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Abstract
Programming proficiency extends beyond mere knowledge of programming lan-
guage syntax. Novice programmers often lack problem-solving skills demon-
strated by experts, who employ a variety of schemata and patterns to categorize
problems effectively. This distinction emphasizes the importance of mastering
problem-solving skills to attain proficiency in programming. Educational models
illustrating professional source code characteristics are vital for guiding beginner
programmers to become experts (Windslow, 1996).

In this research project, we analyzed and visualized the qualities of profes-
sional Python code. The dataset comprises 30 widely used open-source libraries
with a total of 11,712 source code files. To facilitate the analysis, each file was
transformed into nodes using Python’s Abstract Syntax Tree (AST). The nodes
were then quantified, resulting in a 229-dimensional vector representation for
each file. To explore the dataset, we utilized organizational structures from two
programming textbooks. Guided by these structures, we generated informative
visualizations with educational value.

Principal Component Analysis (PCA) and k-means clustering analysis re-
vealed that the professional source code in the dataset can be seen as one cohe-
sive unit. The findings from the data analysis indicate functions as the primary
building block of professional code, with widespread use of object-oriented pro-
gramming. Furthermore, the code is structured into concise blocks like func-
tions, loops, and conditions. By incorporating these insights into programming
courses, we aim to contribute to the improvement of instruction quality and
facilitate students’ progress towards proficiency.
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Samandrag
Evna til å programmere strekk seg utover kunnskap om syntaksen i programmer-
ingsspråk. Nybyrjarar i programmering manglar ofte dei problemløysingsevnene
som ekspertar demonstrerer ved å nytte seg av ei rekke skjema og mønster for å
effektivt kategorisere problem. Denne skilnaden framhevar viktigheita av å ha
gode problemløysingsevner for å oppnå ferdigheiter på ekspertnivå. Modellar
for undervisning som illustrerer kvalitetar ved profesjonell kjeldekode, er avg-
jerande for å rettleie nybyrjarprogrammerarar til å bli ekspertar (Windslow,
1996).

I dette forskingsprosjektet har vi analysert og visualisert kvalitetar ved pro-
fesjonell Python-kode. Datasettet består av 30 mykje brukte open-source bib-
liotek, beståande av totalt 11 712 filer. For å lette analysen, vart kvar fil omgjort
til nodar ved hjelp av Python-modulen Abstract Syntax Tree (AST). Nodane
vart deretter kvantifisert, noko som resulterte i ein 229-dimensjonal vektorrep-
resentasjon for kvar fil. For å utforske datasettet, brukte vi strukturen frå to
lærebøker i programmering. Ved hjelp av desse strukturane, genererte vi infor-
mative visualiseringar med pedagogisk verdi.

PCA og k-means-klyngeanalyse viser at den profesjonelle kjeldekoden i dataset-
tet kan bli sett på som ei samanhengande eining. Resultata frå dataanalysen
indikerer at funksjonar er ein viktig byggestein i profesjonell kode, og at bruken
av objektorientert programmering er utstrekt. Vidare er kode strukturert i korte
blokker, som funksjonar, løkker og vilkår. Gjennom å innarbeide desse funna
i programmeringsundervisning, har vi som intensjon å forbetre kvaliteten på
undervisninga og lette studentane sin framgang mot ekspertise.
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Task description
The original task description was as follows:

Exploring the qualities of professional Python source code

The process of teaching programming involves guiding students on their journey
to learn how to write conditions, iterations, functions, and classes. However,
the common approach of teaching ”how to program” often lacks instructions on
best practices, and teachers may only be aware of a limited set of best practices.

In this project, our objective is to analyze a substantial collection of profes-
sional Python code extracted from well-documented open-source libraries. By
doing so, we aim to explore the best practices employed by experienced program-
mers and visualize these practices in a manner that can serve as an educational
aid in classrooms.

To extract the necessary metrics, we will represent each code file as a set of
feature counts that can be analyzed and visualized. These features will be based
on Python’s AST, where each feature corresponds to a node in the tree. Ex-
amples of metrics include the percentage usage of functions, classes, iterations,
and various data types.
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1 Introduction
The ability to solve problems is an important indicator of a programmer’s com-
petence level. Although knowledge of the specific syntax of a programming
language, such as C, C++, Java or Python, is essential, it is not sufficient to
distinguish between beginners and experts (Windslow, 1996). Most program-
ming languages have a limited set of keywords, e.g. the C++ language has 97
words (cpprefeence.com, n.d.), and Java has 67 reserved words (Oracle Corpo-
ration, 2021). In contrast, the Norwegian language has over 300 000 words,
and English has over 500 000 registered words (Språkrådet, n.d.). Thus, if pro-
gramming skills were judged by the ability to memorize the keywords, then it
would be sufficient to know 35 words to claim that one is a proficient Python
programmer (Python Software Foundation, 2021b).

The distinction between expert programmers and beginners is not limited to
their knowledge of syntax. Rather, when experts attempt to categorize prob-
lems, they utilize a wide range of schemata and patterns, which beginners lack
(Windslow, 1996). In addition, studies show that it is challenging for students
to know ”where and how to combine statements to generate the desired result
(Windslow, 1996).”

Beginner programmers have superficial knowledge, and need to master problem-
solving before they become proficient programmers. Further, research shows
that the time required to progress from a beginner to an expert programmer is
approximately ten years (Windslow, 1996)

To aid beginners on their path to becoming expert programmers, models
are necessary for students to develop an in-depth understanding of the qualities
of experts’ source code (Windslow, 1996). Linn and Clancy (1992) recommend
verbal descriptions, illustrations, and connections to real-world problems to aid
the development of such educational models.

Our research project aims to identify and visualize the characteristics of
professional Python source code to serve as an educational model that aids the
progress of programming students. To achieve this goal, we utilize a dataset of
professional Python code. Specifically, we analyze a dataset consisting of open-
source code from 30 well-known libraries, including Matplotlib and Pandas. The
files from the libraries adds up to a total of 11,712 files. For more information
about the libraries, refer to Section 3.3.

To process the data, we employ a program developed by the research project
initiator, Ali Alsam. This program utilizes the Python module AST to count
feature variables, and generates a matrix with 11,712 rows and 229 columns.
Each row corresponds to a file from the libraries, and each variable is represented
as an element in a 229-dimensional vector. These variables encompass 176
counts of AST nodes, 35 Python keyword frequencies, 15 length counts, and
counts of the function calls input, print, and open.

Our approach involves identifying common patterns and characteristics in
the source code, including code organization and the use of data structures. To
start with, we analyzed the dataset to explore whether it can be treated as a
one cohesive unit. To this end, we employed PCA, and k-means clustering. The

13



findings from this analysis reveals that the dataset is in 181-dimensional space,
and cannot be clustered in more than two groups, efficiently.

To guide our data analysis and visualizations, we examine the structure of
two popular programming textbooks: ”Python for Everyone” (Horstmann and
Necaise, 2019) and ”Starting out with Python” (Gaddis, 2019). This analysis
of programming textbooks, coupled with the numerical data extracted from the
open-source libraries, aims to provide data that can guide students on their
path to becoming expert programmers. For each main chapter in the studied
textbooks, we generate a set of visualizations and data analysis based on the
exploration of the dataset from the libraries. For example, we explore the use
of logical operators, data structures, loops, conditional statements, functions,
error handling, and object-oriented programming.

