-through matrix respectively.

In the case of nonlinear systems, the states and transitions are defined by
nonlinear mappings and take the form

ẋ= f (x,u)

y= h(x,u)
(3.27)

where f and h are vectors consisting of nonlinear mappings fi(.) and hi(.) respect-
ively.

In this section, we present both linear and nonlinear dynamics of the vehicle in
nonlinear state-space form for the sake of convenience. For the models expressed
in 3DOFs, the state x and the input variable u are chosen as

x=

ψ

u
v
r

u=
�

δ
�

(3.28)

For the models expressed in 2DOFs, the state variable x is modified to x2 as

x2 =

ψ

v
r

 (3.29)

We limit the scope of our project towards the development of the control system
and assume that the full state is either directly observable or available using an
appropriate estimator. The output mapping is then given as

h(x,u) = x (3.30)

Chapter 3: Theory 19

3.2.1 Linearized Dynamics in 3DOFs

The linear model given in Eq. 3.25 can be rewritten as

ψ̇= r

ν̇= ν̇c +M−1(τfoil +τ
L
rudr − Dνr)

(3.31)

where τud = 0.

We can now represent Eq. 3.31 in state-space form as described in Eq. 3.27 by
expressing the mapping f as

ẋ= f l(x,u)

=

0
vc
−uc

0

r +

�

1 0
0 ∆

�

r
Xuur − Xδδ

2 − g(x)Xu
Yv vr + Yr r − Yδδ
Nv vr + Nr r − Nδδ

=

f l
2 (x,u)

f l
2 (x,u)

f l
3 (x,u)

f l
4 (x,u)

(3.32)

where∆=M−1 and∆i j is the element located at ith row and jth column. The full
expression is mentioned below for better readability.

ψ̇= f l
1 (x,u) = r

u̇= f l
2 (x,u) = vc r +∆11(Xu(ur − g(x))− Xδδ

2)

v̇ = f l
3 (x,u) = −uc r +∆22(Yv vr + Yr r − Yδδ) +∆23(Nv vr + Nr r − Nδδ))

ṙ = f l
4 (x,u) =∆23(Yv vr + Yr r − Yδδ) +∆33(Nv vr + Nr r − Nδδ)

(3.33)

3.2.2 Nonlinear Dynamics in 3DOFs

We can rewrite the nonlinear model given in Eq. 3.9 as

ψ̇= r

ν̇= ν̇c +M−1(τfoil +τrudr +τwind −N(νr)νr)
(3.34)

where N(νr) = D+C(νr) is the matrix of net resistive forces.

20 Shubham Garg: An NTNU Thesis Document Class

ẋ= f nl3(x,u)

=

0
vc
−uc

0

r +

�

1 0
0 ∆

�

r
−g(x)Xu − X nl

δ
sin(δ) + Xw − N1,1:3νr

−Y nl
δ

cos(δ) + Yw − N2,1:3νr
−Nnl

δ
cos(δ) + Nw − N3,1:3νr

=

f nl3
1 (x,u)

f nl3
2 (x,u)

f nl3
3 (x,u)

f nl3
4 (x,u)

(3.35)

where Ni,1:3 is the ith row of the matrix N(νr). The full expression is obtained in
practice using MATLAB™symbolic framework and is expressed below.

ψ̇= f nl3
1 (x,u) = r

u̇= f nl3
2 (x,u) = uc − 1.0 u+ r vc + g(θ)− 3.5e

− 3δ2
�

53.0 (u− 1.0 uc)
2 + 53.0 (v − 1.0 vc)

2�

v̇ = f nl3
3 (x,u) = 0.2 r − 0.51 v + 0.51 vc − 1.3e

− 3δ
�

100.0 (u− 1.0 uc)
2 + 100.0 (v − 1.0 vc)

2�− 8.9e

− 5δ
�

210.0 (u− 1.0 uc)
2 + 210.0 (v − 1.0 vc)

2�− 1.0 r uc

ṙ = f nl3
4 (x,u) = 0.035 v − 1.0 r − 0.035 vc + 8.9e

− 5δ
�

100.0 (u− 1.0 uc)
2 + 100.0 (v − 1.0 vc)

2�+ 4.6e

− 4δ
�

210.0 (u− 1.0 uc)
2 + 210.0 (v − 1.0 vc)

2�

(3.36)

The hydrodynamic parameters used to obtain the above equations are given in
Appendix A.

3.2.3 Nonlinear Dynamics in 2DOFs

The 2DOFs nonlinear dynamic model in state-space form can be expressed by
eliminating surge dynamics and introducing surge as a parameter in the vehicle
model. This is expressed as

ẋ2 = f nl2(x2,u,p)

=

f nl2
1 (x2,u,p)

f nl2
2 (x2,u,p)

f nl2
3 (x2,u,p)

(3.37)

where p = u = g(θ) is the called the surge parameter. The equations of motion
for sway and yaw dynamics remain the same as expressed in Eq. 3.36.

Chapter 3: Theory 21

3.3 Control Objective

In order to define the desired behavior of the system, we now formulate our con-
trol objective. This will allow us to specify the goal control system should satisfy
to achieve its intended function. We present two cost functions

Minimizing the difference between current and desired course angle

Let us consider the difference function as

δx(t) = ssa(χ(t)−χd(t)) (3.38)

where ssa is the smallest signed angle as described in [24].
The function δx(t) is bounded between

�

−π π
�

and has its minimum value
when the current course angle is the same as the desired course angle. This is a
straightforward way to align the current course with the desired course however,
it can run into numerical difficulties due to the presence of the arctan function,
which makes the function undefined as surge approaches zero.

Aligning the current and desired course angle vector

This method utilizes unit vectors to represent the current course angle and the
desired course angle. When these vectors align, their dot product reaches its max-
imum value of unity. To convert the maximizing function into a minimizing func-
tion, we subtract the dot product from its maximum value. This enhances numer-
ical stability as it avoids any inverse trigonometric functions. The proof of this
function is presented below.

From Eq. 2.36 in [24], the horizontal motion of the marine craft can be de-
scribed by

ẋn = u cosψ− v sinψ= U cos(χ)

ẏn = u sinψ+ v cosψ= U sin(χ)
(3.39)

where we have

χ =ψ+ βc

βc = arctan(
v
u
)

U =
Æ

(u2 + v2)

(3.40)

Now the course vector can be expressed by normalizing the velocity vector νn in
the inertial frame as

χ⃗ =

�

cos(χ)
sin(χ)

�

=
1
U
νn =

1
U

�

ẋn

ẏn

� (3.41)

22 Shubham Garg: An NTNU Thesis Document Class

Given a desired course angle, we can represent the desired course vector as

χ⃗d =

�

cosχd
sinχd

�

(3.42)

We know by the nature of dot product that the dot product of two parallel
vectors is zero. Since both are unit vectors, we have

χ⃗d .χ⃗ = |χ|.|χd |= |χ| ∗ |χd | cosθ = 1 (3.43)

when the current course vector aligns with the desired course angle. Hence, min-
imizing the expression below will align the vehicle in the direction of the desired
course vector.

δx = 1− χ⃗ ′d .χ⃗ (3.44)

3.4 Nonlinear Model Predictive Control

With an understanding of our system dynamics and the desired control objective,
we can now delve into the theory that underlies our proposed solution. This sec-
tion provides a concise overview of the fundamental concepts of Model Predictive
Control (MPC).

3.4.1 Definition

Model Predictive Control is a subset of predictive and optimal control theory that
uses a mathematical model of the system to make predictions and optimize control
actions over a given time horizon. MPC has been widely used in various industrial
applications[27] from process applications to power electronics[28]. Due to ad-
vancements in digital electronics, MPC is now finding use in cutting-edge robotics
such as humanoid robots[29] and unmanned drones[30].

MPC when extended to nonlinear systems is called NMPC where N stands for
nonlinear. In this case, both the system model and the constraints may be specified
using nonlinear equations. However, unlike linear MPC, no guarantees are made
that the receding horizon open-loop optimal control solution will yield a stable
system. In the texts that follow, MPC and NMPC have been used interchangeably.

Working of a MPC Controller

Let us consider a controlled process with a state is given by xn and measured
at discrete time intervals tn with n = 0,1, 2,3.... Since the system is controlled,
at each time interval, we can select a control input un that influences the future
behavior of the system. For such a system, MPC can be employed to address two
types of problems outlined below.

Chapter 3: Theory 23

Stabilization Problem: In this problem, we are given a reference state or
trajectory (in time) xref(t) and the goal is to determine the control inputs
that drive the current state of the system towards the reference state.

x(t)→ xref(t) (3.45)

Regularization Problem: In this problem, the reference state is constant and
zero. The goal is to keep the current state at origin.

x(t)→ 0 (3.46)

MPC is an optimization-based method for feedback control of systems, which
means that the desired control input u(t) ∈ U is expressed a mapping of the
current state x(t) ∈ X as in the form

µ : X → U
u(t) = µ(x(t))

(3.47)

The primary objective of the MPC controller is to find the mapping µ which
is accomplished by using two key ideas: iterative online minimization and moving
horizon.

Iterative online minimization is a three-step process which computes the op-
timal input sequence for a given system state. We start by defining the system
model to predict the behavior of the system at discrete time intervals xn(k) with
k = 0, 1,2...N for up to N intervals, starting at the given time tn.

xn(0) = x(tn)

xn(k) = x(tn + kTs)
(3.48)

where Ts is the controller discretization time. For our proposed system(s), the
dynamic model can be represented in state-space form using Eq. 3.27 as

Continuous Dynamics

ẋ= f (x,u)

y= h(x,u)

Discrete Dynamics

xk+1 = fd(xk,uk)

yk = hd(xk,uk)
(3.49)

where mappings fd and hd are obtained by discretizing the continuous time non-
linear dynamics.

Now we propose an arbitrary input control sequence un(k) for k ∈ [0, N) and
compute the predicted state trajectory xn(k) for k ∈ [0, N]. For the chosen un(k),
we can measure the deviation of the predicted state trajectory xn(k) from the
desired state trajectory xref

n (k) using a function known as the objective function.
Over the entire predicted trajectory, the deviation is expressed as

J =
N−1
∑

k=0

l(xn(k),x
ref
n (k),un(k),u

ref
n (k)) +m(xn(N),x

ref
n (N)) (3.50)

24 Shubham Garg: An NTNU Thesis Document Class

where uref
n (k) is the reference input sequence often set as zero to minimize actu-

ator use, and the mappings l(.) and m(.) are known as the stage and terminal cost
respectively. A common choice for them is the quadratic least squares function

The final step in the optimization process is to use the principles of optimal
control to determine the control sequence u∗n that minimizes the value of the cost
function over the entire trajectory i.e. J . The sequence thus obtained is called the
optimal control sequence and the state trajectory obtained using u∗ is called the
optimal state trajectory. The optimal control problem is now formulated as

u∗ = min
un(k)

J (3.51)

To get the desired feedback, we set the mapping µ to extract the first element
of the sequence u∗ yielding

µ(xn) = u∗(0) (3.52)

This process is repeated iteratively for each time instant tn = t1, t2, t3... to yield
µ(x1),µ(x2),µ(x3)... that forms the feedback controller and is called iterative on-
line optimization.

At each time instant tn, we compute predictions for a fixed number of intervals
N , hence defining a window that starts at tn and ends at tn + N Ts. As we move
forward in time, the window or the prediction horizon also moves accordingly.
This feature is called moving horizon and is an important aspect of MPC.

3.4.2 Dynamic Model and Discretization

Most physical systems are mathematically expressed as non-linear continuous
time Ordinary Differential Equations (ODEs). Since MPC uses the system dynam-
ics to predict its future behavior, these ODEs need to be transformed into discrete-
time difference equations through the process known as discretization, as referred
in Eq. 3.49.

Discretization is an essential step in MPC problem formulation as it allows
us to express the control problem in finite-dimension space, enabling the use of
numerical optimization techniques. In this process, the continuous-time equations
and associated constraints/functions are converted to a finite set of equations that
can be solved efficiently using computational methods and implemented on digital
systems. However, care should be taken as poor discretization techniques can lead
to inaccurate system predictions leading to control problems. This is especially
important for highly non-linear or unstable systems.

The most common methods for discretization using direct numerical approaches
are (1) single shooting, (2) multiple shooting and (3) collocation as described in
[31].

1. Single-shooting involves discretizing the control variables and subsequently
employing a numerical routine to obtain the states sequentially as an initial
value problem over the entire horizon. Although single shooting is straight-
forward, it can encounter difficulties when applied to highly nonlinear or
unstable systems. Hence this approach is often limited to simple problems.

Chapter 3: Theory 25

2. Multiple-shooting is an improvement over the single-shooting method which
introduces additional degrees of freedom by dividing the prediction horizon
into extra grid points with each grid point generating an initial value prob-
lem. This improves convergence and mitigates the error growth caused by
inadequate initial data.

3. Collocation is another effective method that involves incorporating a set of
collocation points using polynomial equations to approximate the model
equations between those points. This technique ensures the satisfaction of
the model equation at these intermediate points. By introducing these ad-
ditional variables, direct collocation offers even more degrees of freedom
compared to multiple shooting while reducing nonlinearity.

Both multiple shooting and collocation methods offer significant improve-
ments over the single shooting method however multiple shooting is often pre-
ferred for problems with simple control but complicated dynamics and simple or
no path constraints [32]. Due to this reason, we chose to use multiple shootings
to discretize the MPC problem.

Multiple Shooting

The direct multiple shooting method, first introduced by [33] is a simultaneous
approach as it reformulates the ODE to a set of nonlinear algebraic equality con-
straints that are solved simultaneously with the optimization problem. We proceed
as follows.

Consider a uniform time grid parameterized by k for up to N intervals known
as shooting nodes. The control sequence is then obtained by a simple piece-wise
discretization of the control signal as follows

k = 0,1, 2...N − 1

un(t) = uk ∀ t ∈
�

tn, tn+1
� (3.53)

Each state xk in the grid is used as an initial value to solve the ODE for the time
interval
�

tk, tk+1
�

using a suitable integrator as follows

xk+1 = Φ(xk,uk) (3.54)

where Φ is typically a simple and robust Runge-Kutta 4 (RK4) approximation.
By employing this approach, we incorporate the discretized system state vari-

able, denoted as xk, as an unknown quantity within a nonlinear equality con-
straint. In addition to minimizing the objective function, we simultaneously solve
for the system dynamics.

While multiple shooting introduces significantly more variables in the optim-
ization problem, it is more well-posed for several reasons as it takes advantage
of the favorable structural and numerical properties of the equations. Further, it
facilitates easier evaluation of both the cost and constraint functions while bene-
fiting from the availability of reliable initial guesses.

26 Shubham Garg: An NTNU Thesis Document Class

For the case of AutoNaut, the discretized dynamics can be formulated as

given x0 = x(0)

xk+1 = Φ(f (xk,uk))
(3.55)

where k ∈ [0 N), Φ is an appropriate RK4 integrator and f is the continuous-time
dynamic models given by Eq. 3.9, Eq. 3.22 or Eq. 3.25.

A Note on Direct and Indirect Methods

A typical time-invariant continuous-time dynamic model is expressed using the
ODE given by the function f which defines the evolution of the state x(t). The
system also depends on input signal u(t) possessing in an infinite-dimensional
entity as shown below

x(t) ∈Rn u(t) ∈Rm

x(0) ∈Rn

ẋ(t) = f (x(t),u(t))
(3.56)

where n and m are state and input dimensions respectively.
Under the assumption that the involved functions satisfy the necessary regu-

larity conditions, including continuity and smoothness, we can employ classical
mathematical tools such as calculus of variations[34], Pontryagin’s maximum prin-
ciple[35], and dynamic programming[36]. These methods, known as indirect meth-
ods, are applicable only in specific cases as they may become impractical for larger
systems. An illustrative example of this approach is the linear quadratic regulator,
which is widely recognized.

In this work, we utilize the more popular and promising direct methods that
are characterized by discretization and finite parameterization. It is advantageous
to use direct methods due to the following reasons:

1. Generally, numerical integration is required to handle the system as exact
closed-form solutions of the ordinary differential equations (ODEs) are typ-
ically not feasible, especially in nonlinear cases.

2. The infinite-dimensional unknown solution u ∈ [0 T] must be replaced by
a finite number of decision variables to define a finite-dimensional optimiz-
ation problem that can be effectively solved using numerical optimization
techniques.

3. Measurements are often available only at specific sampling instants, leading
to the availability of updated initial state x(0) only at those defined sampling
points.

4. Due to the nature of physical systems, arbitrary changes in control com-
mands are not possible with control adjustments only being realized at
defined sampling instants.

Chapter 3: Theory 27

3.4.3 Objective Function

For a nonlinear Optimal Control Problem (OCP) starting from a continuous time
model and a finite horizon of length T , the objective or cost function can be ex-
pressed as

J(x(t), u(t)) =

∫ T

0

l(x(t),u(t),xref(t),uref(t))dt +m(x(T),xref(T)) (3.57)

where t ∈
�

0 T
�

, xref(t) and uref(t) are the reference state and reference input
trajectories respectively.