Overall, our results indicate that professional programmers primarily use
functions as the main building blocks of their code. Furthermore, the dataset
demonstrates extensive use of object-oriented programming. We have also iden-
tified some less common practices in our analysis, such as classes defined within
functions and within if statements.

By providing visualizations that depict the qualities of professional Python
code, our aim is to enhance the quality of programming education.

1.1 Research questions
The purpose of the research project is to explore professional Python code to
uncover the qualities and best practices for programming in Python. Visualiza-
tion of these findings can contribute to improvement of programming education.
The research questions are as follows:

• Can the dataset, which consists of 30 different libraries, and
11,712 files, be considered as one coherent set?

• What are the qualities of professional Python code?

• Can the qualities of professional Python code be used to guide
the education of beginner programmers?

14



1.2 Document structure
The report is divided into nine chapters with the following headlines and content:

• Introduction - This chapter introduces the bachelor thesis, outlining the
background, research questions, report structure, and acronyms associated
with the project.

• Theory - This chapter presents relevant theoretical information for the
project, including a literature review.

• Method - This chapter describes the methodology and scientific process
used throughout the project..

• Results - This chapter presents the results obtained from the analysis,
including visualizations.

• Discussion and Conclusion - This chapter reflects upon the obtained
results, and concludes by providing answers to the research questions.

• Further work - This chapter presents potential further work related to
the project.

• Societal Impact and Sustainability - This chapter presents societal
impact and sustainability related to the work.

• References - This chapter contains all references used throughout the
report.

• Attachments - This chapter include all relevant attachments related to
the report, such as the Pre-Project Plan and the Project Handbook.

1.3 Acronyms and Abbreviations
• AST - Abstract Syntax Tree

• EEG - Electroencephalogram

• GUI - Graphical User Interface

• IR - Information Retrieval

• LDA - Latent Dirichlet Allocation

• LSI - Latent Semantic Indexing

• NTNU - Norges teknisk-naturvitenskapelige universitet

• OOP - Object-Oriented Programming

• PCA - Principal Component Analysis

• STD - Standard Deviation

• SVD - Singular Value Decomposition
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2 Theory
2.1 Literature review
In this section, we review a number of articles that pertain to the differences
between professional and novice programmers, as well as the use of AST to
represent code. The objective of this review, is to highlight the differences
between professionals and novices, thus supporting our underlying hypothesis,
that the analysis of professional source code can serve in strengthening the
education of beginner programmers.

Programming Pedagogy – A Psychological Overview (Winslow)

The ability to solve problems serves as a significant indicator of a programmer’s
competence level. Expert programmers showcase their proficiency by utilizing
a diverse range of schemata and patterns to categorize problems, a skill that
novices often lack (Windslow, 1996). Novices face challenges in understanding
”where and how to combine statements to generate the desired result, (Wind-
slow, 1996)” in contrast to experts. As beginners possess superficial knowledge,
they need to acquire fundamental facts and problem-solving skills to enhance
their programming abilities, and master the field. To support this learning pro-
cess and enable progression towards higher proficiency, models play a crucial
role. In this context, a model refers to a cognitive framework or structure used
to organize knowledge, approach problem-solving tasks, and understand con-
cepts (Windslow, 1996). A model might include problem-solving strategies and
knowledge of programming syntax. As suggested by Linn and Clancy (1992),
employing techniques such as verbal descriptions, illustrations, and connections
to other concepts can aid in the development of these models. By utilizing
such models, beginners can strengthen their understanding and advance their
programming expertise (Windslow, 1996).

Program Understanding – A Survey (von Mayrhauser and Vans)

The ability of programmers to understand code is greatly influenced by their
level of expertise. According to Mayrhauser and Vans (1994), experts in pro-
gramming develop specialized schemas through experience, enabling them to
recognize familiar patterns in code and bypass in-depth analysis. These schemas
play a vital role in code understanding and facilitate problem-solving. However,
the comprehension of unconventional code poses challenges even for experts, as
it often lacks suitable schemas that can be readily applied. Consequently, both
novice and expert programmers may struggle to comprehend unconventional
programming styles and algorithms due to the absence of matching schemas in
their long-term memory (Mayrhauser and Vans, 1994).
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Comparing Programming Language Comprehension between Novice
and Expert Programmers using EEG Analysis (Lee et al.)

In a study by Lee et al. (2016), novice and expert programmers were compared
in terms of programming language comprehension using electroencephalogram
(EEG) analysis. While both groups performed similarly in terms of correct-
ness on a relatively easy programming task, the experts exhibited a significant
advantage in response time (Lee et al., 2016). This suggests that experts are
not necessarily more accurate than novices in simple tasks, but they excel in
efficiently solving programming problems.

The EEG analysis provided insights into the neural mechanisms underlying
programming comprehension. The expert group showed higher power in the
Beta range, indicating a greater utilization of cognitive skills such as logical
thinking and conscious thought. Moreover, the experts demonstrated higher
activation of the right hemisphere, which is associated with understanding ab-
stract ideas and processing new information (Lee et al., 2016). These findings
suggest that experts employ advanced cognitive processes and have a better
grasp of complex programming concepts, leading to their superior performance
and efficiency in programming tasks.

Programming problem representation in novice and expert program-
mers (Weiser and Shertz)

The research paper examines the representation of computer programming prob-
lems in relation to the organization of programming knowledge (Weiser and
Shertz, 1983). The study replicates an experiment previously done for physics
knowledge (Chi, Feltovich, and Glaser, 1981) to examine differences in the cat-
egories used for problem representation by novice and expert programmers.
Results from sorting tasks show that experts and novices begin their problem
representations with specific different problem categories. Experts tend to start
with a more abstract approach, focusing on the underlying algorithmic structure
of the problem. In contrast, novices tend to focus more on the surface features
of the problem, such as specific data inputs and outputs. The experts’ analysis
reveals a consistent categorization of programming problems, which differs from
the categorization by novice programmers. Furthermore, the study concludes
that novice programmers are not consistent in their labeling of programming
problems (Weiser and Shertz, 1983).

A Novel Neutral Source Code Representation Based on Abstract Syn-
tax Tree (Zhang et al.)

AST is a type of tree structure that represents the abstract syntactic structure of
source code (Baxter, 2016). ASTs are widely used by programming and software
engineering tools to describe the lexical information and the syntactic structure
of source code, such as method names and control flow structures. Compared
with plain source code, ASTs are abstract and do not include all details such as
punctuation and delimiters (Zhang et al., 2019).
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Traditional approaches such as Information Retrieval (IR) (T. Kamiya, Kusumoto,
and Inoue, 2002), Latent Semantic Indexing (LSI) (Deerwester et al., 1990)
and Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan, 2003) usually
treat code fragments as natural language text and model them based on tokens
(Zhang et al., 2019). According to Panichella et al. (2013), the common problem
of these approaches is that they assume the underlying corpus (i.e. the source
code) is composed of natural language text (Zhang et al., 2019). Even though
code fragments have something in common with plain text, they should not be
simply dealt with text-based or token-based methods due to their richer and
more explicit structural information (Baxter, 2016; Mou et al., 2016).

Heterogeneous tree structure classification to label Java programmers
according to their expertise level (Ortin et al.)

The research paper utelized AST for feature representation of Java source code
to construct a classification model. The source code database consisted of 35,309
Java files, and got represented by a dataset containing 12.5 million AST nodes.
The research results showed that the system was able to label expert programs
(from open-source projects) and novice programs (from student assignments)
with an accuracy of 99.6%. Additionaly, it seemed to be easier for the model to
identify the syntax patterns written by experts, rather than by novices (Ortin
et al., 2020).

2.2 Principal Component Analysis (PCA)
PCA is a statistical technique used to analyze the dimensionality of datasets
(Jolliffe, 1986; Strang, 2009). The primary objective of PCA is to reduce the
dimensionality and size of the dataset, while still preserving the indispensable in-
formation that constitutes the majority of the dataset. This is accomplished by
creating new variables known as principal components, which are linear combi-
nations of the original variables. The first principal component aims to capture
the maximum variance in the dataset. Each subsequent principal component,
captures the variance in the space orthogonal to the previous principal compo-
nents. All principal components are orthogonal, providing distinct and uncor-
related information about the dataset. Mathematically, PCA relies on singular
value decomposition (SVD) for the analysis of rectangular matrices. SVD is a
technique that decomposes a matrix D into three simpler matrices (Abdi and
Williams, 2010). The mathematical representation of SVD is given by:

D = UΣV T

The columns of the orthogonal matrices U and V T are called the left and right
singular vectors, respectively. The singular values, stored in the diagonal ma-
trix Σ, indicate the significance of each principal component in explaining the
variance in the data(Abdi and Williams, 2010). The explained variance ratio for
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a specific principal component, denoted by the index i, is calculated as follows:

Explained V ariance Ratioi =
σ2
i∑n

k=1 σ
2
k

In this equation, σ represents a singular value from the matrix Σ , and n is the
total number of singular values. The numerator is the square of the singular
value corresponding to the principal value in question, while the denominator is
the sum of the squares of all singular values. The cumulative explained variance
ratio is utilized to determine the required number of principal components to
achieve a desired ratio of explained variance (Abdi and Williams, 2010).

2.3 k-means Clustering
k-means is a popular clustering algorithm, utilized for unsupervised machine
learning. The goal of the algorithm is to divide the data points of a dataset into
a predetermined number of clusters, k, where each cluster contains data points
that are close to the mean of the cluster in an Euclidean sense (Han, Pei, and
Kamber, 2011).

2.4 Silhouette Score
The silhouette score is a metric used to evaluate the quality of clustering results.
It assesses both the compactness and separation of clusters, and provides a value
ranging from -1 to 1. A high score indicates well-defined and compact clusters,
while a low score suggests overlapping or ambiguous clusters. Scores close to 0
indicate the presence of clusters that overlap or are not clearly separated. The
silhouette score for an individual data point is computed using the following
formula(Januzaj, Beqiri, and Luma, 2023):

s =
b− a

max(a, b)

In this equation, a represents the average distance between the given point
and other data points within the same cluster, while b represents the average
distance between the data point and the data points in the nearest neighboring
cluster. To obtain the silhouette score for the clustering result as a whole, the
individual silhouette scores of all data points are averaged (Januzaj, Beqiri, and
Luma, 2023).
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3 Method
3.1 Research Method
Research methodology refers to systematic and structured approaches used in
scientific research to collect, analyze, and interpret data. It includes quantita-
tive and qualitative methods. Quantitative research focuses on numerical data,
using statistical analysis to quantify phenomena and relationships. Qualitative
research, on the other hand, seeks to understand complex phenomena in their
natural context through words, images, and descriptions. Researchers can also
use a combination of both methods, to gain a comprehensive understanding of
a research question.

For this research project, we undertook a quantitative analysis of source code
from 30 open-source libraries to identify qualities of professional Python code.
To establish a solid foundation for our study, we conducted a literature review
and formulated three research questions, as detailed in Section 1.1. By utilizing
the Python module AST, the source code was transformed into a numerical ma-
trix representation, which is a suitable format for analysis (Zhang et al., 2019).
To analyze the data, we utilized various statistical techniques including PCA,
k-means clustering, the silhouette score, and descriptive statistics. The analy-
sis was structured based on two Python textbooks, and the findings regarding
the qualities of professional source code are presented in Section 4. Finally, we
drew conclusions to the research questions in Section 5. The illustration below
depicts the methodology employed in the research project.

Figure 1: Illustration of applied research methods.
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3.2 Abstract Syntax Tree (AST)
AST is a data structure used in programming to represent the structure of
source code (Python Software Foundation, 2021a). It serves as an intermediate
representation between the original source code and the eventual machine code
or execution. The AST represents the code in a tree-like structure, where each
node corresponds to a specific syntactic element, such as variables, functions,
or if statements. The representation is abstract and do not include details such
as comments, punctuation and delimiters (Zhang et al., 2019). The AST helps
in capturing the relationships and hierarchy between these elements, enabling
various operations like analysis, optimization, and transformation of the code
(Kluyver, n.d.).

To analyze the characteristics of the dataset, which comprises 30 open-source
Python libraries encompassing a total of 11,712 files, we utilized a program that
leverages AST to extract information about the nodes. The extracted data was
then quantified for subsequent analysis.

Figure 2: Example of AST visualisation. Code snippet and the corresponding
AST tree visualization.
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3.3 Libraries
In this study, expert code refers to source code written by expert developers.
To satisfy the condition that the code is written by professionals, the project
supervisor collected code from GitHub with certain requirements:

• The project had to be written in Python 3.

• The code had to be derived from mature projects that were recognised and
measured by reports and feedback by a wide group of Python developers.
Therefore, the project had at least 50 contributors.

• The project had to be updated within the past year.

• The project had to have more than 10,000 GitHub stars, which is a mea-
sure of whether the library is popular.

Based on the above requirements, 30 Python 3 libraries were collected, in-
cluding: algorithms, Ansible, beets, Borg, Boto3, Cerberus, conda, cryptog-
raphy, Django, Errbot, FastAPI, Gooey, Keras, Luigi, Matplotlib, mitmproxy,
NLTK, Numba, pandas, pip, PlatformIO, psutil, pygame, Python Fire, Python-
Robotics, Scapy, scikit-learn, Scrapy, sqlmap, and thumbor. See Table 1 for
statistics of the libraries, and version numbers.
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Table 1: Overview of the 30 utilized open-source libraries.

Nr. Library Name Version Number of Files
1. Ansible 2.12.1 1066
2. Borg 1.1.17 54
3. Boto3 1.18.1 81
4. Cerberus 1.3.4 92
5. conda 4.10.3 199
6. cryptography 3.4.7 137
7. Errbot 9.9.9 105
8. Gooey 1.0.8.1 112
9. Keras 2.7.0 392
10. Luigi 1.14.2 220
11. Matplotlib 3.4.2 752
12. NLTK 3.6.2 255
13. Numba 0.53.1 456
14. pandas 1.3.0 1018
15. pip 21.1.3 439
16. PlatformIO 5.2.0 160
17. psutil 5.8.1 53
18. pygame 2.0.1 132
19. Python Fire 0.4.0 49
20. PythonRobotics 1.0.0 168
21. Scapy 2.4.5 230
22. scikit-learn 1.0 653
23. sqlmap 1.5 396
24. thumbor 7.0.0a5 170
25. algorithms 1.0.1 378
26. beets 1.5.0 148
27. Django 4.0.0 1832
28. FastAPI 0.65.1 945
29. mitmproxy 7.0.0 735
30. Scrapy 2.5.0 284
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3.4 How We Decided What to Visualize
As mentioned earlier, the 11,712 files yielded 229 feature variables, offering
numerous possibilities for analysis and visualization. These variables include
counts of functions, classes, binary operations, conditions, and loops, among
others. However, organizing such a high-dimensional feature space into lower-
dimensional visualizations is challenging due to the intractable number of pos-
sible combinations.