In the above formulation, the term l is known as the stage cost and m as
the terminal cost which together define the objective function J . The objective
function allows definition for time-varying reference trajectories and exogenous
input signals as long as it satisfies the necessary regularity assumptions, such as
continuity and smoothness but we limit our scope to time-invariant cost functions.

After discretization, as described in sec. 3.4.2, the objective function is ex-
pressed using a summation operator instead of the integral as

J =
N−1
∑

k=0

l(xk,uk,xref
k ,uref

k) +m(xN ,xref
N) (3.58)

where T = N Ts with T is the prediction horizon, Ts is the discretization time and
N is the number of intervals in the prediction horizon.

The exact formulation of both l and m can be rich and varied in literature
and have a significant impact on both MPC performance and stability[37]. From
a practical perspective, however, one of two typical choices are seen

l2 norm: l(xk,uk,xref
k ,uref

k) = ∥xk − xref
k ∥

2
Q + ∥uk − uref

k ∥
2
R

l1 norm: l(xk,uk,xref
k ,uref

k) =Q∥xk − xref
k ∥

1 + R∥uk − uref
k ∥

1
(3.59)

where Q and R are positive semi-definite matrices. The properties of the Q and R
important for performance and stability are discussed further in [14].

For the case of AutoNaut, we consider two different cost formulations based
on the vehicle state and the change in the input rudder angle. We ignore the
absolute input trajectory as we are only concerned with rapid rudder changes.
The objective function is then formulated as follows

l(xk,uk,xref
k ,uref

k) = l x(xk,xref
k) + lu(uk)

lu(uk) = ∥uk − uk−1∥2R
(3.60)

where uk−1 is the input signal at the previous interval with u−1 = 0.
As described in sec. 3.3, we propose the use of two different objective func-

tions. Considering the state vector x as described in Eq. 3.28 and using Eq. 3.38

28 Shubham Garg: An NTNU Thesis Document Class

and Eq. 3.44, we can formulate them as

minimizing course difference

l x(xk,xref
k) = ∥ssa(χ

ref
k −ψ− β)∥

2
Q1

aligning course vector

l x(xk,xref
k) = ∥1− χ⃗k

ref.χ⃗k∥2Q2

(3.61)

where

• χref
k is the trajectory obtained by using a first-order reference model with
χref

0 = χ0 and χref
N = χre f

• χ0 and χre f are the current and the desired course angle respectively
• Q1 and Q2 are the costs for the objective functions as expressed in Eq. 3.38

and Eq. 3.44 respectively.
• ssa(.) is the function to evaluate the smallest sign angle difference of the

angles being subtracted.

3.4.4 Constraints

Constraints form an integral part of MPC Problem formulation and are arguably
one of the key reasons behind the success of MPC controllers. In this text, we
consider constraints on both state and input.

Considering the state x ∈ X and input u ∈ U , we can define a nonempty state
constraint set Xk ⊂ X and a nonempty input constraint set Uk ⊂ U such that all
possible values of xk and uk for k ≤ N and N ∈ R lie in Xk and Uk respectively.
These state and input values are known as admissible state and admissible input
values. For an MPC controller, both state and input trajectories must necessarily
be admissible to be feasible. Therefore, we have

x ∈ X ⊂ X u ∈ U ⊂ U (3.62)

The k notation signifies that the constraint set may change from one iteration to
another, however, we drop the notation for the sake of simplicity.

For optimization purposes, there are properties that the constraint sets must
follow. They should be compact and convex. Further, the assumption of viabil-
ity[14], which ensures the feasibility of the problem, must hold.

Assumption of viability: For each x ∈ X there exists u ∈ U such that
f (x,u) ∈ X

where f (x,u) specifies the system dynamics. Assuming the assumption of viability
holds and the closed-loop MPC controller satisfies the desired constraints, the
feedback µ(.) as defined in Eq. 3.52 is well defined and admissible [14].

Chapter 3: Theory 29

When formulating the OCP, constraints are specified in the form of equality
and inequality constraint equations as follows

equality constraints

g(xk,uk) = 0

inequality constraints

h(xk,uk)< 0

(3.63)

For the case of AutoNaut, we consider physical constraints that limit rudder
actuation within a preset range and constraints on surge velocity which ensures
the vehicle always faces the direction of travel.

abs(δ)< δmax

uk > 0
(3.64)

where

• uk is the surge velocity at interval k as defined in Eq. 3.28.
• δ is the rudder angle (input) and δmax is the maximum deflection possible

on either side.

Slack Constraints

For a stable and robust MPC design, it is essential to ensure feasibility in all op-
erating conditions [38]. Feasibility in this context assures that the class of predic-
tions available to the MPC algorithm can satisfy all the constraints simultaneously.
However, feasibility can be lost due to improper modeling, tight constraints, dis-
turbances, large set-point changes, etc.

Since feasibility is required for any meaningful practical application, we should
reformulate the MPC problem to achieve feasibility by relaxing constraints when
needed. This is possible as often systems have additional constraints imposed on
them that may be overly restrictive and unnecessary when the MPC is designed
with care.

In the case of AutoNaut, the physical constraints imposed by the rudder cannot
be disregarded. However, we have the flexibility to allow the surge velocity to
be less than zero. Typically, the surge velocity of the vehicle is always greater
than zero, as moving backward is undesirable. Nevertheless, in order to prevent
infeasibility and avoid loss of control at very low speeds, it is preferable to relax
this constraint. This relaxation can be achieved by introducing slack variables, as
demonstrated below.

We start by introducing the slack variable s and rewriting the surge velocity
constraint as

sk + uk > 0

sk > 0
(3.65)

30 Shubham Garg: An NTNU Thesis Document Class

where uk is the surge speed at interval k with k = 0, 1,2....N . The slack variables
are then added to the cost function 3.60 as follows

l(xk,uk,xref
k ,uref

k , sk) = l x(xref,xk) + lu(uk) + ls(sk)

ls(sk) = ∥sk∥S
(3.66)

where S >>Q, R and is a very large number.
Under normal conditions, the surge is greater than zero and hence sk = 0 is

the optimal value. When the vehicle operates at very low speeds, the optimizer
may assign sk a positive value to satisfy the constraint in Eq. 3.65 and prevent
infeasibility, at the expense of higher cost.

3.4.5 Problem Formulation

In this section, we combine the different elements of the OCP introduced in the
earlier sections to construct the NonLinear Programming (NLP) problem. Let us
rewrite the state and input vector x and u as expressed in Eq. 3.28

x=

ψ

u
v
r

u=
�

δ
�

(3.67)

In terms of the discrete-time state space model and constraints, the optimal control
problem with discretization time Ts and a fixed-width moving horizon T is then
formulated as follows

x∗,u∗, s∗ = min
x(.),u(.),s(.)

J

= min
x(.),u(.),s(.)

N−1
∑

k=0

�

l x(xk,xref
k) + lu(uk) + ls(sk)

�

+m(xN ,xref
N) +ms(sk)

(3.68)

where

• T = N Ts
• x∗ and u∗ are the optimal state and optimal input sequence
• the cost on input lu(uk) is defined as in Eq. 3.60 as

lu(uk) = ∥uk − uk−1∥R (3.69)

• the stage and terminal costs on state l x(xk,xref
k) and m(xN ,xref

N) are defined
as in Eq. 3.61 as

minimizing course difference

m(xN ,xref
N) = l x(xk,xref

k) = ∥ssa(χ
ref
k −ψ− β)∥

2
Q

aligning course vector

m(xN ,xref
N) = l x(xk,xref

k) = ∥1− χ⃗k
ref.χ⃗k∥2Q

(3.70)

Chapter 3: Theory 31

• the costs on slack variables ls(sk) and ms(sk) are defined by Eq. 3.66

ls(sk) = ms(sk) = ∥sk∥S (3.71)

• subject to constraints given by Eq. 3.55, Eq. 3.64 and Eq. 3.65

given x0 = x(0)

xk+1 = Φ(f
i(xk,uk))

abs(δk)< δmax

sk + uk > 0

sk > 0

(3.72)

• where f i represents the dynamics of the vehicle as given by Eq. 3.9 and Eq.
3.25.

We note that the OCP for the generalized 2DOF Nonlinear dynamics is obtained
by considering the state variable x2 given by Eq. 3.29, dynamics given by Eq. 3.22
and removing the slack constraints from Eq. 3.72 and slack variables from the cost
function in Eq. 3.71.

The optimal control input at time t is then calculated using the mapping as
described in eq. 3.52

u= µ(u∗) = u∗(0) (3.73)

We note that the notation of (t) has been dropped to simplify the problem.

Warm Start

The solution to a well-posed problem may still require significant computation
time to be accurately determined. If this is the case, it might be prudent to inquire
about a good initial guess that our optimizer can use to converge to the optimal
solution. The initial guess may not need to be a full or partial optimal solution, but
only reasonably accurate. Given that our NLP problem at any given time-step is
closely related to the NLP problem at the previous time-step, we can construct our
guess using the past solution. This is a valid assumption if we set our discretization
period to be significantly smaller compared to the dynamics of the plant and the
system. Assuming multiple shooting, the guess is constructed by

1. discarding the first element from the predicted state and input trajectory.
2. shifting the prediction state and input trajectory by one time step to the left.
3. repeating the last element of the state and input trajectory.

The first guess is created by setting the states and input vector as a randomized
array between 0 and 1, not including zero.

The NMPC Algorithm

Based on the above, the NMPC algorithm implemented in this work is expressed
in Algorithm 1.

32 Shubham Garg: An NTNU Thesis Document Class

Algorithm 1 NMPC Algorithm

1: for each sampling instant tn with n= 0,1, 2,3... do
2: Measure the state x(tn) ∈ X of the system and environmental parameters.
3: Construct the initial guess of the state and control sequence as described

in Sec. 3.4.5.
4: Set x0 = x(tn).
5: Solve the optimal control problem as described in Sec. 3.4.5.
6: if the solver was successful then
7: Obtain the optimal state and optimal control sequence x∗ and u∗.
8: else if the solver was unsuccessful then
9: Obtain the sub-optimal control sequence u∗.

10: end if
11: Define the NMPC feedback value using the mapping described in Eq. 3.73.
12: end for

3.4.6 Sub-optimal NMPC

To ensure efficient and reliable practical implementation, it is crucial to ascertain
the maximum execution time of the NMPC controller. This information guarantees
that the system meets the available computational requirements and avoids any
potential resource exhaustion. Determining a strict bound on the number of itera-
tions needed for the convergence of the nonlinear programming problem is crucial
for estimating the worst-case execution time. However, finding a non-conservative
bound is a challenging task because of two key reasons[15]

1. When constraints are present, efficient solvers for NMPC may encounter
difficulties in converging to the optimal solution. Soft constraints can be
relaxed to some extent, but hard constraints do not have the same flexibility
and can result in infeasibility. In such cases, the controller fails to produce
a viable solution.

2. In real-time applications, the system may face unpredictable states which
often lead to the number of iterations at one interval being dramatically
different from the next. In such cases, a bound suitable for one might not
work for another, especially in edge cases.

A method for setting a hardbound is to apply a sub-optimal solution after the
number of iterations exceeds the preset threshold. This is possible due to the fun-
damental result as shown in [15] which states that feasibility and descent (reduc-
tion in cost function compared to the control trajectory computed at the previous
sample) is sufficient for asymptotic stability of NMPC provided that terminal con-
straints are included in the formulation.

The preset threshold may be obtained by looking at the average number of
iterations needed in the normal operating range and the frequency specification
of the controller.

Chapter 3: Theory 33

3.4.7 Tuning

For good and robust performance, the optimization problem should be well-scaled.
While this can mean many different things, in the case of tuning, it is advisable
that the different components of the OCP are of a similar order. As per sec. 3.4.3,
the objective function at any given stage can be expressed as

lk = l x
k (x

ref
k ,xk) + lu

k(uk) (3.74)

Assuming a maximum rotation speed of rδ = ±0.1π rad
sec , we can compute the

maximum costs associated with the change in input as follows

rmax
δ = 0.1π

lu
k(uk)

max = ||uk − uk−1||R
= ||rmax

δ Ts||R

(3.75)

where Ts is the discretization time. With a discretization time of 0.5 sec, we have
lu
k(uk)max ≤ 0.024R and lu

k(uk)min = 0.
In this report, we consider two cost functions as described in sec. 3.4.3. The

maximum possible difference between the current and desired course angle is
∆χmax = π rad, the associated costs with the state cost functions in Eq. 3.61 can
then be computed as

minimizing course difference

l x
k (xref,xk)

max = ∥∆χmax∥Q1
= 9.8Q1

l x
k (xref,xk)

min = 0

aligning course vector

l x
k (xref,xk)

max = ∥(1− χ⃗k.χ⃗ref
k)∥Q2

=Q2

l x
k (xref,xk)

min = 0

(3.76)

since both χ⃗ and χ⃗d are unit vectors, the maximum value (1− χ⃗.χ⃗d) can achieve
is 1.

Based on these calculations, we start our tuning with R1 = R2 = 10, Q1 =
1, and Q2 = 10 as we place a higher priority on deviations of the course angle
than the use of the rudder. As these values are for reference only, our final tuning
parameters are obtained through trials and are given in sec. 6.

Chapter 4

Method

This chapter introduces the tools and framework used to develop Model-In-the-
Loop (MIL) simulation framework used to validate the proposed controller.

4.1 Software Framework: CasADi

4.1.1 Introduction

CasADi is an open-source software tool[16] that provides a symbolic framework
for expression handling, efficient algorithmic differentiation for derivative com-
putation, and capabilities for solving systems of ODEs, differential-algebraic equa-
tions, NLP problems and OCPs. It’s development was started by Joel Andersson
and Joris Gillis at KU Leuven, Belgium.

CasADi is available for multiple programming languages, including C++, Py-
thon, and MATLAB/Octave, with consistent performance across these interfaces
and a syntax similar to computer algebra systems. The core driving force behind
CasADi is to provide the necessary tools and flexibility to build efficient OCP solv-
ers tailored to the user’s specific needs.

4.1.2 Symbolic Framework in CasADi

CasADi incorporates a powerful symbolic framework at its core, providing users
with the ability to construct symbolic expressions using a MATLAB-inspired syntax
where everything is treated as matrices. The data types available in CasADi offer
different capabilities for symbolic expressions:

1. SX: The SX data type is central to CasADi’s symbolic framework and repres-
ents matrices composed of symbolic expressions created through unary and
binary operations.

2. DM: The DM data type shares similarities with SX but represents matrices
with numerical values instead of symbolic expressions. It is mainly used for
efficient storage of matrices in CasADi and as inputs and outputs of func-
tions.

35

36 Shubham Garg: An NTNU Thesis Document Class

3. MX: The MX data type provides a more versatile matrix expression format.
MX allows the construction of expressions using a variety of elementary
operations, beyond just scalar unary and binary operations.

By leveraging the SX, DM, and MX data types, we can effectively model and solve
a wide range of optimization problems, benefiting from the versatility and com-
putational advantages provided by CasADi’s symbolic capabilities.

Function objects

Function objects in CasADi provide a powerful way to encapsulate various types
of functions, such as symbolic expressions, ODE/DAE integrators, QP solvers, NLP
solvers, and more. To create a function object, we use the syntax:

f = functionname(name, arguments, ..., [options])

We have the flexibility to customize the behavior of the function object by
passing an optional options structure. This allows for fine-tuning and adapting
the function object according to specific requirements or preferences.

Example Problem

An example depicting the use of CasADi to solve a Nonlinear programming ques-
tion is shown below. The example is taken from the CasADi website.

min
x ,y,z

x2 + 100z2

subject to : z + (1− x)2 − y = 0
(4.1)

The above problem can be expressed using CasADi symbolic framework in
MATLAB as

Figure 4.1: Example NLP problem

Chapter 4: Method 37

4.1.3 Interior Point Optimizer Solver

Interior Point Optimizer (IPOPT) is an open-source optimization solver that is
widely used in various scientific and engineering fields[39]. The solver is based
on the primal-dual interior point method and is designed to solve nonlinear, non-
convex optimization problems with inequality and equality constraints. IPOPT is a
robust tool that can efficiently handle large-scale optimization problems. Its flex-
ible and user-friendly interface allows user to define their optimization problem
in a high-level modeling language like MATLAB or CasADi.

It can address the general nonlinear programming problems of the form

min
x∈Rn

f (x)

s.t. g L(x)≤ g(x)≤ gU(x)

xL ≤ x≤ xU

(4.2)

where

1. x ∈ Rn are the optimization variables
2. xL and xU are the lower and upper bounds for x
3. f : Rn→ R is the objective function and is smooth.
4. g : Rn→ Rm are the constraints with lower and upper bounds g L and gU

The mathematical implementation of IPOPT is based on an interior-point line-
search filter method and can be found in [40], [41], and [42].

4.2 Model-In-the-Loop Simulation

This section introduces the Model-In-the-Loop (MIL) simulation setup used to test
and validate the proposed controller using the numeric computing environment
MATLAB™.