After carefully examining the feature space and considering the relation-
ship between the numerical values and the source code, we decided to focus
on meaningful visualizations for first-year university programming students. To
accomplish this, we conducted a reflective search to determine the types of vi-
sualizations that beginner programmers might find helpful in lectures.

To create lower-dimensional subspaces, we analysed the structures of intro-
ductory Python programming textbooks, specifically ”Python for Everyone”
by Horstmann and Necaise (2019) and ”Starting Out with Python” by Gaddis
(2019). We found that these two books, which are part of NTNU’s educational
programming syllabus, have similar structures. Table 2 displays the chapters
covered in the examined textbooks and how we decided to structure the analysis.
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Table 2: Visualisation structure, based on two programming textbooks,
Python for Everyone Horstmann and Necaise, 2019, and Starting Out with
Python Gaddis, 2019.

Chapter(s) in
Python for Everyone

Chapter(s) in Starting
Out with Python

Our Chapter
Structure

1. Introduction
1. Introduction to
Computers and
Programming

1. Keywords

2. Programming with
Numbers and Strings

2. Input, Processing,
and Output
8.More About Strings

2. Variable
Assignments and
Augmentations

3. Decisions 3. Decision Structures
and Boolean Logic 3. Decisions

4. Loops 4. Repetition Structures 4. Loops
5. Functions 5. Functions 5. Functions
6. Lists
8. Sets and Dictionaries

7. Lists and Tuples
9.Dictionaries and Sets 6. Data Structures

7. Files and Exceptions 6. Files and Expetions 7. Files and Exceptions

9. Objects and Classes 10. Classes and Object
Oriented Programming 8. Classes

10. Inheritance 11. Inheritance
11. Recursion 12. Recursion

13. GUI Programming
12. Sorting and
Searching

Thus, our goal was to map the numerical features extracted from the source
code to the appropriate chapter content. We excluded chapters related to inher-
itance, recursion, GUI programming, and sorting algorithms from our analysis.

Furthermore, to enable creative work and facilitate the development of vi-
sualizations, the feature variables were organized into tables based on their
associated concepts. Within the tables, the variables were grouped by category.
For most concepts, the categories were “General”, “Content of Concept” and
“Location of Concept in Code”. The tables were in turn arranged according to
the chosen chapter structure. Tables 3 - 13 shows the variables related to each
section.
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Table 3: Overview of variables related to Section 4.4
about variable assignments and augmentations.

General (4) Location in code (15)
Assign_node Assign_class

Assign_for
Assign_fun
Assign_if
Assign_while

AugAssign_node AugAssign_class
AugAssign_for
AugAssign_fun
AugAssign_if
AugAssign_while

AnnAssign_node AnnAssign_class
AnnAssign_for
AnnAssign_fun
AnnAssign_if
AnnAssign_while

4 Results
This chapter presents the results obtained by analyzing professional, open-source
Python code. The results follow the analysis of the textbooks’ contents, pre-
sented in Section 3.4.

A consistent trend in the results is that functions are the main building block
of the analyzed source code. Furthermore, the average length of if statements,
loops, and functions is found to be short, indicating that programmers prioritize
modular code.

The average length is computed by dividing the total number of lines ded-
icated to each code block in a file by the corresponding count of occurrences.
Files without any instances of a particular construct are not considered in this
calculation. In this section, we consider the location of if statements, loops,
functions, and classes within the code. The location in the code is divided
into six groups, namely functions, while loops, if statements, for loops, classes,
and global. Specifically, we explore whether a code block, such as a function
definition, occurs within an if statement, a loop, a class, or the global scope.
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Table 4: Overview of variables related to Section 4.5.1
about if statements.

General (6) Content of
if statements (23)

Location of
if statements (4 + 1)

if Expr_if If_fun
elif Assign_if If_for
else If_if If_if
Nu_if Return_if If_while
Sum_len_if For_if If_class
IfExp_node Raise_if

Break_if
Pass_if
AugAssign_if
Continue_if
With_if
Try_if
ImportFrom_if
While_if
Delete_if
Import_if
FunctionDef_if
ClassDef_if
Assert_if
AnnAssign_if
Global_if
Nonlocal_if
AsyncFunctionDef_if

Table 5: Overview of variables related to Section 4.5.2
about comparison operator tokens.

General (1) Relational operators (6) Identity and membership
operators (6)

Compare_node Eq_node Is_node
NotEq_node IsNot_node
Lt_node In_node
LtE_node NotIn_node
Gt_node is
GtE_node in
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Table 6: Overview of variables related to Section 4.6.1
about while loops.

General (3) Content of
while loops (14)

Location of
while loops (3 + 1)

while Assign_while While_fun
Nu_while If_while While_while
Sum_len_while Expr_while While_if

Try_while While_for
While_while
AugAssign_while
For_while
Pass_while
Delete_while
Break_while
Assert_while
Return_while
With_while
AnnAssign_while

Table 7: Overview of variables related to Section 4.6.2:
about for loops.

General (3) Content of
for loops (17)

Location of
for loops (6 + 1)

for Assign_for For_fun
Nu_for If_for For_if
Sum_len_for Expr_for For_for

For_for FormattedValue_node
Try_for For_while
AugAssign_for For_class
With_for AsyncFor_node
While_for
FunctionDef_for
Delete_for
Assert_for
Raise_for
Return_for
Pass_for
ClassDef_for
Break_for
AnnAssign_for
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Table 8: Overview of variables related to Section 4.7
about functions.

General (6) Content of functions (21) Location of function
definitions (5 + 1)

def Expr_fun FunctionDef_class
Nu_fun If_fun FunctionDef_if
Sum_FunName_fun Assign_fun FunctionDef_for
Sum_len_fun Raise_fun AsyncFunctionDef_node
Call_node Return_fun AsyncFunctionDef_class
lambda For_fun AsyncFunctionDef_if
Lambda_node Delete_fun

Try_fun
While_fun
With_fun
Import_fun
FunctionDef_fun
ImportFrom_fun
AugAssign_fun
Pass_fun
Global_fun
Assert_fun
ClassDef_fun
Nonlocal_fun
AnnAssign_fun
AsyncFunctionDef_fun

Table 9: Overview of variables related to
Section 4.8 about data structures.

Data structures (4) Comperhension (3)
List_node ListComp_node
Tuple_node SetComp_node
Set_node DictComp_node
Dict_node

Table 10: Overview of variables related to
Section 4.9.1 about raise.

General (2) Location of raise (5)
raise Raise_fun
Raise_node Raise_if

Raise_for

29



Table 11: Overview of variables related to
Section 4.9.2 about try.

General (2) Location of try (5)
try Try_fun
Try_node Try_while

Try_if
Try_for
Try_class

Table 12: Overview of variables related to
Section 4.9.3 about with.

General (4) Location of with (4)
with With_fun
With_node With_if
withitem_node With_for
AsyncWith_node With_while

Table 13: Overview of variables related to Section 4.10
about classes.

General (4) Content of class (12) Location of
class definitions (3 + 1)

class Expr_class ClassDef_if
Nu_Classes Assign_class ClassDef_fun
Sum_ClassName_class FunctionDef_class ClassDef_class
Sum_len_class Pass_class ClassDef_for

Try_class
ClassDef_class
If_class
AugAssign_class
AnnAssign_class
AsyncFunctionDef_class
Global_class
For_class

30



4.1 Data Dimensionality
As mentioned in Section 3.2, the professional source code was transformed into
numerical values using Python’s AST. Each source code file was represented as
a vector in a 229-dimensional space, with 176 features derived directly from the
AST nodes. The remaining features represent 35 Python keyword frequencies,
15 length counts, and counts of the function calls input, print, and open.