4.2.1 Introduction

MIL simulation is a powerful technique to validate and optimize the performance
of complex systems [43]. It involves integrating and testing a system model within
a simulation environment to assess its behavior, functionality, and performance
before physical implementation. It finds wide use in various industries, including
automotive, aerospace, robotics, and industrial automation.

In our setup, the simulation model is the mathematical representation of the
system expressed using the CasADi framework and captures the system’s dynam-
ics, control actuators, and the environmental factors as described in Eq. 3.9. The
developed framework in MATLAB™provides inputs, simulates the system’s re-
sponse, and generates outputs for analysis.

The primary purpose of our simulation is to evaluate the controller’s perform-
ance and validate its functionality at different operating conditions with a focus

38 Shubham Garg: An NTNU Thesis Document Class

on very low speeds. It is further useful to assess the impact of different object-
ive functions and plant models with varying fidelity on NMPC performance. By
leveraging MIL simulation, we were able to refine and optimize the controller
iteratively, leading to an enhanced and robust system performance.

In our work, MIL simulation is an invaluable tool as most tools available for
NMPC development make use of a high-level framework like MATLAB for design
and development. With this capability, we can expedite the transition to real-world
implementation, significantly enhancing the speed at which our developed solu-
tion can be packaged and deployed on an embedded platform.

4.2.2 Simulation Design

The simulation environment was designed using the numeric computation pack-
age MATLAB™. The system flowchart illustrating the basic logic flow of the de-
veloped environment is depicted in fig. 4.2.

Figure 4.2: Flowchart of the MIL simulation

The simulation design is based on function-oriented design[44], which decom-
poses the model into interacting modules with well-defined functions, promoting
modularity and clarity. The simulation begins by initializing key parameters set
by the user, such as simulation run time, environmental disturbances (e.g., cur-
rents, winds), sensor noise, and trajectory generation configuration. Additionally,
the user can specify MPC controller details, including the controller model, pre-
diction horizon, and discretization time to initialize the optimal control problem.

Once initialized, the simulation enters a loop, starting from an initial state.
During each iteration, the reference state and environmental disturbances are re-
trieved using functions getReferenceState(), getCurrents(), and getWinds().
To warm-start the optimal control problem, an initial guess is constructed using
the function initializeOCPGuess().

Next, utilizing the current state, reference state, and knowledge of environ-
mental disturbances, the optimal input is obtained by solving the OCP through the
function solveCasadiOCP(). The system dynamics are then simulated one time
step forward using the function ship()1, resulting in the evolved system state.
This loop continues until the simulation concludes.

1This function is obtained by modifying the assignment handout files provided in the course
TTK4190, Guidance Navigation Control of Vehicles, taught by Thor Inge Fossen and Håkon Hagen
Helgesen [45].

Chapter 4: Method 39

Upon completion of the simulation, the results are saved and plotted using
functions like saveSimData() and plotSimData(), respectively. This allows for
further analysis and visualization of the simulation outcomes.

A note of simulation and controller dynamic models

A model refers to a mathematical representation of the system and finds use in
prediction, real-time simulation, decision-support systems, situational awareness
as well as controller-observer design. The complexity of the model being used
depends on the situation and design specifications. As per [24], models used
in autonomous system design can be classified into three categories that are –
(1) Simulation model, (2) Control design model, and (3) State estimator design
model. Simulation models are often 6DOFs high-fidelity models for simulation of
coupled motions in the time domain. Control design models on the other hand
are usually designed using a simplified version of the simulation model.

In this work, we utilize a reduced-order 3DOFs nonlinear model using dis-
cretized dynamics based on Euler method integration for simulation and a similar
model but using 4th Order Runge Kutta integration method for control design.
Since both the simulation and controller may use the same model, any modeling
errors in the simulation will propagate to the controller as well. Despite this limit-
ation, testing NMPC in MIL simulations still provides significant benefits and has
been widely recognized in the research community.

One advantage of using MIL simulations is the ability to evaluate the control
performance in a realistic but controlled environment. MIL simulations allow for
comprehensive testing and validation of the control strategy before deploying it
in real-world applications [46]. This approach helps in identifying potential is-
sues and improving the controller’s performance and robustness by assessing the
NMPC controller’s behavior under different scenarios and operating conditions.
The simulation environment allows for easy modification of system parameters,
disturbances, and constraints, enabling thorough testing of the controller’s re-
sponse to various scenarios that may be challenging to replicate in physical ex-
periments[47].

Furthermore, MIL simulations provide a platform for evaluating the NMPC
controller’s sensitivity to modeling errors and uncertainties. The controller can
be tested with different levels of model fidelity, ranging from simplified models
(linear models) to more complex and accurate representations (3DOFs nonlinear
models) of the plant dynamics. This helps in understanding the impact of model-
ing assumptions and uncertainties on the controller’s performance and assists in
refining the model and controller design [48].

Chapter 5

Implementation

This chapter introduces the tools and framework used to design, develop and in-
tegrate the proposed NMPC controller with the existing software system onboard
the vehicle. This helps us determine the feasibility of operating the controller for
online and real-time applications.

5.1 Software Package: acados

acados is a collection of solvers for fast optimization applications on embedded
hardware for efficient implementation of OCPs[49]. The core of is based on top
of a high-performance linear algebra library that facilitates real-time and online
implementation. The tool-chain emphasizes on values of modularity, flexibility,
and rapid prototyping. This is realized by interfacing the high-performance core
with higher-level languages such as Python and MATLAB allowing users to quickly
put together different algorithm components that can be readily connected and
interchanged.

acados is publicly available under the free and open-source BSD 2-Clause li-
cense. This license grants users the freedom to use, copy, modify, and distribute the
software with source code, both for non-profit and commercial purposes, without
any restrictions. It is developed by the Systems Control and Optimization Labor-
atory, at the University of Freiburg, led by Prof. Moritz Diehl.

5.1.1 Why acados

acados is a highly versatile open-source toolbox that has been proven effective in
multiple projects both at NTNU and in the wider industry [50], [51] and [52].
By using acados, we can take advantage of its proven track record and efficient
algorithms, thus reducing development time and ensuring reliable and effective
results. Its open-source nature also means that we have access to a wealth of
community support and development resources, further enhancing its value and
justifying it as a tool for our optimization-based control system.

41

42 Shubham Garg: An NTNU Thesis Document Class

5.1.2 Algorithm Implementations in acados

acados combines together several software packages to handle the optimization
problem. The core linear algebra library in acados is BLASFEO[53] and Quadratic
Programming (QP) problems are by default solved by the HPIPM[54] library. The
solver used in acados is a type of iterative method for solving constrained nonlin-
ear optimization known as the Sequential Quadratic Programming (SQP) solver.

This method involves a series of QP sub-problems, each of which optimizes
a quadratic model of the control objective subject to a linearization of the con-
straints. It is important to note that SQP methods are used on mathematical prob-
lems for which the objective function and the constraints are twice continuously
differentiable. A typical SQP method features (1) numerical integration routines
for continuous-time dynamics, (2) generation of first- and second-order sensitiv-
ities of objectives and constraints, (3) tools for approximating the Hessian matrix,
and (4) an efficient QP solver. acados offers two different SQP-like methods, a
full step SQP method and a specialized Real Time Iteration (RTI) routine with
different algorithmic options.

5.1.3 Workflow with a High-Level Language Interface

OCPs are often coded in scripting languages as direct integration with the core C-
based modules can be cumbersome and error-prone. acados provides an interface
to two popular languages for scientific computing – Python and MATLAB/Octave.
This section describes the process to set up the OCP using using the MATLAB
interface as depicted in Fig. 5.1.

Define the OCP in a
high level language

like MATLAB

Generate embeddable code, run and tests
using MIL simulations

Compile

RunEdit

Deploy for online
optimization on an
embedded platform

Figure 5.1: acados Workflow using a high-level scripting language.

The process of formulating the OCP can be divided into three parts that are
the formulation of (1) the system dynamics, (2) the objective/cost function, and
(3) the system constraints. The generally nonlinear functions that describe the
various parts of the OCP are modeled using CasADi. This provides both the abil-
ity to quickly generate C functions from human-readable code and the ability to
compare performance with other optimization tools interfaced with CasADi. The
different parts of the OCP are then wrapped into a single object by calling the
module acados_ocp_model().

Once the OCP to be solved is described in the domain-specific language, an
instance of the solver options module acados_ocp_opts() is used to define the
solver-specific options. This can now be used, together with the model to create

Chapter 5: Implementation 43

an instance of the solver using acados_ocp() module. After defining the solver
instance, a human-readable self-contained c project that makes use of templated
code is generated. The generated project contains all the C code necessary for
function and derivative evaluations generated through CasADi and the C code
necessary to set up the NLP solver using the acados C interface.

With the workflow described above, it is possible to obtain a self-contained
high-performance solver that can be easily deployed on embedded hardware start-
ing from a description of the OCP in a high-level language.

Results and Discussions

This section depicts the result of the NMPC controller developed using acados.
Fig. 5.2 and fig. 5.3 show the controlled course angle and the computed optimal
rudder input respectively. The parameters used for the simulation are described
and given in tbl. 6.1.

-300

-200

-100

0

100

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150

Time (sec)

0

100

200

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) chi_d

-300

-200

-100

0

100

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150

Time (sec)

0

100

200

A
n

g
le

 (
d

e
g

)

Craft Course Error

(b) dotv

Figure 5.2: Course Angle using Acados Solver

0 50 100 150

Time (sec)

-40

-30

-20

-10

0

10

20

30

40

50

60

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150

Time (sec)

-40

-30

-20

-10

0

10

20

30

40

50

60

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 5.3: Input Rudder Angle using Acados Solver

44 Shubham Garg: An NTNU Thesis Document Class

As we can see, the solver fails and is not able to converge to a stable trajectory.
While the time required to solve the problem is low, any introduction of disturb-
ances makes the solution diverge and the vehicle looses controllability.

Troubleshooting Controller Issues

In our efforts to troubleshoot controller issues, we explored various strategies
outlined below. While some of these measures partially improved controller per-
formance and mitigated convergence issues, they did not provide a complete res-
olution. We have documented these attempts for reference and to ensure a com-
prehensive record of our troubleshooting process.

Change of variables As discussed in [9], the course dynamics of the vehicle
approach singularity when the SOG or the surge speed tends to zero. This causes
the arctan function to get undefined. In order to transform the problem into a
more well-behaved form that is easier to solve numerically, we modify the surge
variable as shown below. This can help to shift the singularity away from the origin
and make the problem easier to solve.

ue = u+ ε (5.1)

where ε is a small constant.
Regularization is another method to improve the numerical properties of the

MPC optimization problem and is achieved by introducing penalty terms or con-
straints discouraging ill-posedness or behaviors leading to singularities.

The choice of regularization depends on the specific problem and the char-
acteristics of the system being controlled. We introduce two methods to address
solution convergence.

1. A Barrier Cost l b(xk) that penalizes control inputs that violate undesired
behavior. In this case, the additional cost imposed by the barrier rapidly in-
creases as the surge speed tends to zero but is zero otherwise. The modified
cost function is given below

l(xk,xref
k ,uk) = l x(xk,xref

k) + luuk) + l b(xk)

l b(xk) = λ ln(uk)
(5.2)

where λ > 0 and we have used the simplified cost function without slack
costs.

2. Box Constraints to regularize the OCP by introducing hard constraints that to
avoid regions of singularity. This was done by constraining the surge speed
to be always greater than ε.

The default QP Solvers employed by is the partial condensing HPIPM solve.
We experimented with two additional QP solvers, namely full condensing HPIPM
solver and qpOASES[55], but observed only marginal improvements. This sug-
gests that either the QP being solved is ill-posed or that the issue does not stem
from the solver itself.

Chapter 5: Implementation 45

Additional Solver Options: In the majority of cases, the default solver con-
figuration, combined with a well-posed problem, is sufficient to effectively solve
the OCP. However, despite our attempts to modify additional solver paramet-
ers such as Hessian Regularization, globalization, Exact Hessian, and Levenberg
Marquardt, we did not achieve the desired outcome.

Reasons for Abandoning the Solver

Despite spending a month with little visible progress, we recognized the time lim-
itations of the project and decided it was more worthwhile to explore alternatives.
We opted to use the more robust but expensive IPOPT solver as described in Sec.
4.1.3.

5.2 Software Toolchain: LSTS/DUNE

The autonomy software onboard the AutoNaut utilizes a powerful open-source
software toolchain developed by the Laboratório de Sistemas e Tecnologia Sub-
aquática (LSTS) [56]. As an interdisciplinary research laboratory established in
1997, LSTS brings together experts from fields such as Electrical, Computer, and
Mechanical Engineering. They specialize in the design, construction, and opera-
tion of unmanned underwater, surface, and air vehicles, including swarms.

5.2.1 Introduction

The LSTS toolchain is a comprehensive software framework specifically designed
to support the operations of networked vehicle systems, enabling seamless com-
munication and collaboration between autonomous systems and human operat-
ors. It addresses the unique challenges faced by autonomous systems operating
in communication-restricted environments, such as dynamic network topologies,
fluctuating bandwidth and latency, and uncertainties in state estimation.

The architecture of the LSTS toolchain adopts a flexible and layered approach,
accommodating diverse mission scenarios. It incorporates a control hierarchy con-
sisting of different layers (see Fig. 5.4), each responsible for encapsulating spe-
cific functional details and providing standardized interfaces for state retrieval
and command execution. This layered approach fosters system interoperability at
multiple levels of control, ensuring efficient coordination and cooperation among
different components.

The LSTS toolchain comprises three essential software components. The first
component is the Neptus shore-side Command and Control (C2) framework, which
serves as the interface for operators to monitor and control the networked vehicle
system. The second component is the onboard vehicle control software known as
DUNE, which executes control algorithms and manages the vehicle’s operations.
Finally, the toolchain utilizes the Inter-Module Communication (IMC) protocol

46 Shubham Garg: An NTNU Thesis Document Class

communication among heterogeneous vehicles, sensors and
human operators. DUNE itself uses IMC for in-vehicle
communication (Martins et al. (2009)).

Neptus is the command and control software used by
human operators to interact with networked vehicle sys-
tems (Dias et al. (2006)). Neptus supports different phases
of a mission’s life cycle: planning, simulation, execution,
revision and dissemination (Pinto et al. (2006)). Concur-
rent multi-vehicle operation is possible through specialized
graphical interfaces, which evolved through the years ac-
cording to the requirements provided by end-users.

Fig. 2. LSTS autonomous vehicles. From top left to bottom
right: Swordfish ASV, Adamastor ROV, LAUV and
Antex X03 UAV.

Similarities exist between this toolchain and the Robot
Operating System (ROS), Quigley et al. (2009), in the
sense that they both try to accomplish similar goals.
However, some aspects can tell them apart:

(1) Neptus provides configurable interfaces that can be
adapted for each type of autonomous vehicle, while
ROS has a single interface for all types of agents (ROS
visualization tools).

(2) Neptus has been tested in the field numerous times,
adopting feedback from different end-users with aca-
demic, industrial and military backgrounds.

(3) DUNE runs on a very small footprint (16 MB) and
was developed having embedded processors, with
limited capabilities, in mind. Which also makes cross-
compiling very straightforward. Cross-compiling ROS
demands some added effort (using eros for full cross-
compilation).

(4) DUNE can run on an operating system that has no
processes, such as RTEMS or eCos.

(5) On the other hand, ROS is open source and has
a contributing community helping to expand the
toolchain.

2. CONTROL ARCHITECTURE

In our view of networked vehicle systems, these are com-
posed by multiple components like vehicles, sensors, con-
trollers, human operators, operator consoles, communica-
tion devices, etc. In order to cope with all these different
network nodes, we use a layered approach in the control

of these systems and establish common interfaces for com-
munication and coordination between components, as seen
in figure 3. Each layer encapsulates lower-level details and,
at the same time, provides interfaces for retrieving state
and accepting commands.

Plan interface

Vehicle Interface

Maneuver interface

Guidance/Navigation

Platform interface

Plan supervisor

Loiter controllerGoto controller StationKeeping controller

NavigationGuidance

IMU driver CTD driver Thruster driver Fin servos driver

Vehicle Supervisor

Team Supervisor

Plan commands Plan state

Vehicle commands Vehicle state

Maneuver commands Maneuver state

Actuator commands Sensors state

Guidance commands Navigation state

Fig. 3. Example architecture implementation and possible
switching between active/inactive controllers.

All vehicles provide a platform with sensor and actuator
low-level interfaces that are used by guidance and navi-
gation software components. These components abstract
specific hardware details by providing standardized sensor
data together with a common command set for controlling
the desired vehicle behavior.On top of guidance / actu-
ation components, maneuver controllers receive current
vehicle state (produced by the navigation) and generate
intended behavior by producing guidance commands.

Maneuver controllers are instantiated and/or terminated
by a vehicle supervisor. The vehicle supervisor contin-
ually verifies that the system is working properly and
instantiates maneuver controllers according to requested
maneuver specifications. Prior to instantiation, the vehicle
supervisor may check if it is safe to execute a given ma-
neuver according to current vehicle state (battery levels,
hardware faults, etc) and may also terminate maneuver
execution in the event of hardware failure or any safety
violations.