In this section, we analyze the dimensionality of our data. Our goal is to
determine if there exists a reduced space that captures all the variations in the
dataset. To achieve this, we utilized PCA to transform the data into an optimal
reduced space.

Figure 3 shows the plot of the singular values’ ratio associated with the
singular vectors. We observe that the first singular value accounts for 16% of
the data, while it takes 181 dimensions to capture 99.9% of the data variation.
Notably, this number is very close to the actual number of nodes in the AST.
Furthermore, since the transformation of source code to the AST structure is
a lossless operation, the additional features related to keywords and arguments
in functions are shown to be mathematically unnecessary.

� �� �� �� ��� ��� ��� ���
	�����������������

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��
��
��
��
���
�
��


��
��

Figure 3: The explained variance ratio for each principal component up to 181.
We note that the majority of the variance is explained by the first few principal
components.
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4.2 Clustering
Previously, we assumed that all code within the 30 Python 3 libraries we ex-
amined could be considered as one cohesive unit of professional source code.
However, we have not verified this assumption.

To investigate the similarity of the professional code in our dataset, we uti-
lized the k-means clustering algorithm. Our hypothesis was that professional
code from different libraries would not form distinct clusters. If clustering re-
sults showed otherwise, our hypothesis would require adjustment, and individual
clusters would need separate analysis.

Figure 4 depicts the silhouette score obtained from k-means. Notably, the
highest score occurred when the data were divided into a maximum of two clus-
ters. These results support the hypothesis that professional source code in our
dataset can be treated as a single cohesive unit. Finally, Figure 5 presents
the two-dimensional projection of the data, showcasing the corresponding clus-
ters. Detailed analysis of the differences between the two clusters are considered
future work.
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Figure 4: The silhouette score for different number of clusters, ranging from 2 to
30. The highest score is obtained using 2 clusters, signifying the most suitable
number of clusters for our dataset.
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Figure 5: The two clusters in the dataset, represented in a two-dimensional
projection.
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4.3 Keywords
This section, presents an analysis of the proportion of the 35 Python 3 keywords
across all libraries, as well as exploring the distribution of keywords within each
library.
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Figure 6: The most frequently used keywords are: def, import, and if. The least
frequently used keywords are: nonlocal, global, and finally.

Figure 6 presents the proportional distribution of keywords across 30 li-
braries, highlighting that the most frequently used keywords are def, import, if,
return, and from. When analyzing the individual libraries, we observed varia-
tion in the use of the keywords across the libraries. Our analysis reveals the
following patterns: the keywords def, if, and return consistently rank among
the top ten most commonly used keywords. The keyword import appears in the
top ten for all libraries except one, algorithms (library 25), while the keywords
None and in are among top ten in all libraries except two.

Our analysis shows that the keywords nonlocal, global, finally, await, and del
are consistently among the least utilized keywords across 28 of the 30 libraries
studied. However, thumbor (library 24) and FastAPI (library 28) exhibit no-
table differences, with await being the 12th and 14th most used keyword, re-
spectively. Moreover, it is worth mentioning that nonlocal is only employed
in two libraries, specifically Algorithms (library 25) and Mitmproxy (library
29), indicating its limited adoption within the analyzed source code. Similarly,
await and async are used in only six libraries, namely Platformio (library 16),
Thumbor (library 24), Django (library )27, FastAPI (library 28), Mitmproxy
(library 29), and Scrapy (library 30). Conversely, global is utilized in half of the
libraries.
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Further analysis is required to clearly understand the correlations between
the keywords. However, we can already see that keywords are highly correlated.
For example, function definitions (def ) are correlated with return and None.

Finally, Table 14 presents the top seven most frequently used keywords in
each library. Notably, either def or if consistently emerge as the most commonly
used keywords across all libraries, indicating that functions and conditions are
the predominant building blocks in the source code.

Table 14: Top seven most utilized keywords.

Library Top seven most utilized keywords
All libraries combined def import if return from None in
1. Ansible if def return in import None not
2. Borg if def return in import for None
3. Boto3 def return if import in from for
4. Cerberus def True None if import from assert
5. conda if import def return from in for
6. cryptography def if return import raise not from
7. Errbot def if return None in import not
8. Gooey def return if None import in for
9. Keras if def None return import not from
10. Luigi def if return import None in for
11. Matplotlib def if None return for import assert
12. NLTK if def return in for None import
13. Numba def return if in import None for
14. pandas def if None return import assert in
15. pip if def return None import not from
16. PlatformIO if return def in import not from
17. psutil def if import in return from for
18. pygame if def import True in return for
19. Python Fire if return None import def in else
20. PythonRobotics if in def for return None True
21. Scapy if return def class None import from
22. scikit-learn if def import from None return in
23. sqlmap if import from def return not in
24. thumbor if None return def import not from
25. algorithms if return def in for and None
26. beets if return def in for import not
27. Django def if return None import in from
28. FastAPI if import None return def in and
29. mitmproxy if def return import None in from
30. Scrapy def if return import from None in
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4.4 Variable Assignments and Augmentations
In this section, we present the results of our analysis on the relationship between
assignments and augmentations. In out data, assignments are represented by
the ”Assign” node in the AST, which corresponds to variable assignment state-
ments like ”x = 5”. On the other hand, augmentations are represented by the
”AugAssign” node in the AST, which denotes augmented assignment statements
involving a binary operator combined with the assignment operator to update
the variable in-place, such as ”x += 1”. It is important to note that the term
”augmentation” typically implies an increase in values, but the AugAssign node
is not limited to only incrementing the variable value. It can perform other
operations based on the chosen binary operator.

Figure 7 illustrates the correlation between assignments and augmentations.
The Pearson’s correlation coefficient is 0.219, indication a low correlation be-
tween assignments and augmentations. It is worth noting that not all assign-
ments allows for augmentations, and a correlation coefficient of 1 is therefore
unlikely.
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Figure 7: The correlation between variable assignment statements and variable
augmentation statements. Each data point representing a file, and the hue axis
represents which library the file belongs to.
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4.5 Decisions
The analysis of decisions in source code includes the use of if statement, and
comparison operators.

4.5.1 If Statements

Referring back to Figure 6, we observe that the keyword if is one of the most
frequently used keywords in the analyzed dataset. Further, we note that the
use of else and elif is less frequent, indicating that most of the if conditions are
short, and simple. In other words, if blocks that don’t include elif and else are
the most common conditions.

To further analyze the use of if statements, we present our findings regarding
the average number of lines within an if statement block per file, along with their
placement within the code. Figure 8, depicts the distribution of the number
of lines in an if statement block. We note that the distribution is positively
skewed, indicating that the majority of the if statements have a low average
length. To evaluate the data numerically, we calculated the average, median,
standard deviation, minimum, and maximum. The results of the calculations
are presented in Table 15, where we note that the mean value is 5, the standard
deviation is 4, and the median is 4 lines per if statement. The values range
from 1 to 127, with 93% of files having an average of 9 lines or fewer. This is
derived from the mean plus one standard deviation, which is 9. Finally, we note
that for the purpose of visualization, the data plotted in Figure 8 exclude the
outliers.
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Figure 8: Average length of if statement per file. We note that for the pur-
pose of visualization, the data outliers have been truncated. The majority of if
statements are relatively short, with 93% of the files having an average length
of 9 or less.
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Table 15: Statistical summary of the average
number of lines in if statements per file.

Mean Std Median Min Max
5 4 4 1 127

Figure 9 indicate that functions contain the majority of if statements, fol-
lowed by global scope, for loops, nested if statements, and while loops. Figure
9 illustrates the distribution of if statements across all analyzed libraries. To
assess whether the general distribution in Figure 9 is consistent among various
libraries, we analyzed the probability of if statements per block in each library.
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Figure 9: The probability distribution of if statement by location in code, across
all libraries. The exact probability for each block are: functions 0.5, while loops
0.03, if statements 0.12, for loops 0.14, and global 0.22.

Figure 10 display the per-library distributions, which shows that the gen-
eral probability distribution of if statements holds true across the majority of
libraries. However, there are a few exceptions worth noting when examining the
libraries individually. In the case of pygame (library 18), a larger proportion
of if statements falls within global scope, accompanied by a lower proportion
within functions. The distribution of if statements in PythonRobotics (library
20) and algorithms (library 26) deviates slightly from the overall trend, with a
larger proportion within while loops. In these libraries, the order of prevalence,
from highest to lowest, is as follows: functions, for loops, global, while loops,
and if statements.
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Figure 10: The probability distribution of if statements by location in code, per
library. The majority of if statements are found within functions, while a small
number are found within while loops.
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4.5.2 Comparison operator tokens

In this section, we studied the utilization of comparison operator tokens. Specif-
ically, the operators ==, !=, <, <=, >, >=, is, is not, in, and not in. Figure
11 highlights the average number of each operator per file. Specifically, we
calculate the values ∑n

i=1 Opji
m

where j stands for the type of operator, n stands for the number of operators
of type j in a file, and m is the total number of files.

From Figure 11, we note that the comparison operator, ==, is the most
prevalent, followed by the operators in, and is. Further, we note that ==, in,
and is, are utilized more frequently than their negative counterparts !=, not in,
and is not. Interestingly, the data reveal that the operator (is) is used almost
twice as much as is not. Similarly, the operator in is used twice as much as
not in. Specifically, the average count of positive comparison operator tokens
is approximately twice as large as the count of negative comparison operator
tokens. Further analysis of the use of operators and cases where the negative
counterparts of the positive operators, such as in and not in are used, is left as
considered as future work.
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Figure 11: The average count of comparison operator tokens per file. The
operators are as follows: Equal ==, not equal !=, less than <, less than or equal
to <=, greater than >, greater than or equal to >=, is, is not, in, and not in.
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4.6 Loops
This section, introduces the results of our analysis concerning the average line
count of loops, as well as the expected location of the loops in the code. By
loops, we mean both while loops and for loops.

4.6.1 While Loops

Figure 12 shows the distribution of the average length of while loops across all
files. We note that the distribution is positively skewed, indicating that the
majority of the while loops have a low average length. Specifically, 90% of the
files have an average length of 28 lines or less, which is the mean plus one
standard deviation. Table 16, lists the numerical values of the mean, standard
deviation, median, minimum, and maximum average number of lines in a while
loop per file. Finally, we note that for clarity of visualization, the data plotted
in Figure 12 do not include the outliers.
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Figure 12: Average length of while loops per file. We note that for the purpose
of visualization, the data outliers have been truncated. The majority of while
loops are relatively short, with 90% of the files having an average length of 28
or less.

Table 16: Statistical summary of the average
number of lines in while loops per file.

Mean Std Median Min Max
12 16 8 2 245
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Figure 13 illustrates the probability distribution of the location of while loops
across different code structures. It shows that the majority of while loops are
found within functions, followed by global scope, if statements, for loops, and
finally, nested while loops.
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Figure 13: The probability distribution of while loop location, across all libraries.
The exact probability distribution are as follows: functions 0.64, global 0.18, if
statements 0.09, for loops 0.06, and while loops 0.04.

Figure 14 illustrates the distribution of while loops per library. The analy-
sis reveals that in 80% of the analyzed libraries, while loops are predominantly
located within functions. However, as shown in Figure 14, boto3 (library 3)
stands out as an exception, displaying an even distribution of while loops within
if statements and for loops. Three libraries, namely Gooey (library 8), psutil (li-
brary 17), and FastAPI (library 28), exhibit a higher distribution of while loops
within the global scope compared to functions. Additionally, it is noteworthy
that Cerberus (library 4) does not contain any while loops.
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Figure 14: The probability distribution of while loops by location in code, per
library. The majority of libraries have the highest proportion of while loops
within functions.
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4.6.2 For Loops

Figure 15 depicts the average distribution of the number of lines in an for loop.
We note that the distribution is positively skewed, with the majority of the
data lying to the left of the distribution. To evaluate the data numerically, we
calculated the average, median, standard deviation, minimum, and maximum.
The results of the calculations are tabulated in Table 17. We observe that the
mean value is 7, the standard deviation is 7, and the median is 5 lines per for
loop. The presence of outliers is indicated by the significant deviation of these
values from the maximum value of 102. Specifically, 89% of the files have a
average line count of 14 or less, which is the mean plus one standard deviation.
Finally, it is important to note that for the purpose of visualization, the outliers
have been excluded from the data plotted in Figure 15.
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Figure 15: Average length of for loops per file. We note that for the purpose of
visualization, the data outliers have been truncated. The majority of for loops
are relatively short, with 89% of the files having an average length of 14 or less.

Table 17: Statistical summary of the average
number of lines in for loops per file.

Mean Std Median Min Max
7 7 5 2 102
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Figure 16 depicts the probability distribution of for loops in all libraries.
Functions contain the majority of for loops, followed by if statements, nested
for loops, global, and while loops. To assess the consistency of this general
distribution across different libraries, we analyzed the probability of for loops
per block in each library. Figure 17 display the per-library distributions.
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Figure 16: The probability distribution of for loops by location in code, across
all libraries. The exact probabilities for each block are: functions 0.65, while
loops 0.02, if statements 0.12, for loops 0.11, and global 0.10.

The overall trend in Figure 17 indicates that for loops are most commonly
located within functions. Conversely, they are rarely found within while loops,
with a zero probability observed in 50% of the libraries. However, it is worth
noting that there are a higher occurrences of while loops in pygame (library 18).
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Figure 17: The probability distribution of for loops by location in code, across
all libraries. Functions are the overall most likely location of for loops.
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4.7 Functions
This section, introduces the results of our analysis of the average number of
lines in a function per file, as well as the likely location of functions definitions
in the code blocks.

Figure 18 presents the histogram of the average function length. We note
that the data are positively skewed towards shorter average length. To further
analyze the data, we calculated the average, median, standard deviation, min-
imum, and maximum average function lengths, shown in Table 18. Notably,
the line counts range from 1 to 295, with 92% of functions having 28 or fewer
lines, which corresponds to the mean plus one standard deviation. These data
indicates that the majority of functions are relatively short. We note that, for
visual representation purposes, the data plotted in Figure 18 exclude the few
large outliers.
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Figure 18: Average length of functions per file. We note that for the purpose of
visualization, the data outliers have been truncated. 92% of files have a average
length of 28 lines of less.

Table 18: Statistical summary of the average
number of lines in functions per file.