The vehicle supervisor receives maneuver specification
commands from upper layers. These can be either a team
controller that commands maneuver execution in multiple
vehicles (by sending commands through network links), or
it can also be an on-board plan supervisor that, according
to a plan specification, triggers the execution of maneuvers
in the vehicle. Plan supervisors can use imperative plan
specifications or they can also be deliberative planners
that, from a set of specified high-level objectives, generate
maneuvers that must be executed in order to fulfill the
plan objectives. Plan specifications / high-level objectives
can be created by human operators through operator
consoles and then sent for execution.

Except for the hardware-specific platform layer, any other
layer follows common interfaces and this fact allows us
to have multiple instances of upper layer controllers. This
provides flexibility to have possibly interchangeable and
even migrating controllers at run-time.

Figure 5.4: Example architecture implementation and possible switching
between active/inactive controllers. Image taken from [56]

as a shared communication standard, enabling seamless data exchange and co-
ordination between different modules and systems within the networked vehicle
architecture.

Through its comprehensive and modular design, the LSTS toolchain empowers
networked vehicle systems with robust and adaptable capabilities, facilitating ef-
ficient and effective mission execution in challenging environments.

DUNE

DUNE, which stands for DUNE Unified Navigation Environment, is a runtime en-
vironment designed for unmanned systems’ on-board software [56]. It serves as
a versatile platform for developing generic embedded software components that
form the core of the system, encompassing various functionalities such as control,
navigation, communication, sensor and actuator access, and more. Built in C++,
DUNE offers a platform abstraction layer that is independent of both operating
systems and hardware, ensuring portability across different architectures.

DUNE adopts a modular approach, isolating logical operations into individual
tasks that run in separate threads of execution. These tasks follow a standardized
life cycle, implementing specific methods for task execution and communication
functions. Examples of common task operations include registering computational
entities, updating task configurations, and consuming incoming messages.

DUNE categorizes tasks based on their base functions, allowing for a clear
organizational structure. Task types include Sensors, Actuators, Estimators, Con-
trollers, Monitors, Supervision, and Transports. These tasks communicate with
one another through a message bus, where any task can forward IMC messages
that can be consumed by one or all registered receivers. This flexible and scal-
able communication framework ensures effective information flow among tasks,

Chapter 5: Implementation 47

promoting system-wide coordination and collaboration.
Flexibility and adaptability are inherent features of DUNE. It can be deployed

in different systems with varying configurations, providing users with the option
to update configurations manually or through supervisor tasks. Additionally, users
can define profiles that enable quick switching between pre-specified configura-
tions, streamlining the process and enhancing the usability of DUNE in diverse
operational scenarios.

Neptus

Neptus is a C2 software that serves as a tool for commanding and monitoring
unmanned systems [57]. Developed in Java, Neptus is compatible with both Linux
and Microsoft Windows operating systems. It utilizes the IMC protocol to establish
communication and provides a coherent visual interface for commanding a wide
range of IMC-based autonomous systems.

Two noteworthy features of Neptus are control abstraction and adaptabil-
ity. Neptus implements an abstraction layer that simplifies the operator’s inter-
action with different assets, without getting entangled in the specifics of each
individual asset’s capabilities. Additionally, Neptus provides flexibility by facilitat-
ing the rapid creation of derived tools and incorporating user-developed plugins.
These features streamline command and control operations, across a diverse set
of vehicles and mission plans.

The mission life-cycle in Neptus typically encompasses three distinct phases.
The planning phase precedes mission execution and empowers operators to pre-
pare mission plans and conduct preliminary simulations. During the execution
phase, systems are readied for deployment, and mission execution, telemetry
monitoring, and vehicle cooperation are carried out. Finally, in the review and ana-
lysis phase, collected data is processed, analyzed, and compiled for further dissem-
ination, providing valuable insights and supporting informed decision-making.3.1. THE LSTS TOOLCHAIN 23

(a) Operator Console

(b) Mission Review & Analysis

Figure 3.4: Neptus tools [24]

Figure 5.5: Neptus Operator Console. Image taken from [58]

48 Shubham Garg: An NTNU Thesis Document Class

Neptus provides access to its comprehensive feature set using the graphical
user-friendly interface with the Neptus operator console, depicted in Fig. 5.5.

Inter-Module Communication Protocol

The Inter-Module Communication (IMC) is a versatile and flexible message-oriented
protocol designed to facilitate seamless communication among various compon-
ents in a distributed system. It serves as a means of inter-process, inter-vehicle, and
operator-vehicle communication. IMC enables modular architecture by allowing
different software components to operate independently while exchanging mes-
sages to interface with other modules.

One of the key advantages of IMC is its extensibility. It offers the capabil-
ity to add new types of messages and events, both onboard and off-board, by
maintaining a collection of protocol definitions in a single XML file. This enables
developers to easily incorporate new functionality into the system without com-
promising compatibility. Furthermore, IMC is agnostic to the underlying commu-
nication systems and can seamlessly adapt to various communication technologies
and protocols, making it highly adaptable to different operational environments.

IMC messages follow a structured format consisting of a header, payload, and
footer. The header includes essential information such as a synchronization num-
ber, which allows for the detection of different byte order serializations and pro-
tocol versions. It also includes a message identifier, source, and destination, en-
abling efficient routing and processing of messages. The footer contains a check-
sum for ensuring message integrity and verification. The reader is referred to [59]
and [60] for more information on IMC.

5.2.2 Overview of the System Architecture

The system architecture of AutoNaut, as illustrated in Fig. 5.6, provides an over-
view of the information flow and interactions within the system. The architec-
ture encompasses various components and tasks responsible for processing sensor
data, estimating the vehicle’s navigation state and environmental parameters,
generating mission plans, and controlling actuation.

At the edge of the system are the sensor controllers, which gather and process
data from onboard sensors such as GNSS, Weather Station, ADCP, and IMU. This
data is then utilized by the navigation tasks to estimate the vehicle’s navigation
state, including pose and twist, as well as environmental parameters like wind,
currents, and waves.

The Estimated State information is subsequently consumed by several tasks,
including Mission Supervisors, Vehicle Supervisors, Maneuver Controllers, and
Guidance Controllers. These tasks utilize the Estimated State to plan future tra-
jectories, ensuring collision-free navigation in accordance with the mission plan.

Once the desired course or heading is determined, the Guidance Controllers
calculate the corresponding rudder angle and thruster actuation required to ex-
ecute the planned trajectory. These actuation commands are then forwarded to

Chapter 5: Implementation 49

CCU Console

Mission
Supervision

Mission Command
Mission Specification

Mission State

Estimated State
Navigation

Estimated Freq
Absolute Wind
Current Profile Sensor

Controllers

Ve
hi

cl
e

C
om

m
an

d,
 V

eh
ic

le
 S

ta
te

Vehicle
Supervision

Estimated State

Actuator
Controllers

Set Servo Position
Set Thruster ActuationGuidance

Controllers

Estimated State

Maneuver State Desired HeadingManeuver
Controllers

Estimated State

SimulatedState

VSIM Casadi
(NmpcDynamics)

ServoPosition

NMPC/Course
(NmpcCourse)

Environmental
Forces

Figure 5.6: Overview of System Design

the actuation controllers for implementation. The communication and data ex-
change between the tasks occurs through the IMC bus, which facilitates the relay
of relevant information.

For further insights into the design and construction of AutoNaut, we recom-
mend referring to the source material [61] and [58] which provide detailed in-
formation on the development and implementation of the autonomy system on-
board the AutoNaut.

5.3 Hardware-In-the-Loop Simulation

Hardware-In-the-Loop (HIL) is a powerful tool that allows for testing and validat-
ing complex control systems in a simulated environment that closely mimics the
physical system [43]. HIL testing involves connecting a real-time simulation of the
plant (hardware) to the controller (software) being developed, allowing for rapid
iteration and verification of control system designs. By using HIL testing, engin-
eers can reduce the cost and risk associated with testing on the physical system,
and identify and correct issues earlier in the design process.

5.3.1 Integration with onboard System

In this project, we have developed and integrated two classes into the existing
system of AutoNaut. These classes, namely NmpcDynamics and NmpcCourse were
implemented using Object Oriented Programming (OOP) concepts.

The NmpcDynamics class focuses on simulating the vehicle dynamics in 3DOFs
and is called within the VSIM_CASADI task. The task accepts actuator input and
environmental conditions, such as rudder input from the ServoPosition mes-
sage and data from WaveProfile, AbsoluteWind and SingleCurrentCell mes-
sage. With this, the task uses the fourth-order Runge-Kutta method to compute
the vehicle’s state at the next time step. The computed state is then published at
a user-defined rate using the SimulatedState message.

50 Shubham Garg: An NTNU Thesis Document Class

On the other hand, the NmpcCourse class is responsible for computing and
publishing the optimal rudder angle for a given set of initial conditions and is
called by the NMPC/Course Task. These initial conditions include the naviga-
tion state obtained from the EstimatedState message, environmental parameters
from sources like WaveProfile, AbsoluteWind and SingleCurrentCell, and the
desired course reference from the DesiredHeading message. As the online op-
timization process can be computationally expensive and the AutoNaut exhibits
slow dynamics, the optimization frequency is slower than the publish rate. This is
achieved by determining the optimal trajectory over the entire prediction horizon
in the NMPC controller, which is then utilized until a time period is determined
by the user. This approach balances computational resource utilization while en-
suring access to optimal rudder angles. The optimization frequency and publish
rate can be configured by the user through the Solver Rate and Publish Rate
parameters.

The system flowcharts for both tasks are depicted in Fig. 5.7, illustrating the
sequence of operations and data flow within each task.

Accept user configurable parameters using
con�gureDynamics()

Initialize dynamics class using
de�neDynamicsProblem()

Accept initial state and environmental
parameters to compute next state

using simulateDynamics()

Accept user configurable parameters using
con�gureSolver()

Initialize solver class using
de�neMpcProblem()

Update initial state of the OCP using
updateMpcState()

Update environmental parameters of the
OCP using updateMpcParams()

Update desired course angle of the OCP
using updateMpcReference()

Solve the OCP at given rate using
OptimizeMpcProblem()

Retrieve the optimal input at given rate
using getOptimalInput()

R
et

rie
ve

 e
rro

rs
 a

nd
 w

ar
ni

ng
s

at
 a

ny
 s

ta
ge

us
in

g
g

et
Er

ro
rS

tr
in

g
()

Figure 5.7: Flowchart of the class NmpcDynamics and NmpcCourse

Chapter 5: Implementation 51

5.3.2 Hardware Setup

The hardware design of the AutoNaut, which is discussed in [61], incorporates
the TS-7800-V2 embedded system board[62] as the primary computation unit for
the vehicle’s control system. However, due to limited access to the actual vehicle,
we implement our solution in a computationally comparable board, Raspberry Pi
4[63]. We simulate all the necessary systems on a single board. A depiction of the
hardware setup can be found in Figure 5.8.

Neptus Client DUNE Client

Vehicle Command and
Control

Vehicle Autonomy and
Dynamics

Raspberry Pi 4

Figure 5.8: Setup for HIL Simulation

Chapter 6

Results

This section contains the result of MIL and HIL simulations as described in Sec. 4
and Sec. 5.

6.1 Test Plan

We are going to present three sets of results from MIL simulation and one set of
results from HIL Simulation. In both cases, the simulation model is described by
the discrete-time nonlinear equation of motions as given by Eq. 3.9. The simula-
tion model integrates constant environmental forces of winds, waves, and currents
as well.

To ensure an accurate assessment of the controller’s performance, the sim-
ulation employs default parameters that represent a realistic scenario. Table 6.1
provides a comprehensive overview of all user-configurable parameters along with
their corresponding nominal values. The sensor noise parameters control the stand-
ard deviation of zero-mean Gaussian noise incorporated into the state vector. Ad-
ditionally, we introduce slack costs and constraints by setting S >> 0. It is import-
ant to note that the default configuration does not employ the slack formulation
as it is unnecessary when the vehicle is operating with speeds much greater than
zero. Throughout the subsequent results, unless stated otherwise, all experiments
utilize the default parameter values.

The simulation framework incorporates a reference model that generates a
consistent course angle over a specified duration. Once a predefined threshold
is reached, the angle is incrementally increased by a predetermined value. This
iterative process persists until the simulation concludes. This comprehensive ap-
proach allows for a thorough assessment of performance under various conditions
as the vehicle encounters both scenarios that are (1) where the propulsion force
act with the environmental disturbances and (2) where the propulsion force acts
against the environmental disturbances leading to very low speeds.

In this study, we analyze the performance of the system under three distinct
conditions: ideal, nominal, and adverse. Under ideal conditions, the system op-
erates without any modeling error, sensor noise, or external disturbances such as

53

54 Shubham Garg: An NTNU Thesis Document Class

Table 6.1: Default simulation parameters

S. No. Parameters
Default
Value

Description

Simulation Parameters

1 h 0.1 sec
Discretization time for simulation
dynamic model

2 Ns 3200 Simulation runtime (in ds)
3 x0 [0, 0.95, 0, 0, 0, 0] Initial state

4 controller ’mpc’
Choose controller type from ’open’,
’pid’ and ’mpc’

Environmental Parameters
5 currents.Vc 0.35 m/s Current speed
6 currents.beta 90 degs Current direction in NED
7 winds.Vw 5 m/s Absolute wind speed
8 winds.beta 90 degs Wind speed in NED
9 Hs 5 Wave strength

10 Tp 10 Peak wave time period
11 beta 90 degs Wave direction

Sensor Parameters (noise.)
12 mode 1 Flag to use noisy sensors
13 u 0.075 m/s Noise parameter for surge speed
14 v 0.075 m/s Noise parameter for sway speed
15 psi 1,5 degs Noise parameter for heading angle
16 r 0.05 deg/sec Noise parameter for heading rate
17 adcp.vel 0.075 m/s Noise parameter for current speed
18 adcp.angle 1,5 degs Noise parameter for current angle
19 wind.vel 1 m/s Noise parameter for wind speed
20 wind.angle 5 degs Noise parameter for wind angle

Reference Model
21 deltaT 80 sec Time to hold the desired course angle

22 deltaTh 90 degs
Incremented in desired angle at
each time deltaTh

23 chi0 -45 deg Initial desired course angle
24 Tchi 6 sec First order reference model time constant

MPC Controller
25 solver ’ipopt’ Choose solver from ’ipopt’ or ’acados’
26 model_type ’nonlinear’ Choose model from ’linear’ or ’nonlinear’

27 ref_type ’chi_d’
Choose objective function from
’chi_d’ or ’dotv’

28 model_dim 4 Choose model dim from 3 or 4
29 Ts 0.5 sec Discretization time for model dynamics
30 Tp 40 secs Prediction horizon for MPC controller
31 Q 1.5 Cost for stage deviation
32 R 7.5 Cost for input deviation
33 S 0 (N/A) Cost for slack variables

Post Processing Results

34 plots [1 2 3 4]
Choose data to plot. (1-heading,
2-full state, 3-path, 4-noisy states)

35 debug false Flag to plot results during runtime
36 save false Flag to save the results

Chapter 6: Results 55

currents and winds, which are assumed to be zero. Moving to nominal conditions,
we introduce median expected currents, winds, and zero-mean white noise in the
sensor, reflecting more realistic operating conditions. Finally, under adverse con-
ditions, the external disturbances surpass the wave propulsion force, resulting in
a significant reduction in the surge speed of the vehicle, often reaching near or
below zero.

The dynamic models given by Eq. 3.9, Eq. 3.22 and Eq. 3.25 are named nonlinear4
, nonlinear3 and linear4 respectively. The cost functions given by Eq. 3.38 and
Eq. 3.44 are named chi_d and dotv respectively.

6.2 Results from MIL Simulation

This section only depicts results relevant to the discussion in chapter 7. Additional
plots that may be of interest are given in the Appendix C.

6.2.1 Ideal Conditions

In an ideal scenario, we consider the vehicle to operate under conditions absent
of any disturbances, with a perfect observer. This implies the absence of currents,
winds, and any errors in the estimated state. The modified parameters for this con-
dition are given in Tbl. 6.2. The results of the simulation are depicted graphically
in fig. 6.1, 6.2, 6.3, 6.4 and 6.5.

Table 6.2: Modified parameters for ideal conditions

S. No. Parameter Default Value
1 mode 0
2 noise.currents.Vc 0
4 noise.winds.Vw 0
6 Q (chi_d) 10
7 R (chi_d) 1
8 Q (dotv) 0.5
9 R (dotv) 100

Figure 6.1: Summary of results in ideal conditions

56 Shubham Garg: An NTNU Thesis Document Class

-60 -40 -20 0 20 40 60 80

x (m)

-140

-120

-100

-80

-60

-40

-20

0

20

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(a) chi_d

-60 -40 -20 0 20 40 60 80

x (m)

-140

-120

-100

-80

-60

-40

-20

0

20

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.2: Vehicle path in ideal conditions

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350 400

Time (sec)

0

50

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) chi_d

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350 400

Time (sec)

0

50

A
n

g
le

 (
d

e
g

)

Craft Course Error

(b) dotv

Figure 6.3: Course angle in ideal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-40

-30

-20

-10

0

10

20

30

40

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.4: Input rudder angle in ideal conditions

Chapter 6: Results 57

0 50 100 150 200 250 300 350 400

Time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
T

im
e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0

0.5

1

1.5

2

2.5

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.5: Solver computation time in ideal conditions

6.2.2 Nominal Conditions with Noisy Observer

In nominal conditions, we consider the vehicle to operate in an environment with
constant median expected currents and winds with noisy sensors. The noisy state
is constructed by adding Gaussian errors with zero mean and variance as given
in Tbl. 6.1. The modified parameters for this condition are given in Tbl. 6.3. The
results of the simulation are depicted graphically in fig. 6.6, 6.7, 6.8, 6.9, 6.10,
6.11 and 6.12.

Table 6.3: Modified parameters for nominal conditions

S. No. Parameter Default Value
6 Q (chi_d) 0.5
7 R (chi_d) 7.5
8 Q (dotv) 50
9 R (dotv) 7.5

Figure 6.6: Summary of results in nominal conditions

58 Shubham Garg: An NTNU Thesis Document Class

-100 -80 -60 -40 -20 0 20 40 60

x (m)

-100

-80

-60

-40

-20

0

20

40

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(a) chi_d

-100 -80 -60 -40 -20 0 20 40 60

x (m)

-100

-80

-60

-40

-20

0

20

40

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.7: Path in nominal conditions

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350 400

Time (sec)

0

50

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) chi_d

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350 400

Time (sec)

0

50

A
n

g
le

 (
d

e
g

)

Craft Course Error

(b) dotv

Figure 6.8: Course angle in nominal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-35

-30

-25

-20

-15

-10

-5

0

5

10

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-40

-30

-20

-10

0

10

20

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.9: Input rudder angle in nominal conditions

Chapter 6: Results 59

0 50 100 150 200 250 300 350 400

Time (sec)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.10: Solver computation time in nominal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A
n
g
le

 (
d
e
g
)

Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A
n
g
le

 (
d
e
g
)

Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.11: Speed Over Ground in nominal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-30

-20

-10

0

10

20

30

40

50

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-30

-20

-10

0

10

20

30

40

50

60

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.12: Sideslip angle in nominal conditions

60 Shubham Garg: An NTNU Thesis Document Class

6.2.3 Adverse Conditions with Relaxed Constraints

In adverse conditions, we consider the vehicle to operate in an environment with
extreme currents and winds and with noisy sensors. Due to high disturbances,
solving for an optimal course becomes difficult leading to increased solver time.
To combat this, we restricted the solver rate to 2Hz. The rest of the modified para-
meters are given in Tbl. 6.4. For adverse conditions, it is useful to study the graph
of SOG and crab angle (βc) as well. The results of the simulation are depicted
graphically in fig. 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19.

Table 6.4: Modified parameters for adverse conditions

S. No. Parameter Default Value
1 noise.currents.Vc 0.95 m/s
2 noise.winds.Vw 5 m/s
3 Ts 0.8
4 Q (chi_d) 4.75
5 R (chi_d) 7.5
6 S (dotv) 800
7 Q (dotv) 1.75
8 R (dotv) 7.5
9 S (dotv) 800

Figure 6.13: Summary of results in adverse conditions

Chapter 6: Results 61

-80 -60 -40 -20 0 20 40 60 80

x (m)

0

20

40

60

80

100

120

140

160

180

200

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(a) chi_d

-80 -60 -40 -20 0 20 40 60

x (m)

0

20

40

60

80

100

120

140

160

180

200

y
 (

m
)

Craft Path

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.14: Path in adverse conditions

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350

Time (sec)

0

100

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) chi_d

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

nonlinear3

linear4

0 50 100 150 200 250 300 350

Time (sec)

0

100

A
n

g
le

 (
d

e
g

)

Craft Course Error

(b) dotv

Figure 6.15: Course angle in adverse conditions

0 50 100 150 200 250 300 350

Time (sec)

-40

-30

-20

-10

0

10

20

30

40

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

-40

-30

-20

-10

0

10

20

30

40

A
n
g
le

 (
d
e
g
)

Craft Rudder Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.16: Input rudder angle in adverse conditions

62 Shubham Garg: An NTNU Thesis Document Class

0 50 100 150 200 250 300 350

Time (sec)

0

1

2

3

4

5

6

7

8

9
T

im
e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

0

1

2

3

4

5

6

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.17: Solver computation time in adverse conditions

0 50 100 150 200 250 300 350

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
n
g
le

 (
d
e
g
)

Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
n
g
le

 (
d
e
g
)

Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.18: Speed Over Ground in adverse conditions

0 50 100 150 200 250 300 350

Time (sec)

-100

-80

-60

-40

-20

0

20

40

60

80

100

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

-100

-80

-60

-40

-20

0

20

40

60

80

100

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure 6.19: Crab angle in adverse conditions

Chapter 6: Results 63

6.3 Results from HIL Simulation

In our HIL simulations, we focused on simulating nominal conditions and eval-
uating the performance of on selected promising solvers. Unfortunately, we did
not have sufficient time to conduct a comprehensive analysis of adverse condi-
tions. Therefore, our results and findings primarily reflect the performance under
expected operating conditions.

6.3.1 Nominal Conditions with Noisy Observer

For this simulation, we use the same parameters as described in tbl. 6.1 to plot per-
formance of the course keeping controller using three solvers that are – nonlinear4
with chi_d , nonlinear4 with dotv and linear4 with dotv .

The solver computation time is plotted as a histogram where the Solver Rate
is set to 2Hz as before. The solver time for the results shown in fig. 6.20, 6.21,
and 6.22 remains below the threshold for 99.9430%, 98.7365%, and 100% of the
time, respectively.

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

0 500 1000 1500 2000 2500

Time (sec)

0

100

200

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) Craft Course Angle

0.1 0.2 0.3 0.4 0.5 0.6

Time (sec)

0

100

200

300

400

500

600

700

800

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

(b) Solver Computation Time

Figure 6.20: nonlinear4 with chi_d

64 Shubham Garg: An NTNU Thesis Document Class

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

nonlinear4

0 500 1000 1500 2000 2500

Time (sec)

0

50

100

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) Craft Course Angle

0 0.5 1 1.5 2 2.5 3

Time (sec)

0

100

200

300

400

500

600

T
im

e
 (

s
e
c
)

Solver Computation Time

nonlinear4

(b) Solver Computation Time

Figure 6.21: nonlinear4 with dotv

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Course Angle

desired course

linear4

0 500 1000 1500 2000 2500

Time (sec)

0

50

100

A
n

g
le

 (
d

e
g

)

Craft Course Error

(a) Craft Course Angle

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Time (sec)

0

100

200

300

400

500

600

T
im

e
 (

s
e
c
)

Solver Computation Time

linear4

(b) Solver Computation Time

Figure 6.22: linear4 with dotv

Chapter 7

Discussions

In this section, we interpret and describe the significance of the results obtained
in Sec. 6.

7.1 MIL Simulation

MIL simulations provide a rapid and efficient means of evaluating the feasibility of
a controller within a realistic yet controlled environment. MIL simulation allows
us to recreate and analyze controller performance in near-critical scenarios which
is crucial in evaluating the controller’s performance and robustness. To assess our
desired behavior, the key aspects we focused on were

1. Low oscillations in course and rudder: Reducing excessive back-and-forth
movements or instability in the course and rudder yields a smoother tra-
jectory and more stable behavior.

2. Low RMSE: Minimizing the overall deviation between the desired and actual
values results in more accurate system performance.

3. Low rudder effort: Minimizing the required effort to achieve the desired
course angle maximizes vehicle endurance.

4. Fast settling time and low overshoot: A faster response time without over-
shooting or excessive corrections improves path-following behavior.

5. Low solver time: Reducing the time taken by the solver to converge to the
optimal solution improves the real-time performance of the system. We set
the solver frequency threshold at 2Hz which restricts us to a maximum solve
time of 0.5 seconds.

6. High solver success rate: A high success rate of the solver ensures robust
performance and consistently accurate and reliable solutions within the de-
sired constraints.

65

66 Shubham Garg: An NTNU Thesis Document Class

7.1.1 Ideal Conditions

We focus on examining potential modeling errors, performing basic validation
tests of the controller, and addressing implementation issues such as angle wrap
and numerical stability. This discussion corresponds to the plots depicted in figs.
6.1, 6.3, 6.4 and 6.5.

The path traveled by the vehicle is depicted in fig. 6.2 where we see the effect
of the proposed reference model. At each fixed interval, the bearing is constant res-
ulting in straight-line paths. At the end of the simulation, the vehicle approaches
the region of origin.

Course keeping with chi_d

In fig. 6.3a, we observe that the deviation in course angle is comparable across
the three models – nonlinear4 , nonlinear3 and linear4 , indicating similar per-
formance. All models achieve zero steady-state error, validating the proposed con-
trollers. As nonlinear4 model has the highest fidelity among the three, it exhibits
the shortest settling time and virtually no overshoot, while linear4 and nonlinear3
models exhibit comparable overshoot. All three models successfully identify the
shortest path when the course changes from -135 degrees to 135 degrees. Further-
more, the absence of disturbances results in similar course-keeping behavior for
all four reference angles. We note that the reference model neglects the vehicle’s
dynamics, leading to an initially infeasible course and a significant error in the
course angle which rapidly reduces to zero.

In fig. 6.4a, we observe a large initial input rudder angle which is physically
unrealistic. However, once the initial phase concludes, a smooth trajectory is ob-
served, albeit with increasing overshoot as the model fidelity decreases. Outliers
are observed in rudder input for all plots except nonlinear3 after T > 200 which
corresponds to the discontinuity in the heading. All models eventually settle to a
constant rudder angle without any oscillations, indicating a stable and consistent
behavior.

In fig. 6.5a, we see that the maximum solve time for all models is less than
0.32 seconds, while the mean solve time is less than 0.046 seconds. These results
are promising for the proposed online implementation. From t > 200 secs, we
notice that the outliers correspond to irregular rudder angles, which both linear
and nonlinear models struggle with. The effects of warm start can be observed
as well as the computation time increases during significant angle changes but
rapidly decreases to around 0.01 seconds otherwise.

As anticipated, the nonlinear models exhibit higher computation times com-
pared to the linear models but with only marginal improvement in performance.
Therefore, further investigation into the impact of disturbances is necessary to
enhance our understanding of the different controller’s performance.

Chapter 7: Discussions 67

Course keeping with dotv

Compared to the objective function chi_d , several observations can be made in
the fig. 6.3b. There is a marginal decrease in course-keeping performance across
all models with a greater settling time compared to the chi_d cost function. How-
ever, aside from these differences, the objective function displays similar behavior
as its counterpart.

As seen previously, all models exhibit large initial changes in the rudder with
small overshoots for models with lower fidelity (nonlinear3 and linear4). How-
ever, unlike its counterpart, the rudder does not take outliers indicating a more
robust performance. It is worth noting that the solver still exhibits a higher solver
time at t > 200 i.e. when facing the discontinuity in the heading. The high max-
imum time of the dotv solver could potentially pose challenges during practice.
However, leveraging the sub-optimal solution in such cases may prove beneficial.
Despite the exceptionally high maximum solver time, the mean solver time re-
mains below 0.025 seconds, indicating overall efficient performance.

All proposed solvers exhibit comparable RMSE values. Although the error is
lowest for the nonlinear4 model with the chi_d cost function, the difference is
not necessarily significant. It is worth mentioning that both cost functions have
outliers in solver time; however, these outliers remain within acceptable limits. For
3DOFs models, the presence of outliers could be attributed to numerical instability
caused by the arctan function in Eq. 3.16, as the solver aims to converge optimally
in a specific direction. In the case of 2DOFs models, the omission of surge dynam-
ics might contribute to the outliers. Since surge dynamics are predicted and may
not accurately reflect reality, conducting field trials becomes crucial to validate
this approach thoroughly.

7.1.2 Nominal Conditions with Noisy Sensors

The primary objective of this test is to evaluate the controller’s performance under
realistic conditions by subjecting the controller to noise and disturbances. This
discussion corresponds to the plots depicted in figs. 6.6, 6.7, 6.8, 6.9, 6.10 and
6.11.

In fig. 6.7, we immediately see significant drift compared to the path in fig.
6.2b. The success of the model is measured by a constant straight-line motion
during the fixed time interval. Since we only observe drift and oscillations while
turning, the steady-state course-keeping behavior is effective.

Course keeping with chi_d

For fig. 6.8a, it is immediately apparent that all the models exhibit larger overshoot
and settling time due to the action of disturbances. However, the controller quickly
converges to a steady state with a significant quasi-constant error (at χd = 45 and
χd = 135) in the course angle. Tests indicate that the steady-state error can be

68 Shubham Garg: An NTNU Thesis Document Class

reduced by increasing the prediction horizon of the controller or by increasing the
cost on the rudder, albeit at the expense of rudder oscillations.

In the rudder plot (fig. 6.9a), we observe that large initial jumps occur with
significant angle changes, which is expected but may not be realistic. The intro-
duction of noise leads to high oscillations, although the trends in rudder angle
displacement remain slowly varying. During steady state, the rudder angle has
a variance of ±5 degrees. Notably, the nonlinear3 model performs poorly for
χd = 135 degrees. Further investigation is required to ensure that these numer-
ical instabilities do not cause issues in deployment.

In fig. 6.10a, outliers are observed at t > 200 in time but not in the rudder
angle (nonlinear4 and linear4). The mean solver time is higher than the ideal
scenario but remains under the threshold, suggesting that warm start, even with
noise, is beneficial.

Course keeping with dotv

As with chi_d , we observe a significant steady state error in fig. 6.8b which can
be improved with higher costs in state deviation or a longer prediction horizon.
The values chosen here can be attributed to the trade-off between minimizing
the error in course and the associated oscillations in rudder motion. Interestingly,
this cost function demonstrates slightly faster convergence for all three models
compared to chi_d .

Moving to fig. 6.9b, a wider range of rudder angle values are observed, in-
dicating greater variability. In terms of oscillations in steady state, dotv exhibits
slightly higher level of oscillations compared to chi_d .

In the time plot in fig. 6.10b, there is a consistent trend of higher solve time
across all models for dotv . However, these solve times remain under the defined
threshold except for a few outliers. It is worth mentioning that these outliers are
again observed at t > 200. Additionally, it is observed that the solve time increases
as the model fidelity increases.

Overall, the dotv cost function for linear4 and nonlinear3 models has the
best performance, as shown in fig. 6.6. Computation time for chi_d with linear4
model is the lowest with linear4 dotv close second. All proposed solvers are
robust under limits and withstand noise and disturbances. Mean solver time re-
mains under the threshold implying that online implementation under normal
circumstances is feasible. While there are areas that require further investigation
and improvements, the course-keeping performance is generally satisfactory and
aligns with expectations.

7.1.3 Adverse Conditions with Soft Constraints

The primary objective of this test is to evaluate the controller’s performance as the
vessel’s SOG approaches zero. This discussion corresponds to the plots depicted
in figs. 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19.

Chapter 7: Discussions 69

The path plots in fig. 6.14 are quite telling as we can clearly see large oscilla-
tions in path for chi_d with nonlinear4 and linear4 models. dotv on the other
hand produces paths with large offset but stable straight lines. We also observe
that when the vehicle travels with the currents, larger SOG results in longer dis-
tances traveled by the vehicle and vice versa.

Course keeping with chi_d

The results of the analysis appear challenging to interpret, primarily due to two
reasons (1) fluctuations in the heading angle result in corresponding fluctuations
in the course angle, and (2) as the surge goes below zero, there is a "switch" in
the course angle due to the negative value of the arctan function. Both of these
factors are undesirable as they prevent the achievement of a stable course and
may subject the vehicle to increased physical strain, particularly under adverse
conditions. This issue affects both the nonlinear4 and linear4 models. On the
other hand, the nonlinear3 model manages to maintain a stable course. However,
due to the poor accuracy of the speed prediction model at lower speeds, it is
difficult to conclusively determine whether nonlinear3 is a suitable choice.

Another significant finding is the presence of increased oscillations and a large
steady-state error, leading to potential angle wrap issues as shown in the fig. 6.15a.
Furthermore, the solver success rate for nonlinear4 is approximately 69%, which
raises concerns about the robustness of the controller. It is likely that the fail-
ure of the solver is due to the arctan function becoming undefined as the surge
approaches zero. Despite this, the solver’s failure is indicated by the message
Maximum_Iterations_Exceeded, suggesting that further iterations may improve
the convergence of the solver.

In fig. 6.15a, there are prominent and unstable oscillations in the rudder when
the vehicle moves against the disturbances, which adversely affects the stability
of the vehicle. However, as the vehicle moves alongside the currents, the perform-
ance gradually improves. The large oscillations indicate that the solver employed
may not be suitable for this particular scenario.

Among the models examined, the nonlinear3 model demonstrates particu-
larly promising results. However, it should be acknowledged that the accuracy of
the prediction model may pose limitations on the real-world applicability of the
observed performance. Therefore, further assessment and validation are necessary
to ascertain whether similar performance can be achieved in practical situations.