Mean Std Median Min Max
14 14 10 1 295
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Figure 19 illustrates the probability distribution of function definitions across
the different code blocks. We observe that functions are predominantly located
within classes (methods), followed by global scope, nested functions, and if
statements. It is worth noting that there are only 26 cases of functions inside
for loops, and no functions are found inside while loops. The examination of
the very few cases were functions are defined inside for loops, is considered in
future work.
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Figure 19: The probability distribution of functions by location in code across
all libraries are as follows: class 0.64, global 0.32, functions 0.03, if statements
0.004, and for loops 0.0002.

Our analysis reveals a consistent trend across 83% of the libraries, high-
lighting that functions are primarily defined within classes. Notably, the li-
braries Cerberus (library 4), PythonRobotics (library 20), scikit (library 22),
and FastAPI (library 28) have a higher likelihood of defining functions within
the global scope compared to classes. Additionally, the library Conda (library
5) showcases an equal proportion of function definitions within both classes and
the global scope. Numba (library 13) stands out with a notably higher propor-
tion of nested functions. Furthermore, the occurrence of function definitions
within if statements is relatively rare, as only seven libraries exhibit a nonzero
probability. Cases were functions are defined within if statements are seen as
future work.
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Figure 20: The probability distribution of functions by location in the code
across each library. Functions are most likely located within classes, followed
by the global scope.
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4.8 Data structures
This section, presents the findings from our analysis of data structures. Specif-
ically, four data structures were considered: lists, tuples, sets and dictionaries.

Figure 21 shows the distribution of data structures across the libraries. We
note that lists and tuples are about equally popular, with a probability of 0.42
and 0.39, respectively. Dictionaries are also widely used, with a share of 0.19,
while sets have the lowest rate at 0.0033.
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Figure 21: The probability distribution of data structures for all libraries com-
bined. Sets are rarely used compared to the other considered data structures.

When examining the distributions per library in Figure 22, it becomes evi-
dent that the set data structure is rarely utilized in the analyzed libraries. In all
libraries, the share of sets does not exceed 0.0015. Furthermore, it is noteworthy
that sets are absent in eight libraries. In contrast, we note that lists, tuples, and
dictionaries are utilized in every single library.

By enlarge, the examined libraries follow similar trends to that observed
in Figure 21. The largest exceptions are found in Boto3 (library 3), Cerberus
(library 4) and FastAPI (library 28), where dictionaries dominate the distribu-
tion.

50



0.0 0.2 0.4 0.6 0.8 1.0
Distribution of Data Structures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Lib
ra
ry

List
Tuple
Set
Dictionary

Figure 22: The probability distribution of data structures for each library. Sets
are consistently less used than lists, tuples and dictionaries.
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4.9 Files and Exceptions
This section, presents the results of our analysis concerning the location and
correlation of keywords related to files and exceptions. Specifically, the Python
keywords in focus are raise, try, except, finally, and with.

4.9.1 raise

Figure 23 shows the probability distribution of the keyword raise in code blocks,
across all libraries. We observe that the majority of the occurrences of the raise
keyword is found within if statements (0.55), followed by global scope (0.30)
and functions (0.16). It is noteworthy that the occurrence of raise within for
loops is very low at 0.00033, and that there are no instances of raise within
while loops.
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Figure 23: The probability distribution of the raise keyword by location for all
the libraries combined. The majority of the raise keywords are found within if
statements.
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4.9.2 try

Figure 24 illustrates the probability distribution of the keyword try across var-
ious code blocks. Within the analyzed dataset, the majority of the try keyword
are found within functions (0.54), followed by the global scope (0.24), if state-
ments (0.12) and for loops (0.08), respectively. The occurrence of try keywords
within while loops is minimal, with a distribution 0.02 of the total observations.

When examining the distribution per library, it becomes apparent that most
libraries exhibit similar distributions. However, some libraries stand out, no-
tably, Boto3 (library 3) and Gooey (library 8) have a particularly high pro-
portion of try keywords in functions. Conversely, FastAPI (library 28) has a
particularly low proportion of try in functions, and most of try keywords occur
in the global scope, with a distribution of 0.79.
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Figure 24: The probability distribution of the try keyword by location for all
the libraries combined. The majority of the try keywords are found within
functions.
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4.9.3 with

Figure 25 displays the probability distribution of the keyword with in different
code blocks. The distribution reveals that majority of the occurrences of the
with keyword are located within functions (0.75). The remaining occurrences
are divided among the global scope (0.15), for loops (0.05), and if statements
(0.05). In no instance does the with keyword appear in while loops.

When examining the distribution per library, it is evident that most li-
braries have a large proportion of the with keywords within functions. Only
five libraries, Gooey (library 8), NLTK (library 12), Scapy (library 21), sqlmap
(library 23), and thumbor (library 24), have a proportion of the occurrence of
the with keyword below 0.60 in functions.
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Figure 25: The probability distribution of the with keyword by location for all
the libraries combined. The majority of the with keywords are found within
functions.
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4.9.4 Correlations

The correlation between the keywords raise, try, except, finally, and with per
file is shown in Figure 26. The scatter plots depict the relationships between
pairs of keywords, with the x- and y-axes representing the occurrence count of
each keyword in the associated file.

The largest correlation is observed between try and except, which is expected
since these keywords are commonly used together. The second largest correla-
tion exists between raise and except, as well as between try and raise. This
correlation is logical considering that raise is often used to raise an exception.

The correlation between try and finally, and between except and finally, is
also significant but lower compared to the try and except correlation. The key-
word finally is typically used in a try-except clause to perform specific operations
when the conditions specified by try and except fail.

There is an insignificant correlation observed between with and raise, as well
as between with and except. Finally, Table 19 presents the numerical values of
the observed Pearson’s correlation coefficients.

Table 19: The Pearson correlation coefficients indicates the
correlation between the try, finally, except, with and raise.

raise try except finally with
raise 1.000 0.469 0.474 0.128 0.002
try 0.469 1.000 0.965 0.368 0.028
except 0.474 0.965 1.000 0.187 -0.004
finally 0.128 0.368 0.187 1.000 0.146
with 0.002 0.028 -0.004 0.146 1.000
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Figure 26: The correlation plots for each keyword pair raise, try, except, finally
and with. There is one data point per file, representing the correlation between
two of the keywords in that specific file. There is a strong, positive correlation
between try and except.
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4.10 Classes
This section, introduces the findings of our analysis regarding the average num-
ber of lines in classes per file, as well as the location of classes within the code.

Figure 27 depicts the distribution of average class length per file. The distri-
bution demonstrates a positive skew, with the majority of the data concentrated
towards the shorter class lengths. Table 20 presents the mean, standard devi-
ation, median, minimum, and maximum number of lines in a class. The mean
line count is 124, with a standard deviation of 156, and the median is 64 lines per
class. Notably, the line count ranges from 2 to 1587, with 87% of the classes
consisting of 280 lines or fewer. For the purpose of visualization, Figure 27
excludes the very few long class lengths.
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Figure 27: Average number of lines in classes per file. We note that for the
purpose of visualization, the data outliers have been truncated.

Table 20: Statistical summary of the average
number of lines in classes per file.

Mean Std Median Min Max
124 156 64 2 1587
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Figure 28 presents the distribution of class locations. We observe that the
majority of classes are defined within the global scope, followed by classes defined
within functions, classes, if statements, and for loops. It is important to note
that no classes were found within while loops. The analysis of cases where
classes are defined within functions, if statements, and for loops is considered
in the future work section. Finally, to further evaluate the distribution of class
locations, we analyzed the per library distributions, shown in Figure 29.
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Figure 28: The probability distribution of class location, across all libraries.
The exact probabilities are: global 0.92, function 0.05, class 0,02, if statement
0.003, for loop 0.0001

Overall, classes are primarily defined within the global scope. Figure 29
reveals that 20 of the 30 libraries incorporate classes within functions, 15 li-
braries contain nested classes, and 6 libraries have classes within if statements.
Among the analyzed libraries, Cerberus (library 4) demonstrates a nearly equal
distribution between classes defined in functions and the global scope, while five
libraries confine all their classes to the global scope. It is worth noting that only
two libraries, Numba (library 13) and Django (library 27), exhibit instances of
classes within for loops, totaling four occurrences.
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Figure 29: The probability distribution of location of class definitions across
each library. The majority of classes are defined within the global scope.
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4.11 Administrative and Engineering Results
The collaboration within our team worked well, as the members had previously
worked together on projects and were familiar with each other’s working meth-
ods. To maintain effective communication and progress, we planned frequent
meetings. For project management, we utilized Toggle Track for time tracking
and Jira for task management. Initially, Jira provided structure and clarity, but
as our understanding of the project grew, regular status updates became suffi-
cient. Further, we allocated specific responsibilities, allowing the group to work
both collaboratively and independently. The distribution of responsibilities was
as follows: Amalie took the lead on AST, graphics, and visualizations, while
Kristina had the main responsibility of structuring the feature variables, and of
PCA, and clustering analysis. Despite the allocation of specific responsibilities,
both team members worked collaboratively on all aspects.

Our collaboration with the supervisor throughout the project was construc-
tive and valuable. Initially, we held weekly meetings, but as the project pro-
gressed, we gradually increased the frequency of our meetings. We received
valuable feedback, while also providing constructive challenges when we dis-
agreed.

The project was divided into three phases: research and planning, analysis
and visualization, and report. In the initial phase, we familiarized ourselves with
the project, conducted relevant research, and planned accordingly. The second
phase involved organizing the data, and the practical implementation, utilizing
Python to generate diverse charts from the structured data. Additionally, we
analysed the actual dimensionality of the dataset. During the final phase, we
analyzed the results and completed the majority of the report. Each phase was
completed within the planned timeframe.

Prior to the project commencement, we established result and impact tar-
gets, which are outlined in the Pre-Project Plan (Attachment A). The result
target, ”identify and visualize qualities of professional Python code,” was suc-
cessfully achieved. As for the impact targets, our aim was to enhance program-
ming instruction. While the project’s ultimate influence is yet to be determined,
it is reasonable to expect that the attained results will aid novice programmers
in their journey towards expertise, with the potential for utilization in NTNU
courses.

For further information on planning, goals and administration, please refer
to Attachment A and B.
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5 Discussion and Conclusion
This project was driven by three research questions, and in this section, we
discuss the findings for each question.

Firstly, we investigated whether the dataset, consisting of 30 distinct libraries
and 11,712 files, could be considered a cohesive and unified set. To assess this,
we conducted a dimensional analysis and attempted to cluster the files using
the k-means algorithm. The results revealed that 181 dimensions were required
to accurately represent the data with a 99.9% level of accuracy. Interestingly,
these dimensions aligned with the number of nodes found in the AST. Moreover,
we observed that the dataset could not be effectively clustered into more than
two groups. Based on these findings, we can conclude that the dataset is indeed
coherent and suitable for further analysis.

Our second research question focused on identifying the characteristics of
professional Python code through data analysis. Several conclusions were drawn
from this analysis. Firstly, functions emerged as the primary building blocks
of source code. Additionally, we noted that code was predominantly organized
into concise blocks comprising functions, conditions, and loops. Furthermore,
the usage of lists, tuples, and dictionaries was more prevalent compared to
sets, and for loops were more commonly employed than while loops. Finally,
the logical operator == stood out as the most frequently used operator in the
dataset.

Lastly, we explored whether the qualities of professional Python code can
be used to guide the education of undergraduate programmers. The results
section highlights key priorities that can shape programming curricula. Em-
phasizing the mastery of functions and the effective division of code into man-
ageable blocks is crucial for novice programmers. Additionally, aspects such as
object-oriented programming (OOP), control flow, error handling, and the usage
of external libraries should be prioritized. These insight can provide valuable
guidance for further development for programming courses.
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6 Future work
Our examination of the dataset has uncovered several intriguing aspects that
could be further explored. These aspects include:

• Further analysis of the two clusters identified in Section 4.2 could shed
light on the type of files in each cluster.

• Analysis of libraries that deviate from the overall trends. For instance,
our analysis has revealed that libraries such as Cerberus (library 4), algo-
rithms (library 25), and FastAPI (library 28) often stand out. Exploring
the factors that contribute to these deviations could uncover underlying
connections or patterns associated with these libraries.

• Deeper analysis of function definitions, particularly the rare instances of
functions inside for loops, if statements, and nested functions. Similarly,
further investigation of the limited occurrences of classes nested within
classes, functions, if statements, and for loops.

• Further analysis of the correlation between keywords.

• Examining the content of short classes, and subdividing classes into super-
classes, abstract classes, etc.

This list does not encompass all the potential avenues for future work. As
the project advances, we anticipate that additional opportunities for further
development will arise.
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7 Societal Impact and Sustainability
When considering the project’s sustainability and societal impact, we could
draw a connection to ambitious political goals, such as the United Nations’
ninth sustainable development goal on ”Quality education” (United Nations,
n.d.). However, it is important to acknowledge that this project is a minimal
contribution towards this goal, with no direct impact. Therefore, we choose to
focus on the actual impact of our results, and the social group to which this
project is addressed; students and teachers of programming.

The project has provided valuable insights into the characteristics of profes-
sional Python code, that are concrete and easily understandable. In a conversa-
tion with computer science professor at NTNU, Majid Rouhani, the possibilities
of using the results in the design of programming courses were discussed. For
example, based on the results regarding keywords, one can determine which ones
are most commonly used and should be taught first. Functions can play a more
central role in general, but particularly early in the course, as they are a funda-
mental building block of professional Python code. Through further discussions
with lecturers, it became evident that some of the findings were unexpected and
surprising to them. Consequently, these findings have the potential to influence
the curriculum and improve the quality of programming courses.

There are several ethical considerations to explore regarding the project.
For instance, is it ethically acceptable to gather knowledge from source code
without obtaining permission? In our case, we utilized open-source source code,
which allows modifications and redistribution (The Open Source Definition n.d.).
Another question to ponder is whether the data is sufficiently extensive. Is it
ethically sound to draw conclusions based on this dataset? Despite the diverse
range of purposes represented by the libraries, the clustering results revealed a
cohesive grouping among them.

Reflecting on our conduct throughout this project, we maintained a com-
mitment to academic honesty and respect for intellectual rights by diligently
citing all sources used. Further, the collaboration in the group was character-
ized by an open and respect full dialogue, shared responsibilities, integrity and
professionalism.

In order to enhance the project’s impact and inform decision-making, a valu-
able approach would have been to proactively engage first-year students enrolled
in programming courses. This could have been achieved through surveys or
interviews, providing valuable insights and lending greater credibility to the
project. While the project excels in disseminating knowledge, it’s important to
acknowledge that the library source code may not fully represent Python code’s
overall style. Furthermore, it is worth noting that there are additional aspects
within the project that could have been further investigated. It is our aspira-
tion that further research will yield a comprehensive framework and structure
for professional coding practices. A discussion of these possibilities is provided
in Section 6.
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8 Attachments
This section contains the following attachments for the project:

• Attachment A - Pre-Project Plan

• Attachment B - Project Handbook
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