In fig. 6.17a, we see that when the motion is against the currents, the time
to solve for the nonlinear4 model exceeds the set threshold. This indicates that
online implementation may not be feasible in this particular scenario using the
nonlinear4 model. In contrast, both the linear4 and nonlinear3 models demon-
strate performance within the desired limits, suggesting their suitability for online
implementation.

70 Shubham Garg: An NTNU Thesis Document Class

Course keeping with dotv

The dotv cost function produces a stable course but with a large steady-state error.
Oscillations are seen in the course but the heading remains smooth, indicating that
while the surge drops below zero, the vehicle does not experience strong changes
in motion. The large steady state error further indicates that the controller is able
to operate at the boundary of the inadmissible zone as the disturbances increase.

In fig. 6.16b, oscillations increase compared to the fig. 6.9b and are much less
pronounced than its counterpart. Further, nonlinear models perform much bet-
ter than linear models validating that the disturbances increase the nonlinearity
present in the dynamics making the use of NMPC controller more relevant.

The solver time for nonlinear4 model exceeds the threshold at various in-
stants, however, the mean solver time remains under the threshold. The perform-
ance can further be improved by increasing the discretization period (Ts), limiting
the solver rate and/or using suboptimal NMPC when necessary. From fig. 6.13, we
note that RMSE of dotv is higher than chi_d however, the former is still preferable
to the latter because of high course and rudder oscillations, low solver success rate
and high solver time of chi_d objective function.

The dotv cost function, implemented with both the nonlinear4 and linear4mod-
els, emerges as our preferred choice. It consistently demonstrates strong perform-
ance in both nominal and adverse operating conditions. The linear model is al-
ways able to converge to the solution within the acceptable threshold whereas
the maximum time taken by the nonlinear model only occasionally exceeds the
limit. Despite this difference, the comparable RMSE performance suggests that
the use of nonlinear dynamics is primarily necessary for handling adverse condi-
tions, simplifying the problem during nominal operating conditions. Additionally,
the solver displays robustness, with a success rate exceeding 99%.

Chapter 7: Discussions 71

7.2 HIL Simulation

The use of HIL simulations presents an opportunity to evaluate the proposed con-
troller by integrating it into the existing software stack onboard the vehicle. Our
objective is to (1) test the interoperability of the controller with the existing soft-
ware system; (2) evaluate the real-time performance of the controller; and (3)
analyze the course-keeping performance of the controller on an embedded plat-
form. This discussion corresponds to the plots depicted in figs. 6.20, 6.21 and
6.22.

7.2.1 Nominal Conditions with Noisy Sensors

The integration of the controller with the DUNE and Neptus systems has been suc-
cessfully achieved, allowing for seamless communication and control. In the real-
time implementation, the controller demonstrates stable performance, converging
to the desired course references. The presence of oscillations in the course can be
attributed to sensor noise, which affects the accuracy of the controller’s response.
While some steady-state error is observed, it is consistent with the results obtained
from MIL simulations. In cases where outliers occur, the use of sub-optimal or pre-
viously optimal trajectories was considered. It is anticipated that performance can
be further enhanced through fine-tuning of the controller’s parameters.

72 Shubham Garg: An NTNU Thesis Document Class

The central question of this research was to design and develop a course con-
troller that is robust to noise, disturbances, and singularities. This is required as a
PID-based controller such as the one explored in [9] and [17] often fail to generate
a stable and controlled behavior as the SOG approaches zero. The NMPC control-
ler, on the other hand, is able to optimize the system behavior and find the course
angle that minimizes deviation from the desired course while still generating a
stable course over ground, as evident in Fig. 6.15b.

The findings and conclusions of this study contribute to the broader under-
standing of the research problem and highlight the importance of the controller’s
performance in real-world scenarios. The obtained results demonstrate the robust-
ness of the controller to both noise and disturbances, which is crucial for practical
implementation. By successfully avoiding regions of singularities and optimizing
the stability of the course angle being followed, the controller proves its effective-
ness in challenging conditions. Although there may be a larger steady-state error,
the risk of losing controllability is low, ensuring safe operation. Furthermore, the
controller exhibits better performance than pid under nominal disturbances and
maintains stability even under adverse conditions. Despite the higher computa-
tional cost associated with the IPOPT solver, its robustness proves to be advant-
ageous. As the solver performs well within our benchmark, these findings provide
a basis for proceeding with field trials to validate the controller’s performance in
real-world environments.

Nevertheless, it is important to take the findings of this study in context. Dur-
ing the development process, we noticed that tuning is very important as poor
tuning can not only result in poor performance but also lead to numerical in-
stability. Further, even with good tuning, establishing an upper limit is important
as edge cases may lead to unexpected output. The different solvers shown in the
results have different levels of success under different conditions. For example,
the nonlinear3 model with dotv cost function performs the best in adverse con-
ditions but has the worst RMSE under nominal conditions. This indicates that
choosing the best solver across all conditions might not be straightforward.

The guidance model explored in this study is a course-keeping behavior where
we evaluated the controller’s rise time and overshoot to assess its performance.
However, in field trials, we expect to deploy the vehicle with a way-point refer-
ence model. While a good better course-keeping behavior should translate to good
course-following behavior, it should be kept in mind that tuning parameters might
differ.

The HIL implementation of the controller sufficiently proves the feasibility
of the online NMPC algorithm in nominal conditions however, it is beneficial to
continue to explore alternatives that may yield faster solver time than IPOPT.
Hence, successful implementation of SQP-based solver is desirable, along with
real-world field trials.

Chapter 7: Discussions 73

7.3 Future Work

By analyzing the nominal course plot in fig. 6.8, we observe a consistent steady-
state error. To address this issue, we identified two potential solutions: (1) increas-
ing the cost on the state and (2) extending the time prediction horizon. However,
both approaches have their drawbacks, as the former results in increased rudder
oscillations and the latter leads to longer solver computation times. An alternative
and more elegant approach to mitigate this error might be to introduce integral
action within the NMPC framework, as discussed in [64]. By incorporating integ-
ral action, we aim to minimize rudder oscillations while improving the overall
performance of the controller.

The surge dynamics of the vehicle utilized in this study rely on a prediction
model trained using a large dataset obtained at sea. While this approach enables
the emulation of dynamics, its accuracy is limited, particularly when extrapolating
beyond the range of the available data. Various factors, such as limited training
data at the extremes and local geographical variations, contribute to this limita-
tion. To enhance the controller’s performance in this context, we propose employ-
ing an extremum-seeking guidance model that aims to minimize the steady-state
error by identifying the boundary of the admissible zone closest to the desired
course angle. Additionally, integrating Nonlinear Model Horizon Estimation al-
gorithms into the system can facilitate online estimation of the noise in the speed
model, further improving the controller’s performance in scenarios involving un-
certain or unknown surge dynamics.

These enhancements have the potential to enhance the robustness and accur-
acy of the controller in real-world operating conditions and are form topics of
further research.

Chapter 8

Conclusion

In this project, we successfully designed and implemented a Nonlinear Model Pre-
dictive Control based course controller for the AutoNaut vehicle. Throughout the
work, we developed three models with varying levels of fidelity and incorporated
two different cost functions to achieve our objective.

The controllers were tested under different conditions categorized as ideal,
nominal, and adverse scenarios. Under ideal conditions, all three models demon-
strated excellent performance, closely following the reference path with zero steady-
state error. The introduction of noise and disturbances in the nominal conditions
allowed us to evaluate the expected performance of the controller and test its ro-
bustness in a realistic setting. The results also highlighted the shortcomings of the
developed controller and pointed us toward potential research directions aimed
at enhancing performance. Finally, during adverse conditions characterized by
very low SOG, the controllers exhibited pronounced oscillations and higher solver
time. Among the two proposed cost functions, it was evident that dotv yielded
trajectories with fewer oscillations and a more stable course. While all controllers
demonstrated effectiveness in minimizing errors in the course angle, we identi-
fied two controllers that show promising potential for online implementation and
resilience.

Moving to hardware implementation, we encountered challenges in achieving
successful online implementation using the SQP-based solver software acados.
Our analysis highlighted potential errors in the implementation process, which
were thoroughly examined and discussed. As an alternative, we chose the more
robust but computationally expensive solver IPOPT. Our testing showed that the
solver produced trajectories on an embedded platform for nominal operating con-
ditions under acceptable time. While the work was sufficiently validated through
MIL and HIL simulations, further validation through in-water tests remains.

75

Bibliography

[1] R. Costanza, ‘The ecological, economic, and social importance of the oceans,’
Ecological Economics, vol. 31, pp. 199–213, 2 Nov. 1999, ISSN: 0921-8009.
DOI: 10.1016/S0921-8009(99)00079-8.

[2] ‘Geostationary satellite-based observations for ocean applications,’ Current
Science, vol. 117, pp. 506–515, 3 Aug. 2019, ISSN: 00113891. DOI: 10.
18520/CS/V117/I3/506-515.

[3] ‘Integrating autonomous underwater vessels, surface vessels and aircraft
as persistent surveillance components of ocean observing studies,’ 2012
IEEE/OES Autonomous Underwater Vehicles, AUV 2012, 2012. DOI: 10.1109/
AUV.2012.6380734.

[4] ‘Ship-based contributions to global ocean, weather, and climate observing
systems,’ Frontiers in Marine Science, vol. 6, p. 434, JUL Aug. 2019, ISSN:
22967745. DOI: 10.3389/FMARS.2019.00434/BIBTEX.

[5] ‘Challenges and future trends in marine robotics,’ Annual Reviews in Con-
trol, vol. 46, pp. 350–368, 2018, ISSN: 1367-5788. DOI: https://doi.
org/10.1016/j.arcontrol.2018.10.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1367578818300038.

[6] L. Camus, H. Andrade, A. S. Aniceto, M. Aune, K. Bandara, S. L. Basedow,
K. H. Christensen, J. Cook, M. Daase, K. Dunlop, S. Falk-Petersen, P. Fiet-
zek, G. Fonnes, P. Ghaffari, G. Gramvik, I. Graves, D. Hayes, T. Langeland,
H. Lura, T. Kristiansen, O. A. Nøst, D. Peddie, J. Pederick, G. Pedersen, A. K.
Sperrevik, K. Sørensen, L. Tassara, S. Tjøstheim, V. Tverberg and S. Dahle,
‘Autonomous surface and underwater vehicles as effective ecosystem mon-
itoring and research platforms in the arctic—the glider project,’ Sensors,
vol. 21, no. 20, 2021, ISSN: 1424-8220. DOI: 10.3390/s21206752. [On-
line]. Available: https://www.mdpi.com/1424-8220/21/20/6752.

[7] P. Johnston and M. Poole, ‘Marine surveillance capabilities of the autonaut
wave-propelled unmanned surface vessel (usv),’ in OCEANS 2017 - Aber-
deen, 2017, pp. 1–46. DOI: 10.1109/OCEANSE.2017.8084782.

[8] A. Dallolio, B. Agdal, A. Zolich, J. A. Alfredsen and T. A. Johansen, ‘Long-
endurance green energy autonomous surface vehicle control architecture,’
2019. DOI: 10.23919/OCEANS40490.2019.8962768.

77

https://doi.org/10.1016/S0921-8009(99)00079-8
https://doi.org/10.18520/CS/V117/I3/506-515
https://doi.org/10.18520/CS/V117/I3/506-515
https://doi.org/10.1109/AUV.2012.6380734
https://doi.org/10.1109/AUV.2012.6380734
https://doi.org/10.3389/FMARS.2019.00434/BIBTEX
https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.002
https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.002
https://www.sciencedirect.com/science/article/pii/S1367578818300038
https://www.sciencedirect.com/science/article/pii/S1367578818300038
https://doi.org/10.3390/s21206752
https://www.mdpi.com/1424-8220/21/20/6752
https://doi.org/10.1109/OCEANSE.2017.8084782
https://doi.org/10.23919/OCEANS40490.2019.8962768

78 Shubham Garg: An NTNU Thesis Document Class

[9] A. Dallolio, H. Øveraas, J. A. Alfredsen, T. Fossen and T. Johansen, ‘Design
and validation of a course control system for a wave-propelled unmanned
surface vehicle,’ Field Robotics, vol. 2, pp. 748–773, Mar. 2022. DOI: 10.
55417/fr.2022025.

[10] J. Rawlings, ‘Tutorial: Model predictive control technology,’ in Proceedings
of the 1999 American Control Conference (Cat. No. 99CH36251), vol. 1,
1999, 662–676 vol.1. DOI: 10.1109/ACC.1999.782911.

[11] M. Fink, Implementation of linear model predictive control – tutorial, 2021.
DOI: 10.48550/ARXIV.2109.11986. [Online]. Available: https://arxiv.
org/abs/2109.11986.

[12] A. () Bemporad and M. Morari, ‘Robust model predictive control: A survey,’
Robustness in identification and control, pp. 207–226, Oct. 1999. DOI: 10.
1007/BFB0109870. [Online]. Available: https://link.springer.com/
chapter/10.1007/BFb0109870.

[13] M. Morari and J. H. Lee, ‘Model predictive control: Past, present and future,’
Computers Chemical Engineering, vol. 23, pp. 667–682, 4-5 May 1999,
ISSN: 0098-1354. DOI: 10.1016/S0098-1354(98)00301-9.

[14] L. Grüne and J. Pannek, ‘Nonlinear model predictive control,’ 2011. DOI:
10.1007/978-0-85729-501-9. [Online]. Available: http://link.springer.
com/10.1007/978-0-85729-501-9.

[15] T. A. Johansen, ‘Chapter 1 introduction to nonlinear model predictive con-
trol and moving horizon estimation,’ 2011.

[16] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, ‘CasADi
– A software framework for nonlinear optimization and optimal control,’
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
DOI: 10.1007/s12532-018-0139-4.

[17] A. Dallolio, H. Øveraas and T. Johansen, ‘Gain-scheduled steering con-
trol for a wave-propelled unmanned surface vehicle,’ Ocean Engineering,
vol. 257, p. 111 618, Aug. 2022. DOI: 10.1016/j.oceaneng.2022.111618.

[18] ‘Master Mariner - AutoNaut’s wave-propelled USV,’ U. S. Technology, Mar.
2017.

[19] E. Bøckmann and S. Steen, ‘Experiments with actively pitch-controlled and
spring-loaded oscillating foils,’ Applied Ocean Research, vol. 48, pp. 227–
235, 2014, ISSN: 0141-1187. DOI: https://doi.org/10.1016/j.apor.
2014.09.004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0141118714000923.

[20] D. J. Leith and W. E. Leithead, ‘Survey of gain-scheduling analysis and
design,’ International Journal of Control, vol. 73, no. 11, pp. 1001–1025,
2000. DOI: 10.1080/002071700411304. eprint: https://doi.org/10.
1080/002071700411304. [Online]. Available: https://doi.org/10.1080/
002071700411304.

https://doi.org/10.55417/fr.2022025
https://doi.org/10.55417/fr.2022025
https://doi.org/10.1109/ACC.1999.782911
https://doi.org/10.48550/ARXIV.2109.11986
https://arxiv.org/abs/2109.11986
https://arxiv.org/abs/2109.11986
https://doi.org/10.1007/BFB0109870
https://doi.org/10.1007/BFB0109870
https://link.springer.com/chapter/10.1007/BFb0109870
https://link.springer.com/chapter/10.1007/BFb0109870
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1007/978-0-85729-501-9
http://link.springer.com/10.1007/978-0-85729-501-9
http://link.springer.com/10.1007/978-0-85729-501-9
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1016/j.oceaneng.2022.111618
https://doi.org/https://doi.org/10.1016/j.apor.2014.09.004
https://doi.org/https://doi.org/10.1016/j.apor.2014.09.004
https://www.sciencedirect.com/science/article/pii/S0141118714000923
https://www.sciencedirect.com/science/article/pii/S0141118714000923
https://doi.org/10.1080/002071700411304
https://doi.org/10.1080/002071700411304
https://doi.org/10.1080/002071700411304
https://doi.org/10.1080/002071700411304
https://doi.org/10.1080/002071700411304

Bibliography 79

[21] P. Ngo, J. Das, J. Ogle, J. Thomas, W. Anderson and R. Smith, ‘Predicting the
speed of a wave glider autonomous surface vehicle from wave model data,’
IEEE International Conference on Intelligent Robots and Systems, pp. 2250–
2256, Oct. 2014. DOI: 10.1109/IROS.2014.6942866.

[22] R. Smith, J. Das, G. Hine, W. Anderson and G. Sukhatme, ‘Predicting wave
glider speed from environmental measurements,’ Sep. 2011. DOI: 10.23919/
OCEANS.2011.6106989.

[23] P. Ngo, W. Al-Sabban, J. Thomas, W. Anderson, J. Das and R. Smith, ‘An
analysis of regression models for predicting the speed of a wave glider
autonomous surface vehicle,’ Australasian Conference on Robotics and Auto-
mation, ACRA, Jan. 2013.

[24] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control.
2021. DOI: 10.1002/9781119575016.

[25] H. Øveraas, A. Heggernes, A. Dallolio, T. H. Bryne and T. Arne Johansen,
‘Predicting the speed of a wave-propelled autonomous surface vehicle using
metocean forecasts,’ in OCEANS 2022 - Chennai, 2022, pp. 1–6. DOI: 10.
1109/OCEANSChennai45887.2022.9775485.

[26] C. E. Rohrs, J. L. Melsa and D. G. Schultz, Linear Control Systems. 1993.

[27] M. G. Forbes, R. S. Patwardhan, H. Hamadah and R. B. Gopaluni, ‘Model
predictive control in industry: Challenges and opportunities,’ IFAC-PapersOnLine,
vol. 48, no. 8, pp. 531–538, 2015, 9th IFAC Symposium on Advanced Con-
trol of Chemical Processes ADCHEM 2015, ISSN: 2405-8963. DOI: https:
//doi.org/10.1016/j.ifacol.2015.09.022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896315011039.

[28] M. Arnold and G. Andersson, ‘Model predictive control of energy storage
including uncertain forecasts,’ Jan. 2011.

[29] N. Scianca, D. D. Simone, L. Lanari and G. Oriolo, ‘MPC for humanoid gait
generation: Stability and feasibility,’ IEEE Transactions on Robotics, vol. 36,
no. 4, pp. 1171–1188, Aug. 2020. DOI: 10.1109/tro.2019.2958483. [On-
line]. Available: https://doi.org/10.1109%5C%2Ftro.2019.2958483.

[30] P. Ru and K. Subbarao, ‘Nonlinear model predictive control for unmanned
aerial vehicles,’ Aerospace, vol. 4, p. 31, Jun. 2017. DOI: 10.3390/aerospace4020031.

[31] G. Sanchez, M. Murillo, L. Genzelis, N. Deniz and L. Giovanini, ‘Mpc for
nonlinear systems: A comparative review of discretization methods,’ Sep.
2017, pp. 1–6. DOI: 10.23919/RPIC.2017.8214333.

[32] A. Rao, ‘A survey of numerical methods for optimal control,’ Advances in
the Astronautical Sciences, vol. 135, Jan. 2010.

https://doi.org/10.1109/IROS.2014.6942866
https://doi.org/10.23919/OCEANS.2011.6106989
https://doi.org/10.23919/OCEANS.2011.6106989
https://doi.org/10.1002/9781119575016
https://doi.org/10.1109/OCEANSChennai45887.2022.9775485
https://doi.org/10.1109/OCEANSChennai45887.2022.9775485
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.022
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.022
https://www.sciencedirect.com/science/article/pii/S2405896315011039
https://www.sciencedirect.com/science/article/pii/S2405896315011039
https://doi.org/10.1109/tro.2019.2958483
https://doi.org/10.1109%5C%2Ftro.2019.2958483
https://doi.org/10.3390/aerospace4020031
https://doi.org/10.23919/RPIC.2017.8214333

80 Shubham Garg: An NTNU Thesis Document Class

[33] H. Bock and K. Plitt, ‘A multiple shooting algorithm for direct solution
of optimal control problems*,’ IFAC Proceedings Volumes, vol. 17, no. 2,
pp. 1603–1608, 1984, 9th IFAC World Congress: A Bridge Between Control
Science and Technology, Budapest, Hungary, 2-6 July 1984, ISSN: 1474-
6670. DOI: https://doi.org/10.1016/S1474-6670(17)61205-9. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/S1474667017612059.

[34] F. Clarke, ‘Necessary conditions in optimal control and in the calculus of
variations,’ 2007.

[35] M. Athans and P. Falb, Optimal Control: An Introduction to the Theory and
Its Applications (Dover Books on Engineering). Dover Publications, 2007,
ISBN: 9780486453286. [Online]. Available: https://books.google.no/
books?id=XJJDTSZ2HEEC.

[36] J. H. Lee, ‘Model predictive control and dynamic programming,’ in 2011
11th International Conference on Control, Automation and Systems, 2011,
pp. 1807–1809.

[37] D. Mayne, J. Rawlings, C. Rao and P. Scokaert, ‘Constrained model predict-
ive control: Stability and optimality,’ Automatica, vol. 36, no. 6, pp. 789–
814, 2000, ISSN: 0005-1098. DOI: https://doi.org/10.1016/S0005-
1098(99)00214- 9. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0005109899002149.

[38] S. Dughman and J. Rossiter, ‘A survey of guaranteeing feasibility and sta-
bility in mpc during target changes,’ IFAC-PapersOnLine, vol. 48, no. 8,
pp. 813–818, 2015, 9th IFAC Symposium on Advanced Control of Chem-
ical Processes ADCHEM 2015, ISSN: 2405-8963. DOI: https://doi.org/
10.1016/j.ifacol.2015.09.069. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896315011507.

[39] A. Wächter and L. Biegler, ‘On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,’ Mathemat-
ical programming, vol. 106, pp. 25–57, Mar. 2006. DOI: 10.1007/s10107-
004-0559-y.

[40] F. E. Curtis, O. Schenk and A. Wächter, ‘An interior-point algorithm for
large-scale nonlinear optimization with inexact step computations,’ SIAM
Journal on Scientific Computing, vol. 32, pp. 3447–3475, Jan. 2010. DOI:
10.1137/090747634.

[41] L. Biegler, ‘On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming,’ Mathemat-
ical Programming, vol. 106, Jan. 2004.

[42] A. Wächter and L. Biegler, ‘Line search filter methods for nonlinear pro-
gramming: Motivation and global convergence,’ SIAM Journal on Optimiz-
ation, vol. 16, pp. 1–31, Jan. 2005. DOI: 10.1137/S1052623403426556.

https://doi.org/https://doi.org/10.1016/S1474-6670(17)61205-9
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://books.google.no/books?id=XJJDTSZ2HEEC
https://books.google.no/books?id=XJJDTSZ2HEEC
https://doi.org/https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/https://doi.org/10.1016/S0005-1098(99)00214-9
https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.069
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.069
https://www.sciencedirect.com/science/article/pii/S2405896315011507
https://www.sciencedirect.com/science/article/pii/S2405896315011507
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1137/090747634
https://doi.org/10.1137/S1052623403426556

Bibliography 81

[43] B. Aleksandrov, C. Acad, B. Rumenin, C. Magele, Stoyanov, B. Sotirova,
Ritchie, Toepfer, H. Brauer, M. Hristov, Repetto, B. Antchev, B. Mihailov,
B. Romansky, B. Vasilev, J. Tanaka, V. Valchev, V. Shelyagin, U. Acad and
A. Stoynova, ‘Review of hardware-in-the-loop -a hundred years progress in
the pseudo-real testing,’ vol. 54, pp. 70–84, Dec. 2019.

[44] Software engineering | function oriented design - javatpoint, www.javatpoint.com.
[Online]. Available: https://www.javatpoint.com/software-engineering-
function-oriented-design.

[45] Course - Guidance, Navigation and Control of Vehicles - TTK4190 - NTNU.
[Online]. Available: https://www.ntnu.edu/studies/courses/TTK4190#
tab=omEmnet.

[46] J. Qin and T. Badgwell, ‘A survey of industrial model predictive control
technology,’ Control engineering practice, vol. 11, pp. 733–764, Jul. 2003.
DOI: 10.1016/S0967-0661(02)00186-7.

[47] D. Mayne, J. Rawlings, C. Rao and P. Scokaert, ‘Constrained model pre-
dictive control: Stability and optimality,’ Automatica, vol. 36, pp. 789–814,
Jun. 2000. DOI: 10.1016/S0005-1098(99)00214-9.

[48] M. Diehl, H. Bock, J. Schlöder, R. Findeisen, Z. Nagy and F. Allgöwer, ‘Real-
time optimization and nonlinear model predictive control of processes gov-
erned by differential-algebraic equations,’ Journal of Process Control, vol. 12,
pp. 577–585, Jun. 2002. DOI: 10.1016/S0959-1524(01)00023-3.

[49] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zan-
elli, B. Novoselnik, T. Albin, R. Quirynen and M. Diehl, Acados: A modu-
lar open-source framework for fast embedded optimal control, 2020. arXiv:
1910.13753 [math.OC].

[50] I. Collado-Gonzalez, A. Gonzalez-Garcia, C. Sotelo, D. Sotelo and H. Castañeda,
‘A real-time nmpc guidance law and robust control for an autonomous sur-
face vehicle,’ IFAC-PapersOnLine, vol. 54, pp. 252–257, Nov. 2021. DOI:
10.1016/j.ifacol.2021.10.101.

[51] A. Gonzalez-Garcia, I. Collado-Gonzalez, R. Cuan Urquizo, C. Sotelo, D.
Sotelo and H. Castañeda, ‘Path-following and lidar-based obstacle avoid-
ance via nmpc for an autonomous surface vehicle,’ Ocean Engineering, vol. 266,
p. 112 900, Dec. 2022. DOI: 10.1016/j.oceaneng.2022.112900.

[52] M. Saljanin, S. Müller, J. Kiebler, J. Neubeck and A. Wagner, ‘A model pre-
dictive control approach for highly automated vehicles in urban environ-
ments,’ Automotive and Engine Technology, vol. 7, Jun. 2022. DOI: 10.1007/
s41104-022-00103-x.

[53] G. Frison, D. Kouzoupis, A. Zanelli and M. Diehl, ‘Blasfeo: Basic linear al-
gebra subroutines for embedded optimization,’ ACM Transactions on Math-
ematical Software, vol. 44, Apr. 2017. DOI: 10.1145/3210754.

https://www.javatpoint.com/software-engineering-function-oriented-design
https://www.javatpoint.com/software-engineering-function-oriented-design
https://www.ntnu.edu/studies/courses/TTK4190#tab=omEmnet
https://www.ntnu.edu/studies/courses/TTK4190#tab=omEmnet
https://doi.org/10.1016/S0967-0661(02)00186-7
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0959-1524(01)00023-3
https://arxiv.org/abs/1910.13753
https://doi.org/10.1016/j.ifacol.2021.10.101
https://doi.org/10.1016/j.oceaneng.2022.112900
https://doi.org/10.1007/s41104-022-00103-x
https://doi.org/10.1007/s41104-022-00103-x
https://doi.org/10.1145/3210754

82 Shubham Garg: An NTNU Thesis Document Class

[54] G. Frison and M. Diehl, Hpipm: A high-performance quadratic programming
framework for model predictive control, 2020. arXiv: 2003.02547 [math.OC].

[55] J. Ferreau, C. Kirches, A. Potschka, H. Bock and M. Diehl, ‘Qpoases: A para-
metric active-set algorithm for quadratic programming,’ Mathematical Pro-
gramming Computation, vol. 6, Dec. 2014. DOI: 10.1007/s12532- 014-
0071-1.

[56] J. Pinto, P. Calado, J. Braga, P. Dias, R. Martins, E. Marques and J. Sousa,
‘Implementation of a control architecture for networked vehicle systems,’
Proceedings of the IFAC Workshop on Navigation, Guidance and Control of
Underwater Vehicles, vol. 3, Jan. 2012.

[57] P. Dias, R. Gomes, J. Pinto, G. Gonçalves, J. Sousa and F. Pereira, ‘Mission
planning and specification in the neptus framework.,’ Jan. 2006, pp. 3220–
3225. DOI: 10.1109/ROBOT.2006.1642192.

[58] S. D. Sæter, ‘Colregs compliant collision avoidance system for a wave and
solar powered usv,’ 2018.

[59] R. Martins, P. S. Dias, E. R. B. Marques, J. Pinto, J. B. Sousa and F. L. Pereira,
‘Imc: A communication protocol for networked vehicles and sensors,’ in
OCEANS 2009-EUROPE, 2009, pp. 1–6. DOI: 10.1109/OCEANSE.2009.
5278245.

[60] A. S. Ferreira, J. Pinto, P. Dias and J. B. de Sousa, ‘The lsts software tool-
chain for persistent maritime operations applied through vehicular ad-hoc
networks,’ in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), 2017, pp. 609–616. DOI: 10.1109/ICUAS.2017.7991471.

[61] B. O. Agdal, ‘Design and implementation of control system for green un-
manned surface vehicle,’ 2018.

[62] Ts-7800-v2 industrial single board computer 1.3 ghz dual core arm-based cpu,
www.embeddedts.com. [Online]. Available: https://www.embeddedts.
com/products/TS-7800-V2 (visited on 03/06/2023).

[63] H. Ghael, ‘A review paper on raspberry pi and its applications,’ Jan. 2020.
DOI: 10.35629/5252-0212225227.

[64] D. Ruscio, ‘Model predictive control with integral action: A simple mpc
algorithm,’ Modeling, Identification and Control: A Norwegian Research Bul-
letin, vol. 34, pp. 119–129, Jan. 2013. DOI: 10.4173/mic.2013.3.2.

[65] T. Perez and T. I. Fossen, ‘A Matlab Toolbox for Parametric Identification of
Radiation-Force Models of Ships and Offshore Structures,’ Modeling, Iden-
tification and Control, vol. 30, no. 1, pp. 1–15, 2009. DOI: 10.4173/mic.
2009.1.1.

[66] a. aalok atharva, Professional plots, MATLAB Central File Exchange, 2023.
[Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/
100766-professional-plots (visited on 2023).

https://arxiv.org/abs/2003.02547
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1109/ROBOT.2006.1642192
https://doi.org/10.1109/OCEANSE.2009.5278245
https://doi.org/10.1109/OCEANSE.2009.5278245
https://doi.org/10.1109/ICUAS.2017.7991471
https://www.embeddedts.com/products/TS-7800-V2
https://www.embeddedts.com/products/TS-7800-V2
https://doi.org/10.35629/5252-0212225227
https://doi.org/10.4173/mic.2013.3.2
https://doi.org/10.4173/mic.2009.1.1
https://doi.org/10.4173/mic.2009.1.1
https://www.mathworks.com/matlabcentral/fileexchange/100766-professional-plots
https://www.mathworks.com/matlabcentral/fileexchange/100766-professional-plots

Bibliography 83

[67] K. Worthmann, M. W. Mehrez, M. Zanon, G. K. I. Mann, R. G. Gosine and
M. Diehl, ‘Model predictive control of nonholonomic mobile robots without
stabilizing constraints and costs,’ IEEE Transactions on Control Systems Tech-
nology, vol. 24, no. 4, pp. 1394–1406, 2016. DOI: 10.1109/TCST.2015.
2488589.

[68] Y. Altman, Export f i g, Github, 2023. [Online]. Available: https://github.
com/altmany/export_fig/releases/tag/v3.39 (visited on 2023).

https://doi.org/10.1109/TCST.2015.2488589
https://doi.org/10.1109/TCST.2015.2488589
https://github.com/altmany/export_fig/releases/tag/v3.39
https://github.com/altmany/export_fig/releases/tag/v3.39

Appendix A

AutoNaut USV model parameters

The system parameters are listed in tbl. A.1.

Table A.1: Vehicle Parameters

Parameter Symbol Value (Unit)
Mass m 280 (Kg)
Length L 4.8 (m)
Beam B 0.78 (m)
Draft T 0.24 (m)
Center of Gravity CG

�

0 0 0
�

(m)
Moment of Inertia Iz 551.7960 (Kg-m^2)

The hydrodynamic parameters used to calculate the added-mass matrices of the
system are listen in tbl. A.2.

Table A.2: Hydrodynamic Parameters

Parameter Value (Unit)
X u̇ 6.72
Yv̇ 109.11
Yṙ 74.978
Nv̇ 109.11
Nṙ 546.85

The linear damping matrix is given in Eq. A.1.

D= −

286.72 0 0
0 194.56 0
0 0 1098.6

 . (A.1)

85

86 Shubham Garg: An NTNU Thesis Document Class

The rudder model parameters are given in the tbl. A.3.

Table A.3: Rudder Parameters

Parameter Symbol Value (Unit)
Height b 0.42
Width w 0.25
Aspect Ratio Λ 1.68
Coefficient CN 1.5598
Additional Drag Coefficient tR 0.366
Force Factor aH 0.2
Interaction Coefficient x ′H -1.8
Lateral Force Coefficient xH -0.375
Longitudinal Rudder Position Coordinate xR -2.4
Block Coefficient CB 0.3

The wind model parameters are given in the tbl. A.4.

Table A.4: Wind Model Parameters

Parameter Symbol Value (Unit)
Length Overall Loa 5
Frontal Projected Area AFw

0.168
Lateral Projected Area ALw

1.2
Wind Coefficient for x−axis cx 0.5
Wind Coefficient for y−axis cy 0.7
Wind Coefficient for ψ−axis cn 0.05

The weights for the speed model are given in the Eq. A.2.

w=
�

0.11639 0.21449 0.088068 −0.006355 0.093746 0.23836
�

(A.2)

Appendix B

Code

The MIL simulator developed in MATLAB™is attached with this report and will be
available here until 10th June 2024. Thereon, the reader may email the author
at gshubham96@gmail.com for the same. The link also contains all the raw res-
ults from the simulator. The simulator makes use of several third-party toolboxes.
These are listed below

• The MSS Toolbox[65]
• Professional Plots[66]
• CasADi Tutorial by [67]
• export_fig[68]

The modified software stack is attached with this report and can also be down-
loaded from the public github repo.

87

https://mega.nz/folder/VwgDzKZD#ktNdA8g_079HsIBWbq6Q0g
https://github.com/gshubham96/dune

Appendix C

Additional Plots

This section contains additional plots from the result shown in chapter 6.

C.1 Results from MIL Simulation

Results under Ideal Conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.1: Heading angle in ideal conditions

89

90 Shubham Garg: An NTNU Thesis Document Class

0 50 100 150 200 250 300 350 400

Time (sec)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
p
e
e
d
 (

m
/s

)
Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
p
e
e
d
 (

m
/s

)

Craft Speed Over Ground

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.2: SOG in ideal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

S
p
e
e
d
 (

m
/s

)

Craft Surge Speed

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

S
p
e
e
d
 (

m
/s

)

Craft Surge Speed

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.3: Surge speed in ideal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
n
g
le

 (
d
e
g
)

Craft Sway Speed

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
n
g
le

 (
d
e
g
)

Craft Sway Speed

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.4: Sway speed in ideal conditions

Chapter C: Additional Plots 91

0 50 100 150 200 250 300 350 400

Time (sec)

-5

0

5

10

15

20

25

30

35
A

n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-5

0

5

10

15

20

25

30

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.5: Sideslip angle in ideal conditions

Results under Nominal Conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.6: Heading angle in nominal conditions

92 Shubham Garg: An NTNU Thesis Document Class

0 50 100 150 200 250 300 350 400

Time (sec)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
S

p
e
e
d
 (

m
/s

)
Craft Surge Speed

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

S
p
e
e
d
 (

m
/s

)

Craft Surge Speed

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.7: Surge speed in nominal conditions

0 50 100 150 200 250 300 350 400

Time (sec)

-30

-20

-10

0

10

20

30

40

50

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350 400

Time (sec)

-30

-20

-10

0

10

20

30

40

50

60
A

n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.8: Sway speed in nominal conditions

Results under Adverse Conditions

Chapter C: Additional Plots 93

0 50 100 150 200 250 300 350

Time (sec)

-200

-150

-100

-50

0

50

100

150

200
A

n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

-200

-150

-100

-50

0

50

100

150

200

A
n
g
le

 (
d
e
g
)

Craft Heading Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.9: Heading angle in adverse conditions

0 50 100 150 200 250 300 350

Time (sec)

-0.5

0

0.5

1

1.5

2

S
p
e
e
d
 (

m
/s

)

Craft Surge Speed

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

-0.5

0

0.5

1

1.5

2
S

p
e
e
d
 (

m
/s

)
Craft Surge Speed

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.10: Surge speed in adverse conditions

0 50 100 150 200 250 300 350

Time (sec)

-100

-80

-60

-40

-20

0

20

40

60

80

100

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(a) chi_d

0 50 100 150 200 250 300 350

Time (sec)

-100

-80

-60

-40

-20

0

20

40

60

80

100

A
n
g
le

 (
d
e
g
)

Craft Crab Angle

nonlinear4

nonlinear3

linear4

(b) dotv

Figure C.11: Sway speed in adverse conditions

 1 av 10

Masteravtale/hovedoppgaveavtale
Sist oppdatert 11. november 2020

Fakultet Fakultet for ingeniørvitenskap

Institutt Institutt for marin teknikk

Studieprogram TMR4930 Marine Technology

Emnekode TMR4930

Studenten

Etternavn, fornavn Garg, Shubham

Fødselsdato 28.03.1996

E-postadresse ved NTNU shubhag@stud.ntnu.no

Tilknyttede ressurser

Veileder Asgeir Johan Sørensen

Eventuelle medveiledere Tor Arne Johansen

Eventuelle medstudenter

Oppgaven

Oppstartsdato 15.01.2023

Leveringsfrist 11.06.2023

Oppgavens arbeidstittel
Design and Validation of a Course Controller for a Wave-powered Vehicle

Using Model Predictive Control

Problembeskrivelse A new class of long-endurance green-energy vehicles are being developed

that can be used for extended spatial-temporal studies of Oceans while

having minimum environmental impact. These vehicles can play a crucial

role in observing rapid environmental changes by allowing persistent and

sustainable ocean monitoring. AutoNaut, developed by AutoNaut Ltd is

one such vehicle being powered by the motion of the waves allowing it to

operate for long duration without the need for physical human

intervention. Unlike common marine platforms, the speed of the wave-

powered vehicle can not be directly controlled and depends solely on the

state of interaction of the vehicle and the environment. In case of

AutoNaut, low controllability and maneuverability is observed when the

resistive and dissipative forces offered by the environment outweigh the

net propulsion forces acting on the vehicle. During this state, the vehicle

can not maintain the desired course angle which can compromise the

safety and efficiency of the vehicle. To ensure safe operations on both the

open sea and near shores, additional constraints are introduced on the

Guidance-Navigation-Control (GNC) system of the vehicle that can not be

addressed by conventional control techniques. In [1], the authors analyzed

the system nonlinearities when loss of controllability is observed, and

proposed and validated a control design when USV’s ground speed is not

 2 av 10

close to zero. This work aims to extend the control design to include cases

when ground speed of the vehicle approaches zero by utilizing the

mathematical knowledge of the vehicle’s dynamics, the real-time state of

the environment and tools of optimal control. [1] Dallolio, Alberto;

Øveraas, Henning; Alfredsen, Jo Arve; Fossen, Thor Inge; Johansen, Tor

Arne. (2022) Design and Validation of a Course Control System for a

Wave-Propelled Unmanned Surface Vehicle. Field Robotics. volume 2.

Academic article

 3 av 10

Risikovurdering og datahåndtering
Skal det gjennomføres risikovurdering?

Dersom «ja», har det blitt gjennomført?

Nei

Nei

Skal det søkes om godkjenninger?

(REK*, NSD**)

Nei

Skal det skrives en konfidensialitetsavtale

i forbindelse med oppgaven?

Hvis «ja», har det blitt gjort?

Nei

Nei

* Regionale komiteer for medisinsk og helsefaglig forskningsetikk (https://rekportalen.no)

** Norsk senter for forskningsdata (https://nsd.no/)

Eventuelle emner som skal inngå i mastergraden
Formulation of MPC Problem Development of MPC Controller for LSTS Toolchain Validatation of MPC

Controller Implementation in Vehicle Robustness with Uncertain parameters Suboptimal MPC: Loss of

Convergence

 4 av 10

Retningslinjer - rettigheter og plikter

Formål
Avtale om veiledning av masteroppgaven/hovedoppgaven er en samarbeidsavtale mellom student, veileder og institutt.

Avtalen regulerer veiledningsforholdet, omfang, art og ansvarsfordeling.

Studieprogrammet og arbeidet med oppgaven er regulert av Universitets- og høgskoleloven, NTNUs studieforskrift og

gjeldende studieplan. Informasjon om emnet, som oppgaven inngår i, finner du i emnebeskrivelsen.

Veiledning

Studenten har ansvar for å
• Avtale veiledningstimer med veileder innenfor rammene master-/hovedoppgaveavtalen gir.

• Utarbeide framdriftsplan for arbeidet i samråd med veileder, inkludert veiledningsplan.

• Holde oversikt over antall brukte veiledningstimer sammen med veileder.

• Gi veileder nødvendig skriftlig materiale i rimelig tid før veiledning.

• Holde instituttet og veileder orientert om eventuelle forsinkelser.

• Inkludere eventuell(e) medstudent(er) i avtalen.

Veileder har ansvar for å
• Avklare forventninger om veiledningsforholdet.

• Sørge for at det søkes om eventuelle nødvendige godkjenninger (etikk, personvernhensyn).

• Gi råd om formulering og avgrensning av tema og problemstilling, slik at arbeidet er gjennomførbart innenfor

normert eller avtalt studietid.

• Drøfte og vurdere hypoteser og metoder.

• Gi råd vedrørende faglitteratur, kildemateriale, datagrunnlag, dokumentasjon og eventuelt ressursbehov.

• Drøfte framstillingsform (eksempelvis disposisjon og språklig form).

• Drøfte resultater og tolkninger.

• Holde seg orientert om progresjonen i studentens arbeid i henhold til avtalt tids- og arbeidsplan, og følge opp

studenten ved behov.

• Sammen med studenten holde oversikt over antall brukte veiledningstimer.

Instituttet har ansvar for å
• Sørge for at avtalen blir inngått.

• Finne og oppnevne veileder(e).

• Inngå avtale med annet institutt/ fakultet/institusjon dersom det er oppnevnt ekstern medveileder.

• I samarbeid med veileder holde oversikt over studentens framdrift, antall brukte veiledningstimer, og følge opp

dersom studenten er forsinket i henhold til avtalen.

• Oppnevne ny veileder og sørge for inngåelse av ny avtale dersom:

• Veileder blir fraværende på grunn av eksempelvis forskningstermin, sykdom, eller reiser.

• Student eller veileder ber om å få avslutte avtalen fordi en av partene ikke følger den.

• Andre forhold gjør at partene finner det hensiktsmessig med ny veileder.

• Gi studenten beskjed når veiledningsforholdet opphører.

• Informere veileder(e) om ansvaret for å ivareta forskningsetiske forhold, personvernhensyn og

veiledningsetiske forhold.

• Ønsker student, eller veileder, å bli løst fra avtalen må det søkes til instituttet. Instituttet må i et slikt tilfelle

oppnevne ny veileder.

 5 av 10

Avtaleskjemaet skal godkjennes når retningslinjene er gjennomgått.

Godkjent av

Shubham Garg

Student

31.01.2023

Digitalt godkjent

Asgeir Johan Sørensen

Veileder

31.01.2023

Digitalt godkjent

Kristin J. Mørkve

Institutt

21.02.2023

Digitalt godkjent

 6 av 10

Master`s Agreement / Main Thesis Agreement

Faculty Faculty of Engineering

Institute Department of Marine Technology

Programme Code TMR4930 Marine Technology

Course Code TMR4930

Personal Information

Surname, First Name Garg, Shubham

Date of Birth 28.03.1996

Email shubhag@stud.ntnu.no

Supervision and Co-authors

Supervisor Asgeir Johan Sørensen

Co-supervisors (if applicable) Tor Arne Johansen

Co-authors (if applicable)

The Master`s thesis

Starting Date 15.01.2023

Submission Deadline 11.06.2023

Thesis Working Title

Design and Validation of a Course Controller for a Wave-

powered Vehicle Using Model Predictive Control

Problem Description

A new class of long-endurance green-energy vehicles are being

developed that can be used for extended spatial-temporal studies

of Oceans while having minimum environmental impact. These

vehicles can play a crucial role in observing rapid environmental

changes by allowing persistent and sustainable ocean

monitoring. AutoNaut, developed by AutoNaut Ltd is one such

vehicle being powered by the motion of the waves allowing it to

operate for long duration without the need for physical human

intervention. Unlike common marine platforms, the speed of the

wave-powered vehicle can not be directly controlled and depends

solely on the state of interaction of the vehicle and the

environment. In case of AutoNaut, low controllability and

maneuverability is observed when the resistive and dissipative

forces offered by the environment outweigh the net propulsion

forces acting on the vehicle. During this state, the vehicle can not

maintain the desired course angle which can compromise the

safety and efficiency of the vehicle. To ensure safe operations on

 7 av 10

both the open sea and near shores, additional constraints are

introduced on the Guidance-Navigation-Control (GNC) system

of the vehicle that can not be addressed by conventional control

techniques. In [1], the authors analyzed the system

nonlinearities when loss of controllability is observed, and

proposed and validated a control design when USV’s ground

speed is not close to zero. This work aims to extend the control

design to include cases when ground speed of the vehicle

approaches zero by utilizing the mathematical knowledge of the

vehicle’s dynamics, the real-time state of the environment and

tools of optimal control. [1] Dallolio, Alberto; Øveraas,

Henning; Alfredsen, Jo Arve; Fossen, Thor Inge; Johansen, Tor

Arne. (2022) Design and Validation of a Course Control System

for a Wave-Propelled Unmanned Surface Vehicle. Field

Robotics. volume 2. Academic article

 8 av 10

Risk Assessment and Data Management
Will you conduct a Risk Assessment?

If “Yes”, Is the Risk Assessment Conducted?

No

No

Will you Apply for Data Management?

(REK*, NSD**)

No

Will You Write a Confidentiality Agreement?

If “Yes”, Is the Confidentiality Agreement Conducted?

No

No

* REK -- https://rekportalen.no/

** Norwegian Centre for Research Data (https://nsd.no/nsd/english/index.html)

Topics to be included in the Master`s Degree (if applicable)
Formulation of MPC Problem Development of MPC Controller for LSTS Toolchain Validatation of MPC

Controller Implementation in Vehicle Robustness with Uncertain parameters Suboptimal MPC: Loss of

Convergence

 9 av 10

Guidelines – Rights and Obligations
Purpose
The Master’s Agreement/ Main Thesis Agreement is an agreement between the student, supervisor, and department. The

agreement regulates supervision conditions, scope, nature, and responsibilities concerning the thesis.

 The study programme and the thesis are regulated by the Universities and University Colleges Act, NTNU's study

regulations, and the current curriculum for the study programme.

Supervision

The student is responsible for
• Arranging the supervision within the framework provided by the agreement.

• Preparing a plan of progress in cooperation with the supervisor, including a supervision schedule.

• Keeping track of the counselling hours.

• Providing the supervisor with the necessary written material in a timely manner before the supervision.

• Keeping the institute and supervisor informed of any delays.

• Adding fellow student(s) to the agreement, if the thesis has more than one author.

The supervisor is responsible for
• Clarifying expectations and how the supervision should take place.
• Ensuring that any necessary approvals are acquired (REC, ethics, privacy).

• Advising on the demarcation of the topic and the thesis statement to ensure that the work is feasible within

agreed upon time frame.

• Discussing and evaluating hypotheses and methods.

• Advising on literature, source material, data, documentation, and resource requirements.

• Discussing the layout of the thesis with the student (disposition, linguistic form, etcetera).

• Discussing the results and the interpretation of them.

• Staying informed about the work progress and assist the student if necessary.

• Together with the student, keeping track of supervision hours spent.

The institute is responsible for
• Ensuring that the agreement is entered into.

• Find and appoint supervisor(s).

• Enter into an agreement with another department / faculty / institution if there is an external co-supervisor.

• In cooperation with the supervisor, keep an overview of the student's progress, the number

of supervision hours. spent, and assist if the student is delayed by appointment.

• Appoint a new supervisor and arrange for a new agreement if:

• The supervisor will be absent due to research term, illness, travel, etcetera.

• The student or supervisor requests to terminate the agreement due to lack of adherence from either party.

• Other circumstances where it is appropriate with a new supervisor.

• Notify the student when the agreement terminates.

• Inform supervisors about the responsibility for safeguarding ethical issues, privacy and guidance ethics

• Should the cooperation between student and supervisor become problematic, either party may apply to the

department to be freed from the agreement. In such occurrence, the department must appoint a new supervisor

 10 av 10

This Master`s agreement must be signed when the guidelines have been reviewed.

Signatures

Shubham Garg

Student

31.01.2023

Digitally approved

Asgeir Johan Sørensen

Supervisor

31.01.2023

Digitally approved

Kristin J. Mørkve

Department

21.02.2023

Digitally approved

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Literature Review
	Scope
	Key Aims and Objectives
	Outline of Report

	Background
	Introducing the Vehicle: AutoNaut
	PID Based Course Control System
	Gain Scheduling Based Course Control System
	Speed Prediction using Data Regression

	Theory
	System Modelling
	Review of Principles of Dynamics
	Generalized Nonlinear Dynamic Model in 3dofs
	Generalized nonlinear dynamic model in 2DOF
	Generalized linear dynamic model in 3DOF

	State Space Modeling
	Linearized Dynamics in 3dofs
	Nonlinear Dynamics in 3dofs
	Nonlinear Dynamics in 2dofs

	Control Objective
	Nonlinear Model Predictive Control
	Definition
	Dynamic Model and Discretization
	Objective Function
	Constraints
	Problem Formulation
	Sub-optimal NMPC
	Tuning

	Method
	Software Framework: CasADi
	Introduction
	Symbolic Framework in CasADi
	ipopt Solver

	mil Simulation
	Introduction
	Simulation Design

	Implementation
	Software Package: acados
	Why acados
	Algorithm Implementations in acados
	Workflow with a High-Level Language Interface

	Software Toolchain: LSTS/DUNE
	Introduction
	Overview of the System Architecture

	hil Simulation
	Integration with onboard System
	Hardware Setup

	Results
	Test Plan
	Results from mil Simulation
	Ideal Conditions
	Nominal Conditions with Noisy Observer
	Adverse Conditions with Relaxed Constraints

	Results from hil Simulation
	Nominal Conditions with Noisy Observer

	Discussions
	mil Simulation
	Ideal Conditions
	Nominal Conditions with Noisy Sensors
	Adverse Conditions with Soft Constraints

	hil Simulation
	Nominal Conditions with Noisy Sensors

	Future Work

	Conclusion
	Bibliography
	AutoNaut USV model parameters
	Code
	Additional Plots
	Results from mil Simulation